CN100541253C - Optical fiber, optical fiber connecting method, and optical connector - Google Patents

Optical fiber, optical fiber connecting method, and optical connector Download PDF

Info

Publication number
CN100541253C
CN100541253C CN 200710184844 CN200710184844A CN100541253C CN 100541253 C CN100541253 C CN 100541253C CN 200710184844 CN200710184844 CN 200710184844 CN 200710184844 A CN200710184844 A CN 200710184844A CN 100541253 C CN100541253 C CN 100541253C
Authority
CN
China
Prior art keywords
optical fiber
refractive index
portion
fiber
connector
Prior art date
Application number
CN 200710184844
Other languages
Chinese (zh)
Other versions
CN101174005A (en
Inventor
中居久典
仓岛利雄
大园和正
兵 姚
平松克美
立藏正男
荒木荣次
黑泽芳宣
Original Assignee
日立电线株式会社;日本电信电话株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003189726A priority Critical patent/JP3863866B2/en
Priority to JP2003-189726 priority
Priority to JP2003-189724 priority
Priority to JP2003-189655 priority
Priority to JP2003-194476 priority
Priority to JP2003-346905 priority
Application filed by 日立电线株式会社;日本电信电话株式会社 filed Critical 日立电线株式会社;日本电信电话株式会社
Priority to CN200480009831.X priority
Publication of CN101174005A publication Critical patent/CN101174005A/en
Application granted granted Critical
Publication of CN100541253C publication Critical patent/CN100541253C/en

Links

Abstract

本发明公开了一种光纤、光纤的连接方法以及光连接器。 The present invention discloses a method of connecting an optical fiber and an optical fiber connector. 光纤在芯部周围具有多个空孔的光纤的连接端部附近的空孔中填充有折射率比石英系材料低的树脂或者玻璃等透光性物质。 Pores near the connection end of the fiber optical fiber having a plurality of pores is filled around the core with a lower refractive index than the quartz glass material or a light transmissive resin material. 该光纤的连接部将在芯部周围的包层内具有多个空孔的光纤连接到其他的光纤上,其中,经由在实际使用中最低温度下的折射率比所述芯部低的折射率匹配剂,将所述光纤与所述其他的光纤对正连接。 The optical fiber connector of the optical fiber portion having a plurality of pores within the cladding around the core portion connected to the other optical fiber, wherein, via a low refractive index at the lowest temperature in actual use than the refractive index of the core portion matching agent, the other with the optical fiber being connected to an optical fiber.

Description

光纤、光纤的连接方法以及光连接器 The method of connecting optical fibers and optical connectors

本申请是2004年6月30日提交的申请20048000983 lX (PCT/JP2004/009619,发明名称:光纤、光纤的连接方法以及光连接器) 的分案申请。 20048000983 lX This application is June 30, 2004, filed (PCT / JP2004 / 009619, entitled: an optical fiber, an optical fiber connecting method and an optical connector) of the divisional application.

本申请基于日本专利申请号2003 — 189724、 2003 — 189655、 2003 — 194476、 2003 — 189726以及2003 — 346905,并在本申请中参照引入了这些日本申请的全内容。 The present application is based on Japanese Patent Application No. 2003--189724, 2003--189655, 2003--194476, 2003--189726 and 2003--346905, and incorporated in the present application with reference to the whole contents of these Japanese Patent Application.

技术领域 FIELD

本发明涉及在芯部周围具有多个空孔的光纤,尤其涉及光子晶体光纤、和模场(mode field)直径比它大的单模光纤(single mode fiber)之间的连接方法以及光连接器。 The present invention relates to an optical fiber having a plurality of pores around the core, in particular, relates to photonic crystal fiber, the mode field and (mode field) The method of connection between a larger diameter than its single-mode fiber (single mode fiber) and the optical connector .

此外,本发明还涉及具有折射率大的芯部和围绕它的折射率小的包层且在该包层中存在朝光纤轴心方向延伸的多个空孔的光纤上的端部的密封构造及其密封方法。 The present invention further relates to a sealing structure of the end portion on an optical fiber having a large refractive index of the core portion and its surrounding cladding refractive index and a plurality of smaller pores extending in the axial direction toward the fiber present in the cladding and sealing method.

此外,本发明还涉及具有折射率大的芯部和围绕它的折射率小的包层且在该包层中存在朝光纤轴心方向延伸的多个空孔的光纤以及其光纤连接器。 The present invention further relates to the refractive index of the core portion having a large and a small refractive index and a cladding surrounding it there is a plurality of voids extending in the fiber axial direction in the fiber cladding and which fiber optic connector.

此外,本发明还涉及将在芯部周围的包层内具有多个空孔的光纤与其他的光纤连接的光纤的连接部、以及在筐体内收容该连接部而成的光纤连接器。 The present invention further relates to an optical fiber connected to the optical fiber with another optical connector having a plurality of pores within the cladding around the core portion, and a housing accommodating the connecting body portion formed in a fiber optic connector.

背景技术 Background technique

以往, 一般使用的光纤具有闭入光的芯部和覆盖在芯部的圆周方向且折射率比该芯部稍小的包层的双层构造,其芯部、包层都由石英系材料形成。 Conventionally, a generally used optical fiber having a core portion and a light confining layer structure overlying the circumferential direction of the core portion having a refractive index smaller than the core portion of the cladding layer, a core portion, a cladding material formed by quartz . 在该双层构造中,由于芯部的折射率比包层的折射率高,因此可通过该折射率的差距,将光限制在芯部,并在光纤内传输。 In this double structure, since the refractive index of the core higher than the refractive index of the cladding, the refractive index of the gap can thus, the light is confined in the core, and transmitted in the optical fiber. 3在单模光纤的彼此间连接方法中有借助连接器或者机械接头 3 connected to each other in the method of single-mode fiber has mechanical joints or by means of a connector

(mechanical splice)的连接方法。 (Mechanical splice) connection method. 连接器连接是将各个光纤连接到各个光连接器上而易于装卸的方法,机械接头连接的特征是:将设在其上的V字型槽等中对正光纤的端面,并牢固保持被连接的两个光纤。 Connector is connected to the respective individual optical fibers and the optical connector easily detachable manner, characterized in that the mechanical joint connection: the end surface provided in the V-shaped groove or the like on which the alignment of the optical fiber, and remain securely connected the two fibers. 通常的单模光纤的连接技术已被充分开发。 Typically single mode optical fiber connection technology has been well developed.

最近,光子晶体光纤(PCF: Photonic Crystal Fiber)倍受关注。 Recently, a photonic crystal fiber (PCF: Photonic Crystal Fiber) attracted much attention. PCF是在包层具有光子晶体构造、即具有折射率的周期性结构的光纤。 PCF is a photonic crystal structure in the cladding, i.e., an optical fiber having a refractive index of the periodic structure. 通过将该周期性结构减小到光的波长或其数倍程度为止,在晶体中导入缺陷或者局部不均匀性,使光局部存在。 The periodic structure is reduced by up to several times the wavelength of light, or the degree of unevenness or locally introducing defects in the crystal, the light is localized. 利用图5能够说明该PCF截面构造。 5 can be described using FIG cross-sectional structure of the PCF.

PCF41仅由在光纤内的折射率都相同的包层42形成,从其中心开始以六方格子状排列多个圆柱空孔43,而该圆柱空孔43的长度遍及光纤41 的全长。 PCF41 only by the refractive index of the optical fiber cladding layer 42 are formed the same, starts from the center thereof arranged in a hexagonal lattice shape a plurality of cylindrical air holes 43, and the length of the cylindrical hole 43 of the optical fiber 41 over the entire length. 与以往的芯部相当的具有闭入光的功能的部件是作为光纤41的中心部的晶体缺陷部44。 Conventional core member having a portion corresponding to the light confining function as a center of the crystal defect of the optical fiber 41 portion 44.

具体地说,关于包层直径4)125ym的纯石英光纤,在包层42中从中央起周期性地以六方格子状(4周期性结构)配置直径63 um的圆柱空孔43,在其中心不形成空孔(晶体缺陷)而使该部分成为闭入光的芯部44。 Specifically, the clad diameter about 4) 125ym pure silica fiber, the cladding layer 42 from the cylindrical hole to periodically hexagonal lattice shape (periodic structure 4) of 63 um diameter 43 arranged from the center, at the center thereof pores not formed (crystal defects) so that the portion becomes the core portion 44 closing the light.

闭入光的效果强的PCF和目前用于长距离大容量通信中的单模光纤(SMF: Single Mode Fiber)之间的连接技术是必不可少的。 Strong light confining effect PCF currently used for long distance and large capacity communication single mode fiber (SMF: Single Mode Fiber) between the connection technique is essential.

特开2002—243972号公报中公开了通过加热PCF的连接端部而安装在套圈(ferrule)上的PCF和SMF之间的连接方法。 Laid-Open Publication No. 2002-243972 discloses a method of connection between the PCF and the connection end portions by heating SMF PCF is mounted on the collar (Ferrule) a.

然而上述连接方法仅适用于光纤的芯部由折射率比包层更高的介质形成的PCF。 However, the connection method is applicable only to a portion of the optical fiber core clad PCF medium formed by a higher refractive index than. 换言之,上述连接方法不适用于芯部和包层的折射率相等, 且借助光子晶体构造(圆柱空孔),在芯部和包层之间等价地设计折射率差,并在芯部中闭入光的光纤构造。 In other words, the connection method is not equal to the refractive index of the core and the cladding, and by means of a photonic crystal structure (cylindrical pores), between the core and the cladding refractive index difference is equivalent to the design, and the core portion closed configuration of the optical fiber. 这是因为:当PCF的连接端部被加热时,圆柱空孔的壁会被熔敷而使空孔消失,进而导致芯部不存在的缘故。 This is because: when the connection end portion is heated PCF, the cylindrical wall of the hole is welded to the disappearance of the pores, leading to the core because of absence. 在此情况下,PCF和与其连接的SMF的各自芯部是通过不存在芯部的部分连接,因此连接损失增大。 In this case, the PCF and SMF each core portion is connected thereto through a connecting portion of the core portion does not exist, the connection loss increases.

另一方面,作为PCF的一种的多孔光纤(HF: Holey Fiber),通过在 On the other hand, the PCF as a holey fiber (HF: Holey Fiber), by

以往的光纤的芯部附近的包层部存在有空孔,降低包层的实际折射率,通过扩大芯部/包层之间的比折射率差,与以往的光纤相比能够大幅提高弯曲损失特性(姚兵之外"与多孔光纤的实用化相关的一次探讨"、信学技报 Presence of the core near the clad portion of the optical fiber void is conventional, the actual reduction of the cladding, the core portion by enlarging a difference between the refractive index / cladding, as compared with a conventional optical fiber can be significantly improved bending loss characteristics (outside Yao Bing "and the practical relevance of a porous fiber explore", technical report

(社)电子信息通信学会、VoU02, N0.581、 p47〜50、长谷川健美"光子晶体光纤以及多孔光纤的发展动向"、月刊杂志"光子"、光子(株)发行,N0.7, p203〜208 (2001))。 (Social) Information and Communication Engineers, VoU02, N0.581, p47~50, Hasegawa bodybuilding "Developments in photonic crystal fibers and holey fiber", the monthly magazine "Photon" photon (strain) issue, N0.7, p203 ~208 (2001)).

这样的HF在包层存在朝光纤轴心方向延伸的多个空孔,而这些空孔如果开放端部,则水分会进入其中,结果导致机械强度的劣化、或者由温度变化产生的结露引起光学性特性的变动。 Such HF multiple pores extending in axial direction in the fiber cladding, if these pores open end portion, where the water will enter, resulting in deterioration of mechanical strength, or by the temperature changes caused by condensing variation of the optical properties.

在特开2002—323625号公报中,为解决这些问题,公开了以下的密封光纤的空孔的方法:(O用熔敷器(通过气体放电使光纤熔融而连接的装置)加热光纤的端面部,使包层软化,压扁空孔的方法;(2)向中空部内插入硬化性物质的方法;(3)从外部在中空部安装盖的方法。 In Laid-Open Patent Publication No. 2002-323625, in order to solve these problems, discloses a sealing method for an optical fiber pores: (O using welding (via a gas is connected to the optical fiber means for heating the molten fiber discharge) end portion the method of the cladding softened, compressed pores; (2) method curable material inserted into the hollow portion; (3) the method of the hollow portion from the outside of the mounting cup.

然而,在上述(1)的方法中,由于空孔周围的包层材料被熔融填埋空孔而密封,因此光纤的外径(包层直径)减小与材料的量的变化相应的程度。 However, in the method (1), since the cladding material around the hole is filled with the molten pores sealed, the outer diameter of the optical fiber (clad diameter) corresponding to the degree of variation thus reduce the amount of material. 例如,当包层直径为125ym、且具有四个直径为lOum的空孔的情况下,如果单纯计算,则可得出包层直径变化为123um程度,减小约2um。 For example, when the cladding diameter of 125ym, and the diameter of the lower case having four voids of lOum, if simple calculation, it can be concluded cladding layer 123um diameter variation degree, be reduced by about 2um. 该量是在通常的连接器连接中从标准的套圈内径尺寸偏离的程度的大小。 This amount is the size of the inner diameter of the ferrule from the standard deviation in the normal level in the connector. 此外,在加热源是熔敷器的情况下,由于放电气体的温度高,因此在包层表面也会受到蒸发的影响,使得实际尺寸进一步减小,而在空孔总截面积更大的情况下该尺寸减小更为明显。 Further, in the case where the welding source is a heating device, due to the high temperature of the discharge gas, and therefore will be affected in the evaporation surface of the cladding, so that the actual size is further reduced, and a greater total sectional area of ​​the holes where this size reduction is more obvious. 因此,选择适于密封后的包层直径的套圈也变得很麻烦。 Accordingly, the ferrule is adapted to select the sealed cladding diameter also becomes cumbersome. 而且,由于放电气体将光纤端面和其周围的包层表面一同加热,因此光纤端部的边缘变圆滑,存在端面周围的尺寸容易变化的缺点。 Further, since the discharge gas is heated with the surface of the fiber end face and the surrounding cladding, and therefore the edges of the fiber end becomes rounded, end dimensions around the disadvantage of easily changed.

在上述(2)的方法中,由于在硬化性物质硬化时伴随体积收縮,因此在硬化部内产生气泡。 In the method (2), since the volume shrinkage accompanying the curing hardening material, thus generating air bubbles in the hardened portion. 气泡内的空间具有约1的折射率。 The space within the bubbles have a refractive index of about 1. 所以硬化性物质和气泡之间的折射率差距变得非常大,且如果这样的折射率变化大的部分处于芯部附近,则影响光纤的波导路构造,成为引起大损失的原因。 The refractive index difference between the bubble and the hardening substance becomes very large, and if such a large change in refractive index in the vicinity of the core portion, the influence of the optical fiber waveguide structure, become cause large losses. 在上述(3)的方法中,存在端面周围的尺寸变化明显的缺点。 In the method (3), a significant change in the size of the surrounding end surface disadvantages. 另一方面,在上述多孔光纤中,在进行连接器加工时,如果直接对端面进行研磨加工,则研磨粉或者研磨剂会进入光纤的空孔内,并在连接加工后也残留下来。 On the other hand, in the holey fiber, the connector during processing, if the end faces directly to the polished, the abrasive grinding dust will enter the pores or fibers, and also left behind after the connection processing. 如果反复进行连接器装卸,则残留的研磨粉或者研磨剂有可能从空孔脱离并附着在光纤研磨面上。 If the connector is repeated loading and unloading, the residual grinding dust or polishing agent may have detached from the hole and an optical fiber attached to the polishing surface. 如果以在光纤研磨面附着研磨粉或者研磨剂的状态下进行连接器连接,则妨碍连接器端面相互间的密接,成为损失增加的主要原因,而且在最坏的情况下,即使对研磨面进行受伤端面的清理作业,也有可能无法挽回损失增加的局面。 If the abrasive powder in a state adhered to the fiber or the abrasive polishing surface of the connector-connected, the end face of the connector interfere with close contact between each other, the main reason of loss increases, and in the worst case, even when the polished surface was injured end face of the clean-up operations, but also may not be able to recoup their losses increase situation.

再次详细说明多孔光纤(HF)。 Described in detail again holey fiber (HF). 如图17所示,HF361按以下方式构成, 即,在纯石英中添加锗而构成的芯部362的外周形成由纯石英构成的包层363,以在包层363内围住芯部362的方式形成沿轴方向延伸的多个空孔364 (在图17中是六个)。 As shown, HF361 17 configured in the following manner, i.e., the outer periphery of the core portion 362 is doped with germanium to form pure silica cladding layer 363 is formed composed of pure silica, in order to surround the core 363 within the cladding 362 a plurality of pores 364 are formed extending in the axial direction (six in FIG. 17). 虽然没有详细表示,但HF361是作为在包层363 的外周形成被覆层的光纤芯线使用。 Although not shown in detail, but as HF361 optical fiber coating layer formed on the outer periphery of the cladding 363 is used.

芯部362与通常的单模光纤(SMF)的芯部相同。 A core portion 362 typically single mode fiber (SMF) of the same core. 芯部直径cl)是9ii m、包层直径小是125ym、空孔364的内径4>是8 ym。 Cl core diameter) is 9ii m, the clad diameter is small 125ym, the inner diameter of hole 364 4> was 8 ym. 芯部362的折射率是1.463、包层363的折射率是1.458、芯部362的相对包层363的比折射率差与通常的SMF相同约是0.35% 。 Index core portion 362 is 1.463, the refractive index of the cladding 363 is 1.458, the clad relative refractive index difference of the core portion 362 and 363 than normal SMF is about the same as 0.35%.

HF361的优点是:空孔364的折射率为约1,其实际的比折射率差是约32%,远大于通常的SMF,因此在芯部362闭入光的效果高。 HF361 advantage is that: the refractive index of the void 364 is about 1, the refractive index difference between the actual ratio is about 32%, much greater than normal the SMF, so high in the confining effect of the core portion 362 of the light. 因此, HF361具有例如在将HF361弯曲时产生的损失极小的特长。 Thus, HF361 with minimal loss of expertise, for example, generated when the bending HF361.

如图18所示,一般的光纤的连接部370,将去除被覆层并进行末端处理的HF361的端面36Ia经由凝胶状的折射率匹配剂r7,与去除被覆层并进行末端处理的SMF371的端面371a对正连接。 As shown in FIG HF361 end surface, generally an optical fiber connecting portion 370, the covering layer 18 is removed and end treatment 36Ia of the index matching agent through the gel R7, SMF371 end surface of the coating layer is removed and the end of the process 371a of the positive connection. SMF371是在具有与HF361的芯部362相同的折射率且相同直径的芯部372的外周形成了具有与HF361的包层363相同的折射率且相同直径的包层373。 SMF371 is formed having a same refractive index have HF361 cladding 363 and cladding 373 of the same diameter and the same refractive index and an outer periphery 362 of the same diameter core portion 372 of the core HF361.

折射率匹配剂是为了降低由以下空气层引起的折射率差导致的菲涅耳反射损失而使用的,该空气层是在对正连接后的HF361的端面361a和SMF371的端面371a之间有时会由端面处理时的误差而形成的空气层。 The index matching agent to reduce the refractive index difference caused by the air between the layers can sometimes cause the Fresnel reflection loss used, the air layer is being connected to the HF361 end surface 361a and the end surface 371a SMF371 the error in the air layer formed by end-face treatment.

折射率匹配剂r7例如具有如图19的温度特性线381所示的温度特性。 R7 the index matching agent having the temperature characteristic, for example, temperature characteristic line 381 shown in FIG. 19. 为了极力减小菲涅耳反射损失,该折射率匹配剂r7的折射率在室温附近具有与在图18中说明的HF361的芯部362或者SMF371的芯部372的折射率大致相同的1.463左右。 In order to strongly reduce the Fresnel reflection loss, the refractive index matching agent around r7 having a refractive index of the core portion HF361 illustrated in FIG. 18 or 362 SMF371 core portion 372 is substantially the same as 1.463 at around room temperature. 其中,折射率随着波长的不同而取不同的值, 但在本说明书中除非有特殊说明,都采用由112。5表示的测定值,即,使用Na的D线(波长587.56nm)的在25。 Wherein the refractive index with different wavelengths and different values, but in the present specification, unless otherwise stated, are used by the measurement value of 112.5 indicated, i.e., using Na D-line (wavelength 587.56 nm) in 25. C下的测定值。 Measured value at C.

此外,作为收容光纤的连接部370的以往的光纤连接器的一例,有图20所示的单心机械接头391 (例如参照特开2000—241660号公报,特开2002—236234公报)。 Further, as an example of a conventional optical fiber connector containing the optical connecting portion 370, 391 has a single core mechanical splice shown in FIG. 20 (e.g., see JP 2000-241660 Publication, Laid-Open Publication No. 2002-236234). 机械接头391具备:V槽基板392,具有用于将相对的光纤相互对正并支撑、定位、调芯的V槽;盖部件393,用于重合在基板392上,挤压插入V槽的光纤;以及用于夹持基板392和盖部件393 的夹持部件394。 Mechanical splice 391 comprises: a V-groove substrate 392, an optical fiber having a relatively positive and support each other, positioning, alignment of the V-groove; fiber cover member 393 superposed on the substrate 392 for extrusion into the V groove ; and a holding member 394 for holding the substrate 392 and the cover member 393.

在基板392和盖部件393的重合部的侧端部形成有楔插入部395,其两端形成有引导孔396。 Wedge insertion portion is formed at a side end portion of the overlapped portion 392 substrate 395 and the cover member 393, which has a guide hole 396 formed at both ends. 筐体397由基板392和盖部件393构成。 Casing 397 is a substrate 392 and a cover member 393.

在机械接头391中,预先在光纤的对正位置(基板392和盖部件393 的内面中央部)填充在图18和图19中说明的折射率匹配剂r7,向楔插入部395插入楔使得在基板392和盖部件393之间形成间隙,再从引导孔396 向该间隙插入己进行末端处理的HF361和SMF371,从而在V槽内对正, 之后,将楔拔出,用基板392和盖部件393把持HF361和SMF371,实现固定•连接。 In the mechanical splice 391, the advance of the optical fiber alignment position (the substrate 392 and the cover member the inner surface of the central portion 393) is filled with the index matching agent is illustrated in FIG. 18 and FIG. 19 r7, 395 insertion wedge into wedge insertion portion so that a gap is formed between the substrate 392 and the cover member 393, and then inserted into the gap has a guide hole 396 from the terminal treatment of HF361 and SMF371, so that V grooves on the positive, then, pull the wedge, with the substrate 392 and the lid member 393 holding HF361 and SMF371, • to achieve a fixed connection.

由此,能够在机械接头391的筐体397内收容如图18中说明的光纤的连接部370,实现HF361和SMF371的对正连接。 Thus, the mechanical splice can be accommodated within the housing 391 of connector 397 in FIG. 18 illustrates a portion 370 of the optical fiber, and to achieve HF361 SMF371 of being connected.

这样,由于在使用机械结构391进行HF361和SMF371的连接的时候, HF361的包层直径和SMF371的包层直径相等,因此能够与通常的SMF 相互间的连接完全相同地进行。 Thus, since when using a mechanical structure 391 and HF361 SMF371 for connection, the cladding diameter and the cladding diameter HF361 SMF371 equal, it is possible to connect with one another in exactly the same manner as a normal SMF.

然而,在以往的光纤的连接部370中,由于经由折射率匹配剂r7将HP361和SMF371对正连接,因此折射率匹配剂r7会由毛细管现象从端面361a向HF361的各空孔364内侵入数百U m的深度。 However, in the conventional optical connector portion 370, since the index matching agent r7 via the HP361 and SMF371 being connected to, the refractive index matching agent r7 invade into the respective number HF361 hole 364 from the end surface 361a of the capillary U m, the depth of one hundred.

包层363的折射率是1.458,各空孔364的折射率是1,而如果向各空孔364内侵入室温下的折射率为1.463的折射率匹配剂r7,则在中央部的原本的芯部362周围形成六个相似的芯部。 Index of the cladding 363 is 1.458, the refractive index of each hole 364 is 1, the refractive index of the invasive temperature within each hole 364 at 1.463 of the index matching agent R7, the original core in the central portion portion 362 is formed around a core portion similar to six.

因此,连接后的HF361的实际的芯部直径、即能传播光的直径(模场直径:MFD)比实质上连接前的9nm大。 Thus, the actual core diameter HF361 after connection, i.e., the diameter of the light can spread (mode field diameter: MFD) is substantially larger than 9nm front connector. 其结果,产生与SMF371之间的MFD差,导致HF361和SMF371的连接损失变大的问题。 As a result, the MFD SMF371 difference between the generation and resulting HF361 and connection loss SMF371 becomes large.

例如,如果使用图20中说明的机械接头391连接HF361和SMF371,则波长为1.55um的在室温附近的连接损失增大、约为0.85dB。 For example, if using the FIG. 20 illustrates the mechanical joint connection 391 and HF361 SMF371, the wavelength of 1.55um connection loss increases in the vicinity of room temperature, about 0.85dB. 顺便提一下,芯部直径相等的通常的SMF相互间的连接损失是O.ldB左右。 Incidentally, the connection loss between the core diameter equal to each other about a normal SMF O.ldB.

在这里,利用图21表示了在连接后的机械接头391的温度范围一30〜 7CTC的连接损失的温度特性。 Here, FIG. 21 shows the temperature characteristics of the temperature range after mechanical splice connector 391 of a connection loss of 30~ 7CTC. 如图21所示,刚连接后在室温下的连接损失超过了0.8dB,但随着温度上升,连接损失恢复到O.ldB左右。 As shown in FIG. 21, immediately after the connection loss exceeds 0.8dB at room temperature, but as the temperature rises, the connection loss recovery to about O.ldB.

在高温区域恢复连接损失的原因是,如图19的温度特性线381所示, 折射率匹配剂r7随着温度上升折射率降低,在60。 Recoverable connection loss in a high temperature region, as shown, the index matching agent r7 refractive index decreases as temperature increases temperature characteristic line 381 in FIG. 19, 60. C附近折射率变得与包层363的折射率相等而削减了闭入光的效果,从而显示出与通常的SMF 彼此间同等的连接损失的缘故。 C becomes equal to a refractive index close to the refractive index of the cladding 363 is reduced and the effect of confining light, thereby displaying the sake of a normal SMF equal to each other connection loss.

另一方面,在低温区域,如图19的温度特性线381所示,相反折射率匹配剂r7的折射率提高,因此与包层363之间的折射率差扩大,增大了光的闭入效果。 On the other hand, in a low temperature region, the temperature characteristic line as shown in FIG 38 119, a refractive index matching agent opposite r7 increases, thus enlarging the refractive index difference between the cladding layer 363, increasing the light confining effect. 因而,由原本的芯部362和侵入有折射率匹配剂r7的六个空孔364形成的实质上的芯部的闭入光的效果增大,与室温时相比MFD 进一步增大,扩大了与相对的SMF371之间的MFD差。 Thus, the effect of substantially from the original core portion 362 has six voids and invasion index matching agent r7 core portion 364 is formed into a closed light increases, the MFD further increased as compared with the room temperature, expanded and MFD difference between the opposing SMF371. 在一30〜1(TC的连接损失是非常高的ldB。 In one 30~1 (TC connection loss is very high ldB.

从而,以往的机械接头391具有连接损失的温度特性变化大、尤其在低温区域的连接损失增加的问题。 Thus, conventional mechanical fitting 391 has a large temperature variations in connection loss characteristics, particularly in low-temperature region of the connection loss increases.

发明内容 SUMMARY

鉴于此,本发明的第一目的是提供一种能够抑制连接损失的增加的PCF 类型的光纤、该光纤和SMF之间的连接方法以及光连接器。 In view of this, a first object of the present invention is to provide increased PCF type of an optical fiber connection loss can be suppressed, and a method of connection between the optical connector and the optical fiber SMF.

本发明的第二目的是提供一种在将包层直径维持在正确尺寸的情况下,不对光纤的波导路构造造成影响、且能维持端面周围的尺寸的光纤端部的密封构造及其密封方法。 The second object of the present invention is to provide a case where the clad diameter is maintained at the correct size, the waveguide structure of the optical fiber does not affect, and can maintain the sealing structure and method of sealing an end portion of an optical fiber end surface surrounding size .

本发明的第三目的是提供一种不使在研磨加工时产生的研磨粉或者研磨剂残留在光纤端面的空孔中、能够低损失连接、且长期可靠性也良好的光纤以及光纤连接器。 The third object of the present invention is to provide an abrasive powder produced without polishing or during polishing agent remaining in the pores of the fiber end faces can be connected with low loss and also a good long-term reliability of an optical fiber and an optical fiber connector.

本发明的第四目的是提供一种连接损失小、连接损失的温度特性变化小的光纤的连接部以及光纤连接器。 The fourth object of the present invention is to provide a connection loss is small, temperature characteristic of small variations in connection loss of the optical fiber connector and an optical fiber connecting portion.

另一方面,在光纤的连接部370或者机械接头391,要求在HF361的端面361a以及SMF371的端面371a的反射量小。 On the other hand, the connection portion 370 or the optical fiber mechanical splice 391, requires a small amount of reflection HF361 end face 361a and end face 371a of SMF371.

从而,本发明的第五目的是提供一种连接损失和反射量小、连接损失以及反射量的温度特性变化小的光纤的连接部以及光纤的连接器。 Accordingly, a fifth object of the present invention is to provide a connector and a small amount of reflection loss, a small connection loss and the temperature characteristic of the amount of the reflected portion of an optical fiber connector and the optical fiber connector. (本发明的第一方案) (A first embodiment of the present invention)

为达到上述第一目的,本发明提供一种光纤,包括芯部;包层;以及在芯部周围沿光纤轴向的多个空孔,其中在连接端部附近的空孔中填充有在硬化后折射率比石英系材料低的UV硬化性树脂制成的透光性物质,确定硬化后的折射率,使得光纤的模场直径等于要与光纤的连接端部连接的单模光纤的模场直径。 To achieve the above first object, the present invention provides an optical fiber comprising a core portion; cladding; and, wherein the filling in the pores in the vicinity of the connection end portion around the core along the plurality of pores in the fiber axis has hardened after the refractive index of the light-transmitting material made of silica-based material is lower than the UV-curable resin, the refractive index after curing is determined, such that the fiber mode field diameter equal to the single mode optical fiber connected with the connection portion of the optical fiber mode field diameter.

所述光纤优选是所述空孔从中央周期性地以六方格子状排列,且中央有晶体缺陷的光子晶体光纤(PCF)。 The optical fiber is preferably from the center of the hole periodically arranged in a hexagonal lattice shape, and the central photonic crystal defect crystal fiber (PCF).

所述光纤还可以是在芯部或者包层具有多个沿光纤的轴心方向延伸的空孔的多孔光纤。 The fiber may also be a plurality of pores axial direction extending along the fiber core or cladding portion of the holey fiber.

所述光纤中,UV硬化性树脂硬化后的折射率是1.42。 The optical fiber, the refractive index of the UV curable resin is cured is 1.42.

此外,本发明提供一种光纤的连接方法,其特征是:使用V槽连接器等,在其v槽上,将所述的光纤和模场直径比所述光纤更大的光纤对正连接。 Further, the present invention provides a method of connecting an optical fiber, wherein: a V-groove connection or the like, in which the groove v, the mode field diameter of the optical fiber and greater than that of said optical fibers being connected.

此外,本发明提供一种光纤连接器,其特征是:将所述的光纤安装在套圈上,对端面进行研磨处理。 Further, the present invention provides an optical fiber connector, wherein: the optical fiber mounted on the ferrule, the end faces of the grinding process.

根据本发明的第一方案,能够获得以下效果。 According to a first embodiment of the present invention, the following effects can be obtained.

(1) 对于芯部、包层的折射率相等、模场直径远小于通常的SMF的PCF,也能够以低损失进行与SMF之间的对正连接。 (1) to the core, the cladding is equal to the mode field diameter of the PCF generally much smaller than SMF, it is possible for the positive connection between the SMF with low loss.

(2) 能防止光纤的强度劣化或者传输损失的增加。 (2) increase the strength of the optical fiber can be prevented from deterioration or transmission loss. (本发明的第二方案) (The second embodiment of the present invention)

为达到上述第二目的,本发明提供一种光纤端部的密封构造,其特征是:在具备折射率高的芯部和围绕该芯部的折射率小的包层、且在该包层存在朝光纤轴心方向延伸的多个空孔的光纤的端部,所述空孔被由微粒直径为lum以下的玻璃粉末熔融构成的密封部密封,而且,形成有该密封部的部分的包层外径与没有形成密封部的部分的包层外径相同。 To achieve the above second object, the present invention provides a seal structure of an optical fiber end portion, characterized in that: the core includes a high refractive index and low refractive index cladding surrounding the core, and is present in the clad layer ends of the fibers toward the plurality of voids extending in the fiber axial direction, the hole is sealed portion of the molten glass powder composed lum sealed by particle diameter, and is formed with a portion of the sealing portion of the cladding layer the outer diameter of the cladding outer diameter of the portion of the sealing portion is not formed are the same.

所述密封部还可以由与构成光纤的玻璃相同的成分的玻璃构成。 The sealing portion may also be made of the same glass fiber glass component. 所述密封部也可以由熔点比构成光纤的玻璃更低的熔点的玻璃构成。 The sealing portion may be composed of a lower melting point than the melting point of the glass optical fiber glass. 所述光纤可安装固定在连接器套圈上。 The optical fiber may be fixed in the connector ferrule.

此外,本发明提供一种光纤端部的密封方法,其特征是:在具备折射率高的芯部和围绕该芯部的折射率小的包层、且在该包层存在朝光纤轴心方向延伸的多个空孔的光纤的端部,形成与轴心方向大致垂直的端面,从该端面向所述空孔插入具有与构成光纤的玻璃相同的成分且微粒直径为1 Pm以下的玻璃粉末,此后,对所述光纤的端部附加进行局部加热使所述玻璃粉末熔融,从而密封所述空孔。 Further, the present invention provides a method of sealing an optical fiber end portion, characterized in that: the core includes a high refractive index and low refractive index cladding surrounding the core, and the presence of the axial direction toward the fiber cladding ends of the fibers of the plurality of pores extending substantially perpendicular to the axial direction is formed in the end face, from the end facing the insertion hole and having the same glass fiber component and glass powder particles having a diameter of less than 1 Pm Thereafter, an end portion of the optical fiber is locally heated so that the additional melting the glass powder, thereby sealing the pores.

此外,本发明提供一种光纤端部的密封方法,其特征是:在具备折射 Further, the present invention provides a method of sealing an optical fiber end portion, wherein: the refractive comprising

率高的芯部和围绕该芯部的折射率小的包层、且在该包层存在朝光纤轴心方向延伸的多个空孔的光纤的端部,形成与轴心方向大致垂直的端面,从 The high end of the fiber core and the refractive index of the core around the small portion of the cladding layer, and a plurality of pores extending in a direction toward the optical fiber axis is present in the cladding layer, is formed substantially perpendicular to the axial direction of the end face ,From

该端面向所述空孔插入具有比构成光纤的玻璃更低熔点且微粒直径为ly The end surface of the insertion hole having a lower melting point than the glass fiber and particle diameter ly

m以下的玻璃粉末,此后,对所述空孔的端部附近进行局部加热使所述玻璃粉末熔融,从而密封所述空孔。 Glass powder m or less, Thereafter, the hole near the end portion by locally heating the glass powder is melted to seal the pores.

此外,本发明提供一种光纤端部的密封方法,其特征是:在具备折射 Further, the present invention provides a method of sealing an optical fiber end portion, wherein: the refractive comprising

率高的芯部和围绕该芯部的折射率小的包层、且在该包层存在朝光纤轴心方向延伸的多个空孔的光纤的端部,形成与轴心方向大致垂直的端面,对 The high end of the fiber core and the refractive index of the core around the small portion of the cladding layer, and a plurality of pores extending in a direction toward the optical fiber axis is present in the cladding layer, is formed substantially perpendicular to the axial direction of the end face ,Correct

所述空孔的端部附近进行局部加热,使微粒直径为lPm以下的玻璃粉末熔融,从而密封所述空孔。 The nearby end portion pores local heating, the particles having a diameter of less lPm molten glass powder, thereby sealing the pores.

可通过照射二氧化碳激光,对所述空孔的端部附近进行局部加热,从而密封所述空孔。 It may, near the end portion of the hole is locally heated by irradiation with a carbon dioxide laser, to seal the pores.

可将所述光纤预先安装固定在连接器套圈上。 The fibers may be pre-fixed on the connector ring.

根据本发明的第二方案,能够获得以下效果。 According to a second aspect of the invention, the following effects can be obtained.

本发明的光纤端部的密封构造由于是空孔被由玻璃构成的密封部密封,因此能够防止由水分等的侵入引起的机械强度的劣化以及由温度变化引起的结露导致的光学特性的变动。 Fiber end sealing structure of the present invention, since the pores are sealed by a seal portion is of glass, it is possible to prevent the deterioration of mechanical strength variation caused by the intrusion of moisture and optical characteristics due to dew condensation caused by temperature change in . 此外,形成有密封部的部分的包层外径与没有形成密封部的部分的包层外径相同,因此能够在正确维持包层直径的状态下,不对光纤的波导路构造造成影响,即可维持端面周围的尺寸。 Further, the outer diameter of the clad is formed with a portion of the sealing portion and the cladding outer diameter of the sealing portion is not formed part of the same, in a state where it is possible to properly maintain the clad diameter of the optical fiber waveguide configured not to affect, to maintain dimensional surrounding end. 因此能够容易地进行多孔光纤彼此间的连接、多孔光纤和通常的单模光纤之间的连接。 Can be easily connected between the porous optical fiber connection between each other, holey fiber and a conventional single-mode fiber. 从而,能够与今后多样的应用对应,其结果非常有助于今后光纤应用技术的发展。 Thus, capable of corresponding to various applications in the future, the future development as a result very useful application of optical fiber technology.

此外,在本发明的光纤端部的密封方法中,由于向光纤的空孔中插入具有与构成光纤的玻璃相同的成分的玻璃粉末,对光纤的端部进行加热使玻璃粉末熔融,从而密封空孔,因此能够确切实现所述光纤端部的密封构造。 Further, in the method for sealing the optical fiber end portion according to the present invention, since the glass fiber the same glass powder component in the insertion hole of the optical fiber, the opposite end portions of the optical fiber by heating the glass powder is melted to seal the space hole, thereby sealing the exact configuration of the fiber end portion. 此外,由于使用与构成光纤的玻璃相同成分的玻璃粉末,因此得到的密封部不容易产生形变,可靠性优越。 Further, since the glass powder with the same composition as the glass fiber, the sealing portion is not easily deformed obtained, superior reliability.

并且,在本发明的光纤端部的密封方法中,由于向所述空孔插入具有比构成光纤的玻璃更低熔点的玻璃粉末,此后,对所述空孔的端部附近进行局部加热使所述玻璃粉末熔融,从而密封所述空孔,因此,能够选择光纤不熔化的加热温度。 Further, in the method for sealing the optical fiber end portion according to the present invention, since the insert has a lower melting point than the glass of the glass fiber powder to the hole, and thereafter, the vicinity of the ends of the pores is locally heated so that the said glass powder is melted to seal the hole, it is possible to select the heating temperature of the fiber does not melt. 因此,能够加热至包层表面为止,作为加热机构能够选择以往常用的方法。 Thus, the cladding can be heated up to the surface, the heating means can be selected as a conventional commonly used method.

此外,在本发明的光纤端部的密封方法中,由于对所述空孔的端部附近进行局部加热,从而密封所述空孔,因此能够不用玻璃粉末,就能以简单方法密封空孔端部。 Further, in the method for sealing the optical fiber end portion according to the present invention, since the vicinity of the end portion of the hole is locally heated to seal the hole, it is possible without the glass powder, can be a simple method of sealing an end hole unit.

(本发明的第三方案) (Third embodiment of the present invention)

为达到上述第三目的,本发明提供一种光纤,是具备折射率高的芯部和围绕该芯部的折射率小的包层、且在该芯部形成有朝光纤轴心方向延伸的多个空孔的光纤,其特征是:在所述多个空孔的端部形成有密封部,该 To achieve the above third object, the present invention provides an optical fiber comprising a core portion of high refractive index and low refractive index cladding surrounding the core, an optical fiber extending toward the axial direction and formed in the multi-core a fiber voids, characterized in that: a sealing portion formed at an end portion of the plurality of pores, the

密封部由折射率与所述包层相同或者更小且直径为100nm以下的石英系 A sealing portion with a refractive index the same as or less and a cladding diameter of 100nm or less quartz

微粒、和折射率与所述包层相同或者更小的光学粘合剂构成。 Particles, and the refractive index of the optical adhesive layers of the same or smaller package configuration.

所述石英系微粒可以是具有30至40nm的直径的石英微粒。 The silica fine particles may be silica having a particle diameter of 30 to 40nm. 所述石英系微粒可以是掺杂有降低折射率的添加剂的石英微粒。 The silica fine particles may be doped with an additive to reduce the refractive index of silica fine particles. 所述光学粘合剂可以是紫外线硬化性的光学粘合剂。 The optical adhesive may be UV-curable optical adhesive. 可以在所述的光纤上安装套圈而构成一种光纤连接器。 Said collar may be mounted on the optical fiber constituting an optical fiber connector. 根据本发明的第三方案,能够获得以下效果。 According to a third aspect of the invention, the following effects can be obtained.

本发明的光纤由于在多个空孔的端部形成密封部,因此研磨粉或者研磨剂不会残留在光纤端面,从而能够提供端面被密封的有可靠性的光纤连接器。 Since the fiber of the invention is to form a seal portion at an end portion of the plurality of pores, thus grinding dust or abrasive does not remain in the optical fiber end face can be provided with a sealing end face of the optical fiber connector reliability. 因而,能够提供一种连接器加工后的可靠性提高的同时、光学性特性良好的多孔光纤连接器。 Accordingly, it is possible to provide a connector after machining improved reliability while good optical characteristics of the porous optical fiber connector. 此外,由于密封部由折射率与包层相同或者更小的石英系微粒、和折射率与所述包层相同或者更小的光学粘合剂构成,因此能够防止在光纤端部被硬化的粘合剂内产生气泡,实现低损失化。 Further, since the sealing portion and the cladding refractive index the same as or smaller quartz particles, and the refractive index of the optical adhesive or less the same as the cladding layer, it is possible to prevent the fiber end portion is hardened adhesive bubbles within the mixture, to achieve low loss. (本发明的第四方案) (Fourth embodiment of the present invention)

为达到上述第四目的,本发明提供一种光纤的连接部,是将在芯部周围的包层内具有多个空孔的光纤连接到其他的光纤上的光纤的连接部,其特征是:经由在实际使用中最低温度下的折射率比所述芯部低的折射率匹配剂,将所述光纤与所述其他的光纤对正连接。 To achieve the above fourth object, the present invention provides an optical fiber connecting portion, having a plurality of pores is within the cladding around the core of the optical fiber connected to the connection portion of the optical fiber on the other optical fiber, characterized in that: via a lower refractive index than the core portion at the lowest temperature in practical use index matching agent, the other with the optical fiber being connected to an optical fiber.

此外,本发明提供一种光纤的连接部,是将在芯部周围的包层内具有多个空孔的光纤连接到其他的光纤上的光纤的连接部,其特征是:经由在实际使用中最低温度下的折射率比所述包层低的折射率匹配剂,将所述光纤与所述其他的光纤对正连接。 Further, there is provided an optical fiber connection portion of the present invention, an optical fiber having a plurality of pores within the cladding around the core portion of the optical fiber connected to the connecting portion on the other optical fiber, characterized in that: in the actual use via refractive index at the lowest temperature lower than the cladding refractive index matching agent, the other with the optical fiber being connected to an optical fiber. 所述折射率匹配剂在温度一3(TC下的波长1.3〜1.55um带域的光的折射率是1.458以下、且在温度范围一30〜+70 。C下的折射率的平均温度系数是一8.0X10—V。C以上且小于0厂C。 The index matching agent at a temperature of refractive index of light of three wavelengths (at TC 1.3~1.55um band is 1.458 or less, and at a temperature range of the average temperature coefficient of the refractive index in a 30~ + 70 .C is a 8.0X10-V.C plant more and less than 0 C.

可以在筐体内收容所述的光纤的连接部而构成一种光纤连接器。 May constitute an optical fiber connector of the optical fiber connector housed within said housing.

根据本发明的第四方案,能够提供连接损失小、连接损失的温度特性变化小的光纤的连接部以及光纤连接器。 According to a fourth aspect of the present invention, it is possible to provide a small connection loss, connection loss change in the temperature characteristics of the optical fiber connector small portion and an optical fiber connector. (本发明的第五方案) (Fifth embodiment of the present invention)

为达到上述第五目的,本发明提供一种光纤的连接部,是将在芯部周围的包层内具有多个空孔的光纤连接到其他的光纤上的光纤的连接部,其特征是:经由在实际使用中的温度范围下的折射率为所述包层以下、且含有平均直径或者平均长度是100nm以下的微小体的折射率匹配体,将所述光纤与所述其他的光纤连接,所述微小体是以纯石英作为主成分的微粒。 To achieve the fifth object, the present invention provides an optical fiber connecting portion, having a plurality of pores is within the cladding around the core of the optical fiber connected to the connection portion of the optical fiber on the other optical fiber, characterized in that: via a refractive index at a temperature in the range of practical use of the said cladding, and having an average diameter or an average length of 100nm or less of the refractive index adjuster minute body, the optical fiber of the other optical fiber connection, the body is of pure silica fine particles as the main component.

所述折射率匹配体可以是通过在所述折射率匹配剂上混合所述微小体而构成,所述折射率匹配剂和所述微小体之间的混合重量比是10: 1〜1:1。 The refractive index matching member may be constituted by a refractive index matching agent on the tiny element of the mixing, the mixing weight ratio of the refractive index matching agent between the body and the minute is 10: 1~1: 1 .

可以在筐体内收容所述的光纤的连接部而构成一种光纤连接器。 May constitute an optical fiber connector of the optical fiber connector housed within said housing. 根据本发明的第五方案,能够提供一种连接损失和反射量小、连接损失以及反射量的温度特性变化小的光纤的连接部以及光纤的连接器。 According to a fifth aspect of the present invention, it is possible to provide a connector and a small amount of reflection loss, connection loss and the temperature characteristic of small variation of the amount of reflection of the optical fiber connector and a connector portion of the optical fiber. 附图说明 BRIEF DESCRIPTION

图1是表示本发明的优选的实施方式一的光子晶体光纤(PCF)的侧视图。 FIG. 1 is a side view of the preferred embodiment of the present invention, a photonic crystal fiber (PCF) is.

图2 (a)是表示V槽连接器的立体图;图2 (b)是表示使用V槽连接器连接图1的光纤和单模光纤的一工序的立体图;图2 (c)是表示用V 槽连接器接合图1的光纤和单模光纤的状态的立体图。 FIG 2 (a) is a perspective view showing a V-groove connector; FIG. 2 (b) is a graph showing a V-groove connectors FIG perspective view of a step of the optical fiber and the single mode fiber 1; FIG. 2 (c) is represented by V FIG perspective slot connector engaged state and singlemode fibers FIG. 1.

图3是表示安装有图1的光纤的FC连接器用的套圈的截面图。 FIG 3 is a sectional view of an optical fiber attached to the connector according to FIG. 1 FC ferrule.

图4是作为另外的适用例的多孔光纤的截面图。 FIG 4 is a sectional view of a porous optical fiber as a further application example.

图5是表示以往的光子晶体光纤的截面图。 FIG 5 is a sectional view showing a conventional photonic crystal fiber.

图6是表示用于本发明的光纤端部的密封构造的多孔光纤101的构造 FIG 6 is a structural porous optical fiber 101 of the sealing structure according to the present invention for an optical fiber end portion

例,(a)是纵截面图,(b)是横截面图。 Embodiment, (a) is a longitudinal sectional view, (b) is a cross-sectional view.

图7是表示本发明的实施方式二的光纤端部的密封构造的纵截面图。 FIG. 7 is a longitudinal sectional view showing a sealing structure of a fiber end portion according to an embodiment of the present invention is two.

图8是表示本发明的实施方式三的光纤端部的密封构造的纵截面图。 FIG 8 is a longitudinal sectional view showing a sealing structure of a fiber end portion according to an embodiment of the present invention, three.

图9是表示在本发明的光纤端部安装套圈的实例的纵截面图。 9 is a longitudinal sectional view showing an optical fiber end portion in the example of the present invention is mounted in the ferrule.

图IO是表示适用于本发明的实施方式四的多孔光纤的横截面图。 FIG IO is a cross-sectional view showing an embodiment of the present invention is applicable to a four holey fiber.

图11是表示本发明的实施方式四的光纤连接器的纵截面图。 FIG 11 is a longitudinal sectional view showing an optical fiber connector according to an embodiment of the present invention, four.

图12是表示本发明的实施方式五的光纤的连接部的侧视图。 FIG 12 is a side view of the optical fiber connector according to an embodiment five of the present invention.

图13是表示图12中的折射率匹配剂r的折射率的温度特性的图。 FIG 13 is a diagram showing the temperature characteristics of the refractive index matching agent 12 r in FIG.

图14是表示本发明的实施方式六的光纤连接器的立体图。 FIG 14 is a perspective view showing an optical fiber connector according to an embodiment six of the present invention.

图15是表示图14中的光纤连接器的连接损失的温度特性的图。 FIG 15 is a diagram showing the temperature characteristics of the connection loss of the optical fiber connector 14 of FIG.

图16是表示光学晶体光纤的一例的横截面图。 FIG 16 is a cross sectional view showing an example of the optical crystal fibers.

图17是表示多孔光纤的一例的横截面图。 FIG 17 is a cross-sectional view showing an example of a holey fiber.

图18是表示以往光纤的连接部的侧视图。 FIG 18 is a side view of a conventional optical fiber connecting portion.

图19是表示图18所示的折射率匹配剂r7的折射率的温度特性的图。 FIG 19 is a diagram showing the temperature characteristics of the index matching agent 18 shown in refractive index r7.

图20是表示以往光纤连接器的一例的立体图。 FIG 20 is a perspective view showing an example of a conventional optical fiber connector.

图21是表示图20所示的光纤连接器的连接损失的温度特性的图。 FIG 21 is a diagram showing the temperature characteristics of the connection loss of the optical fiber connector 20 shown in FIG.

图22是表示本发明的实施方式七的光纤的连接部的侧视图。 FIG 22 is a side view of the optical fiber connector according to an embodiment seven of the present invention.

图23是表示图22中折射率匹配体R的折射率的温度特性A的图。 FIG 23 is a diagram showing temperature characteristics of FIG. 22 A in the refractive index of the refractive index matching body R.

图24是表示与具有实施方式七的光纤的连接部的光纤连接器相关的 FIG 24 is a fiber-related portion of the optical fiber connector having the embodiment of the seven

反射量的温度特性的图。 FIG temperature characteristic of the amount of reflection. 图25是表示在使用具有图13所示的特性的低折射率匹配剂的情况下的、光纤连接器的反射量的温度特性的图。 FIG 25 is a diagram in use having a temperature characteristic of the amount of reflection of the optical fiber connector in the case where the low refractive index matching agent 13 characteristic shown in FIG.

具体实施方式 Detailed ways

以下,参照附图,详细说明本发明的优选的实施方式一。 Referring to the drawings, preferred embodiments of the present invention, a detailed description.

图1是表示本发明的优选实施方式一的光子晶体光纤(PCF)的侧视图。 FIG. 1 is a side view of a preferred embodiment of the present invention, a photonic crystal fiber (PCF) is.

首先,本实施方式的PCF11与图5中说明的PCF41相同,因此省略其详细说明,但是,光纤以包层周围被由UV树脂构成的被覆层覆盖的光纤芯线的状态使用,而与套圈或者其他连接器连接的连接部分以剥掉其被覆层的方式使用。 First, the same PCF41 PCF11 FIG. 5 of the present embodiment described, detailed description thereof will be omitted, however, the optical fiber in a state of optical fiber coating layer covering around the cladding is made of UV resin used, with the collar or other connector connecting portion to which the coating layer is peeled off manner.

如图1所示,在PCFll的连接端附近12的空孔13中,作为填充材填充有折射率比石英低的UV硬化性树脂14。 As shown in FIG. 1, the pores in the vicinity of the connection end 12 PCFll 13 is filled with a filler as a lower refractive index than quartz UV curable resin 14. UV硬化性树脂14使用前在常温下是液体,通过照射紫外线而硬化。 Prior to UV curing resin 14 used is a liquid at room temperature, and hardened by irradiation of ultraviolet rays. 在本实施方式中使用的UV硬化性树脂是硬化后的折射率调整为1.42的环氧系的含氟UV硬化性树脂14。 UV curable resin used in the present embodiment, the refractive index after curing is adjusted to a fluorine-containing epoxy-based UV curable resin 14 1.42.

填充到本实施方式PCF11中的UV硬化性树脂14的折射率是1.42, 形成PCFll的石英玻璃的折射率是1.458。 Refractive index is filled into the present embodiment PCF11 UV curable resin 14 is 1.42, the refractive index of silica glass is formed PCFll 1.458. 填充到空孔13中的材料的最佳折射率必须比折射率1.458小,但每次作为不同条件改变PCFll的空孔直径、空孔数、空孔间隔(密度)时都有必要再选定。 Best index material filled into the pores 13 in refractive index must be smaller than 1.458, but each change in pore diameter PCFll as different conditions, the number of air holes are necessary to void the selected time interval (density) . 填充材的折射率即使比石英玻璃的折射率低但比最佳折射率大或者小的情况下,分别出于以下原因增大连接损失。 Even if the refractive index of the filler is lower than the refractive index of quartz glass, but larger or smaller than the refractive index of the best case, by increasing the connection loss for the following reason.

当填充材的折射率大于最佳值时,被填充的空孔13和芯部(石英) 的比折射率差变小,因此向中心芯部的光的闭入效果变弱,在连接端附近12的模场直径(MFD: Mode Field Diameter)变大。 When the refractive index of the filler is greater than the optimum value, a filled pores 13 and the refractive index of the core portion (quartz) becomes small, thus the effect of confining light to the central core portion becomes weak, near the connecting end 12, the mode field diameter (MFD: mode field diameter) becomes large. 从而,产生PCFll 和SMF的MFD不良,导致连接损失增大。 Thereby adversely PCFll and the MFD of the SMF, resulting in increased connection loss.

另一方面,当填充材的折射率小于最佳值时,被填充的空孔13和芯部的比折射率差变大,因此向中心芯部的光的闭入效果变强,在连接端附近12的MFD变小。 On the other hand, when the refractive index of the filler is smaller than the optimum value, the pores are filled and than the refractive index of the core portion 13 becomes large, so the effect of the closing of the central core of the light becomes strong, the connection end MFD near 12 becomes smaller. 从而,在与连接处的SMF的MFD相比PCF11的MFD 变更小,同样产生MFD的不良,导致连接损失增大。 Thus, the change in MFD PCF11 smaller than the MFD of the SMF is connected at the same adverse MFD, resulting in increased connection loss.

从而,在圆柱空孔13中填充UV硬化性树脂14之后,有必要以PCF11和SMF的各模场直径相等的方式选定填充材的折射率。 Thus, after the cylindrical hole 13 is filled UV curable resin 14, it is necessary in each embodiment PCF11 SMF and the mode field diameter equal to the refractive index of the filler selected. 接着,说明PCFll的制作工序。 Next, the manufacturing process PCFll.

首先剥掉PCFll的被覆部15数mm,利用光纤切刀将末端部16切断成垂直的切断面,将UV硬化性树脂14涂敷在端面16。 First, the coating peeled portion PCFll number 15 mm, using an optical fiber cutting blade tip portion 16 into the cut perpendicular to the cutting surface, the UV curable resin 14 is coated at the end face 16. 涂敷在端面16的UV硬化性树脂14经过数秒至数分钟的毛细管现象,浸透圆柱空孔13。 Coated capillary end face 16 of UV curable resin 14 after seconds to minutes, and soaked 13 cylindrical pores. 在进行浸透时,保持该PCF11的时间很大程度上决定于粘合剂14的粘度、 表面张利、和空孔直径。 When carrying out penetration, the holding time is largely determined by the PCF11 viscosity of the adhesive 14, the surface Zhang Li, and pore diameter. 当通过研磨等削去端面16的情况下,有必要考虑该量而确保粘合剂14的浸透长度,当将PCFll的切断面直接作为连接端面16的情况下,100 U m以上就很充分。 In the case where the end face 16 cut away by the grinding or the like, it is necessary to consider the amount of adhesive 14 to secure the penetration length, in the case where the cut surface is directly PCFll a connection end face 16, 100 U m above very well.

接着,用纱布等拭去附着在端面16上的剩余粘合剂14,从PCF11侧面利用紫外线照射装置等照射UV光,使浸透在空孔13内的UV硬化性树脂14硬化,完成工序。 Subsequently, wiped with gauze remaining adhesive 16 adhered to the end surface 14, irradiated with UV light using an ultraviolet irradiation apparatus and the like from the side PCF11 the penetration hole 13 in the UV curable resin 14 is cured to complete the step.

下面,对使用V槽连接器连接PCF11和单模光纤(SMF: Single Mode Fiber) 21的方法进行说明。 Next, using a V-groove connector PCF11 and single mode fiber (SMF: Single Mode Fiber) method 21 will be described.

如图2 (a)所示,V槽连接器是由对两个光纤11、 21的端面进行对正的对正V字型槽22、在两端保持各个光纤ll、 21的被覆保持部23、以及将对正端面的两光纤从上面挤压的挤压盖24构成的光纤连接器。 As shown in FIG 2 (a) as shown, V groove is connected to the optical fiber 11 is held by two end faces 21 is of a positive V-shaped grooves 22 aligned at both ends of the respective optical fiber holding cover ll, 21, 23 , and the end faces of two optical fibers will be pressed from the upper cover 24 constituting the pressing optical connector.

首先,如图2 (b)所示,剥掉石英系SMF21的被覆部25,用光纤切刀切断端面26。 First, in FIG. 2 (b), the cover portion 25 is peeled SMF21 quartz, optical fiber cutting blade cutting face 26. 在V字型槽22中对正其SMF21的端面26和PCF11的端面16。 SMF21 positive ends 16 thereof and the end face 26 in PCF11 V-shaped groove 22. 此时,PCF11和SMF21分别由被覆保持部23固定。 At this time, PCF11 SMF21 and 23 are respectively held by the holding portion coated.

最后,如图2 (c)所示,对正V字型槽22从上面压下挤压盖24,固定两个光纤ll、 21,完成连接。 Finally, FIG. 2 (c), the depression 22 is pressed from above of the V-shaped grooves positive cover 24, fixing two optical fibers ll, 21, to complete the connection.

以下,对本实施方式的作用进行叙述。 Hereinafter, effects of the present embodiment will be described.

PCF11是,在PCFll的连接端附近12,向多个微小空孔13中填充折射率比包层低的UV硬化性树脂14,在通过对其进行紫外线照射而使其硬化,实现密封空孔13的目的,因此在芯部和包层由具有相同折射率的PCF11的连接端附近12也形成光子晶体构造,能在PCFll的中心闭入光。 PCF11 is 12, a refractive index lower than that of the clad filled UV-curable resin into a plurality of minute pores 13 in the vicinity of the connecting end 14 PCFll, by irradiating them with ultraviolet cured, sealing pores 13 the purpose, therefore in the core and the cladding 12 is also formed by a photonic crystal structure near the connecting end having the same refractive index PCF11 can be closed in the light of the center PCFll.

从而,能够与MFD比PCF11大的光纤对正连接。 Thus, it can be larger than the MFD of the optical fiber being connected PCF11. 在上述说明的V槽连接器20中连接PCF11和SMF21的连接损失是很低的值0.55dB。 In the above-described V-groove in the connector 20 and the connector connection loss PCF11 SMF21 value is low 0.55dB.

此外,对PCFll的连接端附近12的空孔13进行密封的构造能够防止在对PCF端面16进行研磨时研磨粉或者水分以及其他杂质的侵入。 In addition, the pores near the connecting end 12 PCFll sealing structure 13 can be prevented from entering the grinding dust or moisture when the end face 16 is polished PCF and other impurities.

作为另外的实施方式,对于将实施方式一的PCFll与FC连接器用套圈连接的情况进行说明。 As another embodiment, for the first embodiment of the connector according PCFll the FC connector ferrule case will be described.

图3是表示连接PCFll时的FC连接器用的套圈30的截面图。 FIG 3 is a sectional view when the FC connector ferrule for a connector PCFll 30. 如图3所示,套圈30是构成光连接器的要素部件,其由将剥掉被覆部15的PCF11进行固定的固定部31、和安装PCFll的被覆部15的光纤保持部32构成。 3, the ring member 30 is an element constituting the optical connector, which is fixed by the fixing portion 31 PCF11 covering the stripped portion 15 of the covering and the mounting portion of the optical fiber 15 PCFll holding portion 32. 当使用单心光连接器的情况下,FC连接器用套圈30呈圆筒形。 When the case where the single core optical connector, FC connector according ferrule 30 has a cylindrical shape. PCF1】由套圈30和粘合剂固定在保持部31上,而且安装有PCFll 的套圈30连接到光连接器上,且当是FC连接器的情况下,由螺栓或者挤压弹簧等紧固部33,固定在光连接器上。 PCF1] ferrule 30 and the holding portion fixed to the adhesive 31, and the ferrule 30 is mounted PCFll connected to the optical connector, and the case when the FC connector, tightening the bolts or the like pressing spring fixing portion 33 fixed to the optical connector.

填充有UV硬化性树脂14的PCFll是,其连接端附近12固定在套管30的固定部31上,光纤芯线15在保持部32粘接,此后,粘接部的端面16被研磨。 Filled with PCFll UV curable resin 14 is, near its connection end 12 is fixed to the fixing portion 31 of the sleeve 30, the optical fiber core wire holding portion 15 in the adhesive 32, and thereafter, the adhesive portion 16 of the end face is polished. 与光连接器连接的套圈30由于PCF11的连接端附近12的空孔13被UV硬化性树脂14填充,因此在研磨时不会侵入研磨粉或者水分以及其他杂质,且能抑制由此相伴的传送损失的增加,而且能抑制光纤强度的疲劳劣化比通常加快进行的情况发生。 Ferrule 30 is connected to the optical connector 13 because the UV curing resin 14 is filled pores near the connecting end 12 PCF11 Therefore, when the polishing or grinding dust does not enter the water and other impurities, and can thereby inhibit the accompanying increase in transmission loss, can be suppressed and the deterioration of the fatigue strength of the fiber usually occurs than is expedited.

填充到PCFll的连接端附近12的空孔13中的填充材不限于UV硬化性树脂14,还可以是玻璃等透光性物质。 Filler 13 in the vicinity of the connecting end 12 is filled into the pores PCFll not limited to UV curable resin 14, and may be light-transmissive material such as glass.

PCF11不仅限于在上述的机械接头等的V槽连接器20或者FC连接器用套圈30的适用,还可以适用于毛细管型连接器或者其他市售的连接器类型。 PCF11 not limited to the above-described mechanical joints like the V-grooves 20 or FC connector suitable for a connector ferrule 30 may also be applied to the capillary-type connector or other connector types commercially available.

此外,本发明的方案,不仅可以使用于在本实施方式中使用的芯部和包层的折射率相同的PCFll,还可以使用于芯部和包层的折射率不同的PCF、或者如图4所示的多孔光纤34上。 Further, the embodiment of the present invention, not only can be used for the same refractive index of the core and cladding used in the present embodiment PCFll, may also be used in the core and the cladding refractive index different from the PCF, 4 or FIG. 34 shown on the porous fiber. 多孔光纤34是指在芯部35的周围具有多个空孔36的光纤。 34 refers to a porous fiber around the core fiber portion 35 having a plurality of pores 36. 由于对弯曲或者扭转的耐性强、抑制了弯曲引起的传输损失的增加,因此能很好地适用于直径小且形成巻曲的光纤巻线。 Since the bending strength or resistance to twisting, suppressing an increase in transmission loss due to bending, and therefore well suited for small diameter and formed Volume Volume curved optical fiber cable.

以下,参好附图,对本发明的第二和第三实施方式的光纤端部的密封构造及其密封方法进行说明。 Hereinafter, a good reference to the accompanying drawings, the sealing structure and a sealing method of the second embodiment and the third embodiment of the present invention, an optical fiber end portion will be described.

图6 (a)、 (b)中表示了使用于上述光纤端部的密封构造中的代表性的多孔光纤101的构造例。 Example configuration of FIG. 6 (a), (b) shows the configuration used for the sealing of the optical fiber end portion 101 is representative of the holey fiber. 在该图6 (a)、 (b)中,多孔光纤101具备折射率高的芯部102、和围绕其芯部102而形成的折射率小的包层103,在该包层内的芯部102附近形成有朝光纤轴心方向延伸的四个空孔104。 In FIG. 6 (a), (b), the porous optical fiber 101 102 have a high refractive index, a low refractive index and a clad surrounding a core portion 102 formed by the core 103, the core portion of the cladding in 102 is formed near the four hole 104 extending in the fiber axial direction.

图7是表示本发明实施方式二的光纤端部的密封构造的截面图。 FIG. 7 is a sectional view showing a sealing structure of a fiber end portions of two embodiments of the invention. 在该图中,比图6更放大显示了光纤的端部。 In the drawing, the enlarged display more than the optical fiber end portion 6 in FIG. 在该光纤端部的密封构造中,沿轴心方向延伸的空孔104的前端部分被密封部105密封。 In the seal structure of the optical fiber end portion, the front end portion of hole 104 extending in the axial direction is sealed by a sealing portion 105. 该密封部105形成在多孔光纤101的端面稍微凹陷的位置,即形成在从端面稍微向内的内部位置。 The seal portion 105 is formed at the end face of the holey fiber 101 is slightly recessed position, i.e. from the end face is formed in the inner position slightly inward. 此外,形成有密封部105的位置、或者未形成密封部105的位置, 包层103的外径都完全一样。 Further, the position of the seal portion 105 is formed, or the position of the seal portion 105 is not formed, the outer diameter of the cladding layer 103 are exactly the same. 其中,在图7中有两个空孔104被密封部105 密封,但未图示的其他两个空孔104的端部也同样被密封。 Wherein the two empty holes 104 are sealed by a sealing portion 105 in FIG. 7, the end portions of the other two air holes 104 are also illustrated but not sealed.

接着,对实现该光纤端部的密封构造的密封方法进行说明。 Next, a sealing method of sealing an end portion of the optical fiber structure will be described. 首先,在多孔光纤IOI的端部形成与轴心方向大致垂直的端面之后, 从其端面向空孔104插入微细的玻璃粉末。 First, after the end of the holey fiber IOI is formed substantially perpendicular to the axial direction of the end surface, the glass powder for a fine pore 104 is inserted from the end. 玻璃粉末是构成光纤的材料即石英玻璃,且石英粒径最好在lym以下。 Glass powder is a material constituting the optical fiber, i.e., silica glass, quartz and the particle size is preferably less lym. 可通过向将玻璃粉末堆积成山峰形状的地方插入光纤端面,从而将玻璃粉挤入到空孔104中。 By inserting the fiber end faces to the glass powder is deposited into a mountain shape where the glass frit so as to penetrate into the pores 104. 此外,如果在玻璃粉末中混入乙醇,使其成糊状,则可以更简单地插入到空孔104 中。 Further, if the glass powder mixed with ethanol, to make a paste, it can be more easily inserted into the hole 104.

接着,通过照射二氧化碳激光,对多孔光纤101的端部进行加热。 Then, the end portion of the holey fiber 101 is heated by irradiation with a carbon dioxide laser. 由于二氧化碳激光的波长是10um左右,因此能够很好地被玻璃吸收并发热。 Since the wavelength of a carbon dioxide laser is about 10um, and therefore can be well absorbed and heat the glass. 作为对激光进行聚光的聚光透镜,可使用在该波长域中透明的以硒化锌或者锗作为材料的透镜。 A condenser lens for condensing the laser, can be used in the wavelength domain in a transparent zinc selenide or germanium is used as the lens material. 关于这样的光纤端部的激光加热光学系统,特开平7—318756号公报有详细记载。 Such a laser light on an end portion of the heating of the optical fiber system, Laid Open Publication No. 7-318756 there is described in detail. 借助利用这样的二氧化碳激光的光学系统,对芯部102和周围的空孔104附近用激光同时加热,但也可以移动激光的聚光点,而部分地依次进行加热。 Such means of an optical system using a carbon dioxide laser, near the hole 104 of the core and the surrounding portion 102 while heating with a laser, the converging point of the laser may be moved, and partly sequentially heated. 对玻璃粉末进行充分熔融而停止加热,则玻璃被固定,并如图7所示,在多孔光纤IOI的端面具有凹陷的部分形成有密封部105。 Sufficient to melt the glass powder and the heating was stopped, the glass is fixed, and as shown in FIG. 7, the end face of the holey fiber having IOI recessed portion formed with a sealing portion 105.

在该密封方法中,由于将玻璃粉末熔融而密封空孔104,因此包层材的流入量少,能够防止包层直径变化。 In this sealing method, since the glass powder is melted to seal the hole 104, thus flowing into the clad material is small, the cladding diameter variation can be prevented. 此外,由于作为加热机构使用二氧化碳激光,因此能够用透镜聚光系统聚光至比包层外径(一般是125ixm) 充分小的点,以不加热包层的周围的状态进加热端面部的一部分,因此由该点能够防止包层直径的变化。 Further, since a carbon dioxide laser as the heating means, and therefore can be a portion of the cladding to the outer diameter than the converging lens system converging (typically 125ixm) sufficiently small dots, in a state without heating the surrounding cladding layer into the heated end face , so that the point can be prevented by the cladding diameter change. 此外,由于作为玻璃粉末使用构成光纤的 Further, since the glass constituting the optical fiber as a powder

石英玻璃,因此很难在密封部105产生形变,有利于可靠性。 Quartz glass, it is difficult to deform the sealing portion 105, facilitate reliability.

此外,作为形成密封部105的另外的方法,可以使用熔点比石英玻璃更低的其他成分的玻璃粉末,从多孔光纤101的端面挤入空孔104内,使用加热机构(光纤熔敷器的气体放电、气体燃烧器、电热丝)充分熔融玻璃粉末,形成密封部105。 Further, as another method for forming the sealing portion 105 may be used other ingredients of a melting point lower than the glass powder quartz glass, squeeze into the hole 104 from the end face of the holey fiber 101, using a heating means (optical filter gas welding discharge gas burner, electric wire) sufficiently melt the glass powder, the sealing portion 105 is formed.

在该风发中,也通过熔融玻璃粉末而密封空孔104,因此包层材的流入量少,能够防止包层直径变化。 In this high spirit, it is also sealed by melting the glass powder hole 104, flowing into a small amount of clad material, the clad diameter variation can be prevented. 此外,由于作为密封剂使用熔点比石英玻璃低的种类的玻璃,因此可以选择光纤不熔化的范围的加热温度,包括包层表面在内允许加热。 Further, since the melting point is lower than that of quartz glass is used as a type of glass sealant, it is possible to select a heating temperature range of the optical fiber does not melt, to allow the inner surface of the cladding comprising heating. 从而,作为加热机构可以自由选择光纤熔敷器的气体放电、气体燃烧器、电热丝等以往的加热机构,而这是一个优点。 Thus, the heating means can be freely selected as the fiber cladding is a gas discharge, a gas burner, electric wires and other conventional heating means, which is an advantage. 当然也可以使用二氧化碳激光加热法。 Course also be used a carbon dioxide laser heating.

图8是表示本发明实施方式三的光纤端部的密封构造的图。 FIG 8 illustrates a sealing structure of a fiber end portion of the third embodiment of the present invention. 在该端部构造中,沿轴心方向延伸的空孔104的前端部分被密封部106密封。 In this configuration, the end portion, the front end portion of the hole 104 extending in the axial direction is sealed by a sealing portion 106. 此外, 形成有密封部106的位置、或者未形成密封部106的位置,包层103的外径都完全一样。 Further, the position of the seal portion 106 is formed, or the position of the seal portion 106 is not formed, the outer diameter of the cladding layer 103 are exactly the same. 其中,多孔光纤101的端部的凹陷与图7的凹陷相比稍微深一些。 Wherein the recessed end portions of the recess 7 of FIG holey fiber 101 is slightly deeper compared.

形成该密封部106的方法如下,即,在多孔光纤101的端部形成与轴心方向大致直角的端面之后,不插入玻璃粉末,而直接采用利用上述二氧化碳激光的加热法,对端面进行局部加热。 The method of sealing portion 106 is formed as follows, i.e., after the porous end of the fiber 101 is formed with a substantially axial direction perpendicular to the end faces, the glass powder is not inserted, while using the direct heating method using a carbon dioxide laser, to locally heating the end faces . 由此,通过从端面流入被熔融的包层材,密封空孔。 Accordingly, the clad material flows from the end face are melted, the sealing pores.

此时,如图6所示,由于空孔104的开口面积比包层103的截面积充分小,且通过二氧化碳激光局部加热端部附近,因此从多孔光纤101的端面,包层材向空孔104深处流入,密封多孔光纤101的端部、且包层直径不变化。 At this time, as shown in FIG. 6, since the opening area of ​​the air hole 104 is sufficiently smaller than the cross-sectional area of ​​the cladding layer 103, and by locally heating the vicinity of the end portion of a carbon dioxide laser, and therefore the porous end surface of the optical fiber clad material into pores 101 deep inflow 104, end seal 101 of the holey fiber, and the cladding diameter is not changed.

如图7或者8所示,如果成形多孔光纤101的端部,则可以利用一般的光纤的连接法、例如可利用成为机械接头的应用V槽的机械连接法。 As shown in FIG 7 or 8, if the end of the holey fiber 101 is formed, the optical fiber can be connected by a general method, for example, using a mechanical splice be mechanical joint application of the V-groove. 此外,还可以安装在MT连接器或者单心连接器的套圈,实施光连接器连接。 Further, it may also be mounted MT connector or ferrule single core connector, the optical connector embodiment.

在套圈安装中,在套圈前端设置限制器,从后方插入多孔光纤101的情况下,如图9所示,多孔光纤101的端面和连接器套圈106的端面对齐。 In the case where the ferrule is mounted, the front end of the ferrule stopper, inserted from the rear of the holey fiber 101, as shown, and a porous fiber end connector 101 is aligned with the ferrule end face 106 9. 如果有必要,可以在此后与一般的光纤的情况相同,对连接器套圈106的端面进行研磨。 If necessary, thereafter the optical fibers of the same general case, the end face 106 of the connector ferrule is polished.

其中,还可以将多孔光纤101安装在连接器套圈106上研磨后再加热, 密封空孔。 Wherein the holey fiber 101 may also be mounted in the connector ferrule 106 is heated and then milled, sealing pores. 此时,由于通过加热改变了多孔光纤101端部的形状,因此还可以对套圈106的端面进行再研磨而调整形状。 At this time, since the heating by changing the shape of the porous end of the optical fiber 101, thus can be reground end face of the ferrule 106 is adjusted shape. 由于空孔的密封位置比端面稍微凹陷去,因此通过研磨,可将留在端面上的凹陷部位消除。 Since the sealing position of pores slightly recessed to the end face, therefore, may be eliminated by grinding the remaining portion of the recess end face.

下面,参照附图,对本发明实施方式四的光纤以及光纤连接器进行说明。 Referring to the drawings, embodiments of the present invention, four optical fiber and an optical fiber connector will be described.

图10表示本发明的实施方式四使用的多孔光纤210的端面构造。 10 shows a configuration of the end faces of the four embodiments of the present invention using a porous optical fiber 210. 在该图中,多孔光纤210具有折射率高的芯部21K和围绕芯部211而形成的折射率小的包层213,且在包层213的芯部211附近形成有以芯部211 的中心部作为对称轴线对称、且成等间隔的四根空孔215。 In this figure, the porous optical fiber 210 having a high refractive index and a small core portion 21K of the cladding 213 is formed around the core portion 211, and formed with a core portion 211 in the vicinity of the center core portion 211 of the cladding 213 portion as a symmetric axis of symmetry, and the like into the four spaced holes 215 empty.

作为多孔光纤210通常可使用1.3iim带域单模光纤。 As the porous optical fiber 210 may be generally used 1.3iim band single mode optical fiber. 此外,空孔215 的内径最好在3nm以上10nm以下,例如可设为7um。 Further, the inner diameter of pores 215 is preferably between 3nm and 10nm or less, for example, may be set 7um. 各空孔215的中心例如可位于从芯部211的中心起半径12um的圆周上。 The center of each hole 215 may be located, for example, from the center of the core portion 211 from the circumferential radius of 12um. 在空孔215 内填充有空气或者惰性气体,其空孔215内的折射率是l。 In the pores 215 are filled with air or an inert gas, the refractive index in which the pores are 215 l. 此外,包层213 的折射率是例如1.458,芯部211中为比包层213的折射率高而添加6〜9 摩尔%程度的锗。 Further, the refractive index of the clad 213 is, for example 1.458, the core portion of the cladding 211 is a high ratio of 213 mol% degree of added germanium 6~9.

图11是表示本发明实施方式四的光纤连接器的纵截面图。 FIG 11 is a longitudinal sectional view showing an optical fiber connector of the fourth embodiment of the present invention. 在光纤连接器220中,多孔光纤210的朝光纤轴心方向延伸的空孔215的前端部分被密封部221密封,在多孔光纤210的外周安装有套圈223。 In the optical connector 220, the front end portion of the pores of the porous optical fiber extending in the axial direction 210 of the seal 215 is a seal portion 221, the ferrule 223 attached on the outer periphery of the porous optical fiber 210. 其中,多孔光纤210的两个空孔215被密封部221密封,而未图示的另外两个空孔215 的端部也同样被密封。 Wherein pores two holey fiber 210 is sealed portion 215 of the seal 221, the ends of the other two not shown for hole 215 is also sealed.

该密封部221由石英微粒和紫外线硬化性光学粘合剂构成。 The sealing portion 221 made of quartz particles and UV curable optical adhesive. 构成该密封部221的石英微粒和紫外线硬化性光学粘合剂的折射率都必须相等或者小于包层213的折射率。 The refractive index of the sealing portion 221 of the quartz particles and UV curable optical adhesive must be equal to or less than that of the cladding 213. 以下说明其理由。 Reason is as follows.

多孔光纤210的优良的弯曲特性源于在芯部211附近存在空孔215, 但如果假设将折射率比包层13更高的光学材料填充在空孔215中而作为密封部221,则折射率比包层213更高的部分还在除了原本的芯部211以外的部分产生,因此处于存在多个芯部211的状态。 Excellent bending properties of the porous optical fiber 210 due to the presence of pores 215 in the vicinity of the core portion 211, but if it is assumed that a refractive index higher than the cladding 13 of the optical material is filled in the pores 215 and 221 as a sealing portion, the refractive index higher than the cladding portion 213 also portions other than the original core 211 is generated, so the status of the plurality of core portions 211 is present. 如果这样,则当多孔光纤210的芯部211和空孔215的间隔接近光的波长级别的情况下,产生光的耦合现象,使本来在芯部11中传播的光转移到空孔215中。 If so, the case where the core of the holey fiber 210, 211 and the wavelength level spacing pores 215 close to the light coupling phenomenon of light, the light proceeds to the holes 215 have been propagated in the core portion 11. 被转移的光在密封部221中传播,但在没有形成密封部221的空间部中不传播, 因此成为大损失的原因。 Light propagation in the transferred portion of the seal 221, but is not formed in the seal portion without propagation space portion 221, and therefore become a major cause of loss. 因此,最好使密封多孔光纤210的空孔215的密封部的折射率不高于包层213的折射率。 Accordingly, it is preferable that the sealing pores holey fiber portion 210 of the seal 215 is a refractive index not higher than that of the cladding 213. 此外,假设将具有与包层213相同的折射率的光学材料填充在空孔215中而作为密封部221的情况下,成为犹如与没有空孔215的通常的光纤相同的构造,因此损害了多孔光纤210的具有良好弯曲特性的特征。 Further, it is assumed that the packet having the same refractive index optical material layer 213 filled in the pores 215 as a case where the sealing portion 221 become generally the same fiber configuration as if the hole 215 is not empty, and thus damage to the porous An optical fiber 210 has a good bending characteristic. 因此,密封多孔光纤210的空孔215的密封部221的折射率最好比包层213的折射率低。 Thus, the sealing portion sealing the pores of the porous optical fiber 210 is preferably 215 to 221 refractive index lower than the cladding refractive index 213.

构成密封部221的石英微粒的粒子直径最好在1 um以下、更优选在100nm以下、尤其优选在30〜40nm范围。 221 constituting the sealing portion of the quartz fine particle diameter is preferably 1 um or less, more preferably 100nm or less, particularly preferably in the range 30~40nm. 如果粒子直径为100nm以下, 则在密封部221中的石英微粒的体积比能够上升,即,能够提高对于光学 If the particle diameter is 100nm or less, the volume of the sealing portion 221 in the quartz particles than can be raised, i.e., it is possible to improve the optical

粘合剂的石英微粒的混合率,因此能够抑制光学粘合剂硬化时的气泡产生率。 Mixing fine particles of silica binder, it is possible to suppress the bubble generation rate when the optical adhesive is hardened. 石英微粒的折射率与构成多孔光纤210的包层213的石英相同(1.458), And the refractive index of silica fine particles constituting the porous clad quartz optical fiber 210 is the same as 213 (1.458),

但通过使用在石英微粒中添加氟的氟添加石英纳米粒子,能够将折射率降低一0.5〜一0.7%程度。 However, by using a fluorine-fluorine-added silica particles in silica nanoparticles, it is possible to reduce a refractive index of a 0.7% 0.5~ extent.

另一方面,紫外线硬化性的光学粘合剂可以使用折射率在室温下为1.430的环氧系紫外线硬化性粘合剂(商品名"才:/卜夕'一y 1100" (DAIKIN工业制))。 On the other hand, the UV curable optical adhesive may be used in a refractive index of 1.430 epoxy-based ultraviolet curing adhesive (trade name at rt "only: / Bu Xi 'a y 1100" (DAIKIN Industries, Ltd.) ). 一般来说光学折射率材料的折射率具有温度特性, 即随着温度降低折射率提高,因此必须考虑温度的影响,但上述光学粘合剂即使在一30'C下折射率也是1.45左右,从而能够使其小于包层的折射率1.458。 Generally the optical refractive index material has a temperature characteristic, i.e. the refractive index increase as the temperature decreases, temperature effects must be considered, but even in the case of the optical pressure-sensitive adhesive is a refractive index of about 1.45 30'C, thereby it can be less than the refractive index of the cladding of 1.458.

石英微粒和光学粘合剂的混合比例是:石英微粒的比例越高,光学粘合剂硬化后的气泡的产生率就低,但如果比例过高,则硬化前的包含石英 The mixing ratio of silica fine particles and an optical adhesive that is: the higher the ratio of silica fine particles, the incidence of cavitation optical adhesive after curing is low, but if the proportion is too high, before curing, contains silica

微粒的光学粘合剂的流动性丧失,很难向多孔光纤210的空孔2i5填充。 Flowability of the optical loss of the binder particles, it is difficult to fill the pores of the porous optical fiber 210 2i5. 根据本发明人的实验发现,当光学粘合剂和石英微粒的重量比是h 1〜10: 1之间时,在实用方面能够同时满足抑制气泡产生和向空孔215的填充作业的作业性。 The present inventors found that the experiment, when the weight ratio of silica fine particles and an optical adhesive is h 1~10: 1 is between, for practical use can be satisfied simultaneously the workability and suppressing the generation of bubbles filling operation pores 215 .

石英微粒的折射率的温度特性与光学粘合剂的该特性相比小到可忽略,因此可以将在空孔215中填充的密封部221的整体折射率稳定地设定为小于构成包层213的石英水平。 The characteristics of the temperature characteristic of the refractive index of silica fine particles as compared with the optical adhesive negligibly small, so the refractive index of the entire sealing portion can be filled in the pores 215 221 stably set smaller than the cladding layer 213 composed of the quartz level. 因此,能够对包含弯曲特性的光学特性进行稳定化。 Accordingly, stabilizing the optical properties comprising a bending characteristic.

以下,说明光纤连接器220的制作方法。 Hereinafter, the fabrication of a fiber optic connector 220.

首先,在多孔光纤210的端部形成与轴心方向大致垂直的端面之后, 从多孔光纤210的端面向空孔104插入石英微粒和紫外线硬化性光学粘合剂的混合物,照射紫外线,硬化光学粘合剂,形成密封部221。 The mixture First, after the porous end of the fiber 210 is formed substantially perpendicular to the axial direction of the end faces, facing the hole 104 from the end of the holey fiber 210 is inserted into a quartz particles and UV curable optical adhesive, and irradiated with ultraviolet light, curing the optical adhesive mixture, sealing portion 221 is formed. 接着,将套圈223安装在多孔光纤210上,使多孔光纤210的端面与套圈223的端面对齐。 Subsequently, the ferrule 223 is mounted on the holey fiber 210, optical fiber 210 of the porous end surface of the ferrule end face 223 aligned. 如果有必要,则在此后,与一般的光纤的情况相同,还可以研磨套圈223的端面。 If necessary, thereafter, the general case of the same optical fiber, the ferrule end face polishing may also be 223. . .

其中,密封部221距光纤连接器端面的形成位置,只要能堵塞空孔215 且具有机械强度,则没有特别限定,但考虑到长期可靠性,最好深100u m以上。 Wherein the seal portion 221 is formed from an optical fiber end surface position of the connector, as long as 215 and plug the pores having a mechanical strength, it is not particularly limited, but considering the long-term reliability, more preferably 100u m deep.

如上所述,根据本实施方式的光纤连接器,能够获得以下效果。 As described above, according to the optical fiber connector according to the present embodiment, the following effects can be obtained.

(1) 由于用密封部221密封空孔215的端部,因此能够提供一种不会在光纤端面残留研磨粉或者研磨剂、端面被密封的可靠性高的光纤连接 (1) Since the end portion seal 221 seals void 215, it is possible not to provide a fiber end connected to a high residual abrasives or abrasives, the reliability of sealing the optical fiber end face

器o An o

(2) 由于密封部221由紫外线硬化性光学粘合剂和石英微粒构成, 因此在光学粘合剂硬化时,能利用石英微粒抑制体积收縮。 (2) Since the sealing portion 221 is made of UV curable optical adhesive and quartz particles, and therefore when the optical adhesive is hardened, can suppress volume shrinkage of quartz particles. 因此能够防止在光纤端部硬化的粘合剂内产生气泡,实现低损失化。 It is possible to prevent air bubbles in the hardened adhesive fiber end, to achieve low loss.

(3) 由于利用折射率比包层213小的密封部221密封空孔215,因此 (3) since the index of refraction than the cladding 213 sealing portion 221 seals the small hole 215, thus

能够对包括弯曲特性的光学特性进行稳定化。 Capable of stabilizing the optical properties including a bending characteristic.

下面,参照附图,对本发明实施方式五的光纤连接部以及光纤连接器进行说明。 Referring to the drawings, embodiments of the present invention, five optical fiber connection portion and an optical fiber connector will be described.

图12是表示本发明的合适的实施方式五的光纤的连接部的侧视图。 FIG 12 is a side view of the optical fiber connected to a suitable embodiment of the present invention, five. 如图12所示,本实施方式的光纤的连接部301,使用与在如图17和图18说明的多孔光纤(HF) 361以及单模光纤371相同的对象,对于去除被覆层并进行末端处理的HF361的端面361a,经由在实际使用中的最低温度一30。 12, the optical fiber connecting portion 301 of the present embodiment, using holey fiber (HF) in FIG. 17 and FIG. 18 illustrates the same single mode fiber 361 and the object 371, for the removal of the coating layer and end treatment the end surface HF361 361a, via the lowest temperature in practical use a 30. C下的折射率比HF361的芯部362以及SMF371的芯部372 更低的折射率匹配剂r,与去除被覆层并进行末端处理的sMF371的端面371a进行对正连接。 C than the refractive index of the core portion 362 and HF361 SMF371 core lower refractive index matching material 372 r, sMF371 end surface of the coating layer is removed and end treatment is performed on the positive connector 371a. 折射率匹配剂r的使用目的如下:由于在对正连接后的HF361的端面361a和SMF371的端面371a之间形成由末端处理时的误差引起的空气层, 因此使用它是为了降低由该空气层产生的折射率差导致的菲涅耳反射损失。 R purpose of the index matching agent as follows: Since formation of an air layer caused by the error in the processing of the end HF361 between the end 361a and the positive connection SMF371 end surface 371a, so that it is used to reduce the air layer Fresnel reflection loss caused by the refractive index difference generated.

折射率匹配剂r例如由高分子聚合物系、硅树脂系、紫外线硬化性树脂构成。 R index matching agent such as silicone-based, ultraviolet-curable resin made of a polymer-based polymers. 作为折射率匹配剂r,可使用在温度一3(rC下的波长L3〜1.55ym带域的光的折射率是1.458以下、且在温度范围一30〜+7(TC下的折射率的平均温度系数是一8,0X10—V'C以上、小于0/'C的折射率匹配剂。 As the index matching agent r, the refractive index may be used in a three-wavelength light temperature (under rC L3~1.55ym band is 1.458 or less, and an average refractive index (at a temperature range of TC 7 + 30~ is a temperature coefficient 8,0X10-V'C to less than 0 / 'C index matching agent.

这里,所谓折射率的平均温度系数是指在某个温度范围内的每rc的 Here, the average temperature coefficient of the refractive index refers to the so-called per rc within a certain temperature range

折射率变化量。 The refractive index variation.

在本例中,使用了具有如图i3所示的横轴取温度rc)、纵轴取折射 In the present embodiment, a having a horizontal axis as shown in FIG i3 temperature taken RC), the vertical axis represents the refractive

率时的温度特性线321的温度特性的凝胶状的硅系折射率匹配剂r。 Silicon-based gel temperature characteristic line 321 when the temperature characteristic of the refractive index matching agent r. 更详细的说,温度特性线321在一30'C下的折射率是1.455、在2(TC下的折射率是1.435、在70'C下的折射率是1.417、在温度范围一30〜+ 70'C下的折射率的平均温度系数是约一4.0X 10—4/°C 。 In more detail, the refractive index of the temperature characteristic line 321 in a 30'C is 1.455, the refractive index of 2 (at TC is 1.435, the refractive index is 1.417 at 70'C, in a temperature range of + 30~ the average temperature coefficient of the refractive index at 70'C is about a 4.0X 10-4 / ° C.

使用在温度一3(TC下的波长1.3〜1.55um带域的光的折射率为1.458 以下的折射率匹配剂r,是为了防止在连接后的HF361的空孔364中侵入折射率匹配剂r而形成假芯部,防止连接后的HF361的实际性的MFD的扩大。 Refractive index of light in a three-wavelength temperature (TC 1.3~1.55um band at 1.458 or less is a refractive index matching agent r, to prevent the invasion of the refractive index matching material r pores 364 HF361 after connection false core portion is formed, to prevent the expansion of the MFD actual HF361 after connection.

数值范围限定为上述范围是考虑到以下情况而确定的。 Numerical range defined in the above range in view of the following determined. 一般来说,作为折射率匹配剂r使用由高分子聚合物系构成的折射率匹配剂,但其折射率具有随温度上升下降的倾向。 In general, a refractive index matching agent consisting of a polymer-based refractive index matching agent as r, but the refractive index tends to decrease with increasing temperature. 一30。 A 30. C是实际使用上的最低温度,如果折射率匹配剂r在一30'C下的折射率与包层363相等或在其以下,则在—30 °〇以上的温度区域不会形成假芯部。 C is the lowest temperature on the actual use, it is equal to r if the refractive index matching material 363 and the cladding refractive index in a 30'C or below which, at a temperature range of not more than -30 ° square prosthesis core is formed . 由于最普及的石英系光纤的包层是纯石英,因此考虑到其折射率1.458,将在温度一3(TC的光的折射率设为了1.458以下。此外, 一般在石英系光纤中传输的光的波长是1.3〜1.55um。 Since the most popular clad silica-based optical fiber is pure silica, thus taking into account the refractive index of 1.458, the temperature of a 3 (refractive index of light of 1.458 or less is defined as TC. In addition, the general optical transmission line in a quartz optical fiber the wavelength is 1.3~1.55um.

使用在温度范围一30〜+ 7(TC下的折射率的平均温度系数是一8.0X IO一VC以上、小于0/。C的折射率匹配剂r是为了降低在高温区域下在连接部上的反射衰减量。 In a temperature range of + 7 30~ the average temperature coefficient of refractive index (at a 8.0X IO TC is more than one VC, less than 0 / .C r is the refractive index matching material at an elevated temperature to reduce the region of the connecting portion reflection attenuation amount.

数值范围定为上述范围是考虑到以下情况而确定的。 Numerical range for a given situation is determined taking into account the above range. 十7(TC是实际使用中的最高温度,在该高温区域,有可能由折射率匹配剂r的折射率降低 Ten 7 (TC is the maximum temperature in practical use, the high temperature region, it is possible to reduce the refractive index matching material r

而在连接部出现反射特性的劣化。 Degraded reflection characteristic appears in the connecting portion. 因此在实际使用上的反射衰减量的界限 Thus reflection attenuation limit in practical use

定在了30dBm以上。 Set at more than 30dBm. 这里,反射衰减量是由芯部362及折射率匹配剂r 的折射率的差决定的量。 Here, the reflection attenuation amount is an amount determined by the difference in refractive index of the core portion 362 and the refractive index matching material r. 根据菲涅耳反射的式子,如果将芯部362的折射率设为nl、将折射率匹配剂r的折射率设为n2,则反射衰减量Lr可通过以下公式求出。 The Fresnel reflection equation, if the refractive index of the core portion is defined as NL 362, the refractive index matching material r is defined as n2, the reflection attenuation amount Lr can be obtained by the following equation.

反射衰减量:Lr= —10XlogR (dBm) Return loss: Lr = -10XlogR (dBm)

但是,R= (nl—n2) 2/ (nl+n2) 2 However, R = (nl-n2) 2 / (nl + n2) 2

根据该式,当将芯部362的折射率设为1.463时,为确保30dBm以上的反射衰减量,有必要将折射率匹配剂r设为1.39以上。 According to this formula, when the refractive index of the core portion 362 is set to 1.463, to ensure that the return loss over 30dBm, the refractive index matching agent is necessary r is 1.39 or more. 从一3(TC到+70 'C之间的温度差是IO(TC,折射率匹配剂r要求的平均温度系数是一8.0X 10一4厂C以上、小于0/。C。 From 3 (TC +70 'C is a temperature difference between the IO (TC, the average temperature coefficient of refractive index matching material r is a requirement of a 8.0X 10 4 or more plant C, less than 0 / .C.

下面说明本实施方式的作用。 The following effects of the present embodiment will be described.

在光纤的连接部301中,由于将HF361经由折射率匹配剂r,与SMF371对正连接,因此由毛细管现象,HF361的各空孔364内的折射率匹配剂r从端面361a侵入数百U m的深度。 In the connection portion of the optical fiber 301, since the index matching agent through r, and being connected to SMF371 HF361, so by the capillary phenomenon, the refractive index matching material 364 within each r pores HF361 invasive hundreds U m from the end face 361a depth.

在这里,如图13的温度特性线321所示,折射率匹配剂i"的折射率随着温度升高渐渐降低,在实际使用中的最低温度一3(TC下是1.455、在实际使用中的最高温度+7(TC下是1.417。 Here, the refractive index of the temperature characteristic line 13 shown in FIG., A refractive index matching agent i 321 "is gradually decreased with increasing temperature, the minimum temperature in practical use of a 3 (the TC is 1.455, in practical use the maximum temperature +7 (under TC is 1.417.

从而,折射率匹配剂r的折射率在一30。 Thereby, a refractive index matching agent in a 30 r. C以上的温度区域, 一直比HF361的芯部362 (本例中是包层363)的折射率低,因此即使折射率匹配剂r侵入到各空孔364内,也不会在中央部的原本的芯部362周围形成假芯部。 C above temperature range, has been (a package layer 363 in this example) lower than the refractive index of the core portion 362 HF361, even if the refractive index matching material r intruding into each hole 364, not in the central portion of the original 362 is formed around the core portion of the core portion false.

因此,光纤的连接部301的连接后的HF361的实际的芯部直径、即模场直径(MFD)在连接前后没有变化,因此HF361和SMF371之间的连接损失小。 Thus, the connection portion 301 of the optical fiber core diameter of the actual, i.e., mode field diameter (MFD) does not change before and after the connection of the connector HF361, so small connection loss between HF361 and SMF371.

在上述实施方式中,对HF361和SMF371连接的实例进行了说明,但也可以连接两个HF361。 In the embodiment described above, and HF361 for instance SMF371 connection has been described, but may be connected two HF361. 此外,替代与包层363相比芯部362的折射率更高的HF361,可使用芯部和包层的折射率相互相等的HF。 Further, instead of the cladding 363 as compared to the refractive index of the core higher HF361 362 may be used and the core portion of the cladding equal to each other HF. 在该情况下, 也可以获得与上述相同的效果。 In this case, the same effect can be obtained as described above. 此外,替代HF361,使用如图16所示的光子晶体光纤(PCF) 351, 也能获得与上述相同的作用效果。 In addition, instead HF361, using a photonic crystal fiber (PCF) 351 shown in Figure 16, it is possible to obtain the same effects as described above. PCF351在芯部352的周围形成包层353, 以在该包层353内围绕芯部352的方式蜂巢状配列形成朝芯部352的轴方向延伸的多个空孔354,构成光子能带隙构造的衍射光栅。 PCF351 forming cladding layer 353 around the core 352, as to the honeycomb shape around the core portion within the cladding 353 352 an arrangement of a plurality of pores toward the core portion extending in the axial direction 352 354, constituting the photonic band gap structure the diffraction grating.

本实施方式的光纤的连接部301并不局限于使用的HF或者PCF的空孔的个数、在包层内分布的空孔分布直径。 The number of pores or HF PCF connecting portion 301 of the optical fiber according to the present embodiment is not limited to use of the pore distribution is within the cladding diameter distribution.

下面,对收容有光纤的连接部301的对正型光纤连接器的一例进行说明。 Next, the optical fiber connector is housed in one case of the positive-type optical fiber connector 301 will be described.

图14是表示本发明的实施方式六的光纤连接器的立体图。 FIG 14 is a perspective view showing an optical fiber connector according to an embodiment six of the present invention.

如图14所示,本实施方式的单心机械接头331除了使用在图12和图 Single core mechanical splice 331, the present embodiment of FIG. 14 embodiment, except that in FIG. 12 and FIG.

13中说明的折射率匹配剂r这一点之外,具有与图20中说明的机械接头 R in the index matching agent 13 described in this point, the description of FIG. 20 having a mechanical splice

391相同的构成。 391 of the same configuration.

艮P,机械接头331具备:V槽基板,具备将相对的光纤相互对正并支撑、定位、调芯的V槽;重合在基板332上并挤压向V槽插入的光纤的盖部件333;用于夹持基板332和盖部件333的夹持部件334。 Gen P, mechanical splice 331 comprises: a V-groove substrate having the relative optical fiber aligned with each other and support the positioning, alignment of the V-groove; overlap on the substrate 332 and pressing the optical fiber inserted into the V-groove of the cover member 333; holding member 332 for holding the substrate 333 and the cover member 334.

在基板332和盖部件333的重合部的侧端部形成有楔插入部335,其两端形成有引导孔336。 Wedge insertion portion 335 is formed at a side end portion of the overlapped portion of the substrate 332 and the cover member 333, 336 has a guide hole formed on both ends thereof. 筐体337由基板332和盖部件333构成。 Casing 337 is a substrate 332 and a cover member 333.

在机械接头331中,预先在光纤的对正位置(基板332和盖部件333 的内面中央部)填充在图12和图13中说明的折射率匹配剂r,向楔插入部335插入楔使得在基板332和盖部件333之间形成间隙,再从引导孔336 向该间隙插入已进行末端处理的HF361和SMF371,从而在V槽内对正, 之后,将楔拔出,用基板332和盖部件333把持HF361和SMF371,实现固定连接。 In the mechanical splice 331, in advance of the optical fiber alignment position (the substrate 332 and the cover member the inner surface of the central portion 333) filled in a refractive index matching material r in FIG. 12 and FIG. 13 explained 335 insertion wedge into wedge insertion portion so that a gap is formed between the substrate 332 and the cover member 333, and from the guide hole 336 has been inserted into the gap and HF361 SMF371 end processing, so that V grooves on the positive, then, pull the wedge, with the substrate 332 and the lid member 333 and gripping HF361 SMF371, fixed connection.

由此,能够在机械接头331的筐体337内收容如图12中说明的光纤的连接部301,实现HF361和SMF371的对正连接。 Thus, the housing can be connected as part of the optical fiber 12 described in the mechanical splice 301 within the housing 337 of 331, and to achieve HF361 SMF371 of being connected.

该机械接头331与采用通过粘合剂或者熔敷进行永久连接的方法的光纤连接器不同,能够反复使用。 The different mechanical splice 331 and method for permanent connection by an adhesive or welding of the fiber optic connector, can be used repeatedly. 机械接头331在波长L55lim下、室温附近的连接损失是约0.08dB。 Mechanical joint at a wavelength of 331 L55lim, connection loss around room temperature is approximately 0.08dB.

在这里,图15表示连接后的机械接头331的在温度范围一30°C〜+ 7(TC的连接损失的温度特性。在图15中,横轴表示时间,左纵轴表示温度(°C)、右纵轴表示连接损失(dB),并将在每规定时间变化5'C的温度 Here, FIG. 15 shows the mechanical splice connector 331 at a temperature in the range 30 ° C~ + 7-temperature characteristic (TC loss of connection. In FIG. 15, the horizontal axis represents time, the left vertical axis represents temperature (° C ), the right vertical axis represents the connection loss (dB), and the variation of the temperature of 5'C per predetermined time

用黑色矩形块表示、将此时的连接损失用黑色菱形块表示。 Black rectangular block represents the connection loss is represented by a black diamond.

如图15所示,连接后的机械接头331的连接损失在整个温度范围内小于O.ldB,很稳定。 As shown in FIG. 15, the mechanical splice connector connection loss of less than 331 after O.ldB over the entire temperature range, very stable. 在使用折射率如此低的折射率匹配剂r时要注意的是,折射率匹配剂r的折射率在高温区域进一步降低时在连接部的反射衰减量的大小。 When using a low refractive index matching agent thus r is to be noted that the size of the reflection attenuation amount in the connecting portion when refractive index matching material r further reduced in a high temperature region. 然而,机械接头331在+70'C下的反射衰减量是37dBm、在实际使用上的反射衰减量的界限是满足30dBm以上。 However, the mechanical joint 331 to + 70'C reflection attenuation amount is 37dBm, the amount of reflection attenuation limit in practical use is to meet the above 30dBm.

这样,机械接头331由于预先填充有折射率匹配剂r,因此能够以低损失连接HF361和SMF371。 Thus, the mechanical splice 331 is preliminarily filled with a refractive index matching material r, can be connected with low loss and HF361 SMF371. 连接损失值与通常的SMF彼此的连接损失值相等。 The connection loss value of the normal SMF connection loss value equal to each other. ' '

此外,机械接头331由于预先填充有折射率匹配剂r,因此连接后的连接损失的温度特性稳定。 Further, since the mechanical splice 331 is prefilled with a refractive index matching material r, so that the temperature characteristics of the connection stability after connection loss. 连接损失值的变动幅度与通常的SMF彼此间的连接损失的变动幅度相等。 Connection loss fluctuation range value is equal to a normal SMF connection loss variation range of each other. 即,机械接头331的连接损失的温度特性变化小,尤其即使在低温区域连接损失也低。 That is, the loss of mechanical splice connector 331 of the small changes in temperature characteristic, particularly the connection loss even in a low temperature region is low.

上述实施方式是表示了HF361和SMF371通过机械接头331连接的实例,但也可以HF361相互间、PCF351和SMF361、 PCF351相互间通过机械接头331连接。 The above-described embodiment is an embodiment example and HF361 SMF371 connected by a mechanical joint 331, but may be HF361 each other, and PCF351 SMF361, inter PCF351 331 interconnected by a mechanical joint. 在此情况下,能够获得与上述相同的效果。 In this case, it is possible to obtain the same effect as described above.

作为对正型的光纤连接器,上面对使用V槽型的机械接头331的实例进行了说明,但可以使用其他V槽连接器、毛细管型连接器等所有对正型光纤连接器。 As a positive-type optical fiber connector, the face 331 of mechanical splice instance using a V groove has been described, but other V-groove connector, a capillary connector and all of the positive-type optical fiber connector.

此外,除了可反复使用的这些光纤连接器以外,还可以使用采用环氧系紫外线硬化性粘合剂兼作折射率匹配剂r的永久连接方法的光纤连接器。 Further, in addition to these reusable optical fiber connectors, may be used epoxy based UV curable adhesive optical fiber connector also serves as a refractive index matching agent permanent connection method of r.

以下,参照附图,对本发明的实施方式七的光纤的连接部以及光纤连接器进行说明。 Referring to the drawings, embodiments of the optical fiber of the present invention seven connecting portion and an optical fiber connector will be described.

首先,作为在所述的机械接头391上的连接损失的温度特性变化大的问题的对策,本发明者们尝试使用了折射率比图18和图19的折射率匹配剂i7低、遵从图13所示的温度特性线321的低折射率匹配剂。 First, as a countermeasure temperature characteristics of the connection loss at the mechanical splice 391 in a large change, the present inventors have tried using refractive index lower than the index matching agent i7 FIGS. 18 and 19, to comply with 13 temperature characteristic line shown in the low refractive index matching material 321. 该低折射率匹配剂在一30。 The low-refractive index matching agent 30 a. C下的折射率是1.455、在2(TC下的折射率是1.435、在70。C下的折射率是1.417、在温度范围一30〜+70。C下的折射率的平均温度系数是约一4.0X10—4/°C。 C is a refractive index of 1.455, a refractive index of 2 (at TC is 1.435, the refractive index is 1.417 at 70.C, at a temperature range of the average temperature coefficient of refractive index in a 30~ + 70.C about a 4.0X10-4 / ° C.

在图20所示的机械接头391中,替代折射率匹配剂r7使用低折射率匹配剂的情况下,如图15所示,在波长1.55um下的连接损失是在2(TC 的环境下为0.08dB。此外,连接后的机械接头391的在温度范围一30。C〜 十7(TC的连接损失也小于0.1dB,很稳定。 In the mechanical splice 391 shown in FIG. 20, instead of the index matching agent r7 case of using the low refractive index matching agent, 15, the connection loss at a wavelength of 1.55um is 2 (TC environment for the 0.08dB. Moreover, the mechanical splice connector 391 after the temperature in a range of ten 30.C~ 7 (TC connection loss is less than 0.1dB, very stable.

然而,在使用这样的低折射率匹配剂的情况下担心的是,当在高温区域,低折射率匹配剂的折射率进一步降低时,HF361和SMF371的连接部上的光的反射量的大小。 However, in the case where the fear of such a low-refractive index matching agent is, when the high temperature region, the low refractive index matching agent is further decreased, the size of the amount of light reflected on the connecting portion SMF371 and HF361.

图25表示在使用低折射率匹配剂的情况下的机械接头391的反射量的温度特性。 25 shows the temperature characteristic of the reflection amount in the case where the low refractive index matching agent 391 of mechanical splice. 当芯部的比折射率差相对包层相当于0.35%时,HF361和SMF371的芯部362、 363的折射率是1.463,但如图25所示,例如在70 。 When the difference in refractive index than the core portion of the cladding layer corresponding to opposite 0.35%, HF361 and SMF371 core 362, 363 is a refractive index of 1.463, as illustrated in FIG 25, for example 70. C时,产生的反射量是一36dB,不能充分满足实用上必要的一40dB以下的要求。 C, the amount of reflection is produced a 36dB, can not sufficiently meet the necessary 40dB below a practical requirements.

为此,本发明人经过潜心研究的结果,想到了能同时减小连接损失和反射量双方的光纤的连接部以及光纤连接器。 To this end, the present invention through the results of extensive studies, the thought can simultaneously reduce both the loss and the reflection optical fiber connector connecting portion and the amount of the fiber optic connector.

以下参照附图,对本发明实施方式七的实施方式进行说明。 Hereinafter, embodiments of the present invention will be described with reference to the embodiment seven drawings. 图22是表示本发明的实施方式七的光纤的连接部的侧视图。 FIG 22 is a side view of the optical fiber connector according to an embodiment seven of the present invention. 如图22所示,本实施方式的光纤的连接部301,使用与在如图17和图18说明的多孔光纤(HF) 361以及单模光纤371相同的对象,对于去除被覆层并进行末端处理的HF361的端面361a,经由在实际使用中的最低温度范围一30〜+ 70。 22, the optical fiber connecting portion 301 of the present embodiment, using holey fiber (HF) in FIG. 17 and FIG. 18 illustrates the same single mode fiber 361 and the object 371, for the removal of the coating layer and end treatment the end surface HF361 361a, via the lowest temperature range in practical use in a 30~ 70 +. C下的折射率为HF361的包层363以及SMF3" 的包层373以下、且含有平均直径或者平均长度为100nm以下的微小体的折射率匹配体R,与去除被覆层并进行末端处理的sMF371的端面371a进行对正连接。 C is a refractive index of the cladding 363 HF361 and SMF3 "cladding 373 or less and having an average diameter or an average length of 100 nm or less refractive index adjuster minute body R & lt's, sMF371 the coating removal process and the end the end surface 371a being connected to be.

折射率匹配体R的使用目的如下:由于在对正连接后的HF361的端面361a和SMF371的端面37la之间形成由末端处理时的误差引起的空气层,因此使用它是为了降低由该空气层产生的折射率差导致的菲涅耳反射损失。 R purpose refractive index adjuster as follows: Since formation of an air layer caused by the error in the processing of the end HF361 between the end 361a and the positive connection SMF371 end surface 37la, so that it is used to reduce the air layer Fresnel reflection loss caused by the refractive index difference generated.

折射率匹配体R是例如在高分子聚合物系或者硅树脂系的折射率匹配剂或者紫外线硬化性树脂中混合作为微小体的平均直径在100nm以下的微粒(纳米粉末)、或者平均长度为lOOum以下的薄的扁平状的带状体、 管体、纤维体而构成。 R is, for example, the index matching material in the polymer-based or silicone-based refractive index matching material or an ultraviolet curable resin was mixed as the average particle diameter of 100nm or less in the minor body (nano powder), or an average length of lOOum the following thin flat strip, tube, fiber body constituted. 在本实施方式中,作为折射率匹配体R使用了在高分子聚合物系的折射率匹配剂中混合了以纯石英为主成分的纳米粉末而构成的物质。 In the present embodiment, using a mixture of pure silica material mainly composed of nanopowders constituted index matching agent in the polymer-based body as index matching R.

此外,折射率匹配剂和微小体的混合重量比例如取10.. 1〜h 1。 Further, the mixing weight ratio of the index matching agent taken and microscopic bodies such as 10 .. 1~h 1. 在温度范围一30〜+ 70。 At a temperature range of + 70 30~. C的折射率匹配体R的折射率设为HF361的包层363以及SMF371的包层373的折射率以下是为了:即使折射率匹配体R从HF361的端面361a侵入到空孔364内,也能防止在端面361a附近形成假芯部,防止从原本的芯部、即从HF361的芯部362和SMF371的芯部372产生光的耦合现象。 Refractive index matching material is defined as R C refractive index of the cladding 363 and HF361 SMF371 cladding layer 373 following order: R, even if the refractive index adjuster from the end surface 361a HF361 entering into the hole 364, can be preventing the formation of a false core portion 361a in the vicinity of the end face, to prevent the coupling effect from the original core portion, i.e., light generated from HF361 core 362 and core 372 SMF371.

一般来说,作为折射率匹配剂使用高分子聚合物系的折射率匹配剂, 但其折射率具有随温度上升而下降的倾向。 In general, a refractive index matching agent-based polymer as the index matching agent, the refractive index tends to decrease with increasing temperature. 一30'C是实际使用上的最低温 A 30'C is the lowest temperature on actual use

度,因此如果折射率匹配剂在一3CTC下的折射率是包层363、 373的折射率以下,则在一30'C温度区域、即使在实际使用上的最高温度一70'C,也不会在端面361a附近形成假芯部。 Degrees, so if the refractive index matching agent is at a 3CTC cladding 363, the refractive index of 373 or less, at a temperature range of 30'C, the maximum temperature in practical use even in a 70'C, nor false formed near an end face of the core portion 361a.

使用含有平均直径或者平均长度为100nm以下的微小体的折射率匹配体R是为了防止光的散乱。 Containing an average diameter or an average length of 100 nm or less refractive index adjuster minute body R & lt is to prevent scattered light. 此外,如果微小体的平均直径或者平均长度超过100nm,则当对正HF361和SMF371时,在HF361和SMF371之间的光轴偏离,引发由轴偏离引起的连接损失。 Further, if the average diameter or an average length of 100 nm or more than a minute body, when the positive and SMF371 HF361, HF361 between the optical axis and SMF371 deviation caused by a loss of connection due to axial misalignment.

作为微小体使用以纯石英作为主成分的纳米粉末是因为:纯石英具有 As the fine powder material using nano-pure quartz as a main component because: pure silica having

与HF361的包层363以及SM371的包层373大致相等的折射率,以纯石英作为主成分的纳米粉末的折射率的温度特性在一30〜+ 70'C几乎没有 HF361 and cladding 363 and cladding 373 SM371 substantially equal to the refractive index of pure silica as a main component of the temperature characteristic of the refractive index of the nano powder in a little 30~ + 70'C

变化,基本稳定的缘故。 Changes in the basic stability's sake. 从而,通过作为母材的高分子聚合物系的折射率匹配剂含有以纯石英作为主成分的纳米粉末,可以缓和折射率匹配体R的折射率的温度特性变化。 Thus, by the refractive index matching agent, a base material containing nano-based polymer powder of pure silica as a main component, the temperature characteristic variation can be alleviated refractive index matching member of R.

此外,将折射率匹配剂和微小体的混合重量比设为10: 1〜1: l是因 Further, the index matching agent and the mixing weight ratio of fine material to 10: 1~1: l due

为:当混合重量比小于10: l时,通过含有微小体而缓和折射率匹配体R As follows: When the mixing weight ratio of less than 10: When l, containing a tiny element mitigated by the refractive index adjuster R

的折射率的温度特性变化的效果不明显,在实际应用上没有意义。 Temperature characteristics change in refractive index of the effect is not obvious, there is no significance in practice. 此外, In addition,

如果混合重量比超过l: 1,则折射率匹配体R的粘性提高,很难向HF361 和SMF371的连接部进行涂敷和安装。 If the mixing weight ratio exceeds l: 1, the refractive index matching member R improved viscosity, coating and difficult to install and HF361 SMF371 connecting portion. 接着,对折射率匹配体R—例进行说明。 Next, the refractive index adjuster R- embodiment will be described.

对于在一3(TC下的折射率为1.458的高分子聚合物系的折射率匹配剂中,将纳米粉末('卞y力17S夕口y社制、粒径37nm的SK)2微粒)以高分子聚合物系的折射率匹配剂和纳米粉末的混合重量比成10: 5的方式进行混合,制作折射率匹配体R。 For a 3 (refractive index matching agent-based polymer refractive index of 1.458 TC of the nanopowder ( 'force 17S Bian y y Xi port Ltd., SK 37nm particle diameter) of microparticles 2) to the index matching agent by weight of the mixed powders and nano-based polymer ratio to 10: were mixed to prepare a refractive index adjuster fifth R.

如图23所示,高分子聚合物系的折射率匹配剂具有将横轴设为温度CC)、纵轴设为折射率时的遵从由点线表示的温度特性线B所示的温度特性。 23, the polymer-based polymer having a refractive index matching agent to comply with the temperature characteristic represented by the dotted line shown in the characteristic line B is the temperature of the horizontal axis is the refractive index of the temperature of the CC), the vertical axis is. 温度特性线B中,在一30'C下的折射率是1.458、在+ 7(TC下的折射率是1.42、在温度范围一30〜+7(TC下的折射率的平均温度系数是约一4.0X10—VC。在这里,所谓折射率的平均温度系数是指在某个温度范围内 Temperature characteristic line B, the refractive index in a 30'C is 1.458, the refractive index at + 7 (TC is at 1.42, at a temperature range of + 7 30~ the average temperature coefficient of refractive index (at about TC a 4.0X10-VC. here, the average temperature coefficient of the refractive index is the so-called means a temperature within the range of

的每rc的折射率变化量。 Change amount of the refractive index of each rc.

此外,折射率匹配体R具有遵从由实线表示的温度特性线A的温度特性。 Furthermore, index matching member R having compliant temperature characteristic represented by the solid line A temperature characteristic line. 温度特性线A中,在一30'C下的折射率是1.458、在+7(TC下的折射率是1.44、在温度范围一30〜+ 7(TC下的折射率的平均温度系数是约一2.0X1()—VC。由于折射率匹配体R含有纳米粉末,因此缓和了折射率的温度特性变化,与不含有纳米粉末的高分子聚合物系的折射率匹配剂相比,折射率的平均温度系数变成一半的值。 A temperature characteristic line, the refractive index in a 30'C is 1.458, the refractive index (at +7 TC is 1.44, at a temperature range of + 7 30~ the average temperature coefficient of refractive index (at about TC a 2.0X1 () -. VC since the refractive index matching material nanopowder comprising R, thus easing the temperature characteristic of the refractive index change, as compared with a refractive index matching agent does not contain a polymer-based nanopowders, the refractive index the average value of the temperature coefficient becomes half.

以下,说明本实施方式的作用。 Hereinafter, effects of the present embodiment will be described.

在光纤的连接部301中,由于将HF361经由折射率匹配体R,与SMF371对正连接,因此由毛细管现象,HF361的各空孔364内的折射率匹配体R从端面361a侵入数百ym的深度。 The connection portion 301 of the optical fiber, since the refractive index of the body R via the matching HF361, connected to the positive SMF371, so by the capillary phenomenon, the refractive index in each of the holes 364 HF361 R matching body from entering the end face 361a of hundreds ym depth.

在这里,如图23的温度特性线A所示,折射率匹配体R的折射率随着温度升高渐渐降低,在实际使用中的最低温度一30'C下是1.458、在实际使用中的最高温度+ 7(TC下是1.44。 Here, as shown in FIG temperature characteristic line A 23, the refractive index matching member R is gradually lowered as the temperature increases, the minimum temperature in practical use is in a 30'C 1.458, in actual use maximum temperature + (7 TC at 1.44.

从而,折射率匹配体R的折射率在一3(TC以上的温度区域, 一直处于HF361的包层363的折射率以下,因此即使折射率匹配体R侵入到各空孔364内,也不会在中央部的原本的芯部362周围形成假芯部。 Thus, the refractive index matching member R is in a temperature range (above the TC-3, has been in the refractive index of the cladding 363 HF361 or less, even if the invasion of the refractive index adjuster to R 364 each hole, not forming a dummy core portion around the original core portion 362 of the central portion.

因此,光纤的连接部301是,在实际使用中的温度范围(一30〜+70 。C〉内,能够防止从原本的芯部(HF361的芯部362以及SMF371的芯部372)的光的耦合现象。换言之,由于连接后的HF361的实际的芯部直径(模场直径(MFD))在连接前后不变,因此HF361和SMF371之间的连接损失小。 Thus, the connection portion of the optical fiber 301 is within a temperature range of practical use (a 30~ + 70 .C>, possible to prevent light from the original core portion (HF361 SMF371 core 362 and core 372) is coupling phenomenon. in other words, because the actual diameter of the core portion of the connecting HF361 (mode field diameter (the MFD)) before and after the connection change, thus a small connection loss between HF361 and SMF371.

此外,在光纤的连接部301,由于折射率匹配体R含有以折射率的温度特性变化几乎没有的纯石英作为主成分的纳米粉末,因此在实际使用上的温度范围,缓和折射率匹配体R的折射率的温度特性变化,抑制了HF361 的端面361a以及SMF371的端面371a的光反射,从而反射量小。 Further, the connecting portion of the optical fiber 301, since the refractive index matching material containing pure silica R to change a temperature characteristic of the refractive index hardly nanopowder as a main component, so the practical use temperature range, the refractive index adjuster relaxation R the temperature characteristics of change in refractive index, is suppressed, and the end surface 361a HF361 end surface 371a of the light reflecting SMF371, so that a small amount of reflection. 因此, 能够以低反射连接HF361和SMF371。 Accordingly, it is possible to connect a low reflection HF361 and SMF371.

在上述实施方式中,对HF361和SMF371连接的实例进行了说明,但也可以连接HF361彼此间。 In the embodiment described above, and HF361 for instance SMF371 connection has been described, but may be connected to each other between HF361. 此外,替代与包层363相比芯部362的折射率更高的HF361,也可使用芯部和包层的折射率相互相等的HF。 Further, instead of the cladding 363 as compared to the core of higher refractive index HF361 362, may also be used and the core index of the cladding equal to each other HF. 在该情况下,也可以获得与上述相同的效果。 In this case, the same effect can be obtained as described above.

此外,替代HF361,使用如图16所示的光子晶体光纤(PCF) 351, 也能获得与上述相同的作用效果。 In addition, instead HF361, using a photonic crystal fiber (PCF) 351 shown in Figure 16, it is possible to obtain the same effects as described above. PCF351在芯部352的周围形成包层353, 以在该包层353内围绕芯部352的方式蜂巢状配列形成朝芯部352的轴方向延伸的多个空孔354,构成光子能带隙构造的衍射光栅。 PCF351 forming cladding layer 353 around the core 352, as to the honeycomb shape around the core portion within the cladding 353 352 an arrangement of a plurality of pores toward the core portion extending in the axial direction 352 354, constituting the photonic band gap structure the diffraction grating.

本实施方式的光纤的连接部301并不局限于使用的HF或者PCF的空孔的个数、在包层内分布的空孔分布直径。 The number of pores or HF PCF connecting portion 301 of the optical fiber according to the present embodiment is not limited to use of the pore distribution is within the cladding diameter distribution.

下面,对收容有光纤的连接部301的对正型光纤连接器的一例进行说明。 Next, the optical fiber connector is housed in one case of the positive-type optical fiber connector 301 will be described.

如图14所示,本实施方式的单心机械接头331除了使用在图22和图23中说明的折射率匹配体R这一点之外,具有与图20中说明的机械接头391相同的构成。 Single core mechanical splice 331, the present embodiment of FIG. 14 embodiment, except that in FIG. 22 and FIG. 23 illustrates the refractive index matching member R for this point, has described in FIG. 20 of the same configuration as the mechanical splice 391.

艮P,机械接头331具备:V槽基板,具备将相对的光纤相互对正并支撑、定位调芯的V槽;与基板332重合,并挤压向V槽插入的光纤的盖部件333;用于夹持基板332和盖部件333的夹持部件334。 Gen P, mechanical splice 331 comprises: a V-groove substrate having the relative optical fiber aligned with each other and support the positioning of the alignment V grooves; coincides with the substrate 332, and is press-inserted into the V-groove lid member 333 of the optical fiber; with clamping the substrate holding member 332 and the cover member 333 334.

在基板332和盖部件333的重合部的侧端部形成有楔插入部335,其两端形成有引导孔336。 Wedge insertion portion 335 is formed at a side end portion of the overlapped portion of the substrate 332 and the cover member 333, 336 has a guide hole formed on both ends thereof. 筐体337由基板332和盖部件333构成。 Casing 337 is a substrate 332 and a cover member 333.

在机械接头331中,预先在光纤的对正位置(基板332和盖部件333 的内面中央部)填充在图22和图23中说明的折射率匹配体R,在使基板332和盖部件333被夹持部件334夹持的状态,向楔插入部335插入楔使得在基板332和盖部件333之间形成间隙,再从引导孔336向该间隙插入已进行末端处理的HF361和SMF371,从而在V槽内对正,之后,将楔拔出,用基板332和盖部件333把持HF361和SMF371,实现固定连接。 In the mechanical splice 331, in advance of the optical fiber alignment position (the substrate 332 and the cover member the inner surface of the central portion 333) filled with index matching material R in FIG. 22 and FIG. 23 of illustration, the substrate 332 and the cover member 333 is the clamping member 334 clamped state, the wedge 335 is inserted into the wedge insertion portion such that a gap is formed between the substrate 332 and the cover member 333, and then has been HF361 SMF371 terminal treatment from the guide hole 336 is inserted into the gap, so that V alignment groove, after which the wedge removed, with the substrate 332 and the cover member 333 and gripping HF361 SMF371, fixed connection. 由此,能够在机械接头331的筐体337内收容如图22中说明的光纤的连接部301,实现HF361和SMF371的对正连接。 Accordingly, it is possible to accommodate a connection portion 22 illustrated in FIG fiber 301 within the housing 331 of the mechanical splice 337, and achieve HF361 SMF371 of being connected. 该机械接头331与采用通过粘合剂或者熔敷进行永久连接的方法的光纤连接器不同,能够反复使用。 The different mechanical splice 331 and method for permanent connection by an adhesive or welding of the fiber optic connector, can be used repeatedly. 机械接头331在波长1.55 um下、室温附近的连接损失是约0.08dB。 Mechanical joint 331 at a wavelength of 1.55 um, the connection loss at around room temperature is approximately 0.08dB. 图24表示连接后的机械接头331的在温度范围一30'C〜+70'C上的反射量的温度特性。 FIG 24 shows the temperature characteristic of the reflection amount in the temperature range of a 30'C~ + 70'C after mechanical splice connector 331. 在图24中,横轴表示时间,左纵轴表示温度CC)、 右纵轴表示反射量(dB),并将在每规定时间变化5'C的温度用黑色矩形块表示、将此时的反射量用黑色菱形块表示。 In FIG 24, the horizontal axis represents time, the left vertical axis represents the temperature of the CC), the right vertical axis represents the amount of reflection (dB), and the temperature variation per prescribed time 5'C black rectangular block represents, at this time reflection amount indicated with black diamond. 如图24所示,连接后的机械接头331的反射量在整个温度范围内小于一41dB,相对实用上的充分的值(一40dB)很稳定。 24, the mechanical splice connector 331 is less than a reflection amount 41dB over the entire temperature range, a sufficient value (a 40dB) on opposite practical very stable. 此外,虽然未图示, 但在波长1.55um下的连接损失,也在所有温度范围内小于O.ldB,很稳定。 Furthermore, although not shown, the connection loss at a wavelength of 1.55um, it is also less than O.ldB all temperature ranges, very stable. 这样,机械接头331由于预先填充有折射率匹配体R,因此能够以低损失且低反射连接HF361和SMF371。 Thus, the mechanical splice 331 is preliminarily filled with the index matching material R, it is possible with low loss and low reflection connection HF361 and SMF371. 连接损失值与通常的SMF彼此的连接损失值相等。 The connection loss value of the normal SMF connection loss value equal to each other. 此外,机械接头331由于预先填充有折射率匹配体R,因此连接后的连接损失以及反射量的温度特性稳定。 Moreover, the mechanical splice 331 is preliminarily filled with a refractive index matching member R, so that the temperature characteristics of the connection and the amount of reflection loss of the connection is stable. 反射量值的变动幅度与通常的SMF 彼此间的连接损失和反射量的变动幅度相等。 Variation of reflection amplitude with a magnitude equal to a normal fluctuation range of the connection SMF and the amount of reflection loss between them. 即,机械接头331的连接损失和反射量的温度特性变化小,尤其即使在低温区域连接损失及反射量也低。 That is, the mechanical joint connection loss small temperature characteristic and the reflection amount of 331, in particular, even if the connection and the amount of reflection loss is low in a low temperature region. 上述实施方式是表示了HF361和SMF371通过机械接头331连接的实例,但也可以HF361相互间、PCF351和SMF371、 PCF351相互间通过机械接头331连接。 The above-described embodiment is an embodiment example and HF361 SMF371 connected by a mechanical joint 331, but may be HF361 each other, and SMF371 PCF351, inter PCF351 331 interconnected by a mechanical joint. 在此情况下,也能够获得与上述相同的效果。 In this case, it is possible to obtain the same effect as described above. 作为对正型的光纤连接器,上面对使用V槽型的机械接头331的实例进行了说明,但可以使用其他V槽连接器、毛细管型连接器等所有对正型光纤连接器。 As a positive-type optical fiber connector, the face 331 of mechanical splice instance using a V groove has been described, but other V-groove connector, a capillary connector and all of the positive-type optical fiber connector. 此外,除了可反复使用的这些光纤连接器以外,还可以使用采用环氧系紫外线硬化性粘合剂兼作折射率匹配体R的永久连接方法的光纤连接器o本发明并不限定于上述的实施方式。 Further, in addition to these optical fiber connectors can be used repeatedly, using a permanent connection may be used an epoxy-based ultraviolet-curing adhesive serves as refractive index matching member R o is the optical connector according to the present invention is not limited to the above embodiments the way. 在不脱离本发明宗旨的范围内, 在本领域普通技术人员容易联想到的范围内的各种变形都包含在本发明当中。 In the spirit of the present invention without departing from the scope of various modifications within the ordinary skill in the art to readily associate the scope of the present invention are included among.

Claims (3)

1.一种光纤的连接部,将在芯部周围的包层内具有多个空孔的光纤与其他的光纤相连接,其特征是: 在该光纤的连接部,经由在实际使用中的温度范围下的折射率为所述包层以下、且含有平均直径或者平均长度是100nm以下的微小体的折射率匹配体,将所述光纤与所述其他的光纤连接,所述微小体是以纯石英作为主成分的微粒。 Fiber and other fiber An optical fiber connecting portion, and having a plurality of pores within the cladding portion around the core is connected, wherein: the connection portion of the optical fiber via temperature in practical use the refractive index range for the cladding layer, and having an average diameter or an average length of 100nm or less of the refractive index adjuster minute body, the optical fiber is connected with the other optical fiber, pure quartz is a tiny element as the main component particles.
2. 如权利要求1所述的光纤的连接部,其特征是: 所述折射率匹配体是通过在折射率匹配剂中混合所述微小体而构成的,所述折射率匹配剂和所述微小体的混合重量比是10: 1〜1: 1。 The connector portion of the optical fiber as claimed in claim 1, characterized in that: said body is obtained by matching the refractive index of the index matching agent and mixing the minor body composed of the index matching agent, and said mixing weight ratio of the fine material is 10: 1~1: 1.
3. —种光纤连接器,其特征是: 在筐体内收容权利要求1所述的光纤的连接部。 3. - fiber optic connection device, characterized in that: the housing body housing as claimed in claim 1 connected to said optical fiber portion.
CN 200710184844 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector CN100541253C (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003189726A JP3863866B2 (en) 2003-07-01 2003-07-01 Connection of optical fibers and optical fiber connector
JP2003-189726 2003-07-01
JP2003-189724 2003-07-01
JP2003-189655 2003-07-01
JP2003-194476 2003-07-09
JP2003-346905 2003-10-06
CN200480009831.X 2004-06-30

Publications (2)

Publication Number Publication Date
CN101174005A CN101174005A (en) 2008-05-07
CN100541253C true CN100541253C (en) 2009-09-16

Family

ID=34187849

Family Applications (5)

Application Number Title Priority Date Filing Date
CN 200710184846 CN100541245C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200710184847 CN100541246C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200710184844 CN100541253C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200710184845 CN100570416C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200480009831 CN100392442C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN 200710184846 CN100541245C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200710184847 CN100541246C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN 200710184845 CN100570416C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
CN 200480009831 CN100392442C (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector

Country Status (2)

Country Link
JP (1) JP3863866B2 (en)
CN (5) CN100541245C (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057697A (en) * 2005-08-23 2007-03-08 Furukawa Electric Co Ltd:The Method for connecting optical fibers, mechanical splice, and optical connector
JP4872551B2 (en) * 2006-09-13 2012-02-08 日立電線株式会社 Mechanical splice
JP4924024B2 (en) * 2006-12-27 2012-04-25 日立電線株式会社 Optical connector
US7628548B2 (en) 2007-10-01 2009-12-08 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same
US7742670B2 (en) 2007-10-01 2010-06-22 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same
JP2010078701A (en) * 2008-09-24 2010-04-08 Mitsubishi Cable Ind Ltd Splicing structure of optical fibers and single mode fiber
JP5155987B2 (en) * 2009-11-09 2013-03-06 日立電線株式会社 Optical fiber end processing method and optical fiber end processing apparatus
JP5339458B2 (en) * 2010-01-28 2013-11-13 日本電信電話株式会社 Optical fiber connection method and optical fiber connection structure
JP5318834B2 (en) * 2010-09-29 2013-10-16 日立電線株式会社 Optical fiber end processing method and optical fiber end processing apparatus
JP2013109273A (en) * 2011-11-24 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> Method for connecting optical fiber
JP6287179B2 (en) * 2013-12-25 2018-03-07 住友電気工業株式会社 Multi-core optical fiber and method for manufacturing multi-core optical fiber connector
JP5888361B2 (en) * 2014-04-03 2016-03-22 横浜ゴム株式会社 Rubber composition for tire tread
CN104625944A (en) * 2015-02-26 2015-05-20 中国电子科技集团公司第四十四研究所 Photonic crystal fiber end face polishing method and device obtained according to photonic crystal fiber end face polishing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334019B1 (en) 1997-06-26 2001-12-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Single mode optical fiber
EP1233290A2 (en) 2001-02-07 2002-08-21 Sumitomo Electric Industries, Ltd. Optical transmission line including a connected part of optical fibers and connecting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011463A (en) 1994-09-28 1996-04-20 니시지와 게이지 Fiber Optic Connectors
US6331080B1 (en) 1998-07-15 2001-12-18 3M Innovative Properties Company Optical fiber connector using colored photocurable adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334019B1 (en) 1997-06-26 2001-12-25 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Single mode optical fiber
EP1233290A2 (en) 2001-02-07 2002-08-21 Sumitomo Electric Industries, Ltd. Optical transmission line including a connected part of optical fibers and connecting method

Also Published As

Publication number Publication date
CN100541246C (en) 2009-09-16
CN101174000A (en) 2008-05-07
CN101173998A (en) 2008-05-07
CN100392442C (en) 2008-06-04
CN101174005A (en) 2008-05-07
CN100541245C (en) 2009-09-16
CN100570416C (en) 2009-12-16
CN1774655A (en) 2006-05-17
JP3863866B2 (en) 2006-12-27
CN101173999A (en) 2008-05-07
JP2005024848A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US3912362A (en) Termination for fiber optic bundle
CA1242905A (en) Coupling monomode optical transmission fibre having a tapered end portion and method of manufacturing such a fibre
US20090297099A1 (en) Bent optical fiber couplers and opto-electrical assemblies formed therefrom
CA2569263C (en) Optical ferrule
US4765702A (en) Glass integrated optical component
US4544234A (en) Low loss optical fiber splicing
DE112004002202B4 (en) Optical fiber pumping multiplexer
US20070196053A1 (en) Isolated Fiber Optic Union Adapters
US5343544A (en) Integrated optical fiber coupler and method of making same
CN1310048C (en) Microstructured optical fiber
US7542638B2 (en) Optical assemblies for free-space optical propagation between waveguide(s) and/or fiber(s)
US8132971B2 (en) Methods for centering optical fibers inside a connector ferrule and optical fiber connector
US6321006B2 (en) Optical fiber having an expanded mode field diameter and method of expanding the mode field diameter of an optical fiber
Yablon Optical fiber fusion splicing
EP0191197A1 (en) Monomode optical transmission fibre having a tapered end portion provided with a lens, and method of manufacturing such a fibre
KR20010108141A (en) Fabrication of collimators employing optical fibers fusion-spliced to optical elements of substantially larger cross-sectional areas
US7422375B2 (en) Optical connection structure and optical connection method
TWI410683B (en) Triple-band bend tolerant optical waveguide
JP3497298B2 (en) Optical fiber filter
Takato et al. Low-loss high-silica single-mode channel waveguides
US5778125A (en) Optical fiber terminations
JP2958305B2 (en) Optical fiber manual alignment method
CA2443129A1 (en) High index-contrast fiber waveguides and applications
WO2000039617A2 (en) Tube-encased fiber grating
US6488414B1 (en) Optical fiber component with shaped optical element and method of making same

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model