CN100530701C - Manufacturing apparatus and method for large-scale production of thin-film solar cells - Google Patents

Manufacturing apparatus and method for large-scale production of thin-film solar cells Download PDF

Info

Publication number
CN100530701C
CN100530701C CNB038254433A CN03825443A CN100530701C CN 100530701 C CN100530701 C CN 100530701C CN B038254433 A CNB038254433 A CN B038254433A CN 03825443 A CN03825443 A CN 03825443A CN 100530701 C CN100530701 C CN 100530701C
Authority
CN
China
Prior art keywords
layer
type semiconductor
conductive
sputtering
material
Prior art date
Application number
CNB038254433A
Other languages
Chinese (zh)
Other versions
CN1703782A (en
Inventor
D·R·霍拉斯
Original Assignee
米亚索尔公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US41500902P priority Critical
Priority to US60/415,009 priority
Priority to US60/435,814 priority
Application filed by 米亚索尔公司 filed Critical 米亚索尔公司
Publication of CN1703782A publication Critical patent/CN1703782A/en
Application granted granted Critical
Publication of CN100530701C publication Critical patent/CN100530701C/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

一种完全通过溅射包括高效率背接触/反射多层的制造改进的薄膜太阳能电池的方法,该背接触/反射多层包含由过渡金属氮化物组成的至少一个阻挡层。 Comprises a completely efficient by sputtering a back contact / improved process of the reflective multilayer thin-film solar cell manufacturing, the back contact / reflector multilayer barrier layer comprising at least one transition metal nitride thereof. 使用双圆柱体旋转磁控管技术,从特别准备的电传导靶共溅射二硒化铜铟镓(Cu(InxGa1-X)Se2)吸收体层(X的范围从1至约0.1)。 Dual rotating cylindrical magnetron technology, the electric conductivity of the target co-sputtering specially prepared copper indium gallium diselenide (Cu (InxGa1-X) Se2) the absorber layer (X ranges from 1 to about 0.1). 通过改变镓的含量,可以分级吸收体层的带隙。 By changing the content of gallium, the absorbent can be graded band gap layer. 在硒化氢气体中,从金属合金靶反应溅射交替的吸收体层。 In the hydrogen selenide gas, the sputtering alternating absorber layer from the metal alloy target reaction. RF溅射用于沉积不包含镉的ZnS窗口层。 RF sputtering for deposition of ZnS window layer does not contain cadmium. 反应溅射顶部透明电极ZnO掺杂铝。 Reactive sputtering an aluminum-doped ZnO top transparent electrode. 描述了专用模块真空卷装溅射机器。 It describes a vacuum package dedicated module sputtering machine. 该机器适于与双圆柱体旋转磁控管一体化,在单一途径中以制造改进的太阳能电池材料。 The machine is adapted with a double cylindrical rotatable magnetron integrated in a single pathway to produce an improved solar cell material.

Description

薄膜太阳能电池大恥溪生产的制造装置与方法 Apparatus and method for manufacturing thin film solar cells produced large shame Creek

本申请要求2002年9月30日提出的美国临时申请60/415009和2002年12月19日提出的美国临时申请60/435814的权益。 This application claims the United States September 30, 2002 raised US provisional application 60/415009 and December 19, 2002 presented the provisional application 60/435814.

技术领域 FIELD

在此公开的本发明一般涉及光电领域,更具体地涉及基于包含铜、铟、镓、铝和硒、并且有多晶黄铜矿结构的吸收层、用于薄膜太阳能电池制造的唯一高透光率巻装进出真空沉积系统和方法。 The present invention disclosed herein relates generally to the field of optoelectronic, and more particularly to a unique high transmittance based comprising copper, indium, gallium, selenium and aluminum, and how the absorbent layer of polycrystalline chalcopyrite structure, a thin film solar cell manufacturing Volume rate-roll vacuum deposition systems and methods.

背景技术 Background technique

近年,在对薄膜光电的兴趣已经有了发展。 In recent years, interest has been the development of thin-film photovoltaic. 这主要是由于在实验室规模制造的电池转换效率的提高,以及与较早的且更昂贵结晶体和多晶硅技术相比,能有效地降低制造成本。 This is mainly due to increased conversion efficiency of the battery manufactured in laboratory scale and compared to earlier and more expensive crystalline and polycrystalline silicon technology, can effectively reduce the manufacturing cost. 术语"薄膜,,用于区分这种类型的太阳能电池与更普通的基于硅的电池,普通的硅基电池使用相对厚的硅晶片。虽然单晶硅电池仍然保持着超过20%的转换效率的记录,已经生产的薄膜电池的表现接近于这个水平。因此, 薄膜电池的性能不再是限制它们商业应用的主要问题。现在,推进薄膜太阳能电池商业化的最重要因素是成本。当前,不存在达到低成本制造尺度的广泛接受的技术方案。 The term "film ,, used to distinguish this type of solar cells and more common silicon based cell, Common battery relatively thick silicon wafer of silicon. While single crystal silicon cells still maintained more than 20% conversion efficiency recording, production of thin-film batteries have been close to this level of performance. Therefore, the performance of thin film battery is no longer the main problem is to limit their commercial applications. now, the most important factor in promoting the commercialization of thin film solar cells is cost. currently, there is no low-cost manufacturing scale to reach a widely accepted technology programs.

已经做了尝试并且现在正在修补问题,但是进展緩慢。 It has been done to try and fix the problem now, but progress is slow. 虽然对建筑窗口市场,玻璃的溅射涂膜存在巨大的J^出,但是,因几个原因, 这个工艺不容易适合太阳能电池的生产。 Although the market for building windows, glass sputter coating of a huge J ^, however, for several reasons, this process is not readily suitable for the production of solar cells. 第一,在大规模机器中镀 First, large scale coating machine

膜的玻璃与在太阳能电池组件中使用的相比相对厚。 Compared with the relatively thick glass film used in a solar cell module. 除此之外,必须将玻璃加热到远高于窗口工业中需要的温度,由于破碎和断裂引起巨大的生产损失。 In addition, the glass must be heated to a temperature well above the window need in the industry due to the cracking and breaking due to huge production losses. 在房屋面积和设备方面,处理大块玻璃是昂贵的,而且太阳能电池额外的层需要在室之间有适当的气体隔离的另 And equipment in the housing area, the process is expensive glass block, and an additional layer of the solar cell needs to have an appropriate gas isolation chamber between the other

8外的巨大涂层室。 Outside the coating chamber 8 great. 最后,或许最重要的是,还没有为吸收层沉积成制造有效的賊射目标,在许多方面这是制造薄膜太阳能电池最有挑 Finally, and perhaps most importantly, the absorbent layer has not been deposited to efficiently manufactured thief shot target, which is in many respects the most manufacturing a thin film solar cell challenge

战性的方面。 Aspects of war.

在1982年3月9日出版的美国专利4318938 ( '938)中,由巴耐特(Bamett)等人提出用巻装进出技术提高太阳能电池制造的早期尝试。 In the March 9, 1982 issue of US Patent 4,318,938 ( '938), proposed by Barnett (Bamett) and others with Volume-roll technology to improve early attempts solar cell manufacturing. 他们描述的巻装进出机器基本由一连串单独的批处理室组成, 各批处理室适于不同层的形成。 They Volume-roll machine described by a series of substantially separate batch chambers, each chamber adapted to form a batch of different layers. 通过接收需要层的那串单独的室, 以线性带状方式从巻轴连续供给薄箔衬底。 By receiving a string of separate chambers layer is required, a linear belt-like manner from the substrate foil is supplied continuously Volume axis. 通过在真空室中期望材料的蒸发形成几个层。 Formed by several layers of a desired material was evaporated in a vacuum chamber. 从大气到真空再回到大气几次不断移动金属箔。 From the atmosphere to the vacuum atmosphere and back several times continuously moving the metal foil. 该发明没有描述这是如何完成的,除了能购买这样的技术的声明。 The invention does not describe how this is done, except for the statement can buy such technology. 近年许多已经变化了。 In recent years, many have changed. 在'938中提出的硫化铜吸收体层已经显示在实地是不稳定的,且一些其他层不再使用。 In the '938 copper sulfide absorber layer proposed in the field it has been shown to be unstable, and the other layer is no longer used. 更详细地说,在最新形成的涂层上不期望有压带轮运行。 More specifically, in the newly formed coating does not expect the pinch roller operation. 然而,发明人估计他们的连续技术可降低制造成本超过对硅的传统批处理的差不多两倍。 However, the inventors estimate their continuous technology can reduce manufacturing costs than traditional silicon batch almost twice. 虽然今天两倍仍然很大,如果太阳能要变得比传统能量产生的来源有竟争力,必须实现更大的成本降低。 Although today is still twice as big, if you want to become the source of solar energy to produce than conventional energy have competitive, we must achieve greater cost reduction.

在1996年11月5日出版的美国专利5571749 ( '749)中,马特苏达(Matsuda)等人教导基于等离子化学蒸发沉积(CVD )技术的巻装进出涂层系统。 On November 5, 1996, published U.S. Patent No. 5,571,749 ( '749), the MN Matt (Matsuda) Volume et al teaches a plasma chemical vapor deposition (CVD) techniques based on the like-roll coating system. 他们的系统是有用于过程隔离的一串六个气门的单个线性真空室。 Their system is a vacuum chamber for a single linear sequence of six process isolation valve. 类似于'938的方法,巻筒衬底以带状方式经过机器,但是整个过程巻筒保持在真空中。 Similar to the '938 method, a strip substrate cartridge Volume manner through the machine, but the process cartridge holder Volume in vacuo. 太阳能电池的吸收层由硅烷气体分解后沉积的非晶硅制成。 A solar cell absorber layer is deposited by the decomposition of the silane gas after the amorphous silicon. 沿着带状路径引入不同的参杂物以产生需要的pn节。 Introduce different parameters to generate debris along the ribbon path need pn junction. 在密西根特洛伊(Troy, Michigan)的Uni-Solar 使用类似的技术制造各种非晶硅太阳能电池。 Amorphous silicon solar cell manufactured using various techniques similar Troy Michigan (Troy, Michigan) the Uni-Solar. 非晶硅电池的转换效率次于其他薄膜电池,通过广为人知的Stabler-Wronski效应机制, 在暴露于太阳辐射的最初几周期间,它们遭受到效率损失。 Amorphous silicon cell conversion efficiency inferior to other thin film batteries, Stabler-Wronski effect by mechanism well known, during the first weeks of exposure to solar radiation, they suffer a loss of efficiency. 因为这, 多晶硅的效率保持完全低于其他薄膜材料,而且还没有人找到减轻该岁文应的方法。 Because of this, the efficiency of polycrystalline silicon remain well below other thin film materials, and methods should not reduce the paper-year-old was found.

9在2002年4月16日出版的美国专利6372538 ( '538 )中,5異特(Wendt)等人公开了巻装进出系统,它教导基于二硒化铜铟/镓(CIGS)吸收体层的用于沉积薄膜太阳能电池的方法。 9, 2002, published April 16, U.S. Patent No. 6,372,538 ( '538) and Laid-5 iso (Wendt) et al discloses Volume-roll system, which teaches the absorbent body based on copper indium diselenide / gallium (CIGS) the method of depositing a thin film for solar cell layer. 该系统被描述为,由九个分离的单独处理室组成,在各室可^(吏用巻装进出过程。 因此,整个系统类似于在,938中描述的系统,但是没有同时通过所有室的衬底的连续带状运输。同样,不是像'749中一样通过单个的真空系统不断地供给薄材料的巻筒(在这种情况下是聚酰亚胺)。 温特(Wendt)等人教导的传统平面磁控溅射,用于在聚酰亚胺膜上钼基接触层的沉积。对氩气压力做调节,并且当为CIGS沉积加热聚酰亚胺时,引入一些氧以调节膜的应力以适应聚酰亚胺的膨胀。氧结合到钼层中增加它的电阻率,需要更厚的层提供适当的电的传导性。使用各沉积一种組分的热蒸发器阵列,在分离的室中在目层上沉积CIGS材料。聚酰亚胺衬底材料的使用在处理中至少提出两个问题。第一,它包含相当大量的吸附的水分,在真空室中释放出吸附的水分并且在过程中会 The system is described by a separate processing chamber nine separate compositions in each chamber may be ^ (Volume-to-roll process with officials. Thus, similar to the system in the entire system, 938 is described, but not simultaneously through all the chambers the continuous strip of transport of the substrate. Likewise, not like the '749 as a thin material is supplied continuously by a single vacuum system Volume cylinder (in this case a polyimide). Winter (Wendt) et al. conventional planar magnetron sputtering as taught, for deposition of molybdenum-based polyimide film contact layer. for adjusting argon pressure to do, and when the heated polyimide CIGS deposition, some of the oxygen introduced to adjust the film stress to accommodate expansion of the polyimide. molybdenum layer bonded to the oxygen increase its resistivity, a thicker layer provides adequate electrical conductivity using a thermal evaporator in each array depositing a component, in the isolated chamber is deposited on the mesh layer CIGS material using a polyimide substrate material is proposed in the process at least two problems. first, it contains a considerable amount of adsorbed moisture, releasing the vacuum in the suction chamber moisture and can in the process 有消极的影响。第二,它不能经受住为高质量CIGS材料的沉积所用的更高的温度。不锈钢薄箔将没有这些问题。聚酰亚胺巻筒首选的宽度是33cm,且在每分钟30cm的典型的线速度下运行。至于本发明,不认为这种生产速度(约每分钟一平方英尺)是大规模;相反地,使太阳能比来自传统能源的能量有竟争力,5至10倍更快的速度并附带成本的降〗氐是必需的。 Have a negative impact. Second, it can not withstand higher temperatures for high-quality live depositing CIGS material used. The thin stainless steel foil not have these problems. The preferred polyimides Volume cylinder 33cm width, and every minute a typical line speed running at 30cm As the present invention is not considered that production rate (about one square feet per minute) on a large scale; in contrast, the solar energy has specific competitive from traditional energy sources, 5-10 times faster and drop〗 Di incidental costs is required.

二硒化铜铟(CuInSe2或CIS)和它的更高带隙变体二硒化铜铟镓(Cu (In/Ga) Se2或CIGS) 、 二硒化铜铟铝(Cu (In/Al) Se2)、 以及用硫替代某些硒的任何这些化合物,代表在薄膜太阳能电池中作为吸收体层使用的所期望性能的一批材料。 Copper indium diselenide (of CuInSe2 or CIS), and its band gap thereof higher copper indium gallium diselenide (Cu (In / Ga) Se2 or CIGS), copper indium aluminum diselenide (Cu (In / Al) SE2), and replace some of the sulfur with selenium any of these compounds, represents a number of thin film solar cell material properties as the absorber layer a desired use. 曾经在文献中普遍^f吏用首字母缩略词CIS和CIGS。 Officials have generally ^ f acronym CIS and CIGS with the first letter in the literature. 至今含铝的变体还没有首字母缩略词,于是这里用CIGS在扩展意义上代表整批基于CIS的合金。 Aluminum variant has not yet acronyms, so here with CIGS on behalf of the extended meaning of the entire batch of CIS-based alloy. 要起到太阳能吸收体层的作用,这些材料必须是p形半导体。 To function as a solar absorber layer, these materials must be a p-type semiconductor. 当维持黄铜矿晶体结构时,这通过安排铜的轻微的不足实现。 When the chalcopyrite crystal structure is maintained, this is achieved by a slight copper deficiency arrangement. 镓通常取代正常铟含量的20%至30%以提高带隙;然而,在此范围之外有重大的和有用的变化。 Substituted gallium typically 20-30% indium content to enhance normal band gap; however, significant and useful vary outside this range. 如果用铝取代镓,获得相同的带隙需要更少量的铝。 If substituted aluminum, gallium, to obtain the same band gap requires a smaller amount of aluminum.

在衬底(例如玻璃、不锈钢箔或其他功能衬底材料)上,通过首先沉积钼基电接触层,通常生产CIGS薄膜太阳能电池。 On a substrate (e.g., glass, stainless steel foil substrate, or other functional materials), by first depositing a molybdenum-based electrical contact layer, typically produce CIGS thin film solar cells. 通过两个广泛使用的技术中的一个,然后在钼层上沉积相对厚的CIGS层。 Two widely used technique by one, and then a relatively thick CIGS layer deposited on molybdenum layer. 在先驱技术中,用物理蒸发沉积(PVD)方法(也就是蒸发或溅射)、 化学浴或电镀方法在衬底上首先沉积金属(Cu/In/Ga)。 Pioneer technique, physical vapor deposition (PVD) method (i.e., evaporation or sputtering), plating method, or a chemical bath on a substrate by first depositing a metal (Cu / In / Ga). 随后,在变动到约600。 Then, change to about 600. C的温度,在扩散炉中携带硒的气体与金属层反应以形成最终的CIGS合成物。 C temperature, carrying selenium in a diffusion furnace gas and the metal layer to form the final CIGS composition. 最常用的携带硒的气体是硒化氩,对人竭化氢是极端有毒的,并且在它的使用中需要非常小心。 The most commonly used gas is carried selenium selenium argon, hydrogen exhaust human is extremely toxic and requires great care in its use. 从分离的热蒸发源往热村底上通过共同蒸发所有的CIGS组分,第二项技术避免硒化氢气体的使用。 Thermally separated from the evaporation source to the substrate by co-evaporation Thermal Village CIGS all components, the second technique avoids the use of hydrogen selenide gas. 当热蒸发的沉积速度相当地高时,源难于控制既获得需要的化学计量还获得在衬底的大范围上厚度均匀。 When the thermal evaporation deposition speed is quite high, a source is difficult to control the stoichiometry required to achieve both further to obtain a uniform thickness over a large range of substrates. 对有效的大规模生产,用于形成CIGS层的这些技术没有一个是容易有销路的。 Effective mass production, techniques for forming a CIGS layer is not readily marketable.

部分地因为CIGS沉积需要高温,钼用作基座触摸层。 Depositing CIGS partly because high temperature is required, molybdenum is used as the base layer touch. 在提高的沉积温度下,在CIGS中其他金属(银、铝、铜等)趋向于扩散到和/或与硒起反应,在接触层与CIGS层之间产生不需要的搀杂或界面。 At elevated deposition temperature, the CIGS other metals (silver, aluminum, copper, etc.) tend to diffuse into and / or reacts with selenium, or unwanted doping the interface between the contact layer and the CIGS layer. 钼有十分高的熔点(2610°C),这有助于避免这个问题,尽管在高温下它将与硒起反应。 Molybdenum has a very high melting point (2610 ° C), which helps to avoid this problem, although it will react with Se at elevated temperature. 然而,即使使反应界面最小,在界面上钼与CIGS 层仍然有相当弱的反映,由于最初没有通过CIGS有效地反射回穿透吸收体的光以供被吸收的第二次机会,导致效率降低。 However, even when the minimum reaction interface, at the interface with the Mo layer CIGS still relatively weak reflected, since initially there is no effective CIGS absorber reflected by the light penetrating the back for a second chance to be absorbed, resulting in reduced efficiency . 因此,用更好的反射层代替钼能允许降低吸收层的厚度,也通过移动吸收事件靠近pn结提供改进的电池性能。 Thus, molybdenum allow reducing the thickness of the absorbent layer, near the pn junction also provides improved battery performance by absorbing the event by moving the reflective layer instead of better.

最常与CIGS吸收体层一起^f吏用以形成薄"窗口"或"缓冲,,层的N型材料是石克化隔(CdS)。它比CIGS层更薄并通常适用于化学浴沉积(CBD)。隔是有毒的,且化学浴废物引起环境处理问题, 增加制造电池的代价。CBD硫化锌(ZnS)已经成功用作CdS的替代 Most N-type material layer and the CIGS absorber together for forming thin Officials ^ f "window" or "buffer layer ,, g of stone compartment (CdS). It is thinner than the CIGS layer and is generally applicable to chemical bath deposition (CBD). compartments are toxic, causes environmental and chemical bath waste handling problems, increase the cost of manufacturing a battery .CBD sulfide (ZnS) of CdS have been successfully used as a substitute

ii品,并且已经生产对等质量的电池。 Ii quality products, and the like have been produced for the battery. 用于ZnS的CBD方法不像CdS 一样有毒;但是,保持相对昂贵的和消耗时间的处理步骤,如果可能这应该避免。 A method for the CBD of ZnS not as toxic CdS; however, remains relatively expensive and time consuming process step, which should be avoided if possible. 在小规冲莫上已经示范了CdS和ZnS的射频(RF)溅射沉积。 On the small scale demonstration of the punch Mo CdS and ZnS has a radio frequency (RF) sputter deposition. 然而,在大面积上控制RF溅射沉积是困难的,因为在实现RF溅射的传统方法中,室的几何形状高度地影响等离子体。 However, RF sputtering deposition is difficult to control over a large area, as in the conventional method for RF sputtering, the geometry of highly affect the plasma chamber. 需要RF 溅射ZnS的改进的方法以减少处理的复杂性,也从处理中除去有毒的隔。 Need for improved RF sputtering ZnS to reduce processing complexity, it is also removed from the process compartment toxic.

最后,用相对厚的透明电传导氧化物覆盖窗口或緩冲层,电传导氧化物还是n型半导体。 Finally, an overlay window or buffer layer, an electrically conductive oxide or an n-type semiconductor with a relatively thick transparent electrically conductive oxide. 过去,氧化锌(ZnO)已经用作传统的而且还更贵的氧化铟锡(ITO)的替换物。 In the past, zinc oxide (ZnO) have been used as a conventional, but also more expensive indium-tin oxide (ITO) was replaced. 最近,掺杂铝的ZnO已经显示出表现得像ITO —样,且在工业中已经成为备选材料。 Recently, aluminum-doped ZnO has been shown to behave as ITO - like, in the industry and has become a candidate materials. 通过透明的上部导电层的沉积,在完成电池之前,通常在緩冲层上部沉积薄的"内在,,(意思是高电阻)ZnO层以覆盖CdS (因此"緩冲"层)的任何电镀瑕疯。为了进一步优化电池的性能,作为最后一步可涂敷抗反射涂层。因为折射率不同,这步骤对硅电池比对CIGS电池更重要, 其中当将电池制作成模块时某种抗反射级是由封装材料提供的。在CIGS的情况下,可给玻璃的外表面涂敷抗反射膜涂层。 Depositing an upper transparent conductive layer, before the completion of the battery, typically in the upper portion of the buffer layer is deposited a thin "intrinsic ,, (meaning high-resistance) of CdS of ZnO layer to cover (and therefore" buffer layer ") of any flaw plating when mad. to further optimize performance of the battery, as the last step antireflective coating may be applied because of different refractive indices, this step is more important than the silicon CIGS cell battery, wherein when the battery module made into a certain level antireflection It is provided by the encapsulating material. in the case of CIGS can be applied to the outer surface of the glass antireflective film coating.

在CIGS有关的吸收体层及緩冲层的沉积中固有的困难,妨碍了用改善了的节约措施和低成本大规模迅速地制造这些薄膜太阳能电池。 Inherent difficulties associated with the deposition of the CIGS absorber layer and the buffer layer, preventing the use of cost-saving measures and improved low cost mass production of these rapidly thin film solar cell. 在背反射体和镉的消除以及它的废物处理问题上的共同进步, 还能降低产生的太阳能每瓦的成本。 Common progress on the back reflector and cadmium and its elimination of waste disposal problems, but also reduce the cost of solar energy generated per watt.

图1所示是传统的现有技术的CIGS太阳能电池结构。 Figure 1 is a CIGS solar cell structure of a conventional prior art. 因为在不同层的厚度上的巨大范围,图解地描述它们。 Because of the huge range in the thickness of the different layers, they are described graphically. 在图中还指出了每一层最常用的材料。 In the figure also indicates the most commonly used materials for each layer. 图上部的箭头显示在电池上太阳照明的方向。 FIG upper arrow shows the direction of the solar illumination on the battery. 元素1是衬底,且与在它之上沉积的薄膜层相比它是厚重的。 Element 1 is a substrate, and compared with the thin film layer deposited on top of it it is heavy. 在太阳能电池研究中,玻璃是通用的衬底;然而,更可能的是对大规模生产将使用一些像箔的衬底类型。 In the solar cell research, the glass substrate is generic; however, more likely to be large-scale production is to use some type of substrate like foil. 层2是电池的背电接触。 2 is a back layer electrically contacting the battery. 传统上, 它是约0.5至1.0孩i米厚的钼。 Traditionally, it is from about 0.5 to 1.0 meters thick molybdenum child i. 虽然钼与CIGS化学以及CIGS沉积相对高的温度已经显示是兼容的,但它有一些缺点。 Although molybdenum CIGS CIGS deposition chemistry and a relatively high temperature has been shown to be compatible, but it has some drawbacks. 与其他更好的导体金属(例如铝或铜)相比,钼更昂贵,而且在最大的太阳输出的光谱范围它不是好的反射体。 Better compared to other conductive metal (e.g. aluminum or copper), molybdenum more expensive, and the maximum output of the solar spectral range it is not a good reflector. 因此,首次经过在CIGS吸收体中没有产生电子-空穴对的光,不能通过吸收体有效地反射回以供给引 Thus, after the first time is not generated in the CIGS absorber electron - hole pairs of the light can not be effectively absorbed by the reflector back to the supply lead

起光电效应事件的第二次机会。 Photoelectric effect from the second chance event. 包括落在CIGS吸收带之外的太阳光谱部分的钼吸收的光只对电池的加热有贡献,这降低它的总的转换效率。 CIGS absorbing light falling comprising absorption spectrum of a molybdenum portion other than the solar cell with only contribute to heating, which reduces its overall conversion efficiency. 在大规模制造系统中更好的背电极材料是值得要的。 In the large-scale manufacturing system better back electrode material is worth want.

层3是CIGS p-型半导体吸收体层。 Layer 3 is a CIGS p- type semiconductor absorber layer. 它通常约2至3微米厚,但是,如果改进了背电极层(2)的反射,可以稍微薄一点并且获得相同或改进的效率。 It is usually about 2 to 3 microns thick, however, is improved if the back electrode layer (2) is reflective, and may be somewhat thinner to achieve the same or improved efficiency. 通过磁控溅射生产这个层是非常理想的。 This layer was produced by magnetron sputtering is ideal. 因为能大尺寸容易地制造磁控管,且厚度和成分的控制极好,这使大规模制造过程成为可能。 Since large size can be easily manufactured magnetron, and excellent control of the thickness and composition, which makes possible mass production process. 该发明的主要装置将证明这是如何能用CIGS材料z敗的。 The main assembly of the invention is to demonstrate how it can be defeated z CIGS material. 层4是完成了pn结形成的n型半导体层。 Layer 4 is an n-type semiconductor layer to complete the pn junction is formed. 与吸收层(约0.05 微米)相比它更薄,且对太阳辐射它应该是非常透明的。 Compared with the absorbent layer (about 0.05 microns) which is thinner, solar radiation and it should be very transparent. 传统上, 由于它让光通过下至吸收体层,它被称为窗口层。 Traditionally, since it allows the light to the absorbent layer through, which is called the window layer. 因为它似乎帮助保护pn结免于下一层的沉积引起的损坏,它还被称为緩冲层。 Because it appears to help protect the pn junction from damage due to the deposition of the next layer, it is referred to as a buffer layer. 迄今为止,CdS的使用已经导致对CIGS型吸收体材料的最高效率的电池。 To date, CdS has led to the most efficient use of cell material of CIGS type absorber. 但是,CdS是环境地有毒的,无论是通过化学浴方法或者是通过传统的RF;兹控溅射,在大尺度上均匀沉积是困难的。 However, CdS is toxic to the environment, either by chemical bath by a conventional method or the RF; hereby sputter uniformly deposited on a large scale is difficult. 另外,CdS对太阳光谱的绿和蓝区不是非常透明,这使它与更高带隙吸收体层不太兼容。 Further, CdS solar spectrum region of green, and blue are not very transparent, which makes it a higher band gap layer and the absorbent less compatible.

在1977年10月第26届IEEE光电专家^i义上,尤拉尔(Ullal)、 韦贝尔(Zweibd )和凡罗德姆(von Roedem)提出了可用作CdS层替代品的包含n型材料的十五种无镉清单。 In October 1977 the 26th IEEE Photovoltaic Specialists ^ i righteousness, it Laer (Ullal), Wei Beier (Zweibd) and Van Rodham (von Roedem) proposed alternatives can be used as CdS layer containing n-type fifteen kinds of cadmium-free material inventory. 在氩和氧气氛中,通过金属的普通反应磁控'戚射容易沉积这些材料Sn02、 ZnO、 Zr02和掺杂的ZnO。 In an argon and oxygen atmosphere, by conventional reactive magnetron metal 'Qi deposition of these materials readily exit Sn02, ZnO, Zr02, and doped ZnO. 如在美国专利6365010 ( '010)中教导的使用双圓柱形旋转」磁控管的反应溅射法,对沉积这些氧化层是尤其有用的。 As the ( '010) in U.S. Patent No. 6,365,010 teaches the use of dual rotating cylindrical' magnetron reactive sputtering method is particularly useful for depositing the oxide layer. 然而, 如果做了设备改进以处理小量硫化氢和硒化氢气体向反应沉积区的传送,双圆柱形;旋转^t控管技术能容易地扩展到辟u化物和^5西化物的反应溅射。 However, if the improvements made to the device and process a small amount of hydrogen sulfide, hydrogen selenide gas transport to the reaction zone is deposited, a double cylindrical; ^ t rotating Controls technique can be easily extended to the provision of the reaction compound and u ^ 5 was westernized sputtering. 使用这种技术,在反应方式中用双圆柱形旋转;兹控管系 Using this technique, a double cylindrical rotary manner by the reaction; Department hereby Controls

统能容易沉积上述清单上其他材料中的两种,即ZnS和ZnSe。 Depositing two systems can be readily on said list of other materials, i.e., ZnS and ZnSe. 在达到18%转换效率的实验室示范电池中,已经使用其他方法沉积的ZnS 代替CdS。 At 18% conversion efficiency of the laboratory model cell, other methods have been used instead of the ZnS deposited CdS. 另外,ZnS和ZnSe都比CdS有更大的带隙,于是它们是更有效的窗口材料。 Further, ZnS, and ZnSe greater than the band gap of CdS, so they are more effective window material. 对于沉积不能容易地组成传导目标的任何残留材料的薄层,传统RF溅射的不太理想的方法将勉强地起作用。 For the deposition of thin layers can not be easily any residual material consisting of a conductive target, a conventional RF sputtering method less desirable would barely function.

层5是上层透明电极,其完成机能电池(flinctioning cell)。 5 is an upper transparent electrode layer, which functions to complete the battery (flinctioning cell). 这层既需要高度传导还需要对太阳辐射尽可能透明。 This requires both highly conductive layer also need to solar radiation as transparent as possible. ZnO是与CIGS — 起使用的传统材料,但是氧化铟锡(ITO)、掺杂Al的ZnO和少许其他材料可还行。 ZnO is a CIGS - from conventional materials used, but an indium tin oxide (ITO), Al-doped ZnO and a few other materials may be okay. 层6是抗反射(AR)涂层,其能允许相当数量的额外光进入电池。 Layer 6 is antireflection (AR) coatings, which additionally allow a considerable amount of light entering the cell. 依据电池的预期用途,在上部导体上(如图示)、 或在分离的盖玻璃上或在两者之上,可以直接沉积它。 Depending on the intended use of the battery, the conductor on the upper (as shown), or on a separate cover glass or on both, it can be directly deposited. 对基于空间的电源,消除增加相当数量昂贵的发射重量的盖玻璃是理想的。 Space-based power supply, increasing the amount of expensive eliminate launch weight cover glass is desirable. 理想地,在光电吸收发生的整个光谱范围,AR ^层将电池的反射减少到十分接近零,并且在其他光谱范围同时增加反射以减少加热。 Ideally, the entire spectral range photoelectric absorption occurs, AR ^ layer to reduce the reflection of the battery is very close to zero, and simultaneously increase the reflectance in other spectral ranges to reduce the heating. 简单的AR涂层不能充分地覆盖太阳能电池相对宽的光谱吸收区,于是必须用更昂贵的多层设计以更有效地做工作。 Simple AR coating can not sufficiently cover a relatively broad spectrum solar absorption zone, must then be designed to do work more efficiently with more expensive multilayer. 既能执行AR功能还能增加不必要辐射的反射的涂层,甚至需要更多层和有效涂层系统变得更精致。 Both functions can perform AR coating increase reflected unnecessary radiation, and even the need for more effective layer coating systems become more refined. 在2000年8月22日出版的美国专利6107564中,Aguilera 等人彻底地回顾了先前的技术,并为太阳能电池盖提供了一些改进的AR涂层设计。 In 2000, he published August 22 in US Patent 6,107,564, Aguilera, who thoroughly reviewed the prior art, and provides some improved AR coating design for the solar battery cover.

如前面提到的钼背接触层不是好的反射层,然而它已经变成薄膜型太阳能电池的标准。 As previously mentioned molybdenum back contact layer of the reflective layer is not good, however, it has become standard thin film type solar cell. 发现会不同地经受住加工条件的更好的反射材料,可以改进电池性能。 The reflective material found to better withstand various processing conditions can be improved battery performance. 该任务不简单。 The task is not simple. 背层同时应该是好的导体,能经受高的作业温度,并且它应该是好的反射层。 Backing layer should also be a good conductor, can withstand high operating temperatures, and it should be good reflective layer. 周期表中的许多金属满足这些要求中的至少一个,且可以将任何金属做得足够厚以提供足够的电导率而起到背电接触的作用。 Many of the periodic table metals satisfy these requirements, at least one, and any metal can be made thick enough to provide sufficient electrical conductivity and functions as a back electrical contact effect. 高加工温度的要求 Requires high processing temperatures

14消除了对低熔点金属的考虑。 14 eliminates the consideration of low melting point metal. 像锡、铅、铟、锌、铋这样的金属, 以及其他的用于CIGS或大部分其他太阳吸收体的材料,在低于作业温度的温度就熔化了。 Materials like body of tin, lead, indium, zinc, such as bismuth, as well as for other CIGS solar absorption or most other, at a temperature below the operating temperature of the melts. 降低电池成本的动机排除了像金、鉑、钯、 铑、钌、铱和锇这样的金属,在其他方面它们有好的传导性和比较好的反射特性。 Reduce battery costs motive excludes such metals as gold, platinum, palladium, rhodium, ruthenium, iridium and osmium, in other aspects they have good conductivity and good reflection characteristics. 高活性的镁除外,在元素周期表中左半边的所有其他金属是相对弱的反射体,包括钼。 Except for high activity magnesium, any other metals in the periodic table of the left half of the reflector is relatively weak, comprises molybdenum. 剩余的候补者包括铝、铜、银 The remaining candidate included aluminum, copper, silver,

和镍,且只有镍(和较小程度的钼)抵抗在CIGS界面形成绝缘的和弱反射硒化合物。 And nickel, and only the nickel (and to a lesser extent the molybdenum) forming an insulation resistance of the CIGS weak reflection interface and selenium compounds. 然而,如果允许扩散进CIGS材料,镍将严重地退化CIGS材料。 However, if allowed to diffuse into the CIGS material, the nickel will be severely degraded CIGS material.

为了降低薄膜太阳能电池的成本,并且使它们比电源产生的传统源有竟争力,改进薄膜太阳能电池的大尺度可制造性是令人想望的。 In order to reduce the cost of thin film solar cells, and the power they produce than traditional sources are competitive, improved large-scale thin-film solar cell is desirably manufacturability of. 在本发明的上下文中术语大尺度的使用意味着,非连续的衬底或连续的巻筒的涂层有约一米或更大的宽度。 In the context of the present invention, the term means that the use of large-scale, non-continuous or continuous coating substrates Volume cylinder about the width of one meter or more. 本发明提供用于在太阳能电池中溅射沉积所有层的装置和方法,特别是CIGS层,其大大地增加沉积面积,在沉积面积上能获得并控制材料的需要的性能。 The present invention provides a solar cell apparatus and method for sputter deposition of all layers, in particular CIGS layer, which greatly increase the deposition area, the control performance can be obtained and desired material on the deposition area. 它还提供背接触/反射层的改进,以及从处理过程消除镉。 It also provides the back contact / reflector layer is improved, and the elimination of cadmium from the process.

发明内容 SUMMARY

在美国专利5986204( '204 )中Iwasaki等人介绍了关于传统CIGS 太阳能电池的问题的解决方法。 In U.S. Patent No. 5,986,204 ( '204) and Iwasaki et al describes a solution to the problem regarding the conventional CIGS solar cells. 他们考虑上面刚刚讨论了的候选金属的相同的名单;然而,他们建议背导体使用银-铝和铜-铝合金。 They considered the same list of candidates discussed immediately above metals; however, they suggested back silver conductor - aluminum and copper - aluminum alloy. 使用这些合金的局限性是,它们必须在相对低的处理温度(低于约120 。C)下应用,其勉强适合于非晶态硅吸收体层,但是,对CIGS在它的正常作业温度下不起作用。 Limitations of the use of these alloys is that they must be treated at relatively low temperatures (below about 120 .C) the application, which barely suitable for the absorbent layer to amorphous silicon, but for CIGS at its normal operating temperature It does not work. 另外,该发明教导在合金和吸收体层之间用透明的导电氧化物(ZnO)作为阻挡层,也在变形基金属层上放置合金以增加散射角。 Further, this invention teaches the alloy layer between the absorber and the transparent conductive oxide (ZnO) as a barrier layer, are placed fund alloy modification to increase the metal layer on the scattering angle. ZnO层提供传导性并抑制移动,但是像所有有用的透明导电氧化物,它是n型半导体。 ZnO layer provides conductive and inhibits movement, but all useful as a transparent conductive oxide, which is an n-type semiconductor. 当倚着p型吸收体层放置它时,形成弱的pn结,其产生的效果是给电池施加不需要的小的反向电偏置。 When leaning on the p-type absorber layer place it, a weak pn junction, which produces the effect is to apply an unnecessary reverse electrical bias to the small cell. 于是,原来的pn结必须克服这个反向的偏置以引起 Thus, the original must overcome this pn junction reverse biased to cause

15有用的电流流动,因而净效率降低。 15 useful current flow, thus reducing the net efficiency.

Iwasaki等人是在正确的轨道上,但是对他们的反射体的性能有两个障碍。 Iwasaki, who is on the right track, but there are two obstacles to the performance of their reflector. 第一,ZnO)阻挡层不应该是n型半导体;第二,与纯金属相比合金通常有较弱的传导性和反射性。 First, of ZnO) should not be a barrier layer of n-type semiconductor; a second, usually weaker conductivity and reflectivity as compared with the pure metal alloy. 过渡金属的氮化物、硼化物、硅化物和碳化物'中,几个有高的电传导性;另外,它们有高的熔化温度且是相对不活泼的。 Transition metal nitrides, borides, silicides and carbides', several high electric conductivity; In addition, they have high melting temperatures and is relatively inactive. 一些有理想的光学性质。 Some desirable optical properties. 最优材料是某些过渡金属的氮化物,更详细地说是氮化钛(TiN)、氮化锆(ZrN)和氮化铬(HfN)。 Optimal materials are nitrides of certain transition metals, more particularly a titanium nitride (TiN), zirconium nitride (of ZrN) and chromium nitride (HfN). 与它们的母体金属相比,这些氮化物有高的熔点(对ZrN约3000°C)和更高的电传导性,它们起的作用不像半导体。 Compared to their parent metal, the nitrides have high melting point electrically conductive (ZrN to about 3000 ° C) and higher, their role like a semiconductor. 另外,它们有好的光学性质;具体地,类似于贵金属的低的折射率。 In addition, they have good optical properties; in particular, the low refractive index similar to the noble metal. 在太阳能电池中为了形成改进的背接触/反射层,这些性质使它们十分有用。 In order to form an improved solar cell back contact / reflector layer, these properties make them useful. 所有上面提及的氮化物起的作用很好,但是氮化锆有稍微 Nitride role of all the above mentioned good but slightly zirconium nitride

更好的光学和电学性质,且它作为金属氮化物整个类的代表在此加以讨论。 Better optical and electrical properties, and as representative of the entire class of metal nitrides are discussed herein.

图2显示从400至1200nm,钼、铌、镍、铜、银、铝和氮化锆0.5微米厚(不透明)薄膜在空气中计算的反射率。 Figure 2 shows the reflectance from the film 400 to 1200nm calculated in air, molybdenum, niobium, nickel, copper, silver, aluminum, and zirconium nitride, 0.5 m thick (opaque). 这个光i普范围覆盖太阳辐射输出的主要区域,其处于约1电子伏(ev)的光子能量之上。 This light P i coverage area of ​​the main solar radiation output, which is above about 1 eV photon energy (EV) of. 为了最高效率,对单结太阳能电池1.4至1.5ev的带隙是最佳的, 且在这个区域铌和钼有次于任何其他金属的反射的反射。 For maximum efficiency, single-junction solar cell bandgap 1.5ev to 1.4 is optimal and there is inferior to any other reflective metal in the region of the reflective niobium and molybdenum. 与钼、铌和镍比较通过氮化锆相对高的反射率表明它的金属本性。 Molybdenum, niobium, and nickel metal comparison shows that by nature a relatively high reflectance zirconium nitride. 在空气中金属的反射率依赖于空气和金属的光折射率,其当然随波长而变化。 In air reflectivity of the metal depends on the refractive index of air and light metals, which of course varies with the wavelength. 对于在空气/金属界面反射的简单公式是: Simple formulas for the air / metal interface reflection is:

其中n。 Where n. 是空气的折射率(〜1),且iv和、是折射率和金属的消光系数。 It is the refractive index of air (~ 1), and and iv, is the extinction coefficient and the refractive index of the metal. 对于像银的金属折射率远小于一,并且消光系数比一大, 于是、2项支配,并且对厚的薄膜反射接近100%。 For metals like silver is much smaller than a refractive index, and the extinction coefficient is larger than a, then, two dominant, and the film thickness of the reflection close to 100%. 在钼、铌和镍的情况,在可见光区域n和k都大于一,于是因为(1^-/+11。) 2项计算出它们的反射是充分地小 In the case of molybdenum, niobium and nickel, n and k in the visible region is greater than a, so as (^ 1 -. / + 11) 2 calculated from their reflectance is sufficiently small

碰巧多数半导体还有约3的折射率,对于薄膜太阳能电池吸收体 Most refractive index in a semiconductor happen about 3, for thin-film solar cell absorber

的两个最主要竟争者CIGS和CdTe这尤其是真的。 The two most competitive person CIGS and CdTe This is especially true. 反射公式表明背反射层不应该有接近于3的n和k值。 Reflection equation indicates back reflecting layer should not be close to the values ​​of n and k 3. 似乎,更详细地说关于钼, 即便是在业界几乎没有人注意或讨论这个潜在的问题。 It seems, more particularly with regard to molybdenum, even in the industry almost no one noticed or discussed this potential problem. 图3显示在CIGS层与金属背传导和反射层之间,其是该层在太阳能电池中实际起作用的方式,在界面这些金属的计算的反射。 Figure 3 shows the CIGS layer between the metal back and the conductive reflective layer in a solar cell is the actual mode of the function layer, the reflection at the interface of the calculation of these metals. 注意,如上述表明的,在多数临界光谱区通过大于2的因子从钼在空气中的值极大地减少了它的反射。 Note that, as indicated above, from the value of Mo in the air greatly reduces its reflection in the most critical regions of the spectrum by a factor greater than two. 铌和镍的反射清楚地稍微更好些,但还是有效地减少了。 Reflective niobium and nickel clearly somewhat better, but still effectively reduced. 其他金属的反射减少的没有这么多,因为它们的折射率更显著地不同与3。 Other reflective metals not reduced so much, because their refractive indices differ more significantly 3. 镍是比钼更好的反射体,且它将更经济;然而,它的扩散的倾向是潜在的问题,且由于它是有磁性的,它比非磁性金属更难于濺射。 Nickel is better than the molybdenum reflector, and it will be more economical; however, it tends to be a potential problem of diffusion, and since it is magnetic, it is more difficult than the non-magnetic metal sputtering. 比钼、铌或镍有更好反射的氮化锆将是极好的解决办法。 Than molybdenum, niobium, or nickel-zirconium nitride will be better reflected excellent solution. 然而,提供如0.5微米的钼的相同的总的电传导性,将需要约1.5孩£米厚的氮化锆。 However, providing the same as 0.5 microns total electrical conductivity of molybdenum, children will require about 1.5 meters thick zirconium nitride £. 利用反应溅射制造这样一种厚的相当经济的薄膜是可能的;然而,有更好的解决办法。 Producing a reactive sputtering using a thick film is quite economical possible; however, there is a better solution.

图4显示当在CIGS层(或CdTe层)与金属层之间放置氮化锆的15nm厚的阻挡层时,在前两个图中的金属的反射。 FIG 4 shows that when the barrier layer is zirconium nitride 15nm thick are placed between the CIGS layer (or CdTe layer) and the metal layer, the first two figures of the reflective metal. 虽然轻微减少了其他金属的反射,但有效改进了钼、铌和镍的反射。 Although a slight decrease in the reflection of other metals, but effective in improving the reflection of molybdenum, niobium, and nickel. 当进一步增加氮化锆层的厚度时,所有金属在界面的反射率接近厚的氮化锆的反射率,如图7所示(超过70% )。 When further increasing the thickness of the zirconium nitride layer, all of the metal is close in reflectance at an interface reflectivity of zirconium nitride of a thickness, shown in Figure 7 (over 70%). 实际上,计算预计在约100nm (或0.10微米)的氮化锆阻挡层厚度,在氮化锆下面的金属层很少以至不影响通过CIGS层逆转的光的反射率-它变成完全地由氮化锆阻挡层的性质支配。 In fact, in calculating estimated thickness of about 100 nm or barrier layer (or 0.10 microns) zirconium nitride, zirconium nitride in a little below the metal layer does not affect the reflectance of light even by reversing the CIGS layer - it becomes entirely of zirconium nitride barrier properties dominate.

作为例子,图5显示当氮化锆的厚度从0至200nm变化时,在吸收体/反射体界面对于钼和银在800nm的波长处的反射。 As an example, FIG. 5 shows that when the thickness of the zirconium nitride varies from 0 to 200nm reflected absorber / reflector interface for molybdenum and silver in a wavelength of 800nm. 当氮化锆阻挡层的厚度增加时,对于钼反射首先急剧地增加,但是,在约30nm When the thickness of the barrier layer is zirconium nitride, molybdenum for the first reflection increases sharply, however, at about 30nm

17厚度它开始倾斜(roll off),并且约60nm厚度之后变化十分慢。 It began to tilt thickness 17 (roll off), and after about 60nm thickness variations is very slow. 在lOOnm厚度反射的进一步的变化是极细微的。 Further variations in reflection lOOnm thickness is extremely fine. 对铌和镍(没有显示) 的反射结果以类似于钼的方式表现。 Reflecting the results of niobium and nickel (not shown) in a manner similar to the performance of molybdenum. 与钼相比反射在更高的水平起动,但是它们很快地接近相同的极限。 Compared with molybdenum reflected in higher levels start, but they are quickly approaching the same limits.

对于银,反射在高反射开始(约95% ),且如钼的情况越过约相同的厚度范围,下降到厚氮化锆的反射。 For silver, a highly reflective reflector at the beginning (about 95%), and as the case of molybdenum over the same thickness range of approximately down to a thickness of the reflection zirconium nitride. 通常,弱反射体金属需要较厚的氮化锆阻挡层,十分好的反射体金属应该有较薄的阻挡层, 也就是刚刚够去做保护吸收体/反射体界面的工作。 Typically, weak reflection of a thicker metal zirconium nitride barrier layer, very good reflective metal barrier layer should be relatively thin, i.e. just enough to do the work of protection absorbent body / reflector interface. 于是ZrN薄层产生4象金属一样的作用,并防止反向pn结的形成。 Then a thin layer of ZrN 4 generates the like metals, and prevent a reverse pn junction. 它改进光学地弱的金属的反射,并且保护CIGS层不受高反射率金属的扩散。 It improves weak optically reflective metal, and protected from diffusion of a high reflectivity metal CIGS layer. 由于光学性质与背接触层的传导性需要是分离的,供基体金属层更宽范围的选择是可能的。 Since the optical properties of the conductive back contact layer needs to be isolated, a wider range of choice for the metal layer of the substrate is possible.

因此,本发明涉及用于生产全溅射薄膜CIGS太阳能电池的巻装进出沉积装置和方法,其中利用直流(DC)溅射从一对矩形平面的或圓柱形旋转磁控管通过共沉积形成CIGS吸收体层。 Accordingly, the present invention relates to the production of full-sputtered film for CIGS solar cell Volume-roll deposition apparatus and method in which a direct current (DC) sputtering from a pair of rectangular planar or cylindrical rotatable magnetron by codeposition CIGS absorber layer. 从藏在特殊室中的传统平面^兹控管RF溅射ZnS緩冲层,于是用更良性的材料代替有毒的CdS。 Hidden in a special plane from the traditional chamber ^ hereby Controls RF sputtering ZnS buffer layer, instead of one with a more benign CdS toxic materials. 利用DC和交流(AC)溅射从乂^U兹控管通过沉积形成电池中的剩余层。 And using a DC current (AC) in the remaining layers of the cell from the sputtering qe ^ U hereby Controls by deposition. 于是,通过无湿法加工或不包括高温气体扩散过程的大模块真空沉积机器,以单行程制造电池。 Therefore, no wet processing or by hot gas diffusion process does not include a large module vacuum deposition machine to manufacture a single pass cell. 通过增加先前在太阳能电池中没有使用的材料,改进背接触/反射层。 By increasing material not previously used in a solar cell, the improved back contact / reflector layer. 在该发明的优选实施例中,从双圆柱形旋转^磁控管沉积CIGS层,在美国专利。 In the preferred embodiment of the invention, the rotation from the double cylindrical magnetron ^ deposited CIGS layer, in U.S. Pat. 65010 (通过参考将其结合在此)描述的结构中使用了双圆柱形旋转磁控管,在其中一个靶包含铜和硒,而第二个靼包含铟、镓和硒或铟、铝和硒。 65010 (which is incorporated by reference herein) described structure uses a dual rotating cylindrical magnetron, in which a target containing copper and selenium, and the second pedaled containing indium, gallium, and selenium or indium, aluminum and selenium .

本发明的主要目的是提供用于薄膜CIGS太阳能电池经济生产的大尺度制造系统。 The main object of the present invention is to provide a system for producing large-scale thin-film CIGS solar cell production economy.

该发明另外的目的是提供用于太阳能电池的制造协议,在其中从工序中除去了高温有毒气体和有毒湿化学浴。 Further object of the invention is to provide a protocol for manufacturing a solar cell, in which the removal of toxic gases and toxic high-temperature wet chemical bath from the process.

18该发明的另一个目的是提供用于CIGS太阳能电池的制造工艺, 其有效地降低了CIGS太阳能电池的成本,明确地通过在背接触/反射层上的改进以及镉和它的有毒废物处理的排除。 18 Another object of the invention to provide a process for manufacturing CIGS solar cells, which effectively reduces the cost of CIGS solar cells, specifically by improving and cadmium on the back contact / reflective layer and its toxic waste treatment exclude.

该发明进一步的目的是提供用于CIGS太阳能电池的装置和制造 A further object of the invention is to provide an apparatus for manufacturing CIGS solar cells and

工艺,其有效地增加了能用的衬底的尺寸,包括在有增强的容量和效率的专用定制的和模块化的巻装进出涂层机器上,沉积的材料的根本上连续的巻筒。 Technology, which effectively increases the size of the substrate can be used, including in an enhanced capacity and efficiency of the dedicated modular and customizable on Volume-roll coating machine, fundamentally deposited material continuous tube Volume .

本发明是制造太阳能电池的方法,其包括提供衬底,在衬底的表面上沉积传导膜、其中传导膜包括多个传导材料的不连续层,在传导膜上沉积至少一个p型半导体吸收体层,其中p型半导体吸收体 The present invention is a method of manufacturing a solar cell, comprising providing a substrate, depositing on the conductive film surface of the substrate, wherein the conductive film comprises a plurality of discrete layers of conductive material, the conductive film is deposited at least one p-type semiconductor absorber layer, wherein the p-type semiconductor absorber

层包括基于合金材料的二硒化铜铟(CIS),在p型半导体吸收体层上沉积n型半导体层以形成pn结,以及在n型半导体层上沉积透明的电传导顶部接触层。 Layer comprising a copper indium diselenide-based alloy material (CIS), a p-type semiconductor absorber layer is deposited on the n-type semiconductor layer to form a pn junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.

在本发明的另一方面,制造太阳能电池的方法包括提供衬底,在衬底的表面沉积传导膜,在传导膜上沉积至少一个p型半导体吸收体层、其中p型半导体吸收体层包括基于合金材料的二硒化铜铟(CIS),且其中p型半导体吸收体层的沉积包括从一对传导革e共濺射CIS材料,在p型半导体吸收体层上沉积n型半导体层以形成pn 结,以及在n型半导体层上沉积透明的电传导顶部接触层。 In another aspect, a method of manufacturing a solar cell according to the present invention includes providing a substrate, depositing a conductive film on the surface of the substrate, the conductive film is deposited at least one p-type semiconductor absorber layer, wherein the p-type semiconductor absorber layer comprises based copper indium diselenide alloy material (CIS), and wherein the deposition of p-type semiconductor absorber layer comprises a pair of co-sputtering e leather CIS conductive material layer on the p-type semiconductor absorber layer is deposited to form an n-type semiconductor a pn junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.

仍然在本发明的另一方面,制造太阳能电池的方法包括提供村底,在衬底的表面上沉积传导膜,在传导膜上沉积至少一个p型半导体吸收体层、其中p型半导体吸收体层包括基于合金材料的二硒化铜铟(CIS),并且其中p型半导体吸收体层的沉积包括来自在包含氩气和竭化氬气体的賊射气氛中的一对相同的传导乾的活性AC溅射材料,在p型半导体吸收体层上沉积n型半导体层以形成pn结, 以及在n型半导体层上沉积透明的电传导顶部接触层。 In still another aspect, a method of manufacturing a solar cell according to the present invention includes providing a bottom village, is deposited on the surface of the substrate a conductive film, the conductive film is deposited at least one p-type semiconductor absorber layer, wherein the p-type semiconductor absorber layer It includes those based on diselenide, copper indium alloy material (CIS), and wherein the deposition of p-type semiconductor absorber layer comprises an active AC same conductivity dry a thief emitted atmosphere from containing argon gas and exhaust of argon gas in the sputtering material, the p-type semiconductor absorber layer is deposited on the n-type semiconductor layer to form a pn junction, and depositing a transparent semiconductor layer on the n-type electrically conductive top contact layer.

还在本发明一个更多的方面,太阳能电池包括提供衬底,在衬底的表面上沉积的传导膜、其中传导膜包括多个传导材料的不连续层,在传导膜上布置至少一个p型半导体吸收体层、其中P型半导体吸收体层包括基于合金材料的二硒化铜铟(C'IS),在p型半导体吸收 Aspect of the present invention, a still more, a solar cell includes providing a substrate, a conductive film is deposited on the surface of the substrate, wherein the conductive film comprises a plurality of discrete layers of conductive material disposed on at least one p-type conducting film the semiconductor absorber layer, wherein the P-type semiconductor absorber layer comprises copper indium diselenide-based alloy material (C'IS), the p-type semiconductor absorber

体层上布置n型半导体层、其中p型半导体吸收体层上和n型半导体层形成pn结,以及在n型半导体层上的透明的电传导顶部接触层。 n-type semiconductor layer disposed on the layer, the electrical layer is formed on the pn junction, and on the n-type transparent semiconductor layer and the n-type semiconductor p-type semiconductor absorber layer, wherein the conductive top contact layer.

依然在本发明一个更多的方面,真空溅射装置包括用于从一巻村底材料放开村底材料的输入模块,用于从输入模块接收衬底材料的至少一个处理模块,以及输出模块。 In a still further aspect of the present invention, a vacuum sputtering apparatus comprising a base material for release from a village Volume Village base material input means for at least one processing module, and an output module receiving substrate material from the input module . 处理模块包括可旋转涂层鼓、 环绕可旋转涂层鼓可伸展衬底,用于加热涂层鼓的加热器阵列,以及一个或多个溅射磁控管、每一个溅射磁控管有磁控管腔和布置在磁控管腔中的众多传导溅射靶、并且每一个溅射磁控管面向涂层鼓用于向衬底材料上溅射材料。 The processing module includes a rotatable coating drum, rotatable around the coating drum stretchable substrate, a heater array of heating the coating drum, and one or more magnetron sputtering, magnetron sputtering, each with a magnetron sputtering chamber and a plurality of conductive targets disposed in the magnetron chamber, and each facing a sputtering magnetron for sputtering a coating material to the drum over the substrate material. 输出模块从处理模块接收衬底材料。 Output module receiving substrate material from the processing module.

通过说明书、权利要求书和附图的回顾,本发明的其他目的合特征将变得显而易见。 By specification, drawings and claims review, other objects of the present invention is combined features will become apparent.

附图说明 BRIEF DESCRIPTION

图1是基本CIGS太阳能电池的现有技术结构的示意图。 1 is a schematic configuration of a prior art basic CIGS solar cells. 图2显示通常认为有用的作为太阳能电池背接触-层的金属在空气中计算的反射。 Figure 2 shows generally considered to be useful as a solar cell back contact - reflective metal layer calculated in air. 包括的是由氮化锆代表的新类別材料。 It included are a new class of materials represented zirconium nitride.

图3显示在CIGS吸收体层与金属和图2所示的氮化锆之间的界 Figure 3 shows the boundary between the zirconium nitride layer and a metal and as shown in FIG. 2 CIGS absorber

面计算的内部反射。 Calculated internal reflection surface.

图4显示在CIGS吸收体层与图2所示的金属之间的界面上计算的内部反射,并且在界面上放有15nm厚的氮化锆层。 Figure 4 shows the calculated internal reflection on the interface between the metal layer shown in FIG. 2 CIGS absorber, and placed 15nm thick layer of zirconium nitride on the interface.

图5显示作为氮化锆阻挡层厚度的函数的,在太阳能电池中吸收体/反射体界面上在800nm的反射。 5 shows as a function of the thickness of the zirconium nitride barrier layer, the reflectance of the absorbent body in a solar cell / reflector interface of 800nm.

图6显示本发明的基本太阳能电池的结构,其中在CIGS层与背传导/反射金属层之间插入氮化锆。 Figure 6 shows the basic structure of a solar cell of the present invention, which is inserted between the zirconium nitride layer and the CIGS back conductive / reflective metallic layer.

图7显示供本发明的太阳能电池选择的结构,其中用铜和银层改 Figure 7 shows the structure of the solar cell of the present invention for selection, wherein the copper and the silver layer changes

进了背传导/反射层。 Back into the conductive / reflective layer.

图8示意性地显示来自传统的双长方形平面磁控管的CIGS材料 FIG 8 schematically shows a conventional twin CIGS material from the rectangular planar magnetron

20的共溅射。 20 of co-sputtering.

图9示意性地说明来自双圆柱形旋转磁控管的CIGS材料的DC 共溅射的优选实施例。 FIG 9 schematically illustrates a CIGS material from the dual rotating cylindrical magnetron DC co-sputtering of a preferred embodiment.

图10示意性地显示使用AC电源共溅射CIGS材料的选择性的方法。 FIG 10 schematically shows the AC power selectively co-sputtering method of CIGS materials.

图11示意性地显示以同样地金属合金靶形成CIGS材料、使用双圆柱形旋转磁控管的选择性AC活性溅射方法。 FIG 11 schematically shows in the same manner as CIGS material formed of a metal alloy target, dual cylindrical rotatable magnetron sputtering selective AC activity.

图12示意性地说明用三套双^兹控管以增加沉积率和等级,CIGS 层的成分改变它的带隙。 FIG 12 schematically illustrates a three-bis ^ Controls hereby to increase the deposition rate and level, change the composition of the CIGS layer bandgap.

图13显示本发明的基本太阳能电池的改进全溅射型式的优选实施例结构。 Example 13 shows the basic structure of an improved solar cell of the present invention a preferred embodiment of the full version of sputtering.

图14显示用于制造图13描述的太阳能电池的巻装进出模块溅射机器的侧视图的高度简化的示意图。 Figure 14 shows a solar cell are described in Volume 13 of manufacturing a side view of the height-roll sputtering machine module simplified schematic.

图15显示带有涂层鼓和磁控管的结构细节的处理模块截面图的更详细的示意图。 Figure 15 shows a more detailed block schematic cross-sectional view of the structural details of the processing drum and coated with magnetron.

具体实施方式 Detailed ways

现在,将描述本发明,并与传统的现有技术的CIGS太阳能电池的结构做比较。 Now, the present invention will be described, and the structure of a conventional prior art compared CIGS solar cells. 将详述关于具体地设计成提供工序的最佳实现的模块化巻装溅射沉积系统的新的电池结构和制造工序。 DETAILED DESCRIPTION The new cell structure and on the manufacturing process specifically designed to be modular sputtering system installed Volume step provides the best implemented.

应该注意,如这里所使用的,术语"在……之上(over)"和"在...... It should be noted that, as used herein, the term "above ...... (over)" and "......

之上(on),,两者都内在地包括"直接在……之上,,(没有中间材料、 单元或空间布置在其间),以及"间接地在……之上"(中间材料、 单元或空间布置在其间)。例如,"在衬底上"形成单元,可包括在衬底上直接形成单元,其间没有中间材料/单元,也包括在衬底上间接形成单元,其间有一个或多个中间材料/单元。 On (ON) ,, both inherently includes "directly on ...... ,, (no intermediate materials, elements or space disposed therebetween) and" indirectly on ...... "(intermediate material, means or space disposed therebetween). For example, "on a substrate" forming unit may include a unit formed directly on the substrate, during which no intermediate material / unit, forming unit also includes a substrate indirectly, one or more therebetween intermediate material / unit.

图6说明按照本发明的基本太阳能电池的一个最简单的实施例, 其包括氮化锆阻挡层。 6 illustrates the simplest embodiment according to a basic embodiment of a solar cell of the present invention, a barrier layer comprising zirconium nitride. 除了在CIGS层3和电接触层2之间增加的氮化锆阻挡层2a,该图类似于图1所示的传统的太阳能电池。 In addition to CIGS layer 3 between the electrical contact layer 2 and the zirconium nitride barrier layer is increased 2a, this figure is similar to the conventional solar cell shown in FIG. 如上述 As above

21建议的,现在电接触层2可能是上面所讨论的任何金属或具有适当的导电性的经济的金属。 21 suggested, and now the electrical contact layer 2 may be any suitable metal or metal having conductivity economical discussed above. 由于氮化锆阻挡层在保持好的反射率的时 Since the barrier layer is zirconium nitride while retaining good reflectance

候将会阻止扩散,由Iwasaki等人在'204中主张的合金将起作用。 Designate will prevent diffusion by Iwasaki et al '204 advocated in the alloy will work. 纯银将给予最佳的性能;然而,它将是相对昂贵的解决方案。 Silver will give the best performance; however, it is a relatively expensive solution. 铝是最便宜的好的反射体,但与其他的金属相比它的熔点相对低(660 。C),而且在真空系统中它从背景的水蒸气中吸收氧,这降低它的传导性。 Aluminum is a good reflector cheapest, but compared with other metals of its relatively low melting point (660 .C), it absorbs the oxygen and water vapor from the background in the vacuum system, which reduces its conductivity.

本发明的太阳能电池的备选的实施例如图7所示,在那电接触层2是由铜而不是钼制造的。 An alternative embodiment of a solar cell of the present invention is shown in FIG. 7, in that the electrical contact layer 2 is made of copper instead of molybdenum. 铜是相对便宜的而且是很好的导体。 Copper is relatively inexpensive and good conductors. 大约0.2微米厚度,铜提供如0.5微米的钼的导电性。 A thickness of about 0.2 microns, such as copper, to provide electrical conductivity of 0.5 [mu] m of molybdenum. 层2a是氮化锆薄阻挡层,具有约10至20nm的范围的厚度。 2a is a thin layer of zirconium nitride barrier layer having a thickness ranging from about 10 to 20nm. 在这点,层的结构如同在图6中所讨论的结构,且可以以这种形式^f吏用它,因为它的适度的带隙,特别与CIGS—起。 In this regard, the structural layer structure as discussed in FIG. 6, and may be used in this form it ^ f officials because of its moderate band gap, and particularly from CIGS-. 然而,通过在氮化锆层的顶部沉积的银的薄层2b (40至50nm)、以及在银和CIGS层之间的氮化锆的另外的阻挡层2c,能补救约600nm的(见图4)在短波长较低的反射。 However, an additional barrier layer on top of the zirconium nitride layer, a thin layer of silver deposited 2B, and zirconium nitride (to 50nm 40) between the silver and the CIGS layer 2C, can remedy about 600nm (see FIG. 4) in a short wavelength lower reflection. 用这种结构,在银/ZrN/CIGS界面的内反射与图4中标注有"银"的反射曲线几乎是不能区分的,避免了大量的较昂贵的银的使用。 With this structure, labeled "silver" reflection curves are almost indistinguishable in the reflected FIG silver / ZrN / CIGS interface 4, to avoid a large number of more expensive silver is used. 如果CIGS的作业温度能从当前的约550。 If the job from the current temperature of the CIGS about 550. C的值有效地降低,那么可以去除在铜和银之间的中间阻挡层2a,因为温度低于550。 Effectively reduce the value of C, it can be removed in the middle between the copper and silver barrier layer 2a, since the temperature below 550. C铜和银将迅速相互扩散。 C copper and silver rapidly interdiffusion. 另外,对足够低的作业温度,铝可以取代铜和银。 In addition, a sufficiently low operating temperature, copper, aluminum and silver may be substituted. 当然,如果衬底是金属箔而不是玻璃,在保持必要的反射率的情况下, 基金属层可以做得更薄,由于金属箔将提供大部分的传导性。 Of course, if the substrate is a metal foil instead of glass, while maintaining the necessary reflectance-based metal layer can be made thinner, the metal foil will provide most of the conductivity.

要描述的下一层是CIGS的吸收体层。 The layer is to be described CIGS absorber layer. 在本发明中,对CIGS材料的优选的沉积方法是直流磁控管賊射,可是,交流反应磁控管賊射也是可行的可供选择的方法,仅仅由于增加了处理少量有毒硒化氢气体的需要减少对这种技术使用。 In the present invention, the preferred method of deposition of CIGS materials is a DC magnetron thief shot, however, also possible magnetron thief radio exchange reaction alternative method, only a small amount of processing due to an increase of toxic hydrogen selenide gas the need to reduce the use of this technology. 作为最理想的方法,两种方法都利用'010教导的磁控管技术;尽管对于传统的平面磁控管,该发明实际上可能不是4艮有效。 As best way, both methods using '010 taught magnetrons; although for a conventional planar magnetron, the invention may not actually be valid Gen 4. 直流磁控管溅射还没有利用CIGS材料 DC magnetron sputtering using a CIGS material are not

22的一个原因是因为它的半导体性质,电的传导性太低。 One reason is that because of its 22 semiconductor properties, the electric conductivity is too low. 直流溅射需要像金属的电的传导性,也需要好的热的传导性,以允许用于高沉积率的高功率。 DC sputtering as required electrically conductive metal, also require good thermal conductivity, allowing for high power and high deposition rate. 概念上,该发明的一个重要的观点是将CIGS材料分成两部分,各部分都有容许传导賊射靶的制造的性质。 Conceptually, an important point of this invention is a CIGS material into two portions, each portion has a thief exit permit conduction properties of the target production. 对于在太阳能电池中用作吸收体层的真正的候选者的多数半导体,这是不可能的,但是最近的实验结果证明它对于CIGS起作用。 For use as the absorbent most real candidate semiconductor layer in the solar cell, this is not possible, but the recent experimental results show that it works for CIGS. 几次不同组合的失败的尝试之后,发现倘诺材料加工适当,铜和石西可以组合成导 After several failed attempts of different combinations, if found suitable material processing Connaught, copper and graphite can be combined into conduction west

电基体(matrix)。 Electric substrate (matrix). 如果冷压并在稍微低于硒的熔点的温度(217°C) 退火,由约两份硒和一份铜组成的粉末的均匀混合物保持很高的导电性。 If the cold and slightly below the melting point of selenium (217 ° C) anneal, consisting of about selenium and two homogeneous mixture of a copper powder maintain high electrical conductivity. 在208至210'C制作的小试样有好的物理强度,且电阻小于1 欧姆。 208 to 210'C small sample produced have good physical strength, and the resistance less than 1 ohm. 当退火温度上升到约40(TC度时,如从CuSe2的形成所期望的, 电阻增长超过一百万倍。但是较低温材料的传导性很难与Cu-Se 二元系相图相一致。如果在低退火温度Cu和Se之间的化学反应没有发生,那么Se可以担当粘合以保持高传导的铜基体为一体。因为这是那种情况,在低退火温度Cu将不得不迅速扩散,这是不太可能的。 Qi2Se相是唯一已知的传导的Cu/Se相,于是它可能形成,尽管它看起来与这种合成物和温度的相图不一致。然而,由于退火后材料改变它的外形,它似乎支持已经发生的反应。用In替代Cu的类似的实验没有产生高传导性的基体。实际上,即使在低退火温度,电阻随In的含量增加。由于In和Se有低的熔点,可期望观察的结果, 且与铜不同,它与In-Se相图一致。 When the annealing temperature is raised to about 40 (TC degrees, such as from CuSe2 form the desired, more than one hundred times the resistance increase. However, the conductive material with a relatively low temperature is difficult Cu-Se binary phase coincides FIG. If the chemical reaction between Cu and Se low annealing temperature does not occur, it may act as an adhesive Se to maintain high conductivity copper-based body as a whole, because it is that case, will have lower annealing temperature rapidly diffused Cu, it is unlikely. Qi2Se phase is the only known conductive Cu / Se phase, so it is possible to form, though it seems inconsistent with the phase diagram of such a composition and temperature. However, since the material after annealing change shape, it seems to support the reaction had occurred. by in alternative similar experiment Cu does not produce a high conductivity substrate. in fact, even at low annealing temperature, resistance increases as the content of in is increased. Since in and Se have a low melting point, the desired result can be observed, and different from copper, which is consistent with the phase diagram in-Se.

不管与相图的不一致性,Cu/Se已经被做成与高速DC磁控管溅射的必要性质一致。 Regardless of the phase diagram inconsistency, Cu / Se has been made consistent with the necessary properties of high speed DC magnetron sputtering. 对于其余材料的靶,必须包含需要完成CIGS 结构的In和Ga。 For the remaining target material, it must contain the complete structure of the In and Ga CIGS. In和Ga容易熔合成一体以形成低温焊料,其能够浇注或铸造到围绕衬背(backing)或传导管的模子中以形成靶。 In and Ga to form a readily integrally fused low temperature solder, which can be poured or cast into the surrounding backing (backing) or form the conductive tube to form a target. 为了防止偏析和低温共晶的形成,需要好的混合和迅速的淬火。 In order to prevent the formation of a low temperature eutectic segregation and requires good mixing and rapid quenching. 更理想的方法是通过压制金属粉末形成靶,更详细地说,包括Ga作为硒化镓(Ga2Se3)。 More preferably the method is to form a target by pressing a metal powder, more particularly, including Ga as gallium selenide (Ga2Se3). 輩巴保持传导且避免了低温共晶。 Pakistan to maintain generation and conduction avoid the low temperature eutectic. 另外,还可加入Se In addition, Se may also be added

23并与In发生反应以形成绝缘的In2Se3相,但是,只要剩余足够的游离In以形成传导基体,靶将充分地濺射。 In2Se3 23 and with the reaction to form the insulating In phase, however, sufficient as long as the remaining free In conducting substrate to form the target will be sputtered sufficiently. 由于对每两个In或Ga原子需要三个Se原子,大约一半In/Ga靶会是Se,并保持足够的传导性以賊射。 Because of the need for every two three Se atoms In or Ga atoms, about half of the In / Ga target would be Se, and remains sufficiently conductive to shoot the thief. 用铝替代镓实质上会提高共晶熔点,而不会引起任何进一步的4支术困难。 Alternatively gallium aluminum eutectic melting point will increase substantially, without causing any difficulties 4 further surgery. 除了来自铜靶的硒以外,在In/Ga或In/Al靶中包含的硒在非常理想的沉积过程期间提供硒的过压。 Apart from the copper target of selenium, selenium included in the In / Ga or In / Al provided the target during the deposition process selenium ideal overpressure.

这种耙结构技术提供的另一个优点是,以许多不同的和潜在有益的手段去掺杂材料的方法。 Another advantage of this technique rake structure is provided to a number of different means and potentially beneficial to the material doping method. 例如,很久以来,众所周知十分小量的钠(Na)加入到CIGS中能提高它的性能。 For example, since a long time, we all know very small amount of sodium (Na) was added to the CIGS can improve its performance. 最初,注意到在钠钙玻璃上制造的电池比在其他衬底上制造的电池有更高的效率,尤其是不锈钢。 Initially, the battery fabricated in notes on soda lime glass has a higher efficiency than the battery manufactured on other substrates, especially stainless steel. 后来发现,在沉积过程中玻璃中的微量的Na扩散进了CIGS。 Later we found during the deposition of a trace amount of Na in the glass diffuse into the CIGS. 然而,已经证明对非玻璃衬底容易地加入少量但可控数量的钠的方法是困难的。 However, it has proved to be non-glass substrates but the method of adding a small amount easily controlled amount of sodium is difficult. 用本发明的靶形成方法,容易将^^量(例如约0.1%) 的NaSe2引入Cu/Se或In/Ga/Se ,以获得在吸收体层中想得到的掺杂。 The method of forming a target of the present invention, easily ^^ amount (e.g. about 0.1%) is introduced into the NaSe2 Cu / Se or In / Ga / Se, to obtain conceivable in the absorber layer is doped.

关于一对溅射耙^:下面的溅射CIGS材料的i兌明: 一个由Cu和Se组成,另一个是In、 Ga和Se。 On a sputtering rake ^: i CIGS material sputtered out against the following: a composition of Cu and Se, and the other is In, Ga and Se. Cu对Se的比约是1: 2,但是可以改变以适应工序的变化和需要。 Cu ratio of Se is about 1: 2, but may be varied to accommodate changes in process and needs. 改变In对Ga的比以变化带隙, 且它能从单独的In (lev的带隙)到约30%Ga (1.3ev的带隙)变化。 In changing the ratio of Ga to change the bandgap, and it can separate from the In (Lev band gap) to about 30% Ga (1.3ev band gap) change. 应该注意到在每一个靶中材料的比的变化、及和其他元素的捧杂(如上所述的钠)的小水平的附加物一样,被认为是与基本发明一致的。 It should be noted that the same holding hetero (sodium as described above) than a small change in the level of other elements and materials and addenda in each target, is considered to be substantially consistent with the invention.

CIGS材料的传统DC长方形平面磁控管共濺射示意性地显示在图8中。 Conventional rectangular planar magnetron DC co-sputtering CIGS material is shown schematically in FIG. 视图是与磁控管的长轴垂直的横截面。 It is a cross sectional view perpendicular to the long axis of the magnetron. 单元7表示传统的》兹控管的主体,其容纳形成濺射的"粒子轨道"和冷却耙8和9的装置的^兹模块(没有图示)。 7 shows a device unit racetrack "rake 8 and 9 and the cooling of traditional" Controls hereby body, which is accommodated a sputtering "^ hereby the module (not shown). 定向磁控管以使垂直于各乾的线在衬底IO相交,其约10cm远。 Oriented perpendicular to the magnetron so that the trunk line at the intersection of the substrate IO, which approximately 10cm away. 由DC电源11给各/磁控管供电,其接地到室壁/屏蔽罩12用作系统阳极。 A DC power supply 11 to each / magnetron power supply, which is grounded to the chamber wall / shield system 12 is used as an anode. 作为选择,在技术上普通,能提供与各磁控管紧密相联的分离的阳极(没有图示)。 Alternatively, common in the art, to provide an anode separated from each closely magnetron (not shown). 在磁控管之间 Between the magnetron

24放置挡板13,以帮助限制从一个源溅射的材料沉积在另一个源的材料上或与其发生反应。 24 is placed baffles 13, to help limit sputtered material is deposited from a source material on another source or react therewith. 发生了反应的材料很大程度上是绝缘的,且因此是不合需要的,由于随着时间的过去它堵塞在不溅射的平面靶的区域。 The reaction occurs largely material is insulative, and thus is undesirable, because clogging Over time it is not in the region of the plane of the sputtering target. 挡板不应该向衬底凸出这么远,以至于到达衬底的通量显著减少。 Baffle should not protrude so far into the substrate, so that the flux reaching the substrate is significantly reduced. 如果接地了,如指示的,对各磁控管它可以起到阳极或部分阳极的作用。 If grounded, as indicated, for each magnetron it can function as part of the anode or anodes. 所有溅射过程使用几乎普遍为氩气的工作气体,因为它是惰性的,可以引入系统的任何地方。 All the sputtering process is almost universally used argon working gas because it is inert, it can be introduced anywhere in the system. 在图8至12中,没有明 In FIGS. 812, no clear

确地显示氩气注入位置;然而,在;兹控管的后部或侧部注入是常头见 Indeed show an argon injection position; however, in; hereby Controls rear or side portion of the injection head is often see

的和适当的。 And appropriate.

仍然参考图8, —个靶,例如8,包括传导材料Cu/Se,而把9 包括传导的In/Ga/Se材料。 Still referring to Figure 8, - a target, for example 8, the conductive material comprising Cu / Se, and 9 comprising conducting the In / Ga / Se material. 加热衬底10到400 ~ 60(TC之间的温度, 且如箭头所指示的以匀速传送过^兹控管。在约1到2亳托的压力下引入氩气作为工作气体,且施加直流电源以溅射材料。调节一个电源(11)以获得两个靶中的一个的可接受的賊射率。然后,调节另一个电源,直到在加热的衬底上起反应的涂层有适当的铜不足的合成物。如果在各靶中的几种成分有相同的賊射分布模式(尽管两个靶模式可以相互不同),那么通过电源的单独调节,就可以获得适当的合成物。 一般而言,情况不完全这样,部分地因为单个的单元有不同的溅射模式。因此,在附近的屏蔽物上可优先地收集一个成分,从来自最初的靶的组分的期望的涂层组分轻^:地转移涂层组分。 通过只有百分之几的各靶的合成物中的调节将校正偏差,但是准确的合成物依赖许多因素,包括机器的几何结构、賊射压力和溅射 Heating the substrate 10 to 400 to 60 (a temperature between TC, and as indicated by the arrow at a constant speed through the transport ^ hereby Controls introduction of argon gas as the working gas at a pressure of about 1-2 Torr Bo, and applying a direct power source to sputter material. a power regulator (11) to obtain two targets of a thief acceptable reflectivity. then, another power adjustment, from the reaction until the coating on the heated substrate with a suitable less than copper composition. If the target of several components in the thieves have the same distribution pattern emitted (although two target patterns may be different from each other), then by a separate regulated power supply, it is possible to obtain a suitable composition. generally words, without completely so, partly because of the single unit has a different sputtering mode. Thus, a component can be preferentially collected in the vicinity of the shield, from the target component from the first component of the desired coating light ^: transfer coating component composition by only a few percent of each of the targets in the regulation deviation correction, but the exact composition depend on many factors, including the geometry of the machine, and injection pressure sputtering thief. 率,于是对每一个唯一的机器构造必须计算出恰当的合成物。 一旦确定了合成物,它们就保持恒定直到工序或系统几何结构有了改变。 这种适应系统几何结构的靶的合成物的小的变化,被认为落入本发明的范围之内。 Rate, then unique for each machine must be configured to calculate the appropriate composition. Once the composition, they remain constant until the process or the system geometry has changed. This adaptation of the target composition of the system geometry small changes are considered to fall within the scope of the present invention.

如大规模制造操作的情况,当长时间段'减射耙时,与长方形平面磁控管实施例一起工序问题逐步显示出来。 Step problem with large-scale manufacturing operations such as the case when a long period of 'Save rake shot, the rectangular planar magnetron embodiment gradually displayed. 随着沉积过程的进行,在各靶上溅散凹槽14(虚线)逐渐形成勾画出"粒子轨道,,的轮廓。众所周知的余弦分布,其描述局部的通量发射模式,定向为与发射表面垂直。因此,随着靶受到腐蚀和凹槽形成,在衬底通量分布逐渐地改变。如果两个磁控管的模式变化相互不同步,在村底上沉积的 As the deposition process, sputtering the target in each groove 14 (dotted line) gradually lays out "racetrack ,, contour. Cosine distribution is well known, the description thereof flux partial transmission mode, and the emitting surface oriented to vertical. Thus, as the target and a groove is formed by etching, the flux distribution on the substrate changes gradually if the mode change two magnetrons are not synchronized with each other, is deposited on the bottom of the village

CIGS材料成分将会随时间改变,需要几乎连续地确定调节并应用到 CIGS material composition will change over time, required almost continuously adjusted and applied to determine

工序中。 Step.

第二个问题是在长期的运行时间期间,挡板13将不能完全阻止 The second problem is that during a long running time, the baffle 13 will not completely prevent

耙之间的通量混和。 Flux mixture between the rake. 这意味着,最终大量的部分绝缘的反应产物将 The reaction product which means that a lot of the final part of the insulation

在未溅射的靶的区域堵塞(例如在"粒子轨道"的边缘)。 Blockage (e.g., in the "racetrack" edge) in the region of the non-sputtered target. 在CIGS膜中这能导致弧化和缺陷。 In the film CIGS which can lead to arcing and defects. 最后,对平面靶靶材料的利用率从约25 %到40%的范围变化,而且必须经常改变它们,如此就提高了制造成本。 Finally, changes in the utilization of the target material from a planar target range of about 25% to about 40%, and they must often change, so it increases the manufacturing cost.

如果在图8中,用圆柱形的旋转磁控管替换平面磁控管,构造变成如图9所示,其中共同的和类似的单元用同样的数字来标记。 If in FIG. 8, cylindrical rotatable magnetron replaced by a planar magnetron, the configuration becomes as shown in FIG. 9, which together with the same number and similar elements are labeled. 如果同操作平面磁控管构造一样操作它们,就可以很大程度上消除与平面的磁控管联系的问题。 If the same operating structure as a planar magnetron operating them, you can largely eliminate the magnetron contact with the plane of the problem. 由于它们旋转,就决不会形成溅射凹槽。 Because of their rotation, it can never be a sputtering recess. 因为通量的发射模式保持固定,于是随着靶材料的消耗涂层成分保持恒定。 Because the flux remains fixed transmission mode, so as to maintain a constant consumption of the coating composition of the target material. 还因为旋转和后面连续的靶清洁,因为同样的原因在乾上不会有属于如'010中详细说明的反应溅射的长期增加的起反应材料的堵塞。 Also because the continuous rotation of the cleaning target and back, for the same reason on stem as not belonging to '010 in detail the reaction sputtered from the long-term increase in reactor fouling material. 因为这个原因,挡板13(虚线所示)不如在旋转;兹控管实施例中那么重要。 For this reason, the shutter 13 (shown in phantom) in a rotary inferior; hereby less important embodiment Controls embodiment. 如果旋转的靶直径等于平面靶的宽度,而且靶材料有相同的厚度,那么旋转靶有超过三倍的如平面靶的材料的初始存量。 If the target diameter of the rotating plane is equal to the width of the target, the target material and have the same thickness, then an initial target rotational stock material exceeds three times the planar target. 并且,因为利用率超过平面靶利用率的两倍,在需要靶变化之前,旋转靶将运行超过平面靶六倍的时间。 Prior to addition, since the utilization efficiency is more than twice the target plane, the target needs to change the target rotation beyond the plane of the target run time of six times. 对大规模制造这是有效的成本节约因素。 This is effective for large-scale manufacturing of cost-saving factor.

平面或旋转^磁控管均可以在AC模式中运行。 ^ Planar or rotary magnetron can be run in the AC mode. 对旋转磁控管, 这在如图10中估文了说明,但是该构造也同样适用于平面^f兹控管。 Of the rotatable magnetron, in which the estimated packet 10 has been described, but this configuration is also applicable to the plane ^ f hereby Controls. 用单AC电源15代替双DC电源11 。 Single AC power source 11 instead of 15 pairs of DC power. 为了要改变靶之间的沉积率以 In order to change the deposition rate between the targets to

26维持铜不足的膜成分,必须在AC电源的一条支路中插入可变的阻抗 Copper film 26 at less than the component must be inserted in the variable impedance in an AC power supply branch

负载16 。 Load 16. 由于双磁控管的AC运行不需要分离的阳极,室壁/屏蔽物12不再需要接地,挡板13也不需要接地。 Since the AC dual magnetron operation no separate anode, wall / ground shield 12 is no longer needed, the shutter 13 does not need a ground. 当传导靶支持DC操作的时候,使用AC电源的这种选择性的构造为旋转磁控管几乎不提供优点,但是因为平面的》兹控管不自我清洁,在那种构造中它可以提供一些保护以防止弧化。 When the target conductive support DC operated, rotatable magnetron provides little selectivity advantage of this configuration is the use of AC power, but because "Controls hereby plane not self-cleaning, in that it can be configured to provide protection against arcing.

如上面所提到的,如果设备配置做成处理小量的硒化氢气体或者其他的潜在的可用的气体,CIGS材料的AC反应溅射对于DC溅射是可行的选择。 As mentioned above, if the processing device is configured to make a small amount of hydrogen selenide gas, or other potentially available, AC CIGS material for the reactive sputtering is DC sputtering viable option. 图U显示对一对旋转磁控管的这种构造。 FIG U display this configuration a pair of rotatable magnetron. 在许多方面它不同于图10所示的构造。 In many respects it differs from the configuration shown in FIG. 10. 首先,靶8和9现在是相同的, 由经选择的金属铜、铟和镓(或铝)的合金组成,以供给铜稍微不足的合成物和想得到的带隙。 First, the target 8 and 9 are now the same, by a selected metallic copper, indium and gallium (or aluminum) alloys, copper is supplied to a slightly insufficient conceivable composition and band gap. 基本上,铜对铟加镓或者铝的原子的比应该稍微小于1,铟对镓或铝的比确定带隙。 Substantially, or copper indium gallium plus aluminum atomic ratio should be slightly less than 1, or indium gallium aluminum than the band gap is determined. 使用传统的熔炼和铸造技术制作金属靶。 Using conventional melting and casting technology to prepare a metal target. 由于现在在成份上耙是相同的,还可除去挡板13。 Now that the rake ingredient is the same, the shutter 13 may be removed. 除了使用氩气作为传统的溅射气体之外,例如通过喷嘴17向衬底附近的系统送入硒化氢气体,在连续的工序中与溅射金属原子发生化学反应并形成CIGS材料。 Except for using argon as the sputtering gas other than conventional, e.g., hydrogen selenide gas is fed to the system through the nozzle near the substrate 17, a chemical reaction and form the CIGS material sputtered metal atoms in a continuous process.

到此为止,高效的薄膜太阳能电池吸收体的最好的候选材料包括必须以复杂结构制作的材料,或形成或使用有毒的化合物和气体的材料。 So far, the best candidate materials efficiency thin film solar cell material comprising the absorbent body in a complicated structure must be made, or formed, or the use of toxic chemicals and gases material. 目前,有一类材料显示出改变这种情形的某些前景,这些材料是IIIA族元素铝、镓和铟的氮化物。 Currently, there are a class of materials exhibit certain prospect change this situation, these materials IIIA element is aluminum, gallium and indium nitride. In/Ga和In/Al的不同混合的氮化物显示出跨越太阳光错范围的带隙范围。 In / Ga and In / Al of the mixed nitride exhibit different cross range error sunlight bandgap range. 到目前为止,用于把它们制作成p型的半导体技术还不完善。 So far for them to be made into a p-type semiconductor technology is not perfect. 对于用'010的旋转-兹控管的生产,这样的吸收体系统是理想的。 With respect to '010 rotation - Controls hereby production, such a system is ideal for the absorbent body. 除了用无害的氮气代替有毒的反应气体踊化氢外,构造像图11所示的那样。 Except that the reaction toxic harmless nitrogen gas leap hydrogen, the configuration as shown as 11 in FIG. 以这种方式准确形成前面讨论的过渡金属氮化物层(也就是ZrN)。 In this manner an accurate form a transition metal nitride layer (i.e. ZrN) discussed above.

由于CIGS层(或其他的吸收体层)相对厚,通过使用二或多对用于沉积层的^t控管可以改进賊射机器的生产能力。 Since the CIGS layer (or other absorbent layer) is relatively thick, by using two or more pairs of ^ t Controls for the deposited layer may improve the production capacity of the machine shot thief. 因为与真空系统的全部成本相比;兹控管的成本是适度的,增加的生产率超过对初始资本成本上的适度增加的补偿。 As compared with the full cost of the vacuum system; hereby Controls cost is modest, increase productivity more than compensated for a moderate increase in the initial capital cost. 对于涂敷不连续衬底的一列式的 For a non-continuous coating type substrate

机器(in-line machine),通过在机器的两侧都放置磁控管源也能提高生产能力,且一遍涂敷两个衬底。 Machine (in-line machine), by the side of the machine are placed magnetron source can increase production capacity, and again two coated substrates. 使用多对磁控管以增加CIGS层的沉积速率的需要呈现出另一个机会,这在本发明中做了开发。 Using multiple magnetron needs to increase the deposition rate of the CIGS layer exhibits another opportunity, which made the development of the present invention. 下面使用代表性的例子对此做讨论。 Representative examples below use this discussion to do.

图12示意性地说明在配备有三对旋转(已图示)或平面的(没有图示)磁控管的溅射机器内的CIGS沉积区域。 FIG 12 schematically illustrates CIGS deposition area in the sputtering machine is equipped with three rotation (already shown) or planar (not shown) of the magnetron. 它可以表示来自一列式机器的区域,或者如果以孤形布置,则表示来自带有安装在鼓上的巻筒衬底的巻装涂镀装置的区域。 It may represent regions from one type of machine, or if the arc-shaped arrangement, with the said regions from Volume Volume substrate is mounted on a cylindrical drum mounted coating device. 关于衬底IO(由箭头指示)的运动方向,第一对磁控管是18,第二对19和第三对20。 Direction of movement of the substrate on IO (indicated by arrow), the first magnetron 18, a second 19 and a third pair 20. 在各对磁控管中,靶中的一个是有如上讨论的适当调节的合成物的Cu/Se。 Each pair of magnetron target one is appropriately adjusted like a discussion of the composition Cu / Se. 然而,在各组中的第二靶可以是例如刚好In/Se对18、有15。 However, in each group of the second target may be, for example, just In / Se 18, and 15. /。 /. Ga的In/Se 对19、有30。 Ga-In / Se pair 19, 30. /。 /. Ga的In/Se对20。 Ga-In / Se 20. 以这种方式,从底部到顶部CIGS层的Ga的含量可以逐步分级,在底部区域几乎没有或没有Ga,而在上部区域有某最大量的Ga。 In this way, the Ga content is from bottom to top can be gradually graded CIGS layer, little or no Ga in the bottom region, while a maximum amount of Ga in the upper region. 这将从底部的约lev到接近层的顶部的约1.3ev分级带隙。 This lev from about 1.3ev to about the bottom near the top of the graded band gap layer. 颠倒靶顺序或以反方向涂敷将转变带隙分级。 Reversing the target sequence or in the opposite direction will shift the bandgap grading is applied. 通过将;兹控管放在一起足够近以允许在它们的沉积模式上的某些重叠,可得到分级的边界的某种平滑。 By; Controls hereby put together near enough to allow some overlap in their patterns of deposition, some of the available graded boundary smoothing. 然而,无论如何,材料的热扩散在区域之间的界面将引起某种分级。 However, in any case, the thermal diffusion in the interface region between the material will cause a certain classification.

通过使用多组靶,能够容易地调节C1GS合成物的优点是,可以设计CIGS的带隙以优化电池效率。 By using multiple sets of target advantages can be easily adjusted C1GS composition that can be designed to optimize the band gap of the CIGS cell efficiency. 传统的知识可能建议,如在多连接电池中所使用的那样,以同样的顺序在顶部层形成最高的带隙区域,且在底部形成最低的带隙区域。 Conventional wisdom might suggest, as in the multi-connecting the battery used, in the same order of the highest bandgap region is formed in the top layer, and the minimum bandgap region is formed at the bottom. 然而,通过加宽穿过吸收体的电压梯度,实际上在单连接电池中反转这种结构通常导致效率的提高。 Actually, however, a single cell is connected in such a configuration generally results in inversion efficiency by widening the voltage gradient through the absorbent body. 在CIGS中没有Ga (或Al)时带隙约是1个电子伏特(ev), 而对于太阳光谱最优的是大约1.4到1.5ev。 Not when CIGS bandgap Ga (or Al) is about 1 electron volt (ev), while for optimal solar spectrum from about 1.4 to 1.5 eV. 采用30。 With 30. /。 /. Ga代替In提高带隙到约1.2ev。 In place of Ga to increase the bandgap of about 1.2 eV. 进一步加入Ga开始降低电池效率。 Further added Ga starts to decrease cell efficiency. 如果Ga全部代替In,带隙能超过1.6ev。 If all of Ga instead of In, the band gap energy than 1.6ev. 铝提高带隙比Ga快,不超过36 %允许1.45的带隙。 Al Ga increase faster than the band gap, allowing no more than 36% of the band gap of 1.45. 用硫替代某些硒还可以提高带隙,但是比Ga效果差。 Alternatively some sulfur may also be used to improve selenium band gap, but worse than Ga effect. 许多組合是可能的,且当如这里所描述地制造时,对于宽范围的添加的材料,通过DC方法耙保持足够的传导性以共濺射。 Many combinations are possible, and when manufacture as herein described, a wide range of materials to be added, by a DC method rake retain sufficient conductivity to co-sputtering. 如果能完善p型的氮化物,可以用不同的In/Ga和In/Al的比率制造J兹控管靶,以获得相似的分级的带隙,如'010所描述的,通过用氮的标准反应AC溅射可实现它。 If you can improve a p-type nitride, it may be different In / Ga ratio and In / Al hereby Controls J manufacturing target, in order to obtain a similar graded band gap, such as' 010 described by using standard nitrogen The reaction can be achieved AC sputtering it.

因为与镉有关的毒性和废物处理问题,不用传统的电镀CdS n 型窗口或緩冲层。 Because of toxicity and waste disposal problems associated with cadmium, without conventional electroplating CdS n-type window or buffer layer. 如同先前提到的,硫化锌(ZnS)是差不多一样起作用的替代材料。 As mentioned previously, zinc sulfide (ZnS) is acting almost as alternative materials. 通过从图11描述的构造中使用的元素锌的靶的AC 反应溅射,在本发明中能容易制造这种材料。 AC reactive sputtering by using a target of elemental zinc from the configuration depicted in FIG. 11, in the present invention, this material can be easily manufactured. 在这种情况下,从喷嘴17注入的反应气体是發"匕氲而不是硒化氲。由于硫化氢也是一种危险的气体,它并不是用于沉积层的选择的方法。因为层很薄,可以RF溅射而不会给制造速度带来任何的负面影响。然而,如同以前提到的,因为与不同机器的几何结构相联系的非统一性,大在规模中传统的RJF溅射呈现出挑战。下面描述的RF溅射方法将克服可变几何结构呈现出的缺点。使用同样的RF濺射技术可以RF濺射ZnSe,虽然两种材料都有比CdS大的带隙,但是因为ZnSe的带隙较小,ZnSe不如ZnS理想。 In this case, the reaction gas is injected from the nozzle 17 is made "instead dagger Yun Yun selenide. Since hydrogen sulfide is a dangerous gas, it is not the method of choice for the deposited layer. Since the layer is thin , RF sputtering can not give any manufacturing speed bring negative impact. However, as previously mentioned, because the non-uniformity associated with different geometry of the machine, in a large scale in conventional sputtering presents RJF the challenge. RF sputtering method described below will overcome the shortcomings of the variable geometry presented using the same RF sputtering RF sputtering technique may be ZnSe, CdS while both materials are larger than the band gap, but because ZnSe the smaller band gap, ZnSe ZnS over inferior.

既然大多数透明的导电氧化物是n型半导体,作为n类型的半导体的传统的氧化锌(ZnO)还不能用作窗口层以制作PN结,这有点是个谜。 Since most transparent conducting oxide is an n-type semiconductor, an n-type semiconductor, the conventional zinc oxide (ZnO) it can not be used as a window layer to produce a PN junction, a bit of a mystery. 做这个的所有早先的试验都失败了没能产生高效率的电池,除非在吸收体和ZnO之间;改置电镀的CdS "緩冲"层。 To do this all previous experiments have not failed to produce high-efficiency batteries, except between the absorbent body and of ZnO; home to CdS plating "buffer" layer. 虽然也可以形成氧化铟和氧化硒, 一些研究已经指出在界面氧化镓的形成作为问题的至少的一部分。 Although it may be formed of indium oxide and selenium, several studies have pointed out the gallium oxide interface is formed as at least a part of the problem. 在初始的ZnO覆盖膜生长阶段,从溅射等离子体轰击CIGS表面,通过高能负氧离子能引起对界面的氧化损伤。 ZnO film covering initial growth phase, the surface of the CIGS sputtering plasma bombardment by energetic negative oxygen ions can cause oxidative damage to the interface. 同样地,高能离子对界面可引起物理损伤。 Similarly, high-energy ions can cause physical damage to the interface.

在涂敷透明的传导覆盖膜之前,使用放置在CIGS层上的纯金属 Prior to applying the transparent conductive coating film, using the CIGS layer is placed on the pure metal

29的十分薄的牺牲层,可最小化或者除去对PN结的界面损伤。 Very thin sacrificial layer 29 may be removed or minimized damage to the PN junction interface. 众所周 All week

知,锌、镉和水银的掺杂将从p到n型改变CIGS,但是只有锌实 Known, zinc, cadmium and mercury from the p-doped n-type to change the CIGS, but only the solid zinc

际上是没有毒性和废物的处理问题。 It is not toxic and waste disposal problem on occasion. 如果使用锌的薄层,它能起到 If a thin layer of zinc, it can play

双重作用。 double effect. 首先,它能扩散进CIGS层掺杂它成n型,因此将PN结从界面移走,形成同类结。 First, it can diffuse into the CIGS layer is doped n-type to it, thus removed from the PN junction interface, similar junction is formed. 第二,在工序中,它能"接受"负离子轰击的冲击,转换到ZnO或ZnS ,从而降低或者除去对CIGS界面的损伤。 Second, in the step, it can "accept" the impact of ions that bombard converted to ZnO or ZnS, thereby removing or reducing damage to the CIGS interface. 对界面的伤害并不局限于到高能氧离子。 Damage to the interface is not limited to a high energy oxygen ions. 以和氧相似的模式,在溅射等离子体中硫和硒两者都形成高能离子。 And oxygen in a similar pattern in both the sputtering plasma is formed from sulfur and selenium high energy ions. 除了锌金属都可能使用;然而,他们会形成PN异质结。 In addition to zinc metal may use; however, they will form a PN heterojunction. 例如, 一些过渡金属的薄层将保护CIGS免于氧化,但是不会通过扩散进CIGS移动PN 结。 For example, some transition metal thin CIGS protection from oxidation, but will not move into the CIGS PN junction by diffusion. 更详细地说,锆将会转化成氧化锆,它也是N型半导体,且是由UUal、 Zweibel和von Roedern提及过的可供选择的材料之一。 More specifically, the zirconium would be converted to zirconia, it is also the N-type semiconductor, and the choice is one of the materials mentioned UUal, Zweibel and von Roedern before.

如刚刚描述的牺牲层的使用可以帮助保护PN结,并保持穿过耗尽区的较高电压。 The sacrificial layer just described can help protect a PN junction, and to maintain a high voltage across the depletion region. 因为高传导的ZnO将不支持空穴的稳定性,低传导的N型界面材料也一样,所以它是有用处的。 Because of the high conductivity of ZnO will not support hole stability, low N-type conductive interface material is the same, so it is useful. 因这个原因,以成为惯例的是,使用称为"内在的"ZnO或i-ZnO作为CdS的初始的薄覆盖膜,以帮助保持在化学浴电镀CdS微少的区域的损耗区。 Due to this reason, the practice is to be used as "internal" or of ZnO as the initial i-ZnO thin cover film of CdS, in a chemical bath to help keep the plating area CdS meager depletion region. 通过向制作更小的传导性和更透明的材料形式的工序中加入更多的氧,制作这种形式的ZnO。 Produced by the smaller and more transparent conductive material in the form of the step of adding more oxygen, making this form of ZnO. 当然因为高能氧离子,单独的i-ZnO的使用会损坏界面。 Of course, because of high energy oxygen ions, i-ZnO single use can damage the interface. 因此,只要生产的氧化物是n-型半导体,牺牲金属层就能够替换传统的电镀CdS。 Thus, as long as the production of oxides are n- type semiconductor, the sacrificial metal layer can replace the conventional electroplating CdS.

在n型层适当地形成以产生PN结之后,沉积顶部透明的电极层。 After suitably formed to produce a PN junction, a transparent top electrode layer is deposited on the n-type layer. ZnO的透明和传导形式已经是用作这层的传统材料,与在显示器工业中广泛使用的像氧化铟锡(ITO)的材料相比,主要是因为它的低成本。 And form a transparent conductive ZnO layer which is already used as a conventional material, as compared with indium tin oxide, widely used in the display industry (ITO) material, primarily because of its low cost. ZnO比ITO的传导性和热稳定性都低;然而,当保持ZnO许多成本优点时,掺杂铝的ZnO有ITO的相似的##。 ZnO is lower than the conductivity and thermal stability of ITO; however, when the cost of maintaining many of the advantages of ZnO, Al-doped ZnO similar ## of ITO. 取得这个结杲的铝掺杂的需要的水平是约2%时。 Gao made of this aluminum doped junction required level is about 2%. 相似量的其他掺杂物已经显示几乎也起作用(参阅T. Minami在2000年八月MRS报告中提到的"新n型透明传导氧化物")。 Other similar amounts of dopants have been shown to play a role is almost (see T. Minami-mentioned report in August 2000 MRS "New n-type transparent conductive oxide"). 目前,在显示器工业中,主要通过使用平面陶资耙完成ITO的大规模溅射,平面陶瓷靶有传导性但制造很昂贵。 Currently, in the display industry, mainly through the use of ceramic planar rake owned completed the mass of the ITO sputtering, planar ceramic target has conductivity, but are expensive to manufacture. 当使用金属靶时大规模的反应工序的控制几乎没有成功。 When the metal mass of the control target is practically no reaction step. 对沉积铝 Depositing aluminum on

掺杂ZnO的反应工序的大规模控制,存在相似的问题。 The reaction of the step-doped ZnO mass control, a similar problem exists. 原则上如与ITO 一起做的,通过使用陶瓷靶可以解决这个问题,但是靶的制造的额外成本会抵消从较便宜的材料得到的许多优点。 In principle, such as ITO and do together, we can solve this problem by using a ceramic target, but the extra cost of manufacturing the target will offset many advantages resulting from less expensive materials. 如在'010中所描述的在该发明中旋转磁控管允许便宜的金属靶的使用,并提供对大规模执行过程的反应工序的必要的控制。 Necessary control rotary magnetron in this invention in the '010 described allows the use of inexpensive metal target, and provides large-scale reaction step of the process performed. 反应溅射构造和图11描述的相同, 其中乾8和9是适当掺杂铝的金属锌靶。 11 and described with the same configuration reactive sputtering, wherein the dry 8 and 9 are suitable aluminum-doped zinc metal target. 除了通常的氩溅射气体以外,通过喷嘴17给沉积区提供氧气。 In addition to the usual argon sputtering gas, providing oxygen to the deposition zone through a nozzle 17.

图13显示本发明优选的全溅射CIGS太阳能电池结构。 Figure 13 shows the present invention, the preferred all-sputtering CIGS solar cell structure. 层10十底)是高温金属或聚合体箔。 Ten bottom layer 10) is a high temperature metal foil or polymeric. 对陆地的能源生产,不锈钢、铜和铝是优选的金属箔,而对太空能源应用,很薄的钛和聚酰亚胺是优选的金属箔。 Land energy production, stainless steel, copper and aluminum are preferred metal foil, and the energy for space applications, and the polyimide thin titanium is the preferred metal foil. 如前面的图7描述的,电传导层2、 2a、 2b和2c分别是Cu、 ZrN、 Ag和ZrN。 As previously described in FIG. 7, the electrically conductive layer 2, 2a, 2b and 2c are Cu, ZrN, Ag, and ZrN. 如图12中所显示和描述的,通过连续的輩巴的合成物上的变化,层3的CIGS有分级的带隙。 12 as shown and described, by varying the composition of the continuous generation bar, the CIGS layer 3 has a graded band gap. 沉积的方法可以是图9所示的DC共溅射膜或者是图11所述的反应的溅射膜。 The deposition method may be a sputtered film DC co-sputtering film shown in FIG. 9 or 11, wherein the reaction in FIG. 半导体层4是RF溅射的ZnS(或ZnSe)取代传统电池的CdS。 The semiconductor layer 4 is a RF sputtering of ZnS (or ZnSe) to replace the traditional batteries CdS. 作为另一个特点,层4a可能包括作为牺牲金属层,其在下一层(也就是与氧、硫或硒一起)的沉积过程中根据后面反应变成N型半导体。 As another feature, a sacrificial layer 4a may include a metal layer deposition process which is the next level (i.e. with an oxygen, sulfur or selenium) into the N-type semiconductor according to the reaction below. 层5是透明的顶部电极,由反应沉积的掺杂铝的ZnO组成,以利用传统的ZnO在性能上的改进。 5 is a top layer of a transparent electrode, a reactive deposition of ZnO doped with aluminum, ZnO in the improved conventional in performance. 如前面解释的,在层4的界面掺杂铝的ZnO 非常薄的部分,可能具有更高电阻率,以改进连接电压。 As previously explained, a very thin layer at the interface portion 4 of the aluminum-doped ZnO, may have a higher resistivity to improve the connection voltage. 层6是可选的抗反射(AR)膜,而且实际上是多层堆(没有图示)在电池中设计成优化光的吸收。 6 is an optional layer of anti-reflective (AR) film, and indeed is a multilayer stack (not shown) designed to optimize absorption of light in the cell. 这样的AR堆将在太空能源应用中使用,那里来自天气的环境的退化不是问题。 Such AR heap will be used in space applications in energy, where environmental degradation is not a problem from the weather. 对于陆地应用,在密封的模块中(没有图示)层压基本电池(层1到层5)至保护玻璃盖板中,且如果使用, 给玻璃盖板的外表面应用AR层,而不是直接给电池应用。 For terrestrial applications, the sealed module (not shown) substantially cell laminate (layer 1 to layer 5) to cover the cover glass, and if used, to cover the outer surface of the glass layer of the AR application, rather than directly for battery applications. 在顶部的传导氧化物上可以另外溅射电流收集网格线,而且如果衬底是禽属箔,可能在背面上溅射薄的焊接湿层(例如锡)。 May additionally sputtering current collector on the conductive oxide top of the grid lines, and if the substrate is a metal foil poultry may sputter a thin layer of wet solder (e.g., tin) on the back side.

图14说明的是,用于制造图13的改进的太阳能电池的巻装才莫块濺射机器的简化示意侧视图。 Figure 14 illustrates that for manufacturing the improved apparatus Volume 13 of the solar cell was Mo simplified block schematic side view of a sputtering machine. 在垂直于图平面的方向,依尺寸制作机器,以支持在约二和四英尺宽之间的衬底。 Produced in a direction perpendicular to the plane of FIG sized machines to support the substrate of between about two and four feet wide. 这宽度不是一个基 This width is not a group

本的设备限制;相反地,认识到获得更大宽度的巻的合格的衬底材料的实际困难。 This restriction device; rather, Volume appreciated that practical difficulties greater width qualified substrate material. 机器装备有输入、或加载、模块21a和对称的输出、 或卸载、模块21 b。 Machine is equipped with an input, or load, and an output module 21a symmetrical or unloading module 21 b. 在输入和输出模块之间,是工序模块22a、 22 b 和22c。 Between the input and output modules, it is the process module 22a, 22 b and 22c. 可改变工序模块的数量以匹配生产的涂层的需要。 Step may be varied to match the number of modules required to produce coatings. 各模块有抽吸单元以提供必需的真空并处理涂层操作期间工作气体的流动。 Each module has a suction unit and to provide the necessary vacuum processing flow of the working gas during the coating operation. 在各模块的底部通过单元23示意性地指示出真空泵。 At the bottom of each module unit 23 by the vacuum pump schematically indicated. 真正的模块可能有许多放置在其他选择的位置的泵,以提供优化的工作气体的抽吸。 True module may have many other options placed in the position of the pump to provide suction to optimize the working gas. 对本申请优选的是高生产能力的涡轮分子泵。 The present application is a turbo-molecular pump is preferably a high capacity. 在狭缝阀24处将模块连接在一起,狭缝阀24包含非常窄低的传导性绝缘缝,防止工作气体在模块之间混合。 The slit 24 of the valve module are connected together, a very narrow slit valve 24 comprises a low-conductive insulating slits, between the working gas mixing module prevented. 如果需要进一步增加绝缘性,可以分离地抽吸这些缝。 If necessary to further increase insulation, these slits may be separately drawn. 作为选择,可以在内部隔离单个的大室,以有效地提供模块区域,但是如果工序演化需要,那么在稍后的时间增加模块变得更加困难。 Alternatively, isolated within a single large chamber, to provide an effective area of ​​the module, but if required the evolution step, then the module at a later time to increase more difficult.

各工序模块都装备有在其上支承巻筒衬底26的旋转涂层鼓25。 Each step modules are equipped with a rotary coating drum 25 on which the support substrate 26 Volume cylinder. 围绕各涂层鼓的阵列是是一组双圆柱形旋转》兹控管腔27。 Drum coating around each array is a set of two cylindrical rotary "Controls hereby chamber 27. 双圆柱形旋转磁控管替代传统的平面磁控管;然而,会降低效率,并且经过长时间的运行工序也会不稳定。 Double cylindrical rotatable magnetron alternative to conventional planar magnetron; however, reduce efficiency, and after a long operation step will be unsustainable. 涂层鼓可以比图中说明的五个大一点或小一点,以适应不同的数量的磁控管。 Drum coating can be illustrated in FIG than five or a little larger, to accommodate different numbers of magnetrons. 通过滚筒28控制整个机器中的巻筒衬底26。 Volume cylindrical drum 28 by the control substrate 26 in the entire machine. 在真正的机器中可以使用更多的导向滚筒。 In the real machines can use more guide rollers. 这里显示的那些是最少的需求以呈现工序的相关说明。 Shown here are the instructions that a minimum requirement to present process. 在实际机器中, 一些滚筒弯曲以展开巻筒, 一些移动来以提供巻筒的掌舶,一些给伺服控制器提供巻筒的张力反馈,以及其他的仅仅是惰轮以在理想的位置运转巻筒。 In an actual machine, to expand the number of roll bending cylinder Volume, Volume to provide some of the moving cylinder palm ship, providing a number of cylindrical Volume tension feedback to the servo controller, and the other idler gear is only to operate in the desired position Volume cylinder. 在整个机器上,通过反馈信号主动驱动和控制输入/输出线轴和涂层鼓,以保持巻筒在恒定的张力。 Over the entire machine, the active drives and controls the input / output through the spool drum and coating a feedback signal to maintain constant tension in Volume cylinder. 另外,输入和输出模块各包括巻筒接合区29,在那里,可以剪断或者连接巻筒头或尾部分,以方便装载和卸载巻。 Further, each of the input and output modules comprises a cylindrical lands Volume 29, where the cartridge can be cut or connected to the head or tail portion Volume, Volume to facilitate loading and unloading. 依据工序需要,在需要提供巻筒加热的地方安置加热器阵列30。 Based on need step, where the need to provide a heater disposed in the heating cylinder Volume 30 array. 这些加热器是高温的石英灯基体, 设计为横过涂层鼓(或者巻筒)的宽度布置。 The quartz lamp heater is a high temperature substrate, the coating is designed to traverse the width of the drum arrangement (Volume or barrel). 红外传感器提供反馈信号以伺服灯功率并提供穿过上述鼓的均匀加热。 Infrared sensor provides a feedback signal to the servo and to provide uniform heating of the lamp power through said drum. 另外,涂层鼓25 装备有内部可控的水流或者其他液体,以提供巻筒温度调节。 Further, the coating drum 25 equipped with an internal controllable water or other liquids, to provide a cylinder temperature of Volume adjustment.

在大线轴31上输入模块适应巻筒衬底,它对金属箔(不锈钢、 The input module 31 accommodate the large spools Volume cylindrical substrate, its metal foil (stainless steel,

铜等)是适当的,以防止储存期间材料变形。 Copper or the like) is suitable to prevent deformation of the material during storage. 输出模块包括相似的线 Output module includes a line similar

轴以绕紧巻筒。 Volume cylindrical winding up shaft. 预先清理的衬底巻筒首先通过模块21a中的加热器排列30,这至少提供足够的热以除去表面吸附的水。 Volume pre-cleaned substrate tube 30 through the module 21a is first arranged in the heater, which provides at least sufficient heat to remove the surface adsorbed water. 随后,巻筒越过线轴32,其可以是特殊的线轴,构造成圆柱形旋转》兹控管。 Subsequently, Volume crossed cylindrical bobbin 32, which may be a special spool, configured as a cylindrical rotary "hereby Controls. 当它经过围绕的线轴/磁控管时,这允许通过DC、 AC或RF溅射连续清洗电传导(金属)巻筒的表面。 When it passes around the spool / magnetron, which allows DC, AC or RF sputtering electrically conductive continuous cleaning surface (metal) Volume cartridge. 在屏蔽物33上捕获溅射巻筒材料,其周期性地变化。 Capture Volume sputtered material on the tube shield 33, which is changed periodically. 如果需要,可以增加另一个线轴/》兹控管(没有图示) 以清洗巻筒的背面。 If necessary, add another spool / "hereby Controls (not shown) to clean the back surface of the cartridge Volume. 传导巻筒的直接溅射清洗将引起出现在整个机器的巻筒上的相同的电偏置,依据涉及的特殊的工序这在机器的其他部分可能是不合需要的。 Volume cleaning sputtered directly conducting tube will cause the same electrical bias appearing across the machine Volume barrel, depending on the particular process involved which may be undesirable in other parts of the machine. 通过使用线性离子枪而不是磁控管溅射清洗,或者在装入大的浸胶辊(roll coater)之前在分离的较小机器中完成清洗,能避免该偏置。 By instead using a linear magnetron sputtering ion gun cleaning, or cleaning is completed before the separation of small charged in a large machine roll coater (roll coater), the bias can be avoided. 同样地,在这个位置可以执行电晕辉光放电处理不会引起电偏置。 Likewise, in this position can be performed without causing a corona discharge treatment, glow electrically biased. 如果巻筒是聚酰亚胺,材料的电偏置不会通过系统往下传递。 If the tube is a polyimide Volume, electrical bias material is not transmitted through the system down. 然而,聚酰亚胺含有过多的水。 However, the polyimide contains too much water. 为了粘附的目的和限制水的解吸附,例行公事地增加金属(特别是铬或者钛)的薄层。 For purposes of desorption and to limit water adhesion, a thin layer of metal routinely increases (particularly chromium or titanium). 这使得传导表面有在金属箔衬底上遇到的相似的问题。 This allows the conductive surface similar problems encountered on a metal foil substrate.

下面,巻筒穿过阀24和低传导绝缘缝进入第一工序模块22a。 Hereinafter, Volume cylinder through the valve 24 and enters a first low conductivity insulating slits step module 22a. 涂层鼓由加热器阵列30维持在适当的工序温度。 Coating drum maintained at an appropriate temperature by a heater array 30 step. 随着鼓的转动方向(箭头),反射层的整个堆开始首先的两个4t控管沉积基本铜层(如图13中的2)。 With the direction of rotation of the drum (arrow), the whole of the first reflective layer stack starts two base copper layer deposited 4t Controls (13 in FIG. 2). 下一个磁控管提供薄ZrN层,紧接着是薄银层和最后的薄ZrN层。 Next a magnetron providing a thin layer of ZrN, followed by a thin silver layer and finally a thin layer of ZrN. 对CIGS吸收体层,带隙足够地低,使得薄4艮层和最后的薄ZrN层几乎什么也没有获得。 Of a CIGS absorber layer, the band gap is sufficiently low, so that the thin layer 4 and the final Gen thin layer of ZrN almost nothing is obtained. 在这情况反射体可仅仅由基本铜层和笫一ZrN层组成。 In this case the reflector may be substantially only of a copper layer and Zi ZrN layer. 将来更高带隙材料可以从额外的银和ZrN 层获益。 Future higher bandgap materials may benefit from additional silver and ZrN layer.

为p型分级的CIGS层的沉积,巻筒然后进入下一个工序模块22b。 Depositing a graded p-type CIGS layer, Volume cylinder to the next step and module 22b. 加热器阵列30维持鼓和巻筒在需要的工序温度。 Heater array 30 to maintain the process temperature and the drum cartridge in Volume needed. 当下面的三个》兹控管削减镓(或铝)的量增加的层时,第一个^f兹控管沉积二硒化铜铟层,从而如前所述增加或分级带隙。 When the amount of the following three "hereby Controls reduction gallium (or aluminum) layer is increased, a first ^ f Controls hereby deposited copper indium diselenide layer, thereby increasing or fractional band gap as described above. 通过重新布置同一套磁控管,分级可以反转。 By rearranging the same set of magnetrons, grading can be reversed. 模块中的最后的磁控管通过从平面磁控管或者牺牲金属层RF溅射沉积n型ZnS (或者ZnSe )薄层,牺牲金属层变成顶部n型层的一部分并限定PN结。 The last module magnetron becomes part of the top from the n-type layer by a planar magnetron or RF sputter deposition of the sacrificial metal layer of n-type ZnS (or ZnSe) thin, sacrificial metal layer and defining a PN junction.

接着巻筒转移进最后的工序模块22c,在那里加热器阵列30再次维持适当的工序温度。 Volume is then transferred into a final process cartridge module 22c, where the array of the heater 30 to maintain an appropriate temperature step again. 第一个^兹控管沉积铝摻杂ZnO的薄层,其有比较高电阻以形成并维持PN结与前面的层协调。 Depositing a first Al-doped ^ hereby Controls ZnO thin layers, which have relatively high resistance to form and maintain coordination with the previous layer of the PN junction. 剩下的四个f兹控管沉积相对厚的、高传导性的和透明的铝掺杂ZnO层,其完成顶部电极。 The remaining four f Controls hereby deposited a relatively thick, highly conductive and transparent aluminum-doped ZnO layer, which complete the top electrode. 可以增加额外的^f兹控管站(没有图示),用于使用围绕^兹控管旋转的无尽带状掩膜溅射栅格线。 F ^ may add an additional hereby Controls station (not shown), sputtering using a mask endless strip grid line of rotation about ^ hereby Controls. 如果在电池的顶部放置AR层, 机器将有另外的工序模块,在其中将沉积适当的层堆。 If the AR layer is placed on top of the battery, there will be a further step of the machine module, in which the deposition of an appropriate stacks. 额外的模块还可以装备有移动的、巻动兼容的、屏蔽的模板以提供用于对顶部电极电接触的金属栅格和母线。 Additional modules may also be equipped with a mobile, moving Volume compatible templates to provide a shield for the bus bar of the metal grid and the top electrical contact. 额外的模块和屏蔽设备极大地增加了生产电池的成本,且也许只对像太空能源系统这样的高附加值应用证明是正当的。 Additional modules and shielding equipment greatly increases the cost of production of batteries, and perhaps only for high value-added applications such as space, energy systems justified.

最后,巻筒进入输出模块21b,在这里它缠绕在绕紧线轴的上。 Finally, Volume cartridge into the output module 21b, where it is wound on the takeup spool. 然而,在这里能执行另外的操作,在稍后的进入模块的电池的作业中这是有益的。 Here, however, additional operations can be performed, in operation of the battery modules into the later it is beneficial. 双圆柱形旋转-磁控管34变成用焊料预湿衬底箔的背面的单元。 Double rotary cylindrical - magnetron 34 into the pre-wet with solder foil substrate rear surface unit. 金属锡或许有与不锈钢金属箔一起使用的可用焊接材料的最好性质,但是,有许多也将起作用的焊料制剂。 Perhaps the best properties of the metallic tin solder material available for use with stainless steel metal foil, however, there are many solder formulation will also function. 如果保持其清洁,对铜箔预湿也许是必要的。 If you keep it clean, pre-wet the copper foil may be necessary. 和在输入模块相似,在输出模块中, And a similar input module, the output module,

34在焊料溅射之前还可以做箔的背面的离子枪溅射预清洁。 Before the sputtering of the solder 34 can also do the back foil ion gun sputtering pre-clean. 另外,巻 In addition, Volume

筒温度必须低于预湿焊料的熔点(锡约是232X:)。 Cylinder temperature must be below the melting point of the pre-wet solder (tin is about 232X :).

图15显示典型的工序模块,有显示涂层鼓25和磁控管腔27的细节的放大部分。 Figure 15 shows a typical procedure module, a display section an enlarged detail of the coating drum 25 and the chamber 27 of the magnetron. 涂层鼓建造成带有限定间隙35的双壁,冷却气体或液体可以穿过双壁循环以调节鼓和巻筒26的温度。 Coating drum constructed with a double wall defining a gap, a cooling gas or liquid can pass through the 35 cycles to regulate the temperature of the double-walled drum cylinder 26 and Volume. 维持巻筒与鼓的外表面紧接触。 Volume maintaining the outer surface of the drum cartridge tight contacts. f兹控管腔27由局部的长方形室36组成,室36包括旋转磁控管37和38以及相关联的安装硬件(没有图示)。 f Controls chamber 27 hereby rectangular chamber 36 by the local composition, chamber 36 includes a rotating magnetron 37 and 38 and the mounting hardware (not shown) associated with it. 整个腔可以定位在距涂层鼓和巻筒的表面可变的但统一的距离,由间隙39 表示。 The entire chamber may be positioned at a variable pitch, and the coating drum surface, but the barrel Volume uniform distance, represented by the gap 39. 这种可变间隙允许从室36进入较大工序模块22a的溅射气体流的控制,其被猛烈地抽吸。 This allows a variable gap control process module 22a into the larger chamber 36 from the sputtering gas stream, which is sucked violently. 从而,在长方形室36中的背景压力和工序模块(22a)之间维持大的压力差,且有效地隔离各磁控管与相邻的磁控管。 Thus, between the chamber 36 in the rectangular background pressure step and module (22a) maintaining a large pressure difference, and the respective magnetrons effectively isolate adjacent magnetrons. 通过一组沿其的长度均匀间隔的管40,向室36中供给氩溅射气体,由箭头指示。 Through a set of tubes 40 along the length thereof evenly spaced, indicating to the argon sputtering gas is supplied to chamber 36 by arrows. 对反应溅射,通过各组沿其长度等间隔的两组管41,向室36中供给反应气体(例如氧、氮、硫化氢、硒化氩等)。 The reaction sputtering, through the two tube groups 41 along its length equally spaced, the reaction gases (e.g., oxygen, nitrogen, hydrogen sulfide, selenide, argon) is supplied to the chamber 36. 内部挡板42产生过道,过道将反应气体导向村底,还防止随着时间涂层流量改变气体的传导路径,保证稳定状态的工序。 Internal baffles 42 produce aisle aisle guide village bottom reaction gas also prevents the gas flow changes with time of coating a conductive path, to ensure a steady state step. 这种构造与1981年11月3日出版的美国专利4298444中由Chahroudi公开的密切相像。 Such a configuration and November 3, 1981 issue of US Patent 4,298,444 closely resemble disclosed by Chahroudi. 在大真空室中,长方形室36也称为"小"室。 In a large vacuum chamber, the rectangular chamber 36 also known as "small" chamber. 主要的改进是双圆柱形旋转磁控管代替现有技术的单个的长方形磁控管,且改进了溅射气体注入的方法。 The main improvement is the dual rotating cylindrical magnetron is replaced by the prior art single rectangular magnetron sputtering method and the improved gas injection.

长方形"小,,室36提供用于从单个平面磁控管的ZnS(或ZnSe) 緩冲层的沉积的RF '賊射的使用的解答,与说明的旋转磁控管相反。 这种室形成隔离的几何均匀结构,其又为RF溅射提供均匀的电环境。这允许沿着磁控管的长度均匀地进行RF溅射。另外,保护室不受其他相邻的賊射源的污染,以使来自室壁的较小的背溅射仅仅由ZnS材料组成。从而,保护ZnS n型层不受由外面的污染物造成的外部掺杂。 Rectangular ",, small chamber 36 provides for the use of solutions from a single planar magnetron of ZnS (or ZnSe) depositing a buffer layer RF 'emitted thief, contrary to the rotatable magnetron described. This chamber is formed isolated geometry uniform structure, which in turn provides an RF sputtering uniform electrical environment. this allows RF sputtering uniformly along the length of the magnetron. in addition, the protective chamber from contamination of other neighboring thief radiation source, so small from the back wall of the sputtering material is only of ZnS thus, n-type ZnS protective outer layer from outside contaminants caused by doping.

应该明白本发明并不局限于上述的和在此说明的实施例,但是包 It should be understood that the invention is not limited to the embodiments and Examples described herein, but the package

35含落入所附的权利要求中的任何和所有的变化。 35 contain any and all variations falling within the appended claims. 例如,正如在权利要求和说明书中明显所述的,不是所有的方法步骤都要按照说明的或者要求的准确次序执行,而是以允许形成本发明的太阳能电池的任何次序。 For example, as described in the claims and specification of the obvious, not all method steps need to be described in the exact order of execution or requirements, but any order to permit the formation of a solar cell of the present invention.

Claims (47)

1.一种制造太阳能电池的方法,包括: 提供衬底; 在所述衬底的表面沉积传导膜,其中所述传导膜包括传导材料的四个不连续层,其中所述四个不连续层中的至少一个不连续层是由过渡金属氮化物材料制得的阻挡层; 在所述传导膜上沉积至少一个p型半导体吸收体层,其中所述p型半导体吸收体层包括基于二硒化铜铟的合金材料; 在所述p型半导体吸收体层上沉积n型半导体层以形成pn结;以及在所述n型半导体层上沉积透明电传导顶部接触层。 A method of manufacturing a solar cell, comprising: providing a substrate; depositing a conductive surface of the substrate film, wherein said conductive film comprises a four discontinuous layer of conductive material, wherein the discontinuous layer four at least one discontinuous layer of material is made of a transition metal nitride barrier layer; a conductive film is deposited on said at least one p-type semiconductor absorber layer, wherein the p-type semiconductor absorber layer comprises a diselenide-based copper indium alloy material; and the p-type semiconductor absorber layer is deposited on the n-type semiconductor layer to form a pn junction; and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
2. 如权利要求1所述的方法,其中所述传导材料的四个不连续层还包括:从铜、银或铝中选择的材料的至少一个金属层。 2. The method according to claim 1, wherein the conductive material is a discontinuous layer four further comprising: at least one metal layer selected from copper, silver or aluminum material.
3. 如权利要求2所述的方法,其中从一个或多个包括氮化钛、氮化锆和氮化铪的组中选择所述阻挡层。 3. The method according to claim 2, wherein said barrier layer is selected from one or more of the group consisting of titanium nitride, zirconium nitride and hafnium.
4. 如权利要求1所述的方法,其中所述传导材料的四个不连续层包括:第一铜层; 第二银层;以及多个阻挡层,各具有过渡金属氮化物材料。 4. The method according to claim 1, wherein said conductive layer four discrete material comprising: a first copper layer; a second silver layer; and a plurality of barrier layers, each having a transition metal nitride material.
5. 如权利要求2所述的方法,其中所述传导材料的四个不连续层包括:各选自铜、银和铝的材料的至少两个不同的金属层。 5. The method according to claim 2, wherein said conductive layer four discrete material comprising: for each selected from copper, at least two different layers of metallic material, silver and aluminum.
6. 如权利要求1所述的方法,其中所述n型半导体层的沉积包括在平面磁控管结构中从化学计量的硫化锌靶RF溅射。 6. The method according to claim 1, wherein depositing the n-type semiconductor layer comprises zinc sulfide RF sputtering from a stoichiometric target in a planar magnetron configuration.
7. 如权利要求1所述的方法,其中所述衬底包括金属箔。 7. The method according to claim 1, wherein the substrate comprises a metal foil.
8. 如权利要求7所述的方法,其中从不锈钢、铜和铝中选择所述金属箔。 8. The method according to claim 7, wherein said metal foil is selected from stainless steel, copper and aluminum.
9. 如权利要求1所述的方法,其中所述p型半导体吸收层的沉积包括:从一对传导乾共溅射所述基于二竭化铜铟的合金材料。 9. The deposition method according to claim 1, wherein said p-type semiconductor absorber layer comprises: co-sputtering conducting dry-based alloy material from a pair of two copper indium exhaust.
10. 如权利要求9所述的方法,其中所述一对传导靶包括: 第一乾,其包括铜和硒的混合物;以及第二草巴,其包括铟、^t家和硒的混合物。 10. The method according to claim 9, wherein said pair of conductive target comprising: a first dry, comprising a mixture of copper and selenium; grass and a second bar, comprising a mixture of indium, ^ t home and selenium.
11. 如权利要求9所述的方法,其中所述一对传导靶包括: 包括铜和竭的混合物的第一耙;以及包括铟、铝和硒的混合物的第二耙。 11. The method according to claim 9, wherein said pair of conductive target comprising: a mixture of copper and a first exhaust rake; rake and a second mixture comprising indium, aluminum and selenium.
12. —种制造太阳能电池的方法,包括: 提供衬底;在所述衬底的表面沉积传导膜;在所述传导膜上沉积至少一个p型半导体吸收体层,其中所述p 型半导体吸收体层包括基于二硒化铜铟的合金材料,其中所述p型半导体吸收体层的沉积包括从一对传导靶共溅射所述合金材料;在所述p型半导体吸收体层上沉积n型半导体层以形成pn结;以及在所述n型半导体层上沉积透明电传导顶部接触层。 12. The - method of manufacturing a solar cell, comprising: providing a substrate; depositing a conductive film on the surface of the substrate; the conductive film layer is deposited on at least one p-type semiconductor absorber, wherein the p-type semiconductor absorber based alloy material layer comprises copper indium diselenide, wherein said p-type semiconductor absorber layer comprises depositing a pair of conductive target co-sputtering said alloy material; the p-type semiconductor absorber layer is deposited on the n type semiconductor layer to form a pn junction; and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
13. 如权利要求12所述的方法,其中所述一对传导靶包括: 第一耙,其包括铜和竭的混合物;以及第二耙,其包括铟、镓和硒的混合物。 13. The method of claim 12, wherein said pair of conductive target comprising: a first rake, and mixtures thereof comprising a dried copper; and a second harrow, comprising a mixture of indium, gallium, and selenium.
14.如权利要求12所述的方法,其中所述一对传导靶包括:第一把,其包括铜和竭的混合物;以及第二耙,其包括铟、铝和硒的混合物。 14. The method of claim 12, wherein said pair of conductive target comprising: a first handle, and mixtures thereof comprising a dried copper; and a second harrow, comprising a mixture of indium, aluminum and selenium.
15.如权利要求12所述的方法,其中在双圓柱形旋转磁控管上布置所述一对传导靶。 15. The method of claim 12, wherein said pair of conductive targets disposed on a double cylindrical rotatable magnetron.
16. 如权利要求12所述的方法,其中所述合金材料的共贼射进一步包括:在第一靶和第二靶之间调节功率比,以使所沉积的p型半导体吸收体层缺乏铜。 16. The method of claim 12, wherein the total emission of the thief alloy material further comprising: adjusting a power ratio between the first target and the second target, so that the deposited p-type semiconductor absorber layer copper deficiency .
17. 如权利要求12所述的方法,其中从所述一对传导靶的所述合金材料的共溅射包括:以连续方式从二或更多对所述传导靶共溅射所述合金材料,其中所述每一对传导靶的组成相对于其他对传导靶变化,以使所沉积的p 型半导体吸收体层有分级的带隙。 17. The method of claim 12, wherein the co-sputtering from the target of the pair of conductive alloy material comprising: a continuous manner from two or more pairs of said conductive target co-sputtering the alloy material , wherein each of the conductive composition of the target relative to other conductive target changes, so that the deposited p-type semiconductor absorber layer has a band gap graded.
18. 如权利要求12所述的方法,其中所述传导膜包括传导材料的多个不连续层。 18. The method of claim 12, wherein said conductive film comprises a plurality of layers of discontinuous conductive material.
19. 如权利要求18所述的方法,其中所述传导材料的不连续层包括:从铜、银、铝、钼和铌层中选择的材料的至少一个金属层;以及至少一个阻挡层。 19. The method according to claim 18, wherein said discontinuous layer of conductive material comprises: at least one metal layer selected from copper, silver, aluminum, molybdenum and niobium in the material layer; and at least one barrier layer.
20. 如权利要求12所述的方法,其中所述n型半导体层的沉积包括在平面石兹控管结构中从化学计量的硫化锌靶RP溅射。 20. The method of claim 12, wherein said n-type semiconductor layer comprises depositing a planar structure of the stone hereby Controls RP sputtering from ZnS target stoichiometry.
21. 如权利要求12所述的方法,其中所述衬底包括金属箔。 21. The method of claim 12, wherein said substrate comprises a metal foil.
22. 如权利要求21所述的方法,其中从不锈钢、铜和铝中选择所述金属箔。 22. The method according to claim 21, wherein said metal foil is selected from stainless steel, copper and aluminum.
23. —种太阳能电池,包括: 衬底;在所述衬底的表面布置的传导膜,其中所述传导膜包括传导材料的四个不连续层,其中所述四个不连续层中的至少一个不连续层是由过渡金属氮化物材料制得的阻挡层;在所述传导膜上布置的至少一个P型半导体吸收体层,其中所述p型半导体吸收体层包括基于二硒化铜铟的合金材料;在所述p型半导体吸收体层上布置的n型半导体层,其中所述p型半导体吸收体层和所述n型半导体层形成pn结;以及在所迷n型半导体层上布置的透明电传导顶部接触层。 23. - kind of solar cell, comprising: a substrate; a conductive film on the surface of the substrate is disposed, wherein said conductive film comprises a four discontinuous layer of conductive material, wherein the four discrete layers at least a discontinuous layer of material is made of a transition metal nitride barrier layer; a conductive film layer disposed on the at least one P-type semiconductor absorber, wherein said p-type semiconductor absorber layer comprises copper indium diselenide-based in the fan and the n-type semiconductor layer; alloy material; n-type semiconductor layer disposed on the layer of the p-type semiconductor absorber, wherein the n-type layer and the p-type semiconductor layer forming a pn junction semiconductor absorber a transparent electrically conductive top contact layer arrangement.
24. 如权利要求23所述的太阳能电池,其中所述传导材料的四个不连续层包括:从铜、银或铝中选择的材料的至少一个金属层。 24. The solar cell according to claim 23, wherein said conductive layer four discrete material comprising: at least one layer of metal material selected from copper, silver or aluminum.
25. 如权利要求24所述的太阳能电池,其中从一个或多个包括氮化钛、氮化锆和氮化铪的组中选择所述阻挡层。 25. The solar cell according to claim 24, wherein said barrier layer is selected from one or more of the group consisting of titanium nitride, zirconium nitride and hafnium.
26. 如权利要求23所述的太阳能电池,其中所述传导材料的四个不连续层包括:第一铜层; 第二4艮层;以及多个阻挡层,各具有过渡金属氮化物材料。 26. The solar cell according to claim 23, wherein said conductive layer four discrete material comprising: a first layer of copper; Gen second layer 4; and a plurality of barrier layers, each having a transition metal nitride material.
27. 如权利要求24所述的太阳能电池,其中所述传导材料的四个不连续层包括:各选自铜、银和铝的材料的至少两个不同的金属层。 27. The solar cell according to claim 24, wherein said conductive layer four discrete material comprising: at least two different metal layers of each material selected from copper, silver and aluminum.
28. 如权利要求23所述的太阳能电池,其中所述村底包括金属箔。 28. The solar cell according to claim 23, wherein said substrate comprises a metal foil village.
29. 如权利要求28所述的太阳能电池,其中从不锈钢、铜和铝中选择所述金属箔。 29. The solar cell according to claim 28, wherein said metal foil is selected from stainless steel, copper and aluminum.
30. 如权利要求19的方法,其中所述传导材料的不连续层包括四个不连续层,其中所述四个不连续层中的至少一个不连续层是由过渡金属氮化物材料制得的阻挡层。 30. The method of claim 19, wherein said discontinuous layer of conductive material comprises four discrete layers, wherein the at least one discontinuous layer of the four discontinuous layer is made from a transition metal nitride material made barrier layer.
31. 如权利要求12的方法,其中所述合金材料是从二硒化铜铟、 二竭化铜铟镓和二硒化铜铟铝中选择的。 31. The method as claimed in claim 12, wherein said alloy material is selected from copper indium diselenide, copper indium gallium two exhaust and copper indium aluminum diselenide selected.
32. 如权利要求12的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部接触层的步骤是通过溅射完成的。 32. The method of claim 12, wherein the step of conducting film deposition, the deposition step of at least one p-type semiconductor absorber layer, and the step of depositing a transparent electrically depositing n-type semiconductor layer, the step of contacting the top conductive layer by sputtering is completed of.
33. 如权利要求32的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部接触层的步骤是通过在相同的巻装进出賊射设备中进行溅射完成的。 33. The method of claim 32, wherein the step of depositing a conductive film, depositing at least one p-type semiconductor absorber layer step, the step of contacting the top layer, the step of depositing the n-type semiconductor layer, and depositing a transparent electrically conductive by the same Volume-to-roll sputtering apparatus thief exit completion.
34. 如权利要求33的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部接触层的步骤包括通过多个处理才莫块将金属网衬底从输入模块传送到输出模块,其中传导膜、p型半导体吸收体层、n型半导体层和透明电传导顶部接触层的每个通过'减射沉积在所述村底上。 Step 34. The method of claim 33, wherein the step of depositing a conductive film, the step of depositing at least one layer of p-type semiconductor absorber, the step of depositing an n-type semiconductor layer, and depositing a transparent electrically conductive top contact layer comprises a plurality of processing by Mo metal substrate block was transferred from the input module to the output module, wherein the conductive film, P-type semiconductor absorber layer, n-type semiconductor layer and a transparent electrically conductive top contact of each layer by a 'Save deposited on said exit village on the bottom.
35. 如权利要求34的方法,其中所述传导材料的不连续层包括四个不连续层,其中所述四个不连续层中的至少一个不连续层是由过渡金属氮化物材料制得的阻挡层,以及所迷合金材料是从二硒化铜铟、二硒化铜铟镓和二硒化铜铟铝中选择的。 35. The method of claim 34, wherein said discontinuous layer of conductive material comprises four discrete layers, wherein the at least one discontinuous layer of the four discontinuous layer is made from a transition metal nitride material made barrier layer, and the alloy material is lost from the copper indium diselenide, copper indium gallium diselenide and copper indium aluminum diselenide selected.
36. 如权利要求1的方法,其中所述合金材料是从二硒化铜铟、二硒化铜铟镓和二硒化铜铟铝中选择的。 36. The method as claimed in claim 1, wherein said alloy material is selected from copper indium diselenide, copper indium gallium diselenide and copper indium aluminum diselenide selected.
37. 如权利要求1的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部接触层的步骤是通过溅射完成的。 37. The method of claim 1, wherein the step of conducting film deposition, the deposition step of at least one p-type semiconductor absorber layer, and the step of depositing a transparent electrically depositing n-type semiconductor layer, the step of contacting the top conductive layer by sputtering is completed of.
38. 如权利要求37的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部接触层的步骤是通过在相同的巻装进出溅射设备中进行溅射完成的。 38. The method of claim 37, wherein the step of depositing a conductive film, depositing at least one p-type semiconductor absorber layer step, the step of contacting the top layer, the step of depositing the n-type semiconductor layer, and depositing a transparent electrically conductive by the same Volume-to-roll sputtering finished sputtering apparatus.
39. 如权利要求38的方法,其中沉积传导膜的步骤、沉积至少一个p型半导体吸收体层的步骤、沉积n型半导体层的步骤和沉积透明电传导顶部"t妄触层的步骤包括通过多个处理;漠块将金属网衬底从输入模块传送到输出模块,其中传导膜、p型半导体吸收体层、n型半导体层和透明电传导顶部接触层的每个通过溅射沉积在所述村底上。 39. The method of claim 38, wherein the step of the step of depositing a layer of conductive film, depositing at least one p-type semiconductor absorber, the step of depositing an n-type semiconductor layer, and depositing a transparent electrically conductive top "t step jump contact layer comprises by a plurality of processing; desert metal mesh substrate block transmitted from the input module to the output module, wherein the conductive film, P-type semiconductor absorber layer, n-type semiconductor layer and a transparent electrically conductive top contact layer is deposited by sputtering in each of the Shucundishang.
40. —种制造太阳能电池的方法,包括:通过多个处理模块将金属网衬底从输入^^莫块传送到输出模块;在第一处理才莫块在所述衬底的表面上溅射传导膜;在第二处理;漠块在所述传导膜上溅射至少一个p型半导体吸收体层,其中所述p型半导体吸收体层包括基于二硒化铜铟的合金材料;在第三处理才莫块在所述p型半导体吸收体层上溅射n型半导体层以形成pn结;以及在第四处理^t块在所述n型半导体层上賊射透明电传导顶部接触层。 40. The - method of manufacturing a solar cell, comprising: a metal substrate is conveyed through a plurality of processing modules ^^ input to the output module from Mo block; Mo only in a first block sputtering process on a surface of the substrate conductive film; in the second processing; desert blocks in the conductive film, sputtering the at least one p-type semiconductor absorber layer, wherein the p-type semiconductor absorber layer comprises a material based on an alloy of copper indium diselenide; third Mo processing block only the p-type semiconductor absorber layer is sputtered on the n-type semiconductor layer to form a pn junction; ^ t and the fourth processing block on the n-type semiconductor layer, a transparent electrically conductive radio thief top contact layer.
41. 如权利要求40的方法,其中溅射传导膜的步骤、溅射至少一个p型半导体吸收体层的步骤、溅射n型半导体层的步骤和溅射透明电传导顶部接触层的步骤在相同的巻装进出溅射设备中不破坏真空地执行。 Step 41. The method of claim 40, wherein the step of conducting the step of sputtered film the sputtering at least a p-type semiconductor absorber layer, an n-type semiconductor layer, the step of sputtering and sputtering a transparent electrically conductive top contact layer Volume loaded into the same sputtering apparatus without breaking vacuum performed.
42. 如权利要求40的方法,其中所述导电膜包括传导材料的多个不连续层。 42. The method of claim 40, wherein said conductive film comprises a plurality of discrete layers of conductive material.
43. 如权利要求42的方法,其中所述传导膜包括传导材料的四个不连续层,其中所述四个不连续层中的至少一个不连续层是由过渡金属氮化物材料制得的阻挡层。 43. The method of claim 42, wherein said conductive film comprises four discrete layer of conductive material, wherein the at least one discontinuous layer of the four discontinuous layer is obtained by a transition metal nitride barrier material Floor.
44. 如权利要求40的方法,其中所述合金材料是从二硒化铜铟、 二硒化铜铟镓和二硒化铜铟铝中选择的。 44. The method of claim 40, wherein said alloy material is selected from copper indium diselenide, copper indium gallium diselenide and copper indium aluminum diselenide selected.
45. 如权利要求40的方法,其中溅射所述p型半导体吸收体层包括从一对传导耙共溅射所述基于二硒化铜铟的合金材料。 45. The method of claim 40, wherein sputtering the p-type semiconductor absorber layer comprises a pair of conductive alloy material rake based on the co-sputtering of copper indium diselenide.
46. 如权利要求40的方法,其中所述金属网村底包括从不锈钢、 铜和铝网中选择的金属箔。 46. ​​The method of claim 40, wherein said substrate comprises a metal selected from the village of stainless steel, copper and aluminum metal foil mesh.
47. 如权利要求23的太阳能电池,其中所述合金材料是从二硒化铜铟、二硒化铜铟镓和二硒化铜铟铝中选择的。 47. The solar cell as claimed in claim 23, wherein said alloy material is selected from copper indium diselenide, copper indium gallium diselenide and copper indium aluminum diselenide selected.
CNB038254433A 2002-09-30 2003-09-24 Manufacturing apparatus and method for large-scale production of thin-film solar cells CN100530701C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US41500902P true 2002-09-30 2002-09-30
US60/415,009 2002-09-30
US60/435,814 2002-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2009101264330A Division CN101521249B (en) 2002-09-30 2003-09-24 Manufacturing apparatus and method for large-scale production of thin-film solar cells

Publications (2)

Publication Number Publication Date
CN1703782A CN1703782A (en) 2005-11-30
CN100530701C true CN100530701C (en) 2009-08-19

Family

ID=35632713

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009101264330A CN101521249B (en) 2002-09-30 2003-09-24 Manufacturing apparatus and method for large-scale production of thin-film solar cells
CNB038254433A CN100530701C (en) 2002-09-30 2003-09-24 Manufacturing apparatus and method for large-scale production of thin-film solar cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009101264330A CN101521249B (en) 2002-09-30 2003-09-24 Manufacturing apparatus and method for large-scale production of thin-film solar cells

Country Status (1)

Country Link
CN (2) CN101521249B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024875A (en) * 2009-09-11 2011-04-20 思阳公司 Device for thin film overlying photovoltaic and quick thermal treatment method
CN102315321A (en) * 2010-07-01 2012-01-11 初星太阳能公司 Transparency conducting layer and forming method thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
DE102006004869B4 (en) * 2006-01-27 2007-12-20 Universität Stuttgart Method for producing series-connected solar cells and apparatus for carrying out the method
CN100449793C (en) 2006-05-26 2009-01-07 华东师范大学 Copper-idium-selenium CuInSe solar cell and preparing method thereof
CN101245443B (en) * 2007-02-17 2011-05-25 光洋应用材料科技股份有限公司 Target material and thin membrane manufactured with the target material
CN101578709A (en) * 2007-09-28 2009-11-11 Stion太阳能电池有限公司 Thin film metal oxide bearing semiconductor material for single junction solar cell devices
ITMI20071907A1 (en) * 2007-10-04 2009-04-05 Petr Nozar Process for the preparation of a solar cell.
US20110177627A1 (en) * 2008-04-18 2011-07-21 Oerlikon Solar Ag, Trübbach Assembly line for photovoltaic devices
US20100313945A1 (en) * 2008-08-21 2010-12-16 Applied Materials, Inc. Solar Cell Substrate and Methods of Manufacture
EP2214213A2 (en) * 2009-01-29 2010-08-04 SCHOTT Solar AG Photovoltaic module
CN101740722B (en) * 2009-12-25 2013-01-02 中国科学院光电技术研究所 Almost perfect absorbing structure for wide wave band
JP5877510B2 (en) * 2010-01-07 2016-03-08 Jx金属株式会社 Cu-Ga-based sputtering target, method for producing the target, light absorption layer, and solar cell using the light absorption layer
KR20150000511A (en) * 2010-01-07 2015-01-02 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
CN102214708A (en) * 2010-04-08 2011-10-12 通用电气公司 Thin film solar cell and manufacturing method thereof
US20120018828A1 (en) * 2010-07-23 2012-01-26 Stion Corporation Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
CN103025914B (en) * 2010-07-30 2016-04-13 吉坤日矿日石金属株式会社 Sputtering target and/or coil and their manufacture method
KR101091375B1 (en) * 2010-09-16 2011-12-07 엘지이노텍 주식회사 Solar cell and method for manufacturing the same
US9356172B2 (en) 2010-09-16 2016-05-31 Lg Innotek Co., Ltd. Solar cell and method for manufacturing same
CN103155175A (en) * 2010-10-12 2013-06-12 法国圣戈班玻璃厂 Thin layered solar module having a composite wafer structure
JP5418463B2 (en) * 2010-10-14 2014-02-19 住友金属鉱山株式会社 Method for producing Cu-Ga alloy sputtering target
US20130075247A1 (en) * 2011-09-22 2013-03-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for forming chalcogenide semiconductor materials using sputtering and evaporation functions
KR101230973B1 (en) * 2011-11-22 2013-02-07 한국에너지기술연구원 Cis/cigs based-thin film solar cell having back side tco layer and method for manufacturing the same
KR20140116203A (en) * 2012-01-18 2014-10-01 누보선, 인크. Systems for forming photovoltaic cells on flexible substrates
CN102544138A (en) * 2012-02-08 2012-07-04 南开大学 Copper indium gallium selenium thin film solar cell provided with aluminum nitride (AIN) thin film layer
US8785235B2 (en) * 2012-02-10 2014-07-22 Tsmc Solar Ltd. Apparatus and method for producing solar cells
TWI476284B (en) * 2012-12-14 2015-03-11 Solar Applied Mat Tech Corp A multicomponent-alloy material layer and a solar cell comprising the same
CN103887366B (en) * 2014-01-03 2017-01-04 华东师范大学 A kind of energy preparation method with adjustable copper indium aluminum selenium membrane
JP2017066519A (en) * 2015-10-01 2017-04-06 日立金属株式会社 Laminate wiring film for electronic component and sputtering target material for forming coating layer
CN106098801A (en) * 2016-06-23 2016-11-09 盐城普兰特新能源有限公司 A kind of heterojunction solar battery and preparation method thereof
CN106298988A (en) * 2016-10-10 2017-01-04 江苏神科新能源有限公司 A kind of heterojunction solar battery and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477088A (en) 1993-05-12 1995-12-19 Rockett; Angus A. Multi-phase back contacts for CIS solar cells
US5626688A (en) 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5676766A (en) 1993-09-30 1997-10-14 Siemens Aktiengesellschaft Solar cell having a chalcopyrite absorber layer
US6429369B1 (en) 1999-05-10 2002-08-06 Ist-Institut Fur Solartechnologies Gmbh Thin-film solar cells on the basis of IB-IIIA-VIA compound semiconductors and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477088A (en) 1993-05-12 1995-12-19 Rockett; Angus A. Multi-phase back contacts for CIS solar cells
US5676766A (en) 1993-09-30 1997-10-14 Siemens Aktiengesellschaft Solar cell having a chalcopyrite absorber layer
US5626688A (en) 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US6429369B1 (en) 1999-05-10 2002-08-06 Ist-Institut Fur Solartechnologies Gmbh Thin-film solar cells on the basis of IB-IIIA-VIA compound semiconductors and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024875A (en) * 2009-09-11 2011-04-20 思阳公司 Device for thin film overlying photovoltaic and quick thermal treatment method
CN102315321A (en) * 2010-07-01 2012-01-11 初星太阳能公司 Transparency conducting layer and forming method thereof

Also Published As

Publication number Publication date
CN101521249A (en) 2009-09-02
CN1703782A (en) 2005-11-30
CN101521249B (en) 2012-05-23

Similar Documents

Publication Publication Date Title
Lindahl et al. Inline Cu (In, Ga) Se $ _ {2} $ Co-evaporation for High-Efficiency Solar Cells and Modules
US8313976B2 (en) Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
Romeo et al. Recent progress on CdTe/CdS thin film solar cells
US7989256B2 (en) Method for manufacturing CIS-based thin film solar cell
EP1654769B2 (en) Method for the preparation of group ib-iiia-via quaternary or higher alloy semiconductor films
US20140318624A1 (en) Enhancement of semiconducting photovoltaic absorbers by the addition of alkali salts through solution coating techniques
JP5246839B2 (en) Semiconductor thin film manufacturing method, semiconductor thin film manufacturing apparatus, photoelectric conversion element manufacturing method, and photoelectric conversion element
US8076174B2 (en) Method of forming a sputtering target
US5728231A (en) Precursor for semiconductor thin films and method for producing semiconductor thin films
US6534704B2 (en) Solar cell
Munshi et al. Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection
KR101687219B1 (en) Manufacture of n-type chalcogenide compositions and their uses in photovoltaic devices
CN102237439B (en) Solar battery manufacturing method
US9246025B2 (en) Back contact for photovoltaic devices such as copper-indium-diselenide solar cells
US8658890B2 (en) Solar cell and method of manufacturing solar cell
Minemoto et al. Sputtered ZnO-based buffer layer for band offset control in Cu (In, Ga) Se2 solar cells
Delahoy et al. New technologies for CIGS photovoltaics
US9691917B2 (en) Back contact having selenium blocking layer for photovoltaic devices such as copper-indium-diselenide solar cells
TWI250658B (en) Manufacturing apparatus and method for large-scale production of thin-film solar cells
Dhere Present status and future prospects of CIGSS thin film solar cells
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
Nakada et al. 18% efficiency Cd-free Cu (In, Ga) Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers
CN1151560C (en) Copper-indium-galliun-selenium film solar cell and its preparation method
US5770463A (en) Method of fabricating a photovoltaic device
KR101522128B1 (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
ASS Succession or assignment of patent right

Owner name: HANERGY HOLDING GROUP CO., LTD.

Free format text: FORMER OWNER: MIASOLE

Effective date: 20140214

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; TO: 100107 CHAOYANG, BEIJING

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100107 CHAOYANG, BEIJING TO: 362005 QUANZHOU, FUJIAN PROVINCE

C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: FUJIAN APOLLO PRECISION LIMITED

Free format text: FORMER OWNER: HANERGY HOLDING GROUP CO., LTD.

Effective date: 20141208

C41 Transfer of patent application or patent right or utility model