CN100587514C - Method and apparatus for assisting satellite positioning system mobile device - Google Patents

Method and apparatus for assisting satellite positioning system mobile device Download PDF

Info

Publication number
CN100587514C
CN100587514C CN200510054342A CN200510054342A CN100587514C CN 100587514 C CN100587514 C CN 100587514C CN 200510054342 A CN200510054342 A CN 200510054342A CN 200510054342 A CN200510054342 A CN 200510054342A CN 100587514 C CN100587514 C CN 100587514C
Authority
CN
China
Prior art keywords
satellite
ephemeris
signal
data
pseudo
Prior art date
Application number
CN200510054342A
Other languages
Chinese (zh)
Other versions
CN1680823A (en
Inventor
弗兰克·V.·蒂吉林
Original Assignee
环球定位公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US09/615,105 priority Critical
Priority to US09/615,105 priority patent/US6411892B1/en
Application filed by 环球定位公司 filed Critical 环球定位公司
Priority to CN01814680.5 priority
Publication of CN1680823A publication Critical patent/CN1680823A/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24463997&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN100587514(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Publication of CN100587514C publication Critical patent/CN100587514C/en
Application granted granted Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding information
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding information employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view

Abstract

The invention relates a method for assisting a satellite position system shifter. The method according to the invention includes: receiving satellite astronomical almanac data of all satellites from the star map of satellite global position system; transmitting the data to a central processing position; choosing astronomical almanac data of subsets of all satellites from the satellite astronomicalalmanac data; providing the chosen data to the shifter.

Description

辅助卫星定位系统移动装置的方法和设备 Secondary satellite positioning system apparatus and method for a mobile device

本申请是申请日为2001年7月11日,申请号为01814680,5,发明名称为"利用传播天文历的广域参考网定位移动接收机的方法和装置" 的分案申请。 This application was filed on July 11, 2001, Application No. 01814680,5, entitled "Use of ephemeris spread wide area reference network positioning method and a mobile receiver apparatus," the divisional application.

技术领域 FIELD

本发明涉及GPS接收机中的信号处理。 The present invention relates to signal processing in the GPS receiver. 特别是,本发明涉及一种用于传送卫星数据到GPS接收机以使GPS接收机能够在低信号强度环境(例如,在室内)中捕获和锁定到GPS卫星信号的方法和装置。 In particular, the present invention relates to a method of transmitting data for the satellite to the GPS receiver so that the GPS receiver capable of low signal strength in the environment (e.g., indoors) method to capture and lock the GPS satellite signal and apparatus.

背景4支术 Background 4 surgery

传统的GPS接收机需要过量的时间来捕获和锁定卫星信号。 Conventional GPS receiver requires an excessive amount of time to capture and lock the satellite signal. 然后, 一旦锁定,GPS接收机就从该信号中提取遥测数据(年历和天文历)。 Then, once locked, GPS receiver extracts the telemetry data (almanac and ephemeris) from the signal. 从这些数据中GPS接收机可以计算可以增强其锁定卫星信号能力的信息。 From these data, the GPS receiver can calculate information which may enhance the ability to lock the satellite signal. 相对较高信号强度的卫星信号是使该系统能够实现初始锁定所必需的。 Satellite signal is relatively high so that the signal strength necessary for initial locking system can be realized. 一旦捕获到GPS信号,信号强度必须持续很高,同时年历和/ 或天文历数据可以从卫星信号中提取出来。 Once the GPS signal is captured, the signal strength must persist very high, almanac and / or ephemeris data may be extracted from the satellite signals. 任何信号的严重衰减都会导致失锁而且信号将需要再次捕获。 Severe attenuation of the signal will result in any loss of lock and the signal will need to be captured again. 因而,该系统具有一固有循环, 使得GPS接收机难以或不可能在低信号强度环境中捕获信号。 Thus, the system has a natural cycle, so that the GPS receiver captures signals difficult or impossible in low signal strength environments.

为了帮助初始捕获卫星信号,许多GPS接收机存储一份年历数据, 从中可以计算出卫星信号期望的多普勒频率。 To help the initial acquisition of satellite signals, a number of a GPS receiver stores the almanac data, satellite signals can be calculated from the desired Doppler frequency. 已经开发的一些技术在一单独的GPS接收机计算有用信息,然后将此数据传送到另一个GPS 接收机。 Some techniques have been developed to calculate the useful information in a single GPS receiver, and then transmits this data to the GPS receiver to another. 2000年5月16日授权的美国专利6,064,336收集一单独GPS接收机的年历数据,然后将该年历数据传送到移动接收机。 U.S. Patent, issued May 16, 2000 6,064,336 collect almanac data of a single GPS receiver, the almanac data is then transmitted to the mobile receiver. 然后该移动接收机利用该年历数据计算卫星信号期望的多普勒频率,从而帮助初始的信号捕获。 The mobile receiver then using the Doppler frequency of the satellite almanac data calculating a desired signal, thereby helping the initial signal acquisition. 接收年历的优点在于每个GPS卫星重复地传送包含用于完整GPS 星座的轨道信息的完整年历,从而跟踪任何卫星的单个GPS接收机可以收集和传播用于星座中所有卫星的年历。 Advantage is that each received GPS satellite almanac repetitively transmit a full almanac contains orbit information for the full constellation of GPS to track individual satellites of any GPS receiver can be used for the collection and dissemination of all satellites in the constellation almanac. 利用该年历的缺点在于它是卫星轨道和卫星时钟误差相当粗略的模型,因此该年历仅对降低频率不确定性有用,但无法用于通过缩小代码延迟不确定的搜索窗来增强接收机灵敏度。 Utilizing the disadvantage that it is almanac satellite orbit and satellite clock error model rather broadly, so that the almanac only reduce the frequency uncertainty is useful, but not by reducing uncertainty for delaying code search window to enhance receiver sensitivity.

如果一GPS接收机在尝试锁定这些卫星之前就具有一整套的视野中所有卫星的天文历数据,则该接收机将具有显著改进的捕获时间和增高的灵敏度。 If a GPS receiver to the satellites before attempting to set a field of view having ephemeris data for all satellites of the lock, the receiver having a significantly improved sensitivity and increased acquisition time. 逸是因为该天文历数据包含卫星位置、速率和时钟误差的精确描述;而且GPS接收机可以通过显著缩小频率不确定性和代码延迟不确定性的搜索窗来利用此数据提高灵敏度。 Yi is because the ephemeris data including accurate description of satellite positions, velocity and clock error; and the GPS receiver can be significantly reduced by the frequency uncertainty and delay uncertainty in the code search window to use this data to improve the sensitivity. 天文历的缺点在于每个卫星仅传送它自己的天文历;因此单个GPS接收机无法收集和传播星座中所有卫星的天文历。 Disadvantage is that the ephemeris of each satellite transmits its own ephemeris only; so a single GPS receiver can not collect and disseminate constellation ephemeris for all satellites.

因此需要一种技术用于GPS接收机系统,该系统能够为星座中的所有卫星传播卫星天文历,从而增强移动接收机的捕获速率和信号灵敏度。 One technique is required for the GPS receiver system is capable of distributing satellite ephemeris for all satellites in the constellation, thereby enhancing the sensitivity of the motion capture rate and the signal receiver.

发明内容 SUMMARY

为克跟现有技术中存在的缺陷,本发明公开了一种用于辅|&卫星定位系统移动装置的方法,包括:接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据;将所述卫星天文历数据传递到中心处理位置;从所迷天文历数据选择所有卫星的子集的天文历数据;以及将所述选择的天文历数据提供给所述移动装置。 G defect with the prior art, the present invention discloses a method for auxiliary | Satellite Positioning System & Method mobile device, comprising: receiving data from a satellite ephemeris for all satellites in a satellite constellation of global positioning system; and the satellite ephemeris data is transmitted to a central processing location; selecting a subset of the ephemeris data for all satellites from the ephemeris data fan; and the selected ephemeris data to the mobile device.

根据本发明的另一方面,提供了一种用于辅助卫星定位系统移动接收机的设备,包括:网络的卫星信号接收机,用于接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据,和将所述卫星天文历数据传递到中心处理位置;和所述中心处理位置被配置用于从所述天文历数据选择所有卫星的子集的天文历数据,并且将所述选择的天文历数据提供给所述移动接收机。 According to another aspect of the present invention, there is provided an apparatus for assisted satellite positioning system for mobile receiver, comprising: a satellite signal receiver network, for receiving satellite ephemeris for all satellites in the constellation from the satellite global positioning system data transfer, and the satellite ephemeris data to a central processing location; and said central processing position configured to select a subset of all the satellites from the ephemeris data, ephemeris data, and the selected astronomical providing ephemeris data to the mobile receiver.

6本发明包括一种利用中心位置和GPS接收机的广域网之间的通信链路分配和传送全球定位系统(GPS)卫星天文历的方法和装置。 6 using the invention includes a communication link between the distribution center position of the GPS receiver and a wide area network transmission method and apparatus of the global positioning system (GPS) satellite ephemeris of. 该GPS接收机的广域网收集由卫星发射的天文历数据和将该数据传递到中心位置。 The GPS receiver is a wide area network and the data collected ephemeris data transmitted by a satellite is transmitted to a central location. 该中心位置传送天文历到移动接收机。 The central location transmits ephemeris to the mobile receiver. 该移动GPS接收机利用该传送数据以两种方式增强它的灵敏度。 The mobile GPS receiver utilizes the transmission data in two ways to enhance its sensitivity. 第一,该数据允许接收机检测到该接收机通常不能检测到的非常弱的信号,第二, GPS接收机不必在能计算位置之前长时间地跟踪该卫星信号。 First, the receiver detects the data allows the receiver generally can not detect a very weak signal, the second, GPS receivers do not have to track the satellite signals for a long time before the position can be calculated.

在本发明的一个实施例中,卫星天文历数据重传,而不必以任何方式变换该数据。 In one embodiment of the present invention, the satellite ephemeris data retransmission, without transforming the data in any way. 然后该GPS接收机就可以精确地利用此数据就好象该接收机已经从卫星接收到该数据。 The GPS receiver may then use this data exactly as if the receiver has received the data from the satellites. 在另一个实施例中,在中心位置从天文历数据中计算出卫星的伪范围模型,此伪范围模型传送到该GPS接收机。 In another embodiment, calculated from the ephemeris data, satellite pseudo-range model in the central position, this model pseudoranges transmitted to the GPS receiver. 伪范围模型特征在于此模型比完整的天文历更简明。 In this model feature pseudorange model is more concise than a full ephemeris. 因而,该GPS接收机在使用伪范围模型时不必执行与使用完整天文历一样多的计算。 Accordingly, when the GPS receiver need not be performed using the pseudo-range model using full ephemeris as many calculations.

根据本发明的又一方面,提供了一种用于辅助卫星定位系统移动装置的方法,包括接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据;将所述卫星天文历数据传递到中心处理位置;从所述天文历数据选择所有卫星的子集的天文历数据;将所述选择的天文历数据提供给所蜂移动装置;获取至少一个卫星信号,包括:(a)从, 述选择的天文历数据、移动装置大致位置和近似时间计算具有多个频率箱的频率窗口; (b)在所述频率窗口中的频率箱中搜索信号相关性;(c)确定在所述频率箱中是否存在信号相关性;以及(d)使用不同的频率箱重复步骤(b)和(c),直到检测到信号相关性;以及使用所述选择的天文历数据和所述至少一个卫星信号计算移动装置位置,其中所有卫星的子集包括至少一个在移动装置处能看到的卫星。 According to another aspect of the present invention, there is provided a method for assisting a mobile device for a satellite positioning system, comprising receiving from a GPS satellite constellation of satellite ephemeris data for all satellites; transmitting to said satellite ephemeris data a central processing location; selecting a subset of all the satellites from the ephemeris data of the ephemeris data; the selected ephemeris data to the mobile device bees; obtaining at least one satellite signal, comprising: (a) from said selected data ephemeris, approximate location of the mobile computing device and the approximate time window having a frequency of a plurality of frequency bins; (b) in the frequency bins in the frequency bins to search the correlation signal; (c) determining the frequency bins whether there is a correlation signal; and (d) using a different frequency bins repeating steps (b) and (c), until the correlation detection signal; and using said selected ephemeris data and said at least one satellite signal calculating the position of the mobile device, wherein the subset of all the satellites of a satellite comprising at least one can be seen in a mobile device.

另外,本发明还包括一种用于辅助卫星定位系统移动接收机的设备,该设备包括:卫星信号接收机网络,用于接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据,和将所述卫星天文历数据传递到中心处理位置;和所述中心处理位置被配置用于从所述天文历 Further, the present invention also comprises a device for assisting a mobile satellite positioning system receiver, the apparatus comprising: a satellite signal receiver network for receiving the satellite ephemeris data from a global positioning system satellite constellation in all satellites, and transmitting said satellite ephemeris data to a central processing location; and said central processing position is configured from the ephemeris

7数据选择所有卫星的子集的天文历数据,并且将所述选择的天文历数 7 to select a subset of all the data of the ephemeris data of the satellites, and enumerate said selected astronomical

据提供给所述移动接收机;获取至少一个卫星信号的装置,所述装置包括:(a)从所述选择的天文历数据、移动接收机大致位置和近似时间计算具有多个频率箱的频率窗口的单元;(b)在所述频率窗口中的频率箱中搜索信号相关性的单元;(c)确定在所述频率箱中是否存在信号相关性的单元;以及(d)使用不同的频率箱重复单元(b)和(c)执行的操作,直到检测到信号相关性的单元;以及使用所述选择的天文历数据和所述至少一个卫星信号计算移动接收机位置的装置; 其中所述选择的天文历数据包括至少一个在移动接收机处能看到的卫星的天文历数据。 It is provided to the mobile receiver; at least one means of acquiring a satellite signal, the apparatus comprising: (a) data from the selected ephemeris, approximate location of the mobile receiver and the approximate time calculating frequency having a plurality of frequency bins different frequencies and (D) used; window unit; correlation signal unit (b) in the search frequency bins in the frequency bins; (c) determining whether the correlation signal is present in the cell in the frequency bins operation box repeating units (b) and (c) is performed until the correlation detection signal unit; ephemeris data and using the selected at least one satellite signal and the mobile receiver position calculating means; wherein said selected ephemeris data comprises ephemeris data can be seen in at least one mobile receiver of the satellite.

附图说明 BRIEF DESCRIPTION

通过结合附图考虑下文的详细描述,本发明的教义可以很容易理解,其中: By considering the following detailed description in conjunction with the accompanying drawings, the teachings of the present invention can be easily understood, in which:

图l描述了一种根据本发明的广域基准站网的结构; 图2描述了一种GPS轨道球面; Figure l describes a wide area base station network structure according to the present invention; FIG. 2 depicts a GPS orbital sphere;

图3描述了三个基准站的GPS轨道球面和水平面的交叉; 3 depicts three spherical track GPS reference station and the horizontal plane crossing;

图4A和4B描述了四个基准站的GPS轨道球面和水平面的交叉; 4A and 4B describe the cross-track GPS horizontal spherical and four reference stations;

图5描述了一种生成伪范围模型的方法的流程图; Figure 5 depicts a flowchart of a method of generating a pseudo-range models;

图6说明移动GPS接收机的时间(伪范围)和频率(伪范围速率) 6 illustrates a mobile GPS receiver time (pseudo range) and frequency (pseudo range rate)

不确定性,以及通过降低这两个不确定性获得的灵敏度的改进; Uncertainty, and by reducing the uncertainty of obtaining both improved sensitivity;

图7描述了一种通过时间(伪范围)和频率(伪范围速率)窗口 FIG 7 describes a time (pseudo range) and frequency (pseudo range rate) of the window

进行搜索的方法的流程图;和 Flowchart of a method of searching; and

图8描述了一种利用具有高信号强度的卫星的伪范围信息来改进 Figure 8 depicts the pseudo range information utilizing satellite signal having a high strength to improve

从具有低信号强度的卫星接收的信号的接收机灵敏度的方法。 The method of receiver sensitivity of the satellite from the received signal having a low signal strength. 具体实施方式 Detailed ways

为了帮助理解,该说明书的结构如下: To facilitate understanding, the description is structured as follows:

概述,引入本发明的每个组件和描述它们彼此的关系。 SUMMARY introducing each component described in the present invention and their relationship to each other. 全球跟踪网,描述跟踪站的全球网如何构造和配置成确保能够始终跟踪所有的卫星。 Global tracking network, describing how the global network of tracking stations constructed and arranged to ensure that keeping track of all satellites.

天文历处理,描述了本发明的一个实施例,即提供了卫星天文历的一种更紧凑和更简单的模型。 Ephemeris process, a described embodiment of the present invention, i.e. to provide a satellite ephemeris more compact and simpler model.

信号检测,描述重发的卫星天文历数据如何用于GPS接收机来检测其它方式检测不到的信号。 Signal detection, described retransmission satellite ephemeris data for the GPS receiver how to detect otherwise undetectable signals.

灵敏度增强,描述两个最强的卫星信号如何用于在移动接收机计算时间和相关器偏移。 A sensitivity enhancement, described how the two strongest satellite signals at a mobile receiver for computing time and associated offset. 而此信息又用于增强移动接收机接收的较弱GPS信号的灵敏度。 This information is in turn used to enhance the sensitivity of a weak GPS signal received by a mobile receiver.

概述 Outline

图1描述了全球定银系统(GPS)卫星数据分配系统100的一个实施例,包括: Figure 1 depicts a set of global banking system (GPS) satellites embodiment of a data distribution system 100 embodiment, comprising:

a)基准站网络102包括通过通信网105彼此连接的多个跟踪站104!、 1042、…104n。 a) base station network 102 includes a communication network 105 through a plurality of tracking stations 104 connected to each other !, 1042, ... 104n. 基准站104在广阔的地区配置并包括GPS接收机126,因此天文历可以从在卫星的全球网,例如全球定位系统(GPS) 内的所有卫星106收集。 And base station 104 includes a GPS receiver 126 configured, so ephemeris may be, for example, all of the satellites in the Global Positioning System (GPS) 106 is collected from the satellites in the global network in a wide area. 天文历信息包括卯O比特的分组,该分组包括卫星位置和时钟信息。 D ephemeris information packet includes O bits, the packet comprising a satellite position and clock information.

b )从跟踪站104收集天文历的中心处理位置108包括天文历处理器128,该天文历处理器128去除重复出现的^f目同天文历,并向移动GPS 接收机114和118提供最新的天文历数据用于重新分配。 b) collecting from the tracking station 104 to a central processing location ephemeris ephemeris 108 comprises a processor 128, the processor 128 ephemeris removed recurring ^ f mesh with ephemeris, to the mobile GPS receiver 114 and 118 to provide the latest ephemeris data for re-allocation.

c) 通信链路120,从中心处理位置到移动GPS接收机114。 c) a communication link 120, receiver 114 from the central processing position to the GPS. 该链路120可以是陆上通信线110或其它直接通信路径,该链路将移动GPS接收机114直接连接到中心处理位置108。 The link 120 may be a direct communication path 110, or other land-based communication line, the link 114 is connected directly to the mobile GPS receiver to a central processing location 108. 或者,此链路具有几个部分, 例如:到无线发射机116的陆上通信线112,和从发射机116到移动接收机118的无线链路122。 Alternatively, this link has several parts, for example: a wireless transmitter to a landline 116 112, the transmitter 116 and radio link 122 to the mobile receiver 118.

d) 移动GPS接收机114或118,利用重新分配的天文历数据(或其改良型)来帮助接收机检测来自卫星星座中的卫星106的GPS信号。 d) mobile GPS receiver 114 or 118, using ephemeris data (or modified) to help re-allocated from the satellite receiver detects the GPS satellite constellation signal 106.

e) 位置处理器130,其计算GPS接收机114或118的位置。 e) the position processor 130, which calculates the position of the GPS receiver 114 or 118. 这可以是GPS接收机本身、中心处理位置108或移动GPS接收机将从卫星106 This may be a GPS receiver itself, a central processing location 108 or mobile GPS receiver from the satellite 106

9获得的测量数据发送到的其它位置。 9 the obtained measurement data are transmitted to other locations.

操作中,每一个卫星106连续地广播与特定卫星有关的天文历信息。 In operation, each of the satellites continuously broadcast almanac information 106 associated with a particular satellite astronomy. 为了全面和同时捕获星座中所有卫星106的天文历数据,网络105 扩展到全世界。 In order to fully and simultaneously capture all the constellation satellite ephemeris 106 data network 105 to the whole world.

为了获得所有的天文历数据,需要三个或更多的跟踪站104。 In order to obtain ephemeris data for all the required three or more tracking stations 104. 28 颗卫星的每一个都具有相对地球赤道55度倾斜的轨道。 Each satellite 28 has a 55 degree inclination relative to the Earth's equatorial orbit. 因而,没有卫星在轨道球面正负55度以外运转。 Thus, no satellite in orbit spherical operating outside of plus or minus 55 degrees. 因此,120度分开放置并正好处于地球赤道上的三个站将看到所有的卫星。 Thus, 120 degrees apart and placed just in the three stations on the earth at the equator you will see all of the satellites. 但是,将基准站放在赤道上的精确位置或附近是不切实际的。 However, the precise location on or near the equator of the base station is impractical. 为了将基准站放在全世界的大城市, 能看到所有卫星106的实际最小数目是四个。 To base stations in major cities around the world, we can see the actual minimum number of satellites 106 are all four.

每个跟踪站104都包括一GPS接收机126,该GPS接收机126捕获和跟踪来自所看到所有卫星106的卫星信号。 Each tracking station 104 includes a GPS receiver 126, the GPS receiver 126 acquiring and tracking satellite signals from the satellites 106 to see all. 站104提取天文历信息,该天文历信息唯一地识别每个卫星的位置以及卫星时钟信息,例如具有GPS信号的卯O比特分组。 Station 104 to extract ephemeris information, ephemeris information which uniquely identifies the position of each satellite and the satellite clock information, such as a GPS signal d O bit packet. 该天文历信息例如经陆地线网络105连接到中心处理位置108。 The ephemeris information is connected, for example to a central processing location 108 via a landline network 105.

中心处理位置108将所有或部分天文历信息发送到一个或多个移动GPS接收机114和118。 The central processing location 108 sends all or part of ephemeris information to one or more mobile GPS receivers 114 and 118. 如果中心处理位置知道移动GPS接收机的大致位置,则中心处理位置108只能发送目前(或将要)看到的移动GPS 接收机114或118的卫星天文历信息。 If the central processing know the approximate position of GPS receiver position, the position of the center 108 can send the current process (or will be) the satellite mobile GPS receiver astronomical see 114 or 118 of the history information. 该天文历信息可以通过陆地线110 或其他的通信路径(例如,互联网、电话、光缆等等)直接连接。 The ephemeris information may be directly connected via land lines or other communication path 110 (e.g., Internet, telephone, cable, etc.). 或者,该天文历信息可以通过无线系统116,例如蜂窝电话、无线互联网、 无线电、电视等等连接到移动GPS接收机118。 Alternatively, the ephemeris information 116 may, for example, a cellular telephone, a wireless Internet, radio, TV and so on is connected to the GPS receiver 118 through the mobile radio system. 天文历信息的处理和利用描述如下(参见天文历处理和信号检测)。 And the processing described using ephemeris information are as follows (see ephemeris and signal detection).

全^求多艮踪网 ^ Seeking more full-Gen track network

全球GPS参考网102具有这样的跟踪站104,即网络102中的跟踪站104—直都能看到所有的卫星。 Global GPS reference network 102 has a tracking station 104, i.e., the network of tracking stations 104- 102 can be seen straight all satellites. 因而,每个卫星106的天文历可以实时地用于该网络,因此该网络可使天文历或导出的伪范围模型用于需要它们的任何移动接收机。 Thus, each satellite ephemeris 106 may be used in real time to the network, the network can ephemeris or derived pseudo-range models in need thereof any mobile receivers.

参考站最小的完整网络包括三个站,大致平均的放置在地球赤道上或附近。 Smallest complete reference station network includes three stations, are placed on substantially the average or near the Earth's equator. 图2表示围绕地球204的GPS轨道球面202,和卫星所有轨道的表示206。 Figure 2 shows a spherical orbit around the Earth indicates that the GPS 204 202, and 206 orbits of all satellites. 图3表示3个跟踪站(表示成A、 B和C)的水平面与GPS 轨道球面的交集。 Figure 3 shows three tracking stations (denoted as A, B and C) and the intersection of the horizontal plane of the track GPS sphere. 图3中,轨道球面在一个跟踪站水平面上的任何区域涂上灰色。 In FIG. 3, the track spherical painted gray area at any horizontal plane a tracking station. 轨道球面在两个跟踪站水平面上的区域涂上略黑的颜色。 Coated spherical orbit slightly blackish color in the region of the horizontal plane of the two tracking stations. 轨道球面在没有GPS卫星的高于和低于55度的区域是白色。 Spherical track in the area above and below 55 degrees without a GPS satellite is white. 从图3中, 显然任何GPS轨道上的任一点总在至少一个基准站A、 B或C的水平面上。 From Figure 3, it is clear to any GPS tracks at any point on the at least one reference station always horizontal plane A, B or C.

但是将基准站放置在赤道附近在商业或技术上是不实际的。 But the base station is placed near the equator in the commercial or technically impractical. 优选位置是具有良好通信基础结构的大城市,以使天文历能够经可靠的网络连接到控制处理位置。 Preferably the position of large cities have good communication infrastructure to enable ephemeris can be connected to the position control process by a reliable network. 当基准站离开赤道时,需要三个以上的站一直覆盖所有的卫星。 When the base station away from the equator, three or more stations have been required to cover all of the satellites. 但是,有可能创建只有四个基准站的网络,就能一直完全覆盖所有的GPS卫星,其中这四个站位于大城市或大城市附近。 However, it is possible to create a network with only four base stations, will be able to have complete coverage of all GPS satellites, the four stations located in the vicinity of large cities or big cities. 例如,这些站可以放置在夏威夷檀香山(美国)、布宜诺斯艾利斯(阿根廷)、特拉维夫(以色列)和佩思(澳大利亚)。 For example, these stations can be placed in Honolulu, Hawaii (USA), Buenos Aires (Argentina), Tel Aviv (Israel) and Perth (Australia). 图4A和4B 表示这些站的水平面与GPS轨道球面的交叉。 FIGS. 4A and 4B show a horizontal plane intersecting the spherical track GPS stations. 任何GPS轨道的任一点总在至少一个基准站的水平面上。 Any GPS any track point always at least one horizontal plane of reference stations. 图4A和4B表示从空间上的两点看去的轨道-求面, 一点(图4A)大致在西班牙上的空间,另一个(图4B) 在球体的相对侧,大致在新西兰上。 Figures 4A and 4B show viewed from two points on the orbital space - seeking surface, one point (FIG. 4A) substantially in the Spanish space, the other (FIG. 4B) on the opposite side of the sphere, generally in New Zealand. 此闺以与图3类似的方式填色。 This coloring Gui to FIG. 3 in a similar manner. 灰色表示GPS轨道球面在至少一个跟踪站水平面上的区域,暗灰色区域. 表示两个站能达到的轨道球面的部份。 Gray indicates track GPS spherical surface at least one horizontal stop tracking area, the dark gray area. Attainable two stations, the spherical part of the track.

天文历处理 Almanac processing

天文历用于计算卫星伪范围和伪范围速率的模型。 Satellite ephemeris models for calculating the pseudo range and pseudo range rate. 从伪范围速率, 移动GPS接收机可以计算用于卫星信号的多普勒频移。 Doppler from the pseudo-range rate, the mobile GPS receiver may calculate a frequency shift of the satellite signal. 伪范围模型的计算可在移动接收机或中心处理位置进行。 Pseudo range calculation model may be a mobile receiver or central processing location. 在优选实施方式中,伪范 In a preferred embodiment, Pseudonorm

围模型在中心位置计算如下。 In the model around the center position is calculated as follows.

图5描述用于产生伪范围模型的方法500的流程图。 5 depicts a flowchart of a method of generating a pseudo range 500 for the model. 在步骤502, In step 502,

所有跟踪站的天文历数据带到中心处理位置。 Ephemeris data for all of the tracking station to the central processing location. 天文历数据由所有卫星连续传送,主要是重复的数据;新的天文历通常每2小时传送一次。 Ephemeris data transmitted by all satellites continuously, largely duplicate data; new ephemeris is typically transmitted once every 2 hours. 天文历用表示成TOE的"夭文历的时间"标记。 Ephemeris as represented by the TOE "yao time calendar text" label. 此标记表示天文历有效 This tag valid ephemeris

ii的时间。 ii time. 天文历计算在TOE2小时内非常精确。 Ephemeris calculated very accurately within TOE2 hours. 一卫星首先提前TOE2小时传送天文历,因此任何天文历在最多四个小时内非常精确。 First, a satellite transmission hours in advance TOE2 astronomical calendar, so any astronomical calendar is very accurate within a maximum of four hours.

在步骤506,中心处理位置保持最接近时间T的TOE的所有天文历数据,在时间T移动接收机要求天文历(或伪范围模型)。 In step 506, the central processing position holding ephemeris data for all TOE closest to time T, the mobile receiver at time T required ephemeris (or pseudo-range models). 时间T由移动接收机在步骤504提供。 Time T 504 provided by the mobile receiver in step. 通常T是当前的实际时间,但是它也可以是用于移动接收机的将来直到4小时的时间,该移动接收机在需要天文历/伪范围模型之前就收集它们。 T usually is of the current actual time, but it can also be used to collect them on future mobile receiver before until 4 hours, the mobile receiver need ephemeris / pseudorange model. T还可以是过去的时间,由移动接收机用于处理先前存储的数据。 T may also be in the past, the data previously stored by the processing for a mobile receiver.

在步骤508,中心处理位置计算在时间T的卫星位置。 In step 508, the processing center position calculating satellite positions at the time T. 在优选实施例中,这利用GPS接口控制文件,ICD-GPS-200-B提供的方程执行。 In the preferred embodiment, this use of GPS Interface Control Document, perform equation ICD-GPS-200-B provided.

在步骤512,中心处理位置获得移动GPS接收机的大致位置。 In step 512, the central processing location to obtain approximately the location of the mobile GPS receiver. 在优选实施例中,移动GPS接收机通过无线通信链路,诸如双向寻呼网、或移动电话网、或相似的双向无线网与中心处理位置通信。 Bidirectional wireless communication network and a central processing position embodiment, the mobile GPS receiver through a wireless communication link, such as a two-way paging network, or a mobile telephone network in the preferred embodiment, or similar. 这种双向无线网具有接收几英里区域信号的通信塔。 This two-way radio network having a few miles area signal receiving communications tower. 该中心处理位置获得无线塔的参考ID,该参考ID用于从移动GPS接收最近的通信。 The central processing location to obtain the reference ID of the radio tower, for receiving the reference ID of the latest communication from the mobile GPS. 然后该中心处理位置从一数据库中获得此无线塔的位置。 The center position is then processed to obtain the position of the radio tower from a database. 此位置用作近似的移动GPS位置。 This position is used as an approximate position of the mobile GPS.

在一备选实施例中,移动GPS接收机的大致位置可能只是由用于实现本发明的特定通信网提供服务的区域中心。 In an alternative embodiment Regional Center embodiment, the approximate location of the mobile GPS receiver may only be served by a particular communication network for implementing the present invention.

在另一个备选实施例中,移动GPS接收机的大致位置可能是所述接收机最近获知的点,该点保持在中心处理位置的数据库。 In yet another alternative embodiment, the approximate location of the mobile GPS receiver may be the receiver's last known point that a database is maintained at a central processing location.

当然上述方法的许多组合和变型都可用来近似移动GPS接收机的位置。 Of course, many combinations of the above methods and variations can be used to approximate position of the mobile GPS receiver.

已经计算卫星位置和获得近似用户位置以后,该中心处理位置计算(在步骤510)哪个卫星在或不久将在移动GPS接收机的水平面上。 After having calculated the approximate satellite position and obtaining user position, the center position calculating process (at step 510) near the horizontal plane in which the satellite of the receiver or the mobile GPS. 对于只需要重新分配天文历数据的应用,在步骤514,中心处理位置输出用于水平面上或将要在水平面上的那些卫星的天文历。 For application only needs reassigned ephemeris data, at step 514, the center position of the output processing for a horizontal surface or to the satellite ephemeris those in a horizontal plane.

在优选实施例中,计算伪范围模型,包括:时间T、和用于水平面上或将要在水平面上的每个卫星:卫星PRN号、伪范围、伪范围速 In a preferred embodiment, the computing pseudorange model, comprising: a time T, the horizontal plane or for each satellite will be in a horizontal plane: the satellite PRN number, pseudo range, pseudo-range speed

12率、和伪范围加速度。 12 ratio, and pseudo-range acceleration.

为了计算伪范围模型,中心处理位置首先在步骤516计算在移动GPS接收机水平面上或将要在水平面上的所有卫星的伪范围。 In order to calculate the pseudo-range models, a central processing location is first calculated in step 516 in the mobile GPS receiver or a horizontal plane to be pseudoranges of all satellites in the horizontal plane. 伪范围是介于卫星和近似GPS位置中间,加上天文历所述卫星时钟偏移的几何范围。 Pseudo ranges between GPS satellites and the approximate intermediate position, together with the geometry range ephemeris satellite clock offset.

在步骤518,伪范围速率可以从卫星速率和时钟漂移计算。 In step 518, the pseudo-range rate may be calculated from the drift rate and the satellite clock. 卫星速率可以通过求卫星位置方程(在ICD-GPS-200-B)对时间的微分来直接获得。 Satellite rate can be obtained directly by taking the time derivative of the position of the satellite equations (ICD-GPS-200-B in). 在备选实施例中,卫星速率可以通过计算在两个不同时间的卫星位置,然后差分该位置来间接地计算。 In an alternative embodiment, the rate of the satellite position can be calculated at two different times of the satellite, then the difference of the calculated position indirectly.

在另一个备选实施例中,伪范围速率可以通过计算在两个不同时间的伪范围,然后区分这些伪范围来间接地计算。 In yet another alternative embodiment, the pseudo range rate may be calculated by the pseudo range of the two different times, and to distinguish between these pseudo-ranges calculated indirectly.

在步骤520,伪范围加速度以类似的方式计算(通过求卫星速率和 In step 520, the pseudo-range acceleration is calculated in a similar manner (by taking the satellite and the rate of

时钟漂移对时间的微分或通过差分伪范围速率)。 Differential by the differential clock drift or pseudo range rate versus time).

然后完整的伪范围模型在步骤522打包成一种结构并输出到移动GPS接收机。 Pseudo-range is then complete at step 522 the model into a packaging structure and outputs to the mobile GPS receiver.

移动GPS接收机可将伪范围模型用于得出它的天文历的有效期。 Mobile GPS receiver may obtain pseudorange model for its validity of ephemeris. 为了在时间T之后的某一时间应用该伪范围模型,移动接收机利用包含在伪范围模型的速率和加速度数据向前传播伪范围和伪范围速率。 In order to apply the pseudo range of the model at a certain time after the time T, the mobile receiver uses the pseudo range rate included in the model and the forward acceleration data dissemination pseudorange and pseudo-range rate.

在备选实施例中,中心处理位置传播未变的天文历519,在移动GPS接收机推导伪范围模型和伪范围速率。 In an alternative embodiment, the central position of the processing propagation ephemeris 519 is unchanged, the mobile GPS receiver to derive pseudo range and pseudo range rate models.

Krasner (美闺专利6,064,336 )已经教导通过降低频率不确定性,多普勒信息可用于帮助移动GPS接收机。 Krasner, (Gui US Patent No. 6,064,336) has been taught by reducing the frequency uncertainty, the Doppler information can be used to help the mobile GPS receiver. 美国专利6,064,336描述了一种系统和方法,用于传送从中得出多普勒的移动接收机年历信息;或传送从年历得出的等同信息;或从接近移动接收机的基站传送多普勒测量本身。 U.S. Patent No. 6,064,336 describes a system and method for transmitting mobile receiver Doppler draw almanac information; or equivalent derived from almanac information transfer; or transmitted from a base station close to the mobile receiver Doppler Le measurement itself. 在本发明的另一个备选实施例中,天文历可用来得出多普勒信息。 In another embodiment of the present invention in an alternative embodiment, ephemeris can be used to derive Doppler information. 在(信号检测)之后的部分中,可以理解此多普勒信息将用于帮助信号捕获到伪范围速率不确定性,即要搜索的频率箱(frequency bin )降低的程度,但是多普勒信息不会降低伪范围的不确定性(即代码延迟)。 After a portion (signal detection), the Doppler information will be appreciated that this signal is used to help capture the pseudo range rate uncertainty, i.e., the degree of frequency bins to be searched (frequency bin) decreased, but the Doppler information pseudo range without reducing the uncertainty (i.e., the code delay). 信号检测 Signal Detection

天文历数据(或得出的伪范围;^莫型)有多种方式可用于帮助移动GPS接收机的信号捕获和灵敏性,如下所述。 Ephemeris data (or derived pseudo-ranges; ^ Mo type) There are several ways to help capture signal from the mobile GPS receiver and sensitivity, as described below.

天文历或伪范围模型可预计到卫星的仰角,允许接收机集中捕获高仰角卫星信号,该信号通常较少受到阻碍。 Ephemeris or pseudo-range models may be estimated elevation angle to the satellite, it allows the receiver to capture a high concentration elevation angle satellite signal, which is typically less hindered. 计算在水平面以下(负仰角)的卫星可以忽视。 Calculated (negative elevation angle) in a horizontal plane below the satellite can be ignored. 此卫星选择还可以利用卫星轨道信息的年历来进行,但提供模型或从中可以产生模型的天文历,消除移动接收机内年历非易失性存储的必要性。 This satellite almanac selection may also be used to perform the satellite orbit information, but may be generated therefrom providing a model or model ephemeris, almanac the necessity of the mobile receiver to eliminate the non-volatile storage. 因此,天文历在此方面提供某种优点,但是本发明的主要优点在于改进信号捕获和接收机灵敏度,如下所述。 Thus, ephemeris provide some advantage in this regard, but the advantage of the invention is to improve signal acquisition and receiver sensitivity, as described below.

"重新发射"或"重新广播"天文历信息以两种方式改进移动接收机的操作。 "Retransmission" or "re-broadcast" ephemeris information to improve the operation of the mobile receiver in two ways.

首先,移动接收机不需要从卫星收集天文历。 First, the mobile receiver does not need to collect the ephemeris from the satellite. 该天文历每30秒从卫星广播并需要18秒发射。 The satellite broadcast ephemeris transmitted from the required 18 seconds and every 30 seconds. 为了在不利用本发明的情况下接收天文历,移动接收机在正在发射天文历的整个18秒的间隔内需要清楚、不受阻的卫星接收。 In order to receive ephemeris, a mobile receiver without the use of the present invention within the interval being transmitted ephemeris entire 18 seconds requires a clear, unobstructed satellite reception. 根据环境和接收机的使用,在情况允许收集天文历之前可能有几分钟,在许多应用,例如室内使用中,移动接收机从未无阻碍地看到卫星。 Depending on the environment and the receiver, before the situation allows collection of astronomical calendar may have a few minutes, in many applications, such as indoor use, the receiver never move unhindered see the satellite. 为了消除数据收集延迟,本发明将天文历数据直接提供到移动接收机。 In order to eliminate the delay of data collection, the present invention provides the ephemeris data directly to the mobile receiver.

第二,如上所述,天文历用于形成在移动接收机接收的卫星信号的伪范围模型。 Second, as described above, the pseudo-range model for ephemeris satellite signal received by the receiver in a mobile form. 这些模型可以多种方式加速捕获过程。 These models can capture a variety of ways to accelerate the process.

该模型预计接收信号的伪范围和伪范围速率。 The model predicts the pseudo range and pseudo range rate of the received signal. 如果近似用户位置相当精确,则这些模型将非常精确的估算伪范围和伪范围速率。 If a fairly accurate approximate position of the user, these models will be very accurate estimate of pseudo-range and pseudo range rate. 利用该模型,该接收机可以集中期望信号附近的相关过程。 Using this model, the receiver may be concentrated near the desired signal correlation process.

图6表示用于移动GPS接收机的通常频率和时间不确定性的图601。 Figure 6 shows frequency and time normally used to move the GPS receiver 601 of FIG uncertainty. 在Y轴602上,各行表示不同的伪范围速率,在X轴6(M上各列表示不同的伪范围。如果没有精确模型,诸如利用本发明可得到的,范围速率的可能性将相当大地变化,因为大范围的卫星运行都是可能的,而且范围可能性也将随着PN代码的许多周期而变化。利用天文历信息提供的精确模型,不确定性可以缩小为由黑网孔606描述的小范围。许 In the Y-axis 602, each row represents a different pseudo-range rate, the X-axis 6 (each column represents a different range of the pseudo-M. If there is no accurate model, such as the possibility of using the present invention can be obtained, the range rate considerably changes, since a wide range of satellite operation are possible, but also the range of possibilities as many cycles PN code varies. accurate model using ephemeris information, uncertainty can be reduced by the black cell 606 described the small Xu

14多接收机将能在单个过程搜索这个小范围,该过程消除了耗时的顺序检索,并允许利用更好灵敏度的较长的时间,正如现在要描述的。 The receiver can search for more than 14 small range in a single process, which eliminates the time-consuming search sequence, and allows the use of longer and better sensitivity, as will now be described.

更好的灵敏度如下实现:GPS接收机的灵敏度是接收机可以积分相关器输出的时间量的函数。 Better sensitivity achieved by: GPS receiver sensitivity is the amount of time the receiver can be integrated correlation output function. 灵敏度和积分时间之间的关系由图608表示。 The relationship between the sensitivity and the integration time is represented by 608 in FIG. 如果有许多箱要搜索,则积分时间610等于总的可用搜索时间除以搜索箱的数目。 If there are many boxes to be searched, the integration time 610 is equal to the total available search time divided by the number in the search box. 如果只有单个箱要搜索,则积分时间612等于总的可用搜索时间加上如608所示的灵敏度。 If only a single box to search, then the integration time is equal to the total of 612 available search time plus 608 as shown in sensitivity.

应当注意在一些接收机中,可以从伪范围模型预计的伪范围和伪范围速率不会精确,因为缺乏本地时钟的同步。 It should be noted that in some receivers may not accurately model the expected range from the pseudo range and pseudo range rate of the dummy, since the lack of synchronization of the local clock. 在这种情况下,最初仍然需要在很宽的不确定性范围内搜索,但只是对于最强的卫星。 In this case, the initial search is still needed in a wide range of uncertainty, but only for the strongest satellite. 如果已知本地时钟精确到大致一秒的GPS时间内,则任何一个卫星都足以同步本地相关器偏移。 If the local clock is known generally accurate to within one second of the GPS time, then any one satellite is sufficient to synchronize the local correlation offset. 此后,对于剩余的卫星可以精确地计算期望的伪范围和伪范围速率。 Thereafter, the desired can be accurately calculated for the remaining satellite pseudo range and pseudo range rate. 如果不知道本地时钟在大致一秒内,则两个卫星必须用于计算两个要求的时钟参数:本地时钟和相关器偏移。 If you do not know the local clock within a substantially one second, the two satellites must be used to calculate two required clock parameters: offset and associated local clock. 需要两个卫星的事实是一个经常被误会的点。 It requires two satellites fact is an often misunderstood point. 在GPS文献中,经常提到一个卫星足以求解出未知的时钟偏移,而不必实现它,这只对本地时钟已经大致与GPS时间同步的系统成立。 GPS in the literature, often referred to one satellite is sufficient to solve for the unknown clock bias, without having to implement it, only the establishment of the system of the local clock has approximately synchronized with GPS time. 在连续跟踪GPS信号的传统GPS接收机中,本地时钟与GPS时间同步到了比一秒精确度好得多的程度。 In the conventional continuous tracking GPS signals in the GPS receiver, the GPS local clock time synchronization to better than one second degree of accuracy. 在一些更现代的实施(例如,美国专利6,064,336)中,本地时钟与网络时间参考同步,该网络时间参考与GPS时间同步。 In some embodiments more modern (e.g., U.S. Patent No. 6,064,336), the local clock reference time synchronized with the network, the network time reference synchronized with GPS time. 但是,本发明具体用来操作在没有与GPS时间同步的本地时钟的实施中。 However, in the present invention, particularly for operating embodiment the local clock is not synchronized with GPS time. 人们求解这些时钟参数的方式如下详细描写。 These parameters one solves the clock follows a detailed description.

一旦已经计算出未知的时钟参数,则参数可用于调整用于剩余的、较弱的卫星的伪范围模型,以便将不确定性范围缩小到较窄的区域;因此当需要高灵敏度,即用于检测较弱的卫星信号时,增强灵敏度精确性。 Once the clock has been calculated the unknown parameters, the parameters can be used to adjust the model for the remaining pseudo range, weaker satellites, so as to narrower range of uncertainty region; Therefore, when high sensitivity is required, i.e. for detecting weaker satellite signals, the accuracy of sensitivity enhancement.

在其它接收机中,本地时钟和时钟速率可以十分精确。 In other receivers, the local clock and the clock rate can be very precise. 例如,如果时钟信号由与GPS时间同步的无线媒介(例如,双向寻呼网络)得出,则时钟参数通常很精确。 For example, if the clock signal is derived from synchronized with GPS time wireless medium (e.g., two-way paging network), the clock parameters are usually very accurate. 在这种情况下,没有时钟影响,从开始就可以使用较窄的搜索区域。 In this case, the clock does not affect, from the beginning you can use narrower search area.

为了量化本发明的好处,考虑到这样一种例子,即用户位置在双 In order to quantify the benefits of the present invention, to such an example consider that user's location bis

向寻呼塔的接收半径(2英里)内是知道的。 Receiving the paging radius of the column (2 mi) of know. 在这种情况下,伪范围(用毫秒表示)可以预先计算到百分之一毫秒的精确度。 In this case, the pseudo-range (denoted by ms) may be pre-calculated to an accuracy of one percent millisecond. 如果没有本发明,则GPS接收机将搜索所有可能代码延迟的全部一亳秒,以锁定到卫星发射的代码。 Without the present invention, the GPS receiver will search for all possible codes of all a Bo second delay, to lock the code of the satellite transmission. 利用本发明,搜索窗缩小了一百倍,使得GPS接收机更快,更重要的是,允许利用更长的积分时间(如上所述),使接收机能够检测较弱的信号,诸如发生在室内。 With the present invention, the search window is narrowed a hundred times, so that the GPS receiver faster, more importantly, to allow the use of longer integration time (as described above), enable the receiver to detect weak signals, such as occur in indoor.

在移动接收机具有天文历或得出的伪范围模型的另外的优点在于识别真实相关的过程更强壮,因为且不说如上所述增加了积分时间,如果只考虑发生在期望范围以内的相关,则识别"错误峰值"的机会将大大缩小。 An additional advantage of having pseudo-range models ephemeris or derived at the mobile receiver is to identify the real correlation process more robust, as described above, not to mention the increased integration time, if considered relevant only occur within the desired range, the recognition "false peaks" opportunities will be greatly reduced.

通过利用天文历(或得出的伪范围模型)增强灵敏度的一个实施例进一步参照图7描述。 Enhance the sensitivity by using ephemeris (or derived pseudo-ranges model) described a further embodiment 7 with reference to FIG.

图7是信号搜索的方法700的流程图。 FIG. 7 is a method flowchart 700 signal search. 该方法从步骤702开始,输入伪范围模型。 The method begins at step 702, the pseudo-range input model. 如前所述,此伪范围模型由天文历计算,或者在移动接收机本身或者在中心处理位置。 As described above, the pseudo-range calculated by the ephemeris model, or a mobile receiver itself or at a central processing location. 在步骤704,该模型应用在移动装置的当前时间并用于估算GPS卫星信号的期望的当前频率和时间,以及这些量期望的不确定性,以便为每个卫星形成频率和代码延迟搜索窗。 In step 704, the model used in the current time for the mobile device and the current estimate of the expected time and frequency of the GPS satellite signal, and the desired amount of these uncertainties, so as to form a frequency and code delay search windows for each satellite. 此窗口的中心在频率和延迟的最佳估计值,但允许最佳估计值的真实偏离,该偏离是由于模型建立过程中的误差,包括大致用户位置的不精确、从无线载波传送的时间和频率误差等等。 In the center of this window and the best estimate of the frequency of the delay, but allows the best estimate of deviation from true, this deviation is due to an error during the establishment of a model, comprising a substantially precise user position from the transmission time of the wireless carrier and frequency error and the like. 此外,频率不确定性被分成多个频率搜索箱,以覆盖频率搜索窗。 Further, the frequency uncertainty is divided into a plurality of frequency search box, to cover the frequency search window. 如图6所示,利用伪范围模型可以急剧減少搜索箱的数目。 6, using the pseudo-range can be drastically reduce the number of models in the search box.

在步骤706,检测和测量过程设置成编程载波校正到第一搜索频率。 In step 706, the detection and measurement provided to a first search programs carrier frequency correction. 在步骤708,启动代码相关器以在延迟窗口的延迟范围内搜索信号相关性。 In step 708, the boot code correlators to search within the delay range of the delay signal correlation window. 这种代码相关器是标准技术,但是本发明急剧减少了相关器必须搜索的可能的代码延迟数目,从而增加每个代码延迟的积分时间,和接收机的灵敏度。 This is a standard technique related to the code, but the present invention drastically reduces the possible code correlator must search the number of delay, thereby increasing the integration time of each code delay, and receiver sensitivity.

16在步骤710,方法700查询是否检测信号。 16 In step 710, method 700 queries whether the detection signal. 如果没有信号检测到, 则在步骤712将载波校正设置成下一个搜索频率,该搜索继续直到发现信号或频率搜索箱用完。 If no signal is detected, then in step 712 the carrier frequency correction is provided to a search, the search continues until it finds a signal or frequency search box run.

如果在步骤710,方法700肯定回答了查询,则在步骤714该信号用于进一步改进时钟时间延迟和时钟频率偏移的估计。 If, at step 710, method 700 queries affirmative answer, then in step 714 the clock signal is used to estimate the time delay further improved and clock frequency offsets. 在步骤716此信息用于为剩余的、未检测的卫星重新计算频率和延迟搜索窗。 This information is used at step 716 for the remaining, undetected satellite delay and re-calculating frequency search window. 在步骤718, 该过程继续直到检测到所有的卫星或搜索窗已经用尽。 In step 718, the process continues until all the satellites detected or search window have been exhausted.

图7的方法说明了可用于根据能够估计时间和频率的GPS信号处 Figure 7 illustrates the method of the GPS signal may be used in accordance with time and frequency can be estimated

理引导搜索过程的各种算法的一种。 Treatment of a variety of algorithms guide the search process. 另外,该算法可以变成包括各种重试机制,因为这些信号自己可能#_衰减或阻隔。 Further, the algorithm can become various retry mechanisms include, since these signals themselves may #_ attenuated or blocked. 灵敏度增强 Sensitivity enhancement

为了增强接收机的灵敏度(如图6所述),本发明利用移动装置的大致位置计算期望的伪范围,这降低了伪范围不确定性。 In order to enhance the sensitivity of the receiver (FIG. 6), the present invention calculates the pseudo range by using the approximate location of the desired mobile device, which reduces the pseudo-ranges of uncertainty. 但是,在本发明的接收机可以计算期望的伪范围之前,需要以下三项: However, prior to the present invention, the receiver may calculate the pseudo range desired, the following three:

1. 移动装置的大致位置(在真实位置几英里内) 1. The approximate location of the mobile device (in true location several miles)

2. 在移动装置的近似时间(在真实时间的大致一秒内) 2. In the approximate time of the mobile device (generally within one second of real time)

3. 在移动^^的相关器时钟偏移(在真实偏移的几微秒内) 这三项的每一个知道得越精确,本发明约束伪范围不确定性就越 3. In a related movement ^^ clock offset (in microseconds true offset) of each of these three known more precisely, the present invention is bound more uncertainty pseudorange

精确,因此灵敏度越大(参见图6 )。 Precise, thus the greater the sensitivity (see FIG. 6). 在优选实施例中,移动装置的大致位置从该装置最后使用的无线塔的已知位置确定。 In a preferred embodiment, the approximate location of the mobile device determined from the known location of the radio tower used in the final device. 双向寻呼机和蜂窝电话的无线塔的接收半径通常是3千米。 Two-way pagers and cellular phones receiving wireless tower radius typically 3 km. 因此移动装置的大致位置已知在3千米内,伪范围估计导致的误差不超过3千米。 Thus known approximate location of the mobile device 3 within km pseudo range estimation errors due to not more than 3 km. 参照图6, 注意用于无助GPS接收机的全部伪范围不确定性等于一个代码出现时间(epoch),大致是300千米。 Referring to Figure 6, note that for all of the GPS receiver pseudo range helpless uncertainty equal to one code epoch (Epoch), approximately 300 km. 因此,甚至知道粗略到3千米的大致位置可以降低伪范周不确定性一百倍。 Thus, even coarse to know the approximate location of 3 km is possible to reduce the uncertainty of a circumferential Pseudonorm times.

计时误差还会导致期望伪范围的误差。 Timing error will result in errors in the desired pseudo-range. 为了计算期望的伪范围, 接收机必须计算空间的卫星位置。 To calculate the desired pseudo-ranges, the receiver must calculate the spatial position of the satellite. 地球上任何位置的卫星范围以正负800米/秒的速率变化u因此每秒的时间误差将导致最多800氷的范围误差(和伪范围误差)。 Satellite range anywhere on the earth at a rate of plus or minus 800 meters / second per second timing error changes u therefore will result in range errors of up to 800 ice (and pseudo-range errors).

17该移动装置相关器延迟偏移导致伪范围测量的直接误差,正如 The mobile device 17 correlator delay offset errors due to pseudo-range measurements directly, as

GPS文献中所公知的。 GPS is well known in the literature. 每微秒的未知相关器延迟偏移导致范围测量的300米的误差。 Per microsecond delay offset unknown cause correlator 300 meters uncertainty of the measurement.

因此,为了将伪范围估计保持在几千米的范围内(如图6所示), 本发明的接收机需要估计上述范围的位置、时间和相关器延迟偏移。 Therefore, in order to estimate a pseudo-range maintained in the range of several kilometers (shown in FIG. 6), the receiver needs to estimate the position of the present invention, the above-described range, and a correlator time delay offset.

在这样一种实施方式中,即移动装置的实际时间不知道几秒好多少,而且相关器延迟偏移不知道,则利用两个卫星测量人们对此求解如下。 In such an embodiment, i.e., the actual time of the mobile device does not know how many seconds is good, and the relevant delay offset is not known, the use of two satellite measurements to solve the following people for this.

伪范围误差与两个时钟误差有关的方程是: y=c*dtc-rangeRate*dts (1) 其中: Pseudo range error associated with the two clock error equation is: y = c * dtc-rangeRate * dts (1) wherein:

y是"伪范围余量",即期望的伪范围和测量的伪范围之间的差值; c是光速; y is a "pseudo-range margin", i.e. the difference between the desired pseudo range and pseudo range measured; C is the speed of light;

dtc,是相关器延迟偏移;和dts,是实际时间估计的偏移。 dtc, relevant delay offset; and dts, the actual time offset estimation.

图8描述了用于改进时钟参数,然后改进接收机灵敏度的方法800 的流程图。 Figure 8 depicts a flowchart of a method to improve the clock parameters, improved receiver sensitivity and 800 for. 方法800包括: Method 800 includes:

步骤802.利用最公知的时钟参数,为所有的卫星计算期望的伪范围。 Step 802. The best-known use of clock parameters, calculate the desired pseudo-ranges for all satellites.

步骤804.测量具有最高信号强度的两个最强卫星的伪范围。 Step 804. The pseudorange measurement has two strongest satellites highest signal strength. 步骤806.利用这两个测量值,求解方程(1)的两个未知数:dtc 和dts。 Step 806. Using these two measurements, two unknowns to solve equation (1): dtc and dts.

步骤808.利用dte和dts改进对于剩余(较弱)卫星的期望伪范围的 Step 808. dte and dts using pseudo-ranges for the remaining desired improved (less) satellites

估计值。 estimated value.

步骤810,利用这些改进的期望伪范围降低伪范围不确定性,因此改进接收机的灵敏度,如图6所示。 Step 810, using the pseudo-ranges of these improvements is desirable to reduce the uncertainty of pseudo range, thus improving the sensitivity of the receiver, as shown in FIG.

尽管并入本发明的的各种实施例已经在这里示出和详细描述,但是本领域技术人员可以很容易地设计出仍然并入这些教义的许多其它变化的实施例。 Although the present invention is incorporated in various embodiments have been illustrated and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.

Claims (10)

1.一种用于辅助卫星定位系统移动装置的方法,包括: 接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据; 将所述卫星天文历数据传递到中心处理位置; 从所述天文历数据选择所有卫星的子集的天文历数据; 将所述选择的天文历数据提供给所述移动装置; 获取至少一个卫星信号,包括: (a)从所述选择的天文历数据、移动装置大致位置和近似时间计算具有多个频率箱的频率窗口; (b)在所述频率窗口中的频率箱中搜索信号相关性; (c)确定在所述频率箱中是否存在信号相关性;以及(d)使用不同的频率箱重复步骤(b)和(c),直到检测到信号相关性;以及使用所述选择的天文历数据和所述至少一个卫星信号计算移动装置位置, 其中所有卫星的子集包括至少一个在移动装置处能看到的卫星。 1. A method of assisted satellite positioning system for a mobile device, comprising: receiving data from a satellite ephemeris for all satellites in a satellite constellation of global positioning system; transmitting said satellite ephemeris data to a central processing location; from the ephemeris data to select a subset of all the ephemeris data of the satellites; the selected ephemeris data to the mobile device; obtaining at least one satellite signal, comprising: (a) ephemeris data from the selected mobile It means roughly approximate time and position calculating frequency window having a plurality of frequency bins; (b) in the frequency bins in the frequency bins to search the correlation signal; (c) determining whether there is a correlation signal in the frequency bins; different and (d) of using frequency bins repeating steps (b) and (C), until the correlation detection signal; ephemeris data and using the selected at least one satellite signal and calculating the position of the mobile device, wherein all satellites subset comprises at least one satellite can be seen at the mobile device.
2. 如权利要求1的方法,其中,所有卫星的子集包括至少一个即将由移动装置能看到的卫星。 2. A method as claimed in claim 1, wherein a subset of all satellites comprises at least one mobile device can be seen by the upcoming satellite.
3. 如权利要求1的方法,其中获取至少一个卫星信号包括获取具有最强信号强度的两个卫星信号,并且其中使用从所述至少一个卫星信号中得出的信息来辅助获取其他卫星信号包括:从所述选择的天文历数据计算期望的伪范围; 使用期望的伪范围和获取的具有最强信号强度的两个卫星信号改进其他卫星信号的期望伪范围;以及使用经改进的期望伪范围来改进其他卫星信号获取过程中的灵敏度。 3. The method of claim 1, wherein acquiring comprises acquiring the at least two satellite signals a satellite signal with the strongest signal strength, and wherein the information derived from the at least one auxiliary satellite signal to acquire the satellite signals comprising other : calculating a desired ephemeris data from said selected pseudo-ranges; and the pseudo-ranges using the desired two satellite signals with the strongest signal strength improvement acquired satellite signals other desired pseudo-ranges; and the pseudo range is desirable to use an improved to improve the sensitivity of other satellite signal acquisition process.
4. 如权利要求1的方法,其申所述天文历数据被用于得出至少一个伪范围模型。 4. The method as claimed in claim 1, which the application is at least one of ephemeris data model for deriving pseudo range.
5. 如权利要求1的方法,其中所有卫星的所述子集基于所述移动装置的估计位置。 5. The method of claim 1, wherein said sub-set of all the satellites based on the estimated position of the mobile device.
6. —种用于辅助卫星定位系统移动接收机的设备,包括: 卫星信号接收机网络,用于接收来自卫星全球定位系统星座图中所有卫星的卫星天文历数据,和将所述卫星天文历数据传递到中心处理位置;和所述中心处理位置被配置用于从所述天文历数据选择所有卫星的子集的天文历数据,并且将所述选择的天文历数据提供给所述移动接收机;获取至少一个卫星信号的装置,所述装置包括:(a) 从所述选择的天文历数据、移动接收机大致位置和近似时间计算具有多个频率箱的频率窗口的单元;(b) 在所述频率窗口中的频率箱中搜索信号相关性的单元;(c) 确定在所述频率箱中是否存在信号相关性的单元;以及(d) 使用不同的频率箱重复单元(b)和(c)执行的操作, 直到检测到信号相关性的单元;以及使用所述选择的天文历数据和所述至少一个卫星信号计算移动 6. - kind of a satellite positioning system for assisting a mobile receiver apparatus, comprising: a satellite signal receiver network for receiving data from the satellite ephemeris for all satellites in a constellation of GPS satellites, and the satellite ephemeris transmitting data to a central processing location; and said central processing position configured to select a subset of all the satellites from the ephemeris data, ephemeris data, and the selected ephemeris data to the mobile receiver ; means obtaining at least one satellite signal, the apparatus comprising: (a) from the selected data ephemeris, approximate location of a mobile receiver unit and approximate time windows having a plurality of frequency calculated frequency bins; (b) at correlation unit window search frequency bins in the frequency signal; (c) determining whether the correlation signal is present in the cell in the frequency bins; and various (d) of using frequency bins repeating units (b) and ( operation c) is performed until the correlation detection signal unit; ephemeris data and using the selected at least one satellite signal and calculates the movement 收机位置的装置; 一其中所述选择的天文历数据包括至少一个在移动接收机处能看到的卫星的天文历数据。 Receiver means position; wherein said selected one ephemeris data comprises at least one of ephemeris data can be seen at the mobile receiver of the satellite.
7. 如权利要求6的设备,其中,所述选择的天文历数据包括至少一个即将由移动接收机能看到的卫星的天文历数据。 7. The apparatus of claim 6, wherein said selected data comprises ephemeris ephemeris data coming from the at least one mobile receiver of the satellite can be seen.
8. 如权利要求6的设备,其中获取至少一个信号包括获取具有最强信号强度的两个卫星信号,并且使用从所述至少一个卫星信号中得出的信息来辅助获取其他卫星信号的装置包括:从所述选择的天文历数据计算期望的伪范围的单元; 使用期望的伪范围和获取的具有最强信号强度的两个卫星信号改进其他卫星信号的期望伪范围的单元;以及使用经改进的期望伪范围来改进其他卫星信号获取过程中的灵敏度的单元。 8. The apparatus of claim 6, wherein acquiring a signal comprises acquiring the at least two satellite signals with the strongest signal strength, and use the information derived from said at least one auxiliary satellite signal to acquire the satellite signal comprises means other : dummy unit calculates a desired range of ephemeris data from said selected; and the use of two pseudo-ranges desired satellite signal with the strongest signal strength improvement acquired dummy desired range of cells other satellite signal; and the use of improved other improvements to the sensitivity of the satellite signal acquisition unit during a desired pseudo-ranges.
9. 如权利要求6的设备,其中所述中心处理位置包括: 优化所述天文历数据以得出至少一个伪范围模型的装置。 9. The apparatus of claim 6, wherein said central processing position comprising: optimizing said ephemeris data to derive a pseudo-range of the at least one device model.
10. 如权利要求6的设备,其中所有卫星的所述子集基于所述移动接收机的估计位置。 10. The apparatus 6 wherein the estimated position of the satellite based on a subset of all the mobile receiver as claimed in claim.
CN200510054342A 2000-07-13 2001-07-11 Method and apparatus for assisting satellite positioning system mobile device CN100587514C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/615,105 2000-07-13
US09/615,105 US6411892B1 (en) 2000-07-13 2000-07-13 Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
CN01814680.5 2001-07-11

Publications (2)

Publication Number Publication Date
CN1680823A CN1680823A (en) 2005-10-12
CN100587514C true CN100587514C (en) 2010-02-03

Family

ID=24463997

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB018146805A CN1199053C (en) 2000-07-13 2001-07-11 Method for locating position
CN200510054342A CN100587514C (en) 2000-07-13 2001-07-11 Method and apparatus for assisting satellite positioning system mobile device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB018146805A CN1199053C (en) 2000-07-13 2001-07-11 Method for locating position

Country Status (6)

Country Link
US (10) US6411892B1 (en)
EP (1) EP1305735A4 (en)
JP (1) JP2004504612A (en)
CN (2) CN1199053C (en)
AU (1) AU7687301A (en)
WO (1) WO2002006987A1 (en)

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) * 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
JP2007316070A (en) * 2006-05-22 2007-12-06 Polaris Wireless Inc Method for predicting position of wireless terminal
US7899467B2 (en) * 1998-09-22 2011-03-01 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on the traits of the multipath components of a signal
US7433695B2 (en) * 2002-11-18 2008-10-07 Polaris Wireless, Inc. Computationally-efficient estimation of the location of a wireless terminal based on pattern matching
US7734298B2 (en) * 1998-09-22 2010-06-08 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on signal path impairment
US7257414B2 (en) * 1998-09-22 2007-08-14 Polaris Wireless, Inc. Estimating the Location of a Wireless Terminal Based on Non-Uniform Probabilities of Movement
US6393294B1 (en) * 1998-09-22 2002-05-21 Polaris Wireless, Inc. Location determination using RF fingerprinting
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
KR100617228B1 (en) * 1999-03-19 2006-08-31 엘지전자 주식회사 method for implementation of transferring event in real-time operating system kernel
US9020756B2 (en) * 1999-04-23 2015-04-28 Global Locate, Inc. Method and apparatus for processing satellite positioning system signals
IL139073D0 (en) * 1999-10-21 2001-11-25 Pfizer Treatment of neuropathy
US9182238B2 (en) 2002-04-24 2015-11-10 Ipventure, Inc. Method and apparatus for intelligent acquisition of position information
US9049571B2 (en) 2002-04-24 2015-06-02 Ipventure, Inc. Method and system for enhanced messaging
US7212829B1 (en) 2000-02-28 2007-05-01 Chung Lau Method and system for providing shipment tracking and notifications
US7366522B2 (en) * 2000-02-28 2008-04-29 Thomas C Douglass Method and system for location tracking
US7970412B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US8078189B2 (en) * 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US7970411B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7929928B2 (en) 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US7945387B2 (en) * 2003-03-19 2011-05-17 Broadcom Corporation Method and apparatus for distribution of satellite navigation data
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US6856794B1 (en) * 2000-07-27 2005-02-15 Sirf Technology, Inc. Monolithic GPS RF front end integrated circuit
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US6389291B1 (en) * 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US7668554B2 (en) * 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
US7365680B2 (en) * 2004-02-10 2008-04-29 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
US6466161B2 (en) * 2000-08-24 2002-10-15 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
US7545850B1 (en) 2000-08-24 2009-06-09 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
US7574215B1 (en) * 2000-11-06 2009-08-11 Trimble Navigation Limited System and method for distribution of GPS satellite information
US6937187B2 (en) 2000-11-17 2005-08-30 Global Locate, Inc. Method and apparatus for forming a dynamic model to locate position of a satellite receiver
US7196660B2 (en) * 2000-11-17 2007-03-27 Global Locate, Inc Method and system for determining time in a satellite positioning system
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
US6703971B2 (en) * 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
US7769076B2 (en) 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US7006556B2 (en) * 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US8244271B2 (en) * 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US8358245B2 (en) * 2001-06-06 2013-01-22 Broadcom Corporation Method and system for extending the usability period of long term orbit (LTO)
US7548816B2 (en) 2001-06-06 2009-06-16 Global Locate, Inc. Method and apparatus for generating and securely distributing long-term satellite tracking information
US7443340B2 (en) 2001-06-06 2008-10-28 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US20080125971A1 (en) 2001-06-06 2008-05-29 Van Diggelen Frank Method and apparatus for improving accuracy and/or integrity of long-term-orbit information for a global-navigation-satellite system
US20070200752A1 (en) * 2001-06-06 2007-08-30 Global Locate, Inc. Method and apparatus for maintaining integrity of long-term orbits in a remote receiver
US20080129588A1 (en) 2001-06-06 2008-06-05 David Albert Lundgren Method and apparatus for determining location information of a mobile device
US8090536B2 (en) * 2001-06-06 2012-01-03 Broadcom Corporation Method and apparatus for compression of long term orbit data
US6542820B2 (en) * 2001-06-06 2003-04-01 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US20080186229A1 (en) * 2001-06-06 2008-08-07 Van Diggelen Frank Method and Apparatus for Monitoring Satellite-Constellation Configuration To Maintain Integrity of Long-Term-Orbit Information In A Remote Receiver
US8212719B2 (en) 2001-06-06 2012-07-03 Global Locate, Inc. Method and apparatus for background decoding of a satellite navigation message to maintain integrity of long term orbit information in a remote receiver
JP2003075524A (en) * 2001-08-31 2003-03-12 Denso Corp Mobile communication terminal device, program and position server therefor
US7656350B2 (en) * 2001-11-06 2010-02-02 Global Locate Method and apparatus for processing a satellite positioning system signal using a cellular acquisition signal
US7053824B2 (en) * 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US7574218B2 (en) * 2002-01-16 2009-08-11 Kyocera Wireless Corp. Systems and methods for transmitting global positioning system information
US7629926B2 (en) * 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US8666397B2 (en) 2002-12-13 2014-03-04 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US8126889B2 (en) * 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US20030186699A1 (en) * 2002-03-28 2003-10-02 Arlene Havlark Wireless telecommunications location based services scheme selection
US6975941B1 (en) 2002-04-24 2005-12-13 Chung Lau Method and apparatus for intelligent acquisition of position information
US7905832B1 (en) 2002-04-24 2011-03-15 Ipventure, Inc. Method and system for personalized medical monitoring and notifications therefor
US7218938B1 (en) 2002-04-24 2007-05-15 Chung Lau Methods and apparatus to analyze and present location information
US7321774B1 (en) 2002-04-24 2008-01-22 Ipventure, Inc. Inexpensive position sensing device
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
WO2004001439A1 (en) * 2002-06-20 2003-12-31 Sirf Technology, Inc. Generic satellite positioning system receivers with programmable inputs and selectable inputs and outputs
US20040010368A1 (en) * 2002-07-10 2004-01-15 Logan Scott Assisted GPS signal detection and processing system for indoor location determination
US7133772B2 (en) * 2002-07-30 2006-11-07 Global Locate, Inc. Method and apparatus for navigation using instantaneous Doppler measurements from satellites
AU2003265476A1 (en) 2002-08-15 2004-03-03 Sirf Technology, Inc. Interface for a gps system
US7363044B2 (en) * 2002-09-30 2008-04-22 Motorola, Inc. System and method for aiding a location determination in a positioning system
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
EP1835300B1 (en) 2002-10-02 2014-05-21 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US7595752B2 (en) * 2002-10-02 2009-09-29 Global Locate, Inc. Method and apparatus for enhanced autonomous GPS
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US7043363B2 (en) * 2002-10-10 2006-05-09 Sirf Technology, Inc. Host based satellite positioning systems
US6903684B1 (en) * 2002-10-22 2005-06-07 Qualcomm Incorporated Method and apparatus for optimizing GPS-based position location in presence of time varying frequency error
US6873910B2 (en) * 2002-10-22 2005-03-29 Qualcomm Incorporated Procedure for searching for position determination signals using a plurality of search modes
JP2007316068A (en) * 2006-05-22 2007-12-06 Polaris Wireless Inc Method of estimating location of wireless terminal
US7155183B2 (en) * 2003-01-16 2006-12-26 Global Locate, Inc. Method and apparatus for adjusting reference oscillator frequency in a mobile wireless device
KR100498480B1 (en) * 2003-01-23 2005-07-01 삼성전자주식회사 Method and apparatus for estimating position utilizing GPS satellite signal
KR100922937B1 (en) * 2003-02-12 2009-10-22 삼성전자주식회사 Apparatus and method for calculating satellite acquisition information to measure position of mobile station
US20050234643A1 (en) 2003-11-21 2005-10-20 Charles Abraham Method and apparatus for managing network elements in a satellite navigation data distribution system
US20040192386A1 (en) * 2003-03-26 2004-09-30 Naveen Aerrabotu Method and apparatus for multiple subscriber identities in a mobile communication device
GB0310410D0 (en) * 2003-05-07 2003-06-11 Koninkl Philips Electronics Nv A method of determining a GPS position fix and a GPS receiver for the same
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
JP4658050B2 (en) 2003-09-02 2011-03-23 サーフ テクノロジー インコーポレイテッド Signal processing system for satellite positioning signal
KR100539915B1 (en) * 2003-10-31 2005-12-28 삼성전자주식회사 Method for generating acquisition assistant information in assisted global positioning system
US6992617B2 (en) * 2003-11-13 2006-01-31 Global Locate, Inc. Method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver
US7424293B2 (en) 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
FR2865605B1 (en) * 2004-01-26 2006-04-28 Cit Alcatel Process for assisted location of mobile communication terminals of a cellular network, using a USSD transport channel
US7177635B2 (en) * 2004-03-19 2007-02-13 Transcore Link Logistics Corporation Sensor-based augmentation of blockage recovery
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
JP3876893B2 (en) 2004-05-14 2007-02-07 セイコーエプソン株式会社 Terminal, a positioning method, a control program of the terminal device, and computer readable recording medium a control program of the terminal device
US7256732B2 (en) * 2004-07-01 2007-08-14 Global Locate, Inc Method and apparatus for location-based triggering in an assisted satellite positioning system
US7688260B2 (en) * 2004-08-26 2010-03-30 Global Locate, Inc. Method and apparatus for locating position of a mobile device in an assisted satellite positioning system
US7113128B1 (en) * 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US6985105B1 (en) * 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
EP2026085B1 (en) 2004-10-21 2012-03-07 Nokia Corporation Providing carrier-phase measurements upon request for satellite based positioning
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7664187B2 (en) * 2005-04-25 2010-02-16 Sirf Technology, Inc. Memory reduction in digital broadcast receivers
US7555661B2 (en) * 2005-05-03 2009-06-30 Sirf Technology, Inc. Power management in digital receivers that adjusts at least one a of clock rate and a bit width based on received signal
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US7813454B2 (en) * 2005-09-07 2010-10-12 Sirf Technology, Inc. Apparatus and method for tracking symbol timing of OFDM modulation in a multi-path channel
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US20070075848A1 (en) * 2005-10-05 2007-04-05 Pitt Lance D Cellular augmented vehicle alarm
US7825780B2 (en) * 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US7286083B2 (en) * 2005-12-15 2007-10-23 Motorola, Inc. Method and apparatus for improving fault detection and exclusion systems
US8176107B2 (en) * 2005-12-16 2012-05-08 Csr Technology Inc. Multi-standard multi-rate filter
US8111791B2 (en) * 2005-12-20 2012-02-07 Sirf Technology, Inc. Differential evolution design of polyphase IIR decimation filters
US7671672B2 (en) * 2005-12-22 2010-03-02 Sirf Technology, Inc. Baseband noise reduction
US7466778B2 (en) * 2005-12-22 2008-12-16 Sirf Technology, Inc. Memory efficient OFDM channel estimation and frequency domain diversity processing
US7889780B2 (en) * 2006-01-04 2011-02-15 Sirf Technology, Inc. Method of estimating doppler spread and signal-to-noise ratio of a received signal
US7459970B2 (en) * 2006-01-11 2008-12-02 Sirf Technology, Inc. Method and apparatus for optimizing power dissipation in a low noise amplifier
US7451378B2 (en) * 2006-01-16 2008-11-11 Sirf Technology, Inc. Method and apparatus for memory optimization in MPE-FEC system
US7644343B2 (en) * 2006-01-17 2010-01-05 Rajugopal Gubbi Error resilience methods for multi-protocol encapsulation forward error correction implementations
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US7679550B2 (en) * 2006-02-21 2010-03-16 Garrison James L System and method for model-base compression of GPS ephemeris
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7471236B1 (en) * 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7899450B2 (en) * 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7548200B2 (en) 2006-04-24 2009-06-16 Nemerix Sa Ephemeris extension method for GNSS applications
US8125382B2 (en) 2006-04-25 2012-02-28 Rx Networks Inc. Autonomous orbit propagation system and method
US7612712B2 (en) 2006-04-25 2009-11-03 Rx Networks Inc. Distributed orbit modeling and propagation method for a predicted and real-time assisted GPS system
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
US7656348B2 (en) * 2006-05-19 2010-02-02 Qualcomm Incorporated System and/or method for determining sufficiency of pseudorange measurements
US8965393B2 (en) * 2006-05-22 2015-02-24 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on assisted GPS and pattern matching
US7753278B2 (en) * 2006-05-22 2010-07-13 Polaris Wireless, Inc. Estimating the location of a wireless terminal based on non-uniform locations
JP5657192B2 (en) * 2006-06-23 2015-01-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ephemeris expansion method and apparatus for Gnss application
US8121238B2 (en) * 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
US7724186B2 (en) * 2006-06-30 2010-05-25 Sirf Technology, Inc. Enhanced aiding in GPS systems
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US8026847B2 (en) * 2006-09-14 2011-09-27 Qualcomm Incorporated System and/or method for acquisition of GNSS signals
US7920093B2 (en) * 2006-09-27 2011-04-05 Purdue Research Foundation Methods for improving computational efficiency in a global positioning satellite receiver
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
US8493267B2 (en) 2006-11-10 2013-07-23 Qualcomm Incorporated Method and apparatus for position determination with extended SPS orbit information
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US20080167018A1 (en) * 2007-01-10 2008-07-10 Arlene Havlark Wireless telecommunications location based services scheme selection
US8497801B2 (en) 2007-02-05 2013-07-30 Qualcomm Incorporated Prediction refresh method for ephemeris extensions
US7839324B2 (en) * 2007-02-12 2010-11-23 Sirf Technology, Inc. Efficient ephemeris coding
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US7979207B2 (en) * 2007-03-19 2011-07-12 Sirf Technology, Inc. Systems and methods for detecting a vehicle static condition
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
TWI345068B (en) * 2007-07-20 2011-07-11 Mitac Int Corp Method, device and system for high-speed positioning
WO2009038726A1 (en) 2007-09-17 2009-03-26 Telecommunication Systems, Inc. Emergency 911 data messaging
US8027697B2 (en) 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
US8571506B2 (en) * 2007-10-29 2013-10-29 Csr Technology Inc. Systems and methods for sharing an oscillator between receivers
US8190365B2 (en) * 2007-11-05 2012-05-29 Csr Technology Inc. Systems and methods for processing navigational solutions
US8159393B2 (en) * 2007-11-05 2012-04-17 Csr Technology Inc. Systems and methods for synthesizing GPS measurements to improve GPS location availability
US20090115657A1 (en) * 2007-11-06 2009-05-07 Ann-Tzung Cheng Gnss receiver system and related method thereof
US20090115656A1 (en) * 2007-11-06 2009-05-07 Sirf Technology, Inc. Systems and Methods for Global Differential Positioning
WO2009065206A1 (en) 2007-11-19 2009-05-28 Rx Networks Inc. Distributed orbit modeling and propagation method for a predicted and real-time assisted gps system
US7821454B2 (en) * 2007-11-20 2010-10-26 Sirf Technology, Inc. Systems and methods for detecting GPS measurement errors
US7786929B2 (en) 2007-11-26 2010-08-31 Mediatek Inc. Method and device for predicting GNSS satellite trajectory extension data used in mobile apparatus
US8368588B2 (en) * 2007-11-26 2013-02-05 Mediatek Inc. Method and apparatus for updating transformation information parameters used in global navigation satellite system
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
US8106822B2 (en) * 2008-02-19 2012-01-31 Honeywell International Inc. System and method for GNSS position aided signal acquisition
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
US8670882B2 (en) * 2008-04-03 2014-03-11 Csr Technology Inc. Systems and methods for monitoring navigation state errors
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
US8073414B2 (en) 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
WO2010044837A1 (en) 2008-10-14 2010-04-22 Telecommunication Systems, Inc. Location based proximity alert
US8892128B2 (en) * 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8125377B2 (en) * 2008-11-17 2012-02-28 Andrew Llc System and method for determining the location of a mobile device
US7956803B2 (en) * 2008-12-01 2011-06-07 Andrew, Llc System and method for protecting against spoofed A-GNSS measurement data
US8242841B2 (en) * 2008-12-05 2012-08-14 Csr Technology Inc. Receiver having multi-stage low noise amplifier
US7999730B2 (en) * 2008-12-05 2011-08-16 Andrew, Llc System and method for providing GNSS assistant data without dedicated receivers
US20100149031A1 (en) * 2008-12-12 2010-06-17 Andrew Llc System and method for determining forged radio frequency measurements
US9366763B2 (en) * 2009-02-04 2016-06-14 Qualcomm Incorporated Method and apparatus for position determination with hybrid SPS orbit data
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US20110009086A1 (en) * 2009-07-10 2011-01-13 Todd Poremba Text to 9-1-1 emergency communication
US9075140B2 (en) * 2009-09-23 2015-07-07 Purdue Research Foundation GNSS ephemeris with graceful degradation and measurement fusion
US8299920B2 (en) 2009-09-25 2012-10-30 Fedex Corporate Services, Inc. Sensor based logistics system
US9633327B2 (en) 2009-09-25 2017-04-25 Fedex Corporate Services, Inc. Sensor zone management
US8239169B2 (en) 2009-09-25 2012-08-07 Gregory Timothy L Portable computing device and method for asset management in a logistics system
US20110238308A1 (en) 2010-03-26 2011-09-29 Isaac Thomas Miller Pedal navigation using leo signals and body-mounted sensors
US8336664B2 (en) 2010-07-09 2012-12-25 Telecommunication Systems, Inc. Telematics basic mobile device safety interlock
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
US8848573B1 (en) * 2010-10-21 2014-09-30 Cisco Technology, Inc. Bandwidth conservation for multicast traffic in RF downlinks
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
JP5740961B2 (en) * 2010-12-17 2015-07-01 セイコーエプソン株式会社 Satellite signal acquisition suitability determination method and the satellite signal acquisition suitability determination device
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US8674877B1 (en) 2011-03-03 2014-03-18 Sprint Communications Company L.P. Distribution of positioning satellite information
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US10199726B2 (en) 2011-06-29 2019-02-05 Pismo Labs Technology Limited Systems and methods providing assisted aiming for wireless links through a plurality of external antennas
US9055455B2 (en) * 2011-06-29 2015-06-09 Pismo Labs Technology Ltd. Systems and methods providing assisted aiming for wireless links
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9618625B2 (en) 2012-07-06 2017-04-11 Apple Inc. System and method for continuous carrier wave reconstruction
US9360557B1 (en) 2012-07-06 2016-06-07 Apple Inc. Systems, methods, devices and subassemblies for rapid-acquisition access to high-precision positioning, navigation and/or timing solutions
WO2014028712A1 (en) 2012-08-15 2014-02-20 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US9484980B1 (en) * 2012-12-03 2016-11-01 Sprint Communications Company L.P. Precision timing source back-up for loss of GPS satellites
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US20140258023A1 (en) * 2013-03-11 2014-09-11 Bank Of America Corporation Intelligent Personal Finance Tracking Engine
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
EP3032279B1 (en) 2014-12-08 2019-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pseudorange determinator, method for providing a pseudorange information and computer program
TWI565961B (en) * 2015-08-13 2017-01-11 Realtek Semiconductor Corp Satellite positioning device and electronic device
CN107748373A (en) * 2017-09-25 2018-03-02 千寻位置网络有限公司 Satellite navigation message data collection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202053A (en) 1997-04-25 1998-12-16 洛克希德马丁公司 Rapid and precise geolocation of cellular telephones through use of GPS satellite system
US5995043A (en) 1996-12-06 1999-11-30 The Boeing Company Aircraft satellite navigation precision-approach system including CDMA datalink
WO2000010031A1 (en) 1998-08-13 2000-02-24 Ericsson Inc. Method for improving signal acquisition in a global positioning system receiver
WO2000010028A1 (en) 1998-08-13 2000-02-24 Ericsson Inc. Method and system for aiding gps receivers via a cellular or pcs network
CN1255641A (en) 1998-10-16 2000-06-07 朗迅科技公司 Radio helping global positioning system of utilizing datum position
WO2000034800A1 (en) 1998-12-08 2000-06-15 Ericsson Inc. Provisioning of gps assistance data in a wcdma network

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US4797677A (en) * 1982-10-29 1989-01-10 Istac, Incorporated Method and apparatus for deriving pseudo range from earth-orbiting satellites
US4764465A (en) * 1984-04-26 1988-08-16 Cetus Corporation Human monoclonal antibody against group A red blood cells
US4751512A (en) * 1986-01-21 1988-06-14 Oceanonics, Inc. Differential navigation system for remote mobile users
US4847862A (en) * 1988-04-07 1989-07-11 Trimble Navigation, Ltd. Global positioning system course acquisition code receiver
US4884208A (en) * 1988-05-16 1989-11-28 Equipment Tracking Network, Inc. System for continuously establishing and indicating the location of a movable object
US4970523A (en) * 1989-03-27 1990-11-13 Trimble Navigation, Ltd. Differential doppler velocity GPS receiver
US5108334A (en) * 1989-06-01 1992-04-28 Trimble Navigation, Ltd. Dual down conversion GPS receiver with single local oscillator
US5187805A (en) * 1989-10-02 1993-02-16 Motorola, Inc. Telemetry, tracking and control for satellite cellular communication systems
US5610815A (en) * 1989-12-11 1997-03-11 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
US5995556A (en) * 1990-06-06 1999-11-30 California Institute Of Technology Front end for GPS receivers
US5347284A (en) * 1991-02-28 1994-09-13 Texas Instruments Incorporated System and method for a digital navigation satellite receiver
DE69220705D1 (en) * 1991-04-12 1997-08-14 Sharp Kk Positioning system and GPS receiver
US5225842A (en) * 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5202829A (en) * 1991-06-10 1993-04-13 Trimble Navigation Limited Exploration system and method for high-accuracy and high-confidence level relative position and velocity determinations
US5148179A (en) * 1991-06-27 1992-09-15 Trimble Navigation Differential position determination using satellites
US6157621A (en) * 1991-10-28 2000-12-05 Teledesic Llc Satellite communication system
US5323322A (en) * 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
US5457460A (en) * 1992-11-17 1995-10-10 Honeywell Inc. Embedded threat data recorder
US5777580A (en) * 1992-11-18 1998-07-07 Trimble Navigation Limited Vehicle location system
US5365450A (en) * 1992-12-17 1994-11-15 Stanford Telecommunications, Inc. Hybrid GPS/data line unit for rapid, precise, and robust position determination
US5587715A (en) * 1993-03-19 1996-12-24 Gps Mobile, Inc. Method and apparatus for tracking a moving object
US5420592A (en) * 1993-04-05 1995-05-30 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5477458A (en) * 1994-01-03 1995-12-19 Trimble Navigation Limited Network for carrier phase differential GPS corrections
WO1995018977A1 (en) * 1994-01-03 1995-07-13 Trimble Navigation A network for code phase differential gps corrections
US5470233A (en) * 1994-03-17 1995-11-28 Arkenstone, Inc. System and method for tracking a pedestrian
US6321158B1 (en) * 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5481592A (en) * 1994-10-05 1996-01-02 At&T Corp. System for automatically completing calls to mobile telephone subscribers
US5913170A (en) * 1994-11-16 1999-06-15 Highwaymaster Communications, Inc. Locating system and method using a mobile communications network
US5694416A (en) * 1995-02-24 1997-12-02 Radix Technologies, Inc. Direct sequence spread spectrum receiver and antenna array for the simultaneous formation of a beam on a signal source and a null on an interfering jammer
US6236940B1 (en) * 1995-09-08 2001-05-22 Prolink, Inc. Display monitor for golf cart yardage and information system
US6236360B1 (en) * 1995-04-18 2001-05-22 Richard W. Rudow Golf course yardage and information system
US5638077A (en) * 1995-05-04 1997-06-10 Rockwell International Corporation Differential GPS for fleet base stations with vector processing mechanization
US5600329A (en) * 1995-06-30 1997-02-04 Honeywell Inc. Differential satellite positioning system ground station with integrity monitoring
WO1997014055A1 (en) 1995-10-09 1997-04-17 Snaptrack, Inc. Method and apparatus for determining the location of an object which may have an obstructed view of the sky
US5945944A (en) * 1996-03-08 1999-08-31 Snaptrack, Inc. Method and apparatus for determining time for GPS receivers
US5825327A (en) 1996-03-08 1998-10-20 Snaptrack, Inc. GPS receivers and garments containing GPS receivers and methods for using these GPS receivers
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
US6133874A (en) * 1996-03-08 2000-10-17 Snaptrack, Inc. Method and apparatus for acquiring satellite positioning system signals
US5874914A (en) 1995-10-09 1999-02-23 Snaptrack, Inc. GPS receiver utilizing a communication link
US6002363A (en) 1996-03-08 1999-12-14 Snaptrack, Inc. Combined GPS positioning system and communications system utilizing shared circuitry
US5831574A (en) 1996-03-08 1998-11-03 Snaptrack, Inc. Method and apparatus for determining the location of an object which may have an obstructed view of the sky
US5841396A (en) 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US6185427B1 (en) * 1996-09-06 2001-02-06 Snaptrack, Inc. Distributed satellite position system processing and application network
US5812932A (en) * 1995-11-17 1998-09-22 Globalstar L.P. Mobile satellite user information request system and methods
US6411254B1 (en) * 1997-04-15 2002-06-25 Snaptrack, Inc. Satellite positioning reference system and method
US6215441B1 (en) * 1997-04-15 2001-04-10 Snaptrack, Inc. Satellite positioning reference system and method
US5961603A (en) * 1996-04-10 1999-10-05 Worldgate Communications, Inc. Access system and method for providing interactive access to an information source through a networked distribution system
US6160988A (en) * 1996-05-30 2000-12-12 Electronic Data Systems Corporation System and method for managing hardware to control transmission and reception of video broadcasts
EP0823823A3 (en) * 1996-08-07 2001-02-14 Matsushita Electric Industrial Co., Ltd. Digital broadcasting system
US6202023B1 (en) * 1996-08-22 2001-03-13 Go2 Systems, Inc. Internet based geographic location referencing system and method
US5884214A (en) 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
WO1999056144A1 (en) 1998-04-28 1999-11-04 Snaptrack, Inc. Method and apparatus for providing location-based information via a computer network
US5862495A (en) * 1996-09-18 1999-01-19 Lockheed Martin Corp. Real time position correction to ground generated spacecraft ephemeris
US5966658A (en) * 1996-09-26 1999-10-12 Highwaymaster Communications, Inc. Automated selection of a communication path
US5812087A (en) 1997-02-03 1998-09-22 Snaptrack, Inc. Method and apparatus for satellite positioning system based time measurement
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
US6147598A (en) * 1997-07-03 2000-11-14 Trimble Navigation Limited Vehicle theft system including a handheld computing device
US6101178A (en) * 1997-07-10 2000-08-08 Ksi Inc. Pseudolite-augmented GPS for locating wireless telephones
US5940026A (en) * 1997-07-21 1999-08-17 Rockwell Science Center, Inc. Azimuth determination for GPS/INS systems via GPS null steering antenna
US6324473B1 (en) * 1997-08-04 2001-11-27 Trimble Navigation Limited Method and apparatus for collecting, processing and distributing differential global positioning system information using the internet
US5886665A (en) * 1997-08-07 1999-03-23 Rockwell International GNSS local constellation/acquisition aiding system
US6070078A (en) 1997-10-15 2000-05-30 Ericsson Inc. Reduced global positioning system receiver code shift search space for a cellular telephone system
US6405132B1 (en) * 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
US6720920B2 (en) * 1997-10-22 2004-04-13 Intelligent Technologies International Inc. Method and arrangement for communicating between vehicles
US6160545A (en) * 1997-10-24 2000-12-12 General Instrument Corporation Multi-regional interactive program guide for television
US6894994B1 (en) * 1997-11-03 2005-05-17 Qualcomm Incorporated High data rate wireless packet data communications system
US6084544A (en) 1997-12-18 2000-07-04 Ericsson Inc. Method for determining the location of a GPS receiver using an estimated reference time
US6075987A (en) * 1998-02-27 2000-06-13 Ericsson Inc. Stand alone global positioning system (GPS) and method with high sensitivity
US5977909A (en) * 1998-03-13 1999-11-02 General Electric Company Method and apparatus for locating an object using reduced number of GPS satellite signals or with improved accuracy
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US6067484A (en) * 1998-03-23 2000-05-23 Airsys Atm, Inc. Differential GPS landing system
US6266584B1 (en) * 1998-03-31 2001-07-24 Space Systems/Loral, Inc. Robust autonomous GPS time reference for space application
US5999124A (en) 1998-04-22 1999-12-07 Snaptrack, Inc, Satellite positioning system augmentation with wireless communication signals
US6061018A (en) 1998-05-05 2000-05-09 Snaptrack, Inc. Method and system for using altitude information in a satellite positioning system
US6133873A (en) * 1998-06-03 2000-10-17 Krasner; Norman F. Method and apparatus for adaptively processing GPS signals in a GPS receiver
US6636740B1 (en) * 1998-06-16 2003-10-21 Ericsson Inc. Apparatus and methods for position computation based on broadcast initialization data
US6032108A (en) * 1998-07-08 2000-02-29 Seiple; Ronald Sports performance computer system and method
US6336076B1 (en) * 1998-08-24 2002-01-01 Rockwell Collins, Inc. Long range GNSS ephemeris data transfer method and apparatus using the same
US6747983B1 (en) * 1998-10-02 2004-06-08 Thomson Licensing S.A. Transport packet rate conversion
US6510156B1 (en) * 1998-12-07 2003-01-21 Cisco Technology, Inc. Method and apparatus for data stream optimization
US7215967B1 (en) * 1998-12-22 2007-05-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for fast cold start of a GPS receiver in a telecommunications environment
US6985454B1 (en) * 1999-01-26 2006-01-10 Globalstar L.P. ISP system using non-geosynchronous orbit satellites
GB2347035B (en) * 1999-02-16 2003-10-08 Symmetricom Inc Positioning system
US6121923A (en) * 1999-02-19 2000-09-19 Motorola, Inc. Fixed site and satellite data-aided GPS signal acquisition method and system
US6300899B1 (en) * 1999-02-19 2001-10-09 Thomas M. King Fixed site data-aided GPS signal acquisition method and system
US6393291B1 (en) * 1999-03-25 2002-05-21 Rockwell Collins, Inc. Method and apparatus for deriving a high rate output in a GPS system
US6408178B1 (en) * 1999-03-29 2002-06-18 Ericsson Inc. Systems and methods for resolving GPS pseudo-range ambiguity
US6519617B1 (en) * 1999-04-08 2003-02-11 International Business Machines Corporation Automated creation of an XML dialect and dynamic generation of a corresponding DTD
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
US6091959A (en) * 1999-06-02 2000-07-18 Motorola, Inc. Method and apparatus in a two-way wireless communication system for location-based message transmission
US6243648B1 (en) * 1999-07-12 2001-06-05 Eagle Eye, Inc. Fast acquisition position reporting system
US6560536B1 (en) * 1999-07-12 2003-05-06 Eagle-Eye, Inc. System and method for rapid telepositioning
US6446005B1 (en) * 1999-08-13 2002-09-03 Prolink, Inc. Magnetic wheel sensor for vehicle navigation system
US6542743B1 (en) * 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
JP3243236B2 (en) * 1999-09-24 2002-01-07 松下電器産業株式会社 Position data thinning unit
US6313787B1 (en) * 1999-11-12 2001-11-06 Motorola, Inc. Method and apparatus for assisted GPS protocol
US6343317B1 (en) * 1999-12-29 2002-01-29 Harry A. Glorikian Internet system for connecting client-travelers with geographically-associated data
US6665726B1 (en) * 2000-01-06 2003-12-16 Akamai Technologies, Inc. Method and system for fault tolerant media streaming over the internet
US6295023B1 (en) * 2000-01-21 2001-09-25 Ericsson Inc. Methods, mobile stations and systems for acquiring global positioning system timing information
US6603977B1 (en) * 2000-02-04 2003-08-05 Sbc Properties, Lp Location information system for a wireless communication device and method therefor
WO2001059601A1 (en) * 2000-02-11 2001-08-16 Grounds Thomas L Device and method for transmitting vehicle position
US6888879B1 (en) * 2000-02-24 2005-05-03 Trimble Navigation Limited Method and apparatus for fast acquisition and low SNR tracking in satellite positioning system receivers
US6603978B1 (en) * 2000-03-24 2003-08-05 Ericsson Inc. Accurate GPS time estimate based on information from a wireless communications system
TW494060B (en) * 2000-04-14 2002-07-11 John T S Lin Molding method of carbon fiber layer
US6615186B1 (en) * 2000-04-24 2003-09-02 Usa Technologies, Inc. Communicating interactive digital content between vehicles and internet based data processing resources for the purpose of transacting e-commerce or conducting e-business
US20020031103A1 (en) * 2000-05-02 2002-03-14 Globalstar L.P. User terminal employing quality of service path determination and bandwidth saving mode for a satellite ISP system using non-geosynchronous orbit satellites
US6922546B1 (en) * 2000-05-03 2005-07-26 Lucent Technologies Inc. GPS signal acquisition based on frequency-domain and time-domain processing
DE10032926A1 (en) 2000-07-06 2002-01-24 Hummel Anton Verwaltung Connecting fitting for umfangsgerippte elongated body having an engaging retaining projection
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US7945387B2 (en) * 2003-03-19 2011-05-17 Broadcom Corporation Method and apparatus for distribution of satellite navigation data
US6775802B2 (en) 2000-08-08 2004-08-10 Qualcomm Incorporated Method, apparatus, and system for signal prediction
US6937187B2 (en) * 2000-11-17 2005-08-30 Global Locate, Inc. Method and apparatus for forming a dynamic model to locate position of a satellite receiver
US6417801B1 (en) * 2000-11-17 2002-07-09 Global Locate, Inc. Method and apparatus for time-free processing of GPS signals
US6799116B2 (en) 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
US6433735B1 (en) * 2000-12-26 2002-08-13 Telefonaktiebolaget (Lme) Mobile terminal and system and method for determining the geographic location of a mobile terminal
US7031875B2 (en) * 2001-01-24 2006-04-18 Geo Vector Corporation Pointing systems for addressing objects
US6714791B2 (en) * 2001-02-23 2004-03-30 Danger, Inc. System, apparatus and method for location-based instant messaging
US6473030B1 (en) * 2001-02-28 2002-10-29 Seiko Epson Corporation Infrastructure-aiding for satellite navigation receiver and method
US6606560B1 (en) * 2001-03-22 2003-08-12 Lockheed Martin Corporation Beacon for satellite registration
US6462707B1 (en) * 2001-03-22 2002-10-08 Lockheed Martin Corporation Satellite position monitor
GB2373940A (en) * 2001-03-27 2002-10-02 Secr Defence Locating the source of an unknown signal
US7215648B2 (en) * 2001-05-11 2007-05-08 Varitek Industries, Inc. Apparatus and method for efficient live webcasting and network connectivity
US6606346B2 (en) * 2001-05-18 2003-08-12 Global Locate, Inc. Method and apparatus for computing signal correlation
US6560534B2 (en) * 2001-06-06 2003-05-06 Global Locate, Inc. Method and apparatus for distributing satellite tracking information
US6542820B2 (en) * 2001-06-06 2003-04-01 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
JP2003021672A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Navigation satellite system receiver
US6628234B2 (en) * 2001-07-18 2003-09-30 Fast Location.Net, Llc Method and system for processing positioning signals in a stand-alone mode
US7149499B1 (en) * 2001-07-18 2006-12-12 Cisco Technology, Inc. System for dynamically tracking the location of network devices to enable emergency services
US6515620B1 (en) * 2001-07-18 2003-02-04 Fast Location.Net, Llc Method and system for processing positioning signals in a geometric mode
US6651000B2 (en) * 2001-07-25 2003-11-18 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information in a compact format
JP3791369B2 (en) * 2001-08-30 2006-06-28 株式会社デンソー Wireless communication terminal, the method of transmitting the computer program and search information
JP3575451B2 (en) * 2001-09-07 2004-10-13 株式会社デンソー The mobile communication terminal device and the program
JP2003167043A (en) * 2001-11-29 2003-06-13 Matsushita Electric Ind Co Ltd Satellite signal receiver
US6697736B2 (en) * 2002-02-06 2004-02-24 American Gnc Corporation Positioning and navigation method and system thereof
US20030212821A1 (en) 2002-05-13 2003-11-13 Kiyon, Inc. System and method for routing packets in a wired or wireless network
US7349390B2 (en) 2002-05-28 2008-03-25 Ntt Docomo, Inc. Packet transmission method and communication system
US7496082B2 (en) * 2002-07-15 2009-02-24 Lee Howard K Dedicated device for automatically accessing wireless internet network and supplying wireless packet data-based indoor-capable GPS locations
AU2003265476A1 (en) * 2002-08-15 2004-03-03 Sirf Technology, Inc. Interface for a gps system
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US7395045B2 (en) * 2002-11-26 2008-07-01 General Motors Corporation Method and system for call routing for 911 network connectivity
JP4170798B2 (en) * 2003-03-07 2008-10-22 株式会社日立産機システム Gps receiving terminal and gps reference station, as well as computer software
AT354103T (en) * 2003-08-01 2007-03-15 Cit Alcatel Position determination of a mobile terminal via broadcast on request assist data
JP2006284452A (en) * 2005-04-01 2006-10-19 Mazeran Systems Japan Kk Satellite positioning method
EP1852711B1 (en) * 2006-04-24 2013-03-13 Qualcomm Incorporated Ephemeris extension method for GNSS applications
US7436357B2 (en) * 2006-11-20 2008-10-14 Centrality Communications, Inc. Background ephemeris download in navigational receivers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995043A (en) 1996-12-06 1999-11-30 The Boeing Company Aircraft satellite navigation precision-approach system including CDMA datalink
CN1202053A (en) 1997-04-25 1998-12-16 洛克希德马丁公司 Rapid and precise geolocation of cellular telephones through use of GPS satellite system
WO2000010031A1 (en) 1998-08-13 2000-02-24 Ericsson Inc. Method for improving signal acquisition in a global positioning system receiver
WO2000010028A1 (en) 1998-08-13 2000-02-24 Ericsson Inc. Method and system for aiding gps receivers via a cellular or pcs network
CN1255641A (en) 1998-10-16 2000-06-07 朗迅科技公司 Radio helping global positioning system of utilizing datum position
WO2000034800A1 (en) 1998-12-08 2000-06-15 Ericsson Inc. Provisioning of gps assistance data in a wcdma network

Also Published As

Publication number Publication date
US9599720B2 (en) 2017-03-21
US6704651B2 (en) 2004-03-09
US20020032527A1 (en) 2002-03-14
CN1199053C (en) 2005-04-27
CN1680823A (en) 2005-10-12
EP1305735A4 (en) 2009-08-12
US20020032526A1 (en) 2002-03-14
US8930137B2 (en) 2015-01-06
EP1305735A1 (en) 2003-05-02
US20020175856A1 (en) 2002-11-28
US6411892B1 (en) 2002-06-25
US20060271293A1 (en) 2006-11-30
US20130234888A1 (en) 2013-09-12
JP2004504612A (en) 2004-02-12
US6703972B2 (en) 2004-03-09
WO2002006987A1 (en) 2002-01-24
US6587789B2 (en) 2003-07-01
US20030176969A1 (en) 2003-09-18
US6813560B2 (en) 2004-11-02
US20020105459A1 (en) 2002-08-08
CN1465015A (en) 2003-12-31
US20030236620A1 (en) 2003-12-25
US20090267833A1 (en) 2009-10-29
AU7687301A (en) 2002-01-30

Similar Documents

Publication Publication Date Title
US6525688B2 (en) Location-determination method and apparatus
JP5780701B2 (en) Full field of coherent gps signal pseudo-random noise (prn) code acquisition and navigation solving global positioning system (gps) user receiver and the geometric surface treatment for a constant
US7436355B2 (en) Method and apparatus for geolocation determination
KR101160855B1 (en) System and method to obtain signal acquisition assistance data
Seco-Granados et al. Challenges in indoor global navigation satellite systems: Unveiling its core features in signal processing
JP6437491B2 (en) Method and apparatus for using assistance data relating to the satellite position system
USRE42543E1 (en) GPS satellite signal acquisition assistance system and method in a wireless communications network
ES2316107T3 (en) Method and apparatus for measurement processing of signals of a satellite positioning system (SPS).
EP0958530B1 (en) Method and apparatus for satellite positioning system based time measurement
US6970132B2 (en) Targeted data transmission and location services using digital television signaling
CN1902504B (en) Method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver
EP1503220B1 (en) Position determination of mobile terminals by means of assistance data transmitted on request
US20110223934A1 (en) System of utilizing cell information to locate a wireless device
KR101630890B1 (en) Wide area positioning system
US7466264B2 (en) System and method for providing assistance data within a location network
EP1581820B1 (en) Method and system for performing timing synchronization
JP3880632B2 (en) System Using leo satellite for navigation in centimeters level
KR100829666B1 (en) Method and apparatus for determining an error estimate in a hybrid position determination system
US5467282A (en) GPS and satellite navigation system
US8542718B2 (en) Method and apparatus for acquisition, tracking, and sub-microsecond time transfer using weak GPS/GNSS signals
US6963306B2 (en) Position location and data transmission using pseudo digital television transmitters
EP0902554B1 (en) An auxiliary system for assisting a wireless terminal in determining its position from signals transmitted from a navigation satellite
US6856282B2 (en) Directly acquiring precision code GPS signals
US6832090B2 (en) System and method for identification of transmitters with limited information
US8134500B2 (en) Method and apparatus for enhanced autonomous GPS

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model