CN100590832C - Method for detecting silicon chip edge automatically - Google Patents

Method for detecting silicon chip edge automatically Download PDF

Info

Publication number
CN100590832C
CN100590832C CN 200710094319 CN200710094319A CN100590832C CN 100590832 C CN100590832 C CN 100590832C CN 200710094319 CN200710094319 CN 200710094319 CN 200710094319 A CN200710094319 A CN 200710094319A CN 100590832 C CN100590832 C CN 100590832C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
step
wafer
edge
klarf
file
Prior art date
Application number
CN 200710094319
Other languages
Chinese (zh)
Other versions
CN101452867A (en )
Inventor
王亚东
Original Assignee
上海华虹Nec电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The invention discloses a method for automatically detecting the edge of a silicon chip. The method comprises: step one, an automatic defect detector scans the silicon chip and stores a scanning result to form a file with a KLARF format; step two, a virtual crystal element is added to the KLARF file stored in the step one; the virtual crystal element integrally covers the edge of the whole siliconchip; step three, a coordinate of a detection point of the edge of the silicon chip is calculated in a coordinate system adopted by the KLARF file; step four, the coordinate of the detection point calculated in the step three is used as virtual defect and is added to the KLARF file edited in the step two; and step five, an electron scanning microscope is used to carry out automatic detection on the virtual defect of the KLARF file edited in the step four. Through functional integration of data analytic software and a detection machine, the method realizes automatic detection on the position of the edge of the silicon chip, saves manpower and material resource, improves efficiency and strengthens data accuracy and analyzability.

Description

自动检测硅片边缘的方法 Method for automatically detecting the edge of the wafer

技术领域 FIELD

本发明涉及一种半导体制造工艺,特别是涉及一种检测硅片边缘的缺陷的方法 The present invention relates to a semiconductor manufacturing process, more particularly to a method of detecting a defect of the edge of the wafer process

背景技术 Background technique

目前集成电路制造企业对有图形硅片(即已在硅片上进行过某些工艺如刻蚀工艺,并且已在硅片上形成了某种图形如刻蚀图形的硅片)的边缘进行检测,是通过电子扫描显微镜由人工手动操作。 At present manufacturers of integrated circuit wafer with a pattern (ie in certain processes, such as on a silicon wafer through an etching process, and has formed a certain pattern, such as a silicon wafer etched pattern on a silicon wafer) edge detection , by a scanning electron microscope is operated by a manually.

在一个生产流程中,硅片边缘的缺陷是在哪一步工艺中产生,硅片边缘已存在的缺陷在后续工艺中如何演变,要解决这些问题就需要在一个生产流程中的每两工艺之间对硅片边缘进行多次、重复的缺陷检测。 In a production process, the wafer edge defect is generated in which step process, the edge of the wafer existing defects evolve in a subsequent process, it is necessary to solve these problems between every two processes in a production process of on the edge of the wafer multiple, repeating defect detection. 这种人工手动检测需要耗费大量的人力物力,而且效率和精度都很差,无法对检测点精确定位,数据的可分析性也较差。 Such manually detection requires a lot of manpower and resources, and the efficiency and accuracy are very poor, unable to pinpoint the detection point, analytical data can also poor.

发明内容 SUMMARY

本发明所要解决的技术问题是提供一种通过电子扫描显微镜对有图形硅片的边缘进行自动检测的方法。 The present invention solves the technical problem is to provide an automatic detection of the pattern edge of the wafer by a scanning electron microscope method.

为解决上述技术问题,本发明自动检测硅片边缘的方法,所述硅片边缘,即硅片边缘的无图形区域和放弃检测区域,包括如下步骤: To solve the above problems, the present invention is an automated method of detecting the wafer edge, the edge of the wafer, i.e. unpatterned wafer edge region and give up the detection region, comprising the steps of:

第一步,自动缺陷检测仪扫描硅片,并将扫描结果保存为KLARF格式的文件; The first step, automatically scanning the wafer defect inspection machine, and the scan result is stored KLARF file format;

第二歩,在第一步保存的KLARF文件中加入虚拟晶元,所述虚拟晶元完整地覆盖整个硅片边缘; Ho second, in the first step was added dummy wafer KLARF saved file, the virtual wafer completely cover the entire edge of the wafer;

第三步,计算硅片边缘的检测点在KLARF文件所采用的坐标系中的坐 A third step of computing the wafer edge detection point coordinates in a coordinate system used KLARF file in

标; Standard;

第四步,将第三步计算的检测点的坐标作为虚拟缺陷加入第二步编辑的KLARF文件中; A fourth step, the third step calculates the coordinates of the detection point is added as the second step of editing the virtual file defect KLARF;

第五步,电子扫描显微镜对第四步编辑的KLARF文件中的虚拟缺陷进行自动检测。 The fifth step, scanning electron microscope KLARF file editing fourth step in the virtual defect automatically detected.

作为本发明的进一步改进,该方法的第四步和第五步之间还包括,电子扫描显微镜根据第一步保存的KLARF文件中的一个或多个真实缺陷的坐标,对第四步编辑的KLARF文件利用相同的真实缺陷的坐标进行校准。 As a further improvement of the present invention, between the fourth step and the fifth step of the method further comprises, scanning electron microscope according to one or more coordinates of the first step to save the file in real KLARF defects, the fourth step of editing KLARF file using the same coordinates of the calibration real defects.

本发明自动检测硅片边缘的方法,不仅可以对有图形的硅片边缘进行缺陷检测,更可以在一个生产流程中对硅片边缘做完整的监控,例如了解缺陷在哪一步工艺中产生,已产生的缺陷在后续工艺中如何演变等。 Automatic detection method of the present invention, the edge of the wafer, the wafer may be made to not only the edge of the pattern defect detection can be done more complete monitoring of the edge of the wafer in a production process, for example, to know which of defects generated in a one step process, it has been evolve like defects generated in a subsequent process. 并且由电子扫描显微镜所进行的自动检测和监控,更可以节省人力物力,并提高检测及监控效率,增强检测点定位的准确性,提高所获数据的可分析性。 And automatically detected and monitored by the scanning electron microscope carried out, but also save resources, and improve the detection and monitoring efficiency, enhance the accuracy of the detection point positioning, improve analytical data obtained.

附图说明 BRIEF DESCRIPTION

下面结合附图和实施例对本发明作进一步详细的说明: 图1是本发明自动检测硅片边缘的方法流程图; 图2是自动缺陷扫描仪对硅片扫描图像的示意图; 图3是为硅片增加虚拟晶元的示意图;图5是为硅片增加虚拟缺陷的示意图; The present invention is further described in detail below in conjunction with the accompanying drawings and Examples: FIG. 1 is a method of automatically detecting the edge of the wafer flowchart of the present invention; FIG. 2 is a schematic view of an automatic wafer defect scanner scanned image; FIG. 3 is a silicon sheet increases schematic virtual crystal cell; FIG. 5 is a schematic view of a silicon wafer adding virtual defect;

图中附图标记为:IO —硅片;ll一晶元;12 —无图形区域;13 —放弃检测区域;14一缺陷;15—虚拟缺陷;20—硅片实际边界;21—KLARF文件修改后所覆盖区域的边界;30—检测点;31 —电子扫描显微镜的搜索窗口。 Reference numerals as in FIG: IO - silicon; LL a wafer; 12-- no pattern area; 13-- abandon detection region; defects 14 a; 15 a virtual defect; actual boundary wafer 20; 21-KLARF file modification after a boundary region covered; 30- detection point; 31 - a search window of a scanning electron microscope.

具体实施方式 detailed description

请参阅图l,本发明监控硅片边缘的方法包括如下步骤: Referring to FIG. L, the edge of the wafer monitoring method of the present invention comprises the steps of:

第一步,由自动缺陷检测仪扫描硅片,并将扫描结果保存为KLARF格 The first step, by an automatic scanning wafer defect inspection machine, and to save a scan cell KLARF

式的文件。 Style file. 自动缺陷检测仪扫描硅片时可记录硅片上各个真实缺陷的大小 Each real defect can be recorded automatically on the wafer flaw detection scanner wafer size

和坐标。 And coordinates.

第二步,在第一步保存的KLARF文件中加入虚拟晶元,所述虚拟晶元完整地覆盖整个硅片边缘。 The second step, dummy wafer was added in the first step KLARF file saved, the dummy wafer completely cover the entire edge of the wafer. 加入虚拟晶元之后,该KLARF文件的实际晶元和虚拟晶元所覆盖的总范围就大于硅片的实际范围。 After the addition of dummy wafer, wafer real and the virtual file KLARF covered wafer becomes larger than the total range of the actual range of the silicon wafer.

第三步,计算硅片边缘的检测点在KLARF文件所采用的坐标系中的坐标。 A third step of calculating coordinates of the wafer edge detection points in a coordinate system used KLARF file in. KLARF文件所采用的坐标系是自动缺陷检测仪在扫描每一个硅片时自定义的,其坐标原点往往并不是硅片的中心。 KLARF file coordinate system is employed automatic defect detector when scanning each of a custom silicon, which is often not the origin of the coordinates of the center of the wafer. 对于圆形硅片而言,位于硅片边缘的各检测点与圆心的距离是已知的。 For a circular silicon wafer, the wafer is located from the edge and the center of each of the detection points is known. 如果要检测硅片边缘最外围,那么检测点与圆心的距离恰为硅片半径;如果要检测硅片边缘稍靠内的位置, 那么检测点与圆心的距离稍小于硅片半径。 To detect the outermost peripheral edge of the wafer, the distance detection point and the center of the wafer radius is just; To detect the edge of the wafer slightly inner position, then the detection point and the center distance slightly less than the radius of the wafer. 为了能够对整个硅片边缘进行检测,理论上需要无限个检测点。 In order to enable inspection of the wafer edge, in theory it requires an infinite number of detection points. 实际操作中,对某--区域中个别位置抽样检测己可达到数据采集的目的,因此只需要设定有限个检测点在特定位置即可。 In practice, for a - cyclohexyl region respective sampling position data collection purposes, so only a finite number of set points can be detected at a particular position. 通常,在硅片边缘均匀地设定多个检测点,例如在360度圆周内 Typically, the edge of the wafer to uniformly set a plurality of detection points, for example, 360 degrees in the circumferential

均匀设定12个检测点,每相邻两个检测点与圆心的连线所形成的夹角为30度。 12 uniformly set detection points, the detection angle every two adjacent connection points and the center is formed is 30 degrees.

第四步,将第三步计算的检测点的坐标作为虚拟缺陷加入第二步编辑 A fourth step, the third step calculates the coordinates of the defect detection point as a virtual edit second stage is added

的KLARF文件中。 The KLARF file. 这样,KLARF文件中既包括通过自动缺陷检测系统扫描的真实缺陷,又包括用户加入的虚拟缺陷。 In this way, KLARF file in both the real defects by automated defect detection system scan, but also includes a virtual user to join the defect.

第五步,将第四步编辑的KLARF文件导入到自动缺陷检测系统,再传送至电子扫描显微镜的机台,转换为电子扫描显微镜自动检测的文件。 A fifth step of introducing the fourth step KLARF edited file to the automatic defect detection system, and transmits it to the scanning electron microscope of the machine, convert the file to automatically detect a scanning electron microscope. 电子扫描显微镜将第四步编辑的KLARF文件中的虚拟缺陷作为检测点进行自动检测。 Scanning electron microscope KLARF file editing in the fourth step as a virtual detection point automatic defect detection.

作为本发明的进一步改进,该方法的第四步和第五步之间还包括,电子扫描显微镜根据第一步保存的KLARF文件中的一个或多个真实缺陷的坐标,对第四步编辑的KLARF文件利用相同的真实缺陷的坐标进行校准。 As a further improvement of the present invention, between the fourth step and the fifth step of the method further comprises, scanning electron microscope according to one or more coordinates of the first step to save the file in real KLARF defects, the fourth step of editing KLARF file using the same coordinates of the calibration real defects. 由于自动缺陷扫描仪生成的数据文件中,晶元坐标、晶元原点、缺陷坐标等都是精确定义的,在第五步的操作中又需要将编辑KLARF文件传送至电子扫描显微镜,这时要求电子扫描显微镜的检测原点与自动缺陷扫描仪设定的原点精确重合,因此该改进方案可以用于坐标的校准。 Since the scanner automatic defect generated in the data file, the coordinates wafer, wafer origin, defect coordinates are precisely defined, and the need to transfer the file to edit KLARF a scanning electron microscope in the fifth operation step, the required time scanning electron microscope automatic defect detection origin and the origin of the scanner is set to coincide exactly, this refinement can be used to calibrate the coordinates.

在上述改进方案中,为了使所有用于坐标校准的缺陷均为真实缺陷, 需要对真实缺陷和虚拟缺陷进行区分。 In the improved embodiment, in order to calibrate coordinates for all defects are real defects, need to distinguish between real defects and virtual defect. 一种较为简单的方法是从缺陷的大小进行区分。 A simpler method is to be distinguished from the size of the defect. 在将检测点的坐标作为虚拟缺陷加入到KLARF文件时,同时设定这些虚拟缺陷的大小,例如均大于等于lOum。 When the coordinate detection point is added to the file as a virtual KLARF defects, while setting the size of the virtual defects, for example greater than equal to lOum. 而在选择用于坐标校准的真实缺陷时,仅选择那些小于(最好是明显小于)所有虚拟缺陷的真实缺陷,例如仅选择小于等于5um的虚拟缺陷。 In selecting real defects coordinates for calibration, selecting those real defects is less than (preferably substantially less than) all virtual defect only, for example, only selected virtual 5um less defects. 这样即可确保用于坐标校准的缺陷均为真实缺陷。 This allows you to ensure that the defect coordinates for calibration are real defects.

请参阅图2,圆形硅片10上划分的一个个小方块为晶元11。 Please refer to FIG. 2, the partition 10 is a circular silicon wafer a small box 11. 硅片10 边缘的黑色部分是无图形区域12,由于该区域不在光刻曝光的范围之内, 因此自动缺陷检测仪不对该区域进行检测。 Black edge portion 10 is unpatterned silicon region 12, since the area is not within the scope of the lithographic exposure, so automatic defect detector does not detect the region. 靠近无图形区域12的填充有叉形标记的小方块是放弃检测区域13,由于该区域在光刻曝光时曝光不充分或其他原因,因此自动缺陷检测仪放弃对该区域进行检测。 Filled area near the blanket 12 has a fork-shaped small box labeled detection region 13 is abandoned, because the exposure area at the lithography exposure is insufficient or other reasons, thus abandon automatic defect detector detects the region. 本发明的目的就是对无图形区域12以及放弃检测区域13进行缺陷检测。 The object of the present invention is to give up the non-pattern region 12 and a defect detection region 13 is detected. 硅片10上分布的多个小点为自动缺陷检测系统所检测到的真实的缺陷14。 A plurality of dots distributed over a silicon wafer 10 is automatically true defect defect detection system 14 is detected. 自动缺陷检测系统在扫描每个硅片时都自定义了坐标系,如图2中的X轴和Y轴所组成的XY坐标系,该XY坐标系的原点往往并不位于硅片10的中央。 Automatic defect detection system when scanning wafer each have a custom coordinate system, the XY coordinate system X-axis and Y-axis in FIG. 2, composed of, the origin of the XY coordinate system are often not in the center of the wafer 10 .

请参阅图3,圆形硅片10被硅片实际边界20所包围,在第一步所生成的KLARF文件中,KLARF文件所覆盖的范围也是硅片实际边界20以内的区域。 Referring to FIG 3, a circular silicon wafer 10 is surrounded by the actual boundary 20, the first step in the generated KLARF file, the file KLARF range is covered by a region within the silicon wafer 20, the actual boundary. 本发明所述方法的第二步通过修改KLARF文件,增加虚拟晶元,增加的虚拟晶元将硅片实际边界20完整覆盖,换而言之,硅片10的边缘的每一点都落入虚拟晶元的范围。 The second step of the method of the present invention by modifying the file KLARF, increase the virtual wafer, the wafer increases wafer virtual boundary 20 actually complete coverage, in other words, each point of the edge of the wafer 10 are within a virtual crystal cell range. 修改后的KLARF文件的覆盖范围大于硅片实际范围,修改后的KLARF文件所覆盖区域的边界21明显比硅片实际边界20 大上一圈。 Coverage KLARF file is larger than the modified silicon actual range, the modified file KLARF boundary area 21 covers 20 significantly slightly larger than the actual boundary large wafer.

请参阅图4 (a),硅片10上默认是以KLARF文件采用的XY坐标系记录坐标。 See FIG. 4 (a), using the default file is KLARF record coordinates on an XY coordinate system 10 wafers. 检测点30位于硅片IO边缘,其与硅片10的中央(圆心)的距离为硅片10的半径r,已知硅片10的圆心的坐标为(h,l),问题是如何求解检 IO detection point 30 located at the edge of the wafer, from which the center (center) in the radius r of the wafer 10 is a silicon wafer 10, the known coordinates of the center of the silicon wafer 10 (h, l), the problem is how to solve the subject

测点30的坐标(x。, y。)。 Coordinates of point 30 (x., Y.).

首先,根据勾股定理有(x。-h)2+(y。-l)2=r2; .............................. (1) First, there is the Pythagorean theorem (x.-h) 2+ (y.-l) 2 = r2; ......................... ..... (1)

其次,假设从硅片10的原点到检测点30有一条直线,该直线的斜率 Second, assume that a straight line from the origin point of the silicon wafer 10 to a detector 30, the slope of the line

为k,那么k二(y。-1)/(x。-h); ................................................... (2) Is k, then k = (y.-1) / (x.-h); .............................. ..................... (2)

在这里假设斜率k是已知的,其原因在后叙述。 Here is assumed that the slope k is known, the reason will be described later. 那么通过方程(1)和(2)所组成的方程组,即可以求解出检测点30在XY坐标系中的坐标(xo, Then by the equation (1) and the equation (2) consisting of, i.e., coordinates can be solved (in the XY coordinate system XO detection points 30,

y。 y. )。 ).

如果希望检测硅片边缘略靠内的位置,只需更改r稍小一些即可求解出新的检测点的坐标。 If you want to detect wafer edge slightly inner position, just change slightly smaller r can be solved coordinate new detection points. 求解方程组可以通过手动计算或编写程序完成,也可借助于相关的计算软件完成。 Solving equations can be calculated manually or by programming is completed, may also be accomplished by means of a correlation calculation software.

根据KLARF文件的记录规则,检测点30的坐标(x。, y。)需要转换为该检测点30所在晶元的编号以及该检测点30相对于所在晶元左下角的坐标,然后才能记录到KLAEF文件中作为虚拟缺陷。 The recording KLARF rules file, the detection coordinates (x., Y.) 30 points need to be converted for the detection point 30 where the wafer number and the detection point 30 is located relative to the coordinate of the lower left corner wafer before recorded KLAEF file as a virtual defect.

请参阅图4 (b), KLARF文件对晶元编号的定义规则是,XY坐标系的原点定义为[O, O]晶元的左下角,[O,O]晶元右边的晶元编号为[l,O],左边的晶元编号为[-1, 0],上边的晶元编号为[0, 1],下边的晶元编号为[0, -l]。 See FIG. 4 (b), KLARF wafer documents numbered definition rule is that the origin of the XY coordinate system is defined as the lower left corner [O, O] crystal cell, [O, O] crystal wafer symbol number to the right [l, O], left wafer number [-1, 0], the upper wafer number [0, 1], below the wafer number [0, -l].

已知检测点30的坐标为(x。, y。),每个晶元在X轴投影的长度都是a , 在Y轴投影的长度都是3 ,需要求解检测点30所在晶元的编号[m, n],以及检测点30相对于[m,n]晶元左下角的坐标(a。, p。)。 The known coordinates of the detection point 30 (x., Y.), Each wafer in the X-axis projection length is a, length in the Y-axis is the projection 3, the detection point 30 where the need to solve crystal cell number [m, n], and the detection point 30 with respect to the [m, n] coordinates of the lower left corner wafer (a., p.).

根据KLARF文件对晶元编号的定义规则,m为x。 The files defining rules KLARF wafer number, m is x. 除以ci再取整,n为y。 Ci divided again rounded, n to y. 除以e再取整,a。 E and then divided by the rounding, a. , =x。 , = X. 一mXa, p。 A mXa, p. 二yo—nX3。 Two yo-nX3.

请参阅图5,圆形硅片10上分布有一个或多个真实的缺陷14,在硅片10的边缘增加了一个或多个虚拟缺陷15。 Referring to FIG 5, distributed over a circular silicon wafer 10 has one or more real defect 14 at the edge of a silicon wafer 10 is increased 15 or more virtual defect. 这些虚拟缺陷的坐标是通过第三步计算得到的,同时还可以设定这些虚拟缺陷的大小。 These virtual coordinates of defects was calculated by the third step, but also can set the size of the virtual defects.

圆形硅片10上分布有一个或多个真实缺陷14,硅片10的边缘分布有一个或多个虚拟缺陷15,这些虚拟缺陷15正是电子扫描显微镜的检测点30。 A circular distribution on the wafer 10 has one or more real defects 14, the edge of the wafer 10 is distributed to one or more virtual defects 15, 15 of these virtual defect is a scanning electron microscope detecting point 30. 图中的虚拟缺陷15沿硅片10的边缘每隔30度均匀分布。 FIG virtual defect wafer 15 uniformly distributed along the edge 10 of every 30 degrees.

由于实际操作中,虚拟缺陷15都沿硅片边缘均匀分布,因此每个虚拟缺陷15与硅片10的圆心的连线的斜率k是已知的。 Since the actual operation, the virtual defect 15 are uniformly distributed along the edge of the wafer, thus each virtual connection center 15 and the defect 10 of the slope k silicon are known.

下面自动缺陷检测设备kla2351,配合自动缺陷检测程序Odyssey,以及电子扫描显微镜SEMVision G2为例,介绍本发明所述方法的具体实施。 The following automatic defect detecting apparatus KLA2351, the Odyssey with automatic defect detection program, and a scanning electron microscope SEMVision G2 for example, describes particular embodiments of the method of the present invention.

第一步,应用自动缺陷检测设备kla2351扫描硅片,在自动缺陷检测程序Odyssey中打开扫描结果,并将扫描结果保存为KLARF文件。 The first step, Application of automatic defect detecting apparatus kla2351 wafer scan, the scan results in an automatic open defect detection in Odyssey program, and the scan result is stored KLARF file.

第二步,用文本方式打开第一步生成的KLARF文件,自动缺陷检测程序Odyssey在生成该KLARF文件时自行定义了该KLARF文件的坐标系,从坐标系原点所在的[00]晶元开始,X轴向右递增,Y轴向上递增。 The second step, open the file generated in Step KLARF text, automatic defect detection program when generating the Odyssey KLARF document defines its own coordinate system KLARF the file, where the coordinate origin [00] wafer starts, increasing to the right X-axis, the Y axis increments. 修改该KLARF 文件中的覆盖范围,换而言之,在硅片实际晶元的外围增加虚拟晶元,所增加的虚拟晶元至少要将硅片的边缘完整覆盖。 KLARF modify the coverage of the file, in other words, at the periphery of the wafer increases wafer virtual actual wafer, the added dummy wafer at least the edge of the wafer To complete coverage.

第三步,精确计算硅片边缘的检测点的在KLARF文件所定义的坐标系中的坐标。 A third step of calculating accurate detection point of the edge of the wafer coordinate system defined in the document KLARF coordinates.

第四步,将检测点的坐标作为虚拟缺陷加入到KLARF文件中。 A fourth step, the coordinates of the detection point is added to the file as a virtual KLARF defect. 第五步,将第四步修改的KLARF文件导入自动缺陷检测程序Odyssey 中,再传送至电子扫描显微镜SEMVision G2。 A fifth step, the fourth step changes KLARF automatic defect detection program files into the Odyssey, before passing a scanning electron microscope SEMVision G2. 电子扫描显微镜先根据真实缺陷的坐标进行校准,然后调节F0V值得到适当的倍率与搜索窗口,保存为电子扫描显微镜SEMVision G2可自动执行的文件。 A scanning electron microscope to be calibrated in accordance with the true coordinates of the defect, and then adjusted to the appropriate F0V worth magnification search window, the file is saved as a scanning electron microscope SEMVision G2 can be automatically performed.

Claims (7)

  1. 1.一种自动检测硅片边缘的方法,所述硅片边缘,即硅片边缘的无图形区域和放弃检测区域,其特征是:该方法包括如下步骤: 第一步,自动缺陷检测仪扫描硅片,并将扫描结果保存为KLARF格式的文件; 第二步,在第一步保存的KLARF文件中加入虚拟晶元,所述虚拟晶元完整地覆盖整个硅片边缘; 第三步,计算硅片边缘的检测点在KLARF文件所采用的坐标系中的坐标; 第四步,将第三步计算的检测点的坐标作为虚拟缺陷加入第二步编辑的KLARF文件中; 第五步,电子扫描显微镜对第四步编辑的KLARF文件中的虚拟缺陷进行自动检测。 An automatic method of detecting the edge of the wafer, the edge of the wafer, i.e. unpatterned region and the detection region to abandon the edge of the wafer, characterized in that: the method comprising the steps of: a first step automatic defect detection scanner silicon, and the scan result is saved as a file format KLARF; the second step, the first step was added dummy wafer KLARF file stored in the virtual wafer completely cover the entire edge of the wafer; a third step, computing edge of the wafer coordinate detection point in the coordinate system employed in KLARF file; a fourth step, the third step calculates the coordinates of the defect as a virtual detection point is added in the second step of the edited file KLARF; a fifth step, the electronic document scanning microscope KLARF fourth step of editing the virtual defect automatically detected.
  2. 2. 根据权利要求l所述的自动检测硅片边缘的方法,其特征是:该方法的第一步所保存的KLARF文件,包括硅片上各个真实缺陷的大小和坐标。 The automatic method for detecting the edge of the wafer as claimed in claim l, wherein: the first step of the process KLARF saved file, including size and real coordinates of defects on the wafer.
  3. 3. 根据权利要求2所述的自动检测硅片边缘的方法,其特征是:该方法的第四步和第五步之间还包括,电子扫描显微镜根据第一步保存的KLARF 文件中的一个或多个真实缺陷的坐标,对第四步编辑的KLARF文件利用相同的真实缺陷的坐标进行校准。 The automatic method for detecting the edge of the wafer as claimed in claim 2, characterized in that: between the fourth step and the fifth step of the method further comprises a scanning electron microscope saved file in accordance with the first step KLARF or coordinates of a plurality of real defects, the fourth step of editing the file using the same KLARF real defects calibration coordinates.
  4. 4. 根据权利要求l所述的自动检测硅片边缘的方法,其特征是:该方法的第四步,还包括在KLARF文件中设置虚拟缺陷的大小。 The automatic method for detecting the edge of the wafer as claimed in claim l, wherein: the fourth step of the method, further comprising setting a virtual defect size file in KLARF.
  5. 5. 根据权利要求4所述的自动检测硅片边缘的方法,其特征是:所述在KLARF文件中设置的虚拟缺陷的大小,均大于用于校准的真实缺陷的大小的最大值。 5. The method of automatically detecting an edge of the wafer as claimed in claim 4, wherein: said size set in the virtual file KLARF defects are real defects greater than the maximum for the calibration size.
  6. 6. 根据权利要求l所述的自动检测硅片边缘的方法,其特征是:该方法的第二步编辑的KLARF文件,其实际晶元和虚拟晶元所覆盖的总范围大于硅片实际的范围。 The automatic method for detecting the edge of the wafer as claimed in claim l, wherein: the second step of the method KLARF edit files, the actual crystal cell and dummy wafer covered by a silicon wafer is larger than the total actual range range.
  7. 7. 根据权利要求l所述的自动检测硅片边缘的方法,其特征是:所述的检测点为一个或多个,所述检测点分布在硅片边缘任意位置。 The automatic method for detecting the edge of the wafer as claimed in claim l, wherein: said one or more detection points, the detection points are distributed anywhere edge of the wafer.
CN 200710094319 2007-11-28 2007-11-28 Method for detecting silicon chip edge automatically CN100590832C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710094319 CN100590832C (en) 2007-11-28 2007-11-28 Method for detecting silicon chip edge automatically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710094319 CN100590832C (en) 2007-11-28 2007-11-28 Method for detecting silicon chip edge automatically

Publications (2)

Publication Number Publication Date
CN101452867A true CN101452867A (en) 2009-06-10
CN100590832C true CN100590832C (en) 2010-02-17

Family

ID=40735023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710094319 CN100590832C (en) 2007-11-28 2007-11-28 Method for detecting silicon chip edge automatically

Country Status (1)

Country Link
CN (1) CN100590832C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531498B (en) * 2013-10-18 2016-04-20 上海华力微电子有限公司 Wafer Defect Analysis System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123911A (en) 1994-07-14 1996-06-05 现代电子产业株式会社 Method for detecting wafer defects
CN1473360A (en) 2001-09-19 2004-02-04 奥林巴斯光学工业株式会社 Semiconductor wafer inspection apparatus
CN1770418A (en) 2004-11-02 2006-05-10 力晶半导体股份有限公司 Defect detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123911A (en) 1994-07-14 1996-06-05 现代电子产业株式会社 Method for detecting wafer defects
CN1473360A (en) 2001-09-19 2004-02-04 奥林巴斯光学工业株式会社 Semiconductor wafer inspection apparatus
CN1770418A (en) 2004-11-02 2006-05-10 力晶半导体股份有限公司 Defect detection method

Also Published As

Publication number Publication date Type
CN101452867A (en) 2009-06-10 application

Similar Documents

Publication Publication Date Title
US7853920B2 (en) Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing
US7120285B1 (en) Method for evaluation of reticle image using aerial image simulator
US20050004774A1 (en) Methods and systems for inspection of wafers and reticles using designer intent data
US7752584B2 (en) Method for verifying mask pattern of semiconductor device
US20060291714A1 (en) Computer-implemented methods for detecting and/or sorting defects in a design pattern of a reticle
US20060051682A1 (en) Methods for simulating reticle layout data, inspecting reticle layout data, and generating a process for inspecting reticle layout data
US7904845B2 (en) Determining locations on a wafer to be reviewed during defect review
US20090024967A1 (en) Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer
US20040102934A1 (en) Automated creation of metrology recipes
US6691052B1 (en) Apparatus and methods for generating an inspection reference pattern
US6091845A (en) Inspection technique of photomask
US5673208A (en) Focus spot detection method and system
US6768958B2 (en) Automatic calibration of a masking process simulator
US6741334B2 (en) Exposure method, exposure system and recording medium
US20070002322A1 (en) Image inspection method
US20060269120A1 (en) Design-based method for grouping systematic defects in lithography pattern writing system
US6516085B1 (en) Apparatus and methods for collecting global data during a reticle inspection
US6363167B1 (en) Method for measuring size of fine pattern
JP2005277395A (en) Pattern inspection apparatus and method
JP2003162041A (en) Method and system for optical proximity effect correction
US7234128B2 (en) Method for improving the critical dimension uniformity of patterned features on wafers
JP2000236007A (en) Method for forming automatic sequence file scanning electron microscope, and method of automatic measuring sequence
US6999611B1 (en) Reticle defect detection using simulation
US7014955B2 (en) System and method for indentifying dummy features on a mask layer
JP2006351746A (en) Imaging recipe generating apparatus for scanning type electronic microscope, method thereof, and semiconductor pattern shape evaluation apparatus

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20131216

C41 Transfer of the right of patent application or the patent right
COR Bibliographic change or correction in the description

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI