CN100581490C - Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof - Google Patents

Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof Download PDF

Info

Publication number
CN100581490C
CN100581490C CN 200810126718 CN200810126718A CN100581490C CN 100581490 C CN100581490 C CN 100581490C CN 200810126718 CN200810126718 CN 200810126718 CN 200810126718 A CN200810126718 A CN 200810126718A CN 100581490 C CN100581490 C CN 100581490C
Authority
CN
China
Prior art keywords
osteotomy
module
data
femoral
knee
Prior art date
Application number
CN 200810126718
Other languages
Chinese (zh)
Other versions
CN101288597A (en
Inventor
周一新
竞 唐
唐杞衡
邵宏翊
Original Assignee
周一新;唐 竞;唐杞衡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周一新;唐 竞;唐杞衡 filed Critical 周一新;唐 竞;唐杞衡
Priority to CN 200810126718 priority Critical patent/CN100581490C/en
Publication of CN101288597A publication Critical patent/CN101288597A/en
Application granted granted Critical
Publication of CN100581490C publication Critical patent/CN100581490C/en

Links

Abstract

The invention discloses a kneed prosthesis implantation method, an osteotomy module used and a using device, the kneed prosthesis implantation method comprises the following steps of measuring the data of knee joint bone tissues, extracting the data of articular cartilage and the skeleton profile, establishing a three-dimensional model in an image processor, designing the osteotomy module, determining the size and the type of the used kneed prosthesis and determining an osteotomy module model and the implantation of the kneed prosthesis. The kneed prosthesis implantation method of the invention can reduce the trauma of a patient, lower the cost, shorten the implantation time, reduce the risk of complications of a user of the kneed prosthesis and have less error and higher precision.

Description

膝关节假体植入方法所使用的截骨模块及其制造装置 The knee prosthesis implantation process used and the manufacturing apparatus module osteotomy

技术领域 FIELD

本发明涉及一种膝关节假体植入方法,同时还涉及前述的膝关节假体植入方法所使用的截骨模块,另外还涉及前述膝关节假体植入方法中使用的装置。 The present invention relates to a knee prosthesis implantation method, and also relates to the aforementioned modules osteotomy knee prosthesis implantation method is used, the apparatus further relates to a knee prosthesis implant used in the method.

背景技术 Background technique

目前,当人们膝关节磨损或坏掉后,越来越多的人选择安装人工膝关节以代替原来的膝关节使用。 Currently, when people wear knee or broken, more and more people choose to install artificial knee joint to replace the original use of the knee. 人工膝关节置换手术中如何能够更精确地植入膝关节假体对于患者的术后功能及预后至关重要。 Knee replacement surgery and postoperative functional how crucial knee prosthesis for the patient's prognosis more accurately implantation. 目前膝关节假体植入主要依赖于以下两种方法: 一种方法是采用术中髓内髓外定位器械:采用这种方法时一般在股骨侧采用髓内定位,将髓内定位杆置入股骨髓腔内用来定位股骨解剖轴线。 Currently knee prosthesis implantation depends on the following two methods: One method is the use of intraoperative extramedullary intramedullary positioning instrument: Usually intramedullary femoral positioned side Using this method, the alignment rod placed femoral anatomical axis of the femur for positioning the cavity. 在胫骨侧一般采用髓内或者髓外定位用来定位胫骨解剖轴线(例如:Depuy、 Link公司人工膝关节系统)。 Usually the tibial intramedullary positioning for positioning or extramedullary tibial anatomical axis (e.g.: Depuy, Link Company artificial knee joint system). 通过这样的操作系统可以为医生安放假体位置提供一定参考,但是手术中进行髓内定位会增加病人的创伤, 加大脂肪栓塞的风险,同时可重复性较差,存在较大的测量误差。 Doctors can provide a reference for the position by the safety body leave this operating system, but the operation performed intramedullary trauma patients increases, increasing the risk of fat embolism, and poor reproducibility, there is a large measurement error. 随着导航技术的发展,出现了另一种方法,就是采用术中导航定位,采用手术导航系统是目前新兴的手术方法,其是在全膝关节置换中用电脑提供准确的人工假体组件定位,导航的原理接近运用于汽车上的GPS全球卫星定位系统,手术 With the development of navigation technology, there has been another method is the use of intraoperative navigation and positioning, surgical navigation systems are currently emerging surgical technique, which is in total knee replacement using computers to provide accurate positioning of prosthetic components , close to the principle of navigation GPS global satellite positioning system used on the car, surgery

导航系统中的红外线照相系统相当于太空卫星接收胫骨和股骨上定位器发出的信号,特殊器械相当于汽车,胫骨股骨相当于路况,当电脑系统接收信号后进行运算并把信息转化成影像及数据显示于荧屏上,提供医师膝关节各解剖位置尺寸和力学轴线分析。 Navigation system is equivalent to the infrared camera system satellite signal receiving space of the femoral and tibial positioning emitted, special equipment corresponding to cars, traffic tibiofemoral corresponds, when the computer system receives the signal and calculates the information into image data and is displayed on the screen, the size and position of the mechanical axis to provide respective knee anatomy physician analysis. 虽然理论上可以增加假体安放位置的准确度,但该方法没有考虑到患者的个体化差异,并且目前的膝关节注册系统、 定位方法仍然在改进,所以仍然存在一定误差,并且许多文献报道采用手术导航系统进行人工膝关节置换增加了患者的医疗负担,同时延长了手术时间增加了患者发生并发症的风险。 Although it is theoretically possible to increase the accuracy of the placement of the prosthesis, but this method does not take into account individual differences in patients, and the current registration system knee, positioning method is still evolving, so there are still some errors, and many reported in the literature using surgical navigation system for artificial knee replacement increased the burden on the patient's health, while extending the operation time increases the risk of patient complications. 总之目前普遍采用的这两种方法都没有很好的考虑患者的个体化差异并且存在不同程度的误差,也不能有效地减少手术风险。 In short these two methods are commonly used today are not very good considering the patient's individual differences and varying degrees of error, it can not be effective in reducing the risk of surgery.

发明内容 SUMMARY

本发明是为了解决现有技术中的不足而完成的,本发明的目的是提供一种减小病人创伤、费用比较低、植入费时比较短、减小膝关节假体使用者发生并发症的风险、 误差比较小的膝关节假体植入方法。 The present invention is made to solve the deficiencies of the prior art is completed, the object of the present invention is to provide a reduced patient trauma, relatively low cost, short implantation time-consuming, reducing the knee prosthesis user complications the risk of error is relatively small knee prosthesis implantation method.

本发明的膝关节假体植入方法,包括以下步骤: The knee prosthesis implantation methods of the present invention, comprising the steps of:

a. 膝关节骨组织数据测量:对需要植入关节假体使用者的膝关节下肢 a knee bone measurement data: the need for implantation of joint prosthesis knee lower limb of the user

进行CT、 MRI扫描,获取肢体断面图像和骨组织的图像数据,其中骨组织的 For CT, MRI scan, acquiring image data limb and cross-sectional image of the bone, wherein the bone tissue

图像数据至少包括股骨胫骨解剖轴线和力学轴线数据、关节面形态数据、股骨前脸的厚度数据、股骨内外髁连线数据、股骨内外髁连线与后髁连线的夹 The image data comprising at least a femoral tibial anatomical axis and mechanical axis data, the articular surface shape data, the thickness data of the front face of the femur, the femoral condylar data connection, a connection with femoral condylar posterior condyles interposed connection

角、股骨内外髁的宽度、股骨胫骨前后径的距离、胫骨横径的距离数据; Angle, femoral condylar width before and after the tibia bone from femur diameter, the diameter of the tibial distance data;

b. 提取关节软骨和骨骼轮廓数据:将a步骤中的图像数据和肢体断面图像依次输入图像处理系统,依据软组织与骨质在CT、 MRI中获取的图像中灰度的差异进行图像分割,提取轮廓数据,获得关节软骨和骨骼数据,所述软骨和骨骼数据包括关节面形态数据、股骨胫骨解剖轴线和力学轴线数据、 股骨前脸的厚度数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁宽度、 股骨胫骨前后径的距离、股骨横径的距离数据; . B articular cartilage and bone extract contour data: image data, and a step limb cross-sectional image sequentially input image processing system, image segmentation based on the difference image acquired bone and soft tissue in CT, MRI in gray extracts contour data, data obtained articular cartilage and bone, cartilage and the bone shape data includes data articular surface, the femoral anatomical axis and mechanical axis of the tibia data, thickness data of the front face of the femur, the femoral condylar posterior condyles connection clamp connection angle, femoral condylar width, diameter before and after femoral tibia bone from femur diameter distance data;

c. 在图像处理器内建立三维立体模型:将a步骤和b步骤中获得的数 . C dimensional model in the three-dimensional image processor: the number of steps a and b obtained in step

据输入图像处理器并利用制图系统将所述数据转化为图像,制成符合膝关节 According to the input image processor and using the mapping system into image data, it is made in line with the knee

假体使用者本体关节骨面的三维立体模型图; FIG three-dimensional model of the bone surface of the body of a user of the prosthesis;

d. 设计截骨模块:根据C步骤中在图像处理器内制成的关节骨面形状, 设计制造股骨截骨模块和胫骨截骨模块,使得股骨截骨模块和胫骨截骨模块与膝关节的关节面间隙小于1.5mm,同时股骨截骨模块和胫骨截骨模块的厚度大于lcm; d osteotomy module design: The surface shape of the bone prepared in step C in the image processor, module design and manufacture of the femur and tibia osteotomy osteotomy module, so that the femur and tibia osteotomy module knee osteotomy module articular surface gap is less than 1.5mm, while the thickness of the femoral and tibial osteotomy osteotomy module is greater than the LCM module;

e. 确定使用膝关节假体的大小型号:根据a步骤测量得到的股骨、胫骨数据确定使用假体型号; . E determined using the knee prosthesis of sizes: The measurements obtained in step a femur, a tibial prosthetic determined data type;

f. .确定截骨模块模型:根据e步骤选择确定的假体形状和大小对步骤d制造的股骨截骨模块和胫骨截骨模块开设截骨槽; .. F determining module osteotomy model: The groove defines osteotomy e prosthesis determining step of selecting the shape and size of the manufacturing step d femur and tibia osteotomy osteotomy module module;

g.膝关节假体的植入:将步骤f制造的带有截骨槽的股骨截骨模块和胫骨截骨模块套设于膝关节假体使用者膝关节股骨和胫骨关节面上,按照截骨槽位置进行对使用者膝关节关节面截骨,再将步骤e中确定的膝关节假体 . G knee implant prosthesis: step f femoral osteotomy module manufactured with grooves and tibial osteotomy osteotomy module sleeved on the knee joint surface of the knee joint of the femur and tibia bone prosthesis user, in accordance with the truncated bone groove position knee prosthesis articular surface of the knee osteotomy user, then determined in step e

安装于使用者膝关节部位。 User attached to the knee joint.

本发明的膝关节假体植入方法进一步还可以是: The knee prosthesis implantation method of the present invention further may also be:

所述步骤f中股骨截骨模块上开设有截除远端槽、前方槽、后方槽、两个斜形截面槽五个槽,所述胫骨截骨模块上开设有胫骨近端槽。 Said step (f) defines a distal slot cut away front slot, the rear slot, two grooves oblique sectional five slots, said shank module defines a proximal tibial osteotomy femur osteotomy module slots.

所述股骨假体与股骨解剖轴线呈外翻6度,与股骨后髁连线呈外旋3度, The femoral prosthesis and the femur anatomical axis 6 degrees valgus, posterior femoral condyles connection was externally rotated 3 degrees,

胫骨假体与胫骨解剖轴线垂直。 Tibial prosthesis with a tibial anatomical axis vertical.

本发明的膝关节假体植入方法,相对于现有技术而言具有的优点为:由于其按照膝关节假体植入者测量的膝关节的数据,在图像系统内重新再现膝关节假体植入者膝关节的关节面,按照股骨截骨模块与胫骨截骨模块与膝关 The knee prosthesis implantation method of the present invention, the prior art has an advantage in terms of: the measurement data due to the knee joint in accordance with those implanted knee prosthesis, the system re-rendering the image in the knee prosthesis articular surface implant's knee, the femoral osteotomy module according tibial osteotomy knee module

节的关节面间隙小于1. 5mm的标准设计股骨截骨模块和胫骨截骨模块,同时根据重现的膝关节假体植入者膝关节关节面选择形状和大小型号合适的成品假体,然后根据选好的成品假体以及重现的膝关节假体植入者膝关节关节面对应,在制造的股骨截骨模块和胫骨截骨模块上开设截骨槽,截骨槽开设的目的是保证在植入假体过程中,可以方便对假体使用者的膝关节进行截骨,在植入过程中,直接将股骨截骨模块和胫骨截骨模块贴合于膝关节关节面上,按照截骨槽对膝关节进行精确截骨后,取下股骨截骨模块和胫骨模块, 将选好的膝关节假体植入己经截骨的膝关节处。 Articular surface section 1. 5mm gap is smaller than the standard design of the femur and tibia osteotomy osteotomy module modules, and reproduced according to implant a knee prosthesis of the knee articular surface by selecting a suitable shape and size of the finished prosthesis model, then should face, defines osteotomy groove on the femur and tibia osteotomy module manufactured according to the selected module osteotomy finished prosthetic knee prosthesis and knee joint implants were reproduced, the groove defines the purpose of osteotomy ensure that during implantation of the prosthesis, the prosthesis can facilitate the user's knee osteotomy, during the implantation process, the directly femur and tibia osteotomy osteotomy module module is bonded to the surface of the knee joint, in accordance with knee osteotomy slot accurate osteotomy, remove femur and tibia osteotomy module module, will be selected at the knee prosthesis knee implant has osteotomy. 这样的方法,由于事先进行截骨模块和截骨槽的制作,在植入时不再需要术中测量,避免髓内定位必须在股骨、胫骨内插入较长的髓内定位杆或者导航定位必须在股骨、胫骨上打螺钉用于固定跟踪器所造成的创伤,也可以避免导航繁琐的注册过程而延长手术时间的弊端,同时可以适用不同的人工膝关节假体植入,这样可以弥补导航用于下肢畸形严重患者存在较大误差不能使用的缺点。 Such a method, since the advance and prepared osteotomy slot osteotomy module, when implanted in the cytometry is no longer required, must be avoided intramedullary femur, the intramedullary rod insertion or longer navigation tibia must in the femur, tibia playing on the bone screw fixation for trauma caused by the tracker can be avoided navigation cumbersome registration process and extend the operation time of the drawbacks, but can be applied to different artificial knee joint prosthesis implantation, which can make navigation disadvantage large error can not be used in patients with severe deformity of the lower limbs.

本发明还提供了膝关节假体植入方法所使用的截骨模块,包括股骨截骨模块和胫骨截骨模块,所述股骨截骨模块与所述胫骨截骨模块上开设有截骨槽,所述股骨截骨模块与所述胫骨截骨模块是通过以下步骤得到的:a.膝关节骨组织数据测量:对需要植入关节假体使用者的膝关节下肢进行CT、 The present invention also provides a knee prosthesis modules osteotomy implant process used, and the module includes a femoral osteotomy tibial osteotomy module, defines a groove on the femur osteotomy osteotomy tibial osteotomy module and the module, the femoral osteotomy tibial osteotomy module and the module is obtained by the steps of: a data measurement knee bone tissue: the need for implantation of joint prosthesis user's knee lower limb CT,

MRI扫描,获取肢体断面图像和骨组织的图像数据,其中骨组织的图像数据 MRI scan, acquiring image data limb and cross-sectional image of the bone tissue, bone tissue wherein the image data

至少包括股骨胫骨解剖轴线和力学轴线数据、关节面形态数据、股骨前脸的厚度数据、股骨内外髁连线数据、股骨内外髁连线与后髁连线的夹角、股骨 Comprising at least the anatomical axis of the femur and the tibial mechanical axis data, the angle of the articular surface shape data, the thickness data before the face of the femur, the femoral condylar data connection, a connection with the femoral condylar connection condyle, femoral

内外髁的宽度、股骨胫骨前后径的距离、胫骨横径的距离数据; Condylar width before and after the tibia from the femur bone diameter, the diameter of the tibial distance data;

b. 提取关节软骨和骨骼轮廓数据:将a步骤中的图像数据和肢体断面图像依次输入图像处理系统,依据软组织与骨质在CT、 MRI中获取的图像中灰度的差异进行图像分割,提取轮廓数据,获得关节软骨和骨骼数据,所述软骨和骨骼数据包括关节面形态数据、股骨胫骨解剖轴线和力学轴线数据、 股骨前脸的厚度数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁宽度、 股骨胫骨前后径的距离、股骨横径的距离数据; . B articular cartilage and bone extract contour data: image data, and a step limb cross-sectional image sequentially input image processing system, image segmentation based on the difference image acquired bone and soft tissue in CT, MRI in gray extracts contour data, data obtained articular cartilage and bone, cartilage and the bone shape data includes data articular surface, the femoral anatomical axis and mechanical axis of the tibia data, thickness data of the front face of the femur, the femoral condylar posterior condyles connection clamp connection angle, femoral condylar width, diameter before and after femoral tibia bone from femur diameter distance data;

c. 在图像处理器内建立三维立体模型:将a步骤和b步骤中获得的数据输入图像处理器并利用制图系统将所述数据转化为图像,制成符合膝关节假体使用者本体关节骨面的三维立体模型图; . C dimensional model in the three-dimensional image processor: the processor and the input image using the mapping data into the data system, and a step b as an image obtained in the step, the user is made in line with the knee prosthesis the bone body FIG three-dimensional model of the surface;

d. 设计截骨模块:根据C步骤中在图像处理器内制成的关节骨面形状, 设计制造股骨截骨模块和胫骨截骨模块,使得股f"截骨模块和胫骨截骨模块与膝关节的关节面间隙小于1.5mm,同时股骨截'ki'模块和胫骨截骨模块的厚度大于lcm; d osteotomy module design: The surface shape of the bone prepared in step C in the image processor, module design and manufacture of the femur and tibia osteotomy osteotomy module, such that shares f "tibial osteotomy module and module knee osteotomy the articular surface of the joint gap is less than 1.5mm, while femoral cut 'ki' module and a tibial osteotomy thickness greater than LCM module;

e. 确定使用膝关节假体的大小型号:根据a步骤测量得到的股骨、胫骨数据确定使用假体型号; . E determined using the knee prosthesis of sizes: The measurements obtained in step a femur, a tibial prosthetic determined data type;

f. 确定截骨模块模型:根据e步骤选择Vu定的假体的形状和大小对步骤d制造的股骨截骨模块和胫骨截骨模块开设截骨槽。 . F determination module osteotomy model: selecting a predetermined shape and size Vu prosthesis manufacturing step d femur and tibia osteotomy osteotomy module defines module according osteotomy groove step e.

本发明的膝关节假体植入方法所使用的截骨:;〖块,现对于现有技术而言,其 Osteotomy knee prosthesis implantation method of the present invention to be used:; 〖blocks, now with the prior art, which

有助于在膝关节假体植入过程中,明显縮短植入-—:二/吋间、定位精确高、减少创伤、适应不同个体差异的膝关节植入。 Help knee prosthesis implantation, implantation significantly shorter: - b / inch between, high positioning accuracy, reduce trauma to adapt to different individual differences of the knee implant.

本发明还提供了一种在上述膝关节假体植入方法中所使用的装置,其包括与 The present invention also provides an apparatus in the above-knee prosthetic implant used in the method, which comprises

CT、 MRI扫描装置连接的数据记录装置、图像ar器、截骨模块设计系统和 Data recording apparatus CT, MRI scanning device is connected, the image ar, a modular design system and osteotomy

7截骨槽定位系统,所述数据记录装置将数据传递给进行膝关节关三维立体模型图的所述图像处理器,图像处理器与设计截骨模块三维立体模型的截骨模块设计系统连接,所述截骨模块设计系统与确定截骨槽位置和大小的截骨槽定位系统连接。 7 osteotomy slot positioning system, said data recording means to pass data to knee off the three-dimensional model of FIG image processor, an image processor module with the three-dimensional design osteotomy osteotomy design system modules connected to three-dimensional model, the osteotomy module design system and a positioning system determines osteotomy osteotomy slot size and slot position of connection.

本发明的膝关节假体植入方法所使用的装置,可以完成截骨模块的整个制作过程,制造出精确度高、个体适应性强的截骨模块。 Means knee prosthesis implantation method of the present invention to be used, the manufacturing process can complete the osteotomy module, produce high precision, adaptability osteotomy strong individual modules. 附图说明 BRIEF DESCRIPTION

图1为本发明膝关节假体植入方法的流程图。 FIG 1 is a flowchart of the knee prosthesis implantation method of the present invention.

图2为本发明膝关节假体植入方法股骨膝关节与股骨截骨模块贴合示意图。 FIG 2 knee prosthetic implant osteotomy of the femur knee joint femur bonding module schematic diagram of the invention.

图3为本发明股骨截骨模块示意图。 FIG 3 is a schematic block femur osteotomy invention.

图4为本发明胫骨截骨模块示意图。 Schematic block tibial osteotomy of FIG. 4 of the present invention.

图5为本发明膝关节内翻畸形时的截骨槽线。 When the osteotomy slot line in FIG. 5 varus knee joint of the present invention.

图6为本发明膝关节外翻畸形时的截骨槽线。 FIG 6 when the knee osteotomy slot line valgus deformity of the present invention.

图号说明 Drawing No. Description

1…股骨膝关节2…股骨截骨模块3…胫骨截骨模块 1 ... 2 ... femoral knee femoral osteotomy module tibial osteotomy module 3 ...

具体实施方式 Detailed ways

下面结合附图对本发明作进一步详细说明。 DRAWINGS The invention is described in further detail below in conjunction.

本发明的一种膝关节假体植入方法,请参考图1和图2,具体步骤为:a.膝 One type of knee prosthesis implantation method of the present invention, please refer to FIGS. 1 and 2, the specific steps:. A knee

关节骨组织数据测量:对需要植入关节假体使用者的膝关节下肢进行CT、 The bone tissue measurement data: the need for implantation of joint prosthesis user's knee lower limb CT,

MRI扫描,获取肢体断面图像和骨组织的图像数据,其中骨组织的图像数据至少包括股骨胫骨解剖轴线和力学轴线数据、关节面形态数据、股骨前脸的厚度数据、股骨内外髁连线数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁的宽度、股骨胫骨前后径的距离、胫骨横径的距离数据; MRI scan, acquiring image data of limb cross-sectional image and the bone tissue, the image data wherein the bone tissue comprises at least a femoral tibial anatomical axis and mechanical axis data, the articular surface shape data, the thickness data before the femur face femoral condylar connection data, inner and outer connection angle between the femoral condyle and the condyle connection femoral condylar width before and after the tibia bone of the femur diameter distance, the distance data of the tibia diameter;

b.提取关节软骨和骨骼轮廓数据:将a歩骤中的图像数据和肢体断面图像依次输入图像处理系统,依据软组织与骨质在CT、 MRI中获取的图像中灰度的差异进行图像分割,提取轮廓数据,获得关节软骨和骨骼数据,所述软骨和骨骼数据包括关节面形态数据、股骨胫骨解剖轴线和力学轴线数据、 股骨前脸的厚度数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁宽度、 . B articular cartilage and bone extract contour data: image data and image a cross-sectional limb ho step of sequentially input image processing system, image segmentation based on the difference image acquired bone and soft tissue in CT, MRI in the gradation, extracting the outline data, data obtained articular cartilage and bone, cartilage and the bone shape data includes data articular surface, the femoral tibial anatomical axis and mechanical axis data, thickness data of the front face of the femur, the femoral condylar connection after the connection with the condyle angle, femoral condylar width,

8股骨胫骨前后径的距离、股骨横径的距离数据; 8 before and after the femoral tibia bone diameter from the diameter of the femur from the data;

c.在图像处理器内建立三维立体模型:将a步骤和b步骤中获得的数据输入图像处理器并利用制图系统将所述数据转化为图像,制成膝关节假体使用者本体关节骨面的三维立体模型图; . C dimensional model in the three-dimensional image processor: the processor and the input image using the mapping data into the data system, and a step b as an image obtained in the step, the body is made of the knee prosthesis user articular bone surface FIG three-dimensional model;

d.设计截骨模块:根据c步骤中在图像处理器内制成的关节骨面形状, 设计制造股骨截骨模块2和胫骨截骨模块3,使得股骨截骨模块2和胫骨截骨模块3与膝关节的关节面间隙小于1.5mm,即严密贴合,同时股骨截骨模块2和胫骨截骨模块3的厚度大于lcm;具体为这种贴合程度应保证截骨模块与相应的关节面间隙不能超过1. 5mm。 d osteotomy module design: The surface shape of the bone formed in step c in the image processor, the design and manufacture of the femur and tibia osteotomy osteotomy module 2 module 3, so that the femur and tibia osteotomy Module 2 Module 3 osteotomy the articular surface of the knee joint gap is less than 1.5mm, i.e. tight fit, while the thickness of the femoral and tibial osteotomy osteotomy module 2 module 3 is greater than the LCM; specifically attached to this degree should ensure engagement with the respective module osteotomy articular surface the gap can not exceed 1. 5mm. 如果这种间隙超过2mm将带来轴线和截骨量的变化,同时最好保证截骨模块的一定厚度,大约lcm左右,以便控制截骨时摆锯的方向;请参考图2,股骨膝关节1与股骨截骨模块相贴合; If this gap is more than 2mm and will bring about changes in the axis of the osteotomy amounts, preferably while the osteotomy to ensure a certain thickness of the module, the left and right about lcm, so as to control the direction of the oscillating saw osteotomy; Please refer to FIG. 2, the knee femoral femur osteotomy module 1 are bonded together;

e. 确定使用膝关节假体的大小型号:根据a歩骤测量得到的股骨、胫骨数据确定使用假体型号;具体一般为所述股骨假体股骨假体与股骨解剖轴线呈外翻6度,与股骨后髁连线呈外旋3度,胫骨假体与胫骨解剖轴线垂直; . E knee prosthesis used to determine the size of the model: The femoral ho a step measured, is determined using the tibial prosthesis model data; specifically typically the femoral prosthetic femoral prosthesis and the femur anatomical axis 6 degrees valgus, after connection with the femoral condyle was externally rotated 3 degrees, tibial prosthesis with a tibial anatomical axis vertical;

f. 确定截骨模块模型:根据e步骤选择确定的假体形状和大小对步骤d制造的股骨截骨模块2和胫骨截骨模块3开设截骨槽; . F determination module osteotomy model: The groove 3 defines osteotomy e prosthesis determining step of selecting the shape and size of the manufacturing step d femur osteotomy tibial osteotomy module 2 and module;

g. 膝关节假体的植入:将步骤f制造的带有截骨槽的股骨截骨模块2 . G knee implant prosthesis: step f femoral osteotomy module manufactured with grooves 2 osteotomy

和胫骨截骨模块3套设于膝关节假体使用者膝关节股骨和胫骨关节面上,按照截骨槽位置进行对使用者膝关节关节面截骨,再将歩骤e中确定的膝关节假体安装于使用者膝关节部位。 Tibial osteotomy module 3 and sleeved on the knee joint surface of the knee joint of the femur and tibia bone prosthesis user, for the user plane osteotomy knee joint, and then determining step e ho osteotomy slot in accordance with the position of the knee prosthetic knee joint is installed on the user.

具体步骤e中,测量得到患者术前股骨前后径为5.45cm,将采用Genesis n2号假体,如前后径为6. 13cm,将采用Genesis II 5号假体,同时按截骨要求和术后力线恢复的要求来进行截骨模块上截骨槽的设计。 DETAILED step e, measured before and after preoperative femur diameter of 5.45cm, a number n2 prosthesis using Genesis, such as the anteroposterior diameter of 6. 13cm, using the Genesis II prosthesis No. 5, press and post-osteotomy requirements recovery of the lines of force required to design the osteotomy osteotomy module slot. 一般要求股骨假体和解剖轴线成外翻6度夹角,与股骨后髁连线成外旋3度安放,胫骨假体与胫骨解剖轴线垂直安放。 General requirements and anatomical femoral prosthesis valgus axis 6 degree angle, and the connection to external rotation of the femoral condyle of the seating 3, the tibial prosthesis with a tibial anatomical axis mounted vertically. 同时也可以根据医师术前特殊要求进行相应改动,以适应手术需要,通过术前设计达到术中截骨方向和截骨量从而实现预导航的目的。 But also for the physician according to the preceding claim special operation corresponding changes to accommodate surgical needs, preoperative osteotomy direction and designed to meet the amount of osteotomy surgery in order to achieve the purpose of the pre-navigation. 例如:外翻膝关节可以设计股骨截骨模块2远端截骨槽与股骨解剖轴线成外翻8度角度。 For example: valgus knee femoral osteotomy module 2 may be designed to the distal end of the femur and the osteotomy groove anatomical axis valgus angle of 8 degrees. 由于其按照膝关节假体植入者测量的膝关节的数据,在图像系统内重新 Because of its data in the knee prosthesis implantation by measuring knee joint, in the re-image system

再现膝关节假体植入者膝关节的关节面,按照股骨截骨模块2与胫骨截骨模块3与膝关节的关节面间隙小于1. 5mm的标准设计股骨截骨模块2和胫骨截骨模块3,同时根据重现的膝关节假体植入者膝关节关节面选择形状和大小型号合适的成品假体,然后根据选好的成品假体以及重现的膝关节假体植入者膝关节关节面对应,在制造的股骨截骨模块2和胫骨截骨模块3上开设截骨槽,截骨槽开设的目的是保证在植入假体过程中,可以方便对假体使用者的膝关节进行截骨,在植入过程中,直接将股骨截骨模块2和胫骨截骨模块3贴合于膝关节关节面上,按照截骨槽对膝关节进行精确截骨后,取下股骨截骨模块2和胫骨截骨模块3,将选好的膝关节假体植入已经截骨的膝关节处。 Reproducing knee articular surface implant's knee prosthesis, femoral osteotomy according tibial osteotomy module 2 and module 3 and the articular surface of the knee joint gap is smaller than the standard design module 1. 5mm osteotomy femur and tibia osteotomy module 2 3, while according to the reproduced knee prosthetic implant articular surface of the knee by selecting a suitable shape and size of the finished prosthesis models, selected according to the knee joint and the finished prosthetic knee prosthesis implantation and reproduced by joint surface corresponds, in the manufacture of grooves defines osteotomy femur osteotomy module 2 and module 3 tibial osteotomy, the osteotomy slot opened object is to ensure that during the implantation of the prosthesis, knee prosthesis can facilitate the user's joints osteotomy, during implantation, the femoral osteotomy directly tibial osteotomy module 2 and module 3 is bonded to the surface of the knee joint, in accordance with the knee osteotomy slot accurate osteotomy, remove the truncated femur bone tibial osteotomy module 2 and module 3, the knee prosthetic implant selected has at knee osteotomy. 这样的方法,由于事先进行截骨模块和截骨槽的制作,在植入时不再需要术中测量,避免髓内定位必须在股骨、胫骨内插入较长的髓内定位杆或者导航定位必须在股骨、胫骨上打螺钉用于固定跟踪器所造成的创伤,也可以避免导航繁琐的注册过程而延长手术时间的弊端,同时可以适用不同的人工膝关节假体植入,这样可以弥补导航用于下肢畸形严重患者存在较大误差不能使用的缺点。 Such a method, since the advance and prepared osteotomy slot osteotomy module, when implanted in the cytometry is no longer required, must be avoided intramedullary femur, the intramedullary rod insertion or longer navigation tibia must in the femur, tibia playing on the bone screw fixation for trauma caused by the tracker can be avoided navigation cumbersome registration process and extend the operation time of the drawbacks, but can be applied to different artificial knee joint prosthesis implantation, which can make navigation disadvantage large error can not be used in patients with severe deformity of the lower limbs. 另外提供预导航设计的个体化人工膝关节截骨模块在截骨模块设计阶段采集每个病人的影像学资料,并根据相应资料进行设计,截骨模块与患者的膝关节面可以紧密贴合以保证截骨的正确,在所建立的下肢模型上确定股骨胫骨的解剖轴线和力学轴线,股骨力学轴线的选取可以采用股骨头中心和股骨远端关节面中心的连线。 Additionally providing a pre-navigation design artificial knee osteotomy individual modules each patient acquired imaging data module osteotomy design stage, and design, knee osteotomy module according to a corresponding surface of the patient information may be tightly bonded to ensure proper osteotomy determined anatomical axis and mechanical axis of the femur on the tibia of the lower limb model established, select the mechanical axis of the femur and connecting center of femoral head center of distal femur articular surface may be employed. 由于不同人工膝关节产品有不同的截骨要求,但假体安放的位置主要取决于胫骨截骨,股骨远端截骨和股骨前脸与后髁的截骨。 Because different products have different artificial knee osteotomy requirements, but the position of the prosthesis placement depends tibial osteotomy, and the distal femur osteotomy femoral condyles front face and the rear osteotomy. 在截骨模块的设计过程中可以依据影像学资料选取不同人工膝关节假体的大小型号并依据不同的截骨要求以及术后力线恢复的要求设计截骨模块的胫骨、股骨远端、股骨前脸与后髁的截骨槽,使得这种方法可以针对不同的膝关节进行设计处理。 Can select a different artificial knee joint prosthesis in the design process osteotomy module based on imaging data of sizes and restored according to different requirements and postoperative osteotomy lines of force requirements of the design of the tibial osteotomy module, distal femur, femoral the front face and the posterior condyles osteotomy groove, so that this method can be designed for different treatment of the knee joint.

本发明的一种膝关节假体植入方法,请参考图3和图4,还可以是步骤f中股骨截骨模块2上开设有截除远端槽、前方槽、后方槽、两个斜形截面槽五个槽,胫骨截骨模块3上开设有胫骨近端槽。 One type of knee prosthesis implantation method of the present invention, please refer to FIG. 3 and FIG. 4, step f can also be opened on the femur osteotomy module 2 has a distal end cut away grooves, the front groove, the rear groove, two inclined five slot-shaped cross section groove, the module defines a tibial osteotomy of the proximal tibia grooves 3. 这样的截骨槽可以完全满足在植入过程中将膝关节假体使用者的膝关节的关节面截至于选择好的需要植入的假体形状对应,以节省植入时间。 Such a groove may satisfy osteotomy knee articular surface of the knee prosthesis implantation procedure in a user ended prosthesis correspond to the shape required to choose a good implant to save the time of implantation.

下表为本发明的膝关节假体植入方法与前面所述的两种方法对比表:<table>table see original document page 11</column></row> <table> Both methods previously implanted knee prosthesis methods of the comparison table of the present invention in the following table: <table> table see original document page 11 </ column> </ row> <table>

本发明的膝关节假体植入方法所使用的截骨模块,包括股骨截骨模块2 和胫骨截骨模块3,股骨截骨模块2与所述胫骨截骨模块3上开设有截骨槽, 所述股骨截骨模块2与所述胫骨截骨模块3是通过以下步骤得到的: The knee prosthesis implantation method of the present invention to be used osteotomy module includes a femoral osteotomy module 2 and module 3 tibial osteotomy, femoral osteotomy module 2 and the module 3 tibial osteotomy osteotomy defines a groove, the femoral osteotomy module 2 and the tibial osteotomy module 3 is obtained by the following steps:

a. 膝关节骨组织数据测量:对需要植入关节假体使用者的膝关节下肢进行CT、 MRI扫描,获取肢体断面图像和骨组织的图像数据,其中骨组织的图像数据至少包括股骨胫骨解剖轴线和力学轴线数据、关节面形态数据、股骨前脸的厚度数据、股骨内外髁连线数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁的宽度、股骨胫骨前后径的距离、胫骨横径的距离数据; a knee bone measurement data: the need for implantation of joint prosthesis user's knee lower limb CT, MRI scan, acquiring image data limb and cross-sectional image of the bone tissue, bone tissue wherein the image data comprises at least a femoral tibial anatomy axis and the mechanical axis data, the articular surface shape data, the thickness data of the front face of the femur, the femoral condylar connection data, connection angle between the condyle and femoral condylar and after connection, the width of the femoral condylar femoral tibial longitudinal bone diameter distance, the distance data of the tibia diameter;

b. 提取关节软骨和骨骼轮廓数据:将a步骤中的图像数据和肢体断面图像依次输入图像处理系统,依据软组织与骨质在CT、 MRI中获取的图像中灰度的差异进行图像分割,提取轮廓数据,获得关节软骨和骨骼数据,所述软骨和骨骼数据包括关节面形态数据、股骨胫骨解剖轴线和力学轴线数据、 股骨前脸的厚度数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁宽度、 股骨胫骨前后径的距离、股骨横径的距离数据;c. 在图像处理器内建立三维立体模型:将a步骤和b步骤中获得的数 . B articular cartilage and bone extract contour data: image data, and a step limb cross-sectional image sequentially input image processing system, image segmentation based on the difference image acquired bone and soft tissue in CT, MRI in gray extracts contour data, data obtained articular cartilage and bone, cartilage and the bone shape data includes data articular surface, the femoral anatomical axis and mechanical axis of the tibia data, thickness data of the front face of the femur, the femoral condylar posterior condyles connection clamp connection angle femoral condylar width, from the anteroposterior diameter of the femoral tibia, femur diameter distance data; C to establish three-dimensional model in the image processor to: obtain a step b and step number

据输入图像处理器并利用制图系统将所述数据转化为图像,制成符合膝关节 According to the input image processor and using the mapping system into image data, it is made in line with the knee

假体使用者本体关节骨面的三维立体模型图; FIG three-dimensional model of the bone surface of the body of a user of the prosthesis;

d. 设计截骨模块:根据c步骤中在图像处理器内制成的关节骨面形状, 设计制造股骨截骨模块2和胫骨截骨模块3,使得股骨截骨模块2和胫骨截骨模块3与膝关节的关节面间隙小于1. 5mm,同时股骨截骨模块2和胫骨截骨模块3的厚度大于lcm; d osteotomy module design: The surface shape of the bone formed in step c in the image processor, the design and manufacture of the femur and tibia osteotomy osteotomy module 2 module 3, so that the femur and tibia osteotomy Module 2 Module 3 osteotomy 1. 5mm and the gap is smaller than the knee articular surface, while the thickness of the femoral and tibial osteotomy module 2 osteotomy module LCM is greater than 3;

e. 确定使用膝关节假体的大小型号:根据a步骤测量得到的股骨、胫骨数据确定使用假体型号; . E determined using the knee prosthesis of sizes: The measurements obtained in step a femur, a tibial prosthetic determined data type;

f. 确定截骨模块模型:根据e步骤选择确定的假体的形状和大小对歩骤d制造的股骨截骨模块2和胫骨截骨模块3开设截骨槽。 . F model determination module osteotomy: osteotomy groove 3 defines the shape and size selected in step e to determine ho prosthesis manufacturing step d femur osteotomy tibial osteotomy module 2 and module. 本发明的截骨模块有助于在膝关节假体植入过程中,明显缩短植入手术时间、定位精确高、减少创伤、适应不同个体差异的膝关节植入。 Module of the present invention contributes osteotomy in knee prosthesis implantation, implantation time is significantly shortened, high positioning accuracy, reduce trauma to adapt to different individual differences of the knee implant. 更进一歩,所述股骨截骨模块2上开设有截除远端槽、前方槽、后方槽、两个斜形截面槽五个槽,所述胫骨截骨模块3上开设有胫骨近端槽。 More into a ho, the femoral osteotomy module 2 defines a distal slot cut away front slot, the rear slot, two grooves oblique sectional five slots, 3 defines the tibial osteotomy module slot proximal tibia . 这样方便在植入过程中进行截骨,截骨误差较低。 Such facilitate implantation osteotomy, the osteotomy low error.

本发明的膝关节假体植入方法所使用的装置,包括与CT、 MR工扫描装置连接的数据记录装置、图像处理器、截骨模块设计系统和截骨槽定位系统, 所述数据记录装置将数据传递给进行膝关节关三维立体模型图的所述图像处理器,图像处理器与设计截骨模块三维立体模型的截骨模块设计系统连接,所述截骨模块设计系统与确定截骨槽位置和大小的截骨槽定位系统连接。 It means knee prosthesis implantation method of the present invention to be used, including CT, the data recording apparatus, an image processor module osteotomy design systems and positioning systems osteotomy slot station MR scanning apparatus connected to said data recording apparatus passes the data to knee off the three-dimensional model of FIG image processor, image processor and three-dimensional model of the osteotomy osteotomy design module design system modules connected to a system of modular design and is determined osteotomy osteotomy groove the position and size of grooves osteotomy positioning system connection. 这样的装置可以在植入膝关节模块手术之前可以完成截骨模块的整个制作过程,制造出精确度高、个体适应性强的截骨模块供手术使用。 Such a device may be completed prior to surgical implantation of the entire production process module knee osteotomy module, produce high precision, adaptability strong individual modules osteotomy for surgical use.

具体实施例为: Specific embodiments are:

实施例1:内翻畸形病人,请参考图5,胫骨、股骨存在内翻畸形,股 Example 1: varus deformity patient, please refer to FIG. 5, the tibial, femoral varus deformity is present, stocks

骨角86°,存在内翻2°。 Bone angle of 86 °, the presence of varus 2 °. 胫骨角95°,存在内翻2。 Tibial angle 95 °, the presence of varus 2. . 股骨测量数据如下:胫骨前后径6. 13cm。 Femur measurement data was as follows: diameter of longitudinal tibia 6. 13cm. 前脸厚O. 9cm。 The front face thick O. 9cm. 选用Genesis II 5号假体。 Genesis II No. 5 selection of the prosthesis. 将图像制备完善的股骨截骨模块进行开槽设计。 The perfect image femoral osteotomy preparation module slot design. 股骨远端开槽与股骨机械轴成84°夹角, Notching the distal femur and the femoral mechanical axis angle of 84 °,

12与关节面呈2°夹角,因为存在内翻,截骨槽与外侧远端距离较大,选择位置为距离远端10mm,前脸与后髁截骨槽与后髁连线平行,前脸截骨槽距离远端为9mm,后髁截骨量距离最远端为9. 3mm,保留前后径骨量为43mm (以保证适合5号GenesisII假体)。 12 2 ° angle to the joint-section, because of the presence varus osteotomy distal end of the outer groove greater distance from the selected location for the distal end of 10mm, the front face and the posterior condyles and the posterior condyles osteotomy groove parallel connection, before from the distal end face of the groove osteotomy 9mm, an amount from the most distal condyle resection 9. 3mm to retain bone anteroposterior diameter of 43mm (No. 5 GenesisII adapted to ensure that the prosthesis). 图中ABCDE方向为股骨截骨方向,胫骨截骨模块开槽采用与机械轴垂直,距离外侧髁最高点为10mm。 FIG ABCDE direction femoral osteotomy direction tibial osteotomy module slot perpendicular to the mechanical axis, the highest point of the lateral condyle distance of 10mm.

实施例2:外翻畸形病人,请参考图6,通过术前CT、 MRI及X线等测量,股骨、胫骨均存在外翻畸形,其中股骨角为80。 Example 2: Patient valgus deformity, please refer to FIG. 6, by measuring CT, MRI and X-ray and other preoperative, femur, tibia valgus deformity are present, wherein the angle of the femur 80. ,存在外翻4。 There is eversion 4. ,胫骨角为90° ,存在外翻3°畸形。 Tibial angle is 90 °, 3 ° valgus deformity exists. 股骨前后径为5.45cm,前脸厚为0. 6cm,采用Genesis II 2号假体,并进行相应开槽设计。 Front and rear femur diameter 5.45cm, thickness of the front face 0. 6cm, using Genesis II No. 2 of the prosthesis, and the corresponding grooved design. 股骨远端开槽与股骨机械轴成84°夹角,与关节面呈4°夹角,距离关节面最远端10mm。 Notching the distal femur and the femoral mechanical axis angle of 84 °, 4 ° and an angle-section joint, the articular surface of the distal-most 10mm distance. 股骨后髁开槽与后髁连线平行,后髁截骨量距离最远端为13.5mm,保留前后径骨量为35mm (以保证适合5号GenesisII假体),ABCDE为股骨截骨方向。 After notching femoral condyle parallel connection with the posterior condyles, the posterior condyle resection amount of 13.5mm from the most distal, retention of longitudinal bone diameter 35mm (No. 5 GenesisII adapted to ensure that the prosthesis), ABCDE femur osteotomy direction. 胫骨截骨模块开槽采用与机械轴垂直,距离内侧髁为2mm。 Tibial osteotomy module slot perpendicular to the mechanical axis, the medial condyle of the distance 2mm.

上述仅对本发明中的几种具体实施例加以说明,但并不能作为本发明的保护范围,凡是依据本发明中的设计精神所作的等效变化或修饰或等比例放大或縮小等,均应认为落入本发明的保护范围。 Several of the present invention only in the above embodiment will be described, but not as the scope of the present invention, all according to the design of the spirit of the present invention made by other equivalent variations or modifications scaled up or down, or the like, should be considered fall within the scope of the present invention.

Claims (3)

1、一种膝关节假体植入方法所使用的截骨模块,其特征在于:包括股骨截骨模块和胫骨截骨模块,所述股骨截骨模块与所述胫骨截骨模块上开设有截骨槽,所述股骨截骨模块与所述胫骨截骨模块是通过以下步骤得到的:a.膝关节骨组织数据测量:对需要植入关节假体使用者的膝关节下肢进行CT、MRI扫描,获取肢体断面图像和骨组织的图像数据,其中骨组织的图像数据至少包括股骨胫骨解剖轴线和力学轴线数据、关节面形态数据、股骨前脸的厚度数据、股骨内外髁连线数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁的宽度、股骨胫骨前后径的距离和胫骨横径的距离数据; b.提取关节软骨和骨骼轮廓数据:将a步骤中的图像数据和肢体断面图像依次输入图像处理系统,依据软组织与骨质在CT、MRI中获取的图像中灰度的差异进行图像分割,提取轮廓 A knee prosthetic implant osteotomy module used in the method, characterized by: a femoral osteotomy tibial osteotomy module and module, the module defines the femoral osteotomy tibial osteotomy cut module bone trough, the femoral osteotomy tibial osteotomy module and the module is obtained by the following steps: a data measurement knee bone tissue: the need for implantation of joint prosthesis user's knee lower limb CT, MRI scans acquiring image data of limb cross-sectional image and the bone tissue, the image data wherein the bone tissue comprises at least a femoral tibial anatomical axis and mechanical axis data, the articular surface shape data, the thickness data before the femur face femoral condylar connection data, both inside and outside of the femur data condylar angle from a connection with the posterior condyles connection, the width of the femoral condylar and tibial anteroposterior diameter of the femoral and tibial diameter distance; b. extracting contour data of articular cartilage and bone: the image data and a step. limb cross-sectional image sequentially input image processing system, image segmentation based on the difference image acquired bone and soft tissue in CT, MRI in gray, the contour extraction 据,获得关节软骨和骨骼数据,所述软骨和骨骼数据包括关节面形态数据、股骨胫骨解剖轴线和力学轴线数据、股骨前脸的厚度数据、股骨内外髁连线与后髁连线的夹角、股骨内外髁宽度、股骨胫骨前后径的距离和股骨横径的距离数据; c.在图像处理器内建立三维立体模型:将a步骤和b步骤中获得的数据输入图像处理器并利用制图系统将所述数据转化为图像,制成符合膝关节假体使用者本体关节骨面的三维立体模型图; d.设计截骨模块:根据c步骤中在图像处理器内制成的关节骨面形状,设计制造股骨截骨模块和胫骨截骨模块,使得股骨截骨模块和胫骨截骨模块与膝关节的关节面间隙小于1.5mm,同时股骨截骨模块和胫骨截骨模块的厚度大于1cm; e.确定使用膝关节假体的大小型号:根据a步骤测量得到的股骨、胫骨数据确定使用假体型号; f.确定截骨模 It is, data obtained articular cartilage and bone, cartilage and bone of the articular surface shape data includes data, femoral tibial anatomical axis and mechanical axis data, thickness data of the front face of the femur, the femoral condylar connection with the connection angle condyles ., femoral condylar width, distance and diameter of femoral anteroposterior diameter of the femoral tibia distance data; C to establish three-dimensional model in the image processor: the step a and b obtained in step data and the input image using the mapping system processor the image data is converted to produce three-dimensional model in line with the body FIG user facial prosthesis knee joint; osteotomy design module D: the joint shape of the bone surface in step c produced in the image processor , module design and manufacture of the femur and tibia osteotomy osteotomy module, so that the articular surface of the femoral and tibial osteotomy module module knee osteotomy gap is less than 1.5mm, while the thickness of the femoral and tibial osteotomy osteotomy module module is larger than 1cm; e . determine knee prosthesis of sizes: the measurements obtained in step a femur, a tibial prosthetic determined data type; F mode determining osteotomy. 块模型:根据e步骤选择确定的假体形状和大小对步骤d制造的股骨截骨模块和胫骨截骨模块开设截骨槽。 Block Model: The groove defines osteotomy e prosthesis determining step of selecting the shape and size of the manufacturing step d femoral osteotomy tibial osteotomy module and module.
2、 根据权利要求l所述的膝关节假体植入方法中使用的截骨模块,其特征在于:所述股骨截骨模块上开设有截除远端槽、前方槽、后方槽、两个斜形截面槽五个槽,所述胫骨截骨模块上开设有胫骨近端槽。 2. The knee prosthesis of claim l osteotomy implant module used in the method as claimed in claim, wherein: said femoral osteotomy defines amputated distal groove module, a front slot and rear slot, two five oblique groove cross sectional groove, said shank defines a groove on the proximal tibial osteotomy module.
3、 一种制造如权利要求1或2所述的截骨模块的装置,其特征在于:包括与CT、 MRI扫描装置连接的数据记录装置、图像处理器、截骨模块设计系统和截骨槽定位系统,所述数据记录装置将数据传递给进行膝关节关三维立体模型图的所述图像处理器,图像处理器与设计截骨模块三维立体模型的截骨模块设计系统连接,所述截骨模块设计系统与确定截骨槽位置和大小的截骨槽定位系统连接。 3. A manufacturing apparatus of claim 12 or osteotomy module as claimed in claim, characterized in that: the connector includes a data recording CT, MRI scanning device apparatus, image processor, and osteotomy osteotomy slot modular design system positioning system, said data recording means to pass data to knee off the three-dimensional model of FIG image processor, image processor and three-dimensional model of the osteotomy osteotomy module design system design module is connected, the osteotomy modular design system connected to a positioning system determines groove osteotomy osteotomy slot location and size.
CN 200810126718 2008-06-20 2008-06-20 Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof CN100581490C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810126718 CN100581490C (en) 2008-06-20 2008-06-20 Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810126718 CN100581490C (en) 2008-06-20 2008-06-20 Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof

Publications (2)

Publication Number Publication Date
CN101288597A CN101288597A (en) 2008-10-22
CN100581490C true CN100581490C (en) 2010-01-20

Family

ID=40033164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810126718 CN100581490C (en) 2008-06-20 2008-06-20 Knee-joint prosthesis implantation process, osteotomy module thereof and device thereof

Country Status (1)

Country Link
CN (1) CN100581490C (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
JP2006505366A (en) 2002-11-07 2006-02-16 コンフォーミス・インコーポレイテッドConforMIS, Inc. Method of determining meniscus size and shape and devised treatment
WO2008101090A2 (en) 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
WO2009111626A2 (en) 2008-03-05 2009-09-11 Conformis, Inc. Implants for altering wear patterns of articular surfaces
WO2009140294A1 (en) 2008-05-12 2009-11-19 Conformis, Inc. Devices and methods for treatment of facet and other joints
WO2010099231A2 (en) 2009-02-24 2010-09-02 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
GB2489884A (en) * 2009-11-04 2012-10-10 Conformis Patient-adapted and improved orthopedic implants, designs and related tools
WO2011072235A2 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
CN101884560B (en) * 2010-06-04 2012-02-29 张国强 Universal-type femur external rotation osteotomy guider
US8628580B2 (en) 2010-07-24 2014-01-14 Zimmer, Inc. Tibial prosthesis
US8613775B2 (en) * 2010-07-24 2013-12-24 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
CN107334565A (en) * 2010-08-25 2017-11-10 史密夫和内修有限公司 Scanned in operation for implant optimization
WO2012034033A1 (en) 2010-09-10 2012-03-15 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
US8603101B2 (en) 2010-12-17 2013-12-10 Zimmer, Inc. Provisional tibial prosthesis system
WO2012112702A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
CN106214292B (en) 2011-11-21 2018-06-15 捷迈有限公司 The tibial baseplate of fixed structure with asymmetry setting
EP2809273A1 (en) 2012-01-30 2014-12-10 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
CN102920537B (en) * 2012-11-01 2014-12-17 上海理工大学 Double safety and effectiveness inspection method of human lumbar bone and implant
CN103584932B (en) * 2013-10-23 2016-04-13 华南理工大学 For method for designing and the manufacture method of the knee joint femoral prosthesis of total knee replacement
CN104799920A (en) * 2014-01-26 2015-07-29 张国强 General and personalized total knee prosthesis distal femur osteotomy appliance
CN103860295A (en) * 2014-03-07 2014-06-18 北京大学第三医院 Digital design and manufacturing method for knee joint tibia prosthesis
CN105361883A (en) * 2014-08-22 2016-03-02 方学伟 Method for determining lower limb biological force line in three-dimensional space for total knee arthroplasty
CN105193475B (en) * 2015-08-18 2017-07-07 长沙市第三医院 Individuation osteotomy guide plate external member and its method for designing
CN108135701B (en) 2015-09-21 2019-12-24 捷迈有限公司 Prosthesis system including tibial bearing component
CN106264731B (en) * 2016-10-11 2019-07-16 昆明医科大学第一附属医院 A method of based on the virtual knee joint single condyle displacement technique model construction of point-to-point registration technique
CN108056800A (en) * 2016-11-09 2018-05-22 上海微创医疗器械(集团)有限公司 Knee osteotomy instrument and its manufacturing system and production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780594A (en) 2002-11-07 2006-05-31 康复米斯公司 Methods for determining meniscal size and shape and for devising treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780594A (en) 2002-11-07 2006-05-31 康复米斯公司 Methods for determining meniscal size and shape and for devising treatment

Also Published As

Publication number Publication date
CN101288597A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
Haaker et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty
DiGioia III et al. Comparison of a mechanical acetabular alignment guide with computer placement of the socket
Ng et al. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA
EP1545368B1 (en) Computer-assisted hip replacement surgery
US8657827B2 (en) Surgical tools for arthroplasty
US9308005B2 (en) Patient selectable joint arthroplasty devices and surgical tools
US10426491B2 (en) Tangential fit of patient-specific guides
Sugano Computer-assisted orthopedic surgery
AU680267B2 (en) Method and apparatus for locating functional structures of the lower leg during knee surgery
US8398646B2 (en) Patient-specific knee alignment guide and associated method
Hirschmann et al. The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction
JP6338958B2 (en) System and method for determining the mechanical axis of a femur
Chiu et al. Posterior slope of tibial plateau in Chinese
EP2303146B1 (en) Patient-modified implant and manufacuring method for such an implant
EP2271286B1 (en) Low profile patient specific cutting blocks for a knee joint
JP5271317B2 (en) Determination of femoral cutting in knee surgery
Cobb et al. The anatomical tibial axis: reliable rotational orientation in knee replacement
Mizu-uchi et al. The evaluation of post-operative alignment in total knee replacement using a CT-based navigation system
US5871018A (en) Computer-assisted surgical method
US5569261A (en) Distal femoral cutting guide apparatus with anterior or posterior referencing for use in knee joint replacement surgery
US9883870B2 (en) Method for forming a patient specific surgical guide mount
JP4754215B2 (en) Instruments, systems and methods for computer assisted knee arthroplasty
Henckel et al. Very low-dose computed tomography for planning and outcome measurement in knee replacement: the imperial knee protocol
Matsuda et al. Anatomical analysis of the femoral condyle in normal and osteoarthritic knees
US8623026B2 (en) Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee