CN100569655C - Process of preparing polycrystalline nanotube of metal oxide - Google Patents

Process of preparing polycrystalline nanotube of metal oxide Download PDF

Info

Publication number
CN100569655C
CN100569655C CN 200610154731 CN200610154731A CN100569655C CN 100569655 C CN100569655 C CN 100569655C CN 200610154731 CN200610154731 CN 200610154731 CN 200610154731 A CN200610154731 A CN 200610154731A CN 100569655 C CN100569655 C CN 100569655C
Authority
CN
China
Prior art keywords
chloride
step
added
solution
nanotubes
Prior art date
Application number
CN 200610154731
Other languages
Chinese (zh)
Other versions
CN1974402A (en
Inventor
辉 张
宁 杜
杨德仁
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to CN 200610154731 priority Critical patent/CN100569655C/en
Publication of CN1974402A publication Critical patent/CN1974402A/en
Application granted granted Critical
Publication of CN100569655C publication Critical patent/CN100569655C/en

Links

Abstract

本发明公开的制备金属氧化物多晶纳米管的方法,步骤如下:1)将多壁纳米碳管加到氯化钠水溶液中,超声分散,然后加入带正电的聚丙烯胺氢氯化物溶液,使聚丙烯胺氢氯化物包覆在多壁纳米碳管的表面;2)将步骤1)得到的产物加到带负电的聚苯乙烯磺酸钠溶液中,使聚苯乙烯磺酸钠包覆在步骤1)产物的表面;3)将步骤2)得到的产物加到带正电的聚丙烯胺氢氯化物溶液中,使聚丙烯胺氢氯化物包覆在步骤2)产物的表面;4)将步骤3)得到的产物分散在去离子水中,加入金属氯化物,滴加硼氢化钠水溶液,离心,干燥,在氧气气氛中热处理。 The method of preparing metal oxide polycrystalline nanotubes of the present disclosure, the following steps: 1) multi-walled carbon nanotubes was added to an aqueous solution of sodium chloride, ultrasonic dispersion, followed by addition of polyallylamine hydrogen positively charged chloride solution , polypropylene amine hydrochloride coated surface of the multi-walled carbon nanotubes; 2) in step 1) the product obtained is added to a negatively charged polystyrene sulfonate solution, polystyrene sulfonate package overlying the step 1) of the product surface; polyallylamine hydrochloride solution 3) in step 2) the product obtained is added to positively charged in the polyallylamine hydrochloride surface coated in step 2) of the product; 4) the step 3) to give the product was dispersed in deionized water, adding a metal chloride, was added dropwise boron aqueous sodium hydride, centrifugation, drying, heat treatment in an oxygen atmosphere. 本发明以碳管为模板,利用正负电层层自组可以制备多种金属氧化物的纳米管,具有产量大,颗粒小,直径较细及模板易去除等优点。 The present invention is a carbon tube as a template, can be prepared by a variety of nanotubes of metal oxides using the positive and negative electrical layer from set having large output, small particles of smaller diameter and templates ease of removal and so on.

Description

一种制备金属氧化物多晶纳米管的方法技术领域本发明涉及制备金属氧化物多晶纳米管的方法。 TECHNICAL FIELD preparing a metal oxide polycrystalline nano tube of the present invention relates to a method for preparing metal oxide polycrystalline nanotubes. 背景技术金属氧化物块体材料被广泛的应用于锂电池、气敏传感器、紫外探测器等光电子领域。 BACKGROUND Metal oxide bulk material widely used in the field of optoelectronics lithium batteries, gas sensors, UV detectors. 近来由于纳米技术的发展,发现了许多不同于金属氧化物块体的性质。 Recently, due to the development of nanotechnology, we found many different properties from the metal oxide of the block. 如由纳米尺寸效应引起的禁带宽度的可调性,室温下激光的发现,及气敏和锂电池性能的提高等。 The adjustability of the band gap due to the nano-size effect, found that the laser beam at room temperature and gas sensing, and improving performance of lithium batteries and the like. 在现有的纳米结构中,多孔纳米管由于其高的比表面积、不易团聚及锂离子在其中的易穿透性,被认为是一类具有极大潜力的锂离子电池材料。 In the conventional nanostructure, the porous nanotube due to its high specific surface area, easily agglomerate and lithium ions easily penetrating therein, is considered as a lithium ion battery material has great potential. 目前一般采用阳极氧化铝模板法制备金属氧化物纳米管,但是由于该方法存在产量低,颗粒较大,直径较粗及氧化铝模板不能完全去除等缺点, 极大的限制了金属氧化物纳米管在锂离子电池中的应用。 The general anodized aluminum Template Preparation of metal oxide nanotubes, but due to the low yield, the larger the particle diameter of coarse and alumina template can not completely remove disadvantages of the method greatly limit the metal oxide nanotubes application of the lithium ion battery. 发明内容本发明的目的是为克服现有制备方法存在的缺陷,提供一种新的制备金属氧化物多晶纳米管的方法。 Object of the present invention is to overcome the drawbacks of the prior preparation methods, to provide a new method for preparing metal oxide polycrystalline nanotubes. 本发明的制备金属氧化物多晶纳米管的方法,包括如下步骤-1) 按多壁纳米碳管与氯化钠的摩尔比为0.1〜10: 1,将多壁纳米碳管加入到氯化钠水溶液中,超声分散,然后加入浓度为0.02〜4摩尔/升带正电的聚丙烯胺氢氯化物溶液,搅拌,使聚丙烯胺氢氯化物包覆在多壁纳米碳管的表面, 去离子水清洗;2) 将步骤1)得到的产物加入到浓度为0.02〜4摩尔/升带负电的聚苯乙烯磺酸钠溶液中,搅拌,使聚苯乙烯磺酸钠包覆在步骤l)产物的表面,去离子水清洗;3) 将步骤2)得到的产物加入到浓度为0.02〜4摩尔/升带正电的聚丙烯胺氢氯化物溶液中,搅拌,使聚丙烯胺氢氯化物包覆在步骤2)产物的表面,去离子水清洗;4) 将步骤3)得到的产物重新超声分散在去离子水中,加入金属氯化物, 多壁纳米碳管与金属氯化物的摩尔比为0.1〜10: 1;5) 滴加浓度为0.1摩尔/升的硼氢化钠 The method of preparing metal oxide of the present invention, a polycrystalline nanotubes, comprising the steps of -1) molar ratio of multi-walled carbon nanotubes and sodium chloride is 0.1~10: 1, the multi-walled carbon nanotubes was added to the chloride aqueous solution of sodium, ultrasonic dispersion, and then added at a concentration 0.02~4 mol / liter polyallylamine hydrochloride solution is positively charged and stirred to polyallylamine hydrochloride coated surface of the multi-walled carbon nanotubes, to DI water; 2) in step 1) the product obtained is added to a concentration of 0.02~4 mol / liter of sodium polystyrene sulfonate was negatively charged and stirred, polystyrene sulfonate coated on step l) the surface of the product, washing with deionized water; 3) in step 2) the product obtained is added to a concentration of 0.02~4 mol / liter polyallylamine hydrochloride solution is positively charged and stirred, polypropylene amine hydrochloride coated in step 2) the product surface, rinsed with deionized water; 4) in step 3) to give the product re ultrasonic dispersion in deionized water, adding a metal chloride, the molar ratio of multi-walled carbon nanotubes with a metal chloride is 0.1~10: 1; 5) was added dropwise at a concentration of 0.1 mol / liter of sodium borohydride 水溶液,硼氢化钠与金属氯化物的摩尔比为1〜10: 1,离心,干燥,接着在500〜1000'C氧气气氛中热处理1〜10小时。 The molar ratio of aqueous sodium borohydride and a metal chloride is 1~10: 1, centrifuged, dried, and then heat-treated at 500~1000'C oxygen atmosphere 1~10 hours. 上述的氯化物可以是氯化铟、氯化镍、氯化锡、氯化锌、氯化钴、氯化铁或氯化锰。 Above chlorides may be indium chloride, nickel chloride, tin chloride, zinc chloride, cobalt chloride, iron chloride or manganese chloride. 本发明的有益效果在于-本发明以碳管为模板,利用正负电层层自组的普遍性原理,可以制备多种金属氧化物的纳米管;由于以碳管为模板,因此具有产量大,颗粒小,直径较细及模板易去除等优点。 Advantageous effects of the present invention is - according to the present invention, a carbon tube as a template, from the universal principle of the group, may be prepared nano more metal oxides tube using a positive and negative electrical layer; since the carbon nanotubes as a template, thus having a large output , small particles of smaller diameter and templates ease of removal and so on. 附图说明图1氧化铟纳米管的扫描电镜照片;图2氧化铟纳米管的透射电镜照片;图3氧化镍纳米管的扫描电镜照片;图4氧化镍纳米管的透射电镜照片;图5氧化锡纳米管的透射电镜照片。 BRIEF DESCRIPTION OF scanning electron micrograph of FIG. 1 indium oxide nanotubes; TEM photograph of FIG. 2 indium oxide nanotubes; SEM photograph 3 nickel oxide nanotubes FIG; TEM photograph 4 of nickel oxide nanotubes; Figure 5 oxide TEM photographs tin tube. 具体实施方式以下结合实施例进一步说明本发明。 DETAILED DESCRIPTION the following examples further illustrate the invention. 实施例11) 将60毫克多壁纳米管碳加入到50毫升0.5摩尔/升氯化钠水溶液中,并超声1小时,加入20毫升0.02摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时, 用去离子水离心清洗;2) 加入20毫升0.04摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时,用去离子水离心清洗;3) 加入20毫升0.02摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;4) 将清洗完的粉末重新超声分散在100毫升去离子水中,加入0.5毫摩尔氯化铟;5) 在上述溶液中滴加20毫升0.1摩尔/升的硼氢化钠水溶液,将制备的物质离心、干燥后在50(TC氧气气氛中热处理3小时,得到氧化铟纳米管。图1和图2分别是氧化铟纳米管的扫描电镜照片和透射电镜照片。纳米管直径为20nm、颗粒大小为5nm。 实施例21)将60亳克多壁纳米管碳加入到20毫升0.5摩尔/升氯化钠水溶液中,并超声1小时,加入20毫升4摩 60 mg of multi-wall nanotubes of carbon was added to 50 ml 0.5 molar Example 11) / liter aqueous sodium chloride solution, and sonicated for one hour, 20 ml of 0.02 mol / liter of polyallylamine hydrochloride solution was stirred for 0.5 hour deionized water centrifugal cleaning; 2) 20 ml of 0.04 mol / liter of sodium polystyrene sulfonate was stirred for 0.5 hours with deionized water centrifugal cleaning; 3) 20 ml of 0.02 mol / liter of polyallylamine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 4) cleaning the powder was re ultrasonic dispersion in 100 ml of deionized water, 0.5 mmol of indium chloride; 5) was added dropwise 20 in the above solution ml of 0.1 mol / liter aqueous solution of sodium borohydride, the material centrifuged prepared, after the dry heat treatment for 3 hours at 50 (TC oxygen atmosphere, to obtain indium oxide nanotubes. Figures 1 and 2 are scanning electron microscopy indium nanotubes oxide photo and TEM photos of nanotubes having a diameter of 20 nm, a particle size of 5 nm. Example 21) 60 milligrams multi-walled nanotubes of carbon was added to 20 ml 0.5 mol / liter aqueous sodium chloride solution, and sonicated for 1 hour, 20 ml 4 mol /升的聚丙烯胺氢氯化物溶液,凝拌0.5小时, 用去离子水离心清洗;2) 加入20毫升0.02摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时,用去离子水离心清洗;3) 加入20毫升0.4摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时;用去离子水离心清洗;4) 将清洗完的粉末重新超声分散在100毫升去离子水中,加入5毫摩尔氯化铟;5) 在上述溶液中滴加50毫升0.1摩尔/升的硼氢化钠水溶液。 / Liter polyallylamine hydrochloride solution, coagulation stirred for 0.5 hours with deionized water centrifugal cleaning; 2) 20 ml of 0.02 mol / liter of sodium polystyrene sulfonate was stirred for 0.5 hours with deionized water, centrifugation cleaning; 3) 20 ml of 0.4 mol / liter of polyallylamine hydrochloride solution was stirred for 0.5 hour; deionized water centrifugal cleaning; 4) cleaning the powder was re ultrasonic dispersion in 100 ml of deionized water, was added 5 mmol of indium chloride; 5) was added dropwise 50 ml 0.1 molar in the solution / liter aqueous solution of sodium borohydride. 将制备的物质离心、干燥后在100(TC氧气气氛中热处理5小时,得到氧化铟纳米管。其结果和例1相似。实施例31 )将120亳克多壁纳米管碳加入到200亳升0.5摩尔/升氯化钠水溶液中, 并超声1小时,)加入20毫升0.08摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5 小时,用去离子水离心清洗;2) 加入20毫升0.04摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时,用去离子水离心清洗;3) 加入20毫升0.08摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;4) 将清洗完的粉末重新超声分散在100毫升去离子水中,加入l毫摩尔氯化镍;5) 在上述溶液中滴加500毫升0.1摩尔/升的硼氢化钠水溶液,将制备的物质离心、干燥后在70(TC氧气气氛中热处理3小时,得到氧化镍纳米管。图3和图4分别是氧化镍纳米管的扫描电镜照片和透射电镜照片。纳米管直径为20〜30nm、颗粒大小 Centrifuged prepared material, after drying (heat treatment TC oxygen atmosphere for 5 hours to obtain indium oxide nanotubes. As a result, and similarly to Embodiment 1. Example 31) in 100 120 milligrams of multi-walled nanotubes, carbon is added to 200 ml of 0.5 mol / l aqueous sodium chloride solution, and sonicated for 1 hour) 20 ml of 0.08 mol / liter of polyacrylic amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 2) 20 ml of 0.04 molar / liter of sodium polystyrene sulfonate was stirred for 0.5 hours with deionized water centrifugal cleaning; 3) 20 ml of 0.08 mol / liter of polyacrylic amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash ; 4) cleaning the powder was re ultrasonic dispersion in 100 ml of deionized water, was added l mmol of nickel chloride; 5) was added dropwise 500 ml of 0.1 mol / liter aqueous solution of sodium borohydride in the solution, the prepared material centrifugation, dried (TC oxygen atmosphere heat treatment at 70 for 3 hours to obtain a nickel oxide nanotubes. Figures 3 and 4 are SEM images and TEM images nickel oxide nanotubes nanotubes diameter 20~30nm, particles size 5nm。 实施例41) 将60毫克多壁纳米管碳加入到20毫升0.5摩尔/升氯化钠水溶液中,并超声1小时,加入20毫升4摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时。 5nm. Example 41) 60 mg of multi-wall nanotubes of carbon was added to 20 ml 0.5 mol / liter aqueous sodium chloride solution, and sonicated for one hour, 20 ml of 4 moles / liter of polyacrylic amine hydrogen chloride was stirred 0.5 hours. 用去离子水离心清洗;2) 加入20毫升0.02摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时。 Deionized water centrifugal cleaning; 2) 20 ml of 0.02 mol / liter of sodium polystyrene sulfonate was stirred for 0.5 hours. 用去离子水离心清洗;3)加入20毫升0.4摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;4)将清洗完的粉末重新超声分散在100毫升去离子水中,加入5毫摩尔氯化镍;5)在上述溶液中滴加50毫升0.1摩尔/升的硼氢化钠水溶液,将制备的物质离心、干燥后在100(TC氧气气氛中热处理5小时,得到氧化镍纳米管。其结果和例3相似。 实施例51) 将240毫克多壁纳米管碳加入到100毫升0.5摩尔/升氯化钠水溶液中, 超声1小时,加入20毫升0.1摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时, 用去离子水离心清洗;2) 加入20毫升0.04摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时,用去离子水离心清洗;3) 加入20毫升0.1摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;4) 将清洗完的粉末重新超声分散在100毫升去离子水中,加入2毫摩尔氯化锡 Deionized water centrifugal cleaning; 3) 20 ml of 0.4 mol / liter of polyacrylic amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 4) cleaning the powder was re ultrasonic dispersion in 100 ml to DI water was added 5 mmol of nickel chloride; 5) was added dropwise 50 ml 0.1 molar in the solution / l of sodium borohydride solution, centrifuged material prepared after the dry heat treatment at 100 (TC oxygen atmosphere for 5 hours. to obtain a nickel oxide nanotubes. the results in Example 3 is similar to Example 51) 240 mg of multi-wall nanotubes of carbon was added to 100 ml of 0.5 mol / liter aqueous sodium chloride solution, sonicated for 1 hour and 20 ml of 0.1 mol / liter polypropylene amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 2) 20 ml of 0.04 mol / liter of sodium polystyrene sulfonate was stirred for 0.5 hours with deionized water centrifugal cleaning; 3 ) was added 20 ml of 0.1 mol / liter of polyacrylic amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 4) cleaning the powder was re ultrasonic dispersion in 100 ml of deionized water, was added 2 mmol of chlorine tin 5) 在上述溶液中滴加200毫升0.1摩尔/升的硼氢化钠水溶液,将制备的物质离心、干燥后在80(TC氧气气氛中热处理10小时,得到氧化锡纳米管。图5是氧化锡纳米管的透射电镜照片。纳米管直径为20〜50nm、颗粒大小为5nm。 实施例61) 将120毫克多壁纳米管碳加入到50毫升0.5摩尔/升氯化钠水溶液中, 并超声1小时,)加入20毫升0.1摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;2) 加入20毫升0.04摩尔/升的聚苯乙烯磺酸钠溶液,搅拌0.5小时,用去离子水离心清洗;3) 加入20毫升0.1摩尔/升的聚丙烯胺氢氯化物溶液,搅拌0.5小时,用去离子水离心清洗;4) 将清洗完的粉末重新超声分散在IOO毫升去离子水中,加入1毫摩尔氯化锡;5) 在上述溶液中滴加100毫升0.1摩尔/升的硼氢化钠水溶液,将制备的物质离心、干燥后在90(TC氧气气氛中热处理5小时。得 5) was added dropwise to the above solution 200 ml of 0.1 mol / l of sodium borohydride solution, centrifuged substance prepared, dried (TC oxygen atmosphere in a heat treatment for 10 hours at 80 to obtain tin oxide tube. FIG. 5 is a tin oxide TEM images of nanotubes the nanotubes diameter 20~50nm, a particle size of 5 nm. Example 61) 120 mg of multi-wall nanotubes of carbon was added to 50 ml 0.5 mol / liter aqueous sodium chloride solution, and sonicated for one hour ,) 20 ml of 0.1 mol / liter of polyacrylic amine hydrogen chloride solution, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 2) 20 ml of 0.04 mol / liter of sodium polystyrene sulfonate solution was stirred for 0.5 hour deionized water centrifugal cleaning; polyallylamine hydrochloride solution 3) 20 ml of 0.1 mol / liter, stirred for 0.5 hours, washed with deionized water, centrifuge wash; 4) cleaning the powder was re ultrasonic dispersion in IOO ml of deionized water, was added 1 mmol of stannic chloride; 5) was added dropwise 100 ml 0.1 molar in the solution / l of sodium borohydride solution, centrifuged material prepared after the dry heat treatment (TC oxygen atmosphere for 5 hours at 90 . get 氧化锡纳米管。其结果和例5相似。 Tin oxide tube. The results in Example 5 is similar.

Claims (2)

1.一种制备金属氧化物多晶纳米管的方法,其特征在于包括如下步骤: 1)按多壁纳米碳管与氯化钠的摩尔比为0.1~10∶1,将多壁纳米碳管加入到氯化钠水溶液中,超声分散,然后加入浓度为0.02~4摩尔/升带正电的聚丙烯胺氢氯化物溶液,搅拌,使聚丙烯胺氢氯化物包覆在多壁纳米碳管的表面,去离子水清洗; 2)将步骤1)得到的产物加入到浓度为0.02~4摩尔/升带负电的聚苯乙烯磺酸钠溶液中,搅拌,使聚苯乙烯磺酸钠包覆在步骤1)产物的表面,去离子水清洗; 3)将步骤2)得到的产物加入到浓度为0.02~4摩尔/升带正电的聚丙烯胺氢氯化物溶液中,搅拌,使聚丙烯胺氢氯化物包覆在步骤2)产物的表面,去离子水清洗; 4)将步骤3)得到的产物重新超声分散在去离子水中,加入金属氯化物,多壁纳米碳管与金属氯化物的摩尔比为0.1~10∶1; 5)滴加浓度为0.1摩尔/升 A method for preparing metal oxide polycrystalline nano tube, comprising the steps of: 1) a molar ratio of multi-walled nanotubes and sodium chloride is 0.1 to 10:1, multi-walled carbon nanotubes was added to an aqueous solution of sodium chloride, ultrasonic dispersion, and then added at a concentration of 0.02 to 4 mol / l polyallylamine hydrochloride solution is positively charged and stirred to polyallylamine hydrochloride coated MWNT surface, rinsed with deionized water; 2) in step 1) the product obtained was added to a concentration of 0.02 to 4 mol / l of sodium polystyrene sulfonate was negatively charged and stirred, polystyrene sulfonate-coated the surface of the step 1) of the product, washing with deionized water; 3) in step 2) the product obtained was added to a concentration of 0.02 to 4 mol / l polyallylamine hydrochloride solution is positively charged and stirred, polypropylene amine hydrochloride coated in step 2) the product surface, rinsed with deionized water; 4) in step 3) to give the product re ultrasonic dispersion in deionized water, adding a metal chloride, a multi-walled carbon nanotubes with a metal chloride the molar ratio of from 0.1 to 10:1; 5) was added dropwise at a concentration of 0.1 mol / liter 的硼氢化钠水溶液,硼氢化钠与金属氯化物的摩尔比为1~10∶1,离心,干燥,接着在500~1000℃氧气气氛中热处理1~10小时。 Molar ratio of sodium borohydride solution, sodium borohydride and the metal chloride is from 1 to 10:1, centrifuged, dried, and then heat-treated at 500 ~ 1000 ℃ an oxygen atmosphere for 1 to 10 hours.
2. 根据权利要求1所述的制备金属氧化物多晶纳米管的方法,其特征在于所说的金属氯化物是氯化铟、氯化镍、氯化锡、氯化锌、氯化钴、氯化铁或氯化锰。 The process for producing a metal oxide according to a polymorph nanotubes claim, wherein said metal chloride is indium chloride, nickel chloride, tin chloride, zinc chloride, cobalt chloride, ferric chloride or manganese chloride.
CN 200610154731 2006-11-21 2006-11-21 Process of preparing polycrystalline nanotube of metal oxide CN100569655C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610154731 CN100569655C (en) 2006-11-21 2006-11-21 Process of preparing polycrystalline nanotube of metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610154731 CN100569655C (en) 2006-11-21 2006-11-21 Process of preparing polycrystalline nanotube of metal oxide

Publications (2)

Publication Number Publication Date
CN1974402A CN1974402A (en) 2007-06-06
CN100569655C true CN100569655C (en) 2009-12-16

Family

ID=38124798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610154731 CN100569655C (en) 2006-11-21 2006-11-21 Process of preparing polycrystalline nanotube of metal oxide

Country Status (1)

Country Link
CN (1) CN100569655C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665883B (en) 2009-10-19 2011-08-10 浙江大学 Method for preparing nano-porous block of Fe-Sn intermetallic compound
RU2451579C2 (en) * 2010-07-27 2012-05-27 Учреждение Российской академии наук "Институт химии твердого тела УрО РАН" Method of fabricating zinc oxide nanotubes (versions)
RU2449426C1 (en) * 2010-10-04 2012-04-27 Нина Владимировна Смирнова METHOD TO PRODUCE COMPOSITE NiO/C MATERIAL
CN102897852B (en) * 2012-09-25 2014-10-29 江苏大学 Nickel hydroxide hierarchy microspheres hydrothermal synthesis of nanosheets
CN104368822B (en) * 2014-10-09 2016-03-16 哈尔滨工业大学宜兴环保研究院 Using the tube as a method of producing metal phospholipid nanotube template

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203864B1 (en) 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
CN1590290A (en) 2003-08-29 2005-03-09 中国科学院化学研究所 Carbon nano tube cladded with rare earth oxide and its preparation method and use
CN1704376A (en) 2004-06-02 2005-12-07 东华大学 Process for preparing metal oxide filled carbon nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203864B1 (en) 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
CN1590290A (en) 2003-08-29 2005-03-09 中国科学院化学研究所 Carbon nano tube cladded with rare earth oxide and its preparation method and use
CN1704376A (en) 2004-06-02 2005-12-07 东华大学 Process for preparing metal oxide filled carbon nanotube

Also Published As

Publication number Publication date
CN1974402A (en) 2007-06-06

Similar Documents

Publication Publication Date Title
Zhao et al. Microwave‐Induced Polyol‐Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology
Du et al. Porous Co3O4 Nanotubes Derived From Co4 (CO) 12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery Applications
CN104211050B (en) A graphene quantum dot suspension and a method for producing powder
CN1964917B (en) Nanocarbon composite structure having ruthenium oxide trapped therein
Zhao et al. SnO2 Quantum dots@ graphene oxide as a high‐rate and long‐life anode material for lithium‐ion batteries
Zhang et al. Biomolecule‐Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni3S2 Nanostructures Grown Directly on Nickel Foils
CN1953935B (en) Composite materials comprising carbon nanotubes and metal carbonates
Cao et al. Metal oxide‐coated three‐dimensional graphene prepared by the use of metal–organic frameworks as precursors
Wang et al. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties
Zhao et al. A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant
Reddy et al. A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles
Li et al. CuO nanostructures prepared by a chemical method
CN102917981A (en) Method for encapsulating metals and metal oxides with graphene and use of said materials
Ye et al. Facile Mechanochemical Synthesis of Nano SnO2/Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithium‐Ion Batteries
CN101451270A (en) Large scale preparation of noble metal nano wire
Kim et al. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction
CN102070140A (en) Method for preparing high-specific surface area graphene material by utilizing strong base chemical treatment
CN101973544B (en) Method for preparing aqueous solution of single-layer grapheme oxide
CN102437320B (en) Graphene-coated mesoporous metallic oxide, and preparation method and use thereof
CN103480856A (en) Method for preparing nanocomposite by using two-dimensional transition metal chalcogenide nanosheets and metal
CN101913599B (en) Method for preparing graphene nanobelt
CN103100724B (en) Preparation method of silver nanowires
CN102307807A (en) Method for manufacturing a SnO2 composite material and carbon nanotubes and/or carbon nanofibres, material obtained by the method, and lithium battery electrode comprising said material
CN102881898A (en) Preparation method and application of carbon-coated grapheme-based metal oxide composite
US9393214B2 (en) Carbon encapsulated transition metal oxide nanocomposite, a method for its preparation and its use in li-ion batteries

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right