CN100561186C - The method of testing and the device that are used for the textile color stability and color aberration grading - Google Patents

The method of testing and the device that are used for the textile color stability and color aberration grading Download PDF

Info

Publication number
CN100561186C
CN100561186C CNB2005101226595A CN200510122659A CN100561186C CN 100561186 C CN100561186 C CN 100561186C CN B2005101226595 A CNB2005101226595 A CN B2005101226595A CN 200510122659 A CN200510122659 A CN 200510122659A CN 100561186 C CN100561186 C CN 100561186C
Authority
CN
China
Prior art keywords
image
color
textile
aberration
colour fastness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101226595A
Other languages
Chinese (zh)
Other versions
CN1793844A (en
Inventor
方喜峰
朱鹏程
孙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CNB2005101226595A priority Critical patent/CN100561186C/en
Publication of CN1793844A publication Critical patent/CN1793844A/en
Application granted granted Critical
Publication of CN100561186C publication Critical patent/CN100561186C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to a kind of method and apparatus to the textile color stability and color aberration evaluation, it is by scanner, illumination system, picture pick-up device, image capture device and have color stability and color aberration grading test pattern processing and identification computing machine and form, under certain environment, gather the colour fastness image of textile with scanner or picture pick-up device, be sent to computing machine by image capture device, computing machine extracts qualitative characteristics information from the image of being gathered, colour fastness image to textile is finished the image pre-service, filtering and noise reduction, colour and aberration define, the colour fastness coupling, standard is checked, the ranking of judgement of aberration grade and colour fastness merges variable color at last, staining evaluation information and warp, broadwise friction evaluation information provides the final grade of textile color stability.It can detect a plurality of quality index of textile simultaneously exactly, and can obtain the color gray-scale value quality grade of surveying, and reduces the interference of labour intensity and artificial subjective factor, and its result is more objective, accurate.

Description

The method of testing and the device that are used for the textile color stability and color aberration grading
Technical field
The present invention relates to a kind of method and apparatus, refer in particular to the method for testing and the device that are used for the textile color stability and color aberration grading the textile color stability and color aberration evaluation.
Background technology
Traditional textile color stability and color aberration evaluation is to evaluate respectively according to the variable color of sample and the staining of adjacent fabric.When the aberration of evaluation former state and examination back sample, still continue to use ocular estimate at present, the reviewer at first with the naked eye is converted to the gray scale difference to the colour-difference of determinand, and this step relies on reviewer's practical experience fully, and just there is defective in itself.Therefore color conversion is a grey, and it is slippery relying on people's eyes, exists artificial subjective factor.Be exactly the gray scale contrast of the grey that converts to and standard in addition, draw the grade of aberration then by judgement, also there is defective in this step, with reviewer's factors such as experience much relations is arranged.Simultaneously when adopting computer determination fabric aberration system, because of using for a long time, aging, the standard card of scanner instrument cause wear error etc., and whole system is easy care not, and easy-maintaining not again after being out of order is checked and alignment function when accomplishing to use at every turn automatically.The color matching of printing and dyeing enterprise simultaneously is loaded down with trivial details, time-consuming, as a to require great effort process always, along with market competition is growing more intense, customer order more and more presents short trend of short run, many kinds, high-quality, high standard and delivery date, for printing and dyeing enterprise, rely on traditional artificial color matching, far can not adapt to the requirement that current colour fastness detects.According to patent " a kind of weathering color fastness instrument (application number: 200320108814) ", " Exposure to Sunlight machine colour fastness instrument (application number: 200430063917) ", " a kind of high color fastness solution dyeing synthetic leather and manufacture method thereof (application number: 200310116842) ", " a kind of preparation method of high color fastness shin-gosen yarn dyed fabric (application number: 200310116843) ", " preparation method of the compound dyed yarn of a kind of high color fastness multi-differential leather core (application number: 200310116844) ", " a kind of staining technique that improves the dark fastness of cashmere fiber and goods thereof (application number: 200310100444) ", " wet colour fastness improves; intrinsic light stability and heat-staple polyamide (application number 99806283) ", analyses such as " methods of computer digital image processing and photosensitive camera photomontage (application number: 98113635) " and " natural fiber supercritical CO 2 dyeing new technology (application number: 03133360) ", the domestic research of this respect also of no use is still far from perfect and standard.Some researcher has only carried out part Study in a certain respect to the textile color stability grade, " weaving CAD/CAM " (Xi'an: publishing house of Northwestern Polytechnical University as the Duan Yafeng chief editor, 2002), Cao Xinzhong, Zhao Dongmei is published in the article " with computer determination fabric aberration system " of " the fine inspection of China " (2000 the 10th phases), Kong Fanming, Zhang Guangli is published in article " discussion of the quantitative test of aberration and the colour fastness instrument rating system " analysis of etc.ing of " China fine inspection " (o. 11th in 2004), domestic automatic check and alignment function when also not relating to color fastness grading and detecting.
Summary of the invention
In view of the deficiency that above-mentioned prior art exists, purpose of the present invention is exactly that a kind of method of testing and device of being used for the textile color stability and color aberration grading that utilizes the computer graphic image analytical technology will be provided.It detects classification with the computer graphic image analytical technology to the textile color stability grade according to existing GB and textile industry standard.
The objective of the invention is to realize by the following method:
Under certain environment, gather the colour fastness image of textile with scanner or picture pick-up device, be sent to computing machine by image capture device, computing machine extracts qualitative characteristics information from the image of being gathered, to the colour fastness image of textile finish that image pre-service, filtering and noise reduction, colour and aberration define, colour fastness coupling, standard are checked, the aberration grade is judged and the ranking of colour fastness, merge variable color, staining evaluation information at last and provide the final grade of textile color stability through, broadwise friction evaluation information.
Textile color stability and color aberration grading test macro has been stipulated the gray scale and the using method thereof of the staining of evaluation adjacent fabric, variable color degree in the textile color stability test according to international standard ISO105/A03-1993 " textile---colour fastness test---evaluation staining, variable color gray scale " and GB250-1995 " evaluation variable color gray scale ", GB252-1995 " grey scale for assessing staining of colour " and GB6151-1997 " textile color stability test general rule " etc.The accurate colour examining level of this ash card can be used as permanent recording and reaches in storage or the usefulness of the ash card contrast that changes in using for the new ash card of making.Basic ash card is made up of five pairs of unglazed grey sample cards, is divided into five fastness grades according to distinguishable aberration, promptly is respectively 5 grades, 4 grades, 3 grades, 2 grades and 1 grade.In per two ranks, replenish half grade again, i.e. 4-5 level, the 3-4 level, the 2-3 level, the 1-2 level, just expanding becomes nine grades of ash cards of Pyatyi.Each grade is made up of two parts color, and first ingredient of each grade all is neutral graies, and wherein only second ingredient of colour fastness the 5th grade is consistent with first ingredient, and other each second right compositions shoal successively, and aberration increases step by step.
The described qualitative characteristics information of extracting from the image of being gathered comprises from standard gray scale evaluation proposition information and information extraction from textile images to be tested the image.System mainly is made up of three parts: scanning (input), Flame Image Process and adjustment are checked and are calculated and demonstration (output).
Described from textile images to be tested proposition information may further comprise the steps:
1, scans respectively by variable color and staining standard gray scale and cotton standard former state, felt standard former state, silk standard former state, terylene standard former state, polyamide fibre standard former state, acrylic fibers standard former state and viscose glue standard former state etc. according to textile color stability or make a video recording, store in the bulletin colour fastness standard database.In like manner respectively sample to be tested is scanned or make a video recording, store in corresponding variable color, the staining sample library.According to the colour fastness classification, determine colour fastness image initial model.From entire image, discern and distinguish zone to be tested automatically.Adopt the mode of carrying out image threshold segmentation to carry out, mainly be to use maximum variance between clusters, or be called big Tianjin thresholding method.Threshold Segmentation is packed data in a large number not only, reduces memory capacity, and can be reduced at thereafter analysis and treatment step greatly.
2, colour fastness zone to be tested is split from textile striped, form tissue such as poroid.Adopt Fourier transform to carry out the pre-service of image; Utilize the histogram modification technology to carry out the figure image intensifying; Image filtering adopts median filtering method; Use the pixel in extraction sample detection districts such as image segmentation, reconstruction, edge extracting, gray level image morphology treatment technology etc.Determine the initial model of colour fastness.
3, according to test request, because grey standard scale uses for a long time, cause the error of wearing and tearing and measuring, gray scale during reply is used is harmonized and is checked, extract the gray scale colour fastness grade under the current state, then sample to be measured is compared to determine back output rating result by classification in the colour fastness standard database and the gray scale colour fastness grade under the current state.
Described colour fastness image to textile is finished the image pre-service and mainly is made up of binaryzation, filtering and cutting apart etc.Binaryzation mainly adopts process of iteration to ask the mode of optimal threshold to carry out.For the image of single body is only arranged, the gray level of establishing object and background is normal distribution, and the distribution probability density function is respectively p1 (Z) and p2 (Z), and its gray average is respectively μ 1 and μ 2.Standard deviation to gray average is respectively σ 1 and σ 2, and the object number of picture elements accounts for the full figure pixel than for θ, then makes the threshold value Zt of cutting apart the error minimum.
Described filtering is at image processing process, takes median filter method to remove various interference noises in the image automatically.Because sample is in making and use, because the restriction of method for making and test condition, sample may produce folding line, thread count is inhomogeneous, and the image that obtains after the scanning can produce the noise of corrugated, point-like.Medium filtering mainly is for the digital picture of two dimension, and medium filtering moves along image with an active window in fact exactly, and the pixel gray scale of window center position is replaced with the Mesophyticum of pixel gray scales all in the window; In above-mentioned operation, all pixels have adopted unified disposal route.Thereby this process also changed the value of real signaling point in filtering noise, caused image blurring.
The characteristic of noise is eliminated at two dimension median filter device protection edge and the selection of subwindow has sizable relation; consider that image all has correlativity on two-dimensional direction; when selected window; active window is generally all elected two-dimentional window (3 * 3 as; 5 * 5 or 7 * 7 etc.); having that the shape of window is commonly used is square, cruciform, circle or X font etc., eliminates noise for the edge details of protection image more fully, adopts comprehensive subwindow to select way.Simultaneously, because actual picture intelligence all has extremely complicated structure, these structures (for example line segment, acute angle etc.) all may be handled by the bigger medium filtering of window and destroy, because sequencer procedure destroys the neighborhood information in arbitrary structures and space probably, therefore for reducing the destruction of median filter, system gets that original pixel value carries out objective grading in the image respective regions after the binaryzation after image segmentation.
Image segmentation is based on the method for region growing, in bianry image, by from top to bottom, is analyzed by the left-to-right image that binaryzation and Filtering Processing are crossed, with image segmentation.The region growing method can be utilized the multiple character of image simultaneously, the position on the final border of final decision image.
Device of the present invention is by scanner, illumination system, picture pick-up device, image capture device and have color stability and color aberration grading test pattern processing and identification computing machine and form.Illumination system comprises fluorescent light, illumination casing, diffuse reflection coating, high-frequency florescent lamp electric ballast.
Scanner and video camera all are as Digital Image Input Device in the system.The gearing that is positioned at its below is controlled by stepper motor, and sample is smooth to be placed on the objective table of travelling belt, and in the time of under sample is sent to video camera, video camera is taken pictures, and photo input computing machine carries out " online detection ".The top of illumination casing has a shooting hole and a light source hole, illumination casing medial surface scribbles one deck can produce irreflexive coating, fluorescent light is arranged in the two bottom sides of illumination casing, link with the high-frequency florescent lamp electric ballast that is arranged in illumination casing both sides, the light that fluorescent light sends, by the reflection of illumination casing diffuse reflection coating, evenly scatter on the specimen of textile.This lighting box can be used for the laboratory photographic images and also can be used for the production line photographic images.
The invention has the beneficial effects as follows: detect simultaneously a plurality of quality index such as edge, striped, cavernous structure of textile exactly, and can obtain the color gray-scale value quality grade of surveying.Compare with existing color fastness grading person's ranking method, can reduce labour intensity and the people interference for principal commander's factor, its result is more objective, accurate.
Description of drawings
Fig. 1 apparatus structure block diagram;
Fig. 2 workflow diagram;
The colour fastness classification chart of Fig. 3 test;
Table 1 high precision mode identification hierarchical test result schematic diagram.
Among the figure: the 1-computing machine; The 2-camera; The 3-objective table; 4-band sample gearing; The 5-scanner; The 6-printer; The 7-standard sources; 8-illumination casing
Embodiment
The present invention is made up of scanner, illumination system, picture pick-up device, image capture device and computing machine etc. with color stability and color aberration grading test pattern processing and identification; Wherein have color stability and color aberration grading test pattern processing and identification and comprise staining colour fastness Flame Image Process and variable color colour fastness Flame Image Process and high precision mode identification processing system.
Scanner or the defeated people's equipment of gamma camera numeral have following important parameter: resolution, size, defeated people export multiple, sharpness etc., and their setting has bigger influence to last test result.By repetition test, the colour fastness test macro determines that correlation parameter mainly is: original copy kind setting (Original), scan mode are set (Mode), the scanning resolution is set (Input/Output), multiplying power setting (Scale to) and sharpness setting (Sharpness) etc.Sample choose with prepare main consideration be: the image that obtains owing to computing machine is that the reflection through tested fabric forms, fault and fold small on the fabric all can be absorbed by computing machine, so in order to obtain real image, make the result of test can accurately reflect the aberration of tested sample, selected sample should be representational, should get rid of the sample that contains bigger float, folding line etc. as far as possible.Must remove the staple in bulk that invests on the adjacent fabric before the evaluation staining.Next be sample and adjacent fabric before putting into scanner, recover normal moisture content, generally do not need special damping, when their water percentage difference can influence test findings, then test fabric should be put balance in people's normal atmosphere.Last selected former state is of a size of 40mm * 100mm with examination back sample, and the staining sample can be noted when they being put into scanner or making a video recording by 20mm * 20mm sampling, is critical by the ground laid parallel.As Fig. 1, institute's textile to be measured is placed on scanner or the rotatable objective table, under the drive of stepper motor, slowly rotate reposefully with rotatable objective table.Illumination system comprises fluorescent light, high-frequency florescent lamp electric ballast, illumination casing and diffuse reflection coating etc.Picture pick-up device is installed in illumination casing top, obtains image by the shooting hole.Scanner or camera link to each other with computing machine by circuit, and image is sent to computing machine.
Directly obtain the colour fastness image or get textile color stability to the textile color stability detection line with the above hardware components, import computing machine into and handle to the laboratory photographic images.
Described colour fastness image processing process comprises following processing as shown in Figure 2:
1, scans respectively by variable color and staining standard gray scale and cotton standard former state, felt standard former state, silk standard former state, terylene standard former state, polyamide fibre standard former state, acrylic fibers standard former state and viscose glue standard former state etc. according to textile color stability or make a video recording, store in the bulletin colour fastness standard database.In like manner respectively sample to be tested is scanned or make a video recording, store in corresponding variable color, the staining sample library.According to the colour fastness classification, determine colour fastness image initial model.Automatic distinguishing goes out zone to be tested from whole sub-picture.
2, the colour fastness test zone is split from textile striped, form tissue such as poroid.Adopt Fourier transform to carry out the pre-service of image; Utilize the histogram modification technology to carry out the figure image intensifying; Image filtering adopts median filtering method; Use the pixel in extraction sample detection districts such as image segmentation, reconstruction, edge extracting, gray level image morphology treatment technology etc.Determine the initial model of colour fastness.
3, according to test request, former gray scale is partly harmonized and checked, extract the gray scale colour fastness grade under the current state, then sample to be measured is compared to determine back output rating result by classification in the colour fastness standard database and the gray scale colour fastness grade under the current state.
Result through above Flame Image Process imports high-precision mode identificating software automatically, and carries out discriminance analysis according to existing national standard and the normal pictures database that collects.Be divided into nine grades of ash cards of Pyatyi grade according to national standard and test, draw the grade of cotton staining colour fastness as shown in Figure 3, and obtain the final grade of cotton quality.
During test because textile color stability and color aberration intelligence grading test macro is divided into the two large divisions: be respectively to measure evaluation variable color aberration part and measure evaluation staining aberration part, and measuring principle separately and deciding grade and level scope are different.At first prepare sample, in statu quo make respectively with examination back sample.Sample is placed on scanner or the objective table, and starts the testing software of native system.By " scanning " button, activate scanner program or imaging program, and select different parameters according to different samples.Then the image that scans or shooting obtains is left under the installation directory of textile color stability and color aberration intelligence grading testing system software.Enter user window, input " user name " enters main interface with pass word.Advance people's analyzing evaluation system interface separately by " evaluation of variable color aberration " button or by " evaluation of staining aberration " button.By " dress people image " button, the color value dress people analytic system for the treatment of test sample.By " detection " button, standard ash card and corresponding textile former state are detected, drop to various errors minimum.By " evaluation " button, draw the aberration grade by analytic system.By " printing " button, evaluation result can be printed, be convenient to analyze and preservation.Press the Help button, can obtain about the various introductions of native system and service in all directions.In time understand product quality information for making testing staff and relevant departments, on the basis of raw data, system adopts the statistical study means, and all kinds of statistical report forms such as in time and exactly generating colour fastness check raw readings form, daily paper, weekly, ten days report, monthly magazine use a computer.
The objective grading of colour fastness is calculated the pixel value of every bit according to two zones of maximum, and asks the difference of its mean value, judges the colour fastness grade.System has carried out six groups of specimen tests:
Below only list the former state and the examination back sample of cotton staining, all the other samples and former state are slightly.The grading error is half grade, and the accuracy rate of system is 98.2%.Test result is as follows:
Table 1
The sample title The sample sequence number Artificial grading The grading of colour fastness intelligence test software Error
Polyamide fibre staining 1 3 3
2 2 2
3 2 2
4 2-3 2-3
Acrylic fibers staining 1 2 2
2 1 1
3 1-2 1-2
4 1-2 1-2
5 2-3 2-3
Cotton staining 1 3 3
2 3 3
3 1 1
4 1-2 1-2
5 1-2 1-2
Terylene staining 1 3-4 3-4
2 2 2
3 3 3
4 2 2
5 4-5 4 Half grade
6 1-2 1-2
Be stained with glue staining 1 4 4
2 2-3 2-3
3 3 3
4 1-2 1-2
5 2 2
6 2-3 2-3
Wool staining 1 1-2 1-2
2 2 2

Claims (2)

1. the method for testing that is used for the textile color stability and color aberration grading, it is characterized in that gathering the colour fastness image of textile with scanner or picture pick-up device, be sent to computing machine by image capture device, computing machine extracts qualitative characteristics information from the image of being gathered, colour fastness image to textile is finished the image pre-service, filtering and noise reduction, colour and aberration define, the colour fastness coupling, standard gray scale in using is harmonized and checked, the ranking of judgement of aberration grade and colour fastness, merge variable color at last, staining evaluation information and warp, broadwise friction evaluation information provides the final grade of textile color stability, and wherein the standard gray scale is according to international standard ISO105/A03-1993 " textile---colour fastness test---evaluation staining; variable color gray scale " and GB250-1995 " evaluation variable color gray scale ", evaluation adjacent fabric staining in the textile color stability test of GB252-1995 " grey scale for assessing staining of colour " regulation, the gray scale of variable color degree.
2. realize the device of the described method of testing of claim 1, it is characterized in that by scanner, illumination system, picture pick-up device, image capture device and have color stability and color aberration grading test pattern processing and identification computing machine forming, wherein illumination system comprises fluorescent light, illumination casing, diffuse reflection coating, high-frequency florescent lamp electric ballast; Scanner and picture pick-up device all are as Digital Image Input Device in the system; The gearing that is positioned at its below is controlled by stepper motor, and sample is smooth to be placed on the objective table of travelling belt; The top of illumination casing has a shooting hole and a light source hole, and illumination casing medial surface scribbles one deck can produce irreflexive coating, and fluorescent light is arranged in the two bottom sides of illumination casing, links with the high-frequency florescent lamp electric ballast that is arranged in illumination casing both sides.
CNB2005101226595A 2005-11-30 2005-11-30 The method of testing and the device that are used for the textile color stability and color aberration grading Expired - Fee Related CN100561186C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101226595A CN100561186C (en) 2005-11-30 2005-11-30 The method of testing and the device that are used for the textile color stability and color aberration grading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101226595A CN100561186C (en) 2005-11-30 2005-11-30 The method of testing and the device that are used for the textile color stability and color aberration grading

Publications (2)

Publication Number Publication Date
CN1793844A CN1793844A (en) 2006-06-28
CN100561186C true CN100561186C (en) 2009-11-18

Family

ID=36805414

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101226595A Expired - Fee Related CN100561186C (en) 2005-11-30 2005-11-30 The method of testing and the device that are used for the textile color stability and color aberration grading

Country Status (1)

Country Link
CN (1) CN100561186C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782881A (en) * 2017-11-30 2018-03-09 东华大学 The textile synthesis style measurement apparatus and method felt based on human body five
CN109270254A (en) * 2018-11-27 2019-01-25 中山中测纺织产业技术研究中心 The detection method of textile perspiration resistance, the compound color fastness of friction

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858904B (en) * 2009-04-10 2013-04-24 上海天祥质量技术服务有限公司 Test method of urine stain color fastness
CN102539304A (en) * 2010-12-15 2012-07-04 福建省纤维检验局 Method for testing light/chlorinated water composite color fastness of textiles
CN102103069B (en) * 2011-02-14 2012-07-18 浙江大学 Method for detecting influence of texture on chromatism
CN102236008B (en) * 2011-02-22 2014-03-12 晋江市龙兴隆染织实业有限公司 Method for detecting color fastness of fabric products to water
CN103808912B (en) * 2012-11-09 2015-11-04 芜湖富春染织有限公司 Dyed yarn quality determining method
CN103234472A (en) * 2013-03-07 2013-08-07 四川省草原科学研究院 Detecting method and detecting system for fiber fineness and density of Rex-rabbit clothing hair
SA114350425B1 (en) * 2014-04-10 2015-07-07 محمد ادريس مبارك الصبحي سعود Tool for detecting fastness of colors on fabrics
CN103954744A (en) * 2014-05-06 2014-07-30 重庆出入境检验检疫局检验检疫技术中心 Proficiency testing sample for measuring color fastness to perspiration of textile and preparation method of sample
CN104680488A (en) * 2015-01-28 2015-06-03 辽宁工程技术大学 Method for performing satellite-borne SAR (Synthetic Aperture Radar) image ortho-rectification based on DSM (Digital Surface Model) of median filtering
CN105445271B (en) * 2015-12-02 2018-10-19 陕西科技大学 A kind of device and its detection method of real-time detection colour fastness to rubbing
CN105651704B (en) * 2015-12-31 2018-07-27 首都博物馆 A kind of test method of calligraphy and drawing pigment color fastness to washing
CN105548034B (en) * 2016-01-28 2018-08-21 福建省农业科学院农业生物资源研究所 A kind of microbial fermentation bed pad material fermentation degree aberration recognition methods
CN105628626A (en) * 2016-03-15 2016-06-01 海宁酷彩数码科技有限公司 Ink-jet printing fabric color difference detection device
CN105928873B (en) * 2016-04-18 2018-10-16 广州纤维产品检测研究院 The detection method of performance is stain in the anti-sweat dirt of clothes neckline cuff
CN105910710B (en) * 2016-06-25 2017-08-25 鲁泰纺织股份有限公司 The Forecasting Methodology of yarn-dyed fabric cloth face color aberration rank
CN107256553B (en) * 2017-06-15 2018-04-17 江南大学 A kind of detection method of warp sizing effect
CN107490542A (en) * 2017-06-28 2017-12-19 芜湖富春染织股份有限公司 A kind of dyed yarn colour fastness to rubbing detection method
CN107451993A (en) * 2017-07-24 2017-12-08 武汉纺织大学 A kind of fabric color fastness Classified Protection and system
CN108038516A (en) * 2017-12-27 2018-05-15 中山大学 White embryo cloth flatness stage division based on low-dimensional image coding with integrated study
CN108181354B (en) * 2017-12-27 2020-05-26 东华大学 Textile smell sense style measuring device and method
CN109085114A (en) * 2018-08-16 2018-12-25 武汉红金龙印务股份有限公司 A kind of sunproof detection method of printed matter
CN109632647A (en) * 2018-11-29 2019-04-16 上海烟草集团有限责任公司 The binding strength detection method of printed matter, system, storage medium, electronic equipment
CN109342335B (en) * 2018-12-10 2021-07-13 辽宁省产品质量监督检验院(辽宁省建筑材料监督检验院) Building facing material chromatic aberration analysis method
CN110031461A (en) * 2019-02-14 2019-07-19 江苏恒力化纤股份有限公司 A kind of polyester filament dye uniformity test method
CN110132855A (en) * 2019-05-16 2019-08-16 绍兴市华绅纺织品整理有限公司 A kind of test method for photocatalytic self-cleaning fabric self-cleaning function
CN110530790A (en) * 2019-08-19 2019-12-03 上海熹宝科技有限公司 A kind of the detection rating system and detection ranking method of textile color stability

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
用计算机测定织物色差系统. 曹新忠,赵东梅.中国纤检,第10期. 2000
用计算机测定织物色差系统. 曹新忠,赵东梅.中国纤检,第10期. 2000 *
色差的定量分析与色牢度仪器评级的探讨. 孔凡明,张广丽.中国纤检,第11期. 2004
色差的定量分析与色牢度仪器评级的探讨. 孔凡明,张广丽.中国纤检,第11期. 2004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782881A (en) * 2017-11-30 2018-03-09 东华大学 The textile synthesis style measurement apparatus and method felt based on human body five
CN109270254A (en) * 2018-11-27 2019-01-25 中山中测纺织产业技术研究中心 The detection method of textile perspiration resistance, the compound color fastness of friction

Also Published As

Publication number Publication date
CN1793844A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
CN100561186C (en) The method of testing and the device that are used for the textile color stability and color aberration grading
AU2003236675B2 (en) Method for quantitative video-microscopy and associated system and computer software program product
Wang et al. Assisted diagnosis of cervical intraepithelial neoplasia (CIN)
Xin et al. Objective evaluation of fabric pilling using image analysis techniques
CN101339185B (en) Automatic microscopic imager for detecting cast-off cells and detection method
CN104751443B (en) Based on multispectral technology cotton defect detection and recognition methods
Fabijańska et al. Image processing and analysis algorithms for yarn hairiness determination
US9275441B2 (en) Method for preparing quantitative video-microscopy and associated system
CN106355739B (en) A kind of method and device that detection bank note is new and old
US5570431A (en) Process and apparatus for automatically characterizing, optimizing and checking a crack detection analysis method
CN105911268A (en) Colloidal gold test strip detection result automatic reading instrument and application thereof
CN107328776A (en) A kind of quick determination method of immune chromatography test card
CN101806750A (en) Method for automatically testing coal petrologic parameters and special equipment thereof
Zhang et al. Automatic inspection of yarn-dyed fabric density by mathematical statistics of sub-images
CN104198325B (en) Stem ratio measuring method in pipe tobacco based on computer vision
Lieberman et al. Determining gravimetric bark content in cotton with machine vision
Li et al. Measuring the unevenness of yarn apparent diameter from yarn sequence images
Zhong et al. Evaluation method for yarn diameter unevenness based on image sequence processing
Goldman et al. Micro-RTI as a novel technology for the investigation and documentation of archaeological textiles
Chen et al. Automated measurement of vessel properties in birch and poplar wood
CN109241948A (en) A kind of NC cutting tool visual identity method and device
CN104778709B (en) A kind of construction method of the electronic blackboard based on yarn sequence image
Han et al. Identification and measurement of convolutions in cotton fiber using image analysis
CN108519066B (en) Method for objectively evaluating fabric flatness based on four-side light source image
Palokangas et al. Segmentation of folds in tissue section images

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091118

Termination date: 20111130

C17 Cessation of patent right