CN100524983C - Semiconducting laser device - Google Patents

Semiconducting laser device Download PDF

Info

Publication number
CN100524983C
CN100524983C CN 03823781 CN03823781A CN100524983C CN 100524983 C CN100524983 C CN 100524983C CN 03823781 CN03823781 CN 03823781 CN 03823781 A CN03823781 A CN 03823781A CN 100524983 C CN100524983 C CN 100524983C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
semiconductor laser
surface
laser device
element
means
Prior art date
Application number
CN 03823781
Other languages
Chinese (zh)
Other versions
CN1689203A (en )
Inventor
威兰德·希尔
阿里克西·米可哈洛夫
Original Assignee
Limo专利管理有限及两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Abstract

一种半导体激光器装置,包括一个具有至少一个出光面(5)的半导体激光器元件(1),由出光面中可以发出激光射线,该激光射线在一个第一方向(Y)上具有比在与其垂直的第二方向上更大的发散度;一个外部谐振器,具有至少一个反射装置(3,9),它具有一个反射面(4,10),该反射面可以将至少一部分由半导体激光器元件(1)通过出光面(5)发出的激光射线这样反射回半导体激光器(1)中,使得由此影响到半导体激光器(1)的波模光谱,以及一个设置在反射装置(3,9)与半导体激光器元件(1)之间的外部谐振器内的透镜装置(2),它至少在第一方向(Y)上可以至少部分地使激光射线的发散度减小,其中所述反射装置(3,9)的反射面(4,10)凹下地弯曲。 A semiconductor laser device comprising a semiconductor laser element (1) at least one exit surface (5) having a surface that can emit a laser beam, the laser beam in a first direction (Y) than perpendicular thereto having greater divergence second direction; an external resonator, having at least one reflecting means (3,9) having a reflective surface (4, 10), the reflective surface may be at least part of the semiconductor laser element ( 1) the laser beam emitted by a surface (5) reflected back so that the semiconductor laser (1), thereby affecting the semiconductor laser such that (1) wave mode spectrum, and a reflector means (3,9) is provided with a semiconductor laser element lens means (2) between the external resonator (1), which may at least partially so that at least the divergence of the laser beam in a first direction (Y) decreases, wherein said reflecting means (3, 9) a reflecting surface (4, 10) concavely curved.

Description

半导体激光器装置 The semiconductor laser device

技术领域 FIELD

本发明涉及一种半导体激光器装置,它包括一个具有至少一个出光面的半导体激光器元件,由出光面中可以发出激光射线,该激光射线在一个第一方向上具有比在与其垂直的第二方向上更大的发散度,还包括至少一个与出光面间隔地设置在半导体激光器元件外部的具有一个反射面的反射装置,该反射面能够将至少一部分由半导体激光器元件通过出光面发出的激光射线反射回半导体激光器中,从而影响半导体激光器的波模光镨,该装置还包括一个设置在反射装置与半导体激光器元件之间的透镜装置,它至少在第一方向上可以至少部分地使激光射线的发散度减小。 The present invention relates to a semiconductor laser device, comprising a light emitting surface having at least one semiconductor laser element, the surface can be emitted from the laser beam, the laser beam having a first direction in a second direction perpendicular thereto in the ratio of greater divergence, further comprising at least one reflecting means having a light receiving surface of the reflective surface is provided outside the semiconductor laser element with the intervals, the reflective surface capable of at least a portion of the semiconductor laser element of the laser beam reflected back by the surface emitted semiconductor laser, thereby affecting the semiconductor laser light praseodymium wave mode, the apparatus further comprises a lens arrangement disposed between the reflecting means and the semiconductor laser element, which can at least partially so that at least the divergence of the laser beam in a first direction decreases.

背景技术 Background technique

由OPTICS LETTERS 2002年27巻第3期第167至169页已知 It is known from OPTICS LETTERS 200 227 pages in Volume 3 of the first 167-169

一种上述形式的半导体激光器装置。 Form one of the above semiconductor laser device. 在其中所述的半导体激光器装置中使用一个激光二极管作为半导体激光器元件,它由所谓的宽带发射器构成。 Use of a laser device wherein the semiconductor laser diode as the semiconductor laser element, which consists of a so-called wideband transmitter. 在这种宽带发射器中具有例如用于激光射线的出光面,它们具有约100pm的宽度和约1pm的高度。 For example, a surface having a laser beam in such a broadband transmitter, which has a height of about a width of about 100pm to 1pm. 在这个宽度上可以在内部的、由激光二极管的端面构成的谐振器内部构成激光射线的全序列不同横向波模。 This width may be formed on the entire sequence of laser radiation of different wave modes in the lateral, inner end surface of the resonator consisting of the laser diode therein. 同时也可以发出全序列的纵向波模,即不同的激光射线波长。 Also can emit a longitudinal wave mode of the full sequence, i.e., different wavelength laser beam. 尤其是多个不同的横向波模有损于由这种宽带发射器发出的激光射线的射线质量。 In particular a plurality of transverse wave modes of different lossy emitted by such laser emitters broadband radiation ray quality. 这种激光射线不能最佳地聚焦。 This not optimally focus the laser beam. 纵向波模导致对于各种应用所不期望的光谱传输。 Longitudinal wave modes results in various applications for transmission of unwanted light spectra.

因此在上述文献中建议一个外部的谐振器,它包括一个高反射的平面镜。 Therefore proposed an external resonator in the above document, it comprises a highly reflective mirror. 在平面镜与面对外部谐振器的半导体激光器元件出光面之间一方面设置了一个快轴准直镜(Fast-Axis-Kollimationslinse ),另一方面在快轴准直镜与平面镜之间设置了一个球形凸透镜。 In the semiconductor laser element and a plane mirror facing an external resonator is provided on the one hand a fast axis collimating lens (Fast-Axis-Kollimationslinse) between the light-receiving surface, on the other hand between the fast axis collimator lens and a plane mirror is provided spherical convex lens. 所述快轴准直镜用于对在第一方向上更加强烈发散的宽带发射器的激光进行校准。 The fast axis collimator lens for the laser in a first direction more strongly diverging wideband transmitter calibration. 所述球形凸透镜用于使从平面镜反射回来的激光这样聚焦,使得 The spherical convex lens for the laser beam reflected from the plane mirror back focus so that

6激光基本上返回到出光面上成像。 6 returns to the laser imaging light is substantially plane. 此外在外部谐振器中具有一个孔径光阑。 Furthermore aperture stop having an external resonator. 不仅孔径光阑而且平面镜都设置在外部谐振器的光轴外部或者设置在出光面的法线或中心垂直线外部。 Only the aperture stop and the plane mirror are disposed outside the optical axis, or the external resonator arranged outside the vertical line of the surface normal or center. 已经证实,在宽带发射器中较强的波模通常以一个相对于出光面法线的小角度从出光面中发出。 It has been demonstrated strong wave mode generally at a small angle with respect to a surface normal emanating from the surface in a wideband transmitter. 因此通过位于轴线外部的孔径光阑只能将这种以一个角度从出光面中 Therefore, by the aperture stop it is located outside the axis of the can such an angle from the surface of

发出的波模的一部分入射到镜面;并从该镜面通过孔径光阑和球形透镜反射回出光面中。 A portion of incident wave modes emitted to the mirror; and through the aperture stop and the spherical lens is reflected back from the mirror surface. 因此只有一个或多个这样的波模的射线通过出光面反射到激光二极管中。 Thus only one or more of such a wave mode of the reflected rays by the surface laser diode. 通过这种方式可以-使激光二极管基本上在这个波模上振荡,由此使半导体激光器元件的波模光谱基本上减小到一个横向波模。 This may be by way - the laser diode oscillates at substantially the wave mode, whereby the wave mode spectrum of the semiconductor laser element is substantially reduced to a transverse wave mode.

按照现有技术所述激光射线从外部谐振器中这样耦出,使得以相互反向的相同角度从出光面发出的相应优选的横向波模的分射线可以在孔径光阑和平面镜处从半导体激光器元件中发出。 According to the prior art so that the laser beam is coupled out of the external resonator so that the respective sub-rays is preferably transverse wave mode at the same angle opposite to each other can be emitted from the surface of the aperture stop from the semiconductor laser and the mirror element emits.

已经证实在上述装置中有缺陷的是,在外部谐振器中具有相对大量的不同光学元件。 Has proven deficient in the above-described apparatus is that a relatively large number of different optical elements in an external resonator. 除了快轴准直镜以外还包括球形透镜、孔径光阑和平面端镜。 In addition to the fast axis collimating lens further comprises a spherical lens, aperture stop, and the flat end mirror. 由于在外部谐振器中存在多个不同的光学元件, 一方面产生更多的成像误差,另一方面产生较大的损耗,因为这些元件位于激光器谐振器内部。 Due to the presence of a plurality of different optical elements in an external resonator, on the one hand to produce more imaging errors, on the other hand have a greater loss, since these elements are located inside the laser resonator. 由此使这种半导体激光器元件所能达到的输出功率受到严重限制。 Such a semiconductor laser element whereby the output power achievable is severely restricted. 同时使通过这种半导体激光器装置所能达到的输出功率只能以较高的成本费用实现。 While passing through this semiconductor laser device can achieve a higher output power can only be achieved cost. 另外这种半导体激光器装置还非常难以调整。 Also, such a semiconductor laser device is also very difficult to adjust.

按照现有技术还尝试通过对半导体激光器元件的有效区进行构造来影响半导体激光器元件的波模光谱。 According to the prior art also try the effective region of the semiconductor laser element is configured to affect the wave mode spectrum of the semiconductor laser element. 这种构造可以包括例如在不同的方向上改变折射率,由此通过在不同方向上变化的折射率优先传播各优选的横向激光波模。 This configuration may include, for example, changing the refractive index in different directions, whereby the priority of each propagation mode is preferably transverse wave laser light by changing the refractive indices in different directions. 此外例如可以通过不同的掺杂率影响用于重新结合的电极空穴对数量,由此在有效区的不同位置实现不同强度的激光。 Further, for example, an electrode can be influenced by the hole recombination rate of the number of different doping, thereby achieving different intensity of the laser active region at different locations. 上述两种优选各横向波模的方法需要可观的加工费用,并且同样不能得到真正令人满意的半导体激光器装置射线质量以及输出功率。 Methods of the above two transverse wave mode preferably requires considerable processing costs, and also can not be really satisfactory quality of the semiconductor laser device and a radiation output power.

发明内容 SUMMARY

因此本发明的目的是实现上述形式的半导体激光器装置,它以简单的装置保证实现一个相对较高的射线质量和高的输出功率。 Therefore object of the present invention is to realize a semiconductor laser device of the aforementioned type, it is to ensure the realization of a simple means of relatively high quality and a high radiation output.

按照本发明这个目的通过以下所述的技术特征得以实现: According to this object by the features of the present invention is achieved according to the following:

根据本发明,提供了一种半导体激光器装置,包括一个具有至少一个出光面的半导体激光器元件,由出光面中可以发出激光射线,该激光射线在一个第一方向上具有比在与其垂直的第二方向上更大的发散度;至少一个与出光面间隔地设置在半导体激光器元件外部的具有一个反射面的反射装置,该反射面能够将至少一部分由半导体激光器元件通过出光面发出的激光射线反射回半导体激光器元件中,从而影响半导体激光器元件的波模光镨;以及一个设置在反射装置与半导体激光器元件之间的透镜装置,它至少在第一方向上可以至少部分地使激光射线的发散度減小;其中所述反射装置的面向半导体激光器元件的反射面呈凹面状弯曲,使得所述反射装置形成凹面镜,其中所述透镜装置的折射率在1.7至1.9之间,并且其中这样选择所述反射面与半导体激光器元件 According to the present invention, there is provided a semiconductor laser device, comprising at least one out of a semiconductor laser element having a surface, the surface can be emitted from the laser beam, the laser beam having a second than perpendicular thereto in a first direction greater divergence direction; a reflective surface reflecting means having at least one surface is provided outside the semiconductor laser element and an interval of the reflective surface capable of at least a portion of the semiconductor laser element of the laser beam reflected back by the surface emitted the semiconductor laser element, thus affecting the optical mode-Pr semiconductor laser element; and a lens arrangement disposed between the reflecting means and the semiconductor laser element, which can at least partially so that at least the laser beam divergence reduction in a first direction small; reflective-section wherein the concave face of the semiconductor laser element of the curved reflecting means, the reflecting means is formed such that the concave mirror, wherein the refractive index of the lens means is between 1.7 to 1.9, and wherein said selected such that the reflecting surface of the semiconductor laser element 的出光面之间的光距和/或反射面的曲率,使得被反射回半导体激光器元件的激光射线的至少部分射线在出光面上的射线腰基本对应于由出光面构成的孔径。 The light receiving surface and the distance between the curvature / or reflective surfaces, such that the laser light is reflected back to the semiconductor laser element at least part of the radiation rays in the rays of light back surface corresponding to the aperture surface is substantially constituted by the. 通过这种方法与上述现有技术相比可以省去外部谐振器内的附加球面透镜,因为所述凹下弯曲的反射面可以同时作为成像元件。 In this way the spherical lens compared to additional external resonator dispensed prior art described above, since the concave curved reflecting surface can be simultaneously used as the imaging element. 此外可以省去上述的半导体激光器元件有效区的费事的构造,由此可以使半导体激光器元件相对未经构造地实现。 Also omitted troublesome construction of the semiconductor element active region of the laser described above, whereby the semiconductor laser element is configured without a relatively implemented.

所述反射面可以例如球形地弯曲。 The reflective surface may be, for example, spherically curved. 在此主要作为快轴准直镜的透镜装置可以这样设计,使从出光面发出的和穿过棱镜装置发出的激光的发散度不仅在第一方向上而且在与其垂直的第二方向上对于各横向波模都是基本相同的。 For each lens means here primarily as a fast axis collimator lens may be designed such that the second direction and emitted from the surface of the divergence of the laser device passes through the prism only emitted in a first direction perpendicular thereto and in the transverse wave modes are substantially the same. 在这种情况下所述反射面可以在第一方向上并在与其垂直的第二方向上都具有一个基本相同大小的曲率。 The reflection surface in this case may be and in a second direction perpendicular thereto having a curvature substantially the same size in the first direction.

作为替代,也可以使所述反射面在第一方向上和在与其垂直的第二方向上具有不同程度的曲率。 Alternatively, the reflective surface may be made having different degrees of curvature in a second direction perpendicular thereto in the first direction. 在这种情况下作为快轴准直器的透镜装置应该这样设计,使得在从出光面发出并穿过棱镜装置之后所述发散度在笫一和第二方向上是不同的,使得不同程度的曲率与反射面的不同程度的曲率一起在两个相互垂直的方向上这样共同起作用,由此保证所期望的分射线在出光面上实现一个相对最佳的反射。 In this case, the lens device as a fast axis collimator should be designed such that the divergence after issuing from the apparatus and passes through the prism surface in the second direction and Zi are different, so that different degrees of such co-act with different degrees of curvature of the reflecting surface curvature in two mutually perpendicular directions, thereby ensuring an optical surface to achieve a desired relative best reflected partial ray.

按照本发明的一个优选实施例,在所述反射面与半导体激光器元件的出光面之间的光距基本等于反射面至少在第一方向上的焦距。 According to a preferred embodiment of the present invention, the light between the reflection surface and the surface of the semiconductor laser element is substantially equal to the distance a focal length of the reflecting surface at least in the first direction. through

8过这种方式实现反射面与出光面的一个共焦结构。 8 such a manner that a reflecting surface of the light-receiving surface confocal configuration. 在此对应于各横向波模的分射线在出光面平面中的直径可以最小(射线腰),由此可以有助于选择特定的波模。 The transverse wave mode corresponding to each of the sub-rays having a diameter plane surface can be minimized (waist rays), thereby help to select a particular wave mode.

按照本发明的一个实施例,所述半导体激光器元件的面对反射装 Embodiment, the reflecting means facing the semiconductor laser element according to one embodiment of the present invention.

置的出光面具有大于200jam的宽度。 Opposite the surface having a width greater than the 200jam. 有利的是,所述出光面具有大于500fim的宽度,尤其是大于lmm。 Advantageously, said surface having a width greater than the 500fim, especially greater than lmm. 这种非常宽的发射器一方面产生非常高的功率,另一方面在慢轴方向、即发射器延伸例如超过lmm的方向上的发散度是非常小的,尤其是几乎小到折射边界。 This very broad aspect of the transmitter produces a very high power, on the other hand in slow axis direction, i.e., the divergence of the transmitter, for example, extending in the direction of more than lmm is very small, particularly almost small refractive boundary. 因此在这种 Therefore, in this

的,因为微小的附加损耗由于在慢轴方向上尚存的剩余发散相对来说可以忽略。 Because of the additional losses due to the remaining slight divergence in the slow axis direction of the surviving relatively negligible. 一个平面反射面可以更方便地加工且更简单地调整。 A planar reflective surface may be more easily processed more easily adjusted.

有利的是,在此所述反射面或至少一个反射面可以由波长选择元件、尤其是光栅构成。 Advantageously, in this reflective surface of the reflective surface or at least one element may be selected by the wavelength, in particular a grating configuration. 通过由平面构成反射面可以在这个平面中毫无问题地将一个光栅组合成波长选择器。 A grating without problems can be combined into a wavelength selective reflecting surface constituted by a flat surface in the plane. 由此可以省去附加的波长选择元件。 Whereby additional wavelength selective element may be omitted.

此外最好这样选择反射面的光距和/或曲率,使得被反射回半导体激光器元件的光线的对应于各横向波模的分射线在出光面中的直径基本对应于由该出光面构成的孔径。 Further preferably chosen from the light reflecting surface and / or curvature, such that the corresponding element is reflected back to the semiconductor laser light ray in the respective sub-wave mode in the transverse diameter substantially corresponding to the surface of the surface configuration of the aperture . 通过这种方式可以省去在外部谐振器内的由现有技术已知的附加孔径光阑。 Known in the prior art may be omitted from the additional aperture stop within the external resonator in this manner. 最后这样选择反射面的拓朴、取向和距离,使得在出光面平面中自动产生出光面反射的一个傅立叶图形。 Finally selected such topology, orientation, and distance to the reflecting surface, so that a Fourier pattern automatically generated in the surface reflection of the plane surface. 一个特定的横向波模的选择在此可以由此实现,即使得所述反射面例如以一个在轴线外部、即在法线或中心垂直线外部的小角度设置在出光面上。 Selection of a particular mode of this transverse wave can thus be achieved, even if the reflecting surface to give an example to the external axis, i.e. the vertical center line outside a normal or small-angle light-emitting surface disposed. 但是也可以选择沿着法线传输的具有一个垂直于法线取向的反射面的波模。 But you may also select a transmission wave mode along the normal to the reflective surface perpendicular orientation having normal. 此外所述反射面可以分别这样旋转,使得以所期望的角度从出光面发出的、对应于一个特定横向波模的分射线精确地反射回出光面。 Furthermore the reflective surfaces may each rotation so that, corresponding to a particular partial transverse wave modes rays reflected at exactly the desired angle emitted from the surface back to the surface. 因此通过相应地选择反射面的位置和取向可以选择一个所期望的横向波模,它最好被反射回半导体激光器元件中。 Thus can select a desired transverse wave mode by appropriate choice of the position and orientation of the reflecting surface, it is preferably reflected back to the semiconductor laser element.

通过这种方式以简单的措施使所述半导体激光器装置发出基本上只具有一个横向波模或几个横向波模的激光射线。 In this way a simple measure of the semiconductor laser device emits substantially only a transverse wave mode or having several transverse wave mode laser beam.

有近似大小,因为一方面产生微小的损耗,另一方面在反射层的整个宽度或者说出光面的整个宽度上实现一个强反馈。 Has the approximate size, one hand produce small loss, on the other hand to achieve a strong feedback over the entire width or the entire width of the reflective layer is to say the surface. 在整个宽度上并由 Over the entire width by

9此在激光二极管的整个宽度上的强反馈有意义的是,在有助于激光发射的激光二极管体积的一个尽可能大的部分中均勻地激励优选的波模。 9 This strong feedback laser diode over the entire width of the sense that a largest possible part of the volume of the laser diode in the laser emission contributes to uniformly excited preferred wave mode.

所述出光面在慢轴上的延伸通常远大于快轴上的延伸,由于这一 The surface is typically much larger than the fast axis extending in the extension of the slow axis, due to the

的"它具有一:透镜装置和一二反射装置f尤其是】该使用一个非常短焦距的、用来作为快轴准直器的透镜装置和一个相对特别长焦距的反射装置。其根据还在于,在短焦距的反射装置中可能在慢轴方向上在出光面上造成一个过小的射线腰。尽管通过反射装置的散焦或者距离变化可实现一个较大的射线腰,但是在一个短焦距的反射装置中将有非常多的波模反馈到半导体激光器元件中,因为各波模在傅立叶平面中的距离在一个非常短的焦距情况下是非常小的。因此最好应该使用一个长焦距的反射装置反射面。 The "having a: lens means and twelve reflecting means f] especially the use of a very short focal length lens device used as a fast axis collimator and reflecting means in particular a relatively long focal length based on further characterized. , may result in too small a waist and the radiation surface of the light reflecting means in a short focal length in the slow axis direction. While the defocus by the reflecting means may be implemented or a larger waist radiation distance change, but in a short focal length reflecting means will have a lot of wave modes fed back to the semiconductor laser device, because a very short focal length in each case is very small wave modes in the Fourier plane distance should therefore be preferable to use a long focal length reflecting means reflecting surface.

按照本发明可以使所述半导体激光器元件由宽带发射器构成。 According to the present invention enables the semiconductor laser element is composed of a broadband transmitter. 但是同样可以使所述半导体激光器元件由宽带发射器条或堆构成。 It is equally possible that the semiconductor laser device composed of a stack of strips or a broadband transmitter.

最好规定,所述半导体激光器元件的面对反射面的出光面是减反射的,其中这种减反射尤其可以通过一个适当的涂层实现。 Preferably predetermined, the surface facing the reflecting surface of the semiconductor laser element is antireflective, in particular where such antireflective achieved by a suitable coating. 通过这种减反射可以加强从外部谐振器到半导体激光器元件的反馈并显著减小内部谐振器的反馈。 It can significantly strengthen and reduce the internal resonator from the external resonator feedback semiconductor laser device of this anti-reflective feedback. 由此提高外部谐振器对波模光镨的影响。 Thereby increasing the influence of the external resonator mode light wave praseodymium.

按照本发明的一个优选实施例,所述半导体激光器元件包括两个具有两个反射面的反射装置,其中这两个反射面分别以与出光面的法线呈相互反向的相同角度倾斜。 According to a preferred embodiment of the present invention, the semiconductor laser element having two reflecting means comprises two reflective surfaces, wherein the two reflection surfaces respectively normal to the surface and form the same angle of inclination opposite to each other.

其中这两个反射装置的两个反射面可以与半导体激光器元件的出光面具有相同的光距。 Wherein the two two reflecting means reflecting surfaces may have the same light from the semiconductor laser element of the surface. 通过这种方式可以使对应于一个横向波模的、 By this way, it can correspond to a transverse wave mode,

分别通过两个反射装置反射回出光面上,由此提高了光线通过外部谐振器耦入到内部谐振器中的效应。 Respectively, by two back surfaces of the light reflecting means, thereby improving the external light is coupled into the resonator by the internal resonator effect.

按照本发明的一个实施例,可以使所述反射装置的至少一个反射面由局部反射面构成,由此使至少一个设计为局部反射面的反射装置作为耦出器。 According to one embodiment of the present invention, at least one reflecting surface of said reflecting means is composed of a partially reflecting surface, whereby at least one reflecting means is a partially reflective surface is designed as a coupling device. 作为替代,也可以使所述反射装置的两个反射面设计为高反射,其中一个背离反射面的半导体激光器元件的出光面设计为局部反射,并以这种方式作为耦出器。 Alternatively, it is also possible two reflecting surfaces of the reflecting means is designed to be highly reflective, facing away from the semiconductor laser device wherein a reflection surface of a partially reflective surface design, and in this manner as a coupling device. 按照本发明的另一可选择的优选实施例,在半导体激光器元件与反射装置之间设置一个偏转装置,它可以将以与出光面的法线呈一定角度从出光面发出的分射线偏转到反射装置上。 According to another alternative preferred embodiment of the present invention, a deflection means provided between the semiconductor laser element and the reflection means, it will be normal to the surface of an angled from the points of deflection of rays emitted to the reflective surface means. 在此所述偏转装置尤 In particular the deflecting means

其可以这样构成:以与出光面的法线呈相互反向的相同角度从出光面发出的分射线入射到反射装置反射面上的相同位置上,由此可以使分射线相互交叉并反射回出光面上。 Thus it may be configured: with the light emitting surface normal line at the same angle in opposite directions from the sub-rays are incident to the same position on the reflection surface of the reflection means emitted light receiving surface, thereby allowing the rays intersecting points and the light reflected back surface. 因此这种具有附加偏转装置的实施例省去了第二个反射装置。 Thus this embodiment has the additional deflection device eliminates the second reflecting means.

在此尤其可以规定,所述偏转装置和反射装置设置在通过出光面上的中心垂直线给出的轴线上。 In particular, this can be provided that the axis of the deflection means and the reflection means is provided by a central line perpendicular to the light receiving surface given. 通过这种方式得到外部谐振器的一个轴对称结构。 An external resonator axis to obtain in this way a symmetrical structure.

按照本发明所述偏转装置可以由棱镜元件构成。 According to the present invention, the deflecting means may be constituted by prism elements. 在此所述棱镜元件可以这样设置,使直角边平面面对半导体激光器元件的出光面。 Here the prism elements may be arranged such that right-angled edge facing the plane of the surface of the semiconductor laser element. 在此也可以通过适当地选择棱镜元件的斜边平面与直角边平面之间的角度和/或通过适当地选择偏转装置与出光面的距离,使相对于出光面的法线呈一定角度发出的分射线通过反射装置的反射面相互交叉。 Here also by appropriately selecting the angle between the oblique plane of the prism elements at right angles to the plane of the edge and / or by appropriately selecting the deflecting means and the surface distance, the phase angle as a light receiving surface the normal to the emitted rays intersecting points by means of the reflecting surface. 因此通过使用在斜边平面与直角边平面之间具有不同角度和/或在偏转装置与出光面之间具有不同距离的棱镜元件,尤其可以选择不同的横向波模。 Therefore, by having different angles and / or deflection means and the prism elements having different distances between the surface plane of the hypotenuse of right angle between the plane edge, in particular transverse wave can select a different mode.

也可以在上述具有一个偏转装置的结构中使反射装置的反射面设计为局部反射,由此使反射装置可以作为耦出器。 May also be reflective surface having a deflection in the above-described configuration of the manipulation means is a partial reflection of the reflecting means, the reflecting means may thereby be coupled as a reader. 作为替代,也可以使所述反射装置的反射面在这种结构中设计为高反射,其中所述半导体激光器元件的背离反射面的出光面设计为局部反射,并以这种方式可以作为耦出器。 Alternatively, it is also possible to a reflecting surface of the reflecting means in such a structure designed for high reflection, wherein said reflective surface facing away from the semiconductor laser element is designed as a partially reflective surface, and in this way can be used as outcoupling device.

按照本发明可以在半导体激光器元件与反射装置之间设置一个波长选择元件,它尤其由标准具构成。 According to the present invention may be provided between the semiconductor laser element and a wavelength selective reflection means element, which in particular consists of the etalon. 在此所述波长选择元件可以设置在透镜装置与反射装置之间。 In the wavelength selection element may be disposed between the lens means and the reflector means. 通过这种波长选择元件可以选择出特定的纵向波模,尤其是使发射出的激光射线具有一个微小的光谱宽度的纵向波模。 By selecting such a wavelength can be selected particular element longitudinal wave mode, in particular laser radiation emitted longitudinal wave mode having a small spectral width.

按照本发明还可以使所述半导体激光器元件只在对应于一个所期望的激光射线波模的空间延伸的局部区域内施加电压或者电流,用于产生电极空穴对。 According to the present invention also allows the semiconductor laser element only in a corresponding voltage or current is applied to a localized area in a space extending in a desired mode wave laser beam, for producing an electrode hole pairs. 通过这种可以相对简单实现的措施可以进一步优化所期望的激光射线波模。 It may further optimize the desired wave mode laser beam through relatively simple measures which can be achieved. 附图说明 BRIEF DESCRIPTION

本发明的其它特征和优点借助于下面结合附图对优选实施例的 Other features and advantages of the present invention by means of preferred embodiments in conjunction with the accompanying drawings of embodiments

描述给出。 Description given. 附图中: In the drawings:

图la以示意俯视图示出一个按照本发明的半导体激光器装置的第一实施例; Fig la illustrates a schematic plan view illustrating a first embodiment of a semiconductor laser device according to the present invention;

图lb示出按照图1中箭头Ib的视图; FIG lb shows a view according to the arrow in FIG. 1 Ib of;

图2a以示意俯视图示出一个按照本发明的半导体激光器装置的第二实施例; FIG 2a is a schematic plan view illustrating a second embodiment of the semiconductor laser device according to the present invention;

图2b示出按照图2中箭头IIb的视图。 2b shows an arrow IIb of FIG. 2 according to a view.

具体实施方式 Detailed ways

由图la和图lb可以看出一个按照本发明的半导体激光器装置的第一实施例,它包括一个半导体激光器元件1、 一个尤其设计为快轴准直镜的透镜装置2、以及至少一个由凹面镜构成的反射装置3。 FIG la and FIG lb it can be seen a first embodiment of a semiconductor laser device according to the present invention, a lens device comprising a semiconductor laser element 1, in particular as a fast axis collimator lens 2, and at least one concave surface reflecting means 3 mirror configuration. 在此一个面对半导体激光器元件1的反射凹面4与一个面对反射装置3的半导体激光器元件出光面5 —起构成一个外部谐振器。 In a reflective concave surface facing the semiconductor laser element 1 facing a reflecting means 4 with the semiconductor laser element 3 of the surface 5 - from the outside to form a resonator.

所述半导体激光器元件1尤其由半导体激光二极管构成,并且在此尤其设计为宽带发射器。 In particular, the semiconductor laser element 1 is constituted by a semiconductor laser diode, and in this particular design to a broadband transmitter. 在一个宽带发射器中,在图la和图lb的右侧上具有一个发射面,它在X方向上(见图la)具有一个例如lOOjam 的延伸,而在Y方向上(见图lb)具有一个例如l|im的延伸。 In a wideband transmitter, having an emission surface on the right side of FIGS. La and lb, for example having a lOOjam extending in the X direction (see FIG. La), in the Y direction (see FIG. Lb) having for example, a l | im extends. 所以在一个这样的宽带发射器中人们将X方向称为慢轴而将Y方向称为快轴。 Therefore, in such a wideband transmitter people will slow axis X direction will be referred to as Y-direction is called the fast axis. 如果观察各横向波模,这种宽带发射器尤其在快轴并由此在Y方向上具有一个远大于在慢轴并因此在X方向上的发散度。 If you observe the transverse wave mode, in particular in such a broadband transmitter and thereby having a fast axis and thus much greater than the divergence in the slow axis direction X in the Y direction. 在图la和图lb中没有实际示出这个尺寸关系,而是为了清楚起见而有所改变。 In FIGS. La and lb are not actually shown this dimensional relationship, but for clarity change.

还可以使所述半导体激光器元件1由激光二极管条构成,其中多个上述宽带发射器在X方向上相互间隔且相互对中地设置。 May further cause the semiconductor laser device 1 is constituted by a laser diode bar, wherein the plurality of wideband transmitters spaced from each other in the X-direction and arranged in each other. 也可以使所述半导体激光器元件1由这种激光二极管条的堆构成,其中多个这种激光二极管条在Y方向上上下设置。 May be made of the semiconductor laser device 1 is constituted by such a laser diode bar stack, wherein a plurality of such laser diode bars arranged vertically in the Y direction.

按照本发明还可以使所述出光面5对于半导体激光器元件1的激光射线尽可能地减反射。 According to the present invention it is also possible for the exit surface 5 of the semiconductor laser element 1 antireflective laser beam as much as possible.

12如同由图la和图lb可以看到的那样,所述透镜装置2可以由柱面透镜构成,其圆柱轴线沿着X方向延伸,由此透镜装置2使从半导体激光器元件中发出的激光射线在快轴方向上的发散度减小,或者也可以完全准直。 12 as in FIG. La and FIG lb can be seen, the lens device 2 may be constituted by a cylindrical lens, which cylindrical axis extends in the X direction, whereby the lens device 2 so that the laser beam emitted from the semiconductor laser element divergence in the fast axis direction is reduced, or may be perfectly collimated. 这一点在图lb中示意地表示。 This is represented in FIG. Lb schematically.

所述透镜装置2例如可以由平凸柱面透镜构成。 The lens device 2 may be composed of a plano-convex cylindrical lens. 尤其是在此该圆柱表面可以由非圆形柱面构成。 In particular, the cylindrical surface may be constituted by a non-circular cylindrical. 所述透镜装置2最好具有一个大的孔径,由此只产生微小的成像误差。 The lens device 2 preferably has a large aperture, thereby generating only slight imaging errors. 例如折射率可以选择得非常高,例如1.7至1.9之间,尤其是该折射率n可以等于1.82。 E.g. refractive index may be selected to be very high, for example between 1.7 to 1.9, in particular, the refractive index n may be equal to 1.82. 所述焦距尤其可以选择得非常小,例如可以选择焦距f-lmm。 In particular, the focal length can be chosen very small, for example, may be selected focal length f-lmm.

在图la和图lb中只示例性地示出从半导体激光器元件l发出的激光射线的以分射线6, 7形式的那部分,它不包括激光射线中相对较强发出的波模。 FIG la and FIG lb exemplary only shows the laser beam emitted from the semiconductor laser element at points l rays 6, 7 in the form of a portion, which does not include the wave modes in a relatively strong laser beam emitted. 通常在上述由宽带发射器构成的半导体激光器元件1 中最强的横向波模以一个与出光面5的法线8呈角度a、例如a-7。 Generally in the transverse wave mode in the semiconductor laser element strongest composed of a broadband transmitter 1 to a normal to the light exit surface an angle of 5 to 8 a, for example, a-7. 传输。 transmission. 该法线的方向在图la和图lb中对应于Z方向。 Direction of the normal line in FIGS. La and lb corresponding to the Z-direction. 以一个与法线8呈角度a从出光面5发出的例如对应于发出波模的激光射线分量分裂成两个分射线6, 7,其中第一分射线6以一个相对于Z方向的正角度a传输,而第二分射线7以一个相对于Z方向或与法线8的负角度a传输。 8 at an angle a with the normal to the surface from a given 5 emits a laser beam corresponding to, for example, component waves mold split into two sub-rays 6, 7, 6 wherein a positive angle with respect to a first sub-radiation direction Z a transmission, and the second sub-radiation at a negative angle 7 with respect to the Z direction or the normal line 8 of a transmission. 因此所述分射线6在图la中倾斜向上和向右并且入射到反射装置3的反射凹面4上。 Thus the partition 6 rays inclined upwardly and rightward in FIG. La and is incident on concave reflecting surface of the reflecting means 3 4. 所述分射线7在图la中向右和下方延伸,并且在本发明的一个实施例中可以无阻碍地从半导体激光器装置中发出。 The sub-ray 7 in FIG. La extending rightward and downward, and the embodiment may be emitted unhindered from the semiconductor laser device in one embodiment of the present invention.

在本发明的另一实施例中,可以以反射装置3与出光面5相同的距离设置一个第二反射装置9,它具有一个面对出光面5的反射凹面10。 In another embodiment of the present invention, may be reflecting means 3 and the surface 5 the same distance from a second reflecting means 9 is provided, having a concave surface facing the reflective surface 10 of 5. 这个反射装置9在必要时可以局部反射,由此使一部分激光射线可以穿过反射装置9。 When necessary, the partial reflector reflecting means 9, whereby the laser beam may pass through a portion of the reflecting device 9. 在此这个反射装置按照本发明可以设置一个准直镜11。 In this reflecting means can be provided according to the present invention, a collimating lens 11. 完全可以使所述反射装置9与准直镜11组合在一个结构部件中。 Fully reflecting means 9 and the collimator lens 11 are combined in a structural member. 在图la中(但是没有在图lb中)用虚线示出反射装置9和准直镜ll。 In FIG la (but not in FIG. Lb) is shown with dashed lines reflecting means and the collimator lens 9 ll.

按照本发明可以这样选择所述反射装置3的曲率以及反射装置9 Curvature, and reflecting means according to the present invention can be selected of said reflecting means 9 3

13的曲率,使分射线6, 7基本自身回传,由此使它们入射到出光面5 上。 Curvature 13, so that sub-rays 6, 7 substantially return itself, thereby making them incident on the surface 5. 在此可以这样选择反射装置3的反射面4或反射装置9的反射面IO与出光面5在分射线6方向或分射线7方向上的光距D,使由凹反射面4或由反射面10构成的高反射镜的焦距F对应于光距D,因此基本上有FD。 Here can be selected reflecting means surface 5 optical distance D on the split ray 6 direction or the sub-rays 7 direction of the reflecting surface 4 or the reflecting means reflecting surface IO 9 with a 3 in the 4 or the reflection surface of the concave reflecting surface 10 focal length F of the high reflection mirror constituting the optical distance corresponding to D, so basically FD. 因此,在由球面构成反射面4的实施例中,F==R/2=D。 Thus, in the embodiment constituted by a spherical reflecting surface 4, F == R / 2 = D. 对于反射面4在快轴和慢轴方向上的不同曲率,所述光距D按照上述公式根据在慢轴方向上的半径确定。 For 4 different curvatures reflecting surfaces in the fast axis and the slow axis direction, the optical distance D is determined according to the radius in the slow axis direction in accordance with the above formula.

此外通过适当地选择反射装置3的光距D或焦距,使对应于各横向波模的分射线6, 7在出光面5上的射线腰基本等于由反射装置3 和/或反射装置9反射到出光面5上的分射线6, 7在由宽带发射器构成的半导体激光器元件1的出光面5上的大小。 Also by appropriately selecting the reflective means light 3 from D or focal length, which correspond to each of the transverse wave mode division rays 6, 7 rays waist on the surface 5 is substantially equal reflected by and / or the reflecting means reflecting means 39 to the 6, 7 in the semiconductor laser element composed of a broadband transmitter on the size of a sub-rays on the light receiving surface 5 5 surface. 因此所述出光面5用来作为孔径,通过它反射回来的分射线6, 7可以进入半导体激光器元件1或被耦入半导体激光器元件。 Thus for the light emitting surface 5 as an aperture through which the reflected rays points 6, 7 can enter the semiconductor laser element 1 or element is coupled into the semiconductor laser.

如上所述,可以使反射装置3, 9由球形凹镜构成。 As described above, the reflecting means 3, 9 is constituted by a spherical concave mirror. 在这样的反射装置3,9结构中应该这样确定作为快轴准直镜的透镜装置2的尺寸, 使对应于一个横向波模的分射线6, 7的发散度从出光面5开始、穿过透镜装置2之后、在Y方向上具有一个基本上对应于在X方向上的发散度,由此例如在反射装置3、 9的区域内在慢轴方向和快轴方向并因此在X方向和Y方向出现分射线6, 7的相对近似的射线发散度和射线横截面。 In such a reflecting means 3,9 structure should be so dimensioned lens device 2 as the fast axis collimating lens, which correspond to a transversal wave mode of radiation divergence points 6, 7, starting from the surface 5, through after the lens device 2, having a degree of divergence substantially corresponding to the X-direction in the Y direction, whereby for example 3, the inner region and the slow axis direction 9 of the fast axis direction and therefore the X and Y directions in the reflecting means 6 points rays, relatively similar ray radiation divergence and cross-section 7 appear. 在图la和图lb中简示出一个这样的实施方式。 In FIGS. La and lb in such a simple embodiment illustrated embodiment.

如果使用一个其它结构的透镜装置2,尤其是分射线6, 7几乎完全或完全准直,可以使用凹下的柱面镜作为反射装置3、 9,它具有一个在Y方向上有圆柱轴线的明显曲率而在与其垂直的方向上完全没有或只具有非常微小的明显曲率。 If a lens apparatus 2 other structures, in particular sub-rays 6, 7 almost completely or completely collimated, may be used as a concave cylindrical mirror reflecting means 3, 9, having a cylindrical axis in the Y-direction no significant curvature or only a very slight curvature in the apparent direction perpendicular thereto. 在图la和lb中未示出这种实施例。 In FIGS. La and lb are not shown in this embodiment.

通过结合图la和图lb的实施例所述的各分射线6, 7的回反射过程使这个选出的横向波模的射线精确反馈到半导体激光器元件1 中,所述分射线是一个特定选出波模的一部分,由此使这个选出的横向波模或多或少良好地被选出,.即所述半导体激光器元件1基本只发射这个波模。 By way of example in conjunction with FIGS. La and lb of the radiation reflected back in the sub-process 6, 7 so that the transverse wave mode selected rays to precise feedback semiconductor laser device 1, the sub-rays are selected from a specific a portion of the wave mode, whereby the transverse wave mode selected more or less satisfactorily be elected. the semiconductor laser element 1, i.e. substantially transmits only the wave mode. 如果没有按照本发明的由反射装置3和必要时的反射装 If there is no reflection means according to the present invention, the reflecting means 3 and, if necessary,

14置10以及出光面组成的外部谐振器,一个由宽带发射器构成的半导体 10 and 14 facing the external resonator consisting of a surface, consisting of a wide band semiconductor emitters

激光器元件1发射的激光射线将具有全序列的横向波模以及全序列的纵向波模。 Laser element 1 emits laser radiation having a transverse wave mode and the complete sequence of the full sequence longitudinal wave mode. 通过上述的将一个选出的横向波模反馈到半导体激光器元件1中,可以或多或少良好地使发射的激光射线基本只包括这一个横向波模。 Fed back to the semiconductor laser element 1 by a transverse wave mode selected above, more or less favorably emitted laser radiation which comprises substantially only a transverse wave mode. 为了使激光射线基本由一个波长并由此由一个纵向波模组成, In order for the laser beam and thereby a basic mode consists of a longitudinal wave wavelength,

可以在外部谐振器中加入一个附加的波长选择元件12,它例如由标准具构成。 May be added an additional wavelength selective element 12 in an external resonator, which is constituted by, for example, the etalon. 这个波长选择元件12在图la中(但是没在图lb中)用虚线设置在反射装置3与透镜装置2之间。 The wavelength selection element 12 in FIG. La (but not in FIG. Lb) is provided by a broken line between the reflecting means 3 and the lens device 2. 作为替代,也可以选择使该波长选择元件12与反射装置3相结合,尤其是组合到这个反射装置里面。 As an alternative, you may be selected such that the wavelength selection element 123 combined with the reflecting means, in particular, to a combination of the reflecting means inside.

按照本发明,在图lb中为了更清楚起见而未示出的反射装置9 可以被设计为局部反射,由此使反射装置9同时起到耦出器的作用。 According to the present invention, FIG lb better clarity without the reflecting means 9 shown may be designed to partially reflective, thereby reflecting means 9 acts simultaneously coupled out of the device. 作为替代,也可以选择使反射装置9具有一个相对来说为全反射的凹面10。 Alternatively, the reflecting means may select a relatively 9 having a concave surface 10 is totally reflected. 在这种情况下可以使与出光面5平行的、设置在半导体激光器元件1背对外部谐振器一侧的出光面13由仅局部反射的面构成,由此使出光面13作为耦出器。 In this case can be made parallel to the surface 5 is provided in the semiconductor laser element 1 facing away from the external resonator light exit surface 13 of the side surface is formed only partially reflective, thereby resorted coupling surface 13 as the reader. 在图la和图lb中为了表明这种实施例,在半导体激光器元件1的左侧示出射线14,它们能够示意地表示从出光面13在负Z方向上发出的激光射线。 In FIGS. La and lb in order to show such an embodiment, radiation 14 is shown on the left side of the semiconductor laser element 1, which can be schematically showing a light receiving surface of the laser beam 13 in the negative Z-direction emitted from the.

按照本发明可以使半导体激光器元件1相对地不进行构造,尤其是不必提供用于优先传播一个特定的激光波模的导向装置。 According to the present invention, the semiconductor laser element 1 can be relatively non constructed, in particular not necessary to provide for a particular priority propagation guide mode wave laser.

此外还可以使所述半导体激光器元件1只在一个局部区域内供电用于产生电极空穴对,其中这个局部区域基本对应于所期望被激励的激光射线的激光波模在半导体激光器元件1内部的空间分布。 In addition it is also possible the semiconductor laser element 1 in a partial region for the power generating electrode hole pairs, wherein the partial region corresponding to the laser radiation fundamental wave laser light to the desired mode is excited within the semiconductor laser element 1 The spatial distribution. 因此所述半导体激光器元件1的其余区域不配有电极,因此在这些区域内不输入用于产生电极空穴对的电流。 Thus the remaining region of the semiconductor laser element 1 is not equipped with an electrode, and therefore these regions are not in the input current to the electrodes for generating the hole. 通过这种有针对性的电极布置可以进一步优化所期望的激光波模选择。 By such an electrode arrangement may be targeted to further optimize the desired wave laser mode selection.

在图2a和图2b中示出的实施例中相同的部件配有与图la和图lb中相同的附图标记。 Embodiment the same components with the same in FIGS. La and lb reference numerals in FIGS. 2a and 2b in the embodiment shown. 在图2a和图2b中示出的实施例与在图la和图lb中示出的实施例的不同之处是在透镜装置2与反射装置3之间设置一个棱镜元件15。 Differs from the embodiment in FIGS. La and lb in the embodiment shown in Figures 2a and 2b are illustrated embodiment between the lens device 2 and the reflecting means 3 is provided a prismatic element 15. 另外与图la和图lb中的实施例的不同还在于所述反射装置3与出光面5上的法线8或中心垂直线旋转对称地设置。 Further unlike the embodiment of FIG la and FIG lb it is further characterized by the reflecting means 3 and the surface normal on the central vertical line 58 or disposed in rotational symmetry. 所述棱镜元件15用于使以一个角度土a从出光面5发出的分射线6, 7 相对于法线8或由法线8构成的光轴发生偏转。 The prism element 15 for a soil at an angle from the surface 5 minutes rays emitted 6, 7 or 8 with respect to the normal line normal to the optical axis 8 consisting deflected. 为此所述棱镜元件15 具有一个在XY平面中延伸的斜边平面16。 For this purpose the prism elements having oblique plane 15 extending in the XY plane 16. 这个斜边平面16设置在棱镜元件15面对反射装置3的一侧。 This oblique plane 16 is provided on a side face of the prism element 15 reflecting means 3. 在棱镜元件15面对出光面5或透镜装置2的一侧具有两个直角边平面17,它们分别与斜边平面16 形成一个夹角P,对应于a选择该夹角。 On the side facing the surface 15 of the prism element 5 or lens device 2 having two right-angle side plane 17, which are formed with an angle P oblique plane 16, the angle corresponding to a selection. 例如卩可以约两倍于a。 Jie may e.g. about twice a. 所述直角边平面17不仅与斜边平面16、而且也与XY平面形成一个夹角p,由此使分射线6, 7在直角边平面17上并接着在斜边平面16 上(在图2a和图2b中未示出)中断。 The right-angle side oblique plane 17 and plane 16 only, but also form an angle p with the XY plane, whereby the ray points 6, 7 in the rectangular plane 17 side and then on the oblique plane 16 (2a in FIG. and FIG. 2b not shown) is interrupted.

所述反射装置3的反射面4的曲率按照本发明最好可以这样选择,以相同的角度ot向上或向下并在正Z方向上从出光面5发出的分射线6, 7通过反射面4分别相互交叉。 The curvature of the reflecting surface of the reflector 4 of the device 3 according to the present invention may preferably be selected such that, at the same angle ot upward or downward and from the surface points 5 6 rays emitted in the positive Z direction, the reflecting surface 4 through 7 respectively interdigitated. 在图2a中通过三个发出的分射线6表示,它们在反射面4上过渡为三个分射线7。 Rays emitted divided by three in FIG. 2a 6, said three transition points are in the radiation reflecting surface 7 4.

在图2a和2b中示出的实施例中还可以这样选择反射面4与出光面5之间的光距D,使D等于反射面4的R/2-F。 2a and 2b shown embodiments may also select the reflective surface 4 and the distance D between the light receiving surface 5, so that D is equal to the reflecting surface R 4/2-F. 还可以通过适当地选择光距D或反射装置3的焦距同样按照本发明这样选择通过反射面4反射回出光面5上的分射线6, 7的射线腰,使它基本对应于由出光面5给出的孔径。 The same may also be selected such that the reflecting surface 4 through the sub-rays 6 back, waist rays on the light receiving surface 57 in accordance with the present invention by suitably selecting the focal length of the light from the reflecting means D or 3, so that it substantially corresponds to the surface 5 of the given aperture.

在按照图la和图lb中的实施例中可以由此实现各波模的选择, 使反射装置3或反射装置3, 9这样旋转,使从出光面5发出的并入射到反射装置3上的分射线本身回传。 In the embodiment according to FIG la and FIG lb can thereby realizing the wave mode selecting each of the reflecting means 3, 9 so that the rotating reflecting means 3 or the incident from the reflecting means 5 on the surface 3 emitted ray itself points return. 因此通过反射面4, IO的旋转在与法线8形成不同角度oc的波模之间进行选择。 Accordingly 4, IO is rotated in the normal line 8 between different angles oc wave mode is selected by the reflecting surface is formed.

在按照图2a和2b的实施例中,波模选择可以通过改变棱镜元件15的角度p并通过沿着Z方向移动棱镜元件15实现。 In the prism may be achieved by moving the member 15 along the Z-direction by changing the angle P of the prism elements 15 and FIGS. 2a and 2b embodiment, the wave mode in accordance with the selection. 根据角度P的大小选择与法线8并因此与Z方向形成一个相应角度oc的波;f莫,其从出光面向上或向下并在正Z方向上发出的分射线通过棱镜元件15基本精确地转移到反射面4的区域内。 8 and thus forms a corresponding angle oc with the wave size selection and Z directions from the normal angle P; F Mo, up or down its surface and emitted from the positive Z direction in the sub-rays through a prism element 15 substantially accurately transferred into the area of ​​the reflective surface 4.

按照本发明在图2a和2b的实施例中可以设想两种耦出方法。 According to the present invention it is contemplated in the embodiment of FIGS. 2a and 2b of the coupling of two methods. 一方面,所述反射装置3可以由只局部反射的反射装置构成。 In one aspect, the reflecting means 3 may be constituted by only partially reflected by the reflecting means. 由此使一部分激光射线在图2a中向右并由此在Z方向上穿过反射装置3。 Whereby a portion of the laser beam therethrough and reflecting means 3 in the Z direction to the right in Figure 2a. 作为替代,也可以选择使所述反射装置3由基本全反射的反射装置构成, 而在图2a中的半导体激光器元件1的左出光面13局部反射地构成, 由此可以在负Z方向发出对应于所示射线14的激光射线。 Alternatively, you can choose the reflecting means 3 is constituted by a substantially totally reflecting means, the semiconductor laser element 1 and the left in FIG. 2a is a partially reflective surface 13 configured thus can be issued in a negative Z-direction corresponding to to the laser beam radiation 14 is shown in FIG. 在这两种情况下在图2a的半导体激光器元件1的右出光面5相对较好地减反射,由此尽可能有效地使分射线6, 7反馈到半导体激光器元件中,同时减小内部谐振器的反馈。 In both cases the semiconductor laser element shown in FIG. 2a the right of the surface 5 1 a relatively well antireflective, thereby effectively rays points 6, 7 is fed back to the semiconductor laser element as much as possible, while reducing internal resonance a feedback.

在按照图2a和图2b的外部谐振器中也可以加入一个波长选择元件12。 In the selection element 12 according to FIGS. 2a and 2b the external resonator may be added in a wavelength.

Claims (26)

  1. 1. 一种半导体激光器装置,包括-一个具有至少一个出光面(5)的半导体激光器元件(1),由出光面中可以发出激光射线,该激光射线在一个第一方向(Y)上具有比在与其垂直的第二方向上更大的发散度;至少一个与出光面(5)间隔地设置在半导体激光器元件(1)外部的具有一个反射面(4,10)的反射装置(3,9),该反射面能够将至少一部分由半导体激光器元件(1)通过出光面(5)发出的激光射线反射回半导体激光器元件(1)中,从而影响半导体激光器元件(1)的波模光谱;以及-一个设置在反射装置(3,9)与半导体激光器元件(1)之间的透镜装置(2),它至少在第一方向(Y)上可以至少部分地使激光射线的发散度减小;其中所述反射装置(3,9)的面向半导体激光器元件(1)的反射面(4,10)呈凹面状弯曲,使得所述反射装置(3,9)形成凹面镜,其中所述透镜装置的折射率在1.7至1.9之间,并 1. A semiconductor laser device comprising - a semiconductor laser element having (1) at least one exit surface (5) of the surface by the laser beam may be emitted, the laser radiation than in a first direction (Y) reflecting means (3,9 having a reflective surface (4, 10) at least one spacer is provided with a surface (5) in (1) outside of the semiconductor laser element; a greater divergence in the direction perpendicular thereto a second ), the reflective surface capable of at least a portion of a semiconductor laser element (1) by the laser beam reflected back to the semiconductor laser element (1) in the surface (5) emitted, thereby affecting the semiconductor laser element (1) wave mode spectrum; and - a means disposed in the reflective (3,9) of the semiconductor laser element between the lens means (1) (2), which may at least partially so that at least the divergence of the laser beam is reduced in the first direction (the Y); wherein said reflecting means reflecting surface (3,9) facing the semiconductor laser element (1), (4, 10) a concave curved, so that the reflecting means (3,9) form concave mirror, wherein said lens means refractive index between 1.7 to 1.9, and 且其中这样选择所述反射面(4,10)与半导体激光器元件(1)的出光面(5)之间的光距(D)和/或反射面(4,10)的曲率,使得被反射回半导体激光器元件(1)的激光射线的至少部分射线在出光面(5)上的射线腰基本对应于由出光面(5)构成的孔径。 Curvature optical distance (D) and / or reflective surfaces (4,10) and wherein between selected such that the reflective surface (4, 10) of the semiconductor laser element (1) of the surface (5), such that the reflected back to the semiconductor laser element (1) at least a portion of the laser beam radiation in a radiation back surface (5) substantially corresponds to the aperture of the surface (5) thereof.
  2. 2. 如权利要求1所述的半导体激光器装置,其特征在于,所述反射面(4, 10) J求形地弯曲。 2. The semiconductor laser device according to claim 1, wherein said reflective surface (4, 10) J-shaped bent request.
  3. 3. 如权利要求1或2所述的半导体激光器装置,其特征在于, 所述反射面(4, 10)在第一方向(Y)上以及在与其垂直的第二方向上具有大小基本相同的曲率。 The semiconductor laser device according to claim 1, wherein said reflective surface (4, 10) in a first direction (Y) and has a size in a second direction substantially perpendicular thereto the same curvature.
  4. 4. 如权利要求1或2所述的半导体激光器装置,其特征在于, 所述反射面(4, 10)在第一方向(Y)上以及在与其垂直的第二方向上具有不同程度的曲率。 The semiconductor laser device according to claim 1, wherein said reflective surface (4, 10) having different degrees of curvature in a second direction perpendicular thereto in a first direction (Y) .
  5. 5. 如权利要求1所述的半导体激光器装置,其特征在于,在所述反射面(4, 10)与半导体激光器元件(1)的出光面(5)之间的光距(D)等于反射面(4, 10)至少在第一方向(Y)上的焦距。 The semiconductor laser device according to claim 1, characterized in that the light between the reflective surface (4, 10) of the semiconductor laser element (1) of the surface (5) from (D) is equal to the reflection surface (4, 10) the focal length in the first direction (Y) at least.
  6. 6. 如权利要求1所述的半导体激光器装置,其特征在于,所述半导体激光器元件的面对反射装置(3, 9)的出光面(5)具有大于200jam的宽度。 The semiconductor laser device as claimed in claim 1, characterized in that, facing the reflecting means (3, 9) of the semiconductor laser element of the surface (5) having a width greater than the 200jam.
  7. 7. 如权利要求6所述的半导体激光器装置,其特征在于,所述出光面(5)具有大于500|iiin的宽度,或者具有大于lmm的宽度。 7. The semiconductor laser device according to claim 6, wherein said exit surface (5) greater than 500 | iiin width or have a width of greater than lmm.
  8. 8. 如权利要求6或7所述的半导体激光器装置,其特征在于, 所述反射面(4, 10)由波长选择元件构成。 8. The semiconductor laser device of claim 6 or claim 7, wherein said reflective surface (4, 10) by a wavelength selective element.
  9. 9. 如权利要求2所述的半导体激光器装置,其特征在于,所述半导体激光器元件(1)由宽带发射器构成。 9. The semiconductor laser device according to claim 2, wherein said semiconductor laser element (1) made of wide band transmitter.
  10. 10. 如权利要求9所述的半导体激光器装置,其特征在于,所述半导体激光器元件(1)由宽带发射器条或宽带发射器堆构成。 10. The semiconductor laser device according to claim 9, characterized in that said semiconductor laser element (1) by a wideband or broadband emitter bar emitters stack configuration.
  11. 11. 如权利要求l所述的半导体激光器装置,其特征在于,半导体激光器元件(1)面对反射面(4, 10)的出光面(5)减反射。 11. The semiconductor laser device according to claim l, wherein the semiconductor laser element (1) facing the reflective surface (4, 10) of the surface (5) anti-reflection.
  12. 12. 如权利要求l所述的半导体激光器装置,其特征在于,所述半导体激光器装置具有两个反射装置(3, 9),每个反射装置分别具有一个反射面,其中这两个反射装置的两个反射面(4, IO)分别相对于出光面(5)上的法线(8)以大小相同但方向相反的角度(a)倾斜。 12. The semiconductor laser device of claim l wherein the two reflecting means as claimed in claim wherein said semiconductor laser device having two reflecting means (3, 9), each reflecting means has a reflecting surface, respectively, two reflective surfaces (4, IO) with respect to a surface normal (8) (5) of the same size but opposite to the angle (a) is inclined.
  13. 13. 如权利要求12所述的半导体激光器装置,其特征在于,所述两个反射装置(3, 9)的两个反射面(4, 10)具有与半导体激光器元件(1)的出光面(5 )相同的光距(D )。 13. The semiconductor laser device according to claim 12, characterized in that the two reflection surfaces of the two reflecting means (3, 9) (4, 10) having a semiconductor laser element (1) of the surface ( 5) the same optical distance (D).
  14. 14. 如权利要求12或13所述的半导体激光器装置,其特征在于, 所述反射装置(3, 9)的至少一个反射面(4, 10)被设计为局部反射面,由此使至少一个配有局部反射面(10)的反射装置(9)作为耦出器。 14. The semiconductor laser device of claim 12 or claim 13, wherein the at least one reflecting surface of said reflecting means (3, 9) (4, 10) is designed as a partially reflecting surface, whereby at least one of reflecting means with a partially reflecting surface (10) (9) as a coupling device.
  15. 15. 如权利要求12或13所述的半导体激光器装置,其持征在于,所述反射装置(3, 9)的两个反射面(4, 10)被设计为高反射,其中所述半导体激光器元件(1)的一个背对反射面(4, 10 )的出光面(13 ) 被设计为局部反射并以这种方式作为耦出器。 15. The semiconductor laser device of claim 12 or 13 wherein the semiconductor laser claimed in claim, characterized in that the holding capacity, two reflection surfaces of the reflecting means (3, 9) (4, 10) is designed to be highly reflective, element (1) facing away from a reflective surface (4, 10) of the surface (13) is designed as a partial reflector and coupled in such a manner as the reader.
  16. 16. 如权利要求l所述的半导体激光器装置,其特征在于,在半导体激光器元件(1)与反射装置(3)之间设置一个偏转装置,在相对于出光面(5)上的法线(8)呈角度(a)的方向上从出光面(5) 发出的分射线(6, 7)被偏转到反射装置(3)上。 16. The semiconductor laser device of claim l with respect to the normal on the surface (5) (as claimed in claim wherein a deflection device is provided in a semiconductor laser element (1) and the reflecting means (3) between, partial rays in the direction 8) form an angle (a), (5) emitted from the surface (6, 7) are deflected to the reflecting means (3).
  17. 17. 如权利要求16所述的半导体激光器装置,其特征在于,所述偏转装置和反射装置(3)设置在由出光面(5)上的中心垂直线给定的轴线上。 17. The semiconductor laser device according to claim 16, wherein said deflection means and the central vertical line reflecting means (3) disposed on the surface by the (5) given axis.
  18. 18,如权利要求16或17所述的半导体激光器装置,其特征在于, 所述偏转装置由棱镜元件(15)构成。 18, the semiconductor laser device as claimed in claim 17 or 16, characterized in that said deflecting means (15) is constituted by prism elements.
  19. 19. 如权利要求18所述的半导体激光器装置,其特征在于,所述棱镜元件(15)这样设置,使直角边平面(17)面对半导体激光器元件的出光面(5)。 19. The semiconductor laser device according to claim 18, wherein the prism element (15) being arranged so that the plane at right angles to the edge (17) facing the surface of the semiconductor laser element (5).
  20. 20. 如权利要求18所述的半导体激光器装置,其特征在于,通过适当地选择棱镜元件(15)的斜边平面(16)与直角边平面(r7) 之间的角度(P)和/或通过适当地选择棱镜元件(15)在出光面(5) 与反射面(4)之间的位置,能够使在相对于出光面(5)上的法线(8) 呈角度(±a)的方向上从出光面发出的分射线(6, 7)通过反射装置(3)的反射面(4)相互交叉。 20. The semiconductor laser device according to claim 18, characterized in that, by appropriately selecting the prism elements (15) of the angle between the oblique plane and the plane at right angles to the edge (r7) (16) (P) and / or by appropriately selecting the prism elements (15) in a position between the surface (5) and the reflecting surface (4), it is possible to make in the form of a surface with respect to the normal line (8) (5) on the angle (± a) of partial rays emitted from the direction of the surface (6, 7) by a reflective surface reflecting means (3) (4) cross each other.
  21. 21. 如权利要求16所述的半导体激光器装置,其特征在于,所迷反射装置(3)的反射面(4)被设计为局部反射,由此使该反射装置(3)可以作为耦出器。 21. The semiconductor laser device according to claim 16, wherein the reflective surface means (3) of the fan (4) is designed as a partial reflector, whereby the reflector means (3) can be coupled out as an .
  22. 22. 如权利要求16所述的半导体激光器装置,其特征在于,所述反射装置(3)的反射面(4)被设计为高反射,其中半导体激光器元件(1)背对反射面(4)的出光面(13)被设计为局部反射并可以以这种方式作为耦出器。 22. The semiconductor laser device according to claim 16, wherein the reflective surface of the reflecting means (3) (4) is designed as a high reflectance, wherein the semiconductor laser element (1) facing away from the reflective surface (4) of the surface (13) is designed as a partially reflective, and may be coupled in such a manner as the reader.
  23. 23. 如权利要求l所述的半导体激光器装置,其特征在于,在半导体激光器元件(1)与反射装置(3, 9 )之间设置一个波长选择元件(12)。 23. The semiconductor laser device according to claim l, characterized in that a wavelength selective element (12) between the semiconductor laser element (1) and the reflecting means (3, 9).
  24. 24. 如权利要求l所述的半导体激光器装置,其特征在于,所述透镜装置(2)由柱面透镜构成,其圆柱轴线基本上在与第一方向(Y) 垂直的第二方向上延伸。 24. The semiconductor laser device according to claim l, wherein said lens means (2) is constituted by a cylindrical lens, which cylindrical axis extending in a second direction substantially perpendicular to the first direction (Y) .
  25. 25. 如权利要求l所述的半导体激光器装置,其特征在于,所述透镜装置(2)这样构成,使从出光面(5)发出的激光射线在穿过透镜装置(2)之后在第一方向(Y)上具有与在与其垂直的第二方向上基本相同大小的发散度。 25. After the semiconductor laser device as claimed in claim l, wherein said lens means (2) in such a way that the laser beam emitted from the light exit surface (5) passing through the lens means (2) in a first direction (Y) having substantially the same divergence in a second direction perpendicular thereto on the size.
  26. 26. 如权利要求l所述的半导体激光器装置,其特征在于,所述半导体激光器元件(1)只在对应于一个所期望的激光射线波模的空间延伸的局部区域内施加电压或者电流,用于产生电子空穴对。 26. The semiconductor laser device according to claim l, wherein said semiconductor laser element (1) only in a partial region corresponding to the desired space extending in a wave mode of the laser beam applied voltage or current, with to generate electron-hole pairs.
CN 03823781 2002-09-02 2003-07-30 Semiconducting laser device CN100524983C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2002140949 DE10240949A1 (en) 2002-09-02 2002-09-02 Semiconducting laser device has at least one external reflection arrangement with concave reflective surface that can reflect at least some laser light back to influence laser light mode spectrum
DE10240949.8 2002-09-02
DE10250046.0 2002-10-25

Publications (2)

Publication Number Publication Date
CN1689203A true CN1689203A (en) 2005-10-26
CN100524983C true CN100524983C (en) 2009-08-05

Family

ID=31197604

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 03823781 CN100524983C (en) 2002-09-02 2003-07-30 Semiconducting laser device
CN 03823782 CN100380754C (en) 2002-09-02 2003-08-01 Semiconducting laser device

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 03823782 CN100380754C (en) 2002-09-02 2003-08-01 Semiconducting laser device

Country Status (2)

Country Link
CN (2) CN100524983C (en)
DE (1) DE10240949A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044867A1 (en) * 2008-08-29 2010-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System with one or two dimensional rows of radiation sources
JP6268004B2 (en) * 2014-03-12 2018-01-24 浜松ホトニクス株式会社 Semiconductor laser device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797894A (en) 1987-08-21 1989-01-10 Xerox Corporation Alignment method and arrangement for external optical feedback for semiconductor diode lasers
US5050179A (en) 1989-04-20 1991-09-17 Massachusetts Institute Of Technology External cavity semiconductor laser
US6212216B1 (en) 1996-12-17 2001-04-03 Ramadas M. R. Pillai External cavity micro laser apparatus
CN1309827A (en) 1998-07-10 2001-08-22 布克哈姆技术公共有限公司 External cavity laser
US6773345B2 (en) 2000-08-25 2004-08-10 Walker Digital, Llc Systems and methods for lottery game play aggregation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301274B1 (en) * 1998-03-30 2001-10-09 Coretek, Inc. Tunable external cavity laser
US6327293B1 (en) * 1998-08-12 2001-12-04 Coherent, Inc. Optically-pumped external-mirror vertical-cavity semiconductor-laser
DE10043896B4 (en) * 1999-09-10 2010-09-16 Fujifilm Corp. laser device
DE10014181A1 (en) * 2000-03-23 2001-10-11 Volker Raab Laser resonator, has emission angle range set by focussing characteristics of optical system
WO2001095445A3 (en) * 2000-06-02 2002-09-19 Coherent Inc Optically-pumped semiconductor laser with output coupled to optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797894A (en) 1987-08-21 1989-01-10 Xerox Corporation Alignment method and arrangement for external optical feedback for semiconductor diode lasers
US5050179A (en) 1989-04-20 1991-09-17 Massachusetts Institute Of Technology External cavity semiconductor laser
US6212216B1 (en) 1996-12-17 2001-04-03 Ramadas M. R. Pillai External cavity micro laser apparatus
CN1309827A (en) 1998-07-10 2001-08-22 布克哈姆技术公共有限公司 External cavity laser
US6773345B2 (en) 2000-08-25 2004-08-10 Walker Digital, Llc Systems and methods for lottery game play aggregation

Also Published As

Publication number Publication date Type
CN1689203A (en) 2005-10-26 application
CN1701479A (en) 2005-11-23 application
DE10240949A1 (en) 2004-03-04 application
CN100380754C (en) 2008-04-09 grant

Similar Documents

Publication Publication Date Title
US6414973B1 (en) High-power blue and green light laser generation from high powered diode lasers
US6665471B1 (en) System and method for optimizing the performance of multiple gain element laser
Chann et al. Frequency-narrowed external-cavity diode-laser-array bar
US5151917A (en) Laser resonators employing diffractive optical elements
US5168401A (en) Brightness conserving optical system for modifying beam symmetry
US5392308A (en) Semiconductor laser with integral spatial mode filter
US6530697B1 (en) Multi-mode fiber coupler, system and associated methods
US6529542B1 (en) Incoherent beam combined optical system utilizing a lens array
US5734766A (en) High efficiency fiber optic coupler that reduces beam divergence
US20060126690A1 (en) Semiconductor laser apparatus capable of routing laser beams emitted from stacked-array laser diode to optical fiber with little loss
US20040252744A1 (en) Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
US6556352B2 (en) Optical coupling system
US20040165637A1 (en) Laser-to-fiber coupling
Yamaguchi et al. Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot
US3289101A (en) Laser system with optical coherence coupling means
US6005717A (en) Diode laser beam combiner system
US5386426A (en) Narrow bandwidth laser array system
US6438152B2 (en) Laser amplification system
US5033054A (en) Phase conjugate laser
US5499261A (en) Light emitting optical device with on-chip external cavity reflector
US5793784A (en) Apparatus and method for spectral narrowing of high power diode laser arrays
US4785459A (en) High efficiency mode matched solid state laser with transverse pumping
US4756002A (en) Laser diode coupler
US4433418A (en) Off-axis astigmatic unstable laser resonator
US20040252743A1 (en) Apparatus for reducing spacing of beams delivered by stacked diode-laser bars

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right