CN100555032C - Display - Google Patents

Display Download PDF

Info

Publication number
CN100555032C
CN100555032C CN 200610139839 CN200610139839A CN100555032C CN 100555032 C CN100555032 C CN 100555032C CN 200610139839 CN200610139839 CN 200610139839 CN 200610139839 A CN200610139839 A CN 200610139839A CN 100555032 C CN100555032 C CN 100555032C
Authority
CN
China
Prior art keywords
display device
liquid crystal
direction
crystal display
film
Prior art date
Application number
CN 200610139839
Other languages
Chinese (zh)
Other versions
CN1936656A (en
Inventor
东健策
坂井彰
片桐裕人
长谷川雅浩
Original Assignee
夏普株式会社;株式会社巴川制纸所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005-273746 priority Critical
Priority to JP2005273746 priority
Priority to JP2006-247067 priority
Application filed by 夏普株式会社;株式会社巴川制纸所 filed Critical 夏普株式会社;株式会社巴川制纸所
Publication of CN1936656A publication Critical patent/CN1936656A/en
Application granted granted Critical
Publication of CN100555032C publication Critical patent/CN100555032C/en

Links

Abstract

提供一种显示装置,不在设计上变更显示器件的基本构造,不损害对比度比大的方向的显示品位,不限于白显示状态或黑显示状态,能够在较宽的方位下改善对比度比的视角依赖性。 A display device is changed, not the basic design configuration of the display device, the display quality does not impair the contrast ratio in the direction is not limited to the white display state or a black display state, it is possible to improve the viewing angle dependence of the contrast ratio at a wide azimuth sex. 一种显示装置,具备对比度比具有视角依赖性的显示器件、和具有各向异性散射层的各向异性散射薄膜,其中,上述各向异性散射薄膜在与显示器件的对比度比最大的方向大致平行的方向上具有散射中心轴,并被配置于显示器件的观察面侧。 A display apparatus comprising a display device contrast ratio, and the anisotropic scattering film has an anisotropic scattering layer having a viewing angle dependent, wherein the anisotropic scattering film in the contrast ratio of the display device is substantially parallel to the direction of maximum scattering center axis direction, and is arranged on the observation surface side of the display device.

Description

显示装置 The display device

技术领域 FIELD

本发明涉及一种显示装置。 The present invention relates to a display device. 具体而言,涉及一种具备各向异性散射薄膜的液晶显示装置等显示装置。 Specifically, the display device or the like to a liquid crystal device comprising the anisotropic scattering film of one kind of display.

背景技术 Background technique

作为显示性能具有视角依赖性(视野角特性)的显示装置的典型实例,广为人知的是以扭曲向列(Twisted nematic;TN)模式为代表的液晶显示装置。 Typical examples of the display performance of a display device having a viewing angle dependence (viewing angle characteristic), is widely known as a twisted nematic (Twisted nematic; TN) mode liquid crystal display device represented. 另外,所谓'显示性能具有视角依赖性'是指在从正面方向(显示装置的观察面法线方向,视角为0度的方向)观察的情况下与从斜向(视角大于0度的方向)观察的情况下,对比度比、灰度特性、色度等显示性能不同。 Further, the term 'display having a viewing angle dependent properties' means in a direction from the front side (display observation surface normal direction means a viewing angle of 0 degree direction) when viewed from the direction (direction angle greater than 0 degrees) obliquely When viewed, the contrast ratio, different gradation display performance characteristics, color and the like. 通常,已知这些显示性能在从斜向观察的情况下没有在正面方向观察的情况下好。 Typically, these known no good display performance in the case where viewed in the front direction when viewed from an oblique direction.

在TN模式的液晶显示装置中,随着视角沿上下左右方向(时钟的3点/6点/9点/12点的方向)增大,对比度比缓慢下降。 In the TN mode liquid crystal display device, the viewing angle in the vertical direction as the left (clock 3:00 / 6:00 / 9 o'clock / 12 o'clock) is increased, the contrast ratio gradually decreased. 例如,在从正面方向观察的情况下,对比度比为320,而在上方向(12点的方向)从视角75度观察的情况下,在下方向(6点的方向)从视角50度观察的情况下,在左方向(9点的方向)从视角65度观察的情况下,在右方向(3点的方向)从视角68度观察的情况下,对比度比变为10。 For example, when viewed from the front direction, a contrast ratio of 320, and in the direction (the direction of 12 o'clock) from the case where the angle of view of 75 degrees as viewed, in the downward direction (direction of 6 o'clock) when viewed from the angle of 50 degrees next, in the left direction (direction of 9 o'clock) from the perspective of the case 65 degrees as viewed in the right direction (3 o'clock) Angle 68 degrees from the case viewed, the contrast ratio becomes 10. 另外,显示色在从正面方向观察的情况下为非彩色(不带颜色),而在从上下左右方向观察的情况下,带有黄色。 Further, the display color in the achromatic color when viewed from the front direction (without color), but when viewed from the horizontal and vertical directions, with yellow. 尤其是在从下方向观察的情况下,还观察到看到显示图像的正负极反转的称为灰度反转的灰度特性的异常现象。 In particular, when viewed from below, it is also observed to see the display image being inverted negative anomalies referred gradation characteristic of the gradation inversion. 这种液晶显示装置中显示性能的视角依赖性源于液晶分子的折射率各向异性或偏振光板的偏振光吸收特性和偏振光透过特性等、以及构成部件的光学各向异性,可以说是液晶显示装置本质上具备的特性。 Such viewing angle dependency of liquid crystal display polarization properties of the liquid crystal molecules due to refractive index anisotropy of the polarizing plate or polarized light absorption characteristics and other properties, and an optical anisotropic element constituting the apparatus, it can be said characteristics of the device essentially includes a liquid crystal display.

作为改良液晶显示装置的显示性能之视角依赖性的方法,此前提出了各种方法。 The method of viewing angle dependence of display performance of the device as a modified liquid crystal, various methods previously proposed. 作为这种方法,例如提出象素分割法(将一个象素分割成多个,以恒定比来改变施加于各象素上的电压的中间色彩灰度衡量(half-tone grey scale)法,或将一个象素分割成多个域,对每个域控制液晶的取向的域分割法等。)、向液晶施加横向电场的面内转换(In-Plane Switching:IPS)模式、在未施加电压时驱动垂直取向的液晶的多域垂直取向(Multi-domain VerticalAlignment:MVA)模式、使弯曲取向单元与相位差薄膜组合的OCB(Optically Compensated Birefringence:光学补偿双折射)模式等显示模式,和使用相位差薄膜的光学补偿法等,还讨论了适当的组合使用,已商品化的液晶显示装置多采用这些方法。 As such method, for example, proposes a pixel division method (divided into a plurality of pixels, at a constant ratio change to the intermediate color applied to each pixel of the gray scale voltages measured (half-tone grey scale) method, or a when IPS) mode, no voltage is applied: the pixel is divided into a plurality of domains), the inner surface of the lateral electric field is applied to the conversion of (in-plane Switching liquid crystal domain division method, each domain of the liquid crystal alignment control. multi-domain vertical alignment liquid crystal is driven in a vertical alignment (multi-domain VerticalAlignment: MVA) mode, bend alignment OCB cell combined with a retardation film (optically compensated birefringence: the optical compensated birefringence) mode display mode, the retardation and the optical compensation film method or the like, is also discussed using an appropriate combination, the liquid crystal display device has been commercialized to use more of these methods.

但是,在采用象素分割法或上述显示模式的情况下,必须改变取向膜、电极等的构造,因此需要确定制造技术或新设制造设备,结果,导致制造困难和成本较高,在这点上尚有改善的余地。 However, in the case where the above-described pixel division method or a display mode, it is necessary to change the configuration of the alignment film, an electrode or the like, it is necessary to determine new manufacturing techniques or manufacturing equipment, the results, resulting in manufacturing difficulties and higher costs, at which point there is room for improvement on. 另外,视角依赖性的改良效果也不充分。 Further, the effect of improving viewing angle dependence is not sufficient. 此外,使用相位差薄膜的光学补偿法的改良效果也有限。 In addition, the effect of improving the use of an optical retardation film compensation method is also limited. 例如,最适于液晶单元的相位差补偿的相位差值在黑显示时和白显示时有所不同,故在黑显示和白显示两者中不能进行液晶单元的相位差补偿。 For example, the most suitable retardation value of the retardation compensator of the liquid crystal cell is different when displayed in black and white, it can not compensate the phase difference of the liquid crystal display unit in both the black and white display. 另外,在偏振光板的偏振光轴(透过轴和吸收轴)的轴方位下,原理上根本得不到基于相位差薄膜的补偿效果,改良效果限于特定的方位角范围,在这点上也有改善的余地。 Further, in the polarization axis of the polarizing plate (transmission axis and an absorption axis) of the lower shaft bearing, not simply based on the compensation effect of the retardation film, the effect of improving the specific azimuth range is limited in principle, there are at this point room for improvement.

除上述之外,作为改良液晶显示装置的显示性能之视角依赖性的方法,已知在液晶显示器件的观察面侧设置散射薄膜来平均化射出光的方法。 In addition to the above, the viewing angle dependence of display performance of the display device as a modified method of liquid crystal, it is known scattering film disposed on the viewing surface side of the liquid crystal display device emits light to the method of averaging. 该方法可适用于全部显示模式,基本上不必变更显示单元的构造。 The method is applicable to the full display mode, substantially without changing the configuration of the display unit. 另外,与上述使用了相位差薄膜的光学补偿法不同,在黑显示时和自显示时两者都取得效果,即便是偏振光板的偏振光轴的轴方位也未丧失该效果。 Further, the above-described retardation film using a different optical compensation method, both effects are achieved and when from the display, even the polarization axis of the polarizing plate nor axis azimuth loss effect of the black display.

另外,作为通常的液晶显示装置的光源,采用射出扩散光的扩散背光灯系统。 Further, the light source device as a normal liquid crystal display, a diffusion backlight system emits diffused light. 液晶显示模式或偏振光板的大部分对垂直入射的光的特性最好,所以用透镜薄膜等尽可能将来自扩散背光灯系统的光平行光化,并垂直入射到液晶显示器件(液晶单元)。 Characteristic of the liquid crystal display most of the incident light is perpendicular to the best mode or polarizing plate, a lens film or the like so that the light from the collimated backlight system as diffusion and perpendicularly incident to the liquid crystal display device (liquid crystal cell). 由此,因为可得到更好的视角依赖性的改良效果,所以多提出了与此相关联的技术。 Accordingly, since the effect of improving viewing angle can be better dependent, multi proposed a technique associated with this therewith.

但是,由于还未确立简便高效得到平行光的方法,所以基于散射薄膜的视角依赖性的改良方法如上所述,实质上与扩散背光灯系统组合使用。 However, since not been established yet simple and efficient method to obtain parallel light, the viewing angle dependence of improved methods based on scattering film as described above, the system using a combination of diffusion substantially and the backlight. 此时,如上所述,尽管得到视角依赖性的改良效果,但在黑显示状态下,向液晶单元倾斜入射射出的泄漏光的一部分由于散射薄膜,导致其前进路径向正面方向弯曲,所以在正面方向,尤泄漏增加,使正面方向的对比度比大大下降,在这点上尚有改善的余地。 At this time, as described above, although the effect of improving viewing angle dependence obtained, but in the black display state, the leakage light is incident obliquely emitted to the liquid crystal film by scattering a portion of the cell, resulting in the forward path which is bent in the front direction, so in the front direction, especially leakage increases, the positive direction of the contrast ratio declined significantly, at this point there is room for improvement. 这是由于散射薄膜的散射性能为各向同性,所以即便入射角稍微变化,散射薄膜对透过光的散射特性也不会差异太大。 This is due to the isotropic, so even a slight change in the angle of incidence of the scattering properties of scattering film, scattering film for scattering characteristics of light transmission will not be too different.

与之相对,公开了如下制造的光控制板(例如参照专利文献1-13。)和安装了这种光控制板的液晶显示装置(例如参照专利文献14和15),即对各自的折射率有差别的、在分子内具有一个或者一个以上的光聚合性碳-碳双键的多个化合物构成的树脂组成物,从线性光源在规定的角度范围内照射紫外线,使该树脂组成物固化。 On the other hand, discloses a light control plate produced as follows (see Patent Document 1-13.) And LCD panel display device such light (e.g., refer to Patent Documents 14 and 15), i.e., the refractive index of the respective differentiated, or one having one or more photopolymerizable carbon in the molecule - a plurality of resin composition composed of carbon double bonds, from the linear light source within a predetermined angular range is irradiated with UV light to cure the resin composition. 这种光控制板选择地散射从特定角度入射的光。 Such light scatter incident light control plate selected from a particular angle. 因此,若使用该光控制板,则认为可一定程度消除上述正面方向的对比度比的下降。 Thus, when using the light control plate, it is considered to be decreased to some extent eliminate the above-described contrast ratio in the front direction.

但是,在该光控制板的树脂固化物内,如图30所示,考虑与光控制板50制作时配置于其上空的线状光源51的长度方向一致,并彼此平行地形成了折射率与周边区域不同的板状区域40。 However, the light control plate in the cured resin, as shown in FIG. 30, the configuration thereof in the longitudinal direction above the linear light source 51 coincides with the light control plate 50 considering production, and a refractive index formed in parallel with each other different slab region 40 of the peripheral region. 因此,在图30中的以交互呈现折射率与周边区域不同的板状区域40的AA线为中心进行旋转的情况下,基本上未发现光控制板50所示的散射特性的入射角依赖性,但是,在以无折射率变化、均质的BB线为中心使之旋转的情况下,可发现上述入射角依赖性。 The incident angle dependence characteristics of the scattering Accordingly, in FIG. 30 in an interactive peripheral region exhibits a refractive index different from the line-shaped region AA 40 is rotated as the center, as shown in the light control plate substantially No 50 However, when the refractive index change in a non-homogeneous line BB in the center of the case to be rotated, the incident angle dependency can be found.

图31是表示图30中的光控制板50所示的散射特性之入射角依赖性的模式图。 FIG 31 is a schematic diagram showing the incident angle dependence of the scattering characteristics shown in FIG. 30 in the light control plate 50. 纵轴表示作为表示散射程度的指标之直线透过光量,横轴表示入射角。 Denotes a straight vertical axis represents the degree of scattering index of the amount of transmitted light, the horizontal axis represents the angle of incidence. 另外,图31中的实线和虚线分别表示以图30中的AA轴和BB轴为中心使光控制板50旋转的情况。 Further, in FIG. 31 the solid and dashed lines represent the case of FIG. 30 to the axis AA and BB of the center axis of the light control plate 50 rotates. 另外,入射角的正负表示使光控制板50旋转的方向相反。 Further, the negative incidence angle indicates a direction opposite to the light control plate 50 rotates.

图31中的实线表示无论是正面方向还是倾斜方向、直线透过光量都保持较小,这意味着在以AA轴为中心旋转的情况下,光控制板50与入射角无关,为散射状态。 The solid line in FIG. 31 showing both positive direction or the oblique direction, both linearly transmitted light amount is kept small, which means that, regardless of the angle of incidence of the light control plate 50 in order to rotate around the axis AA of the case, a scattering state . 另外,图31中的虚线表示在0度附近的方向下直线透过光量小,这意味着在以BB轴为中心旋转的情况下,光控制板50对正面方向的光为散射状态。 Further, the dotted line in FIG. 31 represents a small amount of linear transmitted light in a direction close to 0 degrees, which means that in the case where the rotation center axis BB, the light control plate 50 pairs of light scattering state is the front direction. 另外,在入射角较大的方向下直线透过光量增加,这意味着在以BB轴为中心旋转的情况下,光控制板50对倾斜方向的光为透过状态。 Further, increasing the amount of linear transmitted light in a direction incident angle larger, which means that in the case where the rotation center axis BB, 50 pairs of oblique direction light is transmitted through the control panel state.

这样,在以前的光控制板中,由于仅在特定的方位才能得到各向异性散射特性(当改变入射角时、散射特性变化的特性),所以尽管多少可防止正面方向的对比度比的下降,但在仅在特定的方位才能得到视角依赖性的改良效果这点上,尚有改善的余地。 Thus, the light control plate in the former, since only to get the anisotropic scattering characteristics (when changing the incident angle, the scattering characteristic variation characteristic), although it is possible to prevent the front direction is much lowered contrast ratio in a specific orientation, but only to get on the viewing angle dependence in a particular orientation in order to improve the effect of this point, there is room for improvement.

专利文献1:特开昭63-309902号公报 Patent Document 1: Laid-Open Publication No. Sho 63-309902

专利文献2:特开昭64-40903号公报 Patent Document 2: Laid-Open Publication No. Sho 64-40903

专利文献3:特开昭64-40905号公报 Patent Document 3: JP Laid-Open Publication No. 64-40905

专利文献4:特开昭64-40906号公报 Patent Document 4: JP Laid-Open Publication No. 64-40906

专利文献5:特开昭64-77001号公报 Patent Document 5: JP Laid-Open Publication No. 64-77001

专利文献6:特开平1-147405号公报 Patent Document 6: Japanese Patent Application Publication No. 1-147405

专利文献7:特开平1-147406号公报 Patent Document 7: JP Laid-Open No. 1-147406

专利文献8:特开平2-51101号公报 Patent Document 8: Japanese Patent Publication No. 2-51101

专利文献9:特开平2-54201号公报 Patent Document 9: Japanese Patent Publication No. 2-54201

专利文献10:特开平2-67501号公报 Patent Document 10: Japanese Patent Publication No. 2-67501

专利文献11:特开平3-87701号公报 Patent Document 11: Japanese Patent Publication No. 3-87701

专利文献12:特开平3-109501号公报 Patent Document 12: Japanese Patent Application Publication No. 3-109501

专利文献13:特开平6-9714号公报 Patent Document 13: Japanese Patent Publication No. 6-9714

专利文献14:特开平7-64069号公报 Patent Document 14: Japanese Patent Publication No. 7-64069

专利文献15:特开2000-180833号公报 Patent Document 15: Unexamined Patent Publication No. 2000-180833

发明内容 SUMMARY

本发明鉴于上述现状而做出,其目的在于提供一种显示装置,不在设计上变更显示器件的基本构造,不损害对比度比较大方向的显示品位,不限于白显示状态或黑显示状态,可在较宽的方位下改善对比度比的视角依赖性。 The present invention is made in view of the above, an object thereof is to provide a display device to change the basic configuration of the display device, the design does not, without prejudice to the general direction of the comparative contrast display quality is not limited to the white display state or a black display state can be improving the viewing angle dependence of the contrast ratio under a wide orientation.

本发明人对具备对比度比具有视角依赖性的显示器件、和具有各向异性散射层的各向异性散射薄膜之显示装置进行了各种研究之后,着眼于具有散射中心轴的各向异性散射薄膜之散射特性。 The anisotropic scattering film of the present invention, after various studies have contrast ratio of the display device having a viewing angle dependency of the display device, and the anisotropic scattering film has an anisotropic scattering layer having a scattering focused on central axis the scattering properties. 具有散射中心轴的各向异性散射薄膜的各向异性散射特性(当改变入射角时、散射特性变化的特性)以散射中心轴为中心,大致示出对称性。 Anisotropic scattering characteristics of the anisotropic scattering film has scattering center axis (when changing the incident angle, a characteristic scattering characteristic variation) scattering center axis, shown generally symmetry. 因此,通过在显示器件的观察面侧配置该各向异性散射薄膜,使散射中心轴的轴向大致平行于显示器件的对比度比最大的方向,可使对比度比最大的方向的入射光(主要是白亮度)在全部方向上散射(扩散)后平均化,所以发现可在比以前宽的方位下改善对比度比的视角依赖性。 Thus, by arranging the anisotropic scattering film viewing side of the display device, so that the axial scattering central axis substantially parallel to the maximum contrast ratio of the display device in the direction, the direction of maximum contrast ratio can incident light (mainly white luminance) after scattering (diffusion) of the average in all directions, it is found to improve the viewing angle dependence of the contrast ratio at the position wider than before. 另外,由于此时对比度比较小的方向的入射光仅较弱地散射,故发现可抑制由于同向的入射光的散射、使对比度比最大方向的显示品位下降。 Further, at this time since the incident light direction is a relatively small contrast only weakly scattering, it was found possible to suppress the scattering of the incident light due to the same direction, so that the direction of the maximum contrast ratio of the display quality is decreased.

另外,在通常的显示器件中,在对比度比最大的方向下最佳设计γ曲线、色度等各显示性能。 Further, in the conventional display device, each display performance curve γ best design, color and so on in the direction of maximum contrast ratio. 因此,根据本发明的显示装置,发现尤其是显示器件的视野角较窄的方位下,γ曲线、色度等各显示性能的视角依赖性也可以改善。 Thus, the display device according to the invention, the viewing angle is found to be particularly narrow azimuth display device, the viewing angle dependence of the γ curves for each display performance, color, etc. can be improved. 另外,具有散射中心轴的各向异性散射薄膜与相位差薄膜不同,不限于白显示状态或黑显示状态,与仅在特定的方位才示出各向异性散射特性的现有各向异性散射薄膜不同,在全部方位示出各向异性散射特性,所以发现本发明的显示装置可实现高显示品位。 Further, the anisotropic scattering film has scattering central axis of the retardation film is different is not limited to the white display state or a black display state, only the conventional anisotropic scattering shows only the anisotropic scattering properties in a particular orientation film different, all the orientation shown anisotropic scattering characteristics, it is found that the display device of the present invention can achieve a high display quality. 另外,上述显示性能的视角依赖性的改善效果从其原理上看,不对对比度比具有视角依赖性的任意显示器件执行该显示器件的基本构造的设计变更就可得到。 Further, the effect of improving viewing angle dependence of the display characteristics from a principle point of view, the contrast does not change the basic configuration of the implementation of the design of the display device is a display device having an arbitrary ratio of the viewing angle dependence can be obtained. 如上所述,本发明人想到可彻底解决上述课题,实现本发明。 As described above, the present invention may occur to solve the above problems and achieve the present invention.

即,本发明是一种显示装置,具备对比度比具有视角依赖性的显示器件、和具有各向异性散射层的各向异性散射薄膜,其中,上述各向异性散射薄膜在与显示器件的对比度比最大的方向大致平行的方向上具有散射中心轴,并被配置于显示器件的观察面侧。 That is, the present invention is a display device comprising a display device having a contrast ratio viewing angle dependence, and the anisotropic scattering film has an anisotropic scattering layer, wherein the anisotropic scattering film in the contrast ratio of the display device scattering central axis having a direction substantially parallel to the direction of maximum, and is arranged on the observation surface side of the display device.

下面,详细描述本发明。 The present invention will be described in detail.

上述显示器件的对比度比具有视角依赖性。 The contrast ratio of the above-described display device has viewing angle dependence. 另外,在本说明书中,所谓显示器件并不特别限于执行显示的器件,例如可以是液晶显示器件。 Further, in the present specification, the display device performing display device is not particularly limited, for example, a liquid crystal display device. 所谓对比度比是显示器件的显示性能之一,通常采用由最小亮度除以最大亮度的值来表示。 Contrast ratio is one of the so-called display performance of the display device, usually the minimum value is divided by the maximum luminance is represented. 所谓视角依赖性是指在从正面方向(显示装置的观察面法线方向、视角为0度的方向)观察的情况与从倾斜方向(视角比0度大的方向)观察的情况下,显示器件的显示性能不同。 The so-called viewing angle dependence means that from a front direction (normal to the surface of the display device viewed in the direction, a viewing angle of 0 degree direction) when viewed in the case of observation from an oblique direction (viewing angle greater than zero degrees), the display device It shows different performance. 因此,所谓'对比度比具有视角依赖性'意味着在从正面方向观察的情况与从倾斜方向观察的情况下,对比度比不同。 Thus, the so-called "viewing angle dependence of the contrast ratio with 'means that when viewed from a frontal direction and when viewed from an oblique direction, the contrast ratio different. 另外,通常,越是靠近正面方向的方向,显示器件的对比度比越大,但也可相反。 Further, generally, the closer the direction of the front direction, the contrast of the display device, but may also be larger than the opposite.

上述各向异性散射薄膜具有各向异性散射层。 The anisotropic scattering film has an anisotropic scattering layer. 另外,在本说明书中,所谓各向异性散射层,是指只要在至少一个方位上示出各向异性散射特性(当改变入射角时,散射特性发生变化的特性),则不特别限定。 Further, in the present specification, the term anisotropic scattering layer is a layer (characteristic when changing the incident angle, the scattering characteristic changes) shows anisotropic scattering properties as long as at least one orientation, is not particularly limited. 所谓方位是表示各向异性散射薄膜的薄膜面、或显示器件的观察面的面内方向的参数,用方位角Ф(0度≤Ф<360度)表示。 Is a parameter indicating the orientation of the so-called in-plane direction of the plane of the film surface was observed anisotropic scattering film, or a display device, (0 degrees ≤Ф <360 degrees) is represented by an azimuth angle [Phi]. 在本说明书中,方位角Ф和极角-θ(0度≤θ<90度)的方向、与方位角Ф+180度(方向与方位角Ф相反的方位)和极角θ的方向完全一致。 In the present specification, the direction of the azimuth angle [Phi] and a polar angle -θ (0 ° ≤θ <90 degrees), and the azimuth Ф + 180 degrees (the orientation direction opposite to azimuth angle [Phi]) and a direction of a polar angle θ is exactly the same . 在本说明书中,通常通过将极角的数值范围设为0度或者0度以上,来区别方位角Ф的方位与方位角Ф+180度的方位,各方向通过特定方位角Ф(0度≤Ф<360度)和极角θ(0度≤θ<90度)来表示。 In the present specification, the numerical range typically by a polar angle of 0 degrees or more is set to 0 degrees, to distinguish the orientation azimuth orientation with azimuth angle [Phi] of Ф + 180 degrees, a particular azimuth angle [Phi] of each direction (0 ° ≤ Ф <360 degrees) and a polar angle θ (0 ° ≤θ <90 °), respectively. 所谓入射角意味着各向异性散射薄膜的薄膜面之法线方向与入射方向所成的角度。 The so-called angle of incidence means that the normal direction of the film plane to the incident direction of the anisotropic scattering film of the angle. 所谓极角是以各向异性散射薄膜的薄膜面、或显示器件的观察面的法线方向(极角为0度的方向)为基准来表示的。 Polar angle is called the normal direction of the surface of the film surface was observed, or the display device of the anisotropic scattering film (polar angle of 0 degree direction) is represented as a reference. 作为上述各向异性散射薄膜的方式,例如仅由各向异性散射层构成的方式、在各向异性散射层的单侧(观察面侧或背面侧)层叠了透明基体的方式、在各向异性散射层的两侧(观察面侧和背面侧)层叠了透明基体的方式。 The anisotropic scattering film as described above, for example, only by way of an anisotropic scattering layer composed of the anisotropic scattering layer on one side (observation surface side or back side) of the transparent laminated substrate of embodiment, the anisotropy both sides (observation surface side and the back side) of the scattering layer laminated manner transparent substrate. 此外,上述各向异性散射层既可具有单层构造,也可具有层叠构造。 Further, the anisotropic scattering layer can have a single layer structure, or may have a multilayer structure.

另外,作为上述透明基体,透明性越高越好。 Further, as the transparent substrate, the higher the better the transparency. 因此,上述透明基体的全部光线透过率(JIS K7361-1)最好为80%或者80%以上,85%或者85%以上更好,最佳是90%或者90%以上。 Thus, all of the light transmittance of the transparent substrate (JIS K7361-1) is preferably not less than 80%, or 80%, 85% or 85% or more, most preferably more than 90%, or 90%. 另外,上述透明基体的浑浊度(ヘイズ)(JIS K7136)最好为3.0或者3.0以下,更好为1.0或者1.0以下,最佳为0.5或者0.5以下。 Further, the turbidity of the transparent substrate (ヘ イ DANGER) (JIS K7136) is preferably 3.0 or 3.0 or less, more preferably 1.0 or 1.0 or less, most preferably 0.5 or 0.5 or less. 作为上述透明基体,例如可以列举透明的塑料薄膜或玻璃板等,但在薄型性、轻量性、耐冲击性和生产性好的方面,最好是塑料薄膜。 Examples of the transparent substrate, for example, may include a transparent glass plate or plastic film, but the plus side of a thin, lightweight, impact resistance and productivity, preferably a plastic film. 作为上述塑料薄膜的材料,例如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、三乙酰纤维素(TAC)、聚碳酸酯(PC)、聚芳酯、聚酰亚胺(PI)、芳香族聚酰胺、聚砜(PS)、聚醚砜(PES)、赛璐玢、聚乙烯(PE)、聚丙烯(PP)、聚乙烯醇(PVA)、环烯烃树脂等,作为上述塑料薄膜的方式,例如单独或混合上述材料后薄膜化所构成的方式、层叠上述薄膜化后的材料而形成的方式等。 The material of the plastic film, such as polyethylene terephthalate (PET), polyethylene terephthalate polyethylene naphthalate (PEN), triacetyl cellulose (the TAC), polycarbonate (PC), polyarylate ester, polyimide (PI), aromatic polyamide, polysulfone (PS), polyether sulfone (PES), cellophane, polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVA) , cycloolefin resins, as the embodiment of the plastic film, for example, the thin film composed of the above-described materials alone or in combination, the above-described embodiment the laminated material was formed by a thin film and the like. 若考虑用途或生产性,上述透明基体的厚度最好是1μm~5mm,10~500μm更好,50~150μm最好。 In consideration of productivity or use, the transparent substrate thickness is preferably 1μm ~ 5mm, 10 ~ 500μm more, 50 ~ 150μm best.

在本发明中,上述各向异性散射薄膜具有散射中心轴。 In the present invention, the anisotropic scattering film has scattering central axis. 另外,在本说明书中,所谓散射中心轴是各向异性散射特性以其轴向为中心大致示出对称性的轴,具有散射中心轴的各向异性散射薄膜在全部的方位下示出各向异性散射特性。 Further, in the present specification, the center axis of the scattering is anisotropic scattering characteristic thereof substantially axially centered on the axis of symmetry is shown, having a central axis of the anisotropic scattering scattering films at all to the orientation shown in each anisotropic scattering properties. 因此,各向异性散射薄膜的散射特性不能唯一表示,但在将直线透过光量用作散射特性指标的情况下,就构成本发明的显示装置的各向异性散射薄膜而言,直线透过光量以散射中心轴的轴向为中心大致对称地变化。 Thus, the scattering characteristics of the anisotropic scattering film not uniquely expressed, but in a case where scattering property is used as the index of the linear amount of transmitted light, the anisotropic scattering film constitutes a display device of the present invention, the amount of linear transmitted light the axial center of the scattering central axis changes substantially symmetrically. 另外,所谓直线透过光量是当入射规定光量的平行光线时、沿与入射方向相同的方向射出的平行光线的光量。 Further, the amount of light transmitted through a so-called linear if a predetermined amount of light incident parallel light, the light amount emitted from the parallel light incident in the same direction. 作为上述直线透过光量的测定方法,例如图4所示的方法。 The method of measuring the amount of light transmitted through the method shown in FIG. 4, for example, as the straight line. 在图4所示的方法中,在接受来自光源(未图示)的直线光的位置上,固定感光部30,在光源与感光部30之间,配置试验片10。 In the method shown in FIG. 4, receiving light from the linear light source (not shown) in a position fixing the photosensitive portion 30, between the light source and the photosensitive portion 30, the test piece 10 arranged. 根据该方法,例如通过以LL轴(旋转轴)为中心使试验片10旋转,从而可在垂直于薄膜面内的LL轴的MM方位(测定方位)变更入射角,以测定直线透过光量。 According to this method, for example by LL axis (rotation axis) of the center of rotation of the test piece 10, to change the angle of incidence of MM orientation within the film plane perpendicular to the axis of the LL (measurement position) to measure the amount of linear transmitted light. 另外,上述测定方位可通过改变上述旋转轴来适当变更。 Further, the determination of position may be appropriately changed by changing the rotation shaft. 因此,根据该方法,可测定各个方向下的直线透过光量。 Thus, according to this method, a straight line can be measured in the amount of light transmitted through the respective directions. 另外,作为上述感光部30,例如可使用光度测角计。 Further, the photosensitive portion 30, for example, photometric goniometer.

上述各向异性散射薄膜在与显示器件的对比度比最大的方向大致平行的方向上具有散射中心轴,并被配置于显示器件的观察面侧。 The anisotropic scattering film has scattering central axis in the direction of the contrast ratio of the display device in a direction substantially parallel to the maximum, and is arranged on the observation surface side of the display device. 据此,由于显示器件的对比度比最大的方向与各向异性散射薄膜的散射中心轴的轴向大致平行,所以可有选择地使对比度比最大的方向的入射光在全部方向上散射后平均化,可在较宽的方位下改善对比度比的视角依赖性。 Accordingly, since the contrast ratio of the display device is substantially parallel to the axial direction of maximum scattering central axis direction of the anisotropic scattering film, it is possible to selectively make the incident direction of maximum contrast ratio averaged scattered in all directions after , viewing angle dependence of the contrast ratio can be improved at a wide azimuth. 另外,此时,对比度比较小的方向的光仅较弱地散射,基本上可透过,所以可抑制由于同向的入射光的散射、使对比度比最大的方向的显示品位下降。 In this case, the contrast of the light direction is relatively small only weakly scattering, substantially transparent, can be suppressed due to scattering of incident light in the same direction, so that the direction of maximum contrast ratio of the display quality drops.

另外,在通常的显示器件中,认为上述对比度比最大的方向为显示性能最好的方向,在该方向下最佳设计γ曲线、色度等各显示性能。 Further, in the conventional display device, the maximum contrast ratio that the above-described direction for the best performance of the direction of the display, each display performance curve γ best design, color and so on in this direction. 因此,根据本发明,通常、尤其是在显示器件的视野角窄的方位下,不仅可改善对比度比的视角依赖性,还可改善γ曲线、色度等各显示性能的视角依赖性。 Thus, according to the present invention, generally, especially in the narrow viewing angle of orientation of the display device, not only can improve the viewing angle dependence of the contrast ratio, also improving the viewing angle dependence of the γ curves for each display performance, color and the like. 尤其是构成本发明的显示装置的各向异性散射薄膜与相位差薄膜不同,不限于白显示状态或黑显示状态,与仅在特定的方位才示出各向异性散射特性的现有各向异性散射薄膜不同,在全部方位下示出各向异性散射特性,所以本发明的显示装置可实现高显示品位。 In particular a display device of the present invention constituting the anisotropic scattering film and the retardation film is different is not limited to the white display state or a black display state, and it shows only the anisotropic scattering properties in a particular orientation prior anisotropy different scattering film, the entire orientation shown in the anisotropic scattering characteristics, the display device of the present invention can achieve a high display quality. 另外,上述视角依赖性的改善之本发明的作用效果从其原理上看,不对对比度比具有视角依赖性的任意显示器件执行基本构造的设计变更就可得到。 Further, the above-described effects of improving the viewing angle dependence of the present invention from the principle point of view, does not perform the basic configuration of a contrast ratio of a display device having a viewing angle dependence of any design change can be obtained.

所谓'大致平行'不仅指完全平行的状态,还包含鉴于本发明的作用效果、可视为平行状态的状态。 The so-called 'substantially parallel' means not only a state completely parallel, further comprising a view of the effect of the present invention, it may be regarded as parallel state. 另外,显示器件的对比度比最大的方向通常为与显示器件的观察面法线方向大致平行的方向,但也可以是此外的方向。 Further, the maximum contrast ratio of the display device a direction generally normal direction to a direction viewing the display device is substantially parallel, but may be in addition to the direction. 另外,上述各向异性散射薄膜与显示器件的配置方式并未特别限定,但最好将上述各向异性散射薄膜贴合于显示器件上。 Further, the anisotropic scattering film arrangement of the display device is not particularly limited, but preferably the anisotropic scattering film bonded to the display device. 作为将上述各向异性散射薄膜贴合于显示器件上的方法,不特别限定,例如使用接合剂的方法、使用粘合剂的方法。 As a method in which the anisotropic scattering film bonded to the display device, is not particularly limited, for example, a method using an adhesive, the method using an adhesive. 从有效得到本发明的作用效果的观点看,上述散射中心轴的轴向的直线透过光量越小越好。 From the effects of the present invention is effective in the viewpoint of the linear axial direction of the central axis of scattering transmitted light amount as small as possible.

作为本发明的显示装置的构成,只要将包含上述显示器件和各向异性散射薄膜作为构成要素,就可包含也可不包含其它的构成要素,并未特别限定。 The display device according to the present invention is configured, as long as the display device containing the anisotropic scattering film as a constituent element, comprising a can may not include other components, is not particularly limited.

下面,详细说明本发明的显示装置的最佳方式。 Hereinafter, the best mode in detail the display device of the present invention.

上述各向异性散射层最好使包含光固化性化合物的组成物发生固化。 The anisotropic scattering layer is preferred that the composition comprises a light-curable compound cures. 据此,可简便地制造出具有上述各向异性散射特性的各向异性散射薄膜,即在全部方位下示出各向异性散射特性的各向异性散射薄膜。 Accordingly, anisotropy can easily manufacture the anisotropic scattering film has scattering properties, i.e., the anisotropic scattering film shown anisotropic scattering characteristics at all orientations. 使包含上述光固化性化合物的组成物固化的各向异性散射层若用显微镜观察截面,则例如看到沿厚度方向延伸的细微构造。 The anisotropic scattering layer of a cured composition containing the photocurable compound if the cross-sectional observation with a microscope, for example, the fine structure seen in the thickness direction extends. 因此,如图2A-2C所示,在各向异性散射层10的内部,折射率与周边区域稍微不同,认为形成了多个延伸方向与散射中心轴S的轴向一致的微小棒状固化区域20,并认为由于这种各向异性散射层10的内部构造而发现上述各向异性散射特性。 Thus, as shown in FIG 2A-2C are slightly different in the inside, and the refractive index of the peripheral region of the anisotropic scattering layer 10 that is formed of an axially extending direction of the plurality of scattering central axis S of the rod-shaped curing area 20 minute and that since the internal construction of such anisotropic scattering layer 10 and found that the anisotropic scattering properties. 另外,在图2A-2C中,棒状固化区域20的形状表示成圆柱状,但不特别限定。 Further, in FIGS. 2A-2C, the shape of the rod-shaped curing region 20 represents a cylindrical shape, but is not particularly limited. 另外,图2A中,作为一个最佳实例,棒状固化区域20沿各向异性散射层10的厚度方向延伸,但棒状固化区域20的延伸方向与散射中心轴的轴向一样,并未特别限定。 Further, FIG. 2A, as a preferred example, the rod-shaped curing region 20 extends in the thickness direction of the anisotropic scattering layer 10, but the extending direction of the rod-shaped curing region 20 and the central axis as the axial scattering, is not particularly limited. 并且,各向异性散射层的形状在图2A-2C中表示为薄片状,但并不特别限定。 The shape of the anisotropic scattering layer is expressed as a sheet, but is not particularly defined in FIG. 2A-2C.

作为包含上述光固化性化合物的组成物的方式,例如(A)单独光聚合性化合物的方式、(B)混合包含多个光聚合性化合物的方式、(C)混合包含单个或多个光聚合性化合物与不具有光聚合性的高分子树脂的方式等。 As the above-described embodiment the composition comprises a photocurable compound, for example, (A) a photopolymerizable compound alone manner, (B) mixing a photopolymerizable compound comprising a plurality of ways, (C) mixing a photopolymerization comprising a single or multiple compounds like manner having no photopolymerizable polymer resin. 在上述(A)~(C)的方式中,均如上所述,通过照射光在各向异性散射层中形成折射率与周边区域不同的微米级细微构造的结果,认为可发现直线透过光量的入射角依赖性。 In the (A) ~ (C) manner, are as described above, the refractive index of the surrounding areas of different micron-sized fine structure is formed in the anisotropic light scattering layer by the irradiation, the amount of linear transmitted light that can be found in the incident angle dependence.

因此,在上述(A)的方式中,作为光聚合性化合物,最好在光聚合前后、折射率变化大。 Thus, in the above-described embodiment (A), a photopolymerizable compound, a photopolymerization is preferably before and after, a large refractive index change. 另外,在上述(B)和(C)的方式中,作为光聚合性化合物,最好使折射率不同的多个材料组合。 Further, in the above-described embodiment (B) and (C), a photopolymerizable compound, it is preferable that a plurality of combinations of materials having different refractive indices. 另外,从有效得到本发明的作用效果的观点看,上述折射率变化和折射率的差最好大于等于0.01,大于等于0.05更好,最佳是大于等于0.10。 Further, the effects of the present invention is effective in the viewpoint of change in refractive index difference between the best and the refractive index is not less than 0.01, better not less than 0.05, most preferably not less than 0.10.

另外,上述光固化性化合物最好包含具有自由基聚合性或阳离子聚合性的功能基的聚合物、齐聚物或单体的光聚合性化合物与光引发剂,具有通过照射紫外线和/或可见光线来聚合固化的性质。 Further, the photocurable compound preferably comprises a polymer having a radical polymerizable or cationic polymerizable functional group, a photopolymerizable compound and a monomer or oligomer light initiator, irradiation with ultraviolet rays having a through and / or visible lines polymerization curing properties.

上述自由基聚合性化合物主要在分子中含有一个或者一个以上的不饱和双键,具体而言,可列举例如称作环氧丙烯酸酯、氨基甲酸酯丙烯酸酯、聚酯丙烯酸酯、硅氧烷丙烯酸酯等的丙烯酸低聚物、2-乙基己基丙烯酸酯、苯氧基乙基丙烯酸酯、丙烯酸异降冰片酯、2-羟基乙基丙烯酸酯、2,2,2-三氟乙基甲基丙烯酸酯、2-全氟辛基-乙基丙烯酸酯、三乙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、1,9-壬二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、环氧乙烷(EO)改性三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二季戊四醇六丙烯酸酯等丙烯酸酯单体。 Of the radical polymerizable compound containing at least one primary or one unsaturated double bond in the molecule, and specific examples include, for example, referred to as epoxy acrylates, urethane acrylates, polyester acrylates, silicone acrylic acrylate oligomer, 2-ethylhexyl acrylate, phenoxyethyl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 2,2,2-trifluoroethyl acrylate, 2-perfluorooctyl - ethyl acrylate, triethylene glycol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, trimethylolpropane propane triacrylate, ethylene oxide (EO) modified trimethylol propane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate acrylate monomer.

作为上述阳离子聚合性化合物,可使用在分子中含有一个或者一个以上环氧基、乙烯醚基和/或氧杂环丁烷)基的化合物。 Examples of the cationically polymerizable compound, vinyl ether and / or oxetane) groups in the molecule may be used containing one or more than one epoxy group. 作为上述在分子中含有环氧基的化合物,例如可使用双酚A、氢化双酚A、双酚F、双酚AD、双酚S、四甲基双酚A、四甲基双酚F、四氯双酚A、四溴双酚A等双酚类的二缩水甘油基醚类;可溶酚醛树脂、甲酚醛树脂、溴化可溶酚醛树脂、邻甲酚醛树脂等酚醛树脂的聚缩水甘油基醚类;乙二醇、丁二醇、1,6-己二醇、新戊二醇、三羟甲基丙烷、双酚A的环氧乙烷(EO)加成物等亚烷基二醇类的二缩水甘油基醚类;六氢邻苯二甲酸的缩水甘油酯;二聚酸的二缩水甘油酯等缩水甘油酯、类等。 Examples of the compound having an epoxy group in the molecule described above, for example, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, bisphenols tetrachloro bisphenol a, tetrabromobisphenol a diglycidyl ether and the like; polyglycidol resole phenolic resin, cresol novolak resins, brominated soluble phenol resin, cresol formaldehyde resin ethers; alkylene glycol, butanediol, 1,6-hexanediol, neopentyl glycol, trimethylol propane, bisphenol a ethylene oxide (EO) adduct of two alcohols diglycidyl ethers; hexahydrophthalic acid glycidyl ester; diglycidyl ester of dimer acid glycidyl ester and the like, and the like. 另外,还可使用3,4-环氧环己烷甲基-3',4'-环氧环己基羧酸酯等脂环式环氧化合物、1,4-双[(3-乙基-3-氧杂环丁烷基甲氧基)甲基1苯、3-乙基-3-(羟基甲基)-氧杂环丁烷等氧杂环丁烷化合物;二乙二醇二乙烯基醚、三羟甲基丙烷三乙烯基醚等乙烯醚化合物等。 Further, also possible to use 3,4-epoxycyclohexane-3 ', 4'-epoxy compound epoxycyclohexyl alicyclic carboxylic acid esters, 1,4-bis [(3-ethyl - 3-oxetanyl methoxy) methyl benzene 1, 3-ethyl-3- (hydroxymethyl) - oxetane oxetane compound; diethylene glycol divinyl ether, trimethylolpropane trivinyl ether, a vinyl ether compound.

上述光聚合性化合物不限于上述化合物。 The photopolymerizable compound is not limited to the above compounds. 另外,为了产生充分的折射率差,可在上述光聚合性化合物中导入氟元素原子(F),以实现低折射率,也可导入硫原子(S)、溴原子(Br)、各种金属原子,以实现高折射率。 In order to produce a sufficient difference in refractive index, may be introduced into the photopolymerizable compound in the above-described fluorine atom (F.), To achieve a low refractive index, a sulfur atom may be introduced (S), bromine atom (Br), various metal atom, in order to achieve a high refractive index. 另外,为了实现上述各向异性散射层的高折射率,向光聚合性化合物中、添加在氧化钛(TiO2)、氧化锆(ZrO2)、锡氧化物(SnOx)等高折射率的金属氧化物构成的超微粒子表面中导入丙烯基或环氧树脂基等光聚合性功能基的功能性超微粒子也是有效的。 Further, in order to achieve a high refractive index of the anisotropic scattering layer, the photopolymerizable compound, the metal oxide is added titanium oxide (TiO2), zirconium oxide (ZrO2), tin oxide (SnOx) of high refractive index the surface of ultrafine particles consisting of an epoxy group or a propenyl group introduced into the photopolymerizable functional group and the like functional ultrafine particles is also effective.

作为可使上述自由基聚合性化合物聚合的光引发剂,例如可列举二苯甲酮、2,4-二乙基噻吨酮、苯偶姻异丙基醚、2,2-二乙氧基二苯甲酮、苄基二甲基缩酮、2,2-二甲氧基-1,2-二苯基乙烷-1-酮、2-羟基-2-甲基-1-苯基丙烷-1-酮、1-羟基环己基苯基酮、2-甲基-1-[4-(甲硫基)苯基]-2-吗啉代丙酮-1、1-[4-(2-羟基乙氧基)-苯基]-2-羟基-2-甲基-1-丙烷-1-酮、双(环戊二烯基)-双(2,6-二氟-3-(ピル-1-基)钛、2-苄基-2-二甲基氨基-1-(4-吗啉代苯基)-丁酮-1、2,4,6-三甲基苯甲酰基二苯基氧化膦等。 As the radical polymerizable compound enables the polymerization photoinitiators, for example, benzophenone, 2,4-diethyl thioxanthone, benzoin isopropyl ether, 2,2-diethoxyethyl benzophenone, benzyl dimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropane 1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1,1 [4- (2- hydroxy-ethoxy) - phenyl] -2-hydroxy-2-methyl-1-one, bis (cyclopentadienyl) - bis (2,6-difluoro-3- (Hikaru ピ - 1- yl) titanium, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) - butanone -1,2,4,6- trimethyl benzoyl diphenyl phosphine oxide.

可使上述阳离子聚合性化合物聚合的光引发剂是可利用照射光来产生氧、利用该产生的氧来使上述阳离子聚合性化合物聚合的化合物,通常,最好使用鎓盐、金属茂络合物。 Causes said cationically polymerizable compound is a polymerizable photoinitiator available illumination light to generate oxygen, using oxygen to produce the compound of the above-described cationically polymerizable compound polymerized, generally preferable to use an onium salt, a metallocene complex . 作为鎓盐,使用重氮鎓盐、锍盐、碘鎓盐、磷鎓盐、硒盐等,作为这些的反离子,使用四氟硼酸离子(BF 4 - )、六氟磷酸离子(PF 6 - )、六氟砷酸离子(AsF 6 - )、六氟锑酸离子(SbF 6 - )等阴离子。 As the onium salts, diazonium salts, sulfonium salts, iodonium salts, phosphonium salts, selenium salts and the like, such as a counter ion, tetrafluoroborate ion (BF 4 -), hexafluorophosphate ion (PF 6 - ), hexafluoroarsenate ion (AsF 6 -), hexafluoroantimonate ion (SbF 6 -) anions. 作为阳离子聚合性化合物的光引发剂,例如可列举三苯基锍六氟锑酸盐、三苯基锍六氟磷酸盐、(4-甲氧基苯基)苯基碘鎓六氟锑酸盐、双(4-叔丁基苯基)碘鎓六氟磷酸盐、(η5-异丙基苯)(η5-环戊二烯基)铁(II)六氟磷酸盐等。 As a photoinitiator of the cationic polymerizable compound, for example, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, (4-methoxyphenyl) phenyl iodonium hexafluoroantimonate , bis (4-t-butylphenyl) iodonium hexafluorophosphate, (η5- isopropylbenzene) (η5- cyclopentadienyl) iron (II) hexafluorophosphate.

另外,上述光引发剂最好相对于光聚合性化合物100重量部、以大于等于0.01重量部而小于等于10重量部来配合。 Further, preferably the above-described photoinitiators with respect to 100 parts by weight photopolymerizable compound, greater than or equal to 0.01 and less than or equal to 10 parts by weight to match the weight of the unit. 这是因为若上述光引发剂不足0.01重量部,则担心光固化性下降,若超过10重量部,则担心仅表面固化,内部的固化性下降。 This is because if the above-described photoinitiator is less than 0.01 part by weight, there is a concern photocurable decreased, if more than 10 parts by weight, there is a concern only the surface of the cured curable lowered inside. 更好是上述光引发剂相对于光聚合性化合物100重量部、以大于等于0.1重量部而小于等于7重量部来配合,最佳是大于等于0.1重量部而小于等于5重量部。 More preferably the above-described photoinitiators to 100 parts by weight of a photopolymerizable compound, greater than or equal to 0.1 part by weight and less than or equal to 7 wt mating portion, most preferably greater than or equal to 0.1 part by weight and 5 parts by weight or less.

作为包含上述光固化性化合物的组成物,可在使用上述光聚合性化合物的同时,使用不具有光聚合性的高分子树脂(参照上述(C)的方式)。 As a photocurable composition containing the compound, may be used while the photopolymerizable compound having no photopolymerizable polymer resin (refer to the above-described embodiment (C),). 作为上述高分子树脂,例如丙烯酸树脂、苯乙烯树脂、苯乙烯-丙烯酸共聚物、聚氨脂、聚脂、环氧树脂、纤维素系树脂、醋酸乙烯系树脂、氯乙烯-醋酸乙烯脂共聚物、聚乙烯醇丁缩醛树脂等。 Examples of the polymer resin, such as acrylic resins, styrene resins, styrene - acrylic acid copolymer, polyurethane, polyester, epoxy resins, cellulose resins, vinyl acetate resins, vinyl chloride - vinyl acetate resin copolymer , a polyvinyl butyral resin and the like. 这些高分子树脂在光聚合之前,必须与光聚合性化合物具有充分的相溶性,为了确保这种相溶性,也可使用各种有机溶剂或可塑剂等。 These polymer resin prior to photopolymerization, must have sufficient compatibility with the photopolymerizable compound, in order to ensure this compatibility may be used various organic solvents or plasticizer and the like. 另外,作为光聚合性化合物,在使用丙烯酸盐的情况下,从相溶性的观点看,最好从丙烯基树脂中选择高分子树脂。 Further, as the photopolymerizable compound, in the case of using a salt of acrylic acid, from the viewpoint of compatibility, preferably a polymer resin selected from propylene-based resin.

作为使包含上述光固化性化合物的组成物固化的方法,并未特别限定,例如在基体上薄片状设置上述组成物,从规定方向向其照射平行光线(紫外线等)的方法。 As a method of making a composition comprising curing the photocurable compound is not particularly limited, for example, a sheet is provided in the above-described composition on a substrate, the method of irradiating a predetermined direction parallel rays (ultraviolet rays, etc.) to it. 由此,可形成平行于平行光线的照射方向延伸的多个棒状固化区域的集合体(例如参照图2A-2C)。 Thus, a plurality of rod-shaped curing may be formed in parallel to the irradiation regions extending in a direction parallel to the light assembly (e.g., see FIG. 2A-2C).

作为在基体上薄片状设置上述组成物的方法,可使用通常的涂抹方式(coating)或印刷方式。 As a method of the above-described sheet-shaped composition disposed on the substrate, may be applied using a conventional manner (coating,) or printing. 具体而言,可使用气刀涂布(air doctorcoating)、条形涂布(bar coating)、刀片涂布(blade coating)、刮涂(knife coating)、逆转辊涂布(reverse roll coating)、递纸辊涂布(transfer roll coating)、照相凹版辊涂布、湿润辊涂布(kiss roll coating)、抛涂(cast coating)、喷涂(spraycoating)、槽孔涂布(slot orifice coating)、砑光涂布(calendercoating)、哑光涂布(dumb coating)、热镀(dip coating)、金属型涂布(die coating)等涂抹方式、或照相凹版印刷等凹版印刷、网印印刷等孔版印刷等印刷方式等。 Specifically, using an air knife coater (air doctorcoating), stripe coating (bar coating), a coating blade (blade coating), knife (knife coating), reverse roll coating (reverse roll coating), delivery a coating roller (transfer roll coating), gravure roll coating, kiss roll coating (kiss roll coating), cast coated (cast coating), spraying (spraycoating), the coating slot (slot orifice coating), calender coating (calendercoating), matt coating (dumb coating), hot dipping (dip coating), die coating (die coating) applied like manner, gravure printing, or gravure printing, screen printing and other printing stencil printing or the like and other means. 另外,在组成物的粘度低的情况下,也可使用在基体的周围设置规定高度的构造物、在由该构造物包围的区域涂布液状的组成物的方法。 Further, in the case of low viscosity of the composition, it may also be used provided around the base structure of a predetermined height, in a method of applying a liquid composition region surrounded by the structure of.

作为照射上述平行光线(紫外线等)所使用的光源,通常使用短弧的紫外线灯,具体而言,可使用高压水银灯、低压水银灯、金属卤化物灯、氙气灯等。 As the light source irradiating the parallel light rays (ultraviolet rays, etc.) to be used, usually short arc ultraviolet lamp, specifically, a high-pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a xenon lamp or the like. 作为从上述规定方向照射平行光线(紫外线等)所用的装置,并未特别限定,为可向规定面积照射均匀强度的平行光线(紫外线等)的装置,根据可从出售装置中进行选择的现点看,最好使用抗蚀剂曝光用的曝光装置。 As means emits parallel light rays (ultraviolet rays) from the predetermined direction used, is not particularly limited, and may be means to parallel light uniform intensity area irradiated with a predetermined (ultraviolet rays), now point may be selected from the sale of the device according to See, preferably using a resist exposure using an exposure apparatus. 在形成尺寸较小的各向异性散射层的情况下,也可使用将紫外线光斑光源作为点光源、从充分远离的距离照射的方法。 In the case of a small size is formed the anisotropic scattering layer may also be used as a point light source is an ultraviolet light spot, a method of irradiating a distance sufficiently away from.

照射到将包含上述光固化性化合物的组成物构成为薄片状的部件的平行光线必须包含可聚合固化光聚合性化合物的波长,通常使用以水银灯的365nm为中心的波长的光线。 The parallel light component irradiated composition containing the photocurable compound is formed as a sheet must contain a polymerizable wavelength of light curable polymerizable compound, a mercury lamp is generally used as the center of the 365nm wavelength light. 在使用该波段的光线来形成各向异性散射层的情况下,照度最好大于等于0.01mW/cm 2而小于等于100mW/cm 2 In the case where the light bands anisotropic scattering layer is formed, the illuminance is preferably greater than or equal 0.01mW / cm 2 and less than equal to 100mW / cm 2. 若照度不足0.01mW/cm 2 ,则由于固化需要长时间,所以担心生产效率变差,若超过100mW/cm 2 ,则光聚合性化合物的固化过快,不产生构造形成,担心不能发现期望的各向异性散射特性。 If the illuminance is less than 0.01mW / cm 2, since the time required for curing, it is worried that the production efficiency is deteriorated, if more than 100mW / cm 2, the photo-curable polymerizable compound is excessive, no structure is formed, we can not find the desired worried anisotropic scattering characteristics. 照度大于等于0.1mW/cm 2而小于等于20mW/cm 2更好。 Illumination greater than or equal 0.1mW / cm 2 and less than equal to 20mW / cm 2 better.

图3是表示本发明的显示装置中的各向异性散射薄膜的散射中心轴的轴向、显示器件的对比度比最大的方向、显示器件的观察面法线方向和各向异性散射薄膜的薄膜面法线方向的关系的说明图。 FIG 3 shows an axial contrast surface of the film, the scattering center axis of the display device a display device according to the present invention, the anisotropic scattering film in a direction than the maximum, the normal direction of the viewing surface of the display device and the anisotropic scattering film illustrating the relationship between the normal direction. 另外,图中,虚线表示显示器件11的观察面的法线方向、和各向异性散射薄膜(未图示)的薄膜面的法线方向(下面也简称为'法线方向')。 Further, the drawing, a broken line indicates the normal direction of the film surface normal direction of the viewing surface of the display device 11, and an anisotropic scattering film (not shown) (hereinafter also referred to as "normal direction"). 实线箭头表示显示器件11的对比度比最大的方向。 Solid arrows indicate the direction of maximum contrast ratio of the display device 11. 虚线箭头表示各向异性散射薄膜的散射中心轴的轴向。 Dashed arrows indicate the axial center axis of the anisotropic scattering scattering film. θ1表示法线方向与各向异性散射薄膜的散射中心轴的轴向所成的角度。 θ1 denotes the normal to the axial direction of the central axis of the anisotropic scattering film is formed by scattering angle. θ2表示法线方向与显示器件11的对比度比最大的方向所成的角度。 θ2 indicates the normal direction of the contrast ratio of the display device 11 in the direction of the maximum angle formed. φ表示各向异性散射薄膜的散射中心轴的轴向与显示器件11的对比度比最大的方向所成的角度。 φ represents the contrast of the display device and the scattering axially central axis of the anisotropic scattering film 11 than the largest angle formed by the direction.

下面,参照图3进行说明,但本发明的显示装置不限于图3所示的构成。 Referring to FIG. 3, but the display device of the present invention is not limited to the configuration shown in FIG. 3.

上述散射中心轴与显示器件的对比度比最大的方向所成的角度(φ)最好为15度或者15度以下。 Contrast the scattering angle with the central axis than a maximum display device formed by a direction ([Phi]) is preferably 15 degrees or 15 degrees. 若角度(φ)超过15度,则担心最大对比度比大大下降。 If the angle ([Phi]) exceeds 15 degrees, there is a fear maximum contrast ratio is greatly lowered. 另外,担心不能在较宽的方位得到对比度比的视角依赖性的改善效果。 Further, the effect of improving viewing angle can not be worried dependency of the contrast ratio in a wide orientation. 即,通过将角度(φ)设为15度或者15度以下,可抑制最大对比度比的下降,同时,可在较宽的方位改善对比度比的视角依赖性。 That is, by the angle ([Phi]) is set to 15 degrees or 15 degrees or less, the maximum contrast ratio of the decrease can be suppressed, while improving the viewing angle dependence of contrast ratio can be in a wide orientation.

上述散射中心轴与显示器件的对比度比最大的方向所成的角度(φ)小于等于10度更好。 Contrast the scattering angle with the central axis than a maximum display device formed by a direction ([Phi]) is less than or equal to 10 degrees is better. 由此,可抑制最大对比度比的下降,同时,可在更宽的方位改善对比度比的视野角特性。 This can suppress decrease maximum contrast ratio can be improved while the field of view angle characteristics of contrast ratio in a wider orientation. 为了更大地获得该效果,或为了在较宽的方位均匀获得该效果,上述散射中心轴与显示器件的对比度比最大的方向所成的角度(φ)最佳为5度或者5度以下。 In order to obtain this greater effect, or to obtain a uniform orientation of the wider effect, the contrast of the scattering angle with the central axis than a maximum display device formed by a direction ([Phi]) 5 degrees or most preferably 5 degrees or less. 通常,散射中心轴从各向异性散射薄膜的薄膜面的法线方向倾斜θ1(θ1≥0度)。 Typically, scattering central axis is inclined from the normal direction of the film surface of the anisotropic scattering film is θ1 (θ1≥0 degrees). 另外,液晶显示器件等显示器件大部分中对比度比最大的方向与显示器件的观察面法线方向所成的角度(θ2)小于等于10度,各向异性散射薄膜与显示器件的观察面平行地配置薄膜面。 Further, a liquid crystal display device in a display device such as contrast ratio angles most observation surface normal direction of the largest direction of the display device formed by (theta] 2) 10 degrees or less, the anisotropic scattering film and a display device parallel to the observation plane the thin-film plane. 因此,上述散射中心轴与各向异性散射薄膜的薄膜面的法线方向所成的角度(θ1)最好为20度或者20度以下。 Thus, the angle of the surface normal direction of the film and the scattering center axis of the anisotropic scattering film is formed by (theta] 1) is preferably 20 degrees or 20 degrees.

上述各向异性散射薄膜中直线透过光量最小的方向与散射中心轴的轴向所成的角度最好比直线透过光量最大的方向与散射中心轴的轴向所成的角度小。 The anisotropic scattering film in a minimum amount of light straight through the axial direction of the central axis of the scattering angle formed is preferably smaller than the straight line through the axial direction of the maximum amount of light scattering central axis an angle. 这在将直线透过光量最小的方向与散射中心轴的轴向所成的角度设为α、直线透过光量最大的方向与散射中心轴的轴向所成的角度设为β时,用0°≤α<β表示。 When it is set to [alpha], the straight line through the axial direction of the maximum amount of light scattering central axis an angle β to the straight line in the minimum amount of light transmitted through the axial direction of the central axis of the scattering angle formed by 0 ° ≤α <β expressed. 就通常的显示器件而言,越是对比度比大的方向,与对比度比最大的方向所成的角度越小,越是对比度比小的方向,与对比度比最大的方向所成的角度越大。 In terms of a general display device, the more the direction of a large contrast ratio, the contrast ratio of the maximum angle of direction to the smaller, the more the contrast, the larger the contrast ratio smaller than the maximum direction angle formed by the direction. 因此,据此,由于显示器件的对比度比大的方向的光比对比度比小的方向的光较强地散射,所以可更有效地得到本发明的作用效果。 Thus, accordingly, since the contrast of the display device smaller than the light in the direction of the light scattering direction is larger than the contrast ratio strongly, it is possible to more effectively obtain an effect of the present invention.

作为上述各向异性散射薄膜的更好方式,就表示入射角-直线透过光量的图而言,例如表示散射特性的入射角依赖性的曲线为(i)大致W字状的方式(例如参照图5)、(ii)大致U字状的方式。 Examples of the anisotropic scattering film better manner, it represents the angle of incidence - the amount of linear transmitted light in Fig., For example, represents the incident angle dependence of the scattering characteristic curve (i) a substantially W-shaped manner (refer to e.g. FIG. 5), (ii) a substantially U-shaped manner. 下面,举例说明具有(i)的方式、并且散射中心轴位于薄膜面的法线方向的各向异性散射薄膜。 Next, the exemplified embodiment having a (i), and the scattering center axis is the anisotropic scattering film normal direction of the film surface.

在具有上述(i)的方式、并且散射中心轴位于薄膜面的法线方向的各向异性散射薄膜的情况下,直线透过光量尽管在散射中心轴的轴向(薄膜面的法线方向)充分小,但在与散射中心轴的轴向所成的角度(入射角的大小)较大的方向上缓慢减少,在入射角的大小为5~20度(α)的方向示出最小值。 In the case of the above-described embodiment having a (i), and the central axis is in the normal direction of the scattering surface of the anisotropic scattering film of the film, although the amount of light transmitted through the linear axis (normal to the plane direction of the film) in the scattering central axis is sufficiently small, but slowly decreases in the axial direction of the larger scattering central axis of the angle (incident angle size), the minimum value of magnitude in the angle of incidence of 5 to 20 degrees ([alpha]) in. 另外,在入射角的大小比α大的方向上,越是入射角大的方向,直线透过光量越大,在入射角的大小为40~65度(β)的方向下示出最大值。 Under Further, in the angle of incidence greater than the size in the direction α, the more the direction of large angle of incidence, the greater the amount of linear transmitted light, the incident angle of the size of 40 to 65 degrees (beta]) in the direction indicated maximum. 另外,在入射角的大小比β大的方向下,越是入射角大的方向,直线透过光量越小。 Further, at the incident angle larger than the size of the β direction, the direction of the more large incident angle, the smaller the amount of transmitted light linearly. 这种散射特性的入射角依赖性在全部方位可大致相同地获得,即,表示入射角-直线透过光量的图以散射中心轴(入射角为0度的轴)为中心,大致示出对称性(例如参照图5)。 This scattering the incident angle dependence characteristics can be obtained in all of substantially the same orientation, i.e., represents the angle of incidence - rectilinear in FIG amount of transmitted light scattering central axis (incident angle is 0 degree axis), substantially symmetrical shown (e.g. see FIG. 5).

另外,上述散射中心轴的轴向、和直线透过光量表示最小值或最大值的入射角的范围是一例,但并不限于此。 Further, the axial direction of the scattering center axis, and the straight line represents the minimum or maximum range of incident angles is an example, but not limited to the amount of transmitted light. 另外,在(i)的方式下,散射中心轴的轴向的直线透过光量越小越好,上述直线透过光量在散射中心轴的轴向最小的方式为上述(ii)的方式。 Further, in the embodiment (i), the axial direction of the linear scattering central axis of the transmitted light amount as small as possible, the amount of light passing through the straight line manner as described above (ii) in an axial manner with minimal scattering center axis.

具有上述(ii)的方式的各向异性散射薄膜的散射特性之入射角依赖性对全部方向的入射光线,用以一个射出点为起点的矢量来表示直线透过光量及其前进方向,在连结该矢量的顶端部来表示的情况下,如图1(a)和(b)所示,最好取得以散射中心轴的轴向为对称中心轴的吊钟状曲面(图中的虚线)。 The incident angle dependence characteristics of the scattering anisotropic scattering film having the above-described embodiment (ii) of the incident light in all directions for an exit point of the vector as a starting point to a straight line representing the amount of light transmitted through the forward direction and, in the coupling a case where the tip portion of the vector is represented, in FIG. 1 (a) and (b), preferably made axially symmetric scattering central axis of the bell-shaped curved central axis (the dashed line). 各向异性散射薄膜通过示出上述各向异性散射特性,可特别减小最大对比度比的下降,同时,可在特别宽的方位改善对比度比的视角依赖性。 The anisotropic scattering film shown by the anisotropic scattering characteristics, maximum contrast can particularly reduce the decrease ratio, at the same time, can improve the viewing angle dependence of the contrast ratio is particularly wide orientation. 另外,可在全部方位均匀得到对比度比的视角依赖性的改善效果。 Further, the effect of improving uniformity of viewing angle dependency of the contrast ratio in all orientations. 另外,上述作用效果由于可通过使显示器件的观察面的法线方向与各向异性散射薄膜的薄膜面的法线方向一致、即,使显示器件与各向异性散射薄膜贴合来得到,所以可容易获得。 Further, since the above-mentioned effect is consistent with the normal direction of the film surface can be obtained by making the normal direction of the display device and the viewing surface of the anisotropic scattering film, i.e., causes the display device with an anisotropic scattering film was stuck to obtain, so readily available.

另外,在上述(i)或(ii)的方式下,直线透过光量小于等于规定值的入射角范围也可变宽。 Further, in the above-described embodiment (i) or (II), the amount of light transmitted through the linear range of incident angles less than or equal to a predetermined value may be widened. 据此,由于显示器件的对比度比大、较宽范围方向的光比对比度比较小的方向的光较强地散射,故可更有效地得到本发明的作用效果。 Accordingly, since the contrast of the display device of the strongly light scattering ratio, a wide range of directions than the direction of the contrast relatively small, it can be more effectively obtain an effect of the present invention.

另外,就各向异性散射薄膜而言,上述直线透过光量最小的方向与散射中心轴的轴向所成的角度最好接近0度。 Moreover, in the anisotropic scattering film, the minimum amount of light transmitted through the linear axial direction of the central axis of the scattering angle formed preferably close to 0 degrees. 另外,上述直线透过光量的最小值在表示入射角-直线透过光量的图(例如,参照图5)中最好为最大值的50%或者50%以下,30%或者30%以下更好,最佳为20%或者20%以下。 Further, the minimum value of the amount of light transmitted through the straight line representing the angle of incidence - rectilinear FIG amount of transmitted light (e.g., see FIG. 5) is preferably 50% and 50% of maximum, 30% or 30% more or less , most preferably 20% or 20% or less.

上述显示器件最好是液晶显示器件。 Preferably said display device is a liquid crystal display device. 由此,可实现显示装置的薄型轻量化和低功耗化,同时,可在较宽的方位改善液晶显示器件的对比度比的视角依赖性。 Accordingly, thin and light, and can achieve low power consumption of the display device, at the same time, can improve the viewing angle dependence of the contrast ratio of the liquid crystal display device in a wide position.

上述液晶显示器件最好具有包含夹持在一对基板间的液晶的液晶单元、和包含支撑薄膜和偏振光元件的偏振光板。 Preferably the liquid crystal display device comprising a liquid crystal cell having a liquid crystal sandwiched between a pair of substrates, and a polarizing plate comprising the polarizing film and the support member. 具有这种方式的液晶显示器件至少由于液晶的折射率各向异性或偏振光板的偏振光吸收特性和偏振光透过特性,发现对比度比的视角依赖性。 The liquid crystal display device having the polarized light in this way at least the refractive index anisotropy of the liquid crystal polarizing plate or polarized absorption and transmission characteristics, viewing angle dependence of contrast ratio was found. 因此,通过在这种液晶显示器件的观察面侧配置上述各向异性散射薄膜,从而可在较宽的方位改善液晶显示器件的对比度比的视角依赖性。 Thus, by viewing surface side of this liquid crystal display device of the anisotropic scattering film is disposed, thereby improving the viewing angle dependence of the contrast ratio of the liquid crystal display device in a wide position.

作为上述液晶单元的方式,并不特别限定,例如具有夹持在薄膜晶体管阵列基板与滤色镜基板之间的液晶的方式。 Manner as the liquid crystal cell is not particularly limited, for example, a liquid crystal having a clamping manner between the thin film transistor array substrate and the color filter substrate. 另外,作为上述偏振光板的方式,并不特别限定,例如从液晶单元侧按偏振光元件、支撑薄膜的顺序包含的方式、从液晶单元侧按支撑薄膜、偏振光元件的顺序包含的方式、从液晶单元侧按第1支撑薄膜、偏振光元件、第2支撑薄膜的顺序包含的方式。 In an embodiment of the polarization plate is not particularly limited, for example, from the liquid crystal cell side of the polarizing element by the support film included sequential manner, the way from the support film side, the liquid crystal cell, the polarizing element included in the order, from the liquid crystal cell side, a first support film, the polarizing element, the second sequence comprising a support film manner. 作为上述支撑薄膜,可使用与各向异性散射薄膜的透明基体一样的薄膜。 Examples of the supporting film, the transparent substrate may use an anisotropic scattering film as a thin film. 另外,上述偏振光板通常被配置于液晶单元的观察面侧和背面侧双方,但也可仅配置在观察面侧,或仅配置于背面侧。 Further, the polarizing plate is usually disposed on both sides of the liquid crystal cell observation surface side and the rear side, but may be disposed only the viewing side, or arranged only on the back side. 上述偏振光板最好还包含相位差薄膜。 Preferably the polarizing plate further comprises a retardation film. 由此,还可进一步改善液晶显示器件的色度等视角依赖性。 Accordingly, etc. may further improve the viewing angle dependence of chromaticity of the liquid crystal display device.

另外,作为上述液晶显示器件的显示模式,并不特别限定,例如VA(Vertical Alignment)模式、TN(Twisted Nematic)模式、IPS(In-Plane Switching)模式或OCB(Optically CompensatedBirefrignence)模式。 Further, as the display mode of the liquid crystal display device is not particularly limited, for example, VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, IPS (In-Plane Switching) mode or OCB (Optically CompensatedBirefrignence) mode.

所谓VA模式是在未施加电压时液晶分子大致垂直于基板面取向,通过施加电压使液晶分子倒下,由此进行显示的方式。 The so-called VA mode liquid crystal molecules is oriented substantially perpendicular to the surface of the substrate, the liquid crystal molecules by applying voltage to fall when no voltage is applied, thereby performing display mode. 作为VA模式,例如在基板上设置突起构造物和/或裂缝,将液晶单元分割成多个域的MVA(Multi-domain Vertical Alignment:多域垂直取向技术)模式等。 As the VA mode, such as setting the projection structure and / or cracks in the substrate, the liquid crystal cell is divided into MVA (Multi-domain Vertical Alignment: art multi-domain vertical alignment) mode of the plurality of domains. 另外,在VA模式的液晶显示器件中,液晶最好具有负的介电常数各向异性。 Further, in the liquid crystal display device of VA mode, the liquid crystal having a negative dielectric anisotropy best.

所谓TN模式是在未施加电压时液晶分子的长轴大致平行于基板面、且在一对基板间以规定角度(扭转角)连续扭转地取向,通过施加电压,再排列成长轴与电场方向平行,由此进行显示的方式。 The so-called TN mode when no voltage is applied is the major axis of the liquid crystal molecules is substantially parallel to the substrate surface, and between a pair of substrates at a predetermined angle (torsion angle) to continuously twisted alignment by applying a voltage, and then arranged in a direction parallel to the long axis of the electric field , thereby performing display mode. 另外,TN模式不仅是扭转角为90度的通常的TN模式,还包含扭转角大于等于180度的STN模式等。 Further, not only the twist angle of the TN mode to the normal TN mode 90, further comprising a twist angle of 180 degrees or more STN mode. 另外,在TN模式的液晶显示器件中,液晶最好具有正的介电常数各向异性。 Further, in the liquid crystal display device of the TN mode, the liquid crystal having a positive dielectric anisotropy preferable.

所谓IPS模式是利用施加于设置在一个基板中的梳形电极对间的横向电场、使液晶在基板面内旋转并进行显示的方式。 The so-called IPS mode is the transverse electric field between the pair of comb-shaped electrode applied to a substrate provided in the liquid crystal display mode and the rotation in the substrate surface. 在液晶分子具有负的介电常数各向异性的情况下,在未施加电压时,液晶分子的长轴配置于大致垂直于梳形电极的梳齿方向的方向,通过施加电压,旋转到大致平行于梳形电极的梳齿方向的方向。 In the case where the liquid crystal molecules having a negative dielectric constant anisotropy, and when no voltage is applied, the long axis of the liquid crystal molecules are arranged in the direction substantially perpendicular to the direction of the comb-tooth comb-shaped electrode by applying a voltage, substantially parallel to the rotation direction to the direction of the comb-tooth comb-shaped electrode. 另外,在液晶分子具有正的介电常数各向异性的情况下,在未施加电压时,液晶分子的长轴配置于大致平行于梳形电极的梳齿方向的方向,通过施加电压,旋转到大致垂直于梳形电极的梳齿方向的方向。 Further, the liquid crystal molecules having positive dielectric anisotropy, when no voltage is applied, the long axis of the liquid crystal molecules are arranged in a direction substantially parallel to the direction of the comb teeth of the comb-shaped electrode, a voltage is applied to the rotation a direction substantially perpendicular to the direction of the comb-tooth comb-shaped electrode. 另外,当未施加电压时,与液晶分子的介电常数各向异性的正负无关,液晶分子的长轴大致平行于基板面和一个偏振光元件的偏振光轴来配置。 Further, when no voltage is applied, the dielectric constant anisotropy of the liquid crystal molecules regardless of the sign, the major axis of the liquid crystal molecules is substantially parallel to the substrate surface and the polarization axis of a polarizing element configured.

所谓OCB模式是在液晶的厚度方向上实施光学互补的取向构造(弯曲取向)的同时,使用相位差薄膜来执行三维光学补偿的方式。 While the embodiment is so-called OCB-mode optical configuration complementary to the alignment in the thickness direction of the liquid crystal (bend alignment) using a three-dimensional optical retardation film to perform compensation.

另外,在液晶显示器件的显示模式为VA模式、TN模式或OCB模式的情况下,各向异性散射薄膜最好配置成当黑显示时,散射中心轴的轴向大致平行于位于液晶层厚度方向中心附近的液晶分子的长轴方向。 Further, the display mode of the liquid crystal display device is a VA mode, TN mode or the case where the OCB mode, the anisotropic scattering film is preferably configured to black display, the axial scattering central axis located substantially parallel to the thickness direction of the liquid crystal layer major axis direction of liquid crystal molecules in the vicinity of the center. 另外,在液晶显示器件的显示模式为IPS模式的情况下,各向异性散射薄膜最好配置成当黑显示时,散射中心轴的轴向大致垂直于位于液晶层厚度方向中心附近的液晶分子的长轴方向。 In the case where the display mode of the liquid crystal display device of IPS mode, the anisotropic scattering film is preferably configured to black display, the scattering axis substantially perpendicular to the central axis of the liquid crystal molecules of the liquid crystal layer thickness direction is located in the center of the long axis direction. 根据这些形态,配置各向异性散射膜使黑显示时散射中心轴的轴方向与液晶显示器件的黑亮度最低的方向大致垂直,并能够降低来自黑亮度较高的方向的散射光。 According to these forms, anisotropic scattering film disposed so that the direction of the black display minimum black luminance axial direction of the scattering central axis substantially perpendicular to the liquid crystal display device, and to reduce scattered light from a high black luminance direction. 由此,可以将最大对比度比的降低抑制到最小限度。 Thus, reducing the maximum contrast ratio can be suppressed to a minimum.

根据本发明的显示装置,不设计变更显示器件的基本构造,不损害对比度比较大的方向的显示品位,不限于白显示状态或黑显示状态,可在较宽的方位改善对比度比的视角依赖性。 The display device according to the invention, without changing the basic design configuration of the display device, the contrast of relatively large without impairing the display quality of the direction is not limited to the white display state or a black display state, can improve the viewing angle dependence of the contrast ratio in a wide orientation .

附图说明 BRIEF DESCRIPTION

图1(a)是表示构成本发明显示装置的各向异性散射薄膜之散射特性的斜视模式图。 FIG 1 (a) is a schematic view showing a perspective configuration of the scattering characteristics of the anisotropic scattering film display device according to the present invention. 在(a)中,P表示入射角为0度的方向,S表示散射中心轴,P(S)表示使入射角为0度的方向与散射中心轴的轴向一致。 In (a), P represents an incident angle of 0 degree direction, S represents the scattering center axis, P (S) indicates that the incidence angle of the axial direction of the central axis 0 degree scattering coincide. 另外,从散射中心轴与各向异性散射薄膜的交点延伸到吊钟状曲面(图中的虚线)的箭头长度表示各方向的直线透过光量的大小。 Further, extending from the intersection of the central axis of the anisotropic scattering film of the bell shaped scattering surface (the dashed line) the length of an arrow represents the magnitude of the amount of light transmitted through the straight line in each direction. (b)是从正面观察(a)中规定直线透过光量的吊钟状曲面时的平面模式图。 (B) is a straight line through a predetermined plane schematic view when the light amount of the bell-shaped curved surface from the front view in (a).

图2A是表示构成本发明的显示装置的第1各向异性散射薄膜(各向异性散射层)的构造之斜视模式图。 2A is a perspective schematic view of a first configuration of the anisotropic scattering film constituting the display device of the present invention (anisotropic scattering layer).

图2B是表示构成本发明显示装置的第2各向异性散射薄膜(各向异性散射层)的构造之斜视模式图。 2B is a perspective schematic view of a second configuration of the device anisotropic scattering film (anisotropic scattering layer) constituting the present invention. 图中的虚线表示第2各向异性散射薄膜的薄膜面法线方向。 The dashed line represents the second film surface normal direction of the anisotropic scattering film.

图2C是表示构成本发明显示装置的第3各向异性散射薄膜(各向异性散射层)的构造之斜视模式图。 2C is a perspective schematic view of a third configuration of the anisotropic scattering film means (anisotropic scattering layer) constituting the present invention. 图中的虚线表示第3各向异性散射薄膜的薄膜面法线方向。 The dashed line represents the normal to the film plane of the third anisotropic scattering film direction.

图3是表示本发明显示装置中的各向异性散射薄膜的散射中心轴的轴向、显示器件的对比度比最大的方向、和法线方向的关系的说明图。 FIG 3 is a diagram illustrating the relationship between the contrast center axis of the axial scattering apparatus anisotropic scattering film, a display device than the maximum direction, and the normal direction of the present invention.

图4是表示散射薄膜的散射特性的测定方法的斜视模式图。 FIG 4 is a perspective schematic view showing a method of measuring the scattering properties of scattering film.

图5A是表示就第1各向异性散射薄膜而言、在以彼此正交的两个旋转轴为中心进行旋转的情况下的入射角与直线透过光量的关系的图。 5A is a 1 on the first anisotropic scattering film, the incident angle of the straight line in the case of two rotation axes orthogonal to each other as the center of rotation of the amounts of light transmitted through FIG.

图5B是表示就第2各向异性散射薄膜而言、在以彼此正交的两个旋转轴为中心进行旋转的情况下的入射角与直线透过光量的关系的图。 5B is a anisotropic scattering film on the second, the incident angle of the straight line in the case of two rotation axes orthogonal to each other as the center of rotation of the amounts of light transmitted through FIG.

图5C是表示就第3各向异性散射薄膜而言、在以彼此正交的两个旋转轴为中心进行旋转的情况下的入射角与直线透过光量的关系的图。 5C is on the third anisotropic scattering film, the incident angle of the straight line in the case of two rotation axes orthogonal to each other as the center of rotation of the amounts of light transmitted through FIG. 另外,图中,X表示棒状固化区域的延伸方位(散射中心轴的轴方位)中的该关系。 Further, FIG, X represents a relationship between the extended position of the rod-shaped curing area (scattering axis orientation of the central axis) in the. Y表示垂直于棒状固化区域的延伸方位的方位中的该关系。 Y represents a relationship between the position extending perpendicular to the orientation of the bar-like region of cured.

图6是表示本发明实施例1的VA模式液晶显示装置的构成的斜视模式图。 FIG 6 is a diagram showing a VA mode liquid crystal perspective view showing a structure of the display apparatus embodiment of the present invention.

图7是表示本发明实施例2的VA模式液晶显示装置的构成的斜视模式图。 FIG. 7 shows an example of the VA mode liquid crystal 2 a perspective schematic view of the configuration of a display apparatus embodiment of the present invention.

图8是表示本发明实施例3的VA模式液晶显示装置的构成的斜视模式图。 FIG 8 is a diagram showing Example 3 of the VA mode liquid crystal perspective schematic view of the configuration of a display apparatus embodiment of the present invention.

图9是表示本发明实施例4的VA模式液晶显示装置的构成的斜视模式图。 FIG 9 shows an example of the VA mode liquid crystal 4 a perspective view showing a structure of the display apparatus embodiment of the present invention.

图10是表示本发明实施例5的VA模式液晶显示装置的构成的斜视模式图。 FIG 10 is a diagram showing Example 5 of the VA mode liquid crystal perspective schematic view of the configuration of a display apparatus embodiment of the present invention.

图11是表示本发明实施例6的VA模式液晶显示装置的构成的斜视模式图。 11 is a VA mode liquid crystal Example 6 a perspective view showing a structure of a display apparatus embodiment of the present invention.

图12是表示本发明实施例7的VA模式液晶显示装置的构成的斜视模式图。 FIG 12 is a perspective view showing embodiment of the present invention showing a structure of a VA-mode liquid crystal device of Example 7 showed.

图13是表示本发明实施例8的TN模式液晶显示装置的构成的斜视模式图。 13 is a perspective schematic view of embodiment of the present invention, the configuration of the TN mode liquid crystal device of Example 8 showed.

图14是表示本发明实施例9的IPS模式液晶显示装置的构成的斜视模式图。 FIG 14 shows an example of an IPS mode liquid crystal 9 is a perspective view showing a structure of the display apparatus embodiment of the present invention.

图15是表示就各向同性散射薄膜而言、在以彼此正交的两个旋转轴为中心进行旋转的情况下的入射角与直线透过光量的关系的图。 FIG 15 is a film to isotropic scattering, the incident angle of the straight line in the case of two rotation axes orthogonal to each other as the center of rotation of the amounts of light transmitted through FIG.

图16是表示就第4各向异性散射薄膜而言、在以彼此正交的两个旋转轴为中心进行旋转的情况下的入射角与直线透过光量的关系的图。 FIG 16 is a diagram showing a fourth on the anisotropic scattering film, the incident angle of the straight line in the case of two rotation axes orthogonal to each other as the center of rotation of the amounts of light transmitted through FIG.

图17(a)是表示本发明实施例1的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 17 (a) illustrates embodiment of the present invention is a VA mode liquid crystal display device in Example 1, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例1的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) embodiment of the present invention is a VA mode liquid crystal display device in Example 1, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例1的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) shows Example 1 of the embodiment of the VA mode liquid crystal display device of the present invention, and a liquid crystal display device polar angle Θ = 40 degrees showing the contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图18(a)是表示本发明实施例2的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG. 18 (a) illustrates embodiment of the present invention is a VA mode liquid crystal display device in Example 2, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例2的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) embodiment of the present invention is a VA mode liquid crystal display device in Example 2, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例2的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) Example 2 shows a VA mode liquid crystal display device, and a liquid crystal display device polar angle Θ = 40 degrees in FIG contrast ratio of the polar angle dependence of the embodiment of the present invention. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图19(a)是表示本发明实施例3的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 19 (a) illustrates embodiment of the present invention is a VA mode liquid crystal display device of Example 3, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例3的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) showing embodiments of the present invention is a VA mode liquid crystal display device 3, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例3的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) embodiment of the present invention is a VA mode liquid crystal display device 3, and a polar angle of the liquid crystal display device of Θ = 40 degrees in FIG contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图20(a)是表示本发明实施例4的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 20 (a) illustrates embodiment of the present invention is a VA mode liquid crystal display device in Example 4, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例4的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) embodiment of the present invention is a VA mode liquid crystal display device in Example 4, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例4的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) is a diagram showing Example 4 of the VA mode liquid crystal display device, and a liquid crystal display device polar angle Θ = 40 degrees in FIG contrast ratio of the polar angle dependence of the embodiment of the present invention. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图21(a)是表示本发明实施例5的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 21 (a) illustrates embodiment of the present invention is a VA mode liquid crystal display device of Example 5, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例5的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) embodiment of the present invention is a VA mode liquid crystal display device of Example 5, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例5的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) Example 5 is a VA mode liquid crystal display device, and a liquid crystal display device polar angle Θ = 40 degrees in FIG contrast ratio of the polar angle dependence of the embodiment of the present invention. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图22(a)是表示本发明实施例6的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG. 22 (a) is a VA mode liquid crystal display device in Example 6, the embodiment of the present invention and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例6的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) showing embodiments of the present invention is a VA mode liquid crystal display device 6, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例6的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) is a diagram showing embodiments of the present invention is a VA mode liquid crystal display device in Example 6, and the liquid crystal display device polar angle Θ = 40 degrees in FIG contrast ratio of the polar angle dependence. 另外,虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 Further, the broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图23(a)是表示本发明实施例7的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 23 (a) is a VA mode liquid crystal display device in Example 7, the embodiment of the present invention and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例7的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) shows Example 7 of the embodiment of the VA mode liquid crystal display device of the present invention, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例7的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) embodiment of the present invention is a VA mode liquid crystal display device in Example 7, and a polar angle of the liquid crystal display device of Θ = 40 degrees in FIG contrast ratio of the polar angle dependence. 另外,虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 Further, the broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图24(a)是表示本发明实施例8的TN模式液晶显示器件、和液晶显示装置的方位角φ=0度、180度下的对比度比之极角依赖性的图。 FIG 24 (a) is a TN mode liquid crystal display device in Example 8, and the liquid crystal display embodiment of the present invention is the azimuth angle of φ = 0 means, contrast ratio of 180 degree polar angle dependency of FIG. (b)是表示本发明实施例8的VA模式液晶显示器件、和液晶显示装置的方位角φ=90度、270度下的对比度比之极角依赖性的图。 (B) embodiment of the present invention is a VA mode liquid crystal display device of Example 8, and the liquid crystal display device of the azimuth angle φ = 90 °, the contrast ratio of 270 degree polar angle dependency of FIG. (c)是表示本发明实施例8的TN模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) Example 8 is a TN mode liquid crystal display device, and a liquid crystal display embodiment of the present invention means a polar angle Θ = 40 degrees showing the contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图25(a)是表示本发明实施例9的IPS模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 25 (a) illustrates embodiment of the present invention is an IPS mode liquid crystal display device of Example 9, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示本发明实施例9的IPS模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) showing embodiments of the present invention is an IPS mode liquid crystal display device of Example 9, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示本发明实施例9的IPS模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) is a diagram showing embodiments of the present invention is an IPS mode liquid crystal display device of Example 9, and a polar angle of the liquid crystal display device of FIG Θ = 40 ° at a contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图26(a)是表示本发明实施例10的OCB模式液晶显示器件、和液晶显示装置的方位角φ=0度、180度下的对比度比之极角依赖性的图。 FIG 26 (a) illustrates embodiment of the present invention, the OCB mode liquid crystal display device of Example 10, and the liquid crystal display device of the azimuth angle φ = 0 °, the contrast ratio of 180 degree polar angle dependency of FIG. (b)是表示本发明实施例10的OCB模式液晶显示器件、和液晶显示装置的方位角φ=90度、270度下的对比度比之极角依赖性的图。 (B) shows the present embodiment of the invention, the OCB mode liquid crystal display device of Example 10, and the liquid crystal display device of the azimuth angle φ = 90 °, the contrast ratio of 270 degree polar angle dependency of FIG. (c)是表示本发明实施例10的OCB模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) shows a mode according to embodiments of the present invention OCB liquid crystal display device 10, and a liquid crystal display device of the polar angle Θ = 40 degrees is the contrast ratio of the polar angle dependence of the FIG. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图27(a)是表示比较例1的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 27 (a) shows Comparative Example VA mode liquid crystal display device 1, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示比较例1的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) shows Comparative Example VA mode liquid crystal display device 1, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示比较例1的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) shows Comparative Example VA mode liquid crystal display device 1, and a polar angle of the liquid crystal display device of FIG Θ = 40 ° at a contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图28(a)是表示比较例2的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 28 (a) shows Comparative Example VA mode liquid crystal display device 2, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示比较例2的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) shows Comparative Example VA mode liquid crystal display device 2, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示比较例2的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) shows Comparative Example VA mode liquid crystal display device 2, and a liquid crystal display device polar angle Θ = 40 degrees in FIG contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图29(a)是表示比较例3的VA模式液晶显示器件、和液晶显示装置的方位角φ=45度、225度下的对比度比之极角依赖性的图。 FIG 29 (a) shows Comparative Example VA mode liquid crystal display device 3, and the liquid crystal display device of the azimuth angle φ = 45 °, the contrast ratio of 225 degree polar angle dependency of FIG. (b)是表示比较例3的VA模式液晶显示器件、和液晶显示装置的方位角φ=135度、315度下的对比度比之极角依赖性的图。 (B) shows Comparative Example VA mode liquid crystal display device 3, and the liquid crystal display device of the azimuth angle φ = 135 °, the contrast ratio of 315 degree polar angle dependency of FIG. (c)是表示比较例3的VA模式液晶显示器件、和液晶显示装置的极角Θ=40度下的对比度比之极角依赖性的图。 (C) shows Comparative Example VA mode liquid crystal display device 3, and a polar angle of the liquid crystal display device of Θ = 40 degrees in FIG contrast ratio of the polar angle dependence. 虚线表示液晶显示器件的特性,实线表示液晶显示装置的特性。 The broken line represents the characteristic of the liquid crystal display device, a solid line represents characteristics of the liquid crystal display device.

图30是表示现有各向异性散射薄膜的构造的斜视模式图。 FIG 30 is a perspective schematic view showing a configuration of the conventional anisotropic scattering film.

图31是表示现有各向异性散射薄膜的散射特性的模式图。 FIG 31 is a schematic view showing a conventional scattering characteristics of the anisotropic scattering film.

具体实施方式 Detailed ways

下面描述实施例,进一步详细地说明本发明,但本发明不仅限于这些实施例。 The following description of the embodiments, the present invention is described in more detail, but the present invention is not limited to these examples.

1.液晶显示装置的制作 1. liquid crystal display device produced

<实施例1> <Example 1>

(第1各向异性散射薄膜的制作) (First anisotropic scattering Film)

首先,在使用分配器(dispenser)向厚度为75μm、76×26mm大小的聚对苯二甲酸乙二酯(PET)薄膜(商品名:コスモシヤイン(注册商标),件号:A4300,东洋纺织社制)的边缘部喷出液状树脂之后,使该液状树脂固化,由此形成高度为0.2mm的隔壁。 First, using a dispenser (a dispenser) to a thickness of 75μm, 76 × 26mm size polyethylene terephthalate (PET) film (trade name: U COSMOSYSTEM Silicone Yakult イ (registered trademark), part number: A4300, Toyobo Co., Ltd. ) after the edge portion of the ejection liquid resin, so that the liquid resin is cured, thereby forming a partition wall height of 0.2mm. 接着,向由隔壁包围的区域内滴下下述组成的光聚合性组成物之后,用另一PET薄膜覆盖。 Subsequently, after the photopolymerizable composition is dropped into a region surrounded by the partition of the following composition, covered with another PET film.

《光聚合性组成物的组成》 "Composition of the photopolymerizable composition."

2-(全氟辛基)-乙基丙烯酸酯 50重量部 2- (perfluorooctyl) - 31 parts by weight of ethyl acrylate

1,9-壬二醇二丙烯酸酯 50重量部 1,9-nonanediol diacrylate 50 parts by weight

2-羟基-2-甲基-1-苯基丙烷-1-酮 4重量部 Hydroxy-2-methyl-1-phenylpropane-1-4 parts by weight

之后,对于由PET薄膜夹持上下两面的、厚度为0.2mm的液膜,从UV光斑光源(商品名:L2859-01,浜松ホトニクス社制)的反射用照射单元垂直照射一分钟照射强度为30mW/cm 2的紫外线,得到图2所示的具有多个棒状微小区域的第1各向异性散射薄膜。 Thereafter, for a PET film holding upper and lower surfaces, a thickness of 0.2mm film, from the UV spot light source: irradiation intensity of one minute reflecting vertical irradiation unit (tradename L2859-01, Hamamatsu Photonics ni Irganox Co., Ltd.) is 30mW / cm 2 of ultraviolet rays, to obtain a first anisotropic scattering film having a plurality of bar-like micro areas as shown in FIG.

(第1各向异性散射薄膜的散射特性的测定) (Measurement of Scattering first anisotropic scattering film)

图4是表示第1各向异性散射薄膜的各向异性散射特性的测定方法之斜视模式图。 FIG 4 is a perspective schematic view showing a method of measuring the anisotropic scattering characteristics of the first anisotropic scattering film.

根据图4所示的方法,通过以规定方向为旋转轴使试验片旋转,从而不仅可测定光轴与试验面的法线方向一致时(入射角为0度的情况)的直线透过光量,还可测定光轴与试验面的法线方向不一致时(入射角为0度以外的情况)的直线透过光量。 The method shown in FIG. 4, in a predetermined direction by the rotation shaft rotating the test piece, thereby measuring not only the amount of light transmitted through the optical axis coincides with the normal direction of the test surface (incident angle of 0 degrees) of the straight line, It can also be determined inconsistent with the normal direction of the optical axis of the test surface (incident angle of 0 degree than the case) of the linearly transmitted light amount. 具体而言,首先,使用测角光度计(ゴニオフオトメ一タ一)(商品名:自动变角光度计GP-5,村上色彩技术研究所社制),如图4所示,在接受来自光源(未图示)的直线光的位置固定感光部30,在光源与感光部30之间的采样保持器(未图示)上装配第1各向异性散射薄膜10。 Specifically, first, using a goniophotometer (Oligo ni Bio fu Bio Suites メ a-STAR) (trade name: automatic goniophotometer GP-5, manufactured by Murakami Color Research Laboratory Co., Ltd.), 4, receiving from the light source ( not shown) fixing the position of linear light sensitive portion 30, the assembly of the first anisotropic scattering film 10 on the sample holder (not shown) between the light source and the photosensitive portion 30. 之后,如图4所示,边以采样的短边方向为旋转轴(L),使采样旋转(下面也称为'短边轴旋转'),边测定对应于各个入射角的直线透过光量。 Thereafter, as shown in FIG. 4, in a short-side direction sides of the sample as a rotation axis (L), the sampling rotation (hereinafter also referred to as "short-side axis'), the amount of transmitted light corresponding to each incident angle of straight lines measured . 之后,边以采样的长边方向为旋转轴(M),使采样旋转(下面也称为'长边轴旋转'),边测定对应于各个入射角的直线透过光量。 Thereafter, the sample side in the longitudinal direction as a rotation axis (M), rotating the sampling (hereinafter also referred to as 'the longitudinal axis'), the amount of transmitted light corresponding to each incident angle of the straight edge was measured.

图5A是表示就第1各向异性散射薄膜而言、以上述两个旋转轴为中心进行旋转时的入射角与直线透过光量的关系图。 5A is a 1 on the first anisotropic scattering film, the incident angle of rotation of the straight line relationship between the amount of light transmitted through the above-described FIG two rotation shaft. 图中的实线表示短边轴旋转的情况,虚线表示长边轴旋转的情况。 The solid line represents the case where the short side of the shaft, the broken line represents a case where the longitudinal axis. 另外,入射角的正负表示旋转的方向相反。 Further, the angle of incidence of the positive and negative direction of rotation opposite to represent.

从图5A可知,在短边轴旋转的情况和长边轴旋转的情况两者下,第1各向异性散射薄膜为在入射角0度处包含小山的深谷状,示出大致左右对称的各向异性散射特性。 Seen from FIG. 5A, the both short sides of the rotation axis of the case and the longitudinal axis of the case, the first anisotropic scattering film comprising hill valley shape at an incident angle of 0 degree, shown generally symmetrical each anisotropic scattering characteristics. 另外,可知第1各向异性散射薄膜在短边轴旋转的情况和长边轴旋转的情况下示出大致相同的各向异性散射特性。 Further, it was found in the case of the first anisotropic scattering film in a short side and a long side of the axis of rotation of the shaft substantially the same as the case shown anisotropic scattering characteristics. 由此还知道第1各向异性散射薄膜在薄膜面的法线方向上具有散射中心轴。 It is also known whereby a first anisotropic scattering film has scattering central axis in the direction normal to the film plane. 另外,直线透过光量的变化率在短边轴旋转的情况和长边轴旋转的情况两者下为0.90。 Further, a straight line through the light amount change rate in both cases the short side and a long side of the axis of rotation of the shaft case 0.90.

(液晶显示装置的制作) (Production of liquid crystal display device)

图6是表示本发明实施例1的VA模式液晶显示装置100a的构成的斜视模式图。 FIG 6 is a perspective view showing embodiment of the present invention showing a structure of a VA-mode liquid crystal device 100a of Example 1 display. 此外,各薄膜的贴合轴方向等相对关系如图6所示。 Further, each thin film bonded to the other axial direction relative relationship as shown in FIG.

首先,将液晶材料的双折射Δn与单元厚度d的关系调整为Δnd=300nm,当施加电压时将液晶分子的倾斜方位分割成45度、135度、225度和315度等4个方位,试制VA模式液晶单元11a。 First, the relationship between the birefringence Δn and cell thickness d of the liquid crystal material is adjusted to Δnd = 300nm, when voltage is applied to the liquid crystal molecules tilt azimuth is divided into 45 degrees, 135 degrees, 225 degrees and 315 degrees and other four directions, trial VA mode liquid crystal cell 11a. 之后,使第1相位差薄膜12a贴合于VA模式液晶单元11a的背光灯侧,再使VA模式液晶单元11a侧的支撑薄膜为TAC(三乙酰纤维素)薄膜的第1偏振光板13a贴合于第1相位差薄膜12a的背光灯侧和VA模式液晶单元11a的观察面侧,构成VA模式液晶器件15a。 Thereafter, the first retardation film 12a is bonded to the VA mode liquid crystal cell side of the backlight 11a, and then make the VA liquid crystal cell side support film 11a as TAC (triacetyl cellulose) film 13a of the first polarizing plate bonded on the observation surface side of the first retardation film 12a and the backlight side of the liquid crystal cell 11a of a VA mode, a VA mode liquid crystal device constituting 15a. 接着,使第1各向异性散射薄膜10a贴合在VA模式液晶显示器件15a的观察面侧,构成VA模式液晶显示装置100a。 Subsequently, the first anisotropic scattering film 10a bonded to the viewing side 15a VA mode liquid crystal display device of VA mode liquid crystal display device constituting 100a.

第1各向异性散射薄膜10a的薄膜面的法线方向与VA模式液晶显示器件15a的观察面的法线方向一致。 Normal to the observed surface normal direction of the film surface of the first anisotropic scattering film 10a and the VA mode liquid crystal display device 15a in the same direction. 另外,第1相位差薄膜12a的相位差为Re=3nm,Rth=250nm。 Further, the first retardation film 12a is retardation Re = 3nm, Rth = 250nm. 当将折射率椭圆体的三个主折射率中的面内两个主折射率定义为nx、ny(nx≥ny),将法线方向的一个主折射率定义为nz,将相位差薄膜的厚度定义为d时,上述Re由下式(1)表示: When the three principal refractive index ellipsoid in the plane of the two principal refractive index defined as nx, ny (nx≥ny), a normal direction of the principal refractive index defined as nz, the retardation film is defined as a thickness d, represented by the following formula the above-described Re (1):

Re=(nx-ny)×d (1) Re = (nx-ny) × d (1)

当与上述一样定义nx、ny、nz和d时,Rth由下式(2)表示: When defined as nx, ny, nz and d above, Rth represented by the following formula (2):

Rth=(nx-nz)×d (2) Rth = (nx-nz) × d (2)

Re和Rth的计算方法在以下的各实施例、各比较例中都一样。 Calculation of Re and Rth each of the following Examples, Comparative Examples in the same. 另外,构成第1偏振光板13a的偏振光元件的性能为平行透过率为36.25%、正交透过率为0.005%、偏振光度为99.99%。 Further, the performance of a polarizing plate constituting the first element 13a is polarized parallel transmittance was 36.25%, 0.005% or crossed transmittance, degree of polarization of 99.99%.

<实施例2> <Example 2>

图7是表示本发明实施例2的VA模式液晶显示装置100a的构成的斜视模式图。 FIG. 7 shows an example of the VA mode liquid crystal 2 embodiment of the present invention is a perspective view showing a structure of a display apparatus 100a. 各薄膜的贴合轴方向等相对关系如图7所示。 Bonded to the axial direction relative relationship of each film and the like as shown in FIG.

首先,在由实施例1试制的VA模式液晶单元11a的观察面侧,贴合VA模式液晶单元11a侧的支撑薄膜为第2相位差薄膜12b的第2偏振光板13b,在背光灯侧,贴合VA模式液晶单元11a侧的支撑薄膜为第3相位差薄膜12c的第3偏振光板13c,构成VA模式液晶器件15a。 First, the observation plane by the VA mode liquid crystal cell in Example 1 trial 11a side of the support film bonded VA mode liquid crystal cell 11a to side 12b of the second retardation film of the second polarizing plate 13b, on the backlight side, stickers support film bonded VA liquid crystal cell 11a of the third side 12c of the third retardation film polarizing plate 13c, constituting the VA mode liquid crystal device 15a. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在VA模式液晶显示器件15a的观察面侧,构成VA模式液晶显示装置100a。 Next, the same as in Example 1 of the first anisotropic scattering film 10a bonded to the viewing side 15a VA mode liquid crystal display device of VA mode liquid crystal display device constituting 100a.

第1各向异性散射薄膜10a的薄膜面的法线方向与VA模式液晶显示器件15a的观察面的法线方向一致。 Normal to the observed surface normal direction of the film surface of the first anisotropic scattering film 10a and the VA mode liquid crystal display device 15a in the same direction. 另外,第2相位差薄膜12b的相位差为Re=140nm,Rth=138nm。 Further, the second retardation film 12b is retardation Re = 140nm, Rth = 138nm. 第3相位差薄膜12c的相位差为Re=2nm,Rth=190nm。 12c of the third retardation film is a retardation Re = 2nm, Rth = 190nm. 偏振光元件3a的性能与实施例1的偏振光元件一样。 Example polarizing element 1 of the polarizing element embodiment as performance and 3a.

<实施例3> <Example 3>

图8是表示本发明实施例3的VA模式液晶显示装置100a的构成的斜视模式图。 8 is a perspective schematic view of the invention embodiment configuration device 100a 3 Example VA-mode liquid crystal display. 各薄膜的贴合轴方向等相对关系如图8所示。 Bonded to the axial direction relative relationship of each film and the like as shown in FIG.

首先,在由实施例1试制的VA模式液晶单元11a的背光灯侧,贴合第4相位差薄膜12d,再在第4相位差薄膜12d的背光灯侧和VA模式液晶单元11a的观察面侧贴合VA模式液晶单元11a侧的保护薄膜为TAC薄膜的第1偏振光板13a,构成VA模式液晶器件15a。 First, the VA mode liquid crystal cell in Example 1 trial backlight side 11a, a fourth retardation film bonded to 12d, then the observation surface side of the fourth retardation film 12d, and the backlight side of the VA mode liquid crystal cell 11a protective film bonded VA mode liquid crystal cell 11a to the first side of the TAC film in the polarizing plate 13a, constituting a VA mode liquid crystal device 15a. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在VA模式液晶显示器件15a的观察面侧,构成VA模式液晶显示装置100a。 Next, the same as in Example 1 of the first anisotropic scattering film 10a bonded to the viewing side 15a VA mode liquid crystal display device of VA mode liquid crystal display device constituting 100a.

第1各向异性散射薄膜10a的薄膜面的法线方向与VA模式液晶显示器件15a的观察面的法线方向一致。 Normal to the observed surface normal direction of the film surface of the first anisotropic scattering film 10a and the VA mode liquid crystal display device 15a in the same direction. 另外,第4相位差薄膜12d的相位差为Re=50nm,Rth=220nm。 The fourth retardation film 12d is retardation Re = 50nm, Rth = 220nm. 另外,第1偏振光板13a的性能与实施例1一样。 Further, the performance of the first polarizing plate 13a as in Example 1.

<实施例4> <Example 4>

本实施例的液晶显示装置的构成除使用第2各向异性散射薄膜来代替第1各向异性散射薄膜外,与实施例3相同。 The liquid crystal display of the present embodiment, the first outer anisotropic scattering film, the same configuration except that the second device is an anisotropic scattering film of Example 3 instead.

(第2各向异性散射薄膜的制作) (Second anisotropic scattering Film)

除了从UV光斑光源(商品名:L2859-01,浜松ホトニクス社制)的反射用照射单元、从与垂直方向倾斜15度的角度照射一分钟照射强度为30mW/cm 2的紫外线以外,其他与第1各向异性散射薄膜的制作方法一样。 Apart from the UV spot light source (trade name: L2859-01, Hamamatsu Photonics ni Irganox Co., Ltd.) reflecting irradiation unit, the irradiation from an oblique vertical direction 15 degrees angle of one minute irradiation intensity was 30mW / cm 2 of ultraviolet rays, other first as a method of manufacturing anisotropic scattering films. 由此,得到第2各向异性散射薄膜。 Thus, to obtain the second anisotropic scattering film. 就第2各向异性散射薄膜而言,若用显微镜观察截面,则确认存在图2B所示的与薄膜面的法线方向倾斜15度延伸的棒状固化区域20。 On the second anisotropic scattering film, if the cross section was observed with a microscope, it is confirmed the presence of a rod of FIG. 2B cured region extending 15 degrees to the normal direction of the film surface 20 is inclined.

(第2各向异性散射薄膜的散射特性的测定) (Measured scattering properties of the anisotropic scattering film 2)

图5B是就第2各向异性散射薄膜而言、以上述两个旋转轴为中心旋转时的入射角与直线透过光量的关系图。 5B is on the second anisotropic scattering film, the two above-mentioned incident angle and the rotation shaft rotates the straight line relationship between the amount of light transmitted through FIG. 图中的实线表示短边轴旋转的情况(以平行于与棒状固化区域20的延伸方位垂直的方位之旋转轴为中心旋转的情况),虚线表示长边轴旋转的情况(以平行于棒状固化区域20的延伸方位的旋转轴为中心旋转的情况)。 The solid line represents the case where the short side axis (in parallel to the rotational axis of the extension rod-shaped curing region 20 orientation perpendicular to the orientation of the case where the center of rotation), a broken line represents a case where the longitudinal axis (in parallel to the rod-shaped curing azimuth rotational shaft extending where region 20 is the center of rotation). 另外,入射角的正负表示旋转的方向相反。 Further, the angle of incidence of the positive and negative direction of rotation opposite to represent.

在与第1各向异性散射薄膜一样测定第2各向异性散射薄膜的散射特性之后,从图5B可知,就棒状固化区域20的延伸方位而言,在入射角为15度处为包含小山的深谷状。 After the second scattering characteristics measured in the same anisotropic scattering film and the first anisotropic scattering film, seen from FIGS. 5B, extended position on the rod-shaped curing region 20, the incident angle of 15 degrees at the hill comprising ravine-like. 另外,就垂直于棒状固化区域20的延伸方位的方位而言,可知入射角为0度是最深的谷状。 Moreover, in the orientation perpendicular to the orientation of the rod-shaped curing extending region 20, the incident angle of 0 degree is understood the deepest valley shape. 因此,可知第2各向异性散射薄膜10b在与棒状固化区域20的延伸方向一致的方向上具有散射中心轴,散射中心轴相对薄膜面的法线方向倾斜15度。 Thus, it is understood the second anisotropic scattering film has scattering central axis 10b in a uniform rod-shaped cured areas extending in the direction 20, relative to the normal direction of the center axis of the scattering film plane inclined 15 degrees.

(液晶显示装置的制作) (Production of liquid crystal display device)

图9是表示本发明实施例4的VA模式液晶显示装置100a的构成的斜视模式图。 FIG 9 shows an example embodiment of the VA mode liquid crystal 4 of the present invention is a perspective view showing a structure of a display apparatus 100a. 各薄膜的贴合轴方向等相对关系如图9所示。 Bonded to the axial direction relative relationship of each film and the like as shown in FIG.

除贴合第2各向异性散射薄膜10b来代替第1各向异性散射薄膜108,使该散射中心轴的轴方位从背光灯侧向观察面侧指向方位角为45度的方位外,其他与实施例3相同。 In addition to bonding the second anisotropic scattering film 10b instead of the first anisotropic scattering film 108, the scattering center axis of the shaft side to the viewing side of the azimuth from the azimuth of the backlight is directed to the orientation of 45 degrees, and the other in Example 3.

<实施例5> <Example 5>

本实施例的液晶显示装置的构成除使用第3各向异性散射薄膜来代替第1各向异性散射薄膜外,其他与实施例3相同。 The liquid crystal display of the present embodiment except that the configuration of the device 3 in place of the anisotropic scattering film of the first outer anisotropic scattering film, the same manner as in Example 3.

(第3各向异性散射薄膜的制作) (3 anisotropic scattering Film)

除了从UV光斑光源(商品名:L2859-01,浜松ホトニクス社制)的反射用照射单元、从与垂直方向倾斜30度的角度照射一分钟照射强度为30mW/cm 2的紫外线以外,其他与第1各向异性散射薄膜的制作方法一样。 Apart from the UV spot light source (trade name: L2859-01, Hamamatsu Photonics ni Irganox Co., Ltd.) reflecting irradiation unit, the irradiation from an oblique direction perpendicular 30 ° angle of one minute irradiation intensity was 30mW / cm 2 of ultraviolet rays, other first as a method of manufacturing anisotropic scattering films. 由此,得到第3各向异性散射薄膜。 Thus, a third anisotropic scattering film. 此外,就第3各向异性散射薄膜而言,若用显微镜观察截面,则确认存在图2C所示的与薄膜面的法线方向倾斜30度延伸的棒状固化区域20。 Furthermore, the third anisotropic scattering film, if the cross section was observed with a microscope, it is confirmed the presence of a rod of FIG. 2C cured region extending 30 degrees to the normal direction of the film surface 20 is inclined.

(第3各向异性散射薄膜的散射特性的测定) (Measured scattering characteristics of the anisotropic scattering film of 3)

图5C是就第3各向异性散射薄膜而言、以平行于棒状固化区域20的延伸方位和平行于与之垂直的方位的两个旋转轴为中心旋转时的入射角与直线透过光量的关系图。 5C is on the third anisotropic scattering film, the amount of transmitted light parallel to the incident angle and the straight line extending in the orientation of the rod-shaped curing area 20 and parallel to the two axes of rotation perpendicular to the orientation of the center of rotation relation chart.

在与第1各向异性散射薄膜一样测定第3各向异性散射薄膜的散射特性之后,从图5C可知,就棒状固化区域20的延伸方位而言,在入射角30度处为包含小山的深谷状。 After scattering characteristics measured in the same anisotropic scattering film 3 and the first anisotropic scattering film, seen from 5C, the cured extended position on the rod-shaped region 20, the incident angle of 30 degrees in the valleys of the hill comprising shape. 另外,就垂直于棒状固化区域20的延伸方位的方位而言,可知入射角0度为最深的谷状。 Moreover, in the orientation perpendicular to the orientation of the rod-shaped curing extending region 20, the incident angle of 0 degrees understood deepest valley shape. 因此,可知第3各向异性散射薄膜10c在与棒状固化区域20的延伸方向一致的方向上具有散射中心轴,散射中心轴相对薄膜面的法线方向倾斜30度。 Thus, it is understood the third anisotropic scattering film 10c having a scattering central axis extending in a uniform direction of the rod-shaped cured areas 20 direction, the central axis relative to the normal direction of the scattering film plane is inclined 30 degrees.

(液晶显示装置的制作) (Production of liquid crystal display device)

图10是表示本发明实施例5的VA模式液晶显示装置100a的构成的斜视模式图。 FIG 10 is a perspective view showing embodiment of the present invention showing a structure of the apparatus 100a of embodiment 5 of the VA mode liquid crystal display. 此外,各薄膜的贴合轴方向等相对关系如图10所示。 Further, each thin film bonded to the other axial direction relative relationship as shown in FIG.

除贴合第3各向异性散射薄膜10c来代替第1各向异性散射薄膜10a,使该散射中心轴的轴方位从背光灯侧向观察面侧指向方位角为45度的方位外,其他与实施例3相同。 In addition to bonding the third anisotropic scattering film 10c instead of the first anisotropic scattering film 10a, so that the central axis of the scattering axis orientation was observed from the backlight side to an outer side pointing azimuth orientation of 45 degrees, and the other in Example 3.

<实施例6> <Example 6>

图11是表示本发明实施例6的VA模式液晶显示装置100a的构成的斜视模式图。 FIG 11 is a perspective view showing embodiment of the present invention showing a structure of the apparatus 100a of embodiment VA-mode liquid crystal display 6. 各薄膜的贴合轴方向等相对关系如图11所示。 Bonded to the axial direction relative relationship of each film and the like as shown in FIG.

首先,在由实施例1试制的VA模式液晶单元11a的观察面侧,贴合VA模式液晶单元11a侧的支撑薄膜为第5相位差薄膜12e的第5偏振光板13e,在背光灯侧,贴合VA模式液晶单元11a侧的支撑薄膜为第6相位差薄膜12f的第6偏振光板13f,构成VA模式液晶器件15a。 First, the observation surface side of the VA mode liquid crystal cell in Example 11a. 1 of the trial, the support film bonded VA mode liquid crystal cell 5 as the first side 11a polarizing plate 13e of the fifth retardation film 12e, the backlight side, stickers support film bonded VA liquid crystal cell 11a to the first side 6 of the sixth retardation film 12f polarizing plate 13f, a VA mode liquid crystal device constituting 15a. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在VA模式液晶显示器件15a的观察面侧,构成VA模式液晶显示装置100a。 Next, the same as in Example 1 of the first anisotropic scattering film 10a bonded to the viewing side 15a VA mode liquid crystal display device of VA mode liquid crystal display device constituting 100a.

第1各向异性散射薄膜10a的薄膜面的法线方向与VA模式液晶显示器件15a的观察面的法线方向一致。 Normal to the observed surface normal direction of the film surface of the first anisotropic scattering film 10a and the VA mode liquid crystal display device 15a in the same direction. 另外,第5和第6相位差薄膜12e和12f的相位差均为Re=60nm,Rth=90nm。 The fifth and sixth retardation film 12e and 12f are retardation Re = 60nm, Rth = 90nm. 此外,偏振光元件3a的性能与实施例1的偏振光元件一样。 Further, the polarizing properties of the polarizing element 3a of Example 1 as element.

<实施例7> <Example 7>

图12是表示本发明实施例7的VA模式液晶显示装置100a的构成的斜视模式图。 FIG 12 is a perspective view showing embodiment of the present invention showing a structure of a VA-mode liquid crystal device 100a of Example 7 displayed. 各薄膜的贴合轴方向等相对关系如图12所示。 Bonded to the axial direction relative relationship of each film and the like as shown in Fig.

首先,在由实施例1试制的VA模式液晶单元11a的观察面侧,贴合VA模式液晶单元11a侧的支撑薄膜为第7相位差薄膜12g的第7偏振光板13g,在背光灯侧,贴合VA模式液晶单元11a侧的支撑薄膜为第8相位差薄膜12h的第8偏振光板13h,构成VA模式液晶器件15a。 First, the observation plane by the VA mode liquid crystal cell in Example 1 trial 11a side of the support film bonded VA mode liquid crystal cell 11a to side 7 of the first retardation film 7 12g 13g polarizing plate in the backlight side, stickers support film bonded side of a VA liquid crystal cell 11a as a first retardation film 8 to the eighth polarizing plate 12h 13h, constituting a VA mode liquid crystal device 15a. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在VA模式液晶显示器件15a的观察面侧,构成VA模式液晶显示装置100a。 Next, the same as in Example 1 of the first anisotropic scattering film 10a bonded to the viewing side 15a VA mode liquid crystal display device of VA mode liquid crystal display device constituting 100a.

第1各向异性散射薄膜10a的薄膜面的法线方向与VA模式液晶显示器件15a的观察面的法线方向一致。 Normal to the observed surface normal direction of the film surface of the first anisotropic scattering film 10a and the VA mode liquid crystal display device 15a in the same direction. 另外,第7相位差薄膜12g的相位差为Re=90nm,Rth=100nm。 Further, the second retardation film 7 is 12g retardation Re = 90nm, Rth = 100nm. 第8相位差薄膜12h的相位差为Re=3nm,Rth=100nm。 The first retardation film 8 to 12h retardation Re = 3nm, Rth = 100nm. 偏振光元件3a的性能与实施例1的偏振光元件一样。 Example polarizing element 1 of the polarizing element embodiment as performance and 3a.

<实施例8> <Example 8>

图13是表示本发明实施例8的TN模式液晶显示装置100b的构成的斜视模式图。 13 is a perspective schematic view of embodiment of the present invention is composed of a TN mode liquid crystal device 100b of Example 8 displayed. 各薄膜的贴合轴方向等相对关系如图13所示。 Bonded to the axial direction relative relationship of each film and the like as shown in Fig.

首先,试制将液晶材料的双折射Δn与单元厚度d的关系调整为Δnd=350nm的TN模式液晶单元11b,在其两外侧贴合带宽视野(wideview:WV)薄膜4的偏振光板(商品名:带视觉补偿薄膜的偏振光板NWF-KD·EG、日东电工社制)13i,构成TN模式液晶器件15b。 First, the relationship between the trial birefringence Δn of the liquid crystal material and cell thickness d was adjusted to Δnd = 350nm TN-mode liquid crystal cell 11b, both outer sides thereof bonded to the bandwidth of the field of view (wideview: WV) film 4 polarizing plate (trade name: the viewing angle compensation film with a polarizing plate NWF-KD · EG, manufactured by Nitto Denko Corporation) 13i, constituting the TN mode liquid crystal device 15b. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在TN模式液晶显示器件15b的观察面侧,构成TN模式液晶显示装置100b。 Next, the same as in Example 1 of the first anisotropic scattering film 10a bonded to the viewing side 15b TN mode liquid crystal display device, the TN mode liquid crystal display device constituting 100b.

第1各向异性散射薄膜10a的薄膜面的法线方向与TN模式液晶显示器件15b的观察面的法线方向一致。 Normal direction of the film surface of the first anisotropic scattering film 10a is consistent with the normal direction of the TN mode liquid crystal display device of the viewing surface 15b. 另外,偏振光板13i的性能为平行透过率为36.10%、正交透过率为0.005%、偏振光度为99.99%。 Further, the polarizing plate 13i performance parallel transmittance of 36.10%, 0.005% or crossed transmittance, degree of polarization of 99.99%.

<实施例9> <Example 9>

图14是表示本发明实施例9的IPS模式液晶显示装置100c的构成的斜视模式图。 FIG 14 shows an example of an IPS mode liquid crystal 9 embodiment of the present invention is a perspective view showing a structure of the display device 100c. 各薄膜的贴合轴方向等相对关系如图14所示。 Bonded to the axial direction relative relationship of each film and the like as shown in FIG.

首先,剥离贴合在出售的IPS模式液晶TV(商品名:TH-26LX50,松下电器产业社制)的观察面侧和背光灯侧上的偏振光板,准备IPS模式液晶单元11c。 First, the peeling bonded sold IPS mode liquid crystal TV: observation surface side and the polarizing plate on the backlight side (tradename TH-26LX50, Matsushita Electric Industrial Co., Ltd.) to prepare an IPS mode liquid crystal cell 11c. 接着,使第9相位差薄膜12j贴合在IPS模式液晶单元11c的背光灯侧,再使第9偏振光板13i贴合在第9相位差薄膜12j的背光灯侧和IPS模式液晶单元11c的观察面侧,构成IPS模式液晶器件15c。 Next, the first retardation film 9 12j bonded 11c IPS mode liquid crystal cell side of the backlight, then the first polarizing plate 9 bonded 11c observed in the ninth retardation film 12j and the backlight side of the IPS mode liquid crystal cell 13i paste side, constituting the IPS mode liquid crystal device 15c. 接着,使与实施例1一样的第1各向异性散射薄膜10a贴合在IPS模式液晶显示器件15c的观察面侧,构成IPS模式液晶显示装置100c。 Next, the same as in Example 1 of the first anisotropic scattering film 10a is bonded to the viewing surface side of the IPS mode liquid crystal display device 15c constitute IPS mode liquid crystal display device 100c.

第1各向异性散射薄膜10a的薄膜面的法线方向与IPS模式液晶显示器件15c的观察面的法线方向一致。 Consistent with the normal direction of the viewing surface normal direction of the film surface of the first anisotropic scattering film 10a of an IPS mode liquid crystal display device of 15c. 另外,第9相位差薄膜12j的相位差为Re=140nm,Rth=45nm。 Further, the retardation film 9 is 12j retardation Re = 140nm, Rth = 45nm. 第9偏振光板13i的性能为平行透过率为35.95%、正交透过率为0.004%、偏振光度为99.99%。 The first polarizing plate 9 13i performance parallel transmittance of 35.95%, 0.004% crossed transmittance, degree of polarization of 99.99%.

<实施例10> <Example 10>

剥离出售的OCB模式液晶TV(商品名:VT23XD1,ナナオ社制)的背光灯侧的偏振光板之一部分,贴合在观察面侧,构成OCB模式液晶器件。 Divestiture of OCB mode liquid crystal TV: a portion of the polarizing plate (trade name VT23XD1, Nana Bio Inc.) backlight side, bonded to the observation side, constituting an OCB mode liquid crystal device. 接着,使第1各向异性散射薄膜10a贴合在该液晶显示器件的观察面侧,构成OCB模式液晶显示装置。 Subsequently, the first anisotropic scattering film 10a is bonded to the viewing surface side of the liquid crystal display device, constituting an OCB mode liquid crystal display device.

第1各向异性散射薄膜10a的薄膜面的法线方向与OCB模式液晶显示器件的观察面的法线方向一致。 Consistent with the normal direction of the viewing surface normal direction of the film surface of the first anisotropic scattering film 10a and the OCB mode liquid crystal display device. 另外,一部分被剥离的偏振光板的性能为平行透过率为36.30%、正交透过率为0.005%、偏振光度为99.99%。 Further, a portion of the release properties of the polarizing plate is parallel transmittance was 36.30%, 0.005% or crossed transmittance, degree of polarization of 99.99%.

<比较例1> <Comparative Example 1>

(各向同性散射薄膜的制作) (Isotropic scattering Film)

用条锭在厚度为75微米的PET薄膜(商品名:コスモシヤイン(注册商标),件号:A4300,东洋纺织社制)的单面上涂布下述配方的UV涂料。 Article ingot with a thickness of 75 m PET film (trade name: U COSMOSYSTEM Silicone Yakult イ (registered trademark), part number: A4300, manufactured by Toyobo Co., Ltd.) is coated with UV coating the following formulation on one side. 之后,干燥、UV照射(固化)涂布了UV涂料的薄膜,得到具有膜厚约为3微米的涂布层的各向同性散射薄膜。 After drying, UV irradiation (cured) film coated with UV coating, to give a film having isotropic scattering coating layer having a thickness of about 3 microns.

《UV涂料》 "UV paint"

UV固化型树脂(商品名:ビ-ムセツト(注册商标)575CB,不挥发成分100%,荒川化学工业社制)98重量部 UV curable resin (trade name: Bldg - Rousseau ã tsu Suites (registered trademark) 575CB, non-volatile content 100%, manufactured by Arakawa Chemical Industries, Ltd.) 98 parts by weight

聚苯乙烯制微粒子(商品名:SX350H,平均粒径:3.5微米,综研化学社制)12重量部 Polystyrene fine particles (trade name: SX350H, average particle diameter: 3.5 m, manufactured by Soken Chemical Co.) 12 parts by weight

MIBK(甲基异丁基酮)100重量部 MIBK (methyl isobutyl ketone) 100 parts by weight

(各向同性散射薄膜的散射特性的测定) (Measured scattering characteristics isotropic scattering film)

测定方法与第1各向异性散射薄膜一样。 Measurement method as in the first anisotropic scattering film. 图15示出各向同性散射薄膜的散射特性。 Figure 15 shows the scattering characteristics of the isotropic scattering film. 在各向同性散射薄膜的情况下,如图15所示,表示散射特性的入射角依赖性的曲线为以入射角0度为中心向上凸的形状。 In the case of isotropic scattering film, as shown in FIG. 15, a graph showing incident angle dependence characteristics of the scattering angle of incidence is 0 degrees centered upwardly convex shape. 这是由于入射角越大,则通过薄膜的距离越大。 This is because the larger the angle of incidence, the greater the distance the film.

入射角的正负表示旋转的方向相反。 It represents a negative angle of incidence opposite to the direction of rotation.

(液晶显示装置的制作) (Production of liquid crystal display device)

在由实施例1试制的VA模式液晶显示器件15a的观察面侧,贴合由浊度计(商品名:NDH-2000,日本电色工业社制)测定的浊度为30%的各向同性散射薄膜,构成VA模式液晶显示装置。 The viewing side of the trial Example 1 VA mode liquid crystal display device 15a, and bonded by a haze meter (trade name: NDH-2000, Nippon Denshoku Industries Co., Ltd.) was measured turbidity is 30% of isotropic scattering film constituting the VA mode liquid crystal display device. 除使用各向同性散射薄膜来代替第1各向异性散射薄膜外,其他与实施例1一样。 In addition to the use of thin film instead of the isotropic scattering anisotropic scattering film, the other as in Example 1.

<比较例2> <Comparative Example 2>

(液晶显示装置的制作) (Production of liquid crystal display device)

在由实施例3试制的VA模式液晶显示器件15a的观察面侧,贴合视角控制薄膜(制品名:ルミステイ-(注册商品),件号:MFX-2020,住友化学社制),构成VA模式液晶显示装置。 The viewing side Example trial. 3 VA mode liquid crystal display device 15a, the bonding viewing angle control film (product name: Hikaru Chemie su Te イ - (registered trade), part number: MFX-2020, manufactured by Sumitomo Chemical Co., Ltd.), constituting the VA mode The liquid crystal display device. 除使用ルミステイ-(注册商标)来代替第1各向异性散射薄膜外,其他与实施例3一样。 Except Chemie su Te Hikaru イ - (registered trademark) instead of the anisotropic scattering film, the other as in Example 3.

<比较例3> <Comparative Example 3>

(第4各向异性散射薄膜的制作) (4 anisotropic scattering Film)

从配置于与PET薄膜的长边正交的方向上的发光长度为125nm之线状UV光源(商品名:ハンデイUV装置HUV-1000,日本UVマシ-ン(机器)社制),向夹持在与第1各向异性散射薄膜相同的PET薄膜的状态下的光聚合性组成物垂直照射照射强度与第1各向异性散射薄膜的紫外线,得到图30所示的、具有折射率与周边区域不同的板状区域40的第4各向异性散射薄膜。 From the light emitting length in a direction arranged in length and the PET film side orthogonal to the 125nm of linear UV light source (trade name: Hi-nn by Du イ UV device HUV-1000, Japan UV Ma Silicone - nn (machine) Co., Ltd.), the clamping vertical ultraviolet irradiation intensity of the first anisotropic scattering film of the photopolymerizable composition in a state where the anisotropic scattering film of the same PET film to obtain shown in FIG. 30, the peripheral region having a refractive index different regions of the plate 4 of the anisotropic scattering film 40.

(第4各向异性散射薄膜的散射特性的测定) (Measured scattering properties of the anisotropic scattering film of 4)

就第4各向异性散射薄膜而言,使用测角光度计(商品名:自动变角光度计GP-5,村上色彩技术研究所社制),与第1各向异性散射薄膜一样进行测定。 The anisotropic scattering film on the fourth, the use of a goniophotometer (trade name: automatic goniophotometer GP-5, manufactured by Murakami Color Research Laboratory Co., Ltd.), as in the first anisotropic scattering film was measured. 图16示出第4各向异性散射薄膜的散射特性。 Figure 16 shows the scattering characteristics of the anisotropic scattering film 4. 图中的实线表示短边轴旋转的情况,虚线表示长边轴旋转的情况。 The solid line represents the case where the short side of the shaft, the broken line represents a case where the longitudinal axis. 另外,入射角的正负表示旋转的方向相反。 Further, the angle of incidence of the positive and negative direction of rotation opposite to represent.

如图16所示,第4各向异性散射薄膜在短边轴旋转的情况下,为与第1各向异性散射薄膜类似的、在入射角0度处包含小山的深谷状,示出大致左右对称的各向异性散射特性,在长边轴旋转的情况下,示出即便改变入射角、直线透过光量也基本上不变化的各向同性散射特性。 16, the anisotropic scattering film 4 in the case of short-side axis of rotation, with the first anisotropic scattering film similar, comprising a hill-shaped valley at an incident angle of 0 degree, shown generally approximately symmetrical anisotropic scattering characteristics, in the case where the longitudinal axis of rotation, even if changing the incident angle is shown, the linear transmitted light amount does not vary substantially isotropic scattering characteristic. 直线透过光量的变化率在短边轴旋转的情况下为0.90,在长边轴旋转的情况下为0。 The amount of light transmitted through the linear rate of change of the short side in the case where the rotation axis is 0.90, in the case where the longitudinal axis is zero.

(液晶显示装置的制作) (Production of liquid crystal display device)

在由实施例6试制的VA模式液晶显示器件15a的观察面侧,贴合第4各向异性散射薄膜,构成VA模式液晶显示装置。 The viewing side of the trial. 6 Example VA mode liquid crystal display device 15a, the bonding of the anisotropic scattering film 4, constituting the VA mode liquid crystal display device. 除使用第4各向异性散射薄膜来代替第1各向异性散射薄膜外,其他与实施例6一样。 4 except that an anisotropic scattering film for anisotropically scattering film instead of the first, the other as in Example 6.

2.液晶显示装置的光学特性的测定 Determination of the optical properties of the liquid crystal display device 2.

对于实施例1~10和比较例1~3的液晶显示装置,使用视野角测定装置(商品名:EZContrast160R,ELDIM社制),测定进行256灰度显示时的黑显示时(灰度值:0)、中间色调显示时(灰度值:128)和白显示时(灰度值:255)的各视角下的亮度和色度依赖性。 For Examples 1 to 10 and Comparative Examples 1 to 3, a liquid crystal display apparatus, measuring apparatus (trade name: EZContrast160R, ELDIM Co., Ltd.) using the viewing angle, the measurement time of black display 256 gradation display (gray scale value: 0 ), the intermediate tone display (gradation value: 128) and white display (gradation value: luminance and chrominance dependency at 255) of each view. 用极角Θ和方位角φ来表示视角。 With the azimuth angle φ and polar angle Θ to the angle of view.

<对比度比的视角依赖性改善的评价> <Evaluation of viewing angle dependence of the contrast ratio improvement>

在VA模式和I PS模式的液晶显示器件和液晶显示装置中,评价方位角φ=45、135、225、315度下的对比度比之极角依赖性,在TN模式和OCB模式的液晶显示器件和液晶显示装置中,评价方位角φ=0、90、180、270度下的对比度比之极角依赖性。 Apparatus, the evaluation of the azimuth angle φ = 45,135,225,315 contrast ratio of the polar angle dependence of the liquid crystal display device in a TN mode and OCB mode and VA mode liquid crystal display device and a liquid crystal display mode I PS and a liquid crystal display device, the evaluation of the azimuth angle φ = 0,90,180,270 contrast ratio of the polar angle dependence. 这些方位角φ均为各显示模式下的视野角窄的方位角。 The azimuth angle φ are narrow field of view in each of the azimuth display mode. 另外,评价极角Θ=40度下的对比度比之方位角依赖性。 Further, the evaluation polar angle Θ = the azimuth angle dependence of a contrast ratio at 40 degrees. 对比度比根据测定的黑显示时(0)和白显示时(255)下的亮度、使用下式(3)来求出: A luminance contrast ratio (255) (0) The white display and the black display of the measurement, is determined using the following equation (3):

(对比度比)=(白显示亮度)/(黑显示亮度) (3) (Contrast ratio) = (luminance of a white display) / (black display luminance) (3)

实施例1~10和比较例1~3的VA模式液晶显示器件和液晶显示装置的对比度比之视角依赖性如图17-29的(a)~(c)所示。 Examples 1 to 10 and Comparative Examples 1 to 3, the VA mode liquid crystal display device and the viewing angle dependence of the contrast ratio of the liquid crystal display device of FIG. 17-29 (a) ~ (c) below. 各图中的实线表示液晶显示装置的对比度比,虚线表示液晶显示器件的对比度比。 The solid line in each figure represents the ratio of the liquid crystal display device contrast, the broken line represents the contrast ratio of the liquid crystal display device.

从图17~29的(a)~(c)可知,各实施例和比较例的VA模式液晶显示器件的对比度比具有视角依赖性。 Seen from FIG. ~ (C) 17 ~ 29 is (a), the contrast of VA mode liquid crystal display device of each of Examples and Comparative Examples than having viewing angle dependence. 相反,在本发明的实施例1~7的VA模式液晶显示装置中,如图17~23的(a)~(c)所示,正面方向(极角Θ=0度)下得到的最大对比度比不会大大下降,改善了视野角窄的方位角φ=45、135、225、315度下的对比度比之视角依赖性。 In contrast, the maximum contrast (polar angle Θ = 0 °) obtained in the VA mode embodiment of the present invention 1 to 7 in the liquid crystal display device, (a) ~ (c), the front face 17 to the direction 23 in FIG. ratio will not greatly decreased, improving the narrow viewing angle φ = azimuthal viewing angle dependence of the contrast ratio 45,135,225,315 degrees. 但是,在比较例1的VA模式液晶显示装置中,如图27的(a)~(c)所示,虽然正面方向下得到的最大对比度比不会大大下降,但基本上得不到视野角窄的方位角φ=45、135、225、315度下的对比度比之视角依赖性的改善效果。 However, in Comparative Example VA-mode liquid crystal display device 1, as shown in FIG. 27 (a) ~ (c), the front direction while the obtained maximum contrast ratio is not greatly reduced, but substantially not the viewing angle narrow azimuth angle φ = the effect of improving the viewing angle dependence of the contrast ratio 45,135,225,315 degrees. 另外,比较例2、3的VA模式液晶显示装置如图28和图29的(a)~(c)所示,仅在特定的方位才能得到对比度比之视角依赖性的改善效果,正面方向下得到的最大对比度比下降。 Further, Comparative Examples 2 and 3 of the VA mode liquid crystal display device in FIG. ~ (C), the only effect of improving the viewing angle dependence of the contrast ratio in a specific orientation to 28 and FIG. 29 (A), the front direction the obtained maximum contrast ratio decreases.

实施例3~5的VA模式液晶显示装置除各向异性散射薄膜的散射中心轴的轴向与VA模式液晶显示器件的对比度比最大的方向所成的角度分别为0度、15度和30度外,其他构成相同。 Examples 3 to VA mode liquid crystal display device 5 in addition to the angle of the VA mode scattering contrast with the central axial axis of the anisotropic scattering film of the liquid crystal display device than the largest direction into respectively 0 degrees, 15 degrees and 30 degrees In addition, other configurations the same. 在该所成的角度为30度的实施例5的VA模式液晶显示装置中,如图21(a)~(c)所示,尽管对比度比的视角依赖性在视野角窄的方位角φ=45、135、225、315度的方位中、作为第3各向异性散射薄膜的散射中心轴的轴方位之方位角φ=45度的方位下大大改善,但在此外的方位角φ=135、225、315度的方位下仅稍微改善。 Apparatus, FIG. 21 (a) ~ (c), the viewing angle dependence of the contrast ratio although a narrow viewing angle φ = azimuth angle display in a VA mode embodiment of the angle formed by the liquid crystal 30 degrees 5 45,135,225,315 degrees azimuth as the azimuth orientation of the axis of the scattering central axis of the anisotropic scattering film 3 under orientation φ = 45 degrees greatly improved, but in addition to the azimuth angle φ = 135, at 225,315 degrees azimuth only slightly improved. 相反,在该所成的角度为15度或者15度以下的实施例3和4的VA模式液晶显示装置中,如图19和20(a)~(c)所示,对比度比的视角依赖性在视野角窄的方位角φ=45、135、225、315度的全部方位下得到改善。 In contrast, the angle formed is 15 degrees or 15 degrees or less Example VA-mode liquid crystal display device 3 and 4 in FIG. 19 and 20 (a) ~ (c), the viewing angle dependence of the contrast ratio improved at all azimuthal orientation narrow viewing angle φ = 45,135,225,315 degrees. 尤其是在所成的角度为0度的实施例3的VA模式液晶显示装置中,最大对比度比的下降小,在视野角窄的方位角φ=45、135、225、315度的全部方位下大致均匀地改善了对比度比的视角依赖性。 In particular, a VA mode embodiment form an angle of 0 degrees of the liquid crystal display device 3, a small decrease of the maximum contrast ratio in a narrow viewing angle φ = azimuthal orientation at all degrees 45,135,225,315 substantially uniformly the viewing angle dependence of the contrast ratio. 因此,可知各向异性散射薄膜的散射中心轴的轴向与液晶显示器件的对比度比最大的方向所成的角度最好为15度或者15度以下,越小越好。 Thus, the apparent contrast of the liquid crystal display device axially scattering central axis of the anisotropic scattering film than a maximum angle formed between a direction preferably 15 degrees or 15 degrees, the smaller the better.

另外,就本发明实施例8的TN模式液晶显示装置而言,如图24(a)~(c)所示,对于TN模式液晶显示器件,基本不会导致在从观察面的法线方向向方位角180度的方位倾斜10度的方向所得到的最大对比度比下降,改善了视野角窄的方位角φ=0、90、180、270度下的对比度比的视角依赖性。 Moreover, in Example 8 the TN mode liquid crystal display devices embodiment of the present invention, FIG. 24 (a) ~ (c), for the TN mode liquid crystal display device, does not result in substantially the normal direction of the viewing surface 180 ° azimuthal orientation is inclined 10 degrees in the direction of the obtained maximum contrast decreased, improving the narrow viewing angle φ = azimuth angle dependence of the contrast ratio and viewing angle under 0,90,180,270 degrees.

就本发明的实施例9的IPS模式液晶显示装置而言,如图25(a)~(c)所示,对于IPS模式液晶显示器件,在正面方向(极角Θ=0度)下得到的最大对比度比不会大大下降,改善了视野角窄的方位角φ=45、135、225、315度下的对比度比之视角依赖性。 Of this embodiment of the invention an IPS mode liquid crystal display devices 9, FIG. 25 (a) ~ (c), for the IPS mode liquid crystal display device in the front direction (polar angle Θ = 0 degrees) to give the maximum contrast ratio is not greatly reduced, improving the narrow viewing angle φ = azimuthal viewing angle dependence of the contrast ratio 45,135,225,315 degrees.

就实施例10的OCB模式液晶显示装置而言,如图26(a)~(c)所示,对于OCB模式液晶显示器件,在正面方向(极角Θ=0度)下得到的最大对比度比不会大大下降,提高了视野角窄的方位角φ=0、90、180、270度下的对比度比。 For Example OCB mode liquid crystal display devices 10, as shown in FIG 26 (a) ~ (c), for the OCB mode liquid crystal display device in the front direction (polar angle Θ = 0 °) to give the maximum contrast ratio not greatly reduced, improving the narrow viewing angle of the azimuth angle φ = contrast ratio 0,90,180,270 degrees.

下面对此进行说明。 This is described below. 如图17~29的(a)~(c)所示,VA模式、IPS模式和OCB模式液晶显示器件的对比度比分别在观察面的法线方向(正面方向)下最大。 17 to FIG. 29 (a) ~ (c), the contrast VA mode, IPS mode and OCB mode liquid crystal display device are at a maximum ratio viewing surface normal direction (front direction). 另外,TN模式液晶显示器件的对比度比在从观察面的法线方向倾斜10度的方向下最大。 Further, the contrast of the TN mode liquid crystal display device in an oblique direction than a maximum of 10 degrees from the normal direction of the viewing surface. 此外,根据本发明实施例1~10的液晶显示装置,由于将第1、第2和第3各向异性散射薄膜贴合在液晶显示器件的观察面侧,使其散射中心轴的轴向大致平行于液晶显示器件的对比度比最大的方向,所以可使对比度比最大的方向的入射光在全部方向上散射后平均化,结果,可在视野角窄的方位下改善对比度比的视角依赖性。 Further, according to the embodiment of the present invention of Examples 1 to 10 The liquid crystal display device, since the first, second, and third anisotropic scattering film bonded to the viewing side of the liquid crystal display device, so that the central axis is substantially axially scattering the liquid crystal display device is parallel to the direction of maximum contrast ratio, the contrast ratio of the incident light allows the maximum averaged direction after scattering in all directions, the results can be improved in the viewing angle dependence of the contrast ratio viewing angle is narrow azimuth. 另外,第1、第2和第3各向异性散射薄膜分别示出图5A、5B和5C所示的散射特性,仅较弱地散射对比度比较小的斜向的入射光,所以可抑制由于同方向的入射光的散射而导致对比度比最大方向下的对比度比(最大对比度比)下降。 The first, second, and third anisotropic scattering film are shown scattering characteristics shown in FIG. 5A, 5B and 5C, only weakly scattering contrast relatively small oblique incident light can be suppressed since the same scattering the incident light direction, resulting in reduction in the contrast ratio and the contrast ratio in the direction of the maximum (the maximum contrast ratio).

相反,根据比较例1的液晶显示装置,代替第1各向异性散射薄膜所使用的各向同性散射薄膜如图15所示,不能在全部方向上散射对比度比最大的方向等特定方向的入射光后平均化,所以不能改善对比度比的视角依赖性。 In contrast, according to the liquid crystal display device of Comparative Example 1, instead of the isotropic scattering film of FIG. 1 used the anisotropic scattering film, the incident light is not scattered in a specific direction in the direction of the maximum contrast ratio in all directions. 15 after averaging, we can not improve the viewing angle dependence of the contrast ratio. 另外,根据比较例2和3的液晶显示装置,代替第1各向异性散射薄膜所使用的ルミステイ-(注册商标)或第4各向异性散射薄膜如图16所示,由于仅在特定方位下示出各向同性散射特性,所以仅在示出各向异性散射特性的方位下得到对比度比的视角依赖性之改善效果。 Further, according to Comparative Examples 2 and 3, the liquid crystal display device, instead of the first Chemie ru su Te イ anisotropic scattering film used - (registered trademark), or as shown in FIG. 4, the anisotropic scattering film 16, since only the particular orientation It shows isotropic scattering characteristic, only the effect of improvement of the viewing angle dependence of the contrast ratio is shown in the orientation of the anisotropic scattering properties. 另外,ルミステイ-(注册商标)或第4各向异性散射薄膜在未示出各向异性散射特性的方位下、即便是对比度比较小的方向的入射光也会较强地散射,所以会由于同向的入射光的散射而导致在正面方向等所得到的最大对比度比下降。 Further, Hikaru イ su Te Chemie - (registered trademark) or the anisotropic scattering film 4 is not shown in the orientation of the anisotropic scattering properties, even relatively low contrast direction of the incident light will be strongly scattered, because it will be the same to the scattering of incident light caused by a decline in the front direction of maximum contrast is obtained.

<γ曲线的偏移改善的评价> <Evaluation improved offset curve γ>

求出正面方向(极角Θ=0度)下的γ曲线、和斜向(极角Θ=40度、方位角φ=0、45、90、135、180、225、270、315度)下的γ曲线,标准化各灰度显示下的亮度,使白显示亮度变为1,算出中间色调显示时(灰度值:128)下的正面方向的标准化亮度与各方位角φ的标准化亮度之差(偏移量)。 It is obtained in the front direction (polar angle Θ = 0 °) of gamma] curve, and diagonal (polar angle Θ = 40 degrees, the azimuth angle φ = 0,45,90,135,180,225,270,315 degrees) the γ curve normalized luminance at each gradation display, so that the white display luminance becomes 1, (gradation value: 128) calculating a difference normalized luminance halftone display in the front direction at the azimuth angle φ with each of the normalized brightness (Offset). 表1中示出液晶显示装置与液晶显示器件的偏移量的差(液晶显示器件的偏移量-液晶显示装置的偏移量)。 Table 1 shows the difference of the liquid crystal device and the offset of the liquid crystal display device (liquid crystal display device offset - offset of a liquid crystal display) display. 该偏移量的差越大,则表示散射薄膜产生的γ曲线的偏移改善效果越大。 The larger the difference between the offset, it said offset curve γ scattering film produced greater improvement effect.

表1 Table 1

从表1可知,在本发明各实施例的液晶显示装置中,在各方位下得到γ曲线的偏移改善效果。 From Table 1, in the apparatus, to obtain the effect of improving the offset γ curve at all places in the various embodiments of the liquid crystal display of the present invention. 但是,在比较例1的液晶显示装置中,尤其是在方位角φ=45、135、225、315度下,偏移改善效果小。 However, in the liquid crystal display device of Comparative Example 1, in particular in the azimuth angle φ = 45,135,225,315 degrees, improvement effect is offset. 另外,在比较例2和3的液晶显示装置中,尽管得到偏移改善效果,但利用对比度比的视角依赖性改善的评价结果,正面方向的对比度比大幅度下降。 Further, in Comparative Examples 2 and 3, the liquid crystal display device, although the effect of improving the offset is obtained, but the use of improved viewing angle dependence of the contrast ratio of the evaluation results, a significant decline in the contrast ratio in the front direction.

下面对此进行说明。 This is described below. 通常在对比度比最大的方向下最佳设计VA液晶显示器件的γ曲线。 Typically γ curve at the maximum contrast ratio in the direction of the optimal design of the VA liquid crystal display device. 根据本发明的各实施例、比较例2和3的液晶显示装置,第1各向异性散射薄膜、ルミステイ-(注册商标)和第4各向异性散射薄膜如图5和图16等所示,由于至少在一个方位下示出各向异性散射特性,所以当将各薄膜贴合在VA模式液晶显示器件的观察面侧时,通过使表示备薄膜的各向异性散射特性的方位与VA模式液晶显示器件的视野角窄的方位一致,从而可在该视野角窄的方位下改善γ曲线的视角依赖性。 According to embodiments of the present invention, Comparative Examples 2 and 3, the liquid crystal display device, the first anisotropic scattering film, Hikaru イ su Te Chemie - formula (registered trademark) and a fourth anisotropic scattering film 16 as shown in FIG. 5 and the like, Since at least one orientation shown anisotropic scattering characteristics, when each thin film bonded to the viewing side of the VA mode liquid crystal display device, by showing the orientation of the anisotropic scattering characteristics of a VA mode liquid crystal film prepared by the consistent orientation narrow viewing angle display device, thereby improving the viewing angle dependence of the γ curve in a narrow viewing angle orientation. 此外,根据本发明各实施例的液晶显示装置,由于第1各向异性散射薄膜在全部方位示出各向异性散射特性,所以可容易获得这种作用效果。 Further, according to various embodiments of the liquid crystal display device of the present invention, since the first anisotropic scattering film all orientation shown anisotropic scattering properties, it is possible to easily obtain such effect. 相反,根据比较例1的液晶显示装置,代替第1各向异性散射薄膜所使用的各向同性散射薄膜由于未示出各向异性散射特性,所以不能在全部方向仅使特定方向的入射光散射后平均化,结果,不能改善γ曲线的视角依赖性。 In contrast, according to the liquid crystal display device of Comparative Example 1, instead of the first isotropic scattering film used in the anisotropic scattering film are not shown since anisotropic scattering properties, it is not in all directions only a specific direction of incident light scattering after averaging, the results can not improve the viewing angle dependence of the γ curve.

Claims (8)

1.一种显示装置,其特征在于,具备:对比度比具有视角依赖性的显示器件和具有各向异性散射层的各向异性散射薄膜, 1. A display device comprising: a display contrast ratio and the anisotropic scattering film device having an anisotropic scattering layer having a viewing angle dependent,
该各向异性散射薄膜在大致平行于显示器件的对比度比最大方向的方向上,具有散射中心轴,并被配置于显示器件的观察面侧。 The anisotropic scattering film in a direction substantially parallel to the maximum contrast ratio of the display device direction, having a scattering central axis, and is disposed on the observation face side of the display device.
2.根据权利要求1所述的显示装置,其特征在于: The display device according to claim 1, wherein:
所述各向异性散射层使包含光固化性化合物的组成物发生固化而形成。 The anisotropic scattering layer that the composition comprises a photocurable compound cures to form.
3.根据权利要求1所述的显示装置,其特征在于: The display device according to claim 1, wherein:
所述散射中心轴与显示器件的对比度比最大的方向所成的角度为15度或者15度以下。 The scattering center axis of the contrast ratio of the display device to a maximum angle of direction of 15 degrees or 15 degrees.
4.根据权利要求1所述的显示装置,其特征在于: The display device according to claim 1, wherein:
所述散射中心轴与显示器件的对比度比最大的方向所成的角度为10度或者10度以下。 The scattering center axis of the contrast ratio of the display device in the direction of the maximum angle of 10 degrees to 10 degrees or less.
5.根据权利要求1所述的显示装置,其特征在于: The display device according to claim 1, wherein:
在所述各向异性散射薄膜中,直线透过光量最小的方向与散射中心轴的轴向所成的角度比直线透过光量最大的方向与散射中心轴的轴向所成的角度小。 In the anisotropic scattering film, a small amount of light straight through the smallest axial direction of the central axis of the scattering angle formed than the straight line through the axial direction of the maximum amount of light scattering central axis an angle.
6.根据权利要求1所述的显示装置,其特征在于: The display device according to claim 1, wherein:
所述显示器件是液晶显示器件。 Said display device is a liquid crystal display device.
7.根据权利要求6所述的显示装置,其特征在于, The display device according to claim 6, wherein,
所述液晶显示器件具有:在一对基板间夹持了液晶的液晶单元和包含支撑薄膜以及偏振光元件的偏振光板。 The liquid crystal display device comprising: a pair of substrates between the liquid crystal cell and the polarizing plate comprising the polarizing film, and a support element.
8.根据权利要求6所述的显示装置,其特征在于: The display device according to claim 6, wherein:
所述液晶显示器件的显示模式是VA模式、TN模式、IPS模式或OCB模式。 Display mode of the liquid crystal display device is a VA mode, TN mode, IPS mode or OCB mode.
CN 200610139839 2005-09-21 2006-09-21 Display CN100555032C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005-273746 2005-09-21
JP2005273746 2005-09-21
JP2006-247067 2006-09-12

Publications (2)

Publication Number Publication Date
CN1936656A CN1936656A (en) 2007-03-28
CN100555032C true CN100555032C (en) 2009-10-28

Family

ID=37954251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610139839 CN100555032C (en) 2005-09-21 2006-09-21 Display

Country Status (1)

Country Link
CN (1) CN100555032C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738006B2 (en) * 2011-03-01 2015-06-17 株式会社巴川製紙所 Optical film
JP6050712B2 (en) * 2013-03-27 2016-12-21 株式会社ジャパンディスプレイ Reflective liquid crystal display device and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341229A (en) 1999-11-24 2002-03-20 西铁城时计株式会社 Liquid crystal display unit
US6381068B1 (en) 1999-03-19 2002-04-30 3M Innovative Properties Company Reflective projection screen and projection system
CN1503008A (en) 2002-10-28 2004-06-09 夏普株式会社 Display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381068B1 (en) 1999-03-19 2002-04-30 3M Innovative Properties Company Reflective projection screen and projection system
CN1341229A (en) 1999-11-24 2002-03-20 西铁城时计株式会社 Liquid crystal display unit
CN1503008A (en) 2002-10-28 2004-06-09 夏普株式会社 Display apparatus

Also Published As

Publication number Publication date
CN1936656A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US7781068B2 (en) Polarizing-plate-protecting film and polarizing plate
US7495729B2 (en) Liquid crystal display-specific substrate having a phase difference control function, and liquid crystal display using the same
US8400592B2 (en) Polarizing plate and liquid crystal display
US7502088B2 (en) Liquid crystal display device having an antiglare layer
JP5692267B2 (en) Polarizing plate, liquid crystal display device and touch panel
US6343865B1 (en) Non-glare film, polarizing device and display device
US6074741A (en) Antiglare material and polarizing film using the same
KR20110139182A (en) Antiglare laminate
JP4328205B2 (en) Transmission type liquid crystal display device
DE102010053570B4 (en) Transparent liquid crystal display device
JP4054670B2 (en) Polarizing plate and a liquid crystal display device
JP3507719B2 (en) Antiglare film, a polarizing element and a display device
US20070139782A1 (en) Diffusion film comprising transparent substrate and diffusion layer
CN1275079C (en) Adhesive sheet, layered sheet and liquid crystal display unit
US7773174B2 (en) Wide viewing angle compensation polarizing plate, liquid crystal panel and liquid crystal display
JP3507344B2 (en) Antiglare film, a polarizer and a transmissive display device
US7508474B2 (en) Laminated retardation layer, its fabrication process, and liquid crystal display incorporating the same
EP2383604B1 (en) Liquid crystal display apparatus
US6505942B2 (en) Anti-reflection material, polarization film, and production methods therefor
KR20040066159A (en) Biaxial film
EP1850155B1 (en) Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP4101339B2 (en) Light diffusing film, a method of manufacturing the same, the diffusion layer-attached polarizing plate and a liquid crystal display device
US20050030444A1 (en) Liquid crystal display
WO2009151068A1 (en) Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
WO2001090788A1 (en) Circular polarization plate and liquid crystal display

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted