CN100544046C - Solid-state component device - Google Patents

Solid-state component device Download PDF

Info

Publication number
CN100544046C
CN100544046C CN 200710136406 CN200710136406A CN100544046C CN 100544046 C CN100544046 C CN 100544046C CN 200710136406 CN200710136406 CN 200710136406 CN 200710136406 A CN200710136406 A CN 200710136406A CN 100544046 C CN100544046 C CN 100544046C
Authority
CN
China
Prior art keywords
layer
solid
formed
electrode
element
Prior art date
Application number
CN 200710136406
Other languages
Chinese (zh)
Other versions
CN101101952A (en
Inventor
山口诚治
末广好伸
Original Assignee
丰田合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004-084282 priority Critical
Priority to JP2004084282 priority
Priority to JP2004-223600 priority
Priority to JP2005-044649 priority
Application filed by 丰田合成株式会社 filed Critical 丰田合成株式会社
Priority to CN200510056096.4 priority
Publication of CN101101952A publication Critical patent/CN101101952A/en
Application granted granted Critical
Publication of CN100544046C publication Critical patent/CN100544046C/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

本发明提供一种固态元件装置。 The present invention provides a solid element device. 该固态元件装置使用能够防止由于热膨胀系数差异导致的电极层分离的固态元件。 The solid element device using a solid-state device can be prevented due to the difference in coefficient of thermal expansion of the electrode layer was separated. 所述固态元件装置包括:半导体层的固态元件;在其上安装有固态元件的安装基材,所述安装基材具有带有基本上等于固态元件热膨胀系数的热膨胀系数的无机材料;和密封所述固态元件的无机密封部分,其中固态元件包括包含导电金属氧化物的接触电极层以及在接触电极层上部分形成并连接到在安装基材上形成的线路部分的连接部分,并且其中接触电极层具有基本上等于固态元件的半导体层的热膨胀系数。 The solid element device comprising: a solid-state element of the semiconductor layer; solid element is mounted on a substrate mounted thereon, said mounting substrate having an inorganic material having a thermal expansion coefficient substantially equal to thermal expansion coefficients of the solid-state element; and for sealing the inorganic sealing portion of said solid element, which solid element comprises a contact electrode comprising a conductive metal oxide layer is formed and a portion connected to the connection portion and wiring portion formed on the mounting substrate on the contact electrode layer, and wherein the contact electrode layer a semiconductor layer having a solid state element is substantially equal to the coefficient of thermal expansion.

Description

固态元件装置 Solid-state component means

本申请是于2005年3月23日提交的发明名称为"固态元件和固态元件装置"的中国专利申请200510056096.4的分案申请。 This application is a name invented in 2005, March 23 filed a Chinese patent "solid state devices and solid-state element device," the application of a divisional application 200,510,056,096.4.

技术领域 FIELD

本发明涉及一种固态元件和固态元件装置,具体而言,涉及能够防止由于热应力引起的电极分离和结合强度降低以便从装置内部高效率释放光的一种元件和一种固态装置。 The present invention relates to a solid element and a solid element device, in particular, it relates to one kind of element can be prevented due to the reduction device and a solid electrode separation due to thermal stress and bonding strength for the efficient release of light from the apparatus.

背景技术 Background technique

传统固态装置是作为固态元件的LED(发光二极管)元件安装在具有引线框和布线图案的基材上的发光装置。 Conventional solid-state device is a solid state element as an LED (light emitting diode) element, a light emitting device on a substrate having a lead frame and a wiring pattern of the installation. 在使用LED元件的发光装置中, 为了具有高亮度或高输出的装置,重要的是被限定在LED元件内部的光减少从而提高了向外輻射效率。 In the light emitting device using an LED element, a high luminance, or to means having high output, it is important to reduce the light to be defined in the interior of the LED elements is radiated to improve the efficiency.

一种LED元件是半导体层在透明基材如蓝宝石上形成并且光从透明基材侧释射出来的弹抛片式(flip-chip type)LED元件。 An LED element is a semiconductor layer formed on a transparent substrate such as sapphire, and light emitted from the transparent substrate side to release the flip-chip (flip-chip type) LED element. 弹抛片式LED元件有优异的向外辐射效率,因为它在半导体层或钝化膜中没有产生光损失的缘故。 Flip-chip-type LED element having excellent radiation efficiency outwardly, in because it is no loss of light in the semiconductor layer or the passivation film. 在该装置安装中,弹抛片式LED元件被弹抛片式连接到布线元件如在250〜300°C温度的回流熔炉内的引线框。 In the mounting apparatus, the flip-chip-type LED elements are flip-chip connected to a wiring member such as a lead frame in a reflow furnace temperature is 250~300 ° C.

最近几年,考虑到环境因素而研究无铅(Pb)焊料作为用于LED元件的电连接的焊料。 In recent years, studies in view of environmental factors lead (Pb) solder is used as solder for electrically connecting the LED elements. 无Pb焊料比含Pb焊料具有更高的熔点,因而产生了由于在LED元件的弹抛片结合中的热应力增加导致发射效率变低的问题。 Ratio of Pb-free solder containing Pb solder has a higher melting point, and thus a problem arises due to thermal stress in the flip-chip bonding the LED element leads to an increase in emission efficiency becomes lower.

日本专利申请公开11 —150297(相关技术l)公开了一种氮化物半导体发光元件,该元件的p-电极是多层的以增加这种弹抛片式LED元件的发射效率。 Japanese Patent Application Publication 11-150297 (Related Art l) discloses a nitride semiconductor light emitting element, p- electrode of the element is a multilayer to increase emission efficiency of such flip-chip-type LED elements.

氮化物半导体发光元件是由与P-GaN基半导体层欧姆接触的第一正极 The nitride semiconductor light emitting element is a cathode of the first semiconductor layer, an ohmic contact with the P-GaN group

3和在第-一正极上形成的第二正极组成的。 At 3 and - a second cathode formed on the positive electrode thereof. 为了使直接位于第二正极的下面的发光层发射光,第二正极包括与第一正极接触的Au或Pt层(相关技术 In order to make the light emitting layer is located directly below the second positive light emission, a positive electrode comprising a second (related art with Au or Pt layer of the first positive contact

的[0012]和图1)。 The [0012] and FIG. 1).

然而,在上面的相关技术l中,因为第一和第二正极都在连续平面上 However, in the above related art l, since the first and second positive electrode are in the plane of the continuous

形成,因而存在这样的问题:由于高温条件下两个正极之间的热膨胀系数的差异而导致电极层从半导体层分离(剥落)。 It is formed, so there is a problem: due to a difference in thermal expansion coefficient between the two positive electrode under high temperature condition which results in the separation layer from the semiconductor layer (peeling).

发明内容 SUMMARY

木发明的目的是提供一种能够防止由于热膨胀系数差异导致的电极层分离的固态元件以及使用该固态元件的固态元件装置。 Object of the invention is to provide a wood solid element electrode layer due to thermal expansion coefficient difference and the solid isolated solid element device using the element can be prevented.

(1) 根据本发明的一种固态元件,包括: (1) A solid-state device according to the present invention, comprising:

在基材上形成的半导体层,所述半导体层包括相应于固态元件发射区域的第一层以及电流穿过其中供应到第一层的第二层; A semiconductor layer formed on a substrate, the semiconductor layer comprises a solid element corresponding to the emitting region of the first layer therethrough and a current supplied to the second layer of the first layer;

光射出表面(light discharge surface),通过该表面从第一层发射的光向外发射,所述光射出表面位于基材侧上;和 A light emitting surface (light discharge surface), through which the emission light emitted from the surface of the first layer outside the light emitting surface is located on the substrate side; and

包括多个区域的电极,所述区域为导电材料并与第二层欧姆连接。 An electrode comprising a plurality of regions, the region is a conductive material and connected to the second ohmic layer.

优选所述多个区域安置在半导体层表面上,而所述半导体的表面覆盖有热膨胀系数与电极相比更接近于半导体层的其它导电材料。 Preferably, the plurality of regions disposed on the surface of the semiconductor layer and the semiconductor surface is covered with a thermal expansion coefficient closer to other conductive electrode material of the semiconductor layer in comparison.

.多个区域可以彼此连接。 A plurality of regions may be connected to each other.

优选导电材料没有扩散到半导体中形成金属互化物。 Preferably the conductive material is not diffused into the intermetallic compound semiconductor is formed. 优选半导体层含有GaN基的半导体化合物。 Preferably, the semiconductor layer containing GaN-based compound semiconductor. 优选光射出表面包括通过处理基材形成的不平表面。 Preferably the light emitting surface includes an uneven surface formed by treating the substrate. 优选光射出表面包括凸起部分,依照凸起部分安置所述导电材料。 Preferably the light emitting surface comprises a convex portion, the convex portion is disposed in accordance with the conductive material. 优选凸起部分包括在半导体层上形成的高折射树脂层。 Preferably includes a convex portion is formed on the semiconductor layer having a high refractive resin layer. 优选基材包括具有基本上等于半导体层的折射率的材料。 Preferably the substrate comprises a semiconductor layer having a refractive index substantially equal to a material.

(2) 根据本发明的另一方面的固态元件,包括: (2) According to another aspect of the present invention, a solid-state device, comprising:

在基材上形成的半导体层,所述半导体层包括相应于所述固态元件的发射区域的第一层以及电流穿过其中供应到第一层的第二层; A semiconductor layer formed on a substrate, said semiconductor layer comprising a solid state element corresponding to said first layer and the emission region through which current supplied to the second layer of the first layer;

光射出表面,通过该表面从第一层发射的光是向外发射的,所述光射出表面位于基材侧上;具有基本上等于固态元件的热膨胀系数的接触电极层;和 Light exit surface, the light emitted from the first layer is emitted outside the light emitting surface is located on a surface of the substrate side through; contact electrode layer having a thermal expansion coefficient substantially equal to the solid-state element; and

在接触电极层上部分形成并连接外部线路部分的连接部分。 And a connecting portion connecting portion is formed external line portion on the contact electrode layer. 优选连接部分包括镍(Ni)形成的厚膜。 Preferably the connecting portion comprises a thick film of nickel (Ni) is formed.

优选该半导体层包括以向其供应的电流为基础而发射光的发光层。 Preferably the semiconductor layer comprises a light-emitting layer to the current supplied thereto based on the emitted light.

(3) 根据本发明的另-一方面的固态元件装置,包括: 固态元件; (3) Also according to the invention - a solid element device aspect comprising: a solid element;

在其上安装有固态元件的安装基材,所述安装基材具有基本上等于固态元件的热膨胀系数;和 Solid element is mounted on its mounting substrate, said mounting substrate having a thermal expansion coefficient substantially equal to the solid-state element; and

密封所述固态元件的无机密封部分, The solid inorganic sealing portion of the sealing member,

其中固态元件包括具有基本上等于固态元件的热膨胀系数的接触电极层以及在接触电极层上部分形成并连接外部线路部分的连接部分。 Wherein the contact electrode layer comprises a solid member having a thermal expansion coefficient substantially equal to the solid element is formed and a portion connected to the connecting portion and the outer portion of the line on the contact electrode layer.

(4) 根据本发明的另--方面,固态元件装置包括如下: (4) According to the present invention further - aspect, a solid element device comprising:

固态元件,它包括:在基材上形成的半导体层,和从第一层发射的光通过其向外发射的光射出表面,而所述半导体层又包括相应于所述固态元件的发射区域的第一层以及电流穿过其中供应到第一层的第二层,所述光射出表面位于基材侧上; Solid element, comprising: a semiconductor layer formed on the substrate, and the light emitted by the first light emitting layer which emits outward surface, and said semiconductor layer corresponding to the emission region in turn comprises the solid state element wherein the first layer and a current supplied through the first layer to the second layer, the light exit surface is located on the substrate side;

具有基本上等于固态元件的热膨胀系数的接触电极层; 在接触电极层上部分形成并连接外部线路部分的连接部分; 在其上安装有固态元件的安装基材,所述安装基材具有基本上等于固态元件的热膨胀系数;和 Contact electrode layer having a substantially equal coefficient of thermal expansion of the solid-state element; connection portion forming portion and the outer portion of the line on the contact electrode layer; mounted thereon is mounted on a solid base member, said mounting base having a substantially It is equal to the thermal expansion coefficient of the solid-state element; and

密封所述固态元件的无机密封部分。 The inorganic sealing portion of the sealing element in the solid state. 优选所述连接部分在接触电极层上部分形成。 Preferably said connecting portion is formed on the contact electrode layer.

优选无机密封部分包括具有热膨胀系数基本上等于基材热膨胀系数的玻璃材料。 Preferably the inorganic sealing portion includes a coefficient of thermal expansion substantially equal to the glass material of the substrate coefficient of thermal expansion.

优选接触电极层包括导电金属氧化物如ITO。 Preferably the contact electrode layer comprises a conductive metal oxide such as ITO.

(5) 根据本发明的另一个方面的固态元件装置,包括: 固态元件; (5) a solid element device according to another aspect of the present invention, comprising: a solid element;

在其上安装有固态元件的安装基材,所述安装基材具有基本上等于固态元件的热膨胀系数的无机材料;和密封所述固态元件的无机密封部分,其中固态元件包括包含导电金属氧化物的接触电极层以及在接触电极层上形成并连接到在安装基材上形成的线路部分的连接部分。 Mounted thereon a solid-state element mounting substrate, said mounting substrate having an inorganic material is substantially equal to the coefficient of thermal expansion of the solid-state element; and an inorganic sealing portion seals the solid-state element, wherein the solid element comprises a conductive metal oxide comprising and forming the contact electrode layer and connected to the connecting portion of the wiring portion formed on the mounting substrate on the contact electrode layer. 优选所述导电金属氧化物包括ITO。 Preferably, the conductive metal oxides include ITO.

附图说明 BRIEF DESCRIPTION

根据本发明的优选实施方案下面将参考附图进行解释,其中: 图1是示出在本发明的第--优选实施方案中作为固态元件装置的发光装置的横截面图; Will be explained referring to the drawings according to a preferred embodiment of the present invention, the following embodiments, wherein: FIG. 1 is a diagram illustrating the present invention in the first - as a cross-sectional view of a solid-state light-emitting device member of the apparatus of the preferred embodiment;

图2是示出在图1中的LED元件的横截面图; FIG 2 is a cross-sectional view showing a LED element in Figure 1;

图3A是从形成LED元件的表面的电极看的图2的LED元件的仰视 FIG 3A is a bottom electrode is formed from the surface of the LED element of the LED elements see FIG. 2

图; Figure;

图3B是沿图2中AA线切开的横截面图; 图3C是示出图3B的p-多层电极27的改进的仰视图; 图4是示出本发明第二个优选实施方案中LED元件的横截面图; 图5A是示出图4中LED元件的改进(发光结构)的横截面图; 图5B是示出从图5A的位置B看图5A中LED元件的顶视图; 图6A是示出本发明第三个优选实施方案中LED元件的横截面图; 图6B是示出从图6A的位置B看图6A中LED元件的顶视图; 图7A是示出本发明第四个优选实施方案中LED元件的横截面图; 图7B是示出从图7A的位置B看图7A中LED元件的顶视图; 图8是示出本发明第五个优选实施方案中LED元件的横截面图; 图9A是本发明第六个优选实施方案中LED元件(从其电极形成表面上看)的仰视屈; 3B is a cross-sectional view taken along line AA cut 2; FIG. 3C is a p- multilayer electrode 3B shows a bottom view of an improved FIG. 27; FIG. 4 is a diagram illustrating a second preferred embodiment of the present invention a cross-sectional view of an LED element; FIG. 5A is a view showing modification 4 of the LED elements (light emitting structure) of the cross-sectional view; FIG. 5B is a diagram illustrating the LED elements in Figure 5A from the position B of the top view of FIG. 5A; FIG. 6A is a cross-sectional view of an LED element to the third preferred embodiment of the present invention; FIG. 6B is a diagram illustrating the LED element in Figure 6A from the position B in FIG. 6A is a top view; FIG. 7A is a diagram illustrating a fourth of the present invention cross-sectional view of the LED elements in the preferred embodiment; FIG. 7B is a diagram illustrating the LED elements in Figure 7A from the position B a top view of FIG. 7A; FIG. 8 is a diagram illustrating a fifth preferred embodiment of the present invention, the LED elements cross-sectional view; FIG. 9A is a sixth preferred embodiment of the invention the bottom flexion LED elements (the surface from which the electrode is formed) of;

图9B是图9A中沿CC线切开的横截面图;■ FIG 9B is a cross-sectional view taken along line CC in FIG. 9A of; ■

图IO是本发明第七个优选实施方案中LED元件(从电极形成表面上看) 的仰视图; FIG IO is a bottom view of a seventh preferred embodiment of the present invention, the LED element (viewed from the electrode forming surface) of the;

图11A是示出本发明第八个优选实施方案中LED元件(安装在A】203 基材32上)的横截面图; 11A is a cross-sectional view illustrating an eighth preferred embodiment of the present invention, the LED elements (A] 203 mounted on the substrate 32);

图UB是示出具有在其上形成的电路图案的图11A中Al2Cb基材32 的平面图;图12A是示出本发明第九个优选实施方案中LED元件的横截面图; FIG UB Al2Cb is a plan view of the substrate 32 having a circuit pattern formed thereon in FIG. 11A; FIG. 12A is a cross-sectional view illustrating an LED element according to a ninth preferred embodiment of the present invention;

图12B是示出图12A的LED元件的平面图; 图12C是解释临界角的图; 12B is a plan view showing an LED element 12A; FIG. 12C is a view for explaining the critical angle;

图13是示出本发明第十个优选实施方案中LED元件(安装在八1203基材32上)的横截面图; FIG 13 is a cross-sectional view showing a tenth embodiment of the present invention, a preferred embodiment of the LED elements (the substrate 1203 mounted on eight 32);

图14是本发明第十一个优选实施方案中LED元件(从电极形成表面上看)的平面图; FIG 14 is a plan view of a tenth embodiment of the present invention, a preferred embodiment of the LED elements (viewed from the electrode forming surface) of the;

图15是本发明第十二个优选实施方案中LED元件(从电极形成表面上看)的平面图; . FIG 15 is a preferred embodiment of a twelfth embodiment of the present invention, the LED element (viewed from the electrode forming surface) plan view;.

具体实施方案 Specific embodiments

[第-一实施方案] (发光装置1的组成) [- of an embodiment] (Composition of the light emitting device 1)

图1是示出在本发明的第一优选实施方案中作为固态元件装置的发光装置的横截面图; FIG 1 is a diagram illustrating a first preferred embodiment of the present invention as a cross sectional view of a solid-state light-emitting device member of the apparatus;

发光装置1由如下组成:是GaN基半导体的作为固态元件的弹抛片式LED元件2;在其上安装有LED元件2的A1203基材3;由钨(W)/镍(Ni)/ 金(Au)构成并在八1203基材3上形成的电路图案4;作为连接LED元件2 和电路图案4的连接部分形成的Au柱螺栓突出部分(studbump)5;以及密封LED元件2并结合到A1203基材3上的玻璃密封材料6。 The light emitting device 1 of the following composition: a GaN-based semiconductor as a solid element, flip-chip-type LED element 2; in which LED elements are mounted on the base 2 of 3 A1203; made of tungsten (W) / a nickel (Ni) / gold (Au) and composed of a circuit pattern formed on a substrate 34 eight 1203; Au pillar bolt projecting portion is formed as a connecting portion connecting the LED element 2 and the circuit pattern 4 (studbump) 5; and a sealing LED element 2 and bonded to A1203 sealing material on the glass substrate 36.

八1203基材3提供有通孔3A以使电路图案4之间电连接,所述电路图案为W-Ni并在基材3的前表面和后表面金属化。 1203 base 3 provided with eight through holes 3A to the electrical connection, the circuit pattern is a W-Ni and the front surface of the substrate 3 and the rear surface metallization between the circuit pattern 4.

玻璃密封材料6是低熔点玻璃,而且在使用模子热处理以结合到A1203 基材3上之后,通过切块机切割形成的具有顶面6A和侧面6B的矩形。 Glass is low melting glass sealing material 6, and the heat treatment in the mold used to bind to the substrate 3 after the A1203, dicer cutting is formed by a top surface having a rectangular side surfaces 6A and 6B.

(LED元件2的组成) (Composition of LED elements 2)

图2是示出在图1中的LED元件的横截面图; FIG 2 is a cross-sectional view showing a LED element in Figure 1;

LED元件2由如下组成:蓝宝石(八1203)基材20;以及顺序在蓝宝石基材20上生长的A1N缓冲层2K n-GaN镀层22、包括发光层、p-AlGaN镀层(cladding layer)24以及p-GaN接触层25的多层23。 LED elements 2 of the following composition: Sapphire (VIII 1203) substrate 20; and A1N buffer layer are sequentially grown on the sapphire substrate 20 is 2K n-GaN layer 22, including a light emitting layer, p-AlGaN plating layer (cladding layer) 24, and the multilayer p-GaN contact layer 25 is 23. 此外,它还提供有在通过蚀刻除去p-GaN接触层25至n-GaN镀层22而露出的部分n-GaN镀层22上形成的n-电极26以及在p-GaN接触层25的表面上形成的p-多层电极27。 In addition, it is provided with electrodes formed on the n- removed by etching p-GaN contact layer 25 to the n-GaN layer 22 and the exposed portion of the n-GaN layer 22 formed on the surface 26 and the p-GaN contact layer 25 the p- multilayer electrode 27.

(p-多层电极27的组成) (Composition of p- multilayer electrode 27)

p-多层电极27由如下组成:在p-GaN接触层25表面上形成晶格的铑(Rh)层27A;在p-GaN接触层25和铑(Rh)层27A表面上形成的钩(W)层27B;以及在钨(W)层27B表面上形成的Au层27C。 p- multilayer electrode 27 consists of the following components: a lattice is formed on the surface of p-GaN contact layer 25 of rhodium (Rh) layer. 27A; hook formed on the surface of p-GaN contact layer 25 and rhodium (Rh) layer 27A ( W) layer 27B; 27C and an Au layer formed on the surface of tungsten (W) layer 27B.

(LED元件2的制作) (LED element 2 production)

在制作LED元件2中,首先提供作为晶片的蓝宝石基材20。 In the fabrication of the LED element 2, the sapphire substrate 20 is first provided as a wafer. 然后, 通过己知方法在蓝宝石基材20上形成A1N缓冲层21、 n-GaN镀层22、包括发光层、p-AlGaN镀层24、 p-GaN接触层25以及n-电极26的多层23。 Then, formation of A1N buffer layer 21, n-GaN layer 22 on the sapphire substrate 20 by a known method, including a light emitting layer, p-AlGaN plating layer 24, a multilayer 23 p-GaN contact layer 25 and the n- electrode 26.

然后,在p-GaN接触层25上通过沉积形成铑(Rh)层27A。 Then, on the p-GaN contact layer 25 is formed of rhodium (Rh) layer 27A by deposition. 再在铑(Rh) 层27A表面上形成光致抗蚀剂。 Then a photoresist is formed on the surface 27A rhodium (Rh) layer. 随后,在光致抗蚀剂上安置晶格形式的抗蚀剂掩膜,曝光光致抗蚀剂。 Subsequently, a lattice form arranged on photoresist resist mask, exposing the photoresist. 然后,通过蚀刻去除铑(Rh)层27A的曝光部分。 Then, the exposed part is removed by etching rhodium (Rh) layer 27A. 然后,从形成晶格图案的铑(Rh)层27A的表面上去除抗蚀剂掩膜。 Then, the resist mask on the surface layer 27A from rhodium (Rh) is formed in a lattice pattern. 然后,在其上通过沉积形成钨(W)层27B以覆盖形成晶格图案的铑(Rh)层27A。 Then, on which is formed of tungsten (W) layer 27B rhodium (Rh) layer is formed to cover the lattice pattern 27A by deposition. 然后,通过沉积在钨(W)层27B上形成Au层27C。 Then, an Au layer 27C is formed on the tungsten (W) layer 27B by deposition. 然后,具有GaN 基的半导体层的蓝宝石基材20被切割成0.3mmx0.3mm的方块。 Then, the sapphire substrate having GaN-based semiconductor layer 20 is cut into a block of 0.3mmx0.3mm. 这样,就获得了LED元件2。 Thus, the LED element 2 is obtained.

(p-多层电极27) (P- multilayer electrodes 27)

图3A是从形成LED元件表面的电极看的在图2中LED元件的仰视图。 3A is formed from the electrode surface of the LED element as seen in a bottom view of the LED element 2 of FIG. 图3B是沿图2中AA线切开的横截面图。 3B is a cross-sectional view along the cut line in FIG. 2 AA. 图3C是示出图3B的p-多层电极27的改进的仰视图。 3C is a diagram illustrating an improved p- multilayer electrode 27 of FIG. 3B is a bottom view of FIG.

如图3A所示,p-多层电极27覆盖有在表面上形成的Au层27C。 As shown in FIG. 3A, p- multilayer electrode 27 is covered with an Au layer formed on the surface 27C. 如图3B所示,被钨(W)层27B包围的形成晶格图案的铑(Rh)层27A在Au层27C的底下形成。 3B, is formed in a lattice pattern, tungsten (W) layer 27B surrounded by rhodium (Rh) layer 27A is formed under the Au layer. 27C. 形成晶格图案的铑(Rh)层27A是由多个在矩形圆点中形成的区域构成的。 27A is a region formed by a plurality of dots in a rectangular rhodium (Rh) forming the lattice pattern layer. 当电流穿过Au层27C供给时,该区域发射光。 When a current is supplied through the Au layer 27C, the light emitting region.

如图3C所示,形成晶格图案的铑(Rh)层27A可以形成这些区域彼此连接的形式。 3C, a lattice pattern is formed of rhodium (Rh) layer 27A may be formed in the form of connecting these regions with each other. 该连接形式可以是部分区域有规则或无规则连接的形式。 The connection may be in the form of a partial region connecting regular or random form.

(发光装置1的制造) (Production of light emitting device 1)

首先提供具有通孔3A的A】203基材3。 203] A substrate is first provided with a through hole 3 3A. 根据电流图案4,钨(W)膏状 4 according to the current pattern, tungsten (W) paste

8物丝网印刷在八1203基材3表面上。 8 3 was screen-printed on the surface of the substrate 1203 eight. 然后,在其上印刷有钨(W)膏状物的 Then, printed thereon tungsten (W) of the paste

八1203基材3在1000°(:或更高热处理,以使钨结合到基材3上。然后,在钨上形成镀Ni层和镀Au层以制作电路图案4。然后LED元件2通过Au 柱螺栓突出部分5电连接到在八1203基材3前表面上的电路图案4上。然后,低熔点玻璃板平行于在其上安装有LED元件2的Al203基材3放置, 再在60kgf的压力和600°C的氮气气氛中进行热处理。低熔点玻璃通过包含在其中的氧化物结合到Al2CV基材3上。然后,结合有低熔点玻璃的A1203 基材3通过切块机切割,由此切割出矩形发光装置1。 (发光装置1的工作) 3 in the substrate 1203 eight 1000 ° (:. Or higher heat treatment to the tungsten bonded to the substrate 3 is then formed on the Ni plating layer and a tungsten Au plated layer pattern to fabricate a circuit element 2 through LED 4. Then Au the stud projecting portion 5 is electrically connected to the circuit pattern on the front face 3 of the substrate 4 1203 eight. then, low-melting glass plate on which is mounted parallel to the LED elements placed Al203 substrate 32, and then in the 60kgf nitrogen pressure and 600 ° C in a heat treatment. Al2CV melting glass bonded to the substrate 3 through an oxide contained therein. then, the substrate A1203 bound low melting point glass 3 cut by a dicer, thereby cutting out a rectangular light-emitting device 1. (working light emitting device 1)

当通过将电路图案4连接到电源(未示出)上应用电压时,LED元件2在多层23内部具有平面形式发射的光的同时发射波长为460nm的蓝光。 Meanwhile, when the circuit pattern 4 by connecting to a power supply (not shown) on the applied voltage, LED element 2 having a light emission in a planar form 23 inside the multilayer emission wavelength of 460nm blue. 蓝光从多层23中穿过n-GaN镀层22和A1N缓冲层21进入到蓝宝石基材20中,从蓝宝石基材20进入玻璃密封材料6中,从顶部表面6A和侧表面6B向外发射。 Into the buffer layer 21 the sapphire substrate 20 from the blue light through the multilayer 23 n-GaN and A1N layer 22, the sealing material 20 into the glass from the sapphire substrate 6, 6A and emitted outward from the surface of the top side surface 6B.

(第一实施方案的效果) (Effect of first embodiment)

在上面解释的第一实施方案中,在p-GaN接触层25的表面上形成有晶格图案的铑(Ru)层27A。 In the first embodiment explained above, the layer 27A is formed with a lattice pattern of a rhodium (Ru) on the surface of the p-GaN contact layer 25. 由此,p-GaN接触层25可以与p-多层电极27 欧姆连接,而且它们之间可以获得良好的结合性能。 Thus, p-GaN contact layer 25 may be connected to the multilayer p- ohmic electrode 27, and can obtain good bonding properties between them.

此外,銜Rh)层27A是有形成晶格图案,而与热膨胀系数约为8xlO—V。 Moreover, Title Rh) layer 27A is formed in a lattice pattern, and the thermal expansion coefficient of approximately 8xlO-V. C 的铑相比,形成了具有等于LED元件2的GaN基层(p-AlGaN镀层24、 P-GAN接触层25)热膨胀系数的热膨胀系数约为5x10—6/°C的钨层。 C as compared to rhodium to form a GaN base layer (p-AlGaN plating layer 24, P-GAN contact layer 25) of thermal expansion coefficients of the coefficient of thermal expansion of about 5x10-6 / ° C having a tungsten layer 2 is equal to the LED element. 因此, 可以减小来自组分中由于具有最大热膨胀系数(15xlO'V。C)的Au层的热膨胀系数差异引起的热应力。 Thus, the thermal stress can be reduced since the component having the largest coefficient of thermal expansion due to (15xlO'V.C) difference in thermal expansion coefficient from the Au layer. 因此,即使在高温条件如玻璃密封和回流下, 也可以防止电极层的分离(剥落)。 Thus, even under high temperature and reflux conditions such as glass sealing, an electrode layer may be separated (peeled) to prevent. 这样,进入多层23的电流的稳定流动就可以进行。 Thus, a stable flow of current into the multi-layer 23 can be carried out.

此外,通过在具有与LED元件2热膨胀系数相等的热膨胀系数的Al203 基材3上安装LED元件2,可以减小由于LED元件2和八1203基材3之间的热膨胀系数差异导致的热应力。 Further, by mounting the LED elements in the LED element 2 having a thermal expansion coefficient equal to the coefficient of thermal expansion of the Al203 substrate 32, the thermal stress can be reduced since the difference in thermal expansion coefficients and the eight LED elements 2 between the substrate 3 1203 caused. 在这个实施方案中,因为LED元件2 是这样构成的:在蓝宝石基材20 (热膨胀系数为7xlO—6/°C)上形成GaN 基层,LED元件2的整体热膨胀系数可以认为是等于蓝宝石基材20的。 In this embodiment, since the LED element 2 is constructed such that: a GaN base layer on a sapphire substrate 20 (thermal expansion coefficient 7xlO-6 / ° C) on, the LED element overall thermal expansion coefficient of 2 may be considered to be equal to a sapphire substrate 20. 通过这样减少应力,即使高温条件如玻璃密封下,也可以防止它们之间的分离。 By thus reducing the stress, even under high-temperature conditions such as sealing glass, the separation between them can be prevented.

虽然在第一实施方案中,铑(Rh)层27A是形成晶格图案的,但它也可以形成除图3C所示改进之外的网孔或星罗棋布的图案。 Although in the first embodiment, rhodium (Rh) layer 27A is formed in a lattice pattern, but it may be formed in addition to the modification shown in FIG. 3C mesh or dotted pattern. 用于欧姆连接(ohmic contact)的其它电极材料可以是有大结合强度的铬(Cr)。 Other materials for the ohmic connection electrode (ohmic contact) may be a large binding strength of chromium (Cr). 因为GaN 基半导体层不具有GaAs或AlInGaP基半导体那样充足的结合强度,因此形成图案的结构在用于GaN基半导体层的欧姆电极中是非常有效的,其中电极元素扩散进入半导体层并在其间形成金属互化物。 Because GaN-based semiconductor layer having no AlInGaP or GaAs-based semiconductor, as a sufficient binding strength, thereby forming a pattern of the ohmic electrode structures for GaN-based semiconductor layer is very effective, wherein the electrode element is diffused into the semiconductor layer formed therebetween and intermetallic compound. 形成图案的结构对于电极材料不可能扩散进入半导体层的其它半导体也是有效的。 Patterning structure is also effective for an electrode material can not diffuse into the semiconductor layer of the other semiconductor. 即使当电极材料可以扩散进入半导体层时,也可以获得相同的作用。 Even when the electrode material can diffuse into the semiconductor layer, the same effect can be obtained.

优选电极材料如铑通过有效的溅射而不是电子束沉积进行沉积,以提高与GaN基半导体表面的结合强度。 Preferred electrode materials such as rhodium through effective than electron beam deposition sputtering deposition, in order to improve the bonding strength with a GaN-based semiconductor surface.

(第一实施方案的改进) (Modified first embodiment)

发光装置1的改进可以是使用含磷光剂环氧树脂作为代替玻璃密封材料6的密封材料的波长转化类型发光装置。 The light emitting device 1 can be improved using a phosphorus-containing epoxy resin as a light stabilizer wavelength conversion type light emitting device in place of the glass sealing member sealing material 6. 例如,该磷光剂可以是Ce:YAG (钇铝石榴石)。 For example, the phosphor may be a Ce: YAG (yttrium aluminum garnet). 在这种情况下,该磷光剂通过460nm的光激发而放射出520〜550nm的黄色激发光。 In this case, the yellow phosphor and emits light by excitation light of 520~550nm excitation of 460nm. 该黄色激发光与蓝光混合从而产生白光。 The yellow light mixed with the blue light excitation to produce white light.

[第二实施方案] (LED元件2的组成) [Second Embodiment] (Composition of LED elements 2)

图4是示出本发明第二个优选实施方案中LED元件的横截面图. FIG 4 is a cross-sectional view of an LED element of the second preferred embodiment of the present invention.

第二实施方案的LED元件2不同于第一实施方案,因为使用GaN基材28(具有n=2.4的折射率)代替蓝宝石基材20,并且使用具有1.85折射率的以Bi为基础的高折射率玻璃。 The second embodiment differs from the LED elements 2 of the first embodiment, since GaN substrate 28 (having a refractive index of n = 2.4) was used instead of the sapphire substrate 20, and used in the Bi-based high refractive has a refractive index of 1.85 of the glass. 该GaN基材28提供有通过切割或抛光等去除拐角部分而形成的斜面28A。 The GaN substrate 28 is provided with a cutting or the like is formed by removing the corner portions of the bevel polishing 28A. 在这个实施方案中,类似部分通过在第一实施方案中使用的相同数字标记。 In this embodiment, similar parts by the same numerals used in the first embodiment.

(第二实施方案的效果) (Effect of second embodiment)

在第二实施方案中,由于使用了GaN基材28而增加了第一实施方案没有的效果,即在多层23中产生的光可以在没有光损失的情况下到达GaN 基材28和玻璃密封材料(图4未示出)之间的界面上。 In the second embodiment, since the GaN substrate 28 of the first embodiment without increasing the effect, i.e. the light generated in the multilayer 23 may reach the GaN substrate 28 and the glass seal in the absence of light loss material (not shown in FIG. 4) on the interface between. 此外,因为密封材料具有高的折射率,而且LED元件2不是矩形但形成有斜面28A,因此可以减少限制在LED元件2中的光。 Further, since the seal material having a high refractive index, and the LED element 2 is not rectangular but is formed with an inclined surface 28A, it is possible to reduce restrictions in light of the LED element 2. 由此,LED元件2的向外辐射效率大大提高。 Thus, LED element 2 outwardly radiating efficiency is greatly improved. 而且,由于在GaN基材28上形成的斜面28A,因此从在p-多层电极27的方向的多层23发射并且在p-多层电极27上反射的蓝光可以向外射出。 Further, since the inclined surface 28A formed on the GaN substrate 28, thus emitted from the multilayer p- multilayer electrode in a direction of 23 and 27 can be emitted outwardly p- multilayer electrode 27 on the blue reflection. 这样,可以提高向外辐射效率。 Thus, radiation efficiency can be increased outward.

此外,因为LED元件2的密封材料是由玻璃制成的,因此密封材料不会由于从LED元件2产生的光或热而导致劣化,而且可以获得高折射率性质。 Further, since the LED element 2 the sealing material is made of glass, since the sealing material does not light or heat generated by the LED elements 2 cause deterioration of properties and a high refractive index can be obtained.

如果是玻璃的硬质密封材料,则与树脂相比会出现由于热应力导致的裂纹。 If the sealing material is a hard glass, the crack due to the thermal stress occurs as compared with the resin. 然而,即使当装置密封后冷却中的玻璃热收缩导致大的内部应力时, 斜面28A可以防止应力在玻璃中局域化。 However, even when the apparatus after the sealing glass heat shrinkage when cooled internal stress results in a large chamfer 28A can be prevented from localized stress in the glass. 因此,发光装置1可以防止封装 Thus, the light emitting device package 1 can be prevented

裂纹从而供给良好的可靠性。 Crack to supply good reliability. (改进) (Improve)

图5A是示出图4中LED元件的改进(发光结构)的横截面图。 5A is a 4 to improve the LED elements (light emitting structure) cross-sectional view showing the. 图5B 是示出从图5A的位置B看图5A中LED元件的顶视图。 Figure 5B is a diagram illustrating the LED elements 5A from the position B a top view of FIG. 5A.

LED元件2提供有在GaN基材28表面上通过切割形成凹槽22a的突起部分22A。 LED element 2 is provided with a cut on the surface of GaN formed by the projecting portion 22A of the substrate 28 of the groove 22a. 而且,GaN基材28提供有通过切割或抛光等切掉拐角部分而形成的斜面28B。 Furthermore, GaN substrate 28 provided with the inclined surface 28B is formed by cutting or polishing a corner cut portion. 此外,在p-多层电极27中形成代替钨层27B的连续Ag层27D。 Further, an Ag layer 27D is formed instead of a continuous tungsten layer 27B in the multilayer electrodes 27 p-.

在这样形成的LED元件2中,因为GaN基材28具有不平的光射出表面,因此光射出表面的面积增加。 In the LED element 2 thus formed, since the GaN substrate 28 having uneven light exit surface, the light emitting surface area is increased. 因此,可以提高LED元件2的光射出性质。 Thus, it is possible to improve the properties of the light emitted from the LED element 2. 而且,从在p-多层电极27方向的多层23发射并在p-多层电极27 上反射的蓝光可以很好地向外射出。 Further, the direction of emission from a plurality of layers 27 and 23 p- multilayer electrode may emit in the blue outwardly p- well 27 on the multilayer reflective electrode. 这样,可以提高向外的辐射效率。 Thus, radiation efficiency can be increased outward.

[第三实施方案] (LED元件2的组成) [Third Embodiment] (Composition of LED elements 2)

图6A是示出本发明第三个优选实施方案中LED元件的横截面图。 FIG 6A is a cross-sectional view of an LED element to the third preferred embodiment of the present invention. 图6B是示出从图6A的位置B看图6A中LED元件的顶视图。 Figure 6B is a diagram illustrating FIG. 6A LED elements from the position B in FIG. 6A is a top view.

LED元件2是由具有如图5A解释的通过在光射出表面切割而形成凹槽22a的GaN基材28以及具有钨(W)层27B的晶格图案的p-多层电极27 p- multilayer electrode LED element 2 is explained by FIG. 5A having a light exit surface of the recess 22a formed by cutting a GaN substrate 28 having a grating pattern, and tungsten (W) layer 27B 27

ii构成的。 ii configuration.

(第三实施方案的效果) (Effect of third embodiment)

在第三实施方案中,由于形成晶格图案的钨(W)层27B,因此可以防止 In a third embodiment, since the (W) layer forming a tungsten grating pattern 27B can be prevented

电极层的分离。 Separating the electrode layer. 此外,p-GaN具有高电阻率,这允许根据欧姆电极的图案形成发射区域,而且根据该发射区域又形成了不平表面。 Further, p-GaN having a high resistivity, which allows the formation of the emission region of the ohmic electrode according to the pattern, and based on the emission region and the formation of an uneven surface. 因此,可以提高从GaN基半导体层的光射出性质。 Thus, it is possible to improve properties of emitted light from the GaN-based semiconductor layer.

[第四实施方案] (LED元件2的组成) [Fourth Embodiment] (Composition of LED elements 2)

图7A是示出本发明第四个优选实施方案中LED元件的横截面图。 FIG 7A is a cross-sectional view of the LED element to a fourth preferred embodiment of the present invention. 图7B是示出从图7A的位置B看图7A中LED元件的顶视图。 FIG. 7B Figure 7A is a diagram illustrating the LED element from the position B in FIG. 7A a top view.

第四实施方案的LED元件2不同于第三实施方案之处在于:通过使用激光将蓝宝石基材20从第一实施方案的LED元件2中分离,而代替的是, 在n-GaN镀层22的表面上形成100pm厚的具有n=2.1折射率的热固性树脂层29。 The fourth embodiment differs from the LED elements 2 of the third embodiment in that the program: the sapphire 20 is separated from the first embodiment of an LED element by using a laser substrate 2, instead of that in the n-GaN layer 22 thermosetting resin layer having a refractive index of n = 2.1 is formed on the surface 29 of 100pm thick.

热固性树脂层29提供有六角形凸面为锯齿形图案的凸起部分29。 Thermosetting resin layer 29 is provided with a zigzag pattern hexagonal convex raised portion 29. 此外,铑(Ru)层27A在p-GaN接触层25上形成六角形部分(或岛)的锯齿形图案。 Furthermore, rhodium (Ru) layer forming hexagonal portion 27A (or islands) in a zigzag pattern on the p-GaN contact layer 25. 如图7B所示,热固性树脂层29的突起部分29A(六角形凸面)是根据铑(Ru)层27A(六角形岛)安置的。 As shown, the protruding portion 29 of the thermosetting resin layer 29A 7B (hexagonal convex) is a rhodium (Ru) 27A (hexagonal islands) layer is disposed.

热固性树脂层29这样形成:热固性树脂薄片根据凸起部分29A的六角形凸面通过模制如压模预先形成图案,然后形成图案的薄片被结合到n-GaN镀层22的表面上。 Thermosetting resin layer 29 is formed so that: a thermosetting resin sheet made by molding in accordance with the hexagonal raised portions 29A of the convex stamper pattern is formed in advance and then forming the pattern sheet is bonded to the surface of the n-GaN layer 22 on.

作为选择,不代替使用热固性树脂的薄片,热固性树脂层29可以通过向模子中注射热固性树脂在n-GaN镀层22表面上形成。 Alternatively, instead of a sheet without the use of a thermosetting resin, the thermosetting resin layer 29 may be formed on the surface of the n-GaN layer 22 by injecting a thermosetting resin into the mold. 在这种情况下, 模子提供有根据凸起部分29A的六角形凸面的图案。 In this case, the mold is provided with a convex portion 29A of the hexagonal pattern according protrusions.

这样形成的具有热固性树脂层29的LED元件2用硅氧垸树脂密封。 LED element 29 having a thermosetting resin layer 2 thus formed is sealed with a silicone resin embankment.

(第四实施方案的效果) (Effect of fourth embodiment)

在第四实施方案中,使用具有接近于GaN基半导体层折射率的热固性树脂层29,而且热固性树脂层29提供有凸起部分29。 In a fourth embodiment, a layer having a refractive index close to the GaN-based semiconductor layer 29 of a thermosetting resin, the thermosetting resin layer 29 and is provided with a raised portion 29. 因此,具有高折射率和放大表面积的光射出表面可以在不需要任何处理如在n-GaN镀层22表面上切割和抛光的情况下容易地形成。 Thus, a high refractive index and having an enlarged surface area of ​​the light exit surface can be easily formed without the need for any processing such as cutting and polishing on the surface of n-GaN layer 22.

而且,因为热固性树脂层29的凸起部分29A(六角形凸面)根据铑(Ru) 层27A(六角形岛)放置,因此从多层23发射并直接越过铑(Ru)层27A的蓝光可以到达具有增大面积的光射出表面。 Further, since the convex portions 29A (convex hexagon) thermosetting resin layer 29 of the layer 27A (hexagonal islands) placed according to a rhodium (Ru), and thus emitted from the multilayer 23 directly over the blue rhodium (Ru) layer 27A may reach the having an increased surface area of ​​the emitted light. 因此,与从平的光射出表面射出光的情况相比,向外能够射出的光增加。 Therefore, as compared with the case where the light emitted from the light emitting surface of the flat, outwardly emitted light can be increased.

凸起部分29A可以如图5B那样形成,而且凸面可以为曲线的。 Raised portions 29A may be formed as shown in FIG 5B, and may be a convex curve. 凸面可以以除锯齿形图案外的另一种图案安置。 Convex surface may be arranged in another pattern in addition to the zigzag pattern.

热固性树脂层29可以提供有使表面积比平面更大的粗糙表面,以代替使用凸起部分29A。 Thermosetting resin layer 29 may be provided with a greater surface area than the planar roughened surface, instead of using the convex portion 29A.

[第五实施方案] (LED元件2的组成) [Fifth Embodiment] (Composition of LED elements 2)

图8是示出本发明第五个优选实施方案中LED元件的横截面图。 FIG 8 is a cross-sectional view of the LED element according to a fifth preferred embodiment of the present invention.

第五实施方案的LED元件2不同于第四实施方案之处在于:p-多层电极27这样构成:作为分离的电极区域的Ag层27D和Au层27C在晶格图案以及铑(Rh)层27A中形成。 The fifth embodiment differs from the LED elements 2 of the fourth embodiment in that: p-electrode 27 of such a multilayer configuration: Ag layer as a separate layer and an Au electrode region 27D of the lattice pattern 27C and rhodium (Rh) layer 27A in form.

铑(Rh)层27A具有允许从多层23发射的光透过的小厚度,以致透过光在具有良好反射效率的Ag层27D上反射。 Rhodium (Rh) layer 27A having allowed to transmit from the multilayer 23 of a small thickness of the light transmission, so that the light transmitted through the reflector 27D having a good reflection efficiency of the Ag layer.

(第五实施方案的效果) (Effect of fifth embodiment)

在第五实施方案中,增加了第四实施方案没有的效果,即可以减小由于p-多层电极27和GaN基半导体层之间的热膨胀系数差异导致的热应力。 In a fifth embodiment, the fourth embodiment does not increase the effect, which can reduce the thermal stress difference in thermal expansion coefficient between the multilayer electrodes 27 and the p- GaN-based semiconductor layer caused due.

因此,即使在高温条件如玻璃密封和回流下电极层的分离(剥落)也可以防止。 Thus, even in a high-temperature condition, such as a glass sealing and separation under reflux electrode layer (peeling) can be prevented. 这样就可以进行进入多层23的电流的稳定流动。 This allows a stable flow of current into the multilayer 23.

此外,通过将电极层的反射率设置在铑(Rh)层27A与Ag层27D之间, 可以提供反射率。 Further, the reflectivity of the electrode layer is provided between the by rhodium (Rh) layer 27A and the Ag layer 27D, the reflectivity may be provided. 因此,可以提高向外的辐射效率。 Accordingly, the radiation efficiency can be increased outward.

[第六实施方案〗 (LED元件2的组成) [〗 Sixth embodiment (the composition of the LED elements 2)

图9A是本发明第六个优选实施方案中LED元件(从电极形成表面上看) 的仰视图。 FIG 9A is a bottom view of a sixth preferred embodiment of the present invention, the LED element (the surface formed from the electrode). 图9B是图9A中沿CC线切开的横截面图。 FIG 9B is a cross-sectional view of FIG. 9A cut along line CC. 如图9A所示,LED元件2提供有Ti/Pt制成的n-电极26、作为具有与LED元件2(GaN基半导体的滩等的热膨胀系数的ITO (氧化铟锡)制成的p-接触电极的p-接触电极层30以及在n-电极26和p-接触电极层30 上部分形成的Au平头电极。LED元件2测定大小为300平方pm。通过EB(电子束)沉积形成很薄的ITO。 Shown in Figure 9A, LED element 2 provided n- electrode made of Ti / Pt of 26, p- as ITO having a thermal expansion coefficient of the LED element 2 (the GaN-based semiconductor beaches like (indium tin oxide) is formed p- contact electrode layer 30 and the contact electrode size measuring 2 .LED Au pad electrode element 26 is formed in the upper portion 30 and the p- n- electrode is a contact electrode layer 300 square pm. formed thin by EB (electron beam) deposition the ITO.

图9B示出第六实施方案的LED元件2应用到图1所示的第一实施方案的发光装置1中的局部放大图。 LED elements 9B shows a sixth embodiment 2 is applied to the light emitting device 1 of the first embodiment shown in FIG. 1 enlarged view.

在第六实施方案中,安装在侧面的装置上的电路图案4是由W/Ni/Ag 构成,而在基材32背部上由W/Ni/Au构成,其中电路图案4的两侧通过在通孔3A中的钩(W)图案连接。 In the sixth embodiment, the circuit pattern on the mounting side of the device 4 is made of W / Ni / Ag, and consists of W / Ni / Au on the back substrate 32, through which the circuit pattern 4 on both sides of the 3A through hole in the hook (W) patterns are connected. Au平头电极31具有基本上与Au柱螺栓突出部分(stud bump) 5相同的尺寸。 Au pad electrode 31 have substantially the same with the Au stud projecting portion (stud bump) 5 size.

在第六实施方案中,LED元件2通过使用Au柱螺栓突出部分5的超声波热压缩安装在电路图案4中,并且用热膨胀系数为7xlO'6/°C的低熔点玻璃密封。 In the sixth embodiment, LED element 2 by using the Au stud protruding portion 5 of the ultrasonic thermal compression mounted on the circuit pattern 4, and the coefficient of thermal expansion of low melting glass sealing 7xlO'6 / ° C of.

(第六实施方案的效果) (Effect of sixth embodiment)

在第六实施方案中,Au平头电极31在具有与LED元件2基本上相等的热膨胀系数的p-接触电极层30上部分形成,而LED元件2通过Au 柱螺栓突出部分5安装在具有与LED元件2基本上相等的热膨胀系数的八1203基材32的电路图案4上并且用玻璃密封。 Portion 30 p- contact electrode layer in the sixth embodiment, Au pad electrode 31 having the LED element 2 is substantially equal to the thermal expansion coefficient is formed, the LED element 2 having the protruding portion of the LED 5 is mounted by Au stud 2 a circuit pattern is substantially equal coefficients of thermal expansion of eight elements 1203 of the substrate 32 and the sealing glass 4. 因此,p-接触电极层30 不可能从GaN基半导体层200上分离,而且在允许Au平头电极31和Au 柱螺栓突出部分5热形变的同时,可以吸收热应力。 Thus, the contact 30 can not separate from p-GaN-based semiconductor layer, the electrode layer 200, and allowing Au pad electrode 31 and the Au stud while the thermal deformation of the projecting portion 5, the thermal stress can be absorbed.

在本发明人的实验中,LED元件2是安装在具有不同热膨胀系数的基材即Al203基材和含有玻璃的八1203基材(热膨胀系数为12xlO—6/。C)上并且使用玻璃密封。 In the experiment by the present invention, LED element 2 is mounted on a substrate having a different thermal expansion coefficients of the substrate and containing Al203 i.e. eight 1203 glass substrate (thermal expansion coefficient 12xlO-6 / .C) and the glass seal. 结果,与Al203基材相比,可以证实, 一些含有玻璃的八1203基材引起由于电极分离和发射图案的缺陷导致的正向电压的增加(平均为0.3V)。 As a result, compared with the Al203 substrate, it was confirmed, some of which contain eight glass substrate 1203 causes an increase in forward voltage due to a defect and the electrode separation due to emission pattern (average of 0.3V). 这样,因为LED元件2具有与^203基材32基本上相等的热膨胀系数,因此即使在玻璃密封的高温条件即500〜600°C下,由于它们之间的热膨胀系数差异导致的热应力也不会产生。 Thus, since the LED element 2 ^ 32 having substantially equal coefficients of thermal expansion of the substrate 203, so even under conditions of high temperature glass sealing, i.e. 500~600 ° C, thermal stress difference in thermal expansion coefficient therebetween is not caused Will produce. 因此,可以获得良好质量的玻璃密封LED,而且提高了成品率。 Thus, it is possible to obtain a good quality of the glass sealing the LED, and improving the yield.

为了在该尺寸的LED元件2中没有电极分离的情况下具有良好的正向电压和发射模式(emission pattern),理想的是安装基材32具有与LED元件2的热膨胀系数(7xlO—,C)基本上相等的热膨胀系数即.为5xl(T6〜 10xlO力。C。 In order not the size of the LED element 2 has a good radiation pattern and a forward voltage (emission pattern) in the case of separate electrodes, it is preferably mounted substrate 32 having a thermal expansion coefficient of the LED element 2 (7xlO-, C) substantially equal coefficients of thermal expansion, ie. as 5xl (T6~ 10xlO force .C.

此外,因为Au平头电极31在p-多层电极27上部分形成,因此可以减少热应力的产生。 In addition, since the Au pad electrode 31 is formed on the portion of the p- multilayer electrode 27, thermal stress can be reduced. 而且,在安装中产生的热应力也通过将LED元件2 安装在具有基本上相等的热膨胀系数的基材上而减少。 Furthermore, thermal stress generated in the installation by the LED elements 2 may also be mounted on a substrate having a reduced coefficient of thermal expansion is substantially equal.

此外,ITO电极(p-接触电极层30)与GaN的结合力大于与铑(Rh)的结合力,因此不可能发生应力导致的分离。 Further, the ITO electrode (p- contact electrode layer 30) of GaN is greater than the binding force of the bonding force rhodium (Rh), and thus the stress caused by separation impossible. 这样,就可以稳定生产良好质量的玻璃密封的LED。 Thus, stable production of good quality can be glass-sealed LED.

在玻璃密封中,在高温时具有较高粘度的玻璃材料压力结合到A1203 基材上。 In the sealing glass, the glass material having a pressure higher viscosity at a high temperature bonded to the substrate A1203. 因此,电连通手段如Au导线可能会坍塌导致电断路或短路。 Therefore, in electrical communication means such as Au wires may lead to the collapse of an electrical short circuit or open circuit. 为防止上述问题,LED元件2被弹抛片安装,并且LED元件2的ITO电极30在安装基材32侧形成。 To prevent the above problem, the LED element 2 is flip-chip mounted, and the LED element ITO electrode 302 is formed in the mounting substrate 32 side. 虽然ITO电极30已知作为可改进光射出的透明电极,但是它在本发明中使用是因为它具有基本上与LED元件2的热膨胀系数相等的热膨胀系数(7.7〜8.5xl(TV。C)并且与GaN有大结合力的缘故。因此,由于ITO的缘故,即使在高于500。C的高温密封玻璃时也不会发生电极的分离。 Although the ITO transparent electrode 30 is known as a light emitting electrode may be improved, but it is used in the present invention because it has a substantially equal thermal expansion coefficients of the two thermal expansion coefficients LED elements (7.7~8.5xl (TV.C) and and because of a large bonding force GaN Thus, due to ITO, and does not separate electrodes occurs even at a high temperature of the sealing glass is higher than 500.C.

作为选择,电极材料可以是除ITO外的AZO(ZnO:Al)、IZO(In203-ZnO, Alternatively, in addition to the electrode material may be ITO, AZO (ZnO: Al), IZO (In203-ZnO,

卯-10重量%)。 D 10% by weight). 此外,其它导电材料金属氧化物可以使用,只要它具有作为接触电极层和基本上等于LED元件2的热膨胀系数的性质以及具有可以防止电极分离的与半导体层的结合力。 In addition, other conductive material such as metal oxides may be used, as long as it has a contact electrode layer and a thermal expansion coefficient substantially equal to the properties of the LED element 2 and the semiconductor layer having a bond with the separate electrodes can be prevented.

虽然在上面实施方案中如此形成的LED元件2的GaN基的层在蓝宝石基材(热膨胀系数为7xi(T,C)上生长,但是GaN基的层也可以在SiC或GaN基材(热膨胀系数为5xlO'6/°C)上生长,然后ITO在其上形成作为p-接触电极层30。 Growth Although the layer of the LED element in the above embodiment, thus formed GaN group 2 in (coefficient of thermal expansion of the sapphire substrate is 7xi (T, C) on, but the GaN-based layer may be (coefficient of thermal expansion as SiC or GaN substrate It is 5xlO'6 / ° C) growth, and then ITO is formed as a p- contact electrode layer 30 thereon.

虽然在第六实施方案中,ITO用作具有与装置相等的热膨胀系数的接触电极层,但是铑(Rh)(热膨胀系数为8xl0'V。C)可以代替ITO使用。 Although in the sixth embodiment, ITO layer used as a contact electrode and the device is equal to a thermal expansion coefficient, but rhodium (Rh) (coefficient of thermal expansion 8xl0'V.C) may be used instead of ITO. 如果使用Rh,则因为它也可以用作光反射层因而可以提高光射出性质。 If Rh, because it can be used as the light-reflective layer can be improved light emitting properties. 另外, 可以使用在其上形成Si02或SiN等的钝化膜之外的An/Co膜以保护外围。 Further, it may be used other than the form An Si02 or SiN passivation film / Co film on the periphery of which is protected.

在本发明人的实验中,证实了当没有安装在安装基材上的LED元件2 In the experiment by the present inventors, it was confirmed that when the substrate is not mounted on the mounting LED elements 2

15进行在传统结构中600。 15 600 in the conventional structure. C热处理时,电极分离不会发生,所述传统结构为Rh层在p-GaN接触层25的整个表面上形成,而且用于结合片(bonding pad)的Au层在Rh层的整个表面上形成。 When C heat treatment, the electrode separation does not occur, the conventional structure is Rh layer is formed on the entire surface of the p-GaN contact layer 25 and Au layer for binding sheet (bonding pad) is formed over the entire surface of the layer of Rh . 然而,当LED元件2安装在含有玻璃的八1203基材上并且用玻璃密封时,由于在安装中产生热应力,因此难于确定地防止电极层的分离。 However, when the LED element 2 is mounted on a substrate 1203 containing eight glass and sealed with a glass, since the thermal stress is generated in the installation, it is difficult to determine the separate electrode layer is prevented. 因此,如果对于p-GaN接触层25的结合力小并且热膨胀系数的差异大时,则需要用于结合片的Au层以所需大小部分地形成,并且安装基材具有与LED元件2基本上相等的热膨胀系数。 Thus, if the difference in the thermal expansion coefficient and large for a small binding force of p-GaN contact layer 25, an Au layer is required for binding sheet to the desired size is formed partially, and the LED element mounting substrate 2 having a substantially equal to the coefficient of thermal expansion.

Au平头电极31可以由除金以外的Ag制成。 Au pad electrode 31 made of Ag may be other than gold. 从而,可以减小被平头i乜极吸收的光。 Thereby, reducing the light absorbed by the flat head electrode NIE i.

[第七实施方案] (LED元件2的组成) [Seventh Embodiment] (Composition of LED elements 2)

图IO是木发明第七个优选实施方案中LED元件(从其电极形成表面上看)的仰视图。 FIG IO is a bottom view of a seventh preferred embodiment of the invention the wooden LED elements (formed from the surface electrode).

1000,2的大尺寸条的LED元件2提供有由多个在n-GaN镀层22上形成的Au平头电极31构成的n-电极26以及由ITO制成并在其上形成多个Au平头电极31的p-接触电极层30。 1000, 2 bars of large-size LED element 2 provided with a plurality of Au pad electrode formed on the n-GaN layer 22 n- 31 is formed of a plurality of electrodes 26 and Au pad electrode made of ITO formed thereon, and a contact electrode layer 30 p- 31.

n-电极26形成类似于插入在p-接触电极层30的条状之间的梳子以便提高到p-GaN层的电流传播性质,而且具有在其上形成的两个Au平头电极31 。 n- electrode 26 is formed similarly interposed between the contact strip p- comb electrode layer 30 in order to increase the current propagation properties of the p-GaN layer, but also has two Au pad electrode 31 formed thereon.

P-接触电极层30在除n-电极26之外的区域中形成,而且它具有18 个在其上以给定间隔形成的Au平头电极31 。 P- contact electrode layer 30 is formed in a region other than the n- electrode 26, and it has a flat head 18 Au electrode 31 on which is formed a given interval. (第七实施方案的效果) (Effect of seventh embodiment)

在第七实施方案中,即使在与正常尺寸LED元件2相比热应力影响大的大尺寸LED元件2中,p-接触电极层30不可能从类似于第六实施方案的GaN基半导体层200中分离。 In the seventh embodiment, even if the thermal stress as compared with normal-size LED element 2 a large impact large-size LED element 2, the contact 30 is not possible from the p-GaN-based semiconductor layer similar to the sixth embodiment of the electrode layer 200 isolated. 因此,在发射区域内没有产生不均匀发射的情况下就可以获得均匀发射。 Thus, the emission region is not generated in the case of non-uniform emission can be obtained a uniform emission.

[第八实施方案](LED元件2的组成) [Eighth Embodiment] (Composition of LED elements 2)

图11A是示出本发明第八个优选实施方案中LED元件(安装在A1203 基桐'32上)的横截面图。 11A is a diagram illustrating an eighth preferred embodiment of the present invention, the LED element (mounted on '32 A1203 Tong-yl) cross-sectional view. 图11B是示出具有在其上形成的电路图案的图11A 中八1203基材32的平面图。 FIG 11B is a plan view having a circuit pattern formed thereon in FIG. 11A 1203 substrate 32 eight.

在第八实施方案中,如图11A所示,通过无电镀沉积使Ni厚膜部分4A形成15,厚,并与在AI203基材32上形成的电路图案4结合成一体。 In the eighth embodiment, shown in Figure 11A, through electroless deposition of Ni 4A thick film portion 15 is formed, a thickness, and combined with a circuit pattern formed on the substrate 324 integrally AI203. 该厚膜部分4A提供有在其Ni表面上形成的0.5|am厚的Au层(未示出)。 The portion 4A is provided with a thick film 0.5 formed on its surface Ni | AM thick Au layer (not shown).

同时,LED元件2不提供Au柱螺栓突出部分5。 Meanwhile, LED element 2 is not provided Au stud projecting portion 5. 其它组成与在第六实施方案中的相同,因而省略其解释。 The other compositions are the same in the sixth embodiment, the explanation thereof is omitted.

(第八实施方案的效果) (Effect of eighth embodiment)

在第八实施方案中,代替Au柱螺栓突出部分5的通过无电镀沉积形成的Ni厚膜部分4A与电路图案4结合成一体。 In the eighth embodiment, instead of the Au stud protruding portion 5 thick Ni by electroless deposition portion 4A is formed in conjunction with the circuit pattern 4 integrally. 因此,获得了第六实施方案中没有的效果,连接部分可以整体形成。 Thus, a sixth embodiment not in effect, the connecting portion may be integrally formed. 特别地当多个连接部分如图11B 所示使用时,在装置安装区域210的连接部分的配置和位置的控制可以更容易地获得,并消除了形成Au柱螺栓突出部分5的过程。 Particularly when a plurality of connecting portions in FIG use, control configuration and position of the connecting portion 210 may be more easily obtained in the device mounting region 11B, and eliminates the process of forming the projecting portion 5 Au stud. 这样,就可以提高发光装置1的规模生产率。 Thus, it is possible to improve the productivity of the light emitting device 1 of the scale.

[第九实施方案] (LED元件2的组成) [Ninth Embodiment] (Composition of LED elements 2)

图12A是示出本发明第九个优选实施方案中LED元件的横截面图。 FIG 12A is a cross-sectional view of the LED element according to a ninth preferred embodiment of the present invention. 图12B是示出图12A的LED元件的平面图。 12B is a diagram showing a plan view of LED elements 12A. 图12C是解释临界角的图。 FIG 12C is a diagram explaining the critical angle.

如图12A示出的弹抛片式LED元件2的构成如下:蓝宝石基材20; 由GaN基半导体化合物制成的n-GaN层201;在n-GaN层201上形成的发光层202; p-GaN层203;在通过蚀刻去除p-GaN层203到n-GaN层201 而露出的部分n-GaN层201上形成的n-电极26;在p-GaN层203上形成并具有比GaN基半导体(n-2.4)更低的折射率(n-1.8)的ITO (氧化铟锡) 240;以及由具有高折射率的铑制成的p-Rh电极205。 Flip-chip type LED constituting elements 12A shown in FIG. 2 as follows: 20 is a sapphire substrate; n-GaN layer made of a GaN-based semiconductor compound 201; a light emitting layer formed on the n-GaN layer 201 202; p -GaN layer 203; N- electrodes formed on the removed portion of the n-GaN layer 201 to the p-GaN layer 203 and the n-GaN layer 201 exposed by etching, 26; are formed on the p-GaN layer 203 and the GaN-based than the semiconductor (n-2.4) lower refractive index (n-1.8) of ITO (indium tin oxide) 240; and having p-Rh electrode 205 made of a high refractive index of rhodium. n-GaN层201、发光层202和p-GaN层203构成GaN基的半导体层200。 n-GaN layer 201, light emitting layer 202 and the p-GaN layer 203 GaN-based semiconductor layer 200 composed of. 在安装中用于撞击结合(bump-bonding)的Au平头电极层(未示出)在p-Rh电极205的给定结合位置上部分形成。 Au pad electrode layer (not shown) incorporated in the installation for the impact (bump-bonding) in the p-Rh electrode to a given binding portion 205 is formed on the position. 在第九实施方案中,蓝宝石基材20用作光透射部分,它对于从发光层 In a ninth embodiment, a sapphire substrate is used as the light transmitting portion 20, for which the light-emitting layer

202发射的蓝光的发射波长具有光透射性质。 Emission wavelength 202 emitted blue light having light-transmitting properties. ITO 204和p-Rh电极205安置在位于发光层202下面的安装表面侧,而且构成光反射部分,在光反射部分处,LED元件2的末端表面曝光。 ITO 204 and the p-Rh electrode 205 disposed under the light emitting layer 202 is located in the mounting surface side, and constituting the light reflecting portion, the light reflection portion, the end surface of the LED element 2 is exposed. ITO204起着传导性总反射层的作用,同时具有光透射性质。 ITO204 acts conductive layer total reflectance, while having light-transmitting properties.

GaN基半导体层可以通过已知方法即金属有机化学气相沉积(MOCVD)、分子束外延(MBE)、氢化物气相外延(HVPE)、溅射、离子电镀法、电子簇射等形成。 I.e. GaN-based semiconductor layer may be metal organic chemical vapor deposition (MOCVD), by known molecular beam epitaxy method (MBE), hydride vapor phase epitaxy (the HVPE), sputtering, ion plating method, electron shower or the like. LED元件2可以形成同-、异或双异-结构。 LED elements 2 may be formed with -, iso-or di iso - configuration. LED 元件2可以包括量子势阱结构(单个或多个量子势阱结构)。 LED element 2 may include a quantum well structure (single or multiple quantum well structure).

图12B是示出LED元件2的平面图,其中图12A相应于沿线DD切开的横截面。 FIG 12B is a plan view of an LED element 2, in which FIG 12A corresponds to a cross section cut along line DD. 正如所示的那样,p-Rh电极205围绕n-电极26形成,而发光层202在p-Rh电极205形成的区域发射光。 As shown, p-Rh electrode 26 is formed around the n- electrode 205, and the light emitting layer 202 in the region of p-Rh electrode 205 is formed emits light.

图12C是示出在第九个实施方案的GaN基半导体层200内的蓝光行为的图。 12C is a diagram showing the behavior of the blue GaN-based semiconductor layer 200 of the ninth embodiment. 从在GaN基半导体层200的发光层202发射的光中,以大于临界角的角度进入在蓝宝石基材20和GaN基半导体层200之间的界面上的光向量不会向外辐射并作为在层方向中传播的光保留在GaN基半导体层200中,所述临界角是以蓝宝石基材20和GaN基半导体层200的折射率的差异为基础的。 From the light emitting layer 200 of the GaN-based semiconductor layer 202 emitted in an angle greater than the critical angle of the light vectors 20 and enters the interface between the sapphire substrate 200 is a GaN-based semiconductor layer and does not radiate outward as propagating direction of the light absorbing layer remain in the GaN-based semiconductor layer 200, the critical angle is the difference in refractive index of the sapphire substrate 20 and the GaN-based semiconductor layer 200 is based. 在层方向传播的光在ITO 204和蓝宝石基材20之间或在p-Rh电极205和蓝宝石基材20之间反射的同时进行传播。 While propagating direction of light in the layer between the ITO 204 and the sapphire substrate 20 or between the p-Rh electrode 205 and the sapphire substrate 20 is reflected to propagate. 大多数的光由于ITO204的缘故在层方向中传播,而不会到达p-Rh电极205。 Most of the light due ITO204 propagation direction in the layer, but does not reach the p-Rh electrode 205.

(第九实施方案的效果) (Effect of ninth embodiment)

在第九实施方案中,因为具有与半导体层相等的热膨胀系数的IT0 204 位于p-GaN层203和p-Rh电极205之间,因此电极层不可能从p-GaN层203分离。 In a ninth embodiment, since having a thermal expansion coefficient equal to that of the semiconductor layer 205 IT0 204 positioned between the p-GaN layer 203 and the p-Rh electrode, the electrode layers can not be separated from the p-GaN layer 203.

此外,以大于相对于p-Rh电极205的临界角的角度进入界面的在层方向传播的光进行全反射,所述临界角是以GaN和ITO的折射率比为基础的。 Further, with respect to an angle greater than the critical p-Rh electrode 205 into the angle of light propagating in the direction of the interface layer is totally reflected, the critical angle is the ratio of refractive indices of ITO and GaN-based. 因此,它不会达到p-Rh电极205,而是保留在层中,而不会从GaN 基半导体层200中向外辐射。 Thus, it does not reach the p-Rh electrode 205, but remains in the layer, but does not radiate outward from the GaN-based semiconductor layer 200. 因此,当在层方向传播的光在p-Rh电极205 上反射时Z可以防止金属吸收损失。 Thus, when light is reflected on the p-Rh electrode 205 propagating in the direction Z can prevent the metal layer absorption loss. 这可以防止在层方向中短距离传播的光的衰减。 This attenuation of light propagating in the direction of the layer can be prevented from short distance. 虽然在图12A中,GaN层图示出用于解释的厚度,但事实上它是几个微米的薄膜。 Although in FIG. 12A, GaN layer having a thickness shown for explanation, but in fact it is a thin film of several microns. 因为该原因,所以在层方向中传播的光具有大的反射平均数。 For this reason, the propagation of light in the direction of the layer having a larger average number of reflections. 即使当使用具有卯%高反射率的金属时,由于吸附损失的影响必定很大。 Even when a metal having a high reflectivity d%, a loss due to adsorption must be large. 这样,吸附损失可以大大减小。 Thus, the loss can be greatly reduced adsorption.

同样她,在蓝宝石基材20和ITO 204之间反射的以层方向传播的光可以从LED元件2的侧表面向外辐射。 Also her light propagating in the direction of the reflection layer may be radiated from the side surface of the LED element 2 outwardly between 204 and sapphire substrate 20 ITO. 这样可以提高向外辐射效率。 This can improve radiation efficiency outwardly.

虽然在第九实施方案中透明电介质的ITO 204安置在GaN基半导体层200和p-Rh电极205之间作为低折射率的层,但是也使用其它低折射率层如InGaN (n= 2.1)、 In203-Sn02: 90〜10重量%和AZO (ZnO:Al) -IZO(In2OrZnO): 90〜10重量%。 Although ITO transparent dielectric material 204 disposed as a low refractive index layer, a low refractive index but also other layers such as InGaN (n = 2.1) between the GaN-based semiconductor layer and a p-Rh electrode 205 200 In a ninth embodiment, In203-Sn02: 90~10 wt%, and AZO (ZnO: Al) -IZO (In2OrZnO): 90~10 wt%. 然而,优选低折射率材料以增加基于全反射的在层方向传播的光。 Preferably, however, based on the low-refractive index material to increase the total reflection of light propagating in the layer direction.

ITO对GaN具有比对Rh更大的结合力。 ITO has a greater binding force than Rh of GaN. 此外,所形成的ITO表面是粗糙的。 Further, ITO formed on the surface is rough. 因此,Rh与ITO的结合力增加。 Therefore, Rh and ITO binding force increases.

因此,与直接结合到GaN层的Rh层相比,电极层的分离更不可能发生。 Therefore, as compared with the Rh layer is directly bonded to the GaN layer, an electrode separation layer is more likely to occur. .' . '

而且,用作p-电极的高折射率材料是并没有限制于Rh,其它材料如Ag也可以使用。 Moreover, the high refractive index material is used as the p- electrode is not limited to, Rh, other materials such as Ag may be used. 然而,应该指出,膜厚并没有比在具有大的热膨胀系数材料的情况下所需要的膜厚有所增加。 However, it should be noted that the film thickness and the film thickness does not increase more than in the case of having a large coefficient of thermal expansion of the material required.

作为选择,当用于LED元件2的弹抛片安装的安装表面具有高折射时, Alternatively, when a LED element 2 is mounted flip-chip mounting surface has a high refractive,

高折射材料在没有使用透明电介质和高折射率材料的上面结合的情况下可以省略。 High refractive material may be omitted in the case of not using the combination of a high refractive index and a transparent dielectric material above. 例如,如果是GaAs基化合物半导体,当高折射率材料省略时, 由具有不同折射率材料的多层构成的布拉格反射膜可以使用。 For example, if a GaAs-based compound semiconductor, is omitted when the high refractive index material, Bragg reflection film made of multiple layers of materials having different refractive indices may be used.

虽然,在第九实施方案中,LED元件2是由在蓝宝石基材20上生长的GaN基半导体层200构成的,LED元件2可以具有GaN基材或在GaN 基半导体层200生长后蓝宝石基材20可以卸下。 Although, in the ninth embodiment, LED element 2 is a GaN-based semiconductor layer 20 grown on the sapphire substrate 200 formed of, LED element 2 may have a GaN substrate or a sapphire substrate after growing a GaN-based semiconductor layer 200 20 can be removed. 即使在卸下蓝宝石基材20的情况下,也基本上有在蓝宝石基材20上形成半导体层以及从相应发光层发射光的向外射出的情形。 Even in the case of removing the sapphire substrate 20, there are basically forming a semiconductor layer on the sapphire substrate 20 and a transmission case of light emitted outward from the respective light emitting layers. 此外,LED元件2可以由除GaN之外的材料构成。 In addition, LED elements 2 may be made of a material other than GaN.

[第十实施方案](LED元件2的组成) [Tenth Embodiment] (Composition of LED elements 2)

图13是示出本发明第十个优选实施方案中LED元件(安装在A1203基材32上)的横截面图。 13 is a diagram illustrating a tenth embodiment of the present invention, a preferred embodiment of the LED elements (A1203 mounted on the substrate 32) cross-sectional view.

在这个实施方案中,代替在第六实施方案中使用的Au柱螺栓突起部分5的Ni层33通过无电电镀在Al203基材32表面上形成的电路图案4 上形成15(^111厚度。Au层(未示出)在Ni层33表面上形成0.5jLim厚度。 A thickness of 15 (111 ^ 4 on the circuit pattern 33 is formed on the surface of Al203 substrate 32 by electroless plating in this embodiment, instead of using the sixth embodiment of the Au stud protruding portion 5 of the Ni layer .Au layer (not shown) is formed on the surface 0.5jLim thickness of the Ni layer 33.

(第十实施方案的效果) (Effect of the tenth embodiment)

在第十实施方案中,因为厚Ni层33通过无电电镀在LED元件2的侧面上整体性地形成,因此厚部分可以根据n-电极26和p-接触电极层30的外形容易地制备。 In a tenth embodiment, since the overall thick Ni layer formed by electroless plating 33 on the side of the LED element 2, so that the thick portion can be easily prepared according to the n- and p- electrodes 26 in contact with profile 30 of the electrode layer. 由此,可以提高制造物的性能。 This can improve the performance of the manufacturing thereof. 而且,安装性能可以通过在LED元件2侧上形成的Ni层33提高,其中在安置电路图案4和LED 元件2中需要高精确度。 Moreover, the mounting performance can be formed on the Ni layer 2 side of the LED elements 33 increase, which requires high precision in the placement of the circuit patterns 4 and LED elements 2. 这样,可以提高成品率。 Thus, the yield can be improved.

[第十一实施方案] (LED元件2的组成) [Eleventh Embodiment] (Composition of LED elements 2)

图14是本发明第十一优选实施方案中LED元件(从电极形成表面上看) 的平面图。 FIG 14 is a preferred embodiment of an eleventh embodiment of the present invention, the LED element (viewed from the electrode forming surface) plan view.

在第十一实施方案中,n-电极26从LED元件2的中心辐射形成,而p-接触电极层30在围绕n-电极26的p-GaN层上形成。 In the eleventh embodiment, n- radiation electrode 26 is formed from the center of the LED element 2, and p- contacts 30 is formed on p-GaN layer 26 surrounding the electrode n- electrode layer. 在第九实施方案中解释的Ni层33在n-电极26和p-接触电极层30上形成。 In a ninth embodiment explained embodiment the Ni layer 33 is formed on the n- and p- electrodes 26 contact electrode layer 30. n-电极26在通过在电极形成表面的对角线方向上蚀刻去除p-GaN层而露出的部分n-GaN 层上部分形成。 n- electrode portion 26 is formed on a portion of n-GaN layer is exposed by removing the etching is formed in a diagonal direction of the surface of p-GaN layer in the electrode. 因此,可以提高对于p-GaN层电流散布性质。 Thus, the p-GaN layer can be improved properties for current spreading.

(第十一实施方案的效果) (Effect of the eleventh embodiment)

在第十一实施方案中,增加了第九实施方案中没有的效果,即通过从LED元件2的中心辐射形成的n-电极26可以提高了电流散布性能。 In the eleventh embodiment, the ninth embodiment adds no effect, i.e. through the n- electrode element 2 from the center of the LED 26 may be formed by radiation improves the current spreading performance.

通过无电电镀形成的Ni层33具有尺寸的自由度。 Ni layer formed by electroless plating 33 having a degree of freedom in size. 因此,即使当电极图案如上述形成时,安装平头电极(Ni层33)可以在合适位置并以合适形式形成。 Thus, even when an electrode pattern is formed as the above, the mounting pad electrode (Ni layer 33) and may be formed in place in a suitable form. 详细地,n-电极片33位于LED元件2的中心,而p-电极片33 位于p-接触电极层30的四个位置上,以便在安装时具有稳定性,而且它们都縮小尺寸设计以便即使当安装中有轻微变形也可防止与n-电极26的 In detail, N- center electrode tab 33 of the LED element 2, the electrode pad 33 and the p- p- located at four positions on the contact electrode layer 30, so as to have stability in installation, they are reduced in size and design so that even when installed in a slight deformation can be prevented and the n- electrode 26

20短路。 20 short circuit.

[第十二实施方案] [Twelfth Embodiment]

(LED元件2的组成) (Composition of LED elements 2)

图15是本发明第十二优选实施方案中LED元件(从其电极形成表面上看)的平面图。 FIG 15 is a twelfth embodiment of the present invention, a preferred embodiment of the LED elements (the surface from which the electrode is formed) in a plan view.

在第十二实施方案中,Ni层33在n-电极26上形成,而且多个矩形(或方形)Ni层33以类似岛的给定间隔在除n-电极26之外的p-接触电极层30上形成。 In a twelfth embodiment, Ni layer 33 is formed on the n- electrode 26, and a plurality of rectangular (or square) Ni layer 33 in a similar island of a given interval p- n- contact electrodes except electrode 26 layer 30 is formed.

(第十二实施方案的效果) (Effects of the twelfth embodiment)

在第十二实施方案中,增加了第十实施方案没有的效果,即可以向电路图案4中增加p-接触电极层30的结合面积。 In a twelfth embodiment, the tenth embodiment there is no increase of effect, i.e., the bonding area can be increased p- contact electrode layer 30 to the circuit pattern 4. 因此,可以提高LED元件2的载流性质和热辐射性质。 Thus, it is possible to improve the properties of the carrier 2 and the heat radiation properties of the LED element. 在这种情况下,因为具有大的热膨胀系数的Ni层33(安置片)不是连续形成而是相对于其它组分像岛状物,因此可以减小在高温下产生的热应力。 In this case, since having a large coefficient of thermal expansion of the Ni layer 33 (disposed sheet) is not continuous but is formed as islands to the other components, it is possible to reduce the thermal stress generated at high temperatures.

如上解释的固态元件装置应用到使用LED元件2作为固态元件的发光装置l中。 Solid element device as explained above is applied to an LED light emitting element 2 as a solid element device l. 然而,本发明的固态元件或固态元件装置并没有限制于该中发光装置l。 However, the present invention is a solid element or solid element device is not limited to this light emitting device l. 例如,它可以应用到其中作为固态元件的光接收元件安装在基材上并用玻璃密封的固态元件装置。 For example, it can be applied to a solid element device wherein a light receiving element of the solid-state member is mounted on a substrate and sealing glass. 密封材料并没有限制于透明材料,而可以是被结晶轻微浑浊又具有透光性质的无机材料。 The sealing material is not limited to a transparent material, and may be slightly turbid and crystalline inorganic material having light-transmitting properties. 此外,如果它可以忍受这样的温度即热应力如回流会成为问题的温度,则它也可以是除无机材料外的树脂材料。 Further, if it can tolerate the thermal stress such as reflux temperature, ie the temperature becomes a problem, it may be a resin material in addition to inorganic material.

虽然为了完整并清楚地公开本发明而使用相关的具体实施方案进行描述,但是所附的权利要求并不限制于这些,而应当理解为包括对于本领域技术人员而言可以发生的完全落入在此处描述的基本教导之内的所有改进和变化结构。 Although for a complete and clear disclosure related to the use of the present invention and specific embodiments described, the appended claims are not limited to these, but should be understood to include those skilled in the art that may occur fairly fall All modifications and structural changes within the basic teaching herein described.

Claims (2)

1. 一种固态元件装置,它包括:包括半导体层的固态元件;在其上安装有固态元件的安装基材,所述安装基材具有带有基本上等于固态元件热膨胀系数的热膨胀系数的无机材料;和密封所述固态元件的无机密封部分,其中固态元件包括包含导电金属氧化物的接触电极层以及在接触电极层上部分形成并连接到在安装基材上形成的线路部分的连接部分,其中接触电极层具有基本上等于固态元件的半导体层的热膨胀系数。 1. A solid element device, comprising: a solid element comprising a semiconductor layer; a solid element mounted substrate mounted thereon, said mounting substrate having a coefficient of thermal expansion with an inorganic solid substantially equal to the coefficient of thermal expansion of the element material; inorganic sealing portion and sealing said solid element, which solid element comprises a contact electrode comprising a conductive metal oxide layer is formed and a portion connected to the connection portion and wiring portion formed on the mounting substrate on the contact electrode layer, wherein the contact electrode layer having a thermal expansion coefficient substantially equal to the solid-state element of the semiconductor layer.
2. 根据权利要求1的固态元件装置,其中: 所述导电金属氧化物包括ITO。 2. A solid element device according to claim 1, wherein: said electrically conductive metal oxides include ITO.
CN 200710136406 2004-03-23 2005-03-23 Solid-state component device CN100544046C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004-084282 2004-03-23
JP2004084282 2004-03-23
JP2004-223600 2004-07-30
JP2005-044649 2005-02-21
CN200510056096.4 2005-03-23

Publications (2)

Publication Number Publication Date
CN101101952A CN101101952A (en) 2008-01-09
CN100544046C true CN100544046C (en) 2009-09-23

Family

ID=39036127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710136406 CN100544046C (en) 2004-03-23 2005-03-23 Solid-state component device

Country Status (1)

Country Link
CN (1) CN100544046C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633268B (en) * 2015-12-31 2019-04-05 中国科学院上海微系统与信息技术研究所 A kind of superconducting circuit structure and preparation method thereof
CN106058022B (en) * 2016-04-29 2018-11-09 青岛杰生电气有限公司 The light-emitting device and its packaging method of inorganic encapsulated

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729561A (en) 1995-08-28 1998-03-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2776040B2 (en) 1990-04-27 1998-07-16 凸版印刷株式会社 The organic thin film el element
CN1391287A (en) 2001-06-08 2003-01-15 三洋电机株式会社 Integrated circuit chip and display device therewith
CN1476108A (en) 2002-06-25 2004-02-18 松下电器产业株式会社 Semiconductor lighting element, its mfg. method and mounting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776040B2 (en) 1990-04-27 1998-07-16 凸版印刷株式会社 The organic thin film el element
US5729561A (en) 1995-08-28 1998-03-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
CN1391287A (en) 2001-06-08 2003-01-15 三洋电机株式会社 Integrated circuit chip and display device therewith
CN1476108A (en) 2002-06-25 2004-02-18 松下电器产业株式会社 Semiconductor lighting element, its mfg. method and mounting method

Also Published As

Publication number Publication date
CN101101952A (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US8227272B2 (en) Light emitting device having a pluralilty of light emitting cells and package mounting the same
KR100483049B1 (en) A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
KR100891403B1 (en) Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
CN100426544C (en) Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same
US7956364B2 (en) Thin film light emitting diode
US9142729B2 (en) Light emitting element
KR100985452B1 (en) Light emitting device
TWI284425B (en) Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
JP4961887B2 (en) Solid state device
JP5554792B2 (en) Light emitting device and manufacturing method thereof
US10249797B2 (en) High efficiency light emitting diode and method of fabricating the same
US6521914B2 (en) III-Nitride Light-emitting device with increased light generating capability
US8816386B2 (en) Light emitting device and manufacture method thereof
KR100568269B1 (en) GaN LED for flip-chip bonding and manufacturing method therefor
KR100576856B1 (en) Nitride semiconductor light emitting diode and method of manufactruing the same
US20120168805A1 (en) Light emitting device and light emitting device package
JP5030372B2 (en) Mounting for semiconductor light emitting devices
US20100117099A1 (en) Multi-chip light emitting diode modules
US6514782B1 (en) Method of making a III-nitride light-emitting device with increased light generating capability
JP2006324667A (en) Light emitting device package and method for manufacturing same
EP2383807A2 (en) Light-emitting-device package and a method for producing the same
JP5949294B2 (en) Semiconductor light emitting device
US6885035B2 (en) Multi-chip semiconductor LED assembly
KR100610633B1 (en) Led having vertical structure and manufacturing method of the same
US7335916B2 (en) Electrode structure, and semiconductor light-emitting device having the same

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted