CN100569195C - Manufacturing method of fine personalized skull model capable of describing teeth occluding relation - Google Patents

Manufacturing method of fine personalized skull model capable of describing teeth occluding relation Download PDF

Info

Publication number
CN100569195C
CN100569195C CN 200610113132 CN200610113132A CN100569195C CN 100569195 C CN100569195 C CN 100569195C CN 200610113132 CN200610113132 CN 200610113132 CN 200610113132 A CN200610113132 A CN 200610113132A CN 100569195 C CN100569195 C CN 100569195C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
describing
method
relation
fine
personalized
Prior art date
Application number
CN 200610113132
Other languages
Chinese (zh)
Other versions
CN1919157A (en )
Inventor
灿 刘
谦 姜
曹会志
李晓峰
Original Assignee
李晓峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明可描述牙齿咬合关系的精细个性化头颅模型的制造方法,解决现有技术中CT扫描的头颅模型无法精确描述牙齿咬合关系的缺陷。 The present invention is a method for producing finely personalized skull model dental occlusion may be described to solve the drawbacks of the prior art CT scanning skull model can not accurately describe the relationship between dental occlusion. 该方法包括采用CT断层扫描获取患者颅颌面骨断层图像数据;颅颌面骨计算机三维重建;牙的石膏取模与石膏模的三维数据采集;将第三步所得的牙齿部分三维数据和第二步对CT图像重建的三维图形数据进行数据融合和分离;将下颌骨数据与剥离了下颌骨的头颅数据分别快速成型加工成真实的模型,并进行有机连接等基本步骤,本发明能得到可描述牙齿咬合关系的精细个性化头颅模型,而清楚的牙齿咬合关系有助于医生直观地了解患者的口腔解剖细节,在头模上使用者可以找到治疗所需要的各种点、平面和角度,以便更好的掌握临床手术操作技能。 The method includes acquiring a CT tomography craniofacial bone tomographic image data; cranio maxillofacial dimensional reconstruction; three-dimensional data of the dental plaster cast modulo acquisition mode; the third step portion of the tooth and the resulting three-dimensional data two steps of the three-dimensional graphic data of the reconstructed CT image data fusion and separation; mandible data peeling the true model of the head data of the mandible are rapid prototyping processed, and the basic steps organic linking the like, the present invention can be obtained may be description Narrow personalized skull model occlusion of teeth, the teeth and clear occlusal help doctors to intuitively understand the patient's mouth anatomical details, can be found in various points of the required treatment, and the angle of the plane of the users head die, in order to better grasp the clinical surgical skills.

Description

可描述牙齿咬合关系的精细个性化头颅模型的制造方法 A method of manufacturing a fine be personalized skull model of occlusion of teeth

技术领域: FIELD:

本发明涉及一种头颅;漠型的制造方法,特别是一种可描述牙齿咬合关系的精细个性化头颅模型的制造方法。 The present invention relates to a head; desert-type manufacturing method, particularly a method for producing finely personalized skull model dental occlusion may be described.

背景技术: Background technique:

个性化的头^^莫在颅颌面骨整形外科、口腔科及其他相关学科的术前方案设计、术中方案指导、技能培训中起着非常重要的作用。 Personalized head ^^ Mo bone in craniofacial plastic surgery, preoperative program dentistry and other related disciplines of design, intraoperative program guidance, skills training plays a very important role. 但目前个性化的头模通常采用CT数据快速成型完成,因为CT数据的空间分辨率在毫米级别,因此牙齿咬合关系等精细的解剖关系无法得到体现,这就极大限制了头模在齿科的应用。 But the personalized head CT data usually die rapid prototyping is complete, because the space resolution of CT data in the millimeter level, so a fine tooth anatomy occlusal relationship can not be reflected, which greatly limits the head in a dental mold Applications. 而齿科中通常通过石青取模的方式获得牙齿的精细模型,但这种做法仅能够获得部分的上下颌数据及牙齿数据,使用者不能够确定这部分数据以外的颅颌面骨数据的解剖情况以及上下颌骨与颅颌面骨的比邻关系。 In the dental model of the teeth is generally obtained by means of a fine modulo azurite, but this approach is only possible to obtain data on the lower jaw and teeth portion of the data, the user can not determine the craniofacial skeletal data other than the data part of this anatomy and neighbor relations with craniofacial upper and lower jaw bone. 因此已有模型制作方法限制了个性化的头模在临床上的使用。 Therefore, the existing modeling method limits the use of head die personalized in the clinic.

清楚的牙齿咬合关系有助于医生直观地了解患者的口腔解剖细节。 Clear dental occlusion help doctors intuitive understanding of the details of the patient's dental anatomy. 在头模上使用者可以找到治疗所需要的各种点、平面和角度,以便更好的掌握临床手术操作技能。 The user can find points die head, and the angle of the plane of the desired treatment, in order to better grasp clinical surgical skills. 逼真的颌部装置,具有与真实患者一致的矢状髁部和髁道,适合多种口腔手术规划的需要 Realistic jaw device having consistent with the actual patient sagittal condylar path and condylar portions, the need for a variety of oral surgery planning

发明内容: SUMMARY:

本发明解决现有技术中CT颅颌面骨数据的空间分辨率低,依据其做出的颅颌面骨模型无法描述口腔的解剖细节而齿科模型仅能获得部分的上下颌数据及牙齿数据,无法获得上下颌骨与颅颌面骨的比邻关系的技术问题,提供一种制造方法,能制作出可描述牙齿咬合关系的精细个性化头颅模型,能有助于医生直观地了解患者的口腔解剖细节。 The present invention solves the prior art CT craniofacial bone low spatial resolution data, based on craniofacial bone model which can not be made to the description of anatomical details of the mouth portion of the dental model only get data jaw and teeth data can not obtain upper and lower jaw and craniofacial bone of technical problems near relations, there is provided a method of manufacturing can create sophisticated personalized skull model can describe the relationship between dental occlusion, can help doctors intuitive understanding of the patient's mouth anatomical details.

本发明的技术内容是: Teachings of the present invention is:

一种可描述牙齿咬合关系的精细个性化头颅模型的制造方法,包括下述步骤: A method for producing finely personalized skull model dental occlusion may be described, comprising the steps of:

第一步、采用CT断层扫描获取患者颅颌面骨断层图像数据,将数据用标准DICOM格式 The first step, a CT tomography craniofacial bone obtain tomographic image data, the standard DICOM format data

记录成光i文件〗果存。 Recording into light i File - the result is stored.

第二步、颅颌面骨计算机三维重建:将CT颅颌面骨断层图像数据进行三维重建,即采用医学图像控制系统软件形成反映颅颌面骨原形的三维图形数据,输出文件格式为STL。 The second step, cranio maxillofacial dimensional reconstruction: The craniofacial bone CT tomographic image data for three-dimensional reconstruction, i.e. using the medical image formation control system software to reflect the craniofacial skeletal prototype three-dimensional graphics data, the output file format STL.

第三步、牙的石膏取模与石膏模的三维数据采集:首先临床医生采用传统的石骨取模的方式获得与患者牙齿完全相同的石膏模型,然后采用三维数字相机获取牙模的三维图形数据。 The third step, three-dimensional data of the dental plaster cast modulo acquisition mode: First, a clinician uses a conventional manner stone bone modulo obtain exactly the patient's tooth plaster model, a digital camera and three-dimensional dental model of the three-dimensional figure obtaining data.

第四步、将第三步所得的牙齿部分三维数据和第二步对CT图像重建的三维图形数据进行数据融合和分离:首先进行数据融合,将两种数据模态的三维图形数据进行图像配准, A fourth step, the third step portion of the tooth resulting three-dimensional data of three-dimensional graphics data and a second step the reconstructed CT image data fusion and separation: first data fusion, the two kinds of three-dimensional graphic data image data with modalities quasi,

使两组图形数据的对应三维点集A (x,, , z,)和Zfl (x2 , y2 , z2)达到空间位置和解剖结构上 A 3D point set of the corresponding two sets of graphics data (x ,,, z,) and Zfl (x2, y2, z2) and reaches the spatial position of the anatomical structure

的完全一致,从上述两组图形数据中选择多个对应的解剖结构点,进而采用基于轮廓特征的奇异值分解-迭代最近点的配准方法,得到两种模态的映射关系:即由下式确定的三维缩放系数c和平移矩阵t: Exactly the same, a plurality of points corresponding to selected anatomical structures from the two sets of graphics data, and further based on the use of singular value decomposition of the contour feature - the iterative closest point registration method, to obtain the mapping relationship between the two modalities: i.e. by the the scaling factor is determined c and the three-dimensional translation matrix t:

C-"V^("S) (1) f-;"yC及/^ (2) C- "V ^ (" S) (1) f -; "yC and / ^ (2)

〜上两式中〜代表J^点坐标位置的均方差,tr为矩阵的迹,D为对角阵,S为特征矩阵, The two formulas ~ ~ J ^ coordinates representative of the position of the mean square error, trace TR matrix, D is a diagonal matrix, S is the characteristic matrix,

A代表三维点集J^中所有数据的平均坐标值,R为旋转矩阵,//,代表三維点集^^,中所有数据的平均坐标值, A represents a 3D point set J ^ average coordinate value of all data, R is a rotation matrix, // representatives ^^ 3D point set, the coordinate values ​​of the average of all data,

继而对两组图形数据中重叠的部分数据,保留分辨率高的图像数据,分辨率低的数据借用图像三维编辑的手段去除; Then part of the data in the pattern data sets overlap, to retain the high resolution image data, means for editing a three-dimensional image data of low resolution borrowing removed;

然后进行数据分离,即把融合后的数据作为头颅模型的整体数据,再以下颌关节作为分界点,将下颌骨分离出来,以使后期加工出的模型才具有动态的咬合模拟功能,并将下颌骨数据与剥离了下颌骨的头颅数据分别保存为STL格式的文件。 Data is then separated, i.e., the data head data fusion model as a whole, as the mandibular joint and then to a demarcation point, the separation of the mandible, so that the model is only a post-processing dynamic simulation functionality bite, jaw and peeling the skull bone data mandibular data STL format are stored in the file.

第五步、将下颌骨数据与剥离了下颌骨的头户贞数据分别输入到快速原型系统,进而用快速成型加工成真实的模型,最后采用精细设计的弹簧将两部分模型在下颌关节处连接, 最终得到可描述牙齿咬合关系的精细个性化头颅模型。 A fifth step, the data of the mandible and the peeling head Chen user data are inputted to the mandible rapid prototyping system, and further by flash molding into real model, and finally with fine spring designed to connect the two portions of the joint model finally obtained can be described as meticulous personalized skull model occlusion of teeth.

技术效果:本发明在第四步中通过融合和分离技术,将CT扫描的三维数据与牙齿精细的三维数据进行融合,并将下颌骨数据进行分离,得到剥离了下颌骨的头颅数据,并分别进行快速成型加工,然后进行连接,就能得到可描迷牙齿咬合关系的精细个性化头颅模型, 而清楚的牙齿咬合关系有助于医生直观地了解患者的口腔解剖细节,在头模上使用者可以找到治疗所需要的各种点、平面和角度,以便更好的掌握临床手术操作技能。 Technical effects: the present invention, the three-dimensional CT scan data in the fourth step and separation techniques by fusing the fine three-dimensional data fusion teeth, mandible and separate the data, the head of data to obtain a release of the mandible, respectively, and rapid molding, and then the connection can be finely personalized skull model can describe the relationship between fan dental occlusion, occlusion of teeth and clear help doctors to intuitively understand the details of the patient anatomy of the mouth, the user on the headform you can find a variety of points, plane and angle needed for the treatment, in order to better grasp the clinical surgical skills. 由于颌部采用牙模三维数字相机进行较精确拍摄而得,可获得相对CT扫描来说更逼真的颌部,适合多种口腔手术规划的需要。 Since the jaw portion using three-dimensional digital dental model obtained by photographing the camera more accurately, more realistic attainable relative jaw CT scan, the need for a variety of oral surgery planning.

优选地,本发明所述第三步石膏模的三维数据采集采用白光三维相机来实现,并采用软件系统来获得三维图像数据。 Preferably, the three-dimensional data of the third step of the present invention is collected with white plaster mold to achieve a three-dimensional camera and use software to obtain three-dimensional image data. 所述三维相机的成像过程和采集过程为:激光光束照明微光学元件产生条紋结构光,经棱镜转向照明被测牙齿或牙模的表面,条紋结构光受到牙齿三维形貌的调制形成的变形条紋,再经转像棱镜和远心成像系统成像在图像接收器上,远心成像系统的成像接收器必须是红外成像仪,以实现对红外光的探测,图像接收器接收的变形条紋图经视频输出接口送到计算机;计算机内的软件系统完成如下过程:原始图像的采集、条紋自动分析、相位展开、深度像映射、牙齿轮廓的三维显示、三维编辑,以及牙齿三维模型的多种通用;f各式的转化和输出。 The three-dimensional imaging camera to process and acquisition process: micro-optical element of the laser beam illumination light stripes configuration, the prism surface of teeth or dental lighting measured steering mode, light is modulated by the stripe structure is formed three-dimensional topography of the tooth deformation stripe, and then by inverting prism and the telecentric imaging system for imaging an image on a receiver, the receiver forming a telecentric imaging system must be an infrared imager, deformable strip in order to achieve the detection of infrared light, the image received by the receiver FIG pattern to the computer via the video output interface; software within a computer system performs the following process: acquiring original images, automatic fringe analysis, phase unwrapping, the depth image mapping, three-dimensional tooth contour display, editing a three-dimensional, and three-dimensional dental model various general purpose; F kinds of conversion and output.

采用上述自制的三维相机,采集的数字化牙齿模型空间分辨率在70纳米左右,能清晰表现牙齿的结构和咬合关系;采用相匹配的自编的软件系统,能够实现三维图形数据的准确建立和多种通用格式的转化和输出,便于与CT三维数据的融合,也便于模型的快速成型加工,使制得的模型能结合不同成像方式的优点,得到的头颅模型与患者真实颅颌面骨一致的并可以精细描述牙齿咬合关系,具有与真实患者一致的矢状髁部和髁道,适合多种口腔手术规划的需要,可以用于颅颌面骨和齿科经典手术的仿真模型及定量化手术方案的制定,可以对术后疗效进行有效的评价。 Made of the above-described three-dimensional camera, a digital model of the teeth in the spatial resolution of the acquired about 70 nanometers, and clearly showed the structure of the occlusion of the teeth; using software to match the self system, it is possible to establish the exact three-dimensional graphics data and a plurality of species conversion and output common format, to facilitate fusion of CT with three-dimensional data, but also facilitate rapid molding model, so the model can be combined to obtain the advantages of the different imaging modalities, skull model obtained consistent with the craniofacial bone of a patient's real and dental occlusion can be finely described, having a real patient consistent sagittal condylar path and condylar portions, the need for a variety of oral surgery planning, simulation models can be used for cranio maxillofacial and dental surgery, and quantitative classical surgery program development, can effectively evaluate the efficacy of surgery. 活动下颌关节的设计,除简单的牙齿咬合运动外, 颌部装置可以模拟多种下颌运动,如前伸运动、侧方运动等,提供给医生以真实的口腔模拟环境。 Active joint design, in addition to the simple movement of the teeth bite, jaw apparatus can simulate a variety of jaw movement, such as a protrusive motion, lateral movement, etc., is provided to the doctor to simulate real oral environment.

优选地所述第二步颅颌面骨三维重建步骤中,医学图像控制系统软件的实现步骤包括: 分割;提取感兴趣区域;轮廓线提取、跟踪;连接轮廓线;生成三角面片;光照效应计算; 生成三维图像;输出文件,文件输出格式为STL。 The second step is preferably the step of reconstruction of craniofacial bone, the medical image control step implemented software system comprising: a segmentation; extracting a region of interest; contour extraction, tracking; connect contour; generating triangular faces; light effect calculation; generating a three-dimensional image; output file, file output format is STL.

上述自编医学图像控制系统软件是基于表面绘制的软件,但为了得到可旋转的立体感和精确度更高的三维图像,申请人采用基于体素的体绘制方法,还设计了用于诊断和手术方案制订的三维重建医学软件,实现步骤为:A、分割;B、提取感兴趣区域;C、插值;D、 最后利用视觉原理将体素投影到显示平面进行显示;其中所述分割采用多种分割模式,包括基于密度值以及形态、邻近关系等条件的分割模式,所述插值对稀疏层片数据采用基于倒角距离的形状插值,既可以构造完整的体数据,又可以保证数据形态的真实性。 The above-described self medical image control system software is software-based rendering of the surface, in order to obtain three-dimensional and three-dimensional image with higher accuracy rotatable, Applicants Volume Rendering using voxel-based, and also designed for diagnosing surgical reconstruction of medical program development software, the steps of: a, segmentation; B, extracting the region of interest; C, interpolation; D, and finally with a visual principle voxel projected display to the display plane; wherein said multi-division kind parting modes, including conditions based division pattern density and shape, adjacent relationship, said interpolation data based sparse ply chamfered shape interpolation distance, may be configured to complete the data body, and can ensure the data form authenticity. 采用上述歩骤的三维重建软件,整个头骨的三维重建过程控制在半分钟以内,图像质量清晰、 逼真,具有极高的精确度。 Ho above-described three-dimensional reconstruction software step, the entire process of three-dimensional reconstruction of the skull controlled within half a minute, sharp image quality, fidelity, with high accuracy. 在此基础上,该软件还可进行三维闺像的旋转、切割及复杂测量。 On this basis, the software can also be rotated, cutting and complexity of measuring three-dimensional image Gui. 不仅能为医生提供真实感的患者影像,更有利于病情诊治和医疗手术方案的制定。 Not only can provide realistic images of patients for doctors, more conducive to the development of diagnosis and treatment of disease and medical surgical plan.

上述基于表面绘制的软件,可以先从体数据中通过几何单元拼接来拟合物体表面,然后利用传统计算机图形学技术对重建的物体表面进行绘制,即采用高效简洁的轮廓线连结法对颅颌面骨的表面进行绘制,使产生的三维模型表面较其他算法更为光滑,光顺度好, 软件输出的STL格式的数据文件可以直接用做工业设计软件和快速成型机的输入数据,具备良好的兼容性能,整个三维重建过程无需人工干预,表面连结自然光滑无跃层感,且能保证很高的精确度。 Based on the above surface rendering software may start in the volume data to fit the surface geometry unit by stitching, and then using conventional computer graphics techniques for rendering the reconstructed object surface, i.e., using simple and efficient method for connecting contour Craniomandibular the surface of the bone surface to draw the three-dimensional model generated smoother surface than other algorithms, a good degree of smoothness, the STL data file format software output can be directly used as industrial design software and input data rapid prototyping machine, have a good compatibility of the entire three-dimensional reconstruction process without human intervention, smooth surface without coupling NATURAL thermocline sense, can ensure high accuracy. 表面形态和数据的准确性保证了后续设计的精确。 The accuracy of the surface and the subsequent design of the data to ensure accuracy.

优选地,第一步骤的CT断层扫描针对DIC0M图像ft据采集编写了DICOM-SLICE数据转换压缩软件,其具体实现为:对原始DICOM图像数据顺次移位、紧密方式压缩;其次顺次扫描、计算差值数据;然后差值数据的高效替换表示,最后得到高压缩比的数据。 Preferably, CT tomographic image of a first step for DIC0M ft data acquisition prepared DICOM-SLICE compressed data conversion software, which is embodied: the original DICOM image data are sequentially shifted, compressed in a tight manner; second sequential scanning, calculating the difference data; and efficient replacement difference data representation, and finally to obtain higher data compression ratio.

附图说明: BRIEF DESCRIPTION OF:

图l是本发明方法的流程简图; Figure l is a flow diagram of the method of the present invention;

图2是本发明自制三维相机的结构示意图; FIG 2 is a structural diagram of the present invention is made of a three dimensional camera;

图3是本发明基于体素的三维重建软件的流程框图; FIG 3 is a block flow diagram of the software based three dimensional reconstruction of the voxels of the present invention;

图4是本发明基于表面绘制的三维重建软件的流程框图; FIG 4 is a flow diagram of the software based three dimensional reconstruction of the surface of the drawing of the present invention;

图5是本发明图像压缩软件的流程框图; FIG 5 is a flow diagram of an image compression software of the present invention;

图6是本发明图3所示三维重建软件构筑的颅颌面三维图; FIG 6 is a view of the present invention is a three-dimensional craniofacial reconstruction software to build a three-dimensional view of Figure 3;

图7是本发明用于白光三维相机的计算机软件处理系统。 FIG 7 is a computer software system of the present invention for processing a three-dimensional camera of the white light.

具体实施方式: detailed description:

下面结合附图对本发明做进一步的详细说明。 The following figures further detailed description of the present invention in combination. 见图l,描述了本发明方法的流程简图,包括五个基本步骤: Figure L, describes a flow diagram of the method of the present invention, comprises five basic steps:

第一步、采用CT断层扫描获取患者颅颌面骨断层图像数据;第二步、颅颌面骨计算机三维重建;第三步、牙的石膏取模与石青模的三维数据采集;第四步、将第三步所得的牙齿部分三维数据和第二步对CT图像重建的三维图形数据进行数据融合和分离;第五步、将下颌骨数据与剥离了下颌骨的头颅数据分别快速成型加工成真实的模型,并进行有机连接。 The first step, a CT tomography craniofacial bone acquired tomographic image data; a second step, the craniofacial skeletal dimensional reconstruction; a third step, the tooth plaster azurite modulo three-dimensional data acquisition module; a fourth step, the third step of the resulting three-dimensional data of the tooth portion and a second step of the three-dimensional graphic data of the reconstructed CT image data fusion and separation; a fifth step of peeling the mandible data head data of the mandible respectively processed into true rapid prototyping model, and an organic linking.

其中,第一步、采用CT断层扫描获取患者颅领面骨断层图像数据,采集的数据用标准DICOM格式记录成光盘文件保存。 Wherein, the first step, a CT tomography maxillofacial skull bone in patients with acquired tomographic image data, the collected data recording disc standard DICOM format to save the file. 只有采集到图像数据后,才能进4亍后续的医学三维显示, 除上下颌骨外的颅颌面骨的图像设计和制造,在医院中采用CT设备对患者头部进行精细扫描,得到颅颌面骨的断层图像,断层图像以本行业全球通用的DIC0M格式存储在光盘等存储介质上。 Only the image data acquisition, three-dimensional medical 4 into the right foot to the subsequent display, image design and manufacture of craniofacial bone other than the upper and lower jaw of the patient's head using fine scanning CT apparatus in hospitals, to give craniomaxillary facial bone tomographic image, a tomographic image stored DIC0M format in the industry worldwide in the optical disk storage media. 优选地,申请人根据实际工作的需要,制定了自己的符合DICOM标准的图像文件格式-SLICE数据格式,针对DICOM图像数据采集编写了DICOM-SLICE数据转换压缩软件,该软件可以识别目前所有主要CT厂家的输出数据,并自动转换为SLICE压缩数据格式, 作为后续工作的统一输入格式,这样我们不仅能完成所有符合DICOM标准的CT图像数据采集,并能够完成数据的压缩,有助于在线数据的传输。 Preferably, according to the applicant's actual work, developed their own image file format -SLICE data format DICOM compliant, collecting written DICOM-SLICE data compression software for converting DICOM image data, the software can identify all current major CT factory output data, and automatically converted to compressed data format SLICE, follow-up work as a unified input format, so we can not only do all CT image data acquisition DICOM-compliant and able to complete the compressed data, the data can help online transmission.

图5显示了该DICOM-SLICE数据转换压缩软件流程,为:对原始DICOM图像数据首先顺次移位、紧密方式压缩;其次顺次扫描、计算差值数据;然后^:差值数据的高效替换表示,最后得到高压缩比的数据。 Figure 5 shows the DICOM-SLICE data conversion software compression process, as follows: First the original DICOM image data are sequentially shifted, compressed in a tight manner; second sequential scanning, calculating the difference data; and ^: efficient replacement difference data He said finally get high data compression ratio. 实现压缩的原理是:CT的DICOM数据为12位数据,但占用两个字节存储,这样就会产生4个空闲位,通过顺次移位的方式,将数据以紧密方式存储, 不再有空闲位,然后采用差值法进一步压缩图像数据,这是一种可逆的压缩算法,所述顺次移位的方式为:对于大多数DICOM中的灰度图像,相邻^两个像素间的灰度值相差非常小,在计算机图形学中经过统计可以发现基本上都分布在-之间,因此对于每条扫描线, 设第一个点的象素值为CI,第二个像素的值为C2,设X1-C2-CI,则C2可以表示为Cl+Xl,以此类推,可以得到X2、 X3、 X4……由上可知,这些值大多分布在-r+8之间,定义Y1、 Y2、 Y3……Y16分别表示0000, 0001, 0010.... 1111这十六个二进制值,得到的差值数据分别用Y1、 Y2……等代替,最终得到压缩比比较高的图像数据。 Achieve compression principle is: CT DICOM data of 12-bit data, but it occupies two bytes of storage, which will produce four idle bits, by sequentially shifting manner, data stored in a tight manner, no idle position, and then using the difference method is further compressed image data, which is a reversible compression algorithm, the sequential displaceable manner: for most gray-scale image in DICOM, between two pixels adjacent ^ gray value difference is very small, in the computer graphics can be found through the statistics are distributed substantially - between, so for each scan line, the pixel value of CI first set point value of the second pixel is C2, provided X1-C2-CI, C2 can be expressed as the Cl + Xl, and so on, can be obtained X2, X3, X4 ...... From the above, these values ​​are mostly distributed between -r + 8, the definition of Y1 , Y2, Y3 ...... Y16 respectively 0000, 0001, 0010 .... 1111 sixteen binary value, difference data obtained are represented by Y1, Y2 ...... like place, a higher compression ratio than the finally obtained image data .

第二步、颅颌面骨计算^L三维重建;即采用医学图〗象控制系统软件三维数据场形成反映颅颌面骨原形的三维图形数据(也可称为三维图形),输出文件格式为STL。 The second step, cranio maxillofacial reconstruction calculation ^ L; i.e. using the medical image control system software FIG〗 field forming three-dimensional data reflecting a three-dimensional prototype craniofacial bone pattern data (also called three-dimensional graphics), the output file format STL. 医学图像控制系统软件可采用常规的Mimics软件系统,但是该系统在用于对颅颌面这样复杂的系统建立三维图形数据时精确度还不能完全满足后续精密铸造的需要,因此,优选地,采用申请人自行编制的医学图像控制系统软件进行三维重建。 Medical image control system software may be a conventional Mimics software system, but this system when used for craniofacial such complex three-dimensional graphics system establishes accuracy of the data can not fully meet the needs of the subsequent precision casting, therefore, preferable to employ the applicant shall prepare medical image control system software for three-dimensional reconstruction.

上述自编医学图像控制系统软件,优选包括两个部分,第一部分为三维重建软件,命名为3DMSee(3dimension medicine see CT)。 The above-described self medical image control system software, preferably comprises two portions, a first portion of a three-dimensional reconstruction software, named 3DMSee (3dimension medicine see CT). 为了给医生提供真实感的患者户贞颌面骨影像, 采用基于体素的体绘制方法来实现三维重建,流程框图见图3,实现步骤为:针对三维数据场,进行A、分割;B、提取感兴趣区域;C、插值;D、最后利用视觉原理将体素投影到显示平面进行显示。 In order to provide the patient households Chen maxillofacial realistic images to the physician, using voxel volume rendering based on three-dimensional reconstruction method, the flow diagram shown in Figure 3, implemented steps of: for a three-dimensional data field, for A, segmentation; B, extracting a region of interest; C, interpolation; D, and finally with a visual principle voxel is projected onto a display plane for display. 其中A步的分割采用多种分割模式,包括基于密度值以及形态、邻近关系等条件的分割模式,C步的插值对稀疏层片数据采用基于倒角距离的形状插值,既可以构造完整的体数据,又可以保证数据形态的真实性,D步首先对数据赋以视觉特征,包括给每个类别的数据赋颜色值和给每个类别的数据赋部透明度,然后进行光照效应的计算,最后就可进行图像合成,即将体素投影在显示平面进行立体显示。 Wherein the step of using a variety of split A division pattern, including a condition based on density values ​​division pattern and morphology of neighboring relations, C interpolation step sparse plies shape interpolation data based chamfer distance, either the complete body structure data, can guarantee the authenticity of the data form, D step first data assigned to the visual features, including color value assigned to the data for each class and the data portion assigned to each category of transparency, and then calculate lighting effect, and finally image synthesis can be carried out, in the stereoscopic display plane is about to display voxel projection. 采用上述步骤的三维重建软件,能使整个头骨的三维重建过程控制在半分钟以内,图像质量清晰、逼真,具有极高的精确度,见图6。 The steps above three-dimensional reconstruction software, the entire process of three-dimensional reconstruction of the skull can be controlled within half a minute, sharp image quality, fidelity, with high accuracy, see Figure 6. 该软件还可进行三维图像的旋转、切割及复杂测量。 The software also rotated, cutting and measurement of complex three-dimensional image. 不但能为医生提供真实感的患者影像,更有利于病情诊治和医疗手术方案的制定。 Not only can provide realistic images of patients for doctors, more conducive to the development of diagnosis and treatment of disease and medical surgical plan.

第二部分为基于表面绘制的软件,目的是为了与修复件的计算机辅助设计相衔接,用于颅颌面的制造。 The second part of the software-based surface rendering, linked with the purpose of computer-aided design restorations, for the manufacture of craniofacial. 因为基于体素的体绘制方法构造的三维图像不能直接用于颅颌面骨快速成型,要建立描绘各数据之间几何拓朴结构的三维表面模型才能用于制造,因此,从快速成型角度,第一部分的软件并不是本发明方法的基本步骤。 Because voxel-based volume rendering method of constructing a three-dimensional image can not be directly used for rapid prototyping craniofacial bone, to be established between the data drawing three-dimensional surface topology model geometry can be used for manufacture, and therefore, from the perspective of rapid prototyping, a first portion of software are not the basic steps of the method of the present invention. 由于得到体数据前的步骤与前面第一部分相同,故可先从第一部分得到的体数据中通过几何单元4并接来拟合物体表面, 然后利用传统计算机图形学技术对重建的物体表面进行绘制,其中常用的有连接轮廓线法、 Marching Cube算法以及Dividing Cube算法等,我们采用了高效简洁的轮廓线连接法对颅颌面骨表面进行绘制,软件命名为3DMSR(3 dimension medicine surface rendering)。 Since the volume data obtained prior to the step of the first portion in front of the same, it can be connected to the fitting 4 and the surface portion starting with the volume data obtained by the first geometric units, and then using conventional computer graphics techniques for the reconstruction of the surface to draw , which are commonly used connection method contour, Marching Cube algorithm and Dividing Cube algorithm, we use a simple and efficient method for connecting a contour line drawn on the surface of craniofacial bone, software named 3DMSR (3 dimension medicine surface rendering). 该部分软件从扫描后所得断层图像数据开始的流程框图见图4,流程为:A、首先对三维空间数据场的数据进行数据简化和多方法的图像分割的工作;B、并进行感兴趣区提取,上述步骤与第一部分的A、 B步相同,故可直接利用第一部分这两部所得数据;C、然后进行轮廓跟踪以确定每个感兴趣区的轮廓线;D、其后巧妙的运用标记、差影等方法以确定各层轮廓线间的对应关系;E、从而准确的连接轮廓线构造三维物体表面数据,生成三角面片;F、 经过光照效应计算;G、最后生成三维图像。 The part of the software process starting from the tomographic image data obtained after the scan diagram shown in Figure 4, the process is: A, first three-dimensional data of the data field for data and a simplified method of image segmentation plurality of work; B, and a region of interest extracting the first portion of step a, step B are the same, it can be directly obtained using the first part of this two data; C, and then to determine the contour tracing the contour of each region of interest; clever use of D, thereafter tag, Movies and other methods to determine the difference between the correspondence between the respective layers contour; E, so that an accurate three-dimensional object surface contours connection configuration data, generates the triangular patches; F, through the effect of light is calculated; G, and finally generate three-dimensional image. 高效简洁的l^廓线连结法对颅颌面骨的表面进行绘制,使产生的三维模型表面较其他算法更为光滑,光顺度好,软件输出的STL格式的数据文件可以直接用做工业设计软件和快速成型机的输入数据,具备良好的兼容性能,整个三维重建过程无需人工千预,表面连结自然光滑无跃层感,且能保证很高的精确度。 L ^ simple and efficient method for connecting profile Craniofacial bone surface rendering, three-dimensional surface model generated smoother than other algorithms, a good degree of smoothness, the STL data file format software output can be directly used as industrial design software and input data to a rapid prototyping machine, with good compatibility, the entire three-dimensional reconstruction without human intervention, smooth surface without coupling NATURAL thermocline sense, can ensure high accuracy. 表面形态和数据的准确性保证了后续设计的精确。 The accuracy of the surface and the subsequent design of the data to ensure accuracy.

第三步、牙的石膏取模与石膏模的三维数据采集:首先临床医生采用传统的石青取模的方式获得与患者牙齿完全相同的石膏模型,然后采用三维数字相机获取牙模的三维图形数据,三维数字相机优选空间分辨率高的相机。 The third step, dental plaster and a plaster mold modulo three-dimensional data collection: First clinician traditional way azurite modulo obtain the patient's tooth plaster model is identical, then the digital camera acquires three-dimensional dental model of the three-dimensional figure data, three-dimensional high spatial resolution digital camera, preferably a camera.

普通的CT数据因为空间分辨率在毫米级,所以无法清晰的重构出牙齿的精细结构,牙齿的咬合关系的描述不够准确,因此我们希望借助先进的牙科数字化方式完成这部分的数字采集工作。 Normal CT data because the spatial resolution in the millimeter level, it is not clear reconstruct the fine structure of the teeth, dental occlusion description is not accurate enough, so we hope that through advanced dental digital digitally complete this part of the collection work. 首先临床医生采用传统的石膏取模的方式获得与受试者牙齿完全相同的石奮模型,牙模在几何形状和拓朴上都极为复杂,为保证石膏模型数字化过程中保持其自身的精度,优选地,采用自主研发的白光三维相机来实现牙模数字化的工作。 First, a clinician uses a conventional manner to obtain the plaster modulo same subject tooth fen stone model, a dental cast on the topology and the geometry are very complex, in order to ensure plaster model digitize holding its own accuracy, preferably, a self-developed three-dimensional white camera work to achieve the digitized dental model. 所述白光三维相机采用高精度的多分辨三维数字成像与造型技术,融合了灵敏度可变能力的编码照明理论和相应的变灵敏度多重相位图重建方法。 The white three dimensional camera with high precision multi-resolution three-dimensional digital imaging and modeling techniques, the theoretical sensitivity of the illumination fusion encoding the variable capacity varying sensitivity and the corresponding multi-phase reconstruction method of FIG. 该技术的原理是将条紋自动分析技术与光学莫尔原理相结合,通过对位相调制的投影条紋图进行数字解调获取空间物体表面的三维数字像。 The principle of this technology is the automatic fringe analysis and optical moire principle of combining the acquired three-dimensional digital image of the object space through the surface of the projection of FIG fringe phase modulated digital demodulation. 红外激光器选用850nm的激光二极管。 Selection 850nm infrared laser diode laser. 白光三维相机结构见图2,包括分别与转像棱镜l光连接的远心成像系统2和微光学元件3,微光学元件3可将激光转化为白光,以使相机能对牙齿进行直接照相以采集三维数据,远心成像系统2与图像接收器4的输入端相连,图像接收器4的输出端5输出视频图像数据到计算机软件处理系统;微光学元件3则设置在红外二极管6产生的激光光路上,红外二极管6另一端接电源接口7。 3D white light camera structure shown in Figure 2, comprises a telecentric imaging system, respectively, and the inverting prism optical connection l 2 and the micro-optical element 3, the micro-optical element 3 can be converted to white light laser, so that the camera can photograph a dental directly to collecting three-dimensional data, connected to the input telecentric imaging system 2 and the image receiver 4, the image receiver output 5 output video image data 4 to the computer software processing system; micro-optical element 3 is provided a laser infrared diodes 6 the optical path, the other end of the infrared diode 6 power connector 7.

白光三维相机的成像过程和图像采集过程为:激光光束照明微光学元件产生条紋结构光经转向棱镜1转向照明被测牙齿的表面,条紋结构光受到牙齿三维形貌的调制形成的变形条紋,再经转像棱镜1和远心成像系统2成像在图像接收器4上,成像接收器4必须是红外成像仪,以实现对红外光的探测。 White three-dimensional imaging camera image acquisition process and the process of: illuminating laser beam micro-optical structure elements fringes illumination light is measured steering turning prism tooth surface 1, the stripe structure deformable strip light is modulated three-dimensional topography of teeth formed pattern, and then by inverting prism 1 and the telecentric imaging system 2 is imaged on the image receiver 4, the receiver 4 to be imaged is an infrared imager, in order to achieve detection of infrared light. 接收的变形条紋图经视频输出接口4送到计算机, 用于该白光三维相机的计算机软件处理系统的流程图见图7,除完成原始图像的采集,还完成条紋自动分析、相位展开、深度像映射、牙齿轮廓的三维显示、三维编辑,以及牙齿三维模型的多种通用格式的转化和输出等功能。 FIG modification fringe received via the video output interface 4 to a computer, computer software flowchart of the processing system according to the white light for the three-dimensional camera shown in Figure 7, in addition to completing the acquisition of the original image, automatic fringe analysis also completed, phase unwrapping, depth image mapping, three-dimensional display of tooth contour, three-dimensional editing, and conversion of common formats and output functions such as three dimensional model of teeth. 通过上述白光三维相机采集的数字化牙齿模型空间分辨率在70纳米左右,能清晰表现牙齿的结构和咬合关系。 By digitizing the three-dimensional teeth model space collecting the white camera resolution is about 70 nm, clearly the structure and performance of occlusion of the teeth.

第四步、将第三步所得的牙齿部分三维数据和第二步对CT图#>重建的三维图形数据进行数据融合和分离: A fourth step, the third step portion of the tooth and a second step the resulting three-dimensional data of FIG CT #> reconstruction of three-dimensional graphics data for data fusion and separation:

首先进行数据融合,将两种数据模态的三维图形数据进行图像配准,使两组图形数据的对应三维点集A(x,,乂,z,)和J^(X2,^,z》达到空间位置和解剖结构上的完全一致。CT数据 First, data fusion, three-dimensional graphic data two data modality image registration is performed, so that a corresponding set of 3D points A (x ,, qe, Z,) two sets of graphics data, and J ^ (X2, ^, z "reaches the spatial position and anatomical structures exactly the same data .CT

重构出的三维图像和激光三维数码相机扫描获得的石膏牙模的三维图像来源于不同的成像方式,在扫描过程中存在方向和尺度上的对不齐现象,因此需要我们将两种模态的三维图像进行配准。 Plaster dental model three-dimensional image of the three-dimensional image reconstructed digital camera and laser three-dimensional scan obtained from different imaging modalities, there is missing and, therefore, we need to both modalities direction during scanning and the scale the three-dimensional image registration. 所谓图像配准,即通过寻找某种空间变换,使两组图像的对应点达到空间位置和解剖结构上的完全一致。 The so-called image registration, i.e., by looking for a certain spatial transform of the corresponding two points that the same image reaches the spatial position and anatomical structures. 配准的结果应使两幅图像上所有的解剖点,都达到匹配。 Registration should be made of the results of all the anatomical points on two images, we have reached the match. Two

幅图像J^(x,,;;,,z,)和J^02,:^,&)的配准,就是寻找一种映射关系r:J^^^3,使尤,的 Images J ^ (x ,, ;; ,, z,) and J ^ 02,: ^, &) registration is to find a mapping relationship r: J ^^^ 3, so that in particular, the

每一个点在A上都有唯一的点与之相对应,并且这两点对应于同一解剖位置,映射关系T 表现为一组连续的空间变换。 Each point has a single point A on corresponding thereto, and these two points correspond to the same anatomical location mapping relationship T expressed as a contiguous set of spatial transformation. 由于获取的两组图像在方向和尺度上都存在误差,我们采取仿射变幻的映射关系。 Since the two sets of images taken in the direction and scale error there, we take the affine mapping relationship changing. 配准的时候我们通过经验的方式,从CT三维图像与激光三维数码相机扫描获得的石膏牙模的三维图像中选择多个对应的解剖结构点,进而采用基于轮廓特征的奇异值分解-迭代最近点的配准方法。 Registration we empirically manner, plaster dental model three-dimensional image obtained from the three-dimensional CT image and the three-dimensional laser scanning camera selected anatomical structures corresponding to the plurality of points, and then based on the use of singular value decomposition of the contour feature - Iterative Closest registration points. 这种方法结合了奇异值分解最优化解析方法和迭代搜索的优点来解决图象轮廓点的匹配问题,对选择的多组解剖结构特征点采用奇异值分解方法将空间点列进行匹配,通过叠代得到轮廓点的最优配准参数。 This method combines the advantages of optimizing singular value decomposition analysis method and iterative search to solve the problem of matching the contour points of the image, a plurality of sets of feature point selection anatomical structure using the method of singular value decomposition column matching the spatial points, by superimposing on behalf of contour points to get the optimal registration parameters. 基于轮廓特征的奇异值分解可以描述为: Based on singular value decomposition contour feature can be described as:

对两个三维点集X々和J^,,计算 Two sets of three-dimensional points, and J ^ ,, calculated X々

& =丄^>, ' A =丄1>, '其中A代表三维点集^4中所有数据的平均坐标值' Shang ^ = &>, 'A = Shang 1>' wherein A represents a set of 3D points in the average coordinate value ^ 4 'of all data

代表三维点集x^中所有数据的平均坐标值,〜^丄tlk.—从l卩,°^=丄£|乂—^『 式中〜,〜代表坐标位置的均方差, All average coordinate value data representing the 3D point set x ^, ~ ^ l from tlk.- Shang Jie, ° ^ = Shang £ | qe - average variance ^ "~ formula ~ representative of the coordinate position,

" W j=】 "W j =]

式中^为数据点坐标的协方差矩阵,T代表矩阵转置然后对H作奇异值分解: ^ Where point coordinates data covariance matrix, T is then representative of the matrix transpose H SVD:

// = "DJ^,其中D为对角阵,U和V为M^—正交阵。 旋转矩阵R由U、 V确定: . // = "DJ ^, where D is a diagonal matrix, U and V is M ^ - orthogonal matrix rotation matrix R, V is determined by U:

= ,r ; =, R;

两种模态的映射关系:缩放系数c和平移矩阵t由下式确定: c二J^^(Z)S) (1) f二/^一ci?;^ (2) Relationship between two mapping modes: parallel movement matrix and a scaling factor t c is determined by: c two J ^^ (Z) S) (1) f b / a ^ ci; ^ (2)?

上两式中〜代表Z^点坐标位置的均方差,tr为矩阵的迹,D为对角阵,S为特征矩阵。 Wherein the two Z ^ ~ for each point coordinate position variance, tr is the trace of a matrix, D is a diagonal matrix, S is the characteristic matrix.

继而对两组图形数据中重叠的部分数据,保留分辨率高的图像数据,分辨率低的数据借用图像三维编辑的手段去除; Then part of the data in the pattern data sets overlap, to retain the high resolution image data, means for editing a three-dimensional image data of low resolution borrowing removed;

然后进行数据分离,即把融合后的数据作为头颅模型的整体数据,再以下颌关节作为分界点,将下颌骨分离出来,以使后期加工出的模型才具有动态的咬合模拟功能,并将下颌骨数据与剥离了下颌骨的头颅数据分别保存为STL格式的文件。 Data is then separated, i.e., the data head data fusion model as a whole, as the mandibular joint and then to a demarcation point, the separation of the mandible, so that the model is only a post-processing dynamic simulation functionality bite, jaw and peeling the skull bone data mandibular data STL format are stored in the file.

第五步、将下颌骨数据与剥离了下颌骨的头颅数据分别输入到快速原型系统,进而用快速成型加工成真实的模型,最后采用精细设计的弹簧将两部分模型在下领关节处连接, 最终得到可描述牙齿咬合关系的精细个性化头颅模型。 A fifth step of peeling the mandible data head data are inputted to the mandible rapid prototyping system, and further into the real model by flash molding, and finally with fine spring design of the model the two joints connecting the lower neck, final to obtain a fine personalized skull model can describe the relationship between dental occlusion.

通过上述步骤得到的头颅模型结合了不同成像方式的优点,与患者真实颅颌面骨一致的并可以精细描述牙齿咬合关系,可以用于颅颌面骨和齿科经典手术的仿真模型及定量化手术方案的制定,可以对术后疗效进行有效的评价。 Skull model obtained by the above step combines the advantages of the different imaging modalities, with the Craniofacial real patient and may describe a fine consistency in a bone dental occlusion, the simulation model can be used for cranial and maxillofacial surgery and dental classical quantitative surgical planning, you can effectively evaluate the efficacy of surgery. 活动下颌关节的设计,除简单的牙齿咬合运动外,颌部装置可以模拟多种下颌运动,如前伸运动、侧方运动等,提供给医生以真实的口腔模拟环境。 Active joint design, in addition to the simple movement of the teeth bite, jaw apparatus can simulate a variety of jaw movement, such as a protrusive motion, lateral movement, etc., is provided to the doctor to simulate real oral environment.

Claims (6)

  1. 1、一种描述牙齿咬合关系的精细个性化头颅模型的制造方法,包括下述步骤: 第一步、采用CT断层扫描获取患者颅颌面骨断层图像数据,将数据用标准DICOM格式记录成光盘文件保存; 第二步、颅颌面骨计算机三维重建:将CT颅颌面骨断层图像数据进行三维重建,即采用医学图像控制系统软件形成反映颅颌面骨原形的三维图形数据,输出文件格式为STL; 第三步、牙的石膏取模与石膏模的三维数据采集:首先临床医生采用传统的石膏取模的方式获得与患者牙齿完全相同的石膏模型,然后采用三维数字相机获取牙模的三维图形数据; 第四步、将第三步所得的牙齿部分三维图形数据和第二步对CT图像重建的三维图形数据进行数据融合和分离:首先进行数据融合,将两种数据模态的三维图形数据进行图像配准,使两组图形数据的对应三维点集XA(x1,y1,z1)和XB A method for manufacturing a fine personalized skull model described dental occlusion, comprising the steps of: a first step, a CT tomography craniofacial bone obtain tomographic image data, the data is recorded into the optical disc standard DICOM format save the file; the second step, the craniofacial skeletal dimensional reconstruction: the craniofacial bone CT tomographic image data for three-dimensional reconstruction, i.e. using the medical image formation control system software to reflect the craniofacial skeletal prototype three-dimensional graphics data, output file format of the STL; a third step, the dental gypsum plaster mold modulo three-dimensional data collection: first the clinician uses a conventional manner to obtain the plaster modulo same tooth plaster model of the patient, and acquiring three-dimensional dental model of the digital camera three-dimensional graphics data; a fourth step, the third step the resulting three-dimensional graphics data portion of the tooth and a second step of the three-dimensional graphic data of the reconstructed CT image data fusion and separation: first data fusion, the two kinds of three-dimensional data modalities graphic data for image registration, 3D point set of the corresponding pattern data of the two XA (x1, y1, z1) and XB (x2,y2,z2)达到空间位置和解剖结构上的完全一致,从上述两组图形数据中选择多个对应的解剖结构点,进而采用基于轮廓特征的奇异值分解-迭代最近点的配准方法,得到两种模态的映射关系:即由下式确定的三维缩放系数c和平移矩阵t: <maths id="math0001" num="0001" ><math><![CDATA[ <mrow> <mi>c</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> </mfrac> <mi>tr</mi> <mrow> <mo>(</mo> <mi>DS</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>]]></math> id="icf0001" file="C2006101131320002C1.tif" wi="39" he="10" top= "113" left = "21" img-content="drawing" img-format="tif" orientation="portrait" inline="yes"/></maths>t=μy-cRμx (2) 上两式中σx代表id="icf0002" file="C2006101131320002C2.tif" wi="5" he="4" top= "130" left = "58" img-content="drawing" img-format="tif" orientation="portrait" inline="ye (X2, y2, z2) to achieve that the same spatial position and anatomical structures, the anatomical structure selected point from said plurality of sets corresponding to the graphic data, and further based on Singular Value Decomposition contour feature - Iterative Closest Point feature registration method, to obtain the mapping relationship between the two modalities: the three-dimensional parallel movement matrix and the scaling factor c is determined under the formula t:! <maths id = "math0001" num = "0001"> <math> <[CDATA [<mrow > <mi> c </ mi> <mo> = </ mo> <mfrac> <mn> 1 </ mn> <msubsup> <mi> & sigma; </ mi> <mi> x </ mi> <mn > 2 </ mn> </ msubsup> </ mfrac> <mi> tr </ mi> <mrow> <mo> (</ mo> <mi> DS </ mi> <mo>) </ mo> < / mrow> <mo> - </ mo> <mo> - </ mo> <mo> - </ mo> <mrow> <mo> (</ mo> <mn> 1 </ mn> <mo>) </ mo> </ mrow> </ mrow>]]> </ math> id = "icf0001" file = "C2006101131320002C1.tif" wi = "39" he = "10" top = "113" left = "21 "img-content =" drawing "img-format =" tif "orientation =" portrait "inline =" yes "/> </ maths> t = μy-cRμx (2) two represented by the formula in σx id =" icf0002 " file = "C2006101131320002C2.tif" wi = "5" he = "4" top = "130" left = "58" img-content = "drawing" img-format = "tif" orientation = "portrait" inline = "ye s"/>点坐标位置的均方差,tr为矩阵的迹,D为对角阵,S为特征矩阵,μy代表三维点集id="icf0003" file="C2006101131320002C3.tif" wi="5" he="4" top= "141" left = "52" img-content="drawing" img-format="tif" orientation="portrait" inline="yes"/>中所有数据的平均坐标值,R为旋转矩阵,μx代表三维点集id="icf0004" file="C2006101131320002C4.tif" wi="5" he="4" top= "141" left = "172" img-content="drawing" img-format="tif" orientation="portrait" inline="yes"/>中所有数据的平均坐标值, 继而对两组图形数据中重叠的部分数据,保留分辨率高的图像数据,分辨率低的数据借用图像三维编辑的手段去除; 然后进行数据分离,即把融合后的数据作为头颅模型的整体数据,再以下颌关节作为分界点,将下颌骨分离出来,以使后期加工出的模型才具有动态的咬合模拟功能,并将下颌骨数据与剥离了下颌骨的头颅数据分别保存为STL格式的文 "Mean variance, tr is the /> location point coordinate trace of a matrix, D is a diagonal matrix, S is the characteristic matrix, μy representative of 3D point set id =" s icf0003 "file =" C2006101131320002C3.tif "wi =" 5 " he = "4" top = "141" left = "52" img-content = "drawing" img-format = "tif" orientation = "portrait" inline = "yes" /> average coordinate values, R all data a rotation matrix, μx representative of 3D point set id = "icf0004" file = "C2006101131320002C4.tif" wi = "5" he = "4" top = "141" left = "172" img-content = "drawing" img- format = "tif" orientation = "portrait" inline = "yes" /> all average coordinate value data, then two sets of graphics data in the partial data overlap, to retain high resolution image data, low resolution means data of borrowing the image a three-dimensional editing of removal; and data separation, i.e., the data fusion as a whole data skull model, and then to joint as a demarcation point, the mandible is separated, so that the model post-machined only with dynamic simulation of occlusal function, and release the data mandible mandible head data are saved as text format STL ; 第五步、将下颌骨数据与剥离了下颌骨的头颅数据分别输入到快速原型系统,进而用快速成型加工成真实的模型,最后采用精细设计的弹簧将两部分模型在下颌关节处连接,最终得到描述牙齿咬合关系的精细个性化头颅模型。 ; Fifth step, the data and the peeling of the mandible mandible head data are inputted to rapid prototyping system, and further into the real model by flash molding, and finally with fine spring designed to connect two parts of the model in the mandibular joint, finally get fine personalized skull model to describe the relationship between dental occlusion.
  2. 2、根据权利要求1所述的描述牙齿咬合关系的精细个性化头颅模型的制造方法,其特征在于所述第三步石膏模的三维数据采集采用白光三维相机来实现,并采用软件系统来获得三维图形数据,所述三维相机的成像过程和图像采集过程为:激光光束照明微光学元件产生条紋结构光,经棱镜转向照明被测牙齿或牙模的表面,条紋结构光受到牙齿三维形貌的调制形成的变形条紋,再经转像棱镜和远心成像系统成像在图像接收器上,远心成像系统的成像接收器必须是红外成像仪,以实现对红外光的探测,图像接收器接收的变形条紋图经视频输出接口送到计算机;计算机内的软件系统完成如下过程:原始图像的采集、条紋自动分析、相位展开、深度像映射、牙齿轮廓的三维显示、三维编辑,以及牙齿三维模型的多种通用格式的转化和输出。 2. The method of manufacturing a finely personalized skull model described in the occlusion of the teeth to claim 1, wherein said third three-dimensional data acquisition step with white plaster mold to achieve a three-dimensional camera, and software systems employed to obtain three-dimensional graphics data, the three-dimensional imaging camera image acquisition process and the process of: illuminating laser beam micro-optical element structured light stripes, an illumination surface measured by the prism teeth or dental model of the steering, the stripe-shaped three-dimensional structure of the teeth by the light deformation striped appearance modulated formed, and then by inverting prism and the telecentric imaging system for imaging an image on a receiver, the receiver forming a telecentric imaging system must be an infrared imager, in order to achieve the detection, the image receiving infrared light FIG stripe modification is received via the video output interface to a computer; a computer software system in the process is completed as follows: acquisition of the original image, automatic fringe analysis, phase unwrapping, the depth image mapping, three-dimensional display of tooth contour, three-dimensional editing, and various format conversions and output common three-dimensional model of the teeth.
  3. 3、 根据权利要求1或2所述的描述牙齿咬合关系的精细个性化头颅模型的制造方法, 其特征在于在所述第二步颅颌面骨三维重建步骤中,医学图<象控制系统软件的实现步骤包括:分割;提取感兴趣区域;轮廓线提取、跟踪;连接轮廓线;生成三角面片;光照效应计算;生成三维图像;输出文件,文件输出格式为STL。 3. The method of manufacturing a finely personalized skull model described or occlusion of the teeth as claimed in claim 1 or 2, characterized in that said second step of craniofacial bone reconstruction step, Fig Medicine <image control system software the realization comprises the step of: dividing; extracting a region of interest; contour extraction, tracking; connect contour; generating triangular faces; calculating lighting effect; generating a three-dimensional image; output file, file output format is STL.
  4. 4、 根据权利要求3所述的描述牙齿咬合关系的精细个性化头颅模型的制造方法,其特征在于上述医学图像控制系统软件,还包括一基于体绘制方法的系统,其实现步骤为:A、 分割;B、提取感兴趣区域;C、插值;D、最后利用视觉原理将体素投影到显示平面进行显示。 4. The description of the teeth of the method of claim 3 for producing finely personalized occlusion model of the skull, wherein said medical image control system software, the system further comprising a rendering method based body that implements the steps of: A, segmentation; B, extracting the region of interest; C, interpolation; D, and finally with a visual principle voxel is projected onto a display plane for display.
  5. 5、 根据权利要求4所述的描述牙齿p史合关系的精细个性化头颅模型的制造方法,其特征在于所述分割采用多种分割模式,包括基于密度值以及形态、邻近关系条件的分割模式, 所述插值对稀疏层片数据采用基于倒角距离的形状插值。 5. The method of claim producing finely personalized skull model described engagement of the teeth 4 in relation p history claim, wherein said plurality of divided using division pattern, including segmentation and morphological pattern based on density values, adjacent relationship condition the interpolated data based sparse ply chamfered shape interpolation distance.
  6. 6、 根据权利要求4所述的描述牙齿咬合关系的精细个性化头颅模型的制造方法,其特征在于,第一步骤的CT断层扫描针对DICOM图像数据采集编写了DIC0M-SLICE数据转换压缩软件,其具体实现为:对原始DICOM图像数据顺次移位、紧密方式压缩;其次顺次扫描、 计算差值数据;然后差值数据的高效替换表示,最后得到高压缩比的数据。 6. A method for producing finely personalized skull model described occlusion of the teeth as claimed in claim 4, wherein, CT tomography a first step for the preparation of a DICOM image data acquisition conversion DIC0M-SLICE data compression software which embodied as: the original DICOM image data are sequentially shifted, compressed in a tight manner; second sequential scanning, calculating the difference data; and efficient replacement difference data representation, and finally to obtain higher data compression ratio.
CN 200610113132 2006-09-15 2006-09-15 Manufacturing method of fine personalized skull model capable of describing teeth occluding relation CN100569195C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610113132 CN100569195C (en) 2006-09-15 2006-09-15 Manufacturing method of fine personalized skull model capable of describing teeth occluding relation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610113132 CN100569195C (en) 2006-09-15 2006-09-15 Manufacturing method of fine personalized skull model capable of describing teeth occluding relation

Publications (2)

Publication Number Publication Date
CN1919157A true CN1919157A (en) 2007-02-28
CN100569195C true CN100569195C (en) 2009-12-16

Family

ID=37777098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610113132 CN100569195C (en) 2006-09-15 2006-09-15 Manufacturing method of fine personalized skull model capable of describing teeth occluding relation

Country Status (1)

Country Link
CN (1) CN100569195C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101390773B (en) 2007-09-19 2010-11-10 陆声 Production method of navigation template for positioning the pediculus arcus vertebrae
EP2229914B1 (en) * 2009-03-20 2018-05-30 Nobel Biocare Services AG System and method for aligning virtual models
CN101604354B (en) 2009-07-17 2011-05-04 南京市口腔医院 Method for accurately recovering single tooth form on three-dimensional tooth-mandible model
JP5383416B2 (en) * 2009-10-06 2014-01-08 キヤノン株式会社 Image processing apparatus and its control method and program
CN101803958B (en) * 2010-03-12 2013-03-20 北京欧亚瑞康新材料科技有限公司 Integrated fiber post for dental restoration and preparation method thereof
CN101799938B (en) * 2010-04-28 2012-04-25 福州大学 Method for producing real object simulated computer image
CN101964155A (en) * 2010-09-16 2011-02-02 南方医科大学 Method for manufacturing anthropotomy cast specimen model
EP2779939B1 (en) * 2011-11-15 2018-02-14 Trispera Dental Inc. Method and system for acquiring data from an individual for preparing a 3d model
CN102663818A (en) * 2012-04-16 2012-09-12 上海交通大学医学院附属第九人民医院 Method and device for establishing three-dimensional craniomaxillofacial morphology model
DE102012104282A1 (en) 2012-05-16 2013-11-21 Isra Vision Ag Method and apparatus for the inspection of surfaces of an object being examined
CN102920534A (en) * 2012-11-07 2013-02-13 上海交通大学医学院附属第九人民医院 Production method of personalized obturator
CN103100792B (en) * 2013-03-12 2015-04-22 合肥知常光电科技有限公司 Laser preprocessing and restoring method and device having on-line detection function and used for optical elements
CN105286784A (en) * 2014-06-13 2016-02-03 佘承鑫 Image correction design system and method for oral and maxillofacial surgery
CN105411716B (en) * 2014-09-22 2017-06-16 北京大学口腔医学院 A non-cusp edentulous alveolar ridge bit interleaving method of directly measuring
CN105342708B (en) * 2015-12-14 2017-10-24 四川大学 Ct and based on digitized data fusion cbct guide plate and nip reconstruction
CN105528807A (en) * 2016-01-29 2016-04-27 北京正齐口腔医疗技术有限公司 Teeth arrangement design method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686058A (en) 2005-04-28 2005-10-26 上海隐齿丽医学技术有限公司 Computer assisted hidden tooth abnormal correction system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686058A (en) 2005-04-28 2005-10-26 上海隐齿丽医学技术有限公司 Computer assisted hidden tooth abnormal correction system

Also Published As

Publication number Publication date Type
CN1919157A (en) 2007-02-28 application

Similar Documents

Publication Publication Date Title
US6152731A (en) Methods for use in dental articulation
Cevidanes et al. Superimposition of 3D cone-beam CT models of orthognathic surgery patients
Halstead et al. Reconstructing curved surfaces from specular reflection patterns using spline surface fitting of normals
Uechi et al. A novel method for the 3-dimensional simulation of orthognathic surgery by using a multimodal image-fusion technique
Plooij et al. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review
Honrado et al. Update in three-dimensional imaging in facial plastic surgery
US20070211081A1 (en) Augmented reality system for a dental laboratory
US20090298017A1 (en) Digital dentistry
Maal et al. The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography
Meehan et al. Three‐dimensional simulation and prediction of craniofacial surgery
Hajeer et al. Current Products and Practices: Applications of 3D imaging in orthodontics: Part I
US20090220916A1 (en) Impression scanning for manufacturing of dental restorations
US20080159608A1 (en) Method and system for pre-operative prediction
US20070207437A1 (en) Unified workstation for virtual craniofacial diagnosis, treatment planning and therapeutics
US20080261165A1 (en) Systems for haptic design of dental restorations
US7474932B2 (en) Dental computer-aided design (CAD) methods and systems
US20110043613A1 (en) Three-dimensional model refinement
US6879712B2 (en) System and method of digitally modelling craniofacial features for the purposes of diagnosis and treatment predictions
Douglas Image processing for craniofacial landmark identification and measurement: a review of photogrammetry and cephalometry
WO2008083857A1 (en) Method and system for dental planning and production
Xia et al. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery
Xia et al. Computer‐assisted three‐dimensional surgical planning and simulation: 3D color facial model generation
Ayoub et al. Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning
US20090316966A1 (en) Method and apparatus for combining 3D dental scans with other 3D data sets
JPH08131403A (en) Medical image processor

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model