CN100555976C - Ring network and master node - Google Patents

Ring network and master node Download PDF

Info

Publication number
CN100555976C
CN100555976C CN 200710007373 CN200710007373A CN100555976C CN 100555976 C CN100555976 C CN 100555976C CN 200710007373 CN200710007373 CN 200710007373 CN 200710007373 A CN200710007373 A CN 200710007373A CN 100555976 C CN100555976 C CN 100555976C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
packet
ring
master node
node
port
Prior art date
Application number
CN 200710007373
Other languages
Chinese (zh)
Other versions
CN101026529A (en )
Inventor
奥智行
赤羽真一
Original Assignee
阿拉克斯拉网络株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

检测出环上的多重故障的发生和从多重故障中至少一个的恢复,并适当更新环构成节点的传送用数据库。 On the occurrence of multiple failures detected and at least one of the ring to recover from multiple failures in the database and send updates appropriate node rings. 主节点(110)沿环的两个方向发送用于确认在环上连接的网络的状态的探测分组(140)。 Probe packet master node (110) in both directions of the ring network on the acknowledgment sent for loop connection state (140). 从节点(120)增加接收到的探测分组(140)中包含的跳数而发送到相邻的环构成节点,并且,将跳计数报告分组(150)发送到主节点(110)。 (120) increasing the number of hops received probe packet containing the (140) transmitted from the node to the adjacent nodes constituting the ring, and the report packet hop count (150) is sent to the master node (110). 主节点(110)通过接收不到自身发送的探测分组,而检测出环上的故障。 The master node (110) is detected by detecting the fault on the ring itself does not receive packets transmitted. 进一步,根据从环的两个方向接收的跳计数报告分组(150)的跳数的最大值的和,检测出多重故障的发生和多重故障的至少一个的故障已恢复,而发送促使分组传送用数据库更新的分组。 Further, according to the maximum hop count and report the number of packets (150) received from the two directions of the ring jump, a fault is detected and at least one occurrence of multiple failures of multiple failures has been restored, and transmits the packet transfer by prompting packet updated database.

Description

环形网络和主节点技术领域本发明涉及环形网络和主节点,尤其涉及在环上具有主从关系的网络装置中,可检测出环上的多重故障的发生和从多重故障检测出一个位置以上的恢复的环形网络和主节点。 Ring network and master BACKGROUND node of the present invention relates to a ring network and a master node, particularly to a master-slave network device relationships, can detect the occurrence of multiple failures in the ring and a position detection from multiple failures than on the ring ring network and a master node recovery. 背景技术作为实现网络的高可靠性的手段,提出了环形协议(ring protocol)。 BACKGROUND ART As a means to achieve high reliability of the network is proposed protocol annular (ring protocol). 环形协议中有使构成环的节点具有主从关系(主设备/从设备)的方式(例如参照非专利文献l)。 Protocol has an annular ring configuration of the node having a master-slave relationship (master / slave) fashion (for example, see Non-Patent Literature l). 该方式中,主节点具有环的支配权。 In this manner, the master node has power ring. 主节点为了确认环的状态,每隔一定时间从与环相连的第一端口发送健康检査分组。 In order to confirm the state of the master node of the ring, at regular time intervals a first port sends the health check packet from the ring attached. 另外,主节点为了防止数据分组在环上陷入循环状态,逻辑上阻断与环相连的第二端口。 Further, the master node in order to prevent the data packets on the ring into circulation state, blocking the second port is connected to a logical ring. 上述第二端口中,对包含健康检查分组的控制分组不进行逻辑上的阻断。 The second port of the control packet comprises a health check packet is not performed on a logical block. 因此,主节点在每隔一定时间不能在上述第二端口上接收健康检查分组的情况下,识别为环上发生了故障。 Accordingly, the master node can not be every predetermined time when receiving the health check packet at said second port, identifying a fault occurs on the ring. 在发生了环上的故障时,主节点解除对于上述第二端口的逻辑阻断。 When a fault occurs on the ring, the master node logic block for the release of the second port. 解除之后,主节点更新装置内的数据分组的传送用数据库。 After release, the data packets transmitted within the node update the master database device. 同时, 对构成环的所有从节点,发出促使传送用数据库更新的消息。 Meanwhile, all the nodes constituting the ring, with the outgoing message prompting transmitting updated database. 通过传送用数据库的更新,数据分组不通过环上的故障位置来进行传送。 , Data packets are not transmitted through the fault location is performed on the ring by transmitting a database update. 另外,主节点在故障发生过程中还从上述第一端口继续进行健康检査分组的发出。 Further, in the process of the master node failure further proceeds from the above-described health check packet is sent first port. 主节点在可通过上述第二端口接收健康检査分组的情况下,识别为环上的故障已恢复。 In the case of the master node via the second port packet received health check, identified as a failure on the ring has been restored. 这时,主节点逻辑上阻断上述第二端口,并更新装置内的传送用数据库。 In this case, blocking the second port master node logic, transfer and update a database within the device. 同时,对构成环的所有从节点, 发出促使传送用数据库更新的消息。 Meanwhile, all the nodes constituting the ring, with the outgoing message prompting transmitting updated database. 即,输入到环中的数据分组在与故障发生前相同的线路上传送。 That is, the input data packet transmitted on the ring in front of the same fault line. 除此之外,公开了构成以双向传送路径连接的环的各节点在环的两个方向上发出包含分组残余时间的健康检査,并根据从其他节点发出的健康检查的到达状况来更新自身节点和其他节点的关系的方式(例如,参照专利文献O 。另外,公开了下面的方式,即,接收了从通过光纤相连的环的主节点发出的导频分组(pilotpacket)的节点,向主节点通知是否可以正常接收导频分组,从而主节点识别出环中的故障节点的方式(例如, 参照专利文献2)。【专利文献1】日本特开2003-234747号公报【专利文献2】日本特开2004-248316号公报【非专禾l仪献1 ]RFC3619, Extreme Networks' Ethernet Automatic Protection Switching (EAPS) Version 1, 2003年10月专利文献1中,某个节点根据从其他节点发出的分组的残余时间,来求出与发送源节点之间的关系,但是没有公开对环中的多重故障的应对。专利文献2中 In addition, each of the nodes constituting a ring is disclosed a bi-directional transmission path connecting the emitted Health Check packet contains residual time in both directions of the ring, and updates the status of their health screening according to the arrival emitted from other nodes relations of the node and other nodes (e.g., refer to Patent Document O. Additionally, disclosed the following manner, i.e., the receiving node pilot packet (pilotpacket) from the guide by the master node ring connected to the optical fiber emitted, the main whether the node notice packet received pilot normal, so that the master node identifies the failed node in the ring mode (e.g., refer to Patent Document 2). [Patent Document 1] Japanese Patent Laid-open Publication No. 2003-234747 [Patent Document 2] Japanese Laid-open Publication No. 2004-248316 [non-patent literature Wo l instrument 1] RFC3619, Extreme Networks' Ethernet Automatic Protection Switching (EAPS) Version 1, October 2003 Patent Document 1, a node according to a packet sent from another node residual time, obtains the relationship between the source node and the transmission, but does not disclose respond to multiple failures in the ring. Patent Document 2 主节点仅确认了环中的其他节点的状态, 但是没有公开对环中的多重故障的应对。另外,非专利文献l中,未记载对环上的多重故障的应对。可以认为,假设在发生了多重故障的情况下,非专利文献l的主节点仅在识别为环上的最初的故障发生时和环上的所有故障恢复了的情况下, 对构成环的所有节点,促使传送用数据库的更新。因此,在环上的多重故障发生后,在一个位置的故障恢复的情况下,认为非专利文献1 的主节点不对构成环的所有节点促使传送用数据库的更新。即,可以预想在从多重故障恢复的情况下,数据传送的可靠性降低。另外,非专利文献1中,没有用于应对环上的主节点故障的记述。 因此,可以认为非专利文献1的从节点并未促使进行传送用数据库的更新。因而,在环上发生主节点故障的情况下,有网络的可靠性下降的可能性。发 Only the master node confirms the status of the other nodes in the ring, but does not disclose respond to multiple failures in the ring. In addition, Non-Patent Document l, the description is not to respond to multiple faults on the ring may be considered, it is assumed in the event of the case of multiple failures, the master node NPL l only if the identification of faults on the ring and all recovered initial failure occurs on the ring, all nodes constituting the ring, causes the transfer of the database update. Therefore, after multiple faults occur on the ring, in case of failure recovery of a position, that all nodes Patent Document 1 is not the master node ring configuration causes the database to update the transmission. that is, it is envisioned from case of multiple fault recovery, reducing the reliability of data transmission. in addition, Non-Patent Document 1, there is no description for coping with failure of the master node on the ring. Thus, it is considered node has not pushed from the Non-Patent Document 1 for transmit with the updated database. thus, in a case where a failure occurs on the ring master node, there is a decreased likelihood of network reliability. hair 明内容本发明鉴于上述问题,其目的是在使环具有的节点具备主从关系的网络上,在主节点检测出发生了环上的至少一个位置的故障和多重故障的情况下,在检测后更新环具有的各节点的传送用数据库。进一步,本发明的目的是在使环具有的节点具备主从关系的网络中,主节点在环上的多重故障中检测出了至少一个位置的恢复的情况下,在检测后使环具有的各节点的传送用数据库更新。另外,本发明的目的是提供一种通过适当更新环构成节点的传送用数据库,而不管环上的主节点有无故障,来提供通信网络的高可靠性。本发明的目的之一是将从主节点不能接收到探测分组的从节点之一作为主节点来动作。 Out the present invention in view of the above problems, an object thereof is to make a ring having nodes includes a master from the network relationship, the master node detects the occurrence of at least one case of a failure and multiple failures position on the ring, upon detection send updates the database ring nodes having a further object of the invention is to make the ring having a node includes a master-slave network relationship, the master node detects the recovery of at least one location in multiple faults on the ring case, each node upon detection of a ring having a transfer database update. Further, the object of the present invention is to provide a ring constituting transmission nodes by appropriately updating the database, regardless of the presence or absence of the primary ring node failure, to provide a communication network with high reliability. one object of the present invention is not from the master node receives the probe packet from one of the nodes as a master node to operation. 本发明的目的之一是在环形网络中多重故障的发生位置变化的情况下,适当更新环构成节点的传送用数据库。 One object of the present invention is a case where the location of a failure of multiple changes in the ring network, the database is appropriately updated transmission node rings. 根据本发明的第一解决手段,提供了一种环形网络,其特征在于:包括多个节点,该多个节点参照分组传送用的数据库来传送分组;多个上述节点按环状连接;上述节点中的至少一个是发送探测分组的主节点,该探测分组用于确认按环状连接的网络的状态,其他节点是按照来自上述主节点的指示进行处理的从节点;上述主节点每隔预定的时间或不定期地,从第一端口和第二端口向环的两个方向一次一个地或一次预定个数地发送跳数被初始化了的探测分组;上述各从节点,若经与环相连的两个端口的一个接收到探测分组,则增加探测分组中包含的跳数,将包含增加后的跳数的该探测分组经与接收的端口不同的另一个端口发送到相邻的上述从节点或上述主节点,并且,生成包含增加后的跳数的跳计数报告分组,并经接收了探测分组的端口发送到上述主 According to a first solving means of the present invention, there is provided a ring network, characterized by: a plurality of nodes, the plurality of packet transfer node with reference to the database used to transmit packets; plurality of nodes connected by a ring; and the node At least one master node transmitting the probe packet, the probe packet for confirming the state of the network connected by a ring, the other is from a node processing node according to the instruction from the master node; said master node every predetermined time or from time to time, or a predetermined number from the first and second ports of the two rings one at a time direction transmission is initialized hop probing packet; each slave node, if the ring is connected by two ports to receiving a probe packet, increasing the number of hops the packet contains the probe, the probe packet containing the increased number of hops and sending the receiving port to another port different from the adjacent node or said master node, and generates a hop number of hops the incremented count report packet, and sends the received probe packet to said main port 点;上述主节点,经第一端口和第二端口接收来自各从节点的多个跳计数报告分组,并按每个端口管理跳计数报告分组中包含的跳数的最大值,求出对应于第一端口的跳数的最大值和对应于第二端口的跳数的最大值的和,并根据所求出的和来求出从上述主节点可进行通信的从节点总数,通过所求出的可进行通信的从节点总数的变动,检测出环中的多重故障的发生和该多重故障的至少一个故障的恢复,并且, 在所求出的可进行通信的从节点总数不变动的情况下,通过对应于第一端口或第二端口的跳数的最大值的变动,检测出环中的拓扑的变化;每次检测出这些事件时,更新装置内的上述数据库和/或对上述从节点发送用于更新分组传送用的上述数据库的分组。 Point; said master node, via the first and second ports receiving packets from each of a plurality of hop counts from the node the report, according to the maximum number of hop counts for each hop port management report contained in the packet, corresponding to the determined a first maximum number of hop ports and a second port corresponding to the number of hops and the maximum value, and based on the obtained and is obtained from the master node can be the total number of nodes, is determined by the communication may be, at least a change in the total number of recovery from the communication node detects the occurrence of multiple failures in the ring, and the failure of multiple failures, and, in the case where the total number of nodes does not change in the obtained may communicate by variation corresponding to the maximum number of hops the first port or the second port, detecting a change in ring topology; detected at each of these events, said database in the updating means and / or from the above-mentioned node transmitting a packet for updating said database with the packet transmission. 根据本发明的第二解决手段,提供一种环形网络,其特征在于: 包括多个节点,该多个节点参照分组传送用的数据库来传送分组;多个上述节点按环状连接;上述节点中的至少一个是发送探测分组的主节点,该探测分组用于确认按环状连接的网络的状态,其他节点是按照来自上述主节点的指示进行处理的从节点;上述主节点每隔预定的时间或不定期地,从第一端口和第二端口向环的两个方向一次一个地或一次预定个数地发送跳数被初始化了的探测分组;上述各从节点,若经与环相连的两个端口的一个接收到探测分组,则增加探测分组中包含的跳数,将包含增加后的跳数的该探测分组经与接收的端口不同的另一个端口发送到相邻的上述从节点或上述主节点,并且,生成包含增加后的跳数的跳计数报告分组,并经接收了探测分组的端口发送到上述主节 According to the second solving means of the present invention, there is provided a ring network, characterized by: a plurality of nodes, the plurality of packet transfer node with reference to the database used to transmit packets; plurality of nodes connected by a ring; and the nodes at least one master node sends a probe packet, for checking the status of the probe packet according to the annular connection network from other nodes are node processing in accordance with the instruction from the master node; said master node every predetermined period of time or irregularly from the first and second ports once or one at a time a predetermined number of the two transmission directions of the ring is initialized hop count probe packet; each slave node, when attached to the ring by two a receiving port of the probe packets, then increase the number of hops the packet contains the probe, the probe packet containing the increased number of hops and sending the receiving port to another port different from the adjacent node or said the master node, and generates a hop number of hops the incremented count report packet, and sends the received packet is a probe port to said main section 点;上述主节点,经第一端口和第二端口接收来自各从节点的多个跳计数报告分组,并按每个端口管理跳计数报告分组中包含的跳数的最大值,求出对应于第一端口的跳数的最大值和对应于第二端口的跳数的最大值的和,并根据所求出的和来求出从上述主节点可进行通信的从节点总数,通过所求出的可进行通信的从节点总数的变动,检测出环中的多重故障的发生和该多重故障的至少一个故障的恢复;每次检测出这些事件时,更新装置内的上述数据库和/或对上述从节点发送用于更新分组传送用的上述数据库的分组。 Point; said master node, via the first and second ports receiving packets from each of a plurality of hop counts from the node the report, according to the maximum number of hop counts for each hop port management report contained in the packet, corresponding to the determined a first maximum number of hop ports and a second port corresponding to the number of hops and the maximum value, and based on the obtained and is obtained from the master node can be the total number of nodes, is determined by the communication may be, at least a change in the total number of recovery from the communication node detects the occurrence of multiple failures in the ring, and the failure of multiple failures; detected at each of these events, updating the database within the device and / or the above-described transmitting a packet from a node for updating said database with the packet transmission. 根据本发明的第三解决手段,提供一种主节点,其特征在于:在按环状连接了参照分组传送用的数据库来传送分组的多个节点的环形网络中, 具有:与环连接的第一端口和第二端口;和环管理部,检测出环中的故障的发生和恢复;上述环管理部每隔预定的时间或不定期地,从上述第一端口和上述第二端口向环的两个方向一次一个地或一次预定个数地发送跳数被初始化了的探测分组;经与环连接的两个端口的一个,接收探测分组,增加该探测分组中包含的跳数,并将包含增加后的跳数的该探测分组经与接收的端口不同的另一端口传送到相邻的节点或上述主节点,并且,生成包含增加后的跳数的跳计数报告分组,并经接收了探测分组的端口发送到上述主交换器;构成环的其他节点增加探测分组包含的跳数并返回,经上述第一端口及第二端口接收包含增 According to a third solving means according to the present invention, there is provided a master node, wherein: the plurality of nodes are connected by an annular reference packet transfer database used to transmit a packet ring network, comprising: a first connecting ring a port and a second port; and the ring management section detects the occurrence of a failure in the ring and recovery; and the ring management section every predetermined time or from time to time, from the first port to the second port and said ring two directions one at a time or a predetermined number of transmitted hop count is initialized probe packet; by a ring with two ports connected to receive the probe packet, increasing the number of hops the packet contains the probe, and comprising the probe packet hop count by the incremented transmission and reception port to the other port is different from an adjacent node or said master node, and generates a hop number of hops the incremented count report packet, and received by the probe packet to the port of the main switch; other nodes constituting the ring increases the number of hops and returns the probe packet containing the first port and the second port comprises a receive gain 加了的跳数的多个跳计数报告分组,按每个端口管理跳计数报告分组中包含的跳数的最大值;求出对应于第一端口的跳数的最大值和对应于第二端口的跳数的最大值的和,并根据所求出的和来求出可进行通信的节点总数; 通过所求出的可进行通信的节点总数的变动,检测出环中的多重故障的发生和该多重故障的至少一个故障的恢复;每次检测出这些事件时,更新装置内的上述数据库和/或对构成环的其他节点发送用于更新分组传送用的上述数据库的分组。 Maximum number of hops increase the number of multiple hops hop count report packet, a hop count for each port management report contained in the packet; obtaining a maximum value corresponding to the first port number corresponding to the second hop port and the maximum number of hops, and the total number of nodes in communication based on the obtained and obtains available; may be obtained by variation of the total number of nodes that communicate, detects occurrence of multiple failures in the ring and at least one fault of the recovery of multiple failures; when each of these events is detected, said database within the device and / or other nodes constituting a packet ring for transmitting updating the database with the updated packet transmission. 【发明的效果】根据本发明,在使环具备的节点具有主从关系的网络中,主节点在检测出了环上至少一个位置的故障发生的情况下,可以在检测后使环具有的各节点的传送用数据库更新。 Effect of the Invention According to the present invention, when the node ring provided having a master-slave network relationship, the master node detects a case where the at least failure of one position occurs on the ring, the can ring having respective upon detection transfer node updates the database. 进一步,根据本发明,在使环具备的节点具有主从关系的网络中,主节点在环上的多重故障中检测出了至少一个故障的恢复的情况下,可以在检测之后马上更新环构成节点的传送用数据库。 Further, according to the present invention, when the node ring provided having a master-slave network relationship, the master node in multiple faults on the ring has been detected when at least a recovery failure, can immediately update the ring configuration node after detecting transfer the database. 进一步,根据本发明,不管环上的主节点有无故障,通过适当更新环构成节点的传送用数据库,可以提供不损害通信的可靠性的网络。 Further, according to the present invention, regardless of the presence or absence of a fault on the primary ring node, the transmitting node ring by appropriately updating the database configuration may be provided without impairing the reliability of the network communications. 进一步,根据本发明,从主节点不能接收探测分组的一个从节点可以作为主节点动作。 Further, according to the present invention, can not receive a probe packet from the master node from the master node as action. 另外,根据本发明,在环形网络中多重故障的发生位置改变了的情况下,也可适当更新环构成节点的传送用数据库。 Further, according to the present invention, in the case of multi-location of a failure in the ring network changes, the transmission may be appropriately updated with the node rings database. 附图说明图1是单一环形网络100的结构图;图2是表示在单一环形网络100上传送的可变长分组的格式例的说明图;图3是表示主节点110发出的探测分组140和从节点120发出的跳计数报告分组150之间的关系的说明图;图4是基于从节点120的探测分组140的发送接收和跳计数报告分组150的发出处理的流程图;图5是对基于主节点110的故障的应对动作的流程图;图6是副主节点的动作的流程图;图7是环具有的节点装置900的结构图;图8是对基于包含副主节点的环的主节点110的故障的应对动作的流程图;图9是环管理部930的结构图; 图10是分组传送部920的结构图;图11是说明在分组传送时的分组传送数据库922中存储的检索结果信息800的格式的说明图;图12是传送基于从节点120的跳计数报告分组150的处理的流程图;图13是发生多重故障的单一环形网络100的结构图; 图14是第二 BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a configuration diagram of a single ring network 100; FIG. 2 is a diagram showing a format example of a variable length packet transmission on a single ring network 100; FIG. 3 shows the probe packet 110 sent by the master node 140 and hop count report packets sent from node 120 illustrating the relationship between a 150; FIG. 4 is a flowchart of a process based on the probe packet from the packet transmitting and receiving nodes 120 and 140 of the report issued by the hop count of 150; FIG. 5 is based on coping operation flowchart failed primary node 110; FIG. 6 is a flowchart illustrating the operation of the sub-master node; FIG. 7 is a configuration diagram of the node device 900 has a ring; FIG. 8 is based on the main ring comprising submaster node an operation flowchart of a node failure coping 110; FIG. 9 is a configuration diagram of the ring management section 930; FIG. 10 is a configuration diagram of a packet transfer unit 920; FIG. 11 is a diagram illustrating packet transfer when the packet transfer database 922 to retrieve stored results format information 800 is an explanatory diagram; FIG. 12 is a flowchart of a process based on the transmission 150 from the hop count 120 of the report packet; FIG. 13 is a single annular configuration diagram of occurrence of multiple failures in the network 100; FIG. 14 is a second 施方式中的环形网络的结构图; 图15是多重故障例的说明图; 图16是第四实施方式中的拓扑变化的说明图; 图17是对基于第四实施方式中的主节点110的故障的应对动作的流程图;图18是对基于包含第五实施方式中的副主节点的环的主节点110的故障的应对动作的流程图。 FIG ring network structure of the embodiment is applied; FIG. 15 is a diagram illustrating an example of multiple failures; FIG. 16 illustrates the topology change of the fourth embodiment; FIG. 17 is a master node based on the fourth embodiment 110 respond to a flowchart of the operation of the fault; FIG. 18 is a flowchart of an operation to deal with the failure of the master node based on the primary ring node includes sub-embodiment of the fifth embodiment is 110. 具体实施方式第一实施方式下面,参照附图来说明本实施方式。 DETAILED DESCRIPTION First Embodiment Hereinafter, embodiments according to the present embodiment will be described with reference to the accompanying drawings. 本实施方式中,描述了单一的环形网络。 In the present embodiment, the single ring network is described. 其中,所使用的装置、分组的种类并不限于此。 Wherein the apparatus used, the kind of the packet is not limited thereto. (硬件结构)图1是表示环形网络的结构例的图。 (Hardware Structure) FIG. 1 is a diagram showing a configuration example of a ring network. 单一环形网络100包括负责环状态的确认和数据分组的传送用数据库更新的主节点(主交换器)110和根据主节点110的指示的从节点(从交换器)120-1〜120-5。 A single ring network includes a master node 100 transmits the data packets and acknowledgment responsible loop state updates the database (main switch) 110 and 110 in accordance with an instruction from the master node of the node (the switch) 120-1~120-5. 各交换器上连接例如终端130-1、 130-2。 Each switch connected to a terminal e.g. 130-1, 130-2. 主节点110在自身没有发生故障的情况下,为了检测出环上的多重故障的发生和从多重故障的恢复,求出可从主节点110进行通信的从节点数。 The master node 110 itself in case of a fault does not occur, in order to detect the occurrence of multiple failures in the ring and, can be determined from the master node 110 recovery from a failure from multiple nodes to communicate. 主节点iio为了求出可进行通信的从节点数,从第一端口1101和第二端口1102发送探测分组(probe packet) 140。 Iio order to determine the master node can be nodes from communicating, from the first port and the second port 1101 1102 transmits a probe packet (probe packet) 140. 探测分组140中包含表示可从主节点110进行通信的从节点数(以下为跳计数) 的项目。 Probing packet 140 contains represents from nodes (hereinafter hop count) project communication from the master node 110. 各从节点120在接收到探测分组140之后,立即将跳计数例如增1。 After each received from the probe packet 140 to node 120, for example, immediately hop count is incremented. 之后,向(不是接收侧的)相邻的环构成节点传送探测分组140。 Thereafter, the node transmits probe rings (not the reception side) 140 adjacent packets. 另夕卜,从节点120在探测分组140的跳计数增加后,生成跳计数报告分组150,并向主节点110进行发送。 Another Bu Xi, node 120 increases in the probe packet hop count 140 to generate reports from the packet hop count 150, and the master node 110 transmits. 跳计数报告分组150用于将探测分组140的到达程度传递给主节点110。 Delivery report packet hop count reaches 150 for detecting the degree of packet 140 to the master node 110. 主节点110在一定时间内自身发送的探测分组140在环中传送而没有返回的情况下,识别出环上发生故障。 Case where the master node does not return the probe packet 110 sent by itself within a certain time 140 transmitted in the ring, the ring recognize the occurrence of the fault. 这时,主节点110在各从节点120发送的跳计数报告分组150内,计算可由第一端口1101接收的跳计数的最大值、和可由第二端口1102接收的跳计数的最大值之和。 In this case, the master node 110 in each of the hop from the node 120 transmitted packet counting report 150, computes the maximum hop count received by the first port 1101, and the hop count received by the second port 1102 and a maximum value. 通过可由第一端口1101和第二端口1102接收的跳计数的最大值之和的增减,主节点UO在环上的故障发生时,可以检测出多重故障的发生和从多重故障的恢复。 And increasing or decreasing the maximum value by a first port 1101 and a second port 1102 hop count received by the master node UO when a fault occurs on the ring, can detect the occurrence of multiple faults and recovery from multiple failures. 图2是表示在单一环形网络100上传送的分组格式的例子的说明图。 FIG 2 is a diagram illustrating an example of the format of a packet transmitted in a single ring network 100. 可变长分组200包含OSI参照模型中第二层(数据链路层)的L2头210和L2有效载荷220。 Variable-length packet 200 comprising the second layer L2 of the OSI reference model (data link layer) L2 header 210 and a payload 220. L2头210的形状根据构成网络的装置所收容的线路的种类而不同。 L2 shape head 210 according to the type of apparatus constituting the network lines accommodated varies. 例如,在收容的线路是以太网(注册商标)的情况下,L2头210中包含目标MAC地址211、发送源MAC 地址212、标签(tag) 213和帧类型214。 For example, in the case where the receiving line is an Ethernet (registered trademark), L2 header 210 contains destination MAC address 211, source MAC address 212, the label (tag) 213 and frame type 214. 图7是表示环具有的节点装置900的结构例的图。 FIG 7 is a diagram showing a configuration example of a node device having a ring 900. 主节点IIO和从节点120-1〜120-5可以使用节点装置900。 IIO master node 900 and slave node 120-1~120-5 node device may be used. 自身装置可以通过预先决定是主节点110、还是从节点120,来定义两个节点的其中之一的功能。 Device itself can be determined in advance by the primary node 110, or from node 120 to define the function of which one of the two nodes. 节点装置900具有多个线路接口910-i (i=l~N)、分组传送部920、环管理部930和装置控制部940。 Node device 900 having a plurality of line interface 910-i (i = l ~ N), the packet transfer unit 920, the ring management section 930 and the device control section 940. 图10是表示分组传送部920的结构例的图。 FIG 10 is a diagram showing an example of the packet transmission unit 920. 分组传送部920具有表示应适用于接收分组的后级处理的分组传送数据库922,和执行分组传送处理与分组传送用数据库922的控制的分组传送处理器921。 Packet transfer unit 920 has a 922, and a packet transfer processing to the packet transfer packet transfer control processor 921 performs a database 922 represents a packet transmission should be applied to the database after receiving the packet level processing. 分组传送部920决定所接收的分组的后级处理。 Post-processing unit 920 determines the packet transfer of the received packet. 这里,分组传送部920作为对于接收分组的后级处理,例如可举出有发送用线路接口的检索、向控制环形协议的分组的环管理部930的传送、和向装置控制部940的传送。 Here, a packet transfer unit 920 for post-processing of the received packet, for example, there may be retrieved include transmission line interface, the control packet is transmitted to the annular ring protocol management section 930, and is transmitted to the control unit 940 of the apparatus. 图9是表示环管理部930的结构例的图。 FIG 9 is a diagram showing an example of the ring management section 930. 环管理部930具有环分组输入部931、探测分组管理部932、环状态管理部933、环形协议控制分组生成部934和环分组输出部935。 Central management unit 930 has a ring packet input unit 931, the probe packet management unit 932, state management unit 933 ring, the ring protocol control packet generation unit 934 and a ring packet output unit 935. 后面描述各部分的细节。 Details of each part will be described later. 图7中,与管理终端30相连的装置控制部940执行在网络上传送的控制分组的分析、和包含分组传送部920的装置整体的控制。 7, the device control unit 30 is connected to the management terminal 940 performs an analysis of the control packet is transmitted on the network, and control means comprising the entire packet transfer unit 920. 另夕卜,装置控制部940使用分析的结果,来执行装置内的状态更新或对所接收的控制分组的响应。 Another Bu Xi, the device control section 940 using the result of the analysis, the state of the apparatus to perform an update or a response to the received control packet. 线路接口910-i执行在收容线路上传送的分组的发送接收。 Line interface 910-i performs transmission and reception of packets transmitted on the receiving line. (模式设定)环具有的节点装置900在节点装置900启动时的模式设定中决定用于使设备具有主从关系的"主设备"和"从设备"的各模式。 (Setting mode) of the ring mode setting means 900 having a start node in the node device 900 determines that the device has a "master" master-slave relationship and the "slave" in each pattern. 对环具有的各节点的模式设定,网络管理者使用管理终端30按每个节点来进行输入。 Pattern with each node of the ring is set, the network administrator using the management terminal 30 for each input node. 网络管理者输入的模式的信息经信号线L7输入到装置控制部940中。 Network administrator inputs mode information inputted through the signal line L7 to the device control section 940. 输入了模式信息的装置控制部940生成在L2有效载荷220上记载了模式信息的分组(模式信息分组),并向信号线L3 输出所生成的模式信息分组。 A mode information input device control unit 940 generates the L2 payload of packet mode information is described (mode information packet) 220, and outputs the generated signal line L3 mode information packet. 从信号线L3输入了模式信息分组的环管理部930的分组输入部931,识别为输入分组是模式信息分组,并输出到信号线L92。 Signal line L3 from the packet input unit 931 is input loop mode information packet management unit 930 recognizes the input packet is a packet mode information, and output to the signal line L92. 从信号线L92输入了模式信息分组的环状态管理部933以所输入的模式信息分组上记载的信息为基础来设定自身装置的模式(主节点(master node)、副主节点(submaster node)和从(slavenode)节点)。 L92 is inputted from the signal line on the model information described in the packet ring status information management unit 933 to a packet mode information based on the input to the setting mode of the own apparatus (master node (master node), the sub-master node (submaster node) and from (slavenode) node). (分组传送)主节点110和从节点120-l〜120-5在接收到分组200后,向目标传送分组。 (Transport packet) from the master node 110 and the node 120-l~120-5 after receiving the packet 200, the packet transmitted to the target. 具体说明如下,各节点装置900中,接收了分组200的线路接口910-i向信号线L8-i (i=l~N)输出所接收的分组200。 Described in detail below, each node apparatus 900, the receiving line interface 910-i packet 200 of the received signal line L8-i (i = l ~ N) 200 output to the packet. 分组传送部920 的分组传送处理器921从信号线L8-i中输入分组200,并从所接收的分组200上记载的信息中识别分组的类别。 Packet transfer unit 921 of the packet transmission processor 920 from the input packet 200 in the signal line L8-i, and the information described in the received packet from the identified 200 grouped by category. 这时,在接收分组200 是环分组的情况下,将接收分组200输出到信号线L1中。 In this case, in the case where the received packet 200 is a packet ring, the data outputted to the signal line L1 in packet 200. 另一方面,在所接收的分组200不是环分组的情况下,分组传送处理器921生成用于从L2头210中检索分组传送数据库922的检索键,并将所生成的检索键和检索命令输出到信号线L10中。 On the other hand, in the case where the packet is not a ring 200 of the received packet, the packet transmission processor 921 generates a header 210 from the L2 search key to search the database 922 of the packet transmission, the generated search key and the retrieval command output to the signal line L10. 检索的结果,将检索结果信息从L11输入到分组传送处理器921。 The result of the search, the search result information from the L11 is inputted to packet transmission processor 921. 这里,说明检索结果信息的结构。 Here, the configuration of the search result information. 图11是表示分组传送时的分组传送数据库922中存储的检索结果信息800的格式的说明图。 FIG 11 is a diagram showing the search result database 922 when the packet transfer packet transmission stored in the format information 800 described in FIG. 检索结果信息800包含后级处理指示标志811和输出接口信息820。 Search result information 800 includes the post-processing flag indicates an output interface 811 and information 820. 分组传送处理器921根据后级处理指示标志810决定适用于接收分组200的后级处理。 921810 packet transmission processor adapted to receive the decision stage 200 processes the packet according to the post-processing indicator. 这里,分组传送处理器921在后级处理指示标志810表示的后级处理例如是"向装置控制部的传送"的情况下,将接收分组200输出到信号线L5上。 Here, the packet transmission processor 921 in the case where post-processing, for example, is represented by 810 'is transmitted to the device control section "in the post-processing flag indicates the received packet is output onto the signal line 200 L5. 另外,分组传送处理器921在后级处理是"通常传送"的情况下,为了从输出接口信息820上记载的线路接口910-j (j=l~N, j#i)发送接收分组200,而将接收分组200 输出到信号线L8-j。 Further, the packet transmission processor 921 in the subsequent stage process is "normal transfer", the line interface according to the information from the output interface 820 910-j (j = l ~ N, j # i) 200 transmits the received packet, and outputs the received packet 200 to the signal line L8-j. 另外,分组传送处理器921在后级处理是"丢弃" 的情况下,丢弃接收分组200。 Further, the packet transmission processor 921 in the case where post-processing is "dropped", and discards the received packet 200. 下面,说明环具有的所有节点装置900 (模式设定已完成)中的环形协议启动后的动作。 Next, the ring means having all the nodes 900 (mode setting has been completed) an annular operation after startup protocol. 环形协议在网络管理者进行的对主节点110的管理终端30输入启动命令之后启动。 The management terminal 30 inputs the primary ring node 110 in the network protocol manager starts after start command. 通过网络管理者输入的启动命令经信号线L7输入到装置控制部940中。 The control unit 940 is input to the apparatus via the network manager start command input through the signal line L7. 输入了启动命令的装置控制部940生成在L2有效载荷220上记载了模式信息的分组(环形协议启动分组), 并向信号线L3输出所生成的环形协议启动分组。 Start command input unit 940 generates a control device in the L2 payload of packet mode according to the information on the 220 (loop start protocol packet), the packet start signal line L3 and outputs the generated ring protocol. 从信号线L3输入了记载模式信息的分组的分组输入部931,识别为输入分组是环形协议启动分组,输出到信号线L92。 The input signal line L3 from the packet input unit 931 according to mode information packet, the incoming packet is identified as an annular boot protocol packets, output to the signal line L92. 从信号线L92输入了环形协议启动分组的环状态管理部933,与将环形协议启动分组输出到信号线L96 同时地或大致同时地,启动环形协议管理定时器。 L92 is inputted from the signal line status management section annular ring protocol packet 933 starts with the ring protocol packet to the enable output signal line L96 simultaneously or substantially simultaneously, the ring protocol management timer starts. 这时,环状态管理部933使环状态转移到"正常"。 In this case, the ring status management unit 933 that the ring state to "normal." 之后,主节点110中,环形协议控制分组生成部934生成用于确认环状态的探测分组140。 Then, the master node 110, the ring protocol control packet generation unit 934 generates a probe for confirming the state of the ring 140 packets. 探测分组140使用分组200的形式。 Probe packet 140 in packets 200. 在探测分组140生成时,环形协议控制分组生成部934在L2有效载荷220 中,记载可从主节点IIO进行通信的从节点120的数(跳计数)为"O" 的(初始化后的)跳计数、和用于识别探测分组140的信息。 When probe packet 140 generates annular protocol control packet generation unit 934 in the L2 payload 220, described may be made from several (hop count) of the node 120 is "O" jump (after initialization) the communication from the master node IIO counting, and means for detecting the identification information 140 of the packet. 环形协议控制分组生成部934在生成探测分组140后,输出到信号线L97。 Ring protocol control packet generation unit 934 after generating the probe packet 140, output to the signal line L97. 从信号线L97输入了探测分组140的环分组输出部935识别出输入分组是探测分组140,并输出到信号线L2中。 L97 is inputted from the signal line loop detection packet output unit 140 of the packet 935 identifies the input packet is a probe packet 140, and output to the signal line L2. 从信号线L2输入了探测分组140的分组传送处理器921根据所输入的分组的L2有效载荷220上记载的信息,识别为是探测分组140。 L2 is input from the signal line probing packet 921 of packet transmission processor 140 described in the payload information 220 according to the inputted L2 packet, packet 140 is identified as a probe. 这时,分组传送处理器921复制探测分组140。 In this case, the packet transmission processor 921 140 replicate probe packet. 分组传送处理器921将复制结果成为2个的探测分组140分别输出到与作为线路接口910的构成要素的第一端口1101和第二端口1102相对应的信号线L8中。 Packet transmission processor 921 copies the result to become two probe packets 140 are output to the first port to the second port 1101 and 1102 as a constituent of the line interface 910 corresponding to the signal line L8. 之后,各探测分组140经对应于第一端口1101和第二端口1102的线路接口910来进行发送。 Thereafter, each probe packet corresponding to the first port 140 via the line interface 910 1102 1101 and the second port to be transmitted.

在环状态是正常的情况下,从图1的第一端口1101发送的探测分组140向第二端口1102顺时针在环上进行传送。 In the loop state is normal, the probe packet from the first port 1101 of the transmission 140 of FIG. 1 is transmitted on the second port 1102 to the ring clockwise. 另外,从第二端口1102发送的探测分组140向第一端口1101逆时针在环上传送。 Further, the second port 1102 from the probe 140 transmits packets transmitted on the first port 1101 to the ring counterclockwise.

第一端口1101和第二端口1102的定义可以与网络管理者通过管理终端30进行的模式设定同时进行。 Defining a first port and a second port 1101 and 1102 may be a network manager 30 by the mode setting management terminal simultaneously. 进一步,在模式设定时,在主交换器上定义环具有的从交换器数。 Further, when the mode setting, the ring having a defined number from the switch on the main switch.

虽然在图1中没有记载,但是主节点110的第二端口U02在逻辑上阻断数据分组。 Although not described in FIG. 1, the second port of the master node 110 U02 blocker data packet logically. 例如,在主节点110通过第二端口1102接收了从终端130-2向终端130-1的数据分组的情况下,丢弃所接收的数据分组。 For example, the master node 110 receives a packet from the case where the terminal 130-2 to the data terminal 130-1 discards the received data packets through the second port 1102. 逻辑上阻断数据分组的理由是:防止因数据分组因无限制在环上循环的"循环"状态而发生线路拥挤。 Blocking data packets reason logically: prevent the data packets on the ring due to unlimited circulating "loop" line congestion state occurs. 另外,该逻辑上的阻断仅丢弃数据分组,而不丢弃包含探测分组140的用于控制环的分组(控制分组)。 Further, on the logical block of data packets to discard only, without discarding the packet 140 containing the probe ring for controlling packet (control packet).

(流程图) (flow chart)

图3是表示探测分组140和跳计数报告分组150之间的关系的说明图。 FIG 3 is a diagram illustrating a relationship between the probe 150 and the packet hop count 140 Report Packet. 图4是基于从节点120的探测分组140的发送接收和跳计数报告分组150的发出处理的流程图。 FIG 4 is based on the transmission and reception report packet hop count from node 120 of the probe 140 of the flowchart of processing packets sent 150.

从节点120接收探测分组140,而将探测分组140的跳计数增加1 (步骤S401)。 Receiving a probe packet 140 from node 120, and the probe packet hop count 140 is incremented by one (step S401). 从节点120在探测分组140的跳计数增加后,从与接收端口相反侧的环用线路收容端口向相邻节点发送增加了跳计数后的探测分组140 (步骤S402)。 Increase in the probe 120 from the packet hop count of node 140, and the reception from the receiving side of the port opposite to the port ring with a neighboring node transmits line probing packet 140 increases (step S402) after the hop count. 另外,从节点120在与步骤S402 同时或在其前后,生成用于将探测分组140的到达程度传递给主节点110的跳计数报告分组150。 In addition, node 120 is transmitted to the master node in the hop count of 110 degrees reporting packet reaches step S402 simultaneously with or before or after, the probe generates a packet 140 from 150. 跳计数报告分组150包含在步骤S401 中增加后的跳计数。 Report packet contains a hop count 150 after the hop count is increased in step S401. 从节点120从接收了探测分组140的线路接口,向主节点110发送所生成的跳计数报告分组150 (步骤S403)。 From the receiving node 120 from the line interface 140 of the probe packet, the master node transmits the generated hop count 110 of the report packet 150 (step S403). 主节点110通过接收跳计数报告分组150,可以了解可从主节点110进行通信的最大跳数。 The master node 110 by receiving the hop count report packet 150, can understand may be made of the maximum number of hops from the master communication node 110.

下面表示上述各步骤的装置内动作。 The following represents the operation of the apparatus of the above steps. 在从节点120中,线路接口910-i在主节点110接收到发送源的探测分组140后,输出到信号线L8-i中。 After detection, the line interface 910-i in the master node 110 receives from the source node 120 to the transmission packet 140 is output to the signal line L8-i. 从信号线L8-i输入了探测分组140的分组传送处理器921, 根据所输入的分组上记载的信息,识别为是探测分组140。 L8-i from the signal line probing packet inputted packet transmission processor 921 140, according to the description of the information input packet, packet 140 is identified as a probe. 这时,分组传送处理器921更新在识别出的探测分组140内的L2有效载荷220 上记载的接收线路接口信息。 In this case, the packet transmission processor 921 updates identified in the L2 probe packets within a payload 140 receives the information described on the line interface 220. 之后,分组传送处理器921将更新了接收线路接口信息的探测分组140输出到信号线Ll。 Thereafter, the packet transmission processor 921 updates the information probing packet reception interface 140 to the output line of the signal line Ll. 从信号线Ll输入了探测分组140的环分组输入部931识别为输入分组是探测分组140,并输出到信号线L91。 Ll is inputted from the signal line probing packet ring packet input unit 140 is recognized as an input packet 931 is a probe packet 140, and output to the signal line L91. 在从节点120中,从信号线L91输入了探测分组140的探测分组管理部932将所输入的探测分组140的L2 有效载荷220上记载的跳计数例如增加1。 In the node 120, is input from the signal line L91 L2 packet detection probe packet management unit 140 of the probe 932 to the input 140 of the packet payload 220 on the hop count described in example 1 increases. 进一步,探测分组管理部932将复制结果成为2个的探测分组140分别输出到信号线L94和信号线L95。 Further, the probe packet management unit 932 copies the result to become two probe packets are output to the signal line 140 and the signal line L94 L95. 在从节点120中,从信号线L95输入了探测分组140的环分组输出部935与主节点110的环分组输出部935 —样,将所输入的探测分组140输出到信号线L2上。 In the node 120, is input from the signal line L95 ring packet output unit 935 to detect a packet ring packet output unit 140 of the master node 110, 935 - sample, the probe 140 outputs the packets input to the signal line L2.

在从节点120中,从信号线L2输入了探测分组140的分组传送处理器921,从与所输入的探测分组140的L2有效载荷220上记载的接收线路接口信息不同的环用线路收容端口发送探测分组140。 From node 120, is input from the signal line L2 probe packet of the packet transmission processor 921 140, a payload of different receive line interface 220 receiving information described on the line sent from the packet with the port ring 140 and L2 of the inputted probe probe packet 140. 即,发送探测分组140,使得在环上形成一周。 I.e., transmits a probe packet 140, such that the ring is formed on the week. 因此,分组传送处理器921将所输入的探测分组140,输出到对应于与所输入的探测分组140的L2有效载荷220上记载的接收线路接口信息不同的环用线路收容端口的信号线L8-m (m=l~N)。 Thus, the packet transmission processor 921 will detect the input packet 140, corresponding to the output L2 of the inputted probe packet payload 140 receives different information line interface circuit receiving a ring signal on line port 220 L8- described m (m = l ~ N). 之后,探测分组140经信号线L8-m,从对应于信号线L8-m的线路接口910-m加以发送。 Thereafter, the probe packet 140 through the signal line L8-m, corresponding to the signal to be transmitted from the line L8-m line interface 910-m.

另外,将向信号线L94输出的探测分组140输出到环形协议控制分组生成部934中。 Furthermore, probe packets will be output from the output signal line L94 140 to the ring protocol control packet generation unit 934. 在从节点120中,从信号线L94输入了探测分组140的环形协议控制分组生成部934,生成用于将探测分组140的到达程度传递给主节点的跳计数报告分组150。 From node 120, is input from the signal line L94 probe packet hop count report ring protocol control packet generation unit 140 of the 934 generates a transmission degree detecting the arrival of a packet 140 of packet 150 to the master node. 环形协议控制分组生成部934在生成时,使得跳计数报告分组150上应记载的跳计数,使用所输入的探测分组140上记载的跳计数(增加计数后的计数)。 Ring protocol control packet generation unit 934 when the generated report packet hop count that should be described in a hop count 150, the detection using the input packet hop count described in 140 (after the count is counted up). 另外,在L2有效载荷220上,记载输入了探测分组140的跳计数、和用于识别为是跳计数报告分组150的信息的探测分组140内的接收线路接口信息。 Further, the L2 payload 220, describes a probe packet hop count input 140, and a hop count is identified as probe information report packet 150 received packet information in the line interface 140. 生成后,环形协议控制分组生成部934将所生成的跳计数报告分组150输出到信号线L97。 Once generated, the ring protocol control packet generation unit 934 transmits the generated report packet hop count output 150 to the signal line L97. 从节点120中,从信号线L97 输入了跳计数报告分组150的环分组输出部935识别所输入的跳计数报告分组150,并输出到信号线L2。 From node 120, is input from the signal line L97 hop count report packet hop count packet output unit 935 reports the identification ring 150 of the input packet 150, and output to the signal line L2.

从信号线L2输入了跳计数报告分组150的分组传送处理器921 为了从与在所输入的跳计数报告分组150的L2有效载荷220上记载的接收线路接口信息相对应的线路接口910-1、发送所输入的跳计数报告分组150,而将跳计数报告分组150输出到对应于线路接口910-i 的信号线L8-i。 Is inputted from the signal line L2 hop count report packet 921 of packet transmission processor 150 to the received payload information described on the line interface 220 and 150 from the packet hop count reports L2 corresponding to the input line interface 910-1, hop count report 150 transmits the input packet, and outputs the hop count report packet 150 corresponding to the line interface 910-i of the signal line L8-i.

接收了探测分组140的相邻从节点120和其他多个从节点120 执行同样的处理。 Receiving a neighbor sounding packet 140 and a plurality of other execution node 120 from node 120 from the same process.

图12是传送基于从节点120的跳计数报告分组150的处理的流程图。 12 is a flowchart of the process 150 based on the packet hop count from node 120 transmits the report.

首先,从节点120接收跳计数报告分组150 (步骤S1201)。 First, the hop count from node 120 receives the report packet 150 (step S1201). 另外,不执行对所接收的跳计数报告分组150上记载的信息的更新。 Further, the update information is not performed on the hop count described in the report packet 150 received. 从节点120在接收到跳计数报告分组150后,为了传送到主交换器110, 而从与接收端口相反恻的环用线路收容端口向相邻节点发送跳计数报告分组150 (步骤S1202)。 Port transmitting node 120 after receiving the report packet hop count 150, to transmit to the main exchanger 110, and the reception from the housing opposite to the port ring with a sorrowful line hop count from the node to the neighbor report packet 150 (step S1202).

下面表示上述步骤的装置内动作。 The following represents the operation of the apparatus of the above-described steps. 从相邻的从交换器120-a (a=l~M)接收了跳计数报告分组150的从交换器120-b (b=l~M,b ^a)中,线路接口910-c (c=l~N)在接收到从相邻的从交换器120-a 发送来的跳计数报告分组150后,将所接收的跳计数报告分组150 输出到信号线L8-c。 Adjacent receiving the packet hop count report from the switch 120-a (a = l ~ M) from the switch 150 from the 120-b (b = l ~ M, b ^ a), the line interface 910-c ( c = l ~ N) after receiving the report packet 150 from an adjacent transmission hop count from the switch to the 120-a, the received hop count report packet 150 to the output signal line L8-c. 从信号线L8-c输入了跳计数报告分组150的分组传送处理器921根据所接收的分组上记载的信息识别为是跳计数报告分组150。 The signal from the input line L8-c report packet hop count 921 of the packet transmission processor 150 described in accordance with the information for identifying the received packet is a hop count report packet 150. 这时,分组传送处理器921为了从与接收了跳计数报告分组150的接收线路接口不同的环用线路收容端口,发送所接收到的跳计数报告分组150,而将跳计数报告分组150输出到与不同于接收了跳计数报告分组150的接收线路接口的环用线路收容端口相对应的信号线L8-d (d=l~N, d#c)。 In this case, the packet transmission processor 921 to the received hop count reported from the different packet reception line interface 150 of the line housing with the port ring, sends the received hop count report packet 150, and the hop count report packet 150 to the output Unlike the hop count and report the received packet interface 150 receives a ring line with the line corresponding to the port receiving the signal line L8-d (d = l ~ N, d # c). 之后,从对应于信号线L8-d的线路接口910-d发送跳计数报告分组150。 Thereafter, the corresponding signal line L8-d of the line interface 910-d report packet 150 transmitted the hop count.

图5是对基于主节点110的故障的应对动作的流程图。 FIG 5 is a flowchart illustrating an operation to deal with the failure of the master node 110. 使用图5 的处理流程来说明对基于主节点110的故障的应对。 Using the processing flow of FIG. 5 will be described based on the failure to respond to the master node 110. 另外,参照图7、 图9和图10,来详细描述各节点中的处理。 Further, referring to FIG. 7, FIG. 9 and FIG. 10 to process each node in the detailed description.

首先,主节点110如上所述,向自身收容的两个方向的环线路发出探测分组140 (步骤S501)。 First, the master node 110 as described above, the two directions of the housing ring itself probe packet 140 sent by the line (step S501). 主节点IIO检查在一定时间内,是否可以接收自身发出的、在环上成为一周并通过各从节点120相加了跳计数后的探测分组140,并且,所接收的探测分组140上记载的跳计数是否与环具有的从节点120的数目一致(步骤S502)。 The master node checks IIO within a certain time, whether the received itself emits become week ring and through the probe after the addition of the hop count from node 120 the packet 140, and, according to the hop 140 received probe packet whether the count coincides with the number of ring node 120 (step S502). 另外,环具有的从节点120的数目预先设定在适当的存储器中。 Further, the ring having a number of nodes 120 from the previously set in an appropriate memory. 另外,在步骤S502中,也可判断探测分组140是否可接收、或跳计数是否与从节点120的数目一致的其中之一。 Further, in step S502, it may be determined whether the probe 140 may receive a packet, or whether one of a hop count from the same number of nodes 120 therein. 主节点110若在步骤S502中为是, 则回到步骤S501,另一方面,若是否,则移到步骤S503。 If the master node 110 in step S502 is YES, the process returns to step S501, the other hand, if NO, then moves to step S503.

若详细描述步骤S502,则在主节点110中,首先,线路接口910-i 将所接收的探测分组140输出到信号线L8-i。 When the detailed description of step S502, the master node 110, first, the line interface 910-i outputs the received probe packet 140 to the signal line L8-i. 从信号线L8-i输入了探测分组140的分组传送处理器921根据所输入的分组上记载的信息识别出是探测分组MO,并输出到信号线L1。 From the signal input line L8-i probing packet transmission processor 140 of the packet 921 based on the information described in the packet identifies the input packet is a probe MO, and output to the signal line L1. 从信号线L1输入了探测分组140的环分组输入部931识别为所输入的分组是探测分组140,而输出到信号线L91。 L1 is inputted from the signal line probing packet ring packet input unit 140 of the packet 931 is recognized as an input packet 140 is to detect, and output to the signal line L91. 主节点110中,从信号线L91输入了探测分组140的探测分组管理部932与从节点120不同,不进行所输入的探测分组140的跳计数的增加,而将所输入的探测分组140输出到信号线L93。 The master node 110, the signal line L91 is inputted probing packets probe packet management unit 140, 932 is different from the node 120, without the input probe packet increases 140 the hop count, and the detection input packet output 140 to the a signal line L93. 从信号线L93输入了探测分组140的环状态管理部933 确认输入了探测分组140的定时是否在预先设定的环形协议管理定时器的有效时间内。 L93 is inputted from the signal line loop state management unit 140 of the probe packet 933 to confirm the input timing of the probing packet 140 is within the effective time management timer annular protocol preset. 另外,环状态管理部933同时或大致同时地比较在探测分组140的L2有效载荷220上记载的跳计数、和在模式设定时所定义的环具有的从节点数。 Further, the ring state management unit 933 simultaneously or substantially simultaneously L2 140 compares the probe packet payload 220 hop count described, and when the mode setting defined from a ring having nodes. 环状态管理部933在预先设定的环形协议管理定时器的有效时间内输入探测分组140,且探测分组140的L2有效载荷220上记载的跳计数与在模式设定时定义的环具有的从节点数一致的情况下,经信号线L96将用于生成新的探测分组140 的指令输出到环形协议控制分组生成部934。 Ring state management unit 933 inputs the packet 140 to detect the effective time management timer annular protocol set in advance, and the probe 140 of the L2 payload of packet hop count described in the definition of the ring 220 when the mode setting from having the same number of nodes, the L96 via the signal line for generating a new probe packet output instruction 140 to the ring protocol control packet generation unit 934. 另外,对于由环形协议控制分组生成部934生成的探测分组140的处理如上述那样。 Further, the control packet generation unit 934 by an annular protocol packet generated probe process 140 as described above.

在满足步骤S502的条件的情况下,主节点110执行步骤S501。 In the case where the condition of step S502, the master node 110 performs step S501. 另一方面,在不满足的情况下(步骤S502),主节点110解释为环上发生了故障,并将环状态管理部933的环的状态转移到"发生故障"。 On the other hand, in the case of not satisfied (step S502), 110 master node is interpreted fault occurs on the ring, and the ring loop state status management section 933 proceeds to "fail." 之后,解除逻辑上阻断数据分组的第二端口1102的逻辑阻断。 Thereafter, the logical block of data packets is released from the second port 1102 of the logic block.

步骤S503中,主节点110在解除第二端口1102的逻辑块后或在阻断之后立即地,发出促使传送用数据库更新的第一消息(Flush FDB-1)(步骤S503)。 After step S503, the master node logic block 110 is released or the second port 1102 immediately issued a first message by transmitting an update causes database (Flush FDB-1) (step S503) after an interruption. 另外,FlushFDB-1有促使故障发生时的传送用数据库更新的含义。 Further, FlushFDB-1 causes movement when there is a failure to update the database of meanings. 另外,主节点110开始对可以从主节点110 进行通信的从节点数进行计测。 Further, the master node starts the nodes 110 may communicate from master node 110 is measured. 例如,设可从主节点110进行通信的从节点数为"0"。 For example, can be provided from the master node 110 from the communication nodes is "0."

下面,详细描述步骤S503。 Hereinafter, a detailed description of step S503. 环状态管理部933在预先设定的环形协议管理定时器的有效时间内没有输入探测分组140的情况下(步骤S502),或所输入的探测分组140的L2有效载荷220上记载的跳计数与在模式设定时定义的环具有的从节点数不一致的情况下(步骤S502),判断为发生环上的故障(第一故障)。 Ring state management unit 933 is not input within the annular effective time management timer preset protocol probe packet in the case 140 (step S502), or the input 140 of the L2 probe packet payload 220 hop count described in the the ring having from inconsistent nodes defined in the case of setting mode (step S502), it is determined that the fault (the first fault) occurs on the ring. 这时,应进行管理的环的状态转移到"故障发生"。 In this case, the state should be transferred to the management rings "fault." 环状态管理部933同时或大致同时, 开始对可从主节点110进行通信的从节点数进行计测。 Ring state management unit 933 simultaneously or substantially simultaneously, starts from the nodes from the master node 110 may be communicating measured. 例如,这里设从主节点110可进行通信的从节点数为"0"。 For example, there may be provided from the master node 110 from the communication nodes is "0." 之后或之后立即地, 环状态管理部933对环形协议控制分组生成部934通知环上发生故障。 After, or immediately after, the ring status management unit 933 on the ring 934 protocol failure notification packet generation loop control unit. 环形协议控制分组生成部934为了将环上发生故障通知给装置控制部940,而经环分组输出部935将故障发生通知分组输出到信号线L4。 Ring protocol control packet generation unit 934 to output the packet to a failure in the ring to the apparatus notifies the control unit 940, and via a ring packet output unit 935 to notify the occurrence of the fault signal line L4.

从信号线L4输入了故障发生通知分组的装置控制部940将所输入的故障发生通知分组输出到信号线L6和L7。 L4 is inputted from the signal line control unit means failure notification packet 940 to the input fault occurrence notification signal to the packet output line L6 and L7. 从信号线L7输入了故障发生通知分组的管理终端30中,将故障发生通知和故障发生通知分组的输入时刻显示在例如显示部上。 L7 is inputted from the signal line failure notification packet management terminal 30, the input time of the failure notification and fault notification packet is displayed, for example on a display unit. 从信号线L6输入了故障发生通知分组的分组传送处理器921解除在模式设定时所定义的第二端口1102的逻辑阻断。 Inputted from the signal line L6 processor packet transfer failure notification packet logic 921 is released at the second port 1102 defined mode setting blocked. 分组传送处理器921在解除第二端口1102的逻辑阻断后或之后立即地,将用于删除在分组传送数据库922上记载的分组传送用信息的指令输出到信号线LIO。 Packet transmission processor 921 is released after the second port logic block 1102 or immediately after, it will be described for deleting a packet transmission on the packet transfer database 922 with the output to the signal lines LIO instruction information. 另外,分组传送处理器921为了从在模式设定时所定义的第一端口1101和第二端口1102发送传送用数据库更新分组,而将传送用数据库更新分组(FlushFDB-l)输出到对应于第一端口1101和第二端口1102的信号线L8-e (e=l~N)和信号线L8-f (伊l〜N,e^f) 上。 Further, the processor 921 transmits the packet to a first port and a second port 1101 from the time 1102 is set in a defined pattern database update by transmitting transmission packets and update the database with the output transmission packet (FlushFDB-l) corresponding to the first a port and a second port 1101 line 1102 signal L8-e (e = l ~ N) and a signal line L8-f (Yi l~N, e ^ f) on. 传送用数据库更新分组可以使用分组200的形式。 Transmission packet may be used to update the database 200 in the form of packets. 在传送用数据库更新分组的生成时,分组传送处理器921在L2有效载荷220上记载用于识别环上的故障的发生和传送用数据库更新分组的信息。 When transmitting a packet generating database update, the packet transmission processor 921 220 describes the L2 payload information generating and transmitting a fault on the ring with identification database update packet.

主节点110中,分组传送数据库922根据来自分组传送处理器921的指示,删除了分组传送用信息的结果,变为没有传送数据分组用的信息的状态。 The master node 110, packet transmission database 922 according to an instruction from the packet transmission processor 921 deletes the packet transfer with the result information, information is not transmitted data packets becomes used state. 这时,分组传送处理器921即使输入数据分组,作为分组传送数据库922的检索结果也不表示所输入的数据分组的目标。 In this case, even if the input packet transmission processor 921 data packet, the packet as a search result database 922 is not transmitted by the input data representing the target packet. 分组传送处理器921为了经所收容的所有线路接口910,来发送所输入的数据分组,而将所输入的数据分组分别输出到信号线L8-1〜 L8-N。 921 for packet transmission processor 910 to transmit data packets input via the line interface receiving all the data packets of the inputted outputs to the signal line L8-1~ L8-N. 该动作称作洪泛(flooding)。 This operation is referred to flooding (flooding).

洪泛的结果,数据分组的目标在所发送的数据分组到达目标时, 将通知数据分组的接收用的消息发送到洪泛执行节点。 Receiving a result message flooding, the target data packets in the transmitted data packet reaches the target, the notification data packet to node performs flooding. 接收了数据分组接收确认消息的洪泛执行节点将所发送的数据分组的目标、和接收了数据分组接收确认消息的线路接口910-i相对应。 Flooding execution node receives the data packet reception confirmation message of the transmitted data packets target, and reception of data packet reception confirmation message of the line interface 910-i, respectively. 把这个称作地址学习。 Call this address learning. 主节点110中,通过洪泛和地址学习的重复,来更新分组传送数据库922。 The master node 110, through repeated learning and flooding address database 922 to update the packet transmission.

从相邻的节点接收了Flush FDB-1的从节点120的分组传送处理器921根据接收分组上记载的信息识别为是传送用数据库更新分组。 Flush FDB-1 received from the packet transmission processor 921 of the node 120 according to the identification information described in the received packet is transmitted to a database update packet from an adjacent node. 之后,分组传送处理器921将删除在分组传送数据库922上记载的分组传送用信息用的指令输出到信号线LIO。 Thereafter, the packet transmission processor 921 deletes the packet transmission in the packet transfer according to the database 922 to the signal output line LIO used by the instruction information. 另外,与从节点120的分组传送数据库922的更新有关的动作与主节点110相同。 Further, the same operation related to the master node from the database update packet transfer node 120 922 110. 同时或在其之后,分组传送处理器921为了从与在传送用数据库更新分组的L2有效载荷220上记载的接收线路接口信息不同的环用线路收容端口, 发送传送用数据库更新分组,而将传送用数据库更新分组输出到对应于与接收线路接口信息不同的环用线路收容端口的信号线L8-m。 Simultaneously with or subsequent to, the processor 921 transmits the packet to the payload from a packet transmitted in the database is updated with the different receive lines L2 interface information described on the line housing 220 with the port ring, a database update packet transmission transmits, to the transfer of a database update packet is outputted to the corresponding port accommodated in the reception line interface circuit rings of different information signal lines L8-m.

接着,步骤S504中,主节点110继续进行探测分组140的发出, 而不管有无故障(步骤S504)。 Next, in step S504, the master node 110 continues probing packet 140 sent, regardless of presence or absence of failure (step S504). 另外,主节点110与步骤S502相同, 检査在一定时间内是否可以接收自身发出的由从节点120相加了跳计数的探测分组140,且所接收的探测分组140上记载的跳计数是否与在模式设定时所定义的环具有的从节点120的数目一致(步骤S505)。 Further, the master node 110 and the same step S502, checks whether the received hop count by the adding node 120 from the probe 140 itself packets sent in a certain time, and the received hop count described probe packet 140 whether when the mode setting ring having a defined number of matches from node 120 (step S505).

在满足步骤S505的条件的情况下(步骤S505,是),主节点110识别为环上没有故障。 In the case where the condition of step S505 (step S505, YES), the master node 110 recognizes that there is no failure on the ring. 这时,主节点110使应进行管理的环的状态转移为"正常"。 In this case, the master node 110 to manage a state of the ring should be transferred to "normal." 另外,在逻辑上阻断第二端口1102,并发出促使传送用数据库更新的消息(Flush FDB-2)(步骤S507) 。 Further, blocking the second port 1102 logically, with the message transmission causes a database update (Flush FDB-2) (step S507). Flush FDB-2具有促使故障恢复时的传送用数据库的更新的含义。 Flush FDB-2 have the meaning database for transmitting updated when prompted failure recovery.

下面,详细描述步骤S504〜S505和步骤S507,以及与这些步骤有关的环内的分组处理过程。 Hereinafter, steps S504~S505 and step S507, and the packet processing within the loop of the steps associated detailed description. 主节点110的环状态管理部933在识别应进行管理的环中的故障发生后,还继续进行环状态的诊断。 After the loop state management unit 110 of the master node 933 to be managed in identifying a fault occurs in the ring, also continued diagnostic loop state. 因此, 环状态管理部933为了使环形协议控制分组生成部934生成探测分组140,而将促使探测分组140生成的信号输出到信号线L96。 Thus, the ring status management unit 933 to the ring protocol control packet generation unit 934 generates a sounding packet 140, the packet will cause the output signal generated by the probe 140 to the signal line L96. 另外, 对于主节点110的生成后的探测分组140的处理和上述相同。 Further, for the detection of process and the same master node generates the packet 110 140. 环状态管理部933与促使探测分组140的生成的信号输出同时地或大致同时地,复位环形协议管理定时器。 Ring state management unit 933 causes the detection output signal generated packet 140 simultaneously or substantially simultaneously, the timer is reset ring protocol management.

在探测分组140的发送后,在不满足作为与步骤S502相同条件的步骤S505的情况下,环状态管理部933识别为环中的故障继续。 After transmitting the probe packet 140, is not satisfied as in the case of step S502 and step S505 in the same conditions, the ring management section 933 recognizes the state of the fault loop continues. 另一方面,在满足步骤S505的情况下,环状态管理部933识别为环上的所有故障已恢复,而将环的状态转移为"正常"。 On the other hand, in the case where step S505 is satisfied, the ring management section 933 recognizes the state of all faults on the ring has been restored, and ring transition state is "normal." 之后,环状态管理部933对环形协议控制分组生成部934通知环上的故障的恢复。 Then, state management unit 933 ring the ring protocol control failure recovery notification ring 934 on the packet generating unit. 另外,环状态管理部933在识别应进行管理的环中的故障恢复后,继续进行环状态的诊断。 Furthermore, the ring management section 933 in the state identified should be managed in ring fault recovery after, loop state diagnosis is continued. 因此,环状态管理部933与识别故障发生后一样,为了使环形协议控制分组生成部934生成探测分组140,而将促使探测分组140的生成的信号输出到信号线L96。 Therefore, the state management portion 933 and the ring identified as a failure, to the ring protocol control packet generation unit 934 generates a sounding packet 140, the packet will cause the output signal generated by the probe 140 to the signal line L96. 环形协议控制分组生成部934为了向装置控制部940通知环上的故障恢复,而将故障恢复通知分组输出到信号线L4。 Ring protocol control packet generation unit 934 in order to recover failure on the control unit 940 notifies the ring means, and the failure recovery notification packet output to the signal line L4.

从信号线L4输入了故障恢复通知分组的装置控制部940将所输入的故障恢复通知分组输出到信号线L6和L7。 L4 is inputted from the signal line 940 the fault recovery means for controlling the input of the restoration notification unit notifying packet to the packet output signal line L6 and L7. 在从信号线L7输入了故障恢复通知分组的管理终端30中,将故障恢复通知和故障恢复通知分组的输入时刻例如显示在显示部上。 The management terminal 30 in the restoration notification signal line L7 packet inputted from the fault, fault recovery and restoration notification notifying packet input time, for example, on the display unit.

从信号线L6输入了故障恢复通知分组的分组传送处理器921逻辑上阻断在模式设定时所定义的第二端口1102。 Restoration notification signal line L6 packet inputted from the packet transfer failure processor 921 block from the second port 1102 when the mode is set logically defined. 分组传送处理器921 在逻辑上阻断第二端口1102后或者之后立即地,将删除在分组传送数据库922上记载的分组传送用信息用的指令输出到信号线LIO。 After the packet transmission processor 921 block from the second port 1102 is logically or immediately after the delete packet transmission described in the packet transfer database 922 to the signal output line LIO used by the instruction information. 另外,分组传送处理器921与故障发生时同样,为了从模式设定时所定义的第一端口1101和第二端口1102中发送传送用数据库更新分组, 而输出到对应于第一端口1101和第二端口1102的信号线L8-e和信号线L8-f。 Similarly, a database update packet transmission transmitted by the first port to the second port 1101 and 1102 when the mode setting from the defined packet transmission processor 921 and a failure occurs while the output port corresponding to the first and second 1101 two-port signal line 1102 and a signal line L8-e L8-f. 传送数据库更新分组使用分组200的形式。 Transmitting a packet using the database update packet 200 in the form of. 在传送用数据库更新分组的生成时,分组传送处理器921在传送用数据库更新分组的L2有效载荷220上记载识别环上的故障发生和传送用数据库更新分组用的信息。 When transmitting a packet generating database update, the packet transmission processor 921 sends an update packet in the L2 payload of the database records identification information of a fault on the occurrence of the ring and sending an update packet with the use of the database 220. 环具有的节点装置卯0中的传送用数据库的更新步骤如上述那样。 Transfer means having a ring node with d 0 the step of updating the database as described above.

另一方面,在不满足步骤S505的条件,即,环上的故障在继续的情况下(步骤S505,否),主节点110计算在一定时间内从环的两个方向(第一端口1101和第二端口1102)报告(接收)的最大跳计数的和(步骤S509)。 On the other hand, the condition is not satisfied in step S505, i.e., a fault on the ring in the case of continuing (step S505, NO), the master node 110 is calculated within a certain time from two directions of the ring (a first port 1101 and the second port 1102) report (received) and the maximum hop count (step S509). 另外,主节点110按每个端口来管理从各端口接收的跳计数报告分组150中包含的跳计数的最大值。 Further, the master node 110 for each port to manage the packet 150 contained in the maximum hop count from the received hop count of each port reports. 主节点110确认是否更新在步骤S503中幵始测量的"可从主节点110进行通信的从节点数"(步骤S510)。 The master node 110 checks whether the update in step S503 starts its measurements "can be performed from the communication nodes from the master node 110" (step S510). 这里,在"可从主节点110进行通信的从节点数"未更新的情况下(或"可从主节点IIO进行通信的从节点数"为"0"的情况下),主节点110求出步骤S509中求出的"在一定时间内从环的两个方向报告的最大跳计数的和",代入(更新)至"可从主节点110进行通信的从节点数"(步骤S511)。 Here, in a case where "the number of nodes available for communication from the master node 110" is not updated (or "nodes from the master node a communication from the IIO" case "0"), the master node 110 is obtained obtained in step S509, "the maximum hop count reported from both directions of the ring and within a certain time", substituting the (updated) to "available from the communication nodes from the master node 110" (step S511). 返回到步骤S504。 Returns to step S504.

下面,详细描述步骤S509〜S511。 Hereinafter, a detailed description of steps S509~S511. 首先,说明主节点110中的跳计数报告分组150的接收时的动作。 First, the master node 110 a hop count report operation when the packet reception 150. 主节点110中,收容第一端口1101和第二端口1102的线路接口910-e和线路接口910-f在接收到跳计数报告分组150后,输出到对应的信号线L8-e或信号线L8-f。 After the master node 110, receiving the first port and the second port line interface 1101 1102 910-e and 910-f line interface 150 receives the packet hop count report output to a corresponding signal line or a signal line L8-e L8 -f. 输入了从信号线L8-e或信号线L8-f接收的跳计数报告分组150的分组传送处理器921,根据所输入的分组上记载的信息识别为是跳计数报告分组150。 The hop count report receiving input from the signal line or signal lines L8-e L8-f packets of the packet transmission processor 921 150, according to the identification information described on the packet hop count is entered for the report packet 150. 这时,更新在所输入的跳计数报告分组150内的L2 有效载荷220上记载的接收线路接口信息(这种情况下,将接收线路接口910-e和线路接口910-f作为更新对象的信息来使用)。 In this case, the hop count update L2 report packet input 150 receives the payload information described on the line interface 220 (in this case, the receive line interface 910-e and 910-f line interface as the update target information to use). 之后, 分组传送处理器921将所输入的跳计数报告分组150输出到信号线Ll。 Thereafter, the packet transmission processor 921 converts the input packet hop count output report 150 to the signal line Ll. 从信号线Ll输入了跳计数报告分组150的环分组输入部931识别为输入分组是跳计数报告分组150,而输出到信号线L92。 Is inputted from the signal line Ll hop count report packet ring packet input unit 150 of the packet 931 is recognized as an input hop count report packet 150, and outputs to the signal line L92. 主节点110中,从信号线L91输入了跳计数报告分组150的环状态管理部933确认环形协议管理定时器的限制时间是否有效。 The master node 110, is input from the signal line L91 hop count status report packet management unit 150 of the ring 933 ring protocol management acknowledgment timer time limit is valid. 在环形协议管理定时器的限制时间为有效的情况下,环状态管理部933记录在L2有效载荷220上记载的接收线路接口信息和跳计数。 The annular protocol management timer time limit is valid, the loop state management unit 933 records the received payload information and the hop count of the interface circuit 220 described in L2. 环状态管理部933 在环形协议管理定时器的有效时间内接收后续的跳计数报告分组150时,在后续的跳计数报告分组150上记载的接收线路接口信息、 与环状态管理部933上记载的跳计数报告分组150的接收线路接口信息相同的情况下,将对应于接收线路接口的跳计数的值更新为后续的跳计数报告分组150上记载的跳计数值(或值大的一方的计数值)。 When the state of the ring management section 933 receives a subsequent report packet hop count 150 in the effective period of the timer ring protocol management, report in subsequent packets received hop count information described on the line interface 150, according to the state management unit 933 of the ring count value updates the value of the hop count in the case where the hop count reporting packets of the same receive line interface information 150, corresponding to the received line interface for subsequent hop count report packet hop count values ​​described in 150 (or the larger value of ).

环状态管理部933在没有环形协议管理定时器的限制时间时,将对应于接收线路接口910-e的跳计数的值和对应于接收线路接口910-f的跳计数的值相加。 Ring state management unit 933 when the ring protocol management no time limit timer, the hop count value corresponding to the received line interface 910-e and the hop count value corresponding to the received line interface 910-f are added. 即,得到由接收线路接口910-e和910-f接收的跳计数的最大值之和。 I.e., obtain the maximum value of the hop count received by the receiver and a line interface 910-e and 910-f.

之后,环状态管理部933在故障发生时确认设定为"0"的"可从主节点IIO进行通信的从节点数"的值。 Thereafter, the ring status management unit 933 to confirm the value of "the number of nodes available for communication from the master node the IIO" is set to "0" when a fault occurs. 这里在仍为"0"(未更新)的情况下,环状态管理部933使用在步骤S509中求出的"一定时间内从环的两个方向报告的最大跳计数的和",来更新"可从主节点iio进行通信的从节点数"。 In the case here remains "0" (not updated), the ring status management unit 933 in step S509 determined "within a predetermined time from two directions report rings and a maximum hop count" updated " available from nodes "communication from the master node iio. 更新后,主节点110内的环状态管理部933设置(掛tt;5)执行步骤S504用的触发。 After the update, the inner loop state management unit 110 of the master node 933 is provided (linked tt; 5) with a trigger step S504. 通过该触发来执行步骤S504之后的处理。 To perform the processes after step S504 through the trigger.

在步骤S510中,在"可从主节点UO进行通信的从节点数"的值不是"0"的情况下("可从主节点IIO进行通信的从节点数"的值已经更新完毕的情况下),主节点110内的环状态管理部933确认步骤S509中求出的"一定时间内从环的两个方向报告的最大跳计数的和"是否小于"可从主节点IIO进行通信的从节点数"(步骤S512)。 In the case of step S510, in a case where "available from a number of nodes communicating from the master node a UO" is not "0" (value "may be the number of nodes in communication from the master node the IIO" has been updated to ), the ring portion in the main state management node 110 933 confirmed in step S509 determined "within a certain time reported from two directions rings and the maximum hop count" is less than "can be performed from the master node from the communication node IIO number "(step S512). 在"一定时间内从环的两个方向报告的最大跳计数的和"小于"可从主节点IIO进行通信的从节点数"的情况下(步骤S512),主节点110内的环状态管理部933识别出环中的多重故障的发生。 Less than, the ring status management unit 110 in the case where the master node "may be made from a number of nodes from the master node to communicate the IIO" (step S512) in the "maximum hop count and report certain period of time from two directions rings" 933 recognize the occurrence of multiple failures in the ring. 这时,主节点100内的环状态管理部933使用"一定时间内从环的两个方向报告的最大跳计数的和",来更新"可从主节点IIO进行通信的从节点数"(步骤S513)。 In this case, the ring status management unit 100 in the master node 933 using the "certain period of time the maximum hop count reported from both directions of the ring and" update "can be from a number of nodes from the master node to communicate the IIO" (step S513). 在更新"可从主节点110进行通信的从节点数" 后,主节点110内的环状态管理部933设置执行步骤S504用的触发。 After updating the "number of nodes can be performed from the communication from the master node 110", a state management unit within the ring master node 110,933 is provided with a trigger step S504.

在步骤S512中,主节点110内的环状态管理部933在步骤S509 中求出的"一定时间内从环的两个方向报告的最大跳计数的和"不小于"可从主节点IIO进行通信的从节点数"的情况下(步骤S512), 确认"可从主节点110进行通信的从节点数"是否小于"在一定时间内从环的两个方向报告的最大跳计数的和"(步骤S514)。 "And the maximum hop count reported from both directions of the ring within a certain time" not less than "from the master node may communicate IIO In step S512, the ring management section 933 in the state of the master node 110 is determined in step S509 "case (step S512), confirmation" from the nodes may be master nodes from the communication node 110 "is smaller than" report from the two directions of the ring for a certain time and the maximum hop count "(step S514). 在"可从主节点110进行通信的从节点数"与"在一定时间内从环的两个方向报告的最大跳计数的和"为相同值的情况下(步骤S514中否), 主节点110内的环状态管理部933设置执行步骤S504用的触发。 In the "available from the communication nodes from the master node 110" and "Report from the two directions of the ring for a certain time and the maximum hop count" for the case of the same value (NO in step S514), the master node 110 ring state management unit 933 is provided in the step S504 is executed by the trigger. 另一方面,在"可从主节点110进行通信的从节点数"小于"在一定时间内从环的两个方向报告的最大跳计数的和"的情况下(步骤S514, 是),环状态管理部933识别为环上的一个以上的故障恢复了。 On the other hand, in the "From nodes may communicate from master node 110 'is smaller than the" maximum hop count reported from both directions of the ring and within a certain time "in the case (step S514, the Yes), the state of ring management unit 933 recognizes a fault on one or more ring restored. 这时, 使用"在一定时间内从环的两个方向报告的最大跳计数的和",来更新"可从主节点110进行通信的从节点数",而发出FlushFDB-2 (步骤S515)。 In this case, using the "maximum hop count reported from both directions of the ring and within a certain time" update "the nodes can communicate from master node 110", issued FlushFDB-2 (step S515). 但是,由于环中的所有故障没有恢复,所以环状态管理部933不转移应进行管理的环的状态而仍为"故障发生",并设置执行步骤S504用的触发。 However, since not all faults in the recovery loop, so the loop state management unit 933 does not transfer state shall be administered and the ring remains "failure", and set the execution of step S504 with the trigger. 如上所述,重复执行步骤S504〜S515,直到环上的所有故障恢复。 As described above, repeatedly performed steps S504~S515, until all the faults on the ring recovery.

这里,说明图1的单一环形网络100中的故障位置的例子。 Here, an example of a single ring network fault location 100 in FIG. 例如, 在主节点110的第一端口1101不能接收跳计数报告分组150的情况下,可以进行估计的故障位置,有主节点110的线路接口的故障、从节点120-1的线路接口的故障、和从节点120-1装置内的故障等的可能性。 For example, the first port of the master node can not receive 1,101,110 hop count in the case where the report packet 150 may be made fault location estimation, the faulty line interface of the master node 110, slave node of the fault line interface 120-1, and possibility from node 120-1 apparatus failure or the like. 作为装置内的故障,例如有因分组传送部的故障不能传送探测分组140和跳计数报告分组150的情况,或因环管理部的故障而不能生成跳计数报告分组150的情况等。 A fault within the device, for example due to a failure of the packet transfer unit 140 can not transmit the probe packet and report packet hop count 150 of the case, due to a failure or the ring management section generates the hop count is not the case report packet 150, and the like.

另外,在主节点110的第一端口1101上不能接收跳计数报告分组150的情况下,可以根据跳计数报告分组150的跳计数的数,估计哪里的节点上发生了故障。 Further, on the first port 1101 of the master node 110 can not receive the reporting packet hop count 150, a hop count may be grouped according to the hop count 150 of the report, where the estimated failure occurs on the node. 例如,在跳计数报告分组150的跳计数的数为1的情况下,可进行估计的故障位置,有从节点120-1将探测分组140发送到从节点120-2用的线路接口的故障、从节点120-2的线路接口的故障、从节点120-2装置内的故障等的可能性。 For example, a hop count number of packets 150 in the case where the hop count is reported as 1 may be made of the fault location estimate, there will be from the node 120-1 transmits a probe packet 140 to node 120-2 from the fault with the line interface, from the fault line interface node 120-2, from the possibility of failure in the node apparatus 120-2. 这里的故障的例子仅说明了第一端口1101,但对于第二端口1102也相同。 Examples of failure here only shows the first port 1101, to the second port 1102 but also the same.

这里,举环上的多个故障(多重故障)的发生和跳计数数之和的关系的例子来进行说明(例如参照图15)。 Examples of the relationship between the number and here, a plurality of failure (multiple failure) occurs on the lifting ring and the hop count will be described (see FIG. 15). 例如,在图1的环形网络上,在从交换器120-2和从交换器120-3之间的信号线或线路接口上发生了故障(第一故障)的情况下,主节点IIO从第一端口1101 接收跳计数数为2的跳计数报告分组150,从第二端口1102接收跳计数数为3的跳计数报告分组150 (和是5)。 For example, in the ring network of FIG. 1, and in the event of a fault (the first fault) from the signal line between the line interface 120-3 or switch 120-2 from the exchanger, the master node from the IIO port 1101 receives a count of the number of hops 2 hops count report packet 150, received from the second port 1102 hops hop count counting report packet 150 3 (and 5). 这里,进一步,在从交换器120-4的装置内发生了故障(第二故障)的情况下,主节点110 从第一端口1101接收跳计数数为2的跳计数报告分组150,从第二端口1102接收跳计数数为1的跳计数报告分组150 (和减少为3)。 Here, when further, the fault (the second fault) in the apparatus from the switch 120-4, the master node 110 from the first port 1101 receives the hop count is 2 hops count report packet 150 from the second port 1102 receives hop count number of 1 hop count report packet 150 (and reduced to 3). 由此,主节点110识别出在环上发生了多重故障。 Accordingly, the master node 110 recognizes that multiple fault occurs on the ring.

接着,例如,若从交换器120-2和从交换器120-3之间的信号线的故障恢复,则主节点IIO从第一端口1101接收跳计数数为3的跳计数报告分组150,从第二端口1102接收跳计数数为1的跳计数报告分组150 (和增加为4)。 Next, for example, if the switches 120-2 and recovered from the failure between the signal line from switch 120-3, the master node from the first port 1101 receives the IIO hop count is the number of hop counts 3 report packet 150, from the second port 1102 receives a hop count of the number of hop count report packet 150 (and increased to 4). 主节点110识别为至少一个故障恢复了。 The master node 110 recognizes at least one of the recovery. 主节点110在识别故障发生和故障恢复后,输出传送用数据库更新分组(FlushFDB-1或FlushFDB-2),并适当更新环构成节点的传送用数据库。 After identifying the master node 110 and a failure recovery, it outputs the transmission packet to update the database (FlushFDB-1 or FlushFDB-2), and appropriately updated with the transmit node rings database.

另外,在该例中,说明了信号线或线路接口、和装置内的故障的多重故障,但是对于信号线的多重故障或装置内的多重故障,同样地跳计数数之和增加或减少。 Further, in this embodiment, the signal lines described line interface, and multiple faults or failures in the device, but multiple failures for multiple faults within the device or signal line, in the same manner and the hop count number of increase or decrease.

2.第二实施方式 2. Second Embodiment

图14是第二实施方式中的环形网络的结构图。 FIG 14 is a configuration diagram of a ring network in the second embodiment.

第二实施方式中,说明图1所示的主节点110上发生了故障的情况,或因多重故障而不能从主节点110接收探测分组140的情况。 Case of the second embodiment, the fault occurred on the master node 110 shown in FIG. 1, due to multiple failures or not from the master node 110 receives packets 140 of the probe case. 对于网络的结构,与第一实施方式相同。 For the structure of the network is the same as the first embodiment. 但是,本实施方式中,将从节点120之一定义为"副主节点"120-6。 However, in this embodiment, is defined by one from the node 120 is "submaster node" 120-6.

副主节点120-6在主节点IIO上发生了故障的情况下,将状态转移到"主设备",而实现与主节点IIO相同的作用。 If the sub master node 120-6 failure occurs on the primary node IIO, the state proceeds to "master", while the master node IIO achieve the same effect. 处于"主设备" 状态的副主节点120-6在本来的主节点IIO从故障恢复的情况下,转换为原来的状态("副主设备"的状态)。 In the "Master" status submaster node 120-6 in the case of the original primary node IIO recovered from the failure, it is converted to the original state (state "sub master device"). 另外,副主节点120-6在主节点110上没有发生故障的情况下,执行与其他从节点相同的动作。 Further, the case where the sub-master node 120-6 no failure occurs on the primary node 110, from the other node performs the same operation.

图6是主节点110发生故障时的副主节点120-6的动作的流程图。 FIG 6 is a flowchart showing the sub-master node 110 when a failure occurs in the master node 120-6.

副主节点120-6在环正常的情况下,作为从节点来进行动作。 Submaster node 120-6 under normal circumstances the ring, to operate as a slave node. 副主节点120-6接收以主节点110为发送源的探测分组140 (步骤 Submaster node 120-6 receives the master node 110 as the transmission source of the probe packet 140 (step

5601) ,将探测分组140的跳计数例如增加1。 5601), the probe packet, for example, a hop count 140 is incremented by one. 副主节点120-6在跳计数增加后,从与接收了以主节点110为发送源的探测分组140的端口相反侧的环用线路收容端口,向相邻节点发送探测分组140 (步骤 After the sub-master node 120-6 hop count increases, the master node receiver port 110 to the transmission source of the probe packet 140 opposite from the ring port with the line housing, probe packets transmitted to the neighboring node 140 side (step

5602) 。 5602). 副主节点120-6同时或在其前后,生成跳计数报告分组150, 对主节点IIO发送所生成的跳计数报告分组150 (步骤S603)。 Submaster node 120-6 simultaneously or before or after, the report packet 150 to generate the hop count, and transmits the generated master node hop count IIO report packet 150 (step S603). 副主节点120-6在向主节点110发送了跳计数报告分组150后,每隔一定时间确认是否可接收来自主节点110的探测分组140 (步骤S604)。 After the sub-master node 120-6 hop count in the report packet 150 sent to the master node 110, you can verify at regular intervals from the master node 110 receives the probe packet 140 (step S604). 这里,在可以每隔一定时间接收探测分组140的情况下(步骤S604),副主节点120-6将以主节点110为发送源的探测分组140的跳计数增加l (步骤S605),而执行步骤S602。 Here, the probe can be received at regular intervals in the case of packet 140 (step S604), 120-6 submaster node will be the master node 110 to detect a transmission source of the packet hop count is increased L 140 (step S605), performs step S602.

在本实施方式中的步骤S601〜S603的细节内,省略第一实施方式中描述的部分。 Details of step in the present embodiment S601~S603 omitted in the first embodiment described in the section. 下面,描述与步骤S601和步骤S604有关的情况。 In the following, step S601 and step S604 with the relevant circumstances. 副主节点120-6中,在网络管理者进行通过管理终端30的模式设定时,来设定副主设备模式。 When the sub-master node 120-6, the network manager through the management terminal 30, a mode setting, sets the sub-master mode. 这时,副主设备模式内的环状态管理部933不启动环形协议管理定时器,而变为待机(standby)状态。 In this case, the ring status management portion 933 of the sub-master mode does not start the timer ring protocol management, and becomes standby (STANDBY) state. 环状态管理部933在步骤S601中接收到以主节点110为发送源的探测分组140后,启动环形协议管理定时器。 After the loop state management unit 933 to the master node 110 receives the transmission source of the probe packet 140 in step S601, the ring protocol management timer starts. 副主节点120-6内的环分组输入部931在环形协议管理定时器启动后,若在一定时间内接收到了以主节点110为发送源的探测分组140,则识别为输入分组是探测分组140,并输出到信号线L91。 Ring packet input unit 120-6 in the sub-master node 931 in the ring protocol management timer starts, when receiving the master node 110 to the transmission source of the probe packet 140 within a certain time, it is recognized that the input packet is a probe packet 140 , and output to the signal line L91. 从信号线L91输入了以主节点110为发送源的探测分组140的探测分组管理部932与作为从节点120而被设定的情况稍有不同,进行复制,使得以主节点IIO为发送源的探测分组140为3个。 L91 is inputted from the signal line to the master node 110 to send a probe packet source, packet management unit 140 of the probe 932 as the slave node 120 is set slightly different copy, so that the master node to the transmission source of IIO probe packet 140 is three. 探测分组管理部932将复制的结果成为3个的以主节点110为发送源的探测分组140输出到信号线L93、信号线L94和信号线L95(由于输出到信号线L94和信号线L95的以主节点110为发送源的探测分组140的处理已经在基于上述的从节点120的探测分组140的发送接收中描述了,所以加以省略)。 Results probe packet management unit 932 to copy becomes 3 outputs to the master node 110 to detect a transmission source of the packet 140 to the signal line L93, a signal line L94 and a signal line L95 (because the output to the signal line L94 and the signal line L95 to the master node 110 as the transmission source of the probe packet 140 have been processed based on the received transmission packet 140 from the above described detection node 120, is thus omitted here). 从信号线L93输入了以主节点110为发送源的探测分组140的环状态管理部933,确认探测分组140的输入是否在预先设定的环形协议管理定时器的有效时间内。 L93 is inputted from the signal line to the master node 110 to send a probe packet source state management unit 140 of the ring 933, the valid time probing packet acknowledgment protocol management annular whether the input timer 140 is set in advance. 环状态管理部933在预先设定的环形协议管理定时器的有效时间内输入了以主节点110为发送源的探测分组140的情况下,复位环形协议管理定时器。 A state where the ring management section 933 is input to the master node 110 as the transmission source of the probe within the annular effective time management timer preset protocol packet 140, the reset timer ring protocol management.

另一方面,副主节点120-6在每隔一定时间不能接收以主节点110为发送源的探测分组140的情况下(步骤S640),判断为主节点IIO上产生了故障,将自身的模式转移到"主设备"(步骤S606)。 On the other hand, the sub-master node 120-6 in a case where a predetermined time to the master node 110 can not be received as the transmission source of the probe packet every 140 (step S640), a failure occurs is determined based on the IIO node, the pattern itself transferred to a "master" (step S606). 在步骤S606中,环状态管理部933在环形协议管理定时器的启动后, 在有效时间内没有从信号线L93输入以主节点110为发送源的探测分组140的情况下,识别出主节点110中的故障发生,而将自身的模式转移到"主设备"。 In the case of step S606, the loop state management unit after starting the timer ring protocol management, not the effective time to the master node 110 as the transmission source of the probe packet 140 from the signal line L93 input 933, identifies the master node 110 a fault occurs, and the pattern is transferred to its "master." 另外,有从主节点110不能接收探测分组140 的情况,和因主节点IIO本身的故障或连接副主节点120-6及主节点110的两个路径上分别产生了故障、不能接收探测分组140的情况等。 Further, there is not the master node 110 receives the packet from the probe 140 of the case, and because the primary node itself IIO two paths or connection failure submaster node 120-6 and the master node generates a fault 110, respectively, can not receive the probe packet 140 and other circumstances. 这里,作为主节点110的故障来加以说明。 Here, as the failure of the master node 110 to be described.

状态转移到"主设备"的副主节点120-6为了实现对多重故障的应对,而每隔一定时间向自身收容的两个方向的环线路发出探测分组140 (步骤S607)。 State to the "master" in order to achieve sub-master node 120-6 to respond to multiple failures, the two directions every predetermined time to itself housed a ring probe packet 140 sent by the line (step S607). 处于主设备模式的节点动作的细节与第一实施方式的主节点110相同,这里省略详细的说明。 Details of the operation is the same as the master node and the master node mode of the first embodiment 110, detailed description thereof is omitted herein.

处于主设备状态的副主节点120-6确认有无以主节点IIO为发送源的探测分组140的接收(步骤S608)。 Submaster node 120-6 to confirm the presence or absence in the state of the master device in the master node IIO transmission source of the received probe packet 140 (step S608). 这里,环管理部930监视是否可以接收以主节点IOO为发送源的探测分组140。 Here, the ring management section 930 monitors whether the master node may receive the probe in a packet transmission source IOO 140. 副主节点120-6 在不能通过环管理部930接收以主节点IIO为发送源的探测分组140 的情况下,执行步骤S607。 Submaster node 120-6 in a case where the ring management section 930 can not detect a master node receives the IIO transmission source of the packet 140 executes step S607.

另外,副主节点120-6在可以接收以主节点IIO为发送源的探测分组140的情况下,解释为主节点110已恢复,将自身的模式转移到"副主设备"(步骤S609)。 In addition, when the sub-master node 120-6 can be received at the master node IIO transmission source of the probe packet 140, interpreted as a main node 110 has been restored, the pattern is transferred to its "sub master" (step S609). 这时,副主节点120-6停止自身的探测分组140的发出,并与其他从节点120相同地进行动作(步骤S610)。 In this case, the sub-master node 120-6 stops its probe packet sent 140 from the node 120 and the other operates in the same manner (step S610).

下面,详细描述步骤S609和步骤S610。 Hereinafter, a detailed description of step S609 and step S610. 环分组输入部931在识别为输入分组是以主节点110为发送源的探测分组140后,输出到信号线L91。 Ring packet input unit 931 recognizes the input packet 110 is the master node after detecting a packet transmission source 140, output to the signal line L91. 从信号线L91输入了以主节点110为发送源的探测分组140的探测分组管理部932如上所述,复制为使得以主节点110为发送源的探测分组140为3个。 L91 is inputted from the signal line to the master node 110 to send a probe packet source, packet management unit 140 of the probe 932 described above, so as to copy the master node 110 to send a probe packet source 140 is three. 探测分组管理部932将复制结果成为3 个的以主节点IIO为发送源的探测分组140输出到信号线L93、信号线L94和信号线L95。 Probe packet management unit 932 copies the result to be the master node 3 IIO transmission source of the probe packet 140 to the output signal lines L93, L94 and the signal line a signal line L95. 另外,通过输出到信号线L94和信号线L95 的以主节点110为发送源的探测分组140,执行探测分组140的传送和发送到主节点110的跳计数报告分组150的生成。 Further, the output signal to the signal line L94 and the line L95 to the master node to detect the transmission source of a packet 140 110, perform packet transmission and transmits the detection to the master node hop count report packet generation 110 150 140. 从信号线L93 输入了以主节点110为发送源的探测分组140的环状态管理部933 判断为主节点110的故障已恢复,将自身的模式转移到"副主设备"。 L93 is inputted from the signal line to the master node 110 to send a probe packet source state management unit 140 of the ring 933 determines the failure of the master node 110 has been restored, the pattern is transferred to its "sub master." 将自身的模式转移为"副主设备"的环状态管理部933停止以副主节点120-6为发送源的探测分组140的发出,同时或大致同时地,不考虑从其他的从节点120发送的跳计数报告分组150上记载的信息(不执行作为主节点的处理)。 Ring state management unit to transition its mode "sub master" in the master node 933 is stopped to the sub transmission source 120-6 probe packet 140 sent simultaneously or substantially simultaneously, without regard to other transmission from the node 120 from hop count described in the report information on the packet 150 (not executed as the master node processing).

第二实施方式中,将从节点120-6定义为副主节点,但是通过将从节点120-i中的任一个以上定义为副主节点,可得到与第二实施方式相同的效果。 In the second embodiment, from the node 120-6 is defined as the sub-master node, but more than one defined by any one from the node 120-i is the sub-master node, to obtain the same effect as the second embodiment.

3.第三实施方式 3. Third Embodiment

第三实施方式中,说明在包含第二实施方式中描述的副主节点120-6的环中,对基于主节点110的多重故障恢复的应对动作。 In the third embodiment, illustrated in a second ring comprising a master node of the sub-described embodiment 120-6, the coping operation of the master node based on the recovery of multiple failures 110. 但是, 本实施方式中,仅描述与第一实施方式和第二实施方式的不同。 However, in this embodiment, differing only in the description of the first embodiment and the second embodiment. 另外, 对于网络的结构,与上述第二实施方式相同。 Further, the configuration of the network, the above-described second embodiment.

图13是发生多重故障的环形网络100的结构图。 FIG 13 is a configuration diagram of occurrence of multiple failures in the ring network 100. 图8是对基于包含副主节点120-6的环的主节点110的故障的应对动作的流程图。 FIG 8 is a flowchart of response actions based on the failure of the primary node of the master node includes sub-ring 110 to 120-6. 另外,对于与上述相同的处理,标以相同符号,而省略详细的说明。 Further, the detailed description for the same processing as described above, are denoted by the same reference numerals, is omitted.

使用附图来说明故障恢复时的主节点110的动作。 The operation will be described when the master node 110 failure recovery using the accompanying drawings. 图13的例子中,在从节点120-1〜从节点120-2之间(故障A)、和从节点120-4~ 从节点120-5之间(故障B)产生了故障(多重故障)。 In the example of FIG. 13, from among the node 120-2 120-1~ (fault A), and between nodes from the node 120-4 ~ 120-5 (fault B) is generated from a failure (multiple failure) node . 另外,设图13的副主节点120-6已经在主设备模式下动作,并发出探测分组140。 Further, the sub-set of FIG 13 has the master node 120-6 in master mode operation, and the probe packet 140 sent.

在不满足图8中的步骤S805 (步骤S505)的条件的情况下,主节点IIO确认有无以副主节点120-6为发送源的探测分组140的接收(步骤S806)。 If the condition in step 8 S805 (step S505) is not satisfied FIG master node to confirm whether the IIO submaster node 120-6 to detect a transmission source of the received packet 140 (step S806). 这里,监视是否从多重故障恢复,即,主节点110 的环管理部930监视是否可接收以副主节点120-6为发送源的探测分组140。 Here, monitors whether to recover from multiple failures, i.e., the master node of the ring management section 930 monitors 110 can receive a sub-master node 120-6 to the transmission source of the probe packet 140. 主节点110在不能通过环管理部930接收以副主节点120-6 为发送源的探测分组140的情况下,执行步骤S809 (步骤S509)。 Case of the master node 110 to 930 receives the sub-master node 120-6 to the transmission source can not pass through the ring in the probe packet management unit 140, the step S809 (step S509).

步骤S806中,主节点IIO的多重故障的一部分(例如故障B) 恢复,而可接收以副主节点120-6为发送源的探测分组140的情况下, 丢弃所接收的以副主节点120-6为发送源的探测分组140 (步骤S808)。 In step S806, a portion of the master node IIO multiple failures (e.g. failure B) recovery, but may submaster node 120-6 receives the transmission source of the probe packet in the case 140 to the sub-master node discards the received 120- 6 is a transmission source of the probe packet 140 (step S808). 之后,执行步骤S809 (步骤S509)。 Thereafter, the step S809 (step S509).

若详细描述步骤S808,则主节点110与第二实施方式中描述的副主节点120-6不同,在接收从与自身不同的装置发送的探测分组140时,不进行所接收的探测分组140的传送。 If the detailed description of step S808, the master node 120-6 different master node 110 described in the second embodiment, the packet received in the probe 140 itself transmitted from different devices, without the received probe packet 140 transfer. 另外,不对作为所接收的探测分组140的发出源的副主节点120-6发出跳计数报告分组150。 Further, as does the received probe packet 120-6 sent the packet hop count report 150 issued by the primary source node 140. 不执行这些动作是为了避免环上的混乱。 Do not perform these actions in order to avoid confusion on the ring.

如上所述,根据本实施方式,可以检测出环上的多重故障的发生和从多重故障的一部分恢复,而不管主节点110有无故障。 As described above, according to this embodiment can detect the occurrence of multiple failures in the ring portion, and to recover from multiple failures, the master node 110 regardless of the presence or absence of fault.

4.第四实施方式 4. Fourth Embodiment

作为进一步的例子,描述了在图1的环网路上,在发生了多重故障的中途,不改变跳计数数之和,而拓扑发生变化的情况。 As a further example, the ring network is described in FIG. 1, in the middle of multiple failures occurred, without changing the number of hop count and, while the topology changes. 这里,所谓拓扑表示例如网络的结构。 Here, for example, it represents a structure of the network topology. 例如,如图15所示,在作为多重故障, 发生了上述的第一故障和第二故障的情况下,主节点110中的跳计数的和为3。 For example, as shown in FIG 15, as in the case of multiple failures, the failure occurs first and the second above-described failures, the hop count and the master node 110 is 3.

图16是本实施方式中的拓扑变化的说明图。 FIG 16 is a diagram illustrating the topology change of the present embodiment.

这里,与完全消除上述故障同时地,在发生了从交换器120-1〜 从交换器120-2之间的信号线或线路接口故障、和从交换器120-3的装置内故障的情况下(图16),主节点110中的跳计数的和仍为3。 Here, the complete elimination of the above faults simultaneously, the switch takes place from the signal line 120-1~ or line interface failure between the exchanger 120-2, and the case where the apparatus from switch 120-3 in failure (FIG. 16), the hop count and the master node 110 is still 3. 本实施方式中,除了上述实施方式的处理之外,进一步,主节点110 识别为在环的各方向上接收的跳计数的最大值变化,并判断为拓扑发生了变化而发出传送用数据库更新分组(Flush FDB-2)。 In the present embodiment, in addition to the treatment of the above embodiment, further, the master node 110 is identified as the maximum change in the ring parties received hop count upward, and determines to change the topology database update packet is sent with transmit (Flush FDB-2). 由此,在跳计数数之和不变而故障发生位置变化了的情况下,也可以进行检测,可以更新传送用数据库。 Accordingly, the number of hop counts and the constant change in position and in the case of a failure, can be detected, it can be transferred by the database update.

另外,主节点IIO与上述的实施方式相同,按每个端口来管理从各端口接收的跳计数报告分组150中包含的跳计数的最大值。 Further, the master node IIO same manner as the above-described embodiment, the maximum hop count 150 contained in each port to manage the packet received from the port count for each hop reported. 另外, 可按每个端口、且按每个探测分组来管理跳计数的最大值。 Further, according to each port, and each probe packet to manage the maximum hop count. 例如,探测分组和对于探测分组的跳计数报告分组包含识别探测分组用的识别符,也可按每个端口,对应于其识别符来管理跳计数的最大值。 For example, the probe packet and report the hop count for the probe packet containing the identification probe packet with the packet identifier, in accordance with each port, it corresponds to the maximum value of the identifier is managed hop count. 因此,主节点110中跳计数的和不变化的状况继续,且在环的各方向中接收的跳计数的最大值不变的情况下,判断为拓扑没有变化,而不发出传送用数据库更新分组(Flush FDB-2)。 Thus, the count does not change the situation and the master node 110 continues to jump, the case where the maximum value of the received hop count, and in the same direction of the ring, it is determined that no topology change, without issuing a database update packet transmission (Flush FDB-2). 另外,拓扑的变化并不限于上述的例子。 In addition, topology changes not limited to the examples.

接着,说明本实施方式的处理。 Next, the process according to the present embodiment will be described. 另外,硬件结构、探测分组的发送/传送等与上述的第一实施方式相同。 Further, a hardware configuration, the probe packet is sent / transmitted like the above-described first embodiment.

图17是对基于本实施方式中的主节点110的故障的应对动作的流程图。 FIG 17 is a flowchart of an operation based on the failure to deal with the present embodiment, the master node 110 a. 步骤S501〜S513的各处理与第一实施方式相同,所以省略说明。 Each process step S501~S513 of the first embodiment, the description thereof will be omitted.

步骤S512中,主节点110内的环状态管理部933在步骤S509 中求出的"一定时间内从环的两个方向报告的最大跳次数的和"不小于"可从主节点IIO进行通信的从节点数"的情况下(步骤S512), 确认"可从主节点IIO进行通信的从节点数"是否小于"一定时间内从环的两个方向报告的最大跳次数的和"(步骤S514')。 In step S512, the ring management section 110 in the state of the master node 933 in step S509 obtains the "maximum number of hops within a certain period of time reported from two directions rings and" not less than "may be in communication from the master node of IIO from the number of nodes "in the case (step S512), confirmed" to the number of nodes from the master node a communication from the IIO "is smaller than the" maximum number of hops in a given time reported from two directions and the ring "(step S514 ' ).

在"可从主节点IIO进行通信的从节点数"小于"一定时间内从环的两个方向报告的最大跳次数的和"的情况下(S514,,是),环状态管理部933识别为环上的一个以上的故障恢复了。 In the case of "the number of nodes available for communication from the master node the IIO" less than "the maximum number of hops within a certain period of time reported from two directions and the ring" in (S514 ,, YES), the ring management section 933 recognizes the state more than a failure on the ring restored. 这时,使用"一定时间内从环的两个方向报告的最大跳次数的和",来更新"可从主节点110进行通信的从节点数",而发出FlushFDB-2 (步骤S515)。 In this case, using the "maximum number of hops within a certain period of time reported from two directions rings and" updated "from the master node 110 may be made from the communication nodes", issued FlushFDB-2 (step S515). 但是,由于环中的所有故障并未恢复,所以环状态管理部933不转移应进行管理的环的状态而仍为"发生故障",并设置执行步骤S504 用的触发。 However, since not all the fault of the ring recovery, so the ring status management section 933 does not transfer the state should manage the ring while still "failure", and set the execution step S504 with the trigger.

另一方面,在"可从主节点IIO进行通信的从节点数"不小于"一定时间内从环的两个方向报告的最大跳次数的和"的情况下(S514, 否),通过步骤S513、 S514的结果,主节点110内的环状态管理部933判断为"可从主节点IIO进行通信的从节点数"与"一定时间内从环的两个方向报告的最大跳次数的和"为相同的值。 On the other hand, in the "number of nodes may communicate from the master node from the IIO" not less than "the maximum number of hops within a certain period of time reported from two directions and the ring" of (S514, NO), step S513 , the result of S514, the master node ring 110 in the state management unit 933 determines "available from a number of nodes from the master node to communicate the IIO" and "maximum number of hops within a certain period of time reported from two directions and the ring" is the same value. 这时,环状态管理部933如上所述,使用按每个端口进行管理的"从各端口接收的跳计数报告分组150中包含的跳计数的最大值",来确认各端口中的跳计数的最大值是否在一定时间内(或按每个探测分组)变化(步骤S516)。 In this case, the ring status management section 933 as described above, using a "maximum packet hop count 150 contained in each port from the received hop count Report" managed by each port, to confirm the hop count of each port the maximum value is within a predetermined time (or per probe packet) change (step S516).

例如,在发出探测分组之前等的适当的定时中,将之前的时间内的每个端口的跳计数的最大值(第一值)存储到其他区域,之后复位跳计数的最大值。 For example, an appropriate timing before issuing the like probe packet, the hop count for each port a maximum value (a first value) is stored before the time of other areas, the maximum hop count after the reset. 另外,例如在步骤S509中,根据所接收的跳计数报告分组来依次更新复位后的跳计数的最大值,并求出该时间内的跳计数的最大值(第二值)。 Further, for example, in step S509, according to the received hop count Report Packet sequentially updates the maximum hop count after reset, and obtains the maximum value (second value) within the hop count time. 步骤S516中,按每个端口来比较该时间内的跳计数的最大值(第二值)和前面的时间中的跳计数的最大值(第一值),来判断是否变化了。 In step S516, compares the maximum value of each port within the hop count time (second value) and the maximum value of the preceding time hop count (a first value), to determine whether the change.

另外,在按每个端口且按每个探测分组来管理跳计数的最大值的情况下,也可比较对于两个探测分组的跳计数的最大值。 In addition, each port and the maximum value for each probe packet hop count is managed, may compare the maximum hop count for two probe packet. 例如,也可比较对于连续的两个探测分组的值。 For example, the comparison may be values ​​for two consecutive sounding packets.

"在主节点110的各端口中的跳计数的最大值"在一定时间内没有变化的情况下(步骤S516,否),环状态管理部933设置执行步骤S504用的触发。 Under "maximum hop count in each port of the master node 110 is" no change in a case where a predetermined time (step S516, the NO), the ring status management section 933 is provided with a trigger step S504. 另一方面,"在主节点110的各端口中的跳计数的最大值"在一定时间内变化的情况下(步骤S516,是),环状态管理部933判断为应进行管理的环上的拓扑变化了,而发出Flush FDB-2 (步骤S517)。 On the other hand, "the maximum hop count in each port of the master node 110" in the case of varying the predetermined time (step S516, the Yes), the ring management section 933 determines that the state should be managed on a ring topology changed, issued Flush FDB-2 (step S517). 但是,由于环中的所有故障并未恢复,所以环状态管理部933不转移应进行管理的环的状态而仍为"发生故障", 并设置执行步骤S504用的触发。 However, since not all the fault of the ring recovery, so the ring status management section 933 does not transfer the state should manage the ring while still "failure", and set the execution step S504 with the trigger. 如上述这样,重复执行步骤S504〜 S517,直到环上的所有故障恢复。 Thus as described above, repeat steps S504~ S517, until all the faults on the ring recovery.

5.第五实施方式 5. Fifth Embodiment

用于应对上述第四实施方式中的拓扑的变化的处理(例如S516、 S517)还可适用于第二、第三实施方式。 Processing for coping with changes in the topology of a fourth embodiment (e.g., S516, S517) is also applicable to the second and third embodiments. 硬件结构、探测分组的发送/传送等与上述第二、第三实施方式相同。 A hardware configuration, the probe packet is sent / transmitted like the above-described second and third embodiment.

图18是对本实施方式中的基于包含副主节点的环的主节点110 的故障的应对动作的流程图。 FIG 18 is a flowchart of the present embodiment operates based on the failure to deal with the sub-master node comprising a master node of the ring 110. 各步骤的处理细节与上述第三、第四实施方式相同,所以标以相同符号,而省略说明。 The details of the processing steps of the third, fourth embodiment, and therefore are denoted by the same reference numerals, and description thereof is omitted. 【产业上的可用性】 [Availability INDUSTRIAL

本发明可以适用于在环中具有主从关系的节点群。 The present invention can be applied to a master-slave relationship with the group node in the ring.

Claims (14)

  1. 1、一种环形网络,其特征在于: 包括多个节点,该多个节点参照分组传送用的数据库来传送分组; 多个上述节点按环状连接; 上述节点中的一个是发送探测分组的主节点,该探测分组用于确认按环状连接的网络的状态,其他节点是按照来自上述主节点的指示进行处理的从节点; 上述主节点每隔预定的时间或不定期地,从第一端口和第二端口向环的两个方向一次一个地或一次预定个数地发送跳数被初始化了的探测分组; 上述各从节点,若经与环相连的两个端口的一个接收到探测分组,则增加探测分组中包含的跳数,将包含增加后的跳数的该探测分组经与接收的端口不同的另一个端口发送到相邻的上述从节点或上述主节点,并且,生成包含增加后的跳数的跳计数报告分组,并经接收了探测分组的端口发送到上述主节点; 上述主节点,经第一端口和 A ring network, comprising: a plurality of nodes, the plurality of reference nodes with packets to transmit database transmitted packets; plurality of nodes connected by a ring; and the master node is transmitting a probe packet node, the probe packet for confirming the state of the network connected by a ring, the other is from a node processing node according to the instruction from the master node; said master node every predetermined time or irregularly, from the first port and a second port or a predetermined two directions rings one at a time to the number of the sending of probe packets is initialized hop; each slave node, if received via a ring connected to the two ports of the probe packet, increasing the number of hops the packet contains the probe, the probe packet containing the number of hops after the increase of the transmission to the adjacent node or from said master node, and generates a reception port through the increase of another different port hop hop count of the number of reported packets received via the port and to said master node transmits the probe packet; said master node via the first port and 第二端口接收来自各从节点的多个跳计数报告分组,并按每个端口管理跳计数报告分组中包含的跳数的最大值,求出对应于第一端口的跳数的最大值和对应于第二端口的跳数的最大值的和,并根据所求出的和来求出从上述主节点可进行通信的从节点总数,通过所求出的可进行通信的从节点总数的变动,检测出环中的多重故障的发生和该多重故障的至少一个故障的恢复,并且,每次检测出这些事件时,更新装置内的上述数据库和/或对上述从节点发送用于更新分组传送用的上述数据库的分组。 Maximum number of hops a packet from each port to receive a second plurality of hop counts from the node the report, in accordance hop count for each port management report contained in the packet, and obtains a maximum value corresponding to a first port corresponding to the number of hops maximum value and a second number of hop ports, and based on the calculated variation is obtained and can communicate from the master node from the total number of nodes, by the obtained may communicate from the total number of nodes, at least one fault occurs and the recovery of multiple failures detected multiple failures in the ring, and each of these events is detected, updating the database within the device and / or from the above-described transmission for updating the packet transfer node with grouping the database.
  2. 2、 根据权利要求1所述的环形网络,其特征在于: 上述主节点,还在所求出的可进行通信的从节点总数不变动的情况下,通过对应于第一端口或第二端口的跳数的最大值的变动,来检测出环中的拓扑的变化,每次检测出该变化时,更新装置内的上述数据库和/或对上述从节点发送用于更新分组传送用的上述数据库的分组。 2. The ring network according to claim 1, wherein: said master node, the node does not change if the total number by corresponding to the first port or the second port can also be obtained by communicating maximum variation of the number of hops to detect a change in ring topology, each time detects the change, updating the database within the device and / or the above-described transmission node from said database for updating the packet transfer with the grouping.
  3. 3、 根据权利要求1所述的环形网络,其特征在于: 上述主节点,通过第二端口中没有接收到已从第一端口发送的探测分组的情况和/或第一端口中没有接收到已从第二端口发送的探测分组的情况,检测出环的第一故障;在检测出第一故障后,通过上述可进行通信的从节点总数的变动,检测出第二故障的发生以及第一与第二故障中的至少一个故障的恢复。 3, the ring network according to claim 1, wherein: said master node, the probe does not receive the packet transmitted from the first port through the second port and / or the first port has not received from a second probe packet transmission port, the first fault detection rings; after detecting the first failure, by the change from the total number of nodes, detect the occurrence of a first and a second failure may communicate with the above-described at least a second fault recovery fault in the.
  4. 4、 根据权利要求1所述的环形网络,其特征在于:上述主节点,在没有故障的正常环中,在收容环用线路的第一和第二端口的其中一个端口上阻止数据分组的通过,在发生环上的一个或多个故障时,在第一和第二端口上允许数据分组的通过,并且, 在环中的故障全部恢复时,在第一和第二端口的其中一个端口上阻止数据分组的通过。 4. The ring network according to claim 1, wherein: said master node, no fault in the ring normal, preventing the data packets on one of the ports of the first and second ports with the receiving ring line , when one or more faults on the ring occurs in the first and second ports to allow data packets, and, when all ring fault recovery, wherein a first port and a second port in prevented by the data packet.
  5. 5、 根据权利要求1所述的环形网络,其特征在于: 在环的故障发生过程中,上述主节点通过上述从节点总数较以前的状态减少,检测出发生了多重故障。 5. The ring network according to claim 1, wherein: during a failure occurs in the ring, said master node from the total number of nodes above state less than before, detects the occurrence of multiple failures through.
  6. 6、 根据权利要求1所述的环形网络,其特征在于: 在环的多重故障发生过程中,上述主节点通过上述从节点总数较以前的状态增加,从多重故障中检测出至少一个位置的恢复。 6, the ring network according to claim 1, wherein: during the occurrence of multiple failures in the ring, said master node via the total number of nodes increases from the more previous state, from multiple faults detected recover at least one location .
  7. 7、 根据权利要求2所述的环形网络,其特征在于: 在环的多重故障发生过程中,上述主节点在上述从节点总数与以前的状态相比没有改变的情况下,通过对应于第一或第二端口的跳数的最大值的变动,检测出拓扑的变化或多重故障的发生位置的变化。 7, the ring network according to claim 2, wherein: during the occurrence of multiple failures in the ring, said master node in comparison with the case where the previous state is not changed from the total number of nodes, corresponding to the first through the change the maximum number of hops or the second port, it changes the position of the detected change in the topology or multiple failures.
  8. 8、 根据权利要求1所述的环形网络,其特征在于: 上述从节点在从上述主节点接收到用于更新上述数据库的分组时,删除在上述数据库中存储的信息,并执行地址学习。 8, the ring network according to claim 1, wherein: said node upon receiving a packet from said master node to said database for updating, deleting the information stored in the database, and then executes address learning.
  9. 9、 根据权利要求1所述的环形网络,其特征在于: 上述从节点中的一个,是根据所设定的模式作为主节点和从节点的其中之一来动作的副主节点;上述副主节点在预定的时间内可以从上述主节点接收到一个以上的探测分组的情况下,将模式设定为副主设备而作为从节点动作;上述副主节点在预定的时间内不能从上述主节点接收到一个以上的探测分组的情况下,将模式设定为主设备而作为主节点动作。 9. The ring network according to claim 1, wherein: one of the nodes from the above, according to the set mode as a master node and the slave nodes from the master node to one operation; the sub-master in the case where the node may be received within a predetermined time from said master node to one or more of the probe packets, the mode is set as a sub-master node from the operation; the sub-master node from the master node is not within a predetermined time When receiving the one or more probe packet, the mode is set as a master node and the master device operation.
  10. 10、 根据权利要求9所述的环形网络,其特征在于: 模式被设定为主设备的上述副主节点在通过故障的至少一个恢复而从上述主节点接收到探测分组时,对构成环的上述从节点和/或上述主节点发送用于更新分组传送用的上述数据库的分组,并且,使模式转移为副主设备。 10, a ring network as claimed in claim 9, wherein: when the mode is set to the sub-master node of the master device by at least one recovery from the failure of the master node receives a probe packet constituting the ring from the above-described node and / or said master node sending a packet for updating said database with the packet transmission, and the mode shifts to the sub-master.
  11. 11、 根据权利要求9所述的环形网络,其特征在于-上述主节点在从上述副主节点接收到探测分组时,丟弃该探测分组。 11, the ring network according to claim 9, wherein - said master node when receiving from the master node to the sub-packet probe, the probe packet is discarded.
  12. 12、 根据权利要求9所述的环形网络,其特征在于: 从上述主节点和/或上述副主节点发送的探测分组包含表示该探测分组的发送源的识别符。 12, a ring network as claimed in claim 9, characterized in that: the probe comprises a packet from said master node and / or the sub-master node identifier indicating the transmission source of the probe packet.
  13. 13、 一种主节点,其特征在于:在按环状连接了参照分组传送用的数据库来传送分组的多个节点的环形网络中, 具有:与环连接的第一端口和第二端口;和环管理部,检测出环中的故障的发生和恢复;上述环管理部每隔预定的时间或不定期地,从上述第一端口和上述第二端口向环的两个方向一次一个地或一次预定个数地发送跳数被初始化了的探测分组;构成环的其他各节点经与环连接的两个端口的一个,接收通过上述环管理部发送的或通过其他节点传送的探测分组,增加该探测分组中包含的跳数,并将包含增加后的跳数的该探测分组经与接收的端口不同的另一端口传送到相邻的节点,并且,生成包含增加后的跳数的跳计数报告分组,并经上述第一端口和上述第二端口接收经接收了探测分组的端口发送的、多个上述跳计数报告分组;按每个端口管理 13. A master node, wherein: the annular connection by transmitting a packet with reference to the database to transmit a packet ring network of a plurality of nodes, comprising: a first port and a second port connected to the ring; and ring Manager unit detects occurrence of a fault in the ring and recovery; and the ring management section every predetermined time or from time to time, from the first port to the second port of the two rings one at a time direction and one or transmitting a predetermined number of hops to the probe packet is initialized; for each one of the other nodes connected to the ring via two ports that constitute the ring, the ring management section received by or transmitted probe packets transmitted by the other node, to increase the detecting the probe packet hop count contained in the packet, and comprising the increased number of hops through the different port for receiving transmitted to another port to adjacent nodes, and generates a hop number of hops the incremented count report packet, and it receives via said first port and said second port receives the probe packet transmission port, a plurality of the report packet hop count; each port management 跳计数报告分组中包含的跳数的最大值; 求出对应于第一端口的跳数的最大值和对应于第二端口的跳数的最大值的和,并根据所求出的和来求出可进行通信的节点总数;通过所求出的可进行通信的节点总数的变动,检测出环中的多重故障的发生和该多重故障的至少一个故障的恢复;每次检测出这些事件时,更新装置内的上述数据库和/或对构成环的其他节点发送用于更新分组传送用的上述数据库的分组。 The maximum number of hop hop count contained in the packet report; obtaining a maximum value corresponding to the first port number corresponding to the maximum hop and a second port number of hops, and to seek and based on the obtained every time these detected events; the total number of nodes may be communicating; may be obtained by variation of the total number of nodes in communication, at least a restore failure is detected the occurrence of multiple failures in the ring, and the multiple failures updating means in said database and / or other nodes constituting the ring transmits updating the database with the packet transmission packets.
  14. 14、根据权利要求13所述的主节点,其特征在于: 上述环管理部,还在所求出的可进行通信的从节点总数不变动的情况下,通过对应于第一端口或第二端口的跳数的最大值的变动, 检测出环中的拓扑的变化,在每次检测出该变化时,更新装置内的上述数据库和/或对其他节点发送用于更新分组传送用的上述数据库的分组。 14. The master node according to claim 13, wherein: Ring Manager unit described above, can also be obtained from the case where the total number of nodes does not change, through the corresponding port to the first port or the second communication maximum variation of the number of hops, detects a change in the ring topology, each time detects the change, updating the database within the device and / or said other node sends a database update packet is transmitted with grouping.
CN 200710007373 2006-02-24 2007-01-31 Ring network and master node CN100555976C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006048855 2006-02-24
JP048855/2006 2006-02-24
JP204931/2006 2006-07-27

Publications (2)

Publication Number Publication Date
CN101026529A true CN101026529A (en) 2007-08-29
CN100555976C true CN100555976C (en) 2009-10-28

Family

ID=38744454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710007373 CN100555976C (en) 2006-02-24 2007-01-31 Ring network and master node

Country Status (1)

Country Link
CN (1) CN100555976C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262401B (en) 2007-12-28 2010-12-29 上海自动化仪表股份有限公司 A method for realizing network recovery in loop network
CN101788965B (en) 2010-02-25 2011-08-03 上海乐春重工机电设备有限公司 Multipoint automatic identification and master-slave synchronization serial communication mode
CN102457420A (en) * 2010-10-26 2012-05-16 智邦科技股份有限公司 Network device and method for establishing path data
JP6012908B2 (en) * 2014-05-22 2016-10-25 三菱電機株式会社 Relay device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812268B2 (en) 1995-09-29 1998-10-22 日本電気株式会社 Fault avoidance control method in a ring network system
CN1208526A (en) 1996-11-12 1999-02-17 株式会社东芝 Loop-type network system and controlling of path thereof
CN1236241A (en) 1998-03-30 1999-11-24 株式会社东芝 Communication network system
EP1154592A1 (en) 2000-05-10 2001-11-14 Telefonaktiebolaget Lm Ericsson Channel protection
CN1618025A (en) 2001-12-12 2005-05-18 瑞通网络公司 Method and system for providing failure protection in a ring network that utilizes label switching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812268B2 (en) 1995-09-29 1998-10-22 日本電気株式会社 Fault avoidance control method in a ring network system
CN1208526A (en) 1996-11-12 1999-02-17 株式会社东芝 Loop-type network system and controlling of path thereof
CN1236241A (en) 1998-03-30 1999-11-24 株式会社东芝 Communication network system
EP1154592A1 (en) 2000-05-10 2001-11-14 Telefonaktiebolaget Lm Ericsson Channel protection
CN1618025A (en) 2001-12-12 2005-05-18 瑞通网络公司 Method and system for providing failure protection in a ring network that utilizes label switching

Also Published As

Publication number Publication date Type
CN101026529A (en) 2007-08-29 application

Similar Documents

Publication Publication Date Title
US7289428B2 (en) Inter-working mesh telecommunications networks
US20090052317A1 (en) Ring Network System, Failure Recovery Method, Failure Detection Method, Node and Program for Node
US20050207348A1 (en) Protection that automatic and speedily restore of ethernet ring network
US6928050B2 (en) Protected switching ring
US20060215546A1 (en) Data relay apparatus and failure recovery method
US20030206527A1 (en) Transmitting data between multiple computer processors
EP1575221A1 (en) Ethernet automatic protection switching
US20080305743A1 (en) Wireless Communication Path Management Methods and Systems
US6895024B1 (en) Efficient implementation of 1+1 port redundancy through the use of ATM multicast
US20090016214A1 (en) Method and system for network recovery from multiple link failures
US6651106B1 (en) Flooding communication using an access table to establish transmission times
US20070253327A1 (en) System and method of multi-nodal APS control protocol signalling
US20080126536A1 (en) Apparatus for Constructing Ring Network
US7675869B1 (en) Apparatus and method for master election and topology discovery in an Ethernet network
US20090147672A1 (en) Protection switching method and apparatus for use in ring network
US20080056142A1 (en) Test method for message paths in communications networks and redundant network arrangements
JP2005102157A (en) Packet transfer method and transfer apparatus
US20100165834A1 (en) Method and system for ring topology discovery and forwarding database flush nullification
CN101001192A (en) Method, system and equipment for protecting ring network link
WO2002098059A1 (en) Method and system for implementing a fast recovery process in a local area network
CN1791049A (en) Looped network and its protecting method
US20080205302A1 (en) Preventing data traffic connectivity between endpoints of a network segment
US7606240B1 (en) Ethernet automatic protection switching
CN101035047A (en) Processing method for loop network protection
US20120051252A1 (en) Node apparatus and communication method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted