CN100558036C - Hiding method for iris characteristic data based on bit flow - Google Patents

Hiding method for iris characteristic data based on bit flow Download PDF

Info

Publication number
CN100558036C
CN100558036C CN 200610154582 CN200610154582A CN100558036C CN 100558036 C CN100558036 C CN 100558036C CN 200610154582 CN200610154582 CN 200610154582 CN 200610154582 A CN200610154582 A CN 200610154582A CN 100558036 C CN100558036 C CN 100558036C
Authority
CN
China
Prior art keywords
iris
bit
template
image
host
Prior art date
Application number
CN 200610154582
Other languages
Chinese (zh)
Other versions
CN1988445A (en
Inventor
叶学义
Original Assignee
杭州电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州电子科技大学 filed Critical 杭州电子科技大学
Priority to CN 200610154582 priority Critical patent/CN100558036C/en
Publication of CN1988445A publication Critical patent/CN1988445A/en
Application granted granted Critical
Publication of CN100558036C publication Critical patent/CN100558036C/en

Links

Abstract

本发明涉及一种虹膜特征数据的隐藏方法。 The present invention relates to a method of hiding the iris characteristic data. 本发明方法是:以虹膜特征模板为嵌入数据,以其它生物特征图像作为宿主,宿主图像的总字节数大于等于虹膜特征模板的总比特数;编码时,将虹膜特征模板的比特流首尾相接,将该位和选定的宿主图像的单位元素的除最低比特位之外的其它七位任一位相比较,标记比较结果,将起始位等信息构成密钥;解码时,根据密钥从宿主图像中找到起始单位元素,从该元素的特定比特位中取出虹膜特征模板的比特流的首位,直到取出所有比特位。 The method of the present invention are: iris template is embedded data, in other biometric image as a total number of bytes of the host, the host image is greater than equal to the total number of bits of the iris feature template; encoding, the bit stream inclusive iris template with into contact with any of the other seven comparison a bit other than the minimum unit of element selected host and the bit image, tag comparison result, like the start bit key information; decoding, according to a key found from the host unit starting an image element, the first bit stream extracted iris feature template from the particular bit of the element until all bits removed. 本发明将虹膜特征模板的数据按比特嵌入其它生物特征图像的字节中,达到数据隐藏的目的,在不影响虹膜识别的高搜索率和高准确率的同时,增强虹膜特征数据存储、传输和交换的安全性。 The present invention is characterized in the iris template data bit is embedded by other byte biometric images, data hiding to achieve the purpose, without affecting the search for iris recognition is high and high accuracy, and enhance the iris feature data storage, transmission, and security exchange.

Description

基于比特流的虹膜特征数据的隐藏方法 Iris characteristic data hiding method based on the bitstream

技术领域 FIELD

本发明属于生物特征识别及信息安全的技术领域,特别涉及一种基于比特流的虹膜特征数据的隐藏方法。 The present invention is in the field of biometric identification and information security technology, and particularly relates to a method for hiding iris based on the data bit stream.

背景技术 Background technique

生物特征识别技术因为生物特征(指纹、虹膜、脸像等等)自身固有的特性使得它超越和替代传统的身份识别手段成为现实的可能,并且已经在一些国家和某些应用领域开始被推广和使用。 Biometric identification technology as biometrics (fingerprint, iris, face like, etc.) inherent characteristics make it beyond the traditional and alternative means of identification may become a reality, and has begun to be promoted in some countries and for some applications and use. 但是也正因为这些固有的特性:生物特征数据和拥有者直接相关,具有独有性及不可更改性;使得生物特征识别技术的研究不得不关注生物特征识别自身的安全性。 But also because of these inherent characteristics: biometric data and associated directly with the owner, has a unique character and can not be changed sex; biometric identification technology allows researchers have to focus on biometric own security. 如果一个注册用户的生物特征数据被非法窃取,那么可能引起的问题和解决的难度要远大于一个传统身份识别技术的使用者丢失了他的IC卡或者密码。 If a registered user of biometric data theft is illegal, then the problem may arise from the difficulty of solving much larger than a traditional user identification technology lost his IC card or password. ·生物特征识别技术的有效使用是建立在这样一个基础上:那就是进入生物特征识别网络系统的生物特征数据只能来自于合法的拥有者。 · Effective use of biometric technology is built on such a basis: that is, to enter the biometric data biometric network system can only come from a legitimate owner.

现有的对生物特征数据的安全性构成威胁的有很多方式,从数据本身来说主要可以分为以下两类:直接更改已注册身份的特征模板(替换);根据获得的特征模板重构生物特征图像,然后重新输入系统,获得已注册权限(伪造)。 There are many existing ways pose a threat to the security of biometric data from the data itself, it can be divided into the following two categories: direct change registered identity feature template (replace); reconstruction according to biological characteristics templates available feature image, and then re-enter the system, get registered rights (counterfeiting). 因为在生物特征识别技术的实际推广和应用中的生物特征隐私权问题,所以对于生物特征原始数据的保护尤为重视。 Because biometric privacy issues in the practical promotion and application of biometric technology, so particular attention to the protection of biological characteristics of the original data. 一般在实际方案中原始数据往往只在中央数据库中存储或者根本不保留,也就是说在应用系统中存储和传输的通常是生物特征的模板数据。 Generally only the raw data is often stored or not retained in a central database in real-world scenarios, that is in the application system storage and transmission of biometric data is usually template of. 由此可见,生物特征模板数据的安全对于生物特征识别系统自身的安全性影响是至关重要的。 Thus, security biometric template data for biometric security system itself influence is critical. 目前关于生物特征数据安全研究方面的文献并不多见,并且没有关于虹膜特征数据的隐藏和保护方面研究。 At present research on security aspects of biometric data in the literature are rare, and there is no study on iris feature data hiding and protection.

发明内容 SUMMARY

本发明的目的就是针对现有技术的不足,提出一种基于比特流的虹膜特征数据的隐藏方法,将虹膜特征模板的数据嵌入一幅人脸图像或者其它生物特征图像中,达到数据隐藏的目的,提高虹膜特征数据的安全性。 The present invention is for the deficiencies of the prior art, to provide a method of hiding the iris characteristic data based on the bitstream, the data embedding an iris feature template face image or other biometric image, to achieve the purpose of data hiding improved security features of the iris data.

本发明中基于比特流的虹膜特征数据的隐藏方法具体步骤是: The present invention is based on the iris characteristic data hiding method bitstream specific steps are:

首先以虹膜特征模板为嵌入数据,而以其它生物特征图像作为被嵌入数据(宿主);其它生物特征图像为人脸图象或指纹图象。 Iris feature template is first embedded data, while in other images as biometric data is embedded (host); Other biometric image is a face image or a fingerprint image.

其次将虹膜特征模板转换为二进制码流,模板中每个单位元素是一个比特,而宿主图像的每个单位元素是一个字节,要求宿主图像的总字节数大于或者等于虹膜特征模板的总比特数。 Then the number of iris templates to convert binary code stream, each template element is a unit of bits, and each element of the unit is a byte of the host image, the requirements of the host image than or equal to the total byte iris feature template Total the number of bits.

编码时,从虹膜特征模板的二进制码流的任意位开始,并将起始位记·入密钥,或者将起始位转换成二进制码嵌入特定的宿主图像的字节区中并将该特定区位置记入密钥; When encoding, the code stream from an arbitrary bit binary iris feature template begins, and the key Ji start bit, the start bit or embedded into binary code byte particular host image region and the specific area location recorded in the key;

宿主图像的起始位同样从任意位开始,对于起始位置信息的处理方法和虹膜特征模板的起始位处理方法相同; Similarly the start bit of the host image from an arbitrary start position, the start bit for the same start position information processing method and a method of iris feature template;

将选定的虹膜特征模板的单位元素和选定的宿主图像的单位元素的除最低比特位之外的其它七位中的任意一位相比较,并用该单位元素的最低位标记比较结果; The any other seven bits other than the minimum unit of element selected from the elements of the unit and the iris feature template selected host image in a comparison, and comparing the results with the least significant bit of the tag element unit;

依次顺序处理虹膜特征模板中的每一个单位元素和对应的宿主图像中的单位元素,处理时将宿主图像中的单位元素首尾相连,如果起始位并非从首位开始则将虹膜特征模板的二进制码流首尾衔接,直至每一个单位元素都嵌入到相对应的宿主图像中,完成编码。 Sequential order processing unit elements of each unit element of a iris feature template corresponding to the host and the image, the unit elements connected end to end in the host image processing, if the start bit will not start from the first iris feature template binary code flow adapter end to end, until each unit element is embedded into the host image corresponding to the complete coding.

解码时,根据密钥,从宿主图像中获得编码时处理的首个单位元素,根据该元素最低比特位的值,对该元素中用于和虹膜特征模板单位元素相比较的比特位的值进行处理,获得虹膜特征模板的比特流的首位;依次顺序处理,直到取出所有的虹膜特征模板的元素,完成解码。 When decoding units according to the first key element of the process of obtaining from the host image coding, according to the value of the lowest bit of the element, and the value of the bit iris template element unit for performing the comparing element processing the first bit stream obtained iris feature template; processing sequential order until all the extracted elements iris feature template, the decoding is completed.

本发明直接将虹膜的特征模板隐藏到人脸图像或者其它生物特征图像中,具有很强的隐蔽性,能够有效保护虹膜特征模板数据,增强虹膜识别系统自身的安全性。 The present invention is directed to an iris feature template to hide a facial image or other biometric image having strong hidden, can effectively protect iris feature pattern data, iris recognition system to enhance their security.

由于本发明实际的计算过程无论是编码还是解码都仅仅是对位的比较和取反,所以具有较高的计算速度,且算法本身不会造成误码;尤其是现有的虹膜识别算法和系统基本上是通过计算虹膜纹理编码的汉明距来完成比较和识别,利用本发明处理的宿主图像,可以直接和数据库中存储的虹膜特征模板进行比对。 Since the actual calculation process the present invention, whether encoding or decoding are merely para comparison and inversion, and therefore have a high computation speed, and will not cause error algorithm itself; in particular, the conventional iris recognition algorithms and systems basically be done by calculating the iris from the texture coding Hamming comparison and identification using image processing according to the present invention, the host may be directly stored in the database templates iris feature comparison. 只要根据密钥找到宿主图像初始位象素,比较确定的比特位,然后顺序操作即可完成,将解码和比较处理合并,可以进一步提高计算效率。 As long as the key to find the initial position of the host image pixel, comparing the determined bits, and then to complete the sequential operation, and the decoded combined comparison processing, calculation efficiency can be further improved.

附图说明 BRIEF DESCRIPTION

图I是本发明基于比特流的虹膜特征数据的隐藏方法的原理示意图; FIG. I is a schematic view of the present invention is based on the principle of the method of hiding the iris characteristic data bit stream;

图2是虹膜特征模板的二进制码流示意图; FIG 2 is a iris feature template binary flow diagram;

图3是宿主图像的示意图。 FIG 3 is a schematic diagram of the host image.

具体实施方式 Detailed ways

下面结合附图和实施例对本发明进一步说明。 The present invention is further described below in conjunction with the accompanying drawings and embodiments.

本发明基于比特流的虹膜特征模板的数据隐藏方法的原理如图I所示,图中的虹膜特征模板中的小黑块和小白块分别表示二进制的O和1, The present invention is based on the principle of data hiding method bitstream iris feature template shown in Figure I, iris template in FIG black block and white block O and each represent a binary 1,

将他们嵌入对应的作为宿主的人脸图像的字节中,实现数据隐藏,最后得到隐藏了生物特征模板的输出图像用于存储、传输和交换;设虹膜特征模板为/(&,/),是一个矩阵Arx/表示的二进制序列,矩阵中每个元素为一个比特数;宿主(人脸图像)为F(m,n) '表示一个矩阵,矩阵中每个元素为一'个字节表不的象素;在数据隐减时以F(Wj)为宿主图像,而将/(々,/)作为嵌入数据;要求(即满足冗余度《Μ)。 Bytes corresponding to embed them as a host in the face image, data hiding, and finally to obtain biometric template of the hidden output image for storage, transmission and switching; iris disposed in template / (&, /), is a matrix Arx / binary representation of the sequence, each element of the matrix is ​​a number of bits; host (face image) to F (m, n) 'represents a matrix, each matrix element is a' byte table no pixel; Save when hidden data to F (Wj) is the host image, and the / (々, /) as the embedded data; requirements (i.e., to meet redundancy "Μ). 需要说明的是:(k,l)表示/(/M)中一个元素的行和列的坐标,I(k,l)为二进制码流,ke[l,Klle[\,L\ ,足和Z分别是矩阵取,/)的行数和列数的最大值;而(m,《)表示中一个元素的行和列的坐标,^0,《)是灰度图像(灰度级O-255),me[l,Mlne[\,N] , M和#分别是矩阵F(m,《)的行数和列数的最大值。 It should be noted that: (k, l) represents the coordinates of / (/ M) in a row one element and columns, I (k, l) is a binary stream, ke [l, Klle [\, L \, foot and matrix Z are taken, /) is the maximum number of rows and columns; and "coordinate) shows the elements of a row and a column, ^ 0," (m,) is a grayscale image (grayscale O- 255), me [l, Mlne [\, N], m and # are ") the maximum number of rows and columns of the matrix F (m. /(A,/)如图2所示,F(m,《)如图3所示。 / (A, /) as shown in Figure 2, F (m, ") as shown in FIG.

作为嵌入数据的虹膜特征模板/(☆,/)的起始位可以从任意位开始,只要在密钥中标记起始位的位置,处理时将图2的码流首尾相接,然后依次处理矩阵中所有的元素。 Iris feature data as the embedded template / (☆, /) can be started from the start bit in any position, as long as the marking start position of the bit in the key, the process streams contact end to end in FIG. 2, followed by treatment All the elements of the matrix. 如图2中所示的起始位选为方框套住的一个比特,它的值记为S(i), 5(0 e {0,1},ί表示它在特征模板中的位置,且+ 同理,作为宿主的人脸图像F(m,》)的初始象素也可以任意选取,也要在密钥中标记它的位置,记为P(J'),如图3中所示的白色方框套住的那个象素,j = (m-\).N + n'对于灰度图像(灰度级0-255)用一个字节来表示P(7·),如图中箭头所指,框内分别是字节的每个比特位,下方分别是从O到7的位序。然后依次嵌入,处理时将的象素首尾续接,直至处理完所有的水印位。可以是宿主图像本身,也可以是整个宿主图像的一部分。如图3中右边的字节展开示意,从右到左表示从字节的低位到高位,分别用^(°)(/»,严)(/),...,^(7)(·/); PwC/)作为标志位,从其余7位中可以任选一位作为参考位。 Start bit as shown in Figure 2 preferably a block of bits trap, referred to as the value S (i), 5 (0 e {0,1}, ί feature indicates its position in the template, and + Similarly, as the host of the face image F (m, ") of the original pixel can be arbitrarily selected, but also mark its position in the key, referred to as P (J '), as shown in Figure 3 the white box trap is shown that pixel, j = (m - \). N + n 'for gradation image (gradation 0-255) with one byte P (7 ·), FIG. indicated by the arrows, respectively, in frame byte each bit, respectively, from the lower order bits O to 7 is then fitted successively, when the pixel processing continuing from end to end, until all of the processed watermark bits. the image itself may be a host, or may be part of the host image. byte 3 schematically on the right in FIG expand, from right to left represent bytes low to high, respectively ^ (°) (/ », Yan ) (/), ..., ^ (7) (· /); PwC /) as a sign bit, from the remaining 7 may optionally be used as a reference bit. 例如选择/^)(/)作为参考位,水印嵌入如式(I)所示: Such as selection / ^) (/) as a reference position, such as the embedding of formula (I) below:

O(O)rn = fo. if S(O-PmU) ⑴ O (O) rn = fo. If S (O-PmU) ⑴

U if S(i) U if S (i)

的象素/5C/)嵌入水印后记为,按照图3的示意,即表示的一个字节中,除了严)(/>变成巧,其余位和^c/)保持一致;然后依次取虹膜特征模板/氏/)的下一个比特位,顺序嵌入的下一个象素,直至每一个比特位都嵌入到一个象素中一次,数据隐藏处理结束。 Pixel / 5C /) is embedded watermarks Postscript, in accordance with the schematic of FIG. 3, i.e., a byte representation, in addition to severe) (/> into coincidence, and the remaining bits ^ c /) consistent; then sequentially capturing iris wherein the template / s /) of one bit, the next pixel embedded sequence, until each bit is embedded into one end of one pixel data hiding process.

取出水印时,也就是将虹膜特征模板I(k,l)从作为宿主图像F{m,n)中取出,根据隐藏时的密钥,得到初始嵌入位置的字节,记为P謝ω,和虹膜特征模板/(Α,/)的初始选取位置f,ie[l,KxL],解码处理如式(2)所示: When removing the watermark, i.e. the iris template I (k, l) is removed from a host image F {m, n), according to the key when the hidden, to give an initial byte embedded position, referred to as Xie [omega] P, and iris feature template / (Α, /) selecting an initial position f, ie [l, KxL], the decoding process as shown in equation (2):

w.、 IKmUI if ^(7) = 0; . W, IKmUI if ^ (7) = 0;

*5(0 = 1 -—— n (2) * 5 (0 = 1 --- n (2)

[PLU) if C O.) = I; [PLU) if C O.) = I;

表示对取反,依照式(2)依次取出隐藏的邓),放入确定的虹膜特征模板/OU)的位置,直至获得所有的模板数据位,完成解码。 He expressed negated, in accordance with the formula (2) are sequentially extracted hidden Deng), into the determined iris template / OU) position, until all of the template data bit, decoding is completed. 上述处理对于作为宿主的人脸图像并不是无损的,但是因为在数据嵌入时仅仅改变了图像中被嵌入象素字节的最低位,对灰度值的影响是1,而且改变的概率仅仅是0.25。 For the above-described process of the face image as the host is not lossless, but because only the change in data is embedded in the least significant bit of the image pixel bytes are embedded, influence on the tone value is 1, and the probability of change is only 0.25. 这样即使在最极端的情况下,例如某个象素的灰度值加1,而所有相邻的象素都减1,从视觉效果上来说,基本上没有什么变化。 Thus even in the most extreme cases, for example, adding a certain pixel tone value 1, while all adjacent pixels are decremented by one, from the visual effect, is substantially unchanged. 随机抽取了一幅人脸图像中一半的象素进行上述极端情况下的处理后,所得到的结果和原始图像进行比较,并不能通过观察判断宿主图像是不是进行了数据隐藏的处理。 The results of a random sample of people after half pixels are treated under the extreme conditions in the face image, and the original image obtained is compared, and not by observing the determination is not carried out in the host image data hiding process. 这样的生物特征数据即使被截获,根据数据本身不能确定是否进行了数据隐藏的处理。 Such biometric data even if they are intercepted, the data itself can not determine whether the data hiding process. · ·

Claims (1)

1、基于比特流的虹膜特征数据的隐藏方法,其特征在于该方法包括以下步骤: 首先以虹膜特征模板为嵌入数据,而以其它生物特征图像作为被嵌入数据,即宿主;所述的其它生物特征图像为人脸图象或指纹图象; 其次将虹膜特征模板转换为二进制码流,模板中每个单位元素是一个比特,而宿主图像的每个单位元素是一个字节,要求宿主图像的总字节数大于或者等于虹膜特征模板的总比特数; 编码时,从虹膜特征模板的二进制码流的任意位开始,并将起始位记入密钥,或者将起始位转换成二进制码嵌入特定的宿主图像的字节区中并将该特定区位置记入密钥; 宿主图像的起始位同样从任意位开始,对于起始位置信息的处理方法和虹膜特征模板的起始位处理方法相同; 将选定的虹膜特征模板的单位元素和选定的宿主图像的单位元素的除最低比特位之 1, the iris characteristic data hiding method based on the bit stream, characterized in that the method comprises the steps of: firstly iris template is embedded data, while in other images as biometric data is embedded, i.e., the host; the other organisms human face image or the feature image fingerprint image; second iris converts the binary code stream feature template, each template element is a unit of bits, and each element of the unit is a byte of the host image, the image of the total requirements of the host the number of bytes equal to the total number of bits greater than or iris feature template; encoding, starting from an arbitrary bit binary code stream iris feature template, and the start bit key entered, or the start bit is embedded into binary code specific byte area in the host image and the specific position recorded in the key region; start bit in the same host image start at any bit, start bit processing method for processing method of start position information and the iris feature template same; bit unit elements in addition to the minimum unit element selected iris templates and selected bits of the host image 的其它七位中的任意一位相比较,并用该单位元素的最低位标记比较结果; 依次顺序处理虹膜特征模板中的每一个单位元素和对应的宿主图像中的单位元素,处理时将宿主图像中的单位元素首尾相连,如果起始位并非从首位开始则将虹膜特征模板的二进制码流首尾衔接,直至每一个单位元素都嵌入到相对应的宿主图像中,完成编码; 解码时,根据密钥,从宿主图像中获得编码时处理的首个单位元素,根据该元素最低比特位的值,对该元素中用于和虹膜特征模板单位元素相比较的比特位的值进行处理,获得虹膜特征模板的比特流的首位;依次顺序处理,直到取出所有的虹膜特征模板的元素,完成解码。 Of any other seven of a phase comparison, and the results of the lowest bit flag of the unit element comparison; sequential order processing unit elements each unit element of iris template and the corresponding host image, the processing time of the host image end to end of the unit element, if the start bit will not start from the first template of the binary iris code stream end to end engagement, until each unit element is embedded into the host image corresponding to the complete coding; decoding, according to a key , the encoding process is obtained from the host when the first picture element units, in accordance with the value of the lowest bit element, and a bit value for iris feature comparison unit element of the template of the element for processing, obtaining an iris feature template the first bit stream; processing sequential order until all the extracted elements iris feature template, the decoding is completed.
CN 200610154582 2006-11-08 2006-11-08 Hiding method for iris characteristic data based on bit flow CN100558036C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610154582 CN100558036C (en) 2006-11-08 2006-11-08 Hiding method for iris characteristic data based on bit flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610154582 CN100558036C (en) 2006-11-08 2006-11-08 Hiding method for iris characteristic data based on bit flow

Publications (2)

Publication Number Publication Date
CN1988445A CN1988445A (en) 2007-06-27
CN100558036C true CN100558036C (en) 2009-11-04

Family

ID=38185089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610154582 CN100558036C (en) 2006-11-08 2006-11-08 Hiding method for iris characteristic data based on bit flow

Country Status (1)

Country Link
CN (1) CN100558036C (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056043A1 (en) * 1999-01-18 2002-05-09 Sensar, Inc. Method and apparatus for securely transmitting and authenticating biometric data over a network
US20030088782A1 (en) * 2001-11-08 2003-05-08 Ncr Corporation Biometrics template
US20040093503A1 (en) * 2002-11-13 2004-05-13 Dombrowski James Douglas Acquisition and storage of human biometric data for self identification
US20040243567A1 (en) * 2003-03-03 2004-12-02 Levy Kenneth L. Integrating and enhancing searching of media content and biometric databases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056043A1 (en) * 1999-01-18 2002-05-09 Sensar, Inc. Method and apparatus for securely transmitting and authenticating biometric data over a network
US20030088782A1 (en) * 2001-11-08 2003-05-08 Ncr Corporation Biometrics template
US20040093503A1 (en) * 2002-11-13 2004-05-13 Dombrowski James Douglas Acquisition and storage of human biometric data for self identification
US20040243567A1 (en) * 2003-03-03 2004-12-02 Levy Kenneth L. Integrating and enhancing searching of media content and biometric databases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于Morlet小波变换的虹膜识别算法. 吴亮,庄镇泉,叶学义,姚鹏,李斌.计算机工程与应用,第32期. 2005 *

Also Published As

Publication number Publication date
CN1988445A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
Bolle et al. Biometric perils and patches
Chen et al. JPEG image steganalysis utilizing both intrablock and interblock correlations
Li et al. A steganographic method based upon JPEG and particle swarm optimization algorithm
US7930546B2 (en) Methods, systems, and sub-combinations useful in media identification
US20030059086A1 (en) Data processing apparatus and method, data processing program, and storage medium
KR100800371B1 (en) Authorized anonymous authentication
Chang et al. A watermarking-based image ownership and tampering authentication scheme
US7912256B2 (en) Secure system and method of creating and processing partial finger images
CN101047498B (en) Method and system for authenticating by organism
Tang et al. Robust image hashing for tamper detection using non-negative matrix factorization
Dey et al. Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging
CN102282834B (en) Image watermarking method and system
Vatsa et al. Feature based RDWT watermarking for multimodal biometric system
EP1999684B1 (en) Processing biometric data un a multidimensional repository
EP2318980A1 (en) Method of determining a pseudo-identity on the basis of characteristics of minutiae and associated device
CN101295343B (en) Two-dimensional code multi-enciphering anti-fake printing method
He et al. Adjacent-block based statistical detection method for self-embedding watermarking techniques
Vatsa et al. Robust biometric image watermarking for fingerprint and face template protection
KR101226151B1 (en) Apparatus and method for biometrics registration and authentication
Noore et al. Enhancing security of fingerprints through contextual biometric watermarking
JP3683766B2 (en) Image processing apparatus and method
Galbally et al. Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms
CN101187975A (en) A face feature extraction method with illumination robustness
CN1529278A (en) Multi-category-based human face classifying and identifying method
US6742712B1 (en) Information card and information card system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right