CN100523976C - Fully-solid-state electrochromic device and making method therefor - Google Patents

Fully-solid-state electrochromic device and making method therefor Download PDF

Info

Publication number
CN100523976C
CN100523976C CN 200510026849 CN200510026849A CN100523976C CN 100523976 C CN100523976 C CN 100523976C CN 200510026849 CN200510026849 CN 200510026849 CN 200510026849 A CN200510026849 A CN 200510026849A CN 100523976 C CN100523976 C CN 100523976C
Authority
CN
China
Prior art keywords
layer
polymer
electrochromic
ion
parts
Prior art date
Application number
CN 200510026849
Other languages
Chinese (zh)
Other versions
CN1710481A (en
Inventor
杨正龙
浦鸿汀
平 黄
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to CN 200510026849 priority Critical patent/CN100523976C/en
Publication of CN1710481A publication Critical patent/CN1710481A/en
Application granted granted Critical
Publication of CN100523976C publication Critical patent/CN100523976C/en

Links

Abstract

本发明属于功能器件和高分子材料技术领域,具体为一种以聚合物非水质子导电膜作为电解质的全固态电致变色器件及其制备方法。 The present invention belongs to the technical field devices and function polymer materials, in particular to a quality non-conductive polymer film as the solid-state electrolyte of an electrical device and a method for preparing induced discoloration. 该器件依次由透明导电层、电致变色层、离子导电层、离子存储层、透明导电层组成,其中离子导电层采用路易斯酸组分掺杂的路易斯碱聚合物非水质子导电材料。 The device sequentially a transparent electroconductive layer, an electrochromic layer, an ion conductive layer, an ion storage layer, a transparent conductive layer, wherein the ion conductive layer is doped using a Lewis acid component non-conductive material quality Lewis base polymer. 该器件所采用的电解质材料比传统的小分子非水锂盐或无机质子电解质,更容易成膜、更容易分散,器件的变色效果优异,变色响应速率快于采用锂离子导电聚合物电解质的器件,更适合于制造大面积的电致变色器件。 The electrolyte material used in the device than traditional small molecule non-aqueous electrolyte is a proton or an inorganic lithium salt, the deposition is easier and more easily dispersed, excellent color effect device, the response rate is faster than electrochromic devices using a lithium ion conductive polymer electrolyte power, more suitable for producing large-area electrochromic devices.

Description

一种全固态电致变色器件及其制备方法 Electrochromic device and a method of preparing an all-solid electrochromic

珐术领鱸 Fashulinglu

本发明属于功能器件和高分子材料技术领域,具体涉及一种全固态电致变色器件及其制备方法。 The present invention belongs to the technical field devices and function polymer materials, in particular, to an all-solid-state electrochromic device electrically their preparation. 背暴技术 Back violent Technology

电致变色(EC)是指在不同方向的外电场作用下材料发生可逆变色。 Electrochromic (EC) refers to the external electric field in a direction different materials reversibly change color. 自1969年Deb制备了第一个能在室温下工作的电致变色器件Au/a-Wa/Au后,人们开始了对电致变色进行系统研究。 Since 1969, Deb first electrical work at a room temperature electrochromic device prepared Au / a-Wa / Au, people started to study a system for electrochromic. 电致变色器件(ECD)在汽车防眩光后视镜、可控智能窗口、光电化学能的转换与存贮、低能耗显示屏等领域有着广泛的应用前景。 Electrochromic device (ECD) anti-glare rearview mirror in an automobile, the field of smart window controllable, conversion and storage of photoelectrochemical energy, low power displays have a wide range of applications. 电解质提供电致变色效应所需离子的传输通道。 Electrolyte electrochromic effect the desired transmission channel ions. ECD中传统的电解质一般为液态电解质,这类电解质存在器件封装、液体的冻结、副反应产物的累积等问题,因此人们研究了离子电导率高的固体材料来取代液体电解质。 It is generally a liquid electrolyte, such electrolyte is present in conventional electrolytes ECD device package of frozen liquid, the reaction product of the sub-problems such as accumulation, thus have been studied to replace the high ion conductivity of solid electrolyte material liquid. 文献中较多地采用锂离子导电的聚合物电解质作为ECD的离子导电层(LeeK.H., Park JK, J. Polym. Sci., Part B, Polym. Phys. , 1996,34: 1427-1433),但此类电解质往往要加入增塑剂来提高其电导率,而这又使其成为凝胶型或半凝胶型电解质,真正全固态的锂离子导电聚合物电解质电导率仍不够高,并且锂离子离子半径比质子大,离子输送速率比质子慢。 Document more use of lithium ion conductivity of the polymer electrolyte as the ion conducting layer of the ECD (LeeK.H., Park JK, J. Polym Sci, Part B, Polym Phys, 1996,34:.... 1427-1433 ), but such a plasticizer is added to the electrolyte tends to increase its electrical conductivity, which in turn makes a gel or semi-gel-type electrolyte, a real all-solid-state lithium ion conductive polymer electrolyte is still sufficiently high electrical conductivity, ionic radius than lithium ions and protons large, ion transport rate is slower than a proton. 文献中也有采用Nafion等传统的磺酸型聚合物质子导电材料来作为ECD 的离子导电层(任豪,李筱琳,罗宇强,毕君,中国发明专利,申请号03140275.5),而传统的聚合物质子导电材料大多为磺化聚合物的水化膜,质子输送过程离不开水的参与,全固态的干态磺酸膜无质子导电能力。 In the literature there is also a conventional sulfonic acid polymer such as Nafion proton conducting material as the ion conducting layer ECD (Hao Ren, Li Xiaolin, Luoyu Jiang, Bi Jun, Chinese Patent Application No. 03140275.5), a proton-conductive polymer traditional most of the film material is a hydrated sulfonated polymer, proton transfer process can not do without the participation of water, the dry film solid-state acid-free proton conductivity. 本发明提出的一种以路易斯酸组分掺杂的路易斯碱聚合物非水质子导电材料作为电解质的全固态电致变色器件的制备方法,可获得真正全固态的ECD。 One proposed in the present invention is a Lewis acid component of the non-doped water proton-conductive polymer material as a Lewis base all-solid electrolyte is electrically preparation of electrochromic device, the all-solid is obtained truly ECD. 文献中尚未有类1以报导。 Document Class 1 reported yet. 发《内容 Fat "content

本发明的目的在于提出一种导电率高、变色效果好的全固态电致变色器件及其制备方法。 Object of the present invention is to provide a high conductivity, good color effect solid-state electrochromic device and fabrication method for actuation.

本发明提出的全固态电致变色器件结构如图1所示,依次由透明导电层、电致变色层、 离子导电层、离子存储层、透明导电层组成,其中,离子导电层采用路易斯酸组分掺杂的路易斯碱聚合物非水质子导电材料。 All-solid electrolyte made of the electrochromic device of the present invention shown in Figure 1, a transparent conductive layer sequentially, an electrochromic layer, an ion conductive layer, an ion storage layer, a transparent conductive layer, wherein the ion conductive layer using a Lewis acid component a non-doped sub-conductive material quality Lewis base polymer.

所述的透明导电层是指能提供器件与外电源之间电接触的透明无机或有机涂层,如 The transparent conductive layer is a transparent inorganic provide electrical contact between the device and the external power supply or an organic coating, such as

3InA:Sn(氧化铟锡,IT0)、聚噻吩(PTP)、聚吡啶(PPY)等,但不仅限于此。 3InA: Sn (indium tin oxide, IT0), polythiophene (the PTP), poly pyridine (PPY) and the like, but is not limited thereto.

所述的电致变色层是指伴随着H+的注入或抽出,薄膜的光吸收特性发生可逆改变的无机或有机涂层,如氧化钨、氧化钼、氧化铱和聚苯胺、聚吡啶、聚噻吩及其衍生物等,但不仅限于此。 The electrochromic layer means associated with withdrawal or injection of H +, an inorganic or organic coating film reversibly changes light absorption properties, such as tungsten oxide, molybdenum oxide, iridium oxide and polyaniline, pyridine, polythiophene and derivatives thereof, but is not limited thereto.

所述的离子存储层,又称对电极层,是指当工作电极电致变色层被注入离子时,供给离子到电解质层,而工作电极被抽出离子时,将离子收集起来以保持电解质层呈电中性的无机或有机涂层,如氧化镍等,但不仅限于此。 The ion storage layer, also known as the counter electrode layer, means that when the working electrode is electrochromic layer ion implantation, ions supplied to the electrolyte layer, while the working electrode is withdrawn ions, the ions were collected in order to maintain the electrolyte layer neutral inorganic or organic coatings, such as nickel oxide and the like, but is not limited thereto.

所述的离子导电层采用路易斯酸组分掺杂的路易斯碱聚合物非水质子导电材料,组成如下: The ion conductive layer using the Lewis acid component of the non-doped water proton-conductive polymer material, a Lewis base, the following composition:

聚合物ioo份(重复单元摩尔数) Ioo parts of polymer (the number of moles of repeating units)

路易斯酸组分0. 1—80份(摩尔数) 0. 1-80 parts of Lewis Acid component (molar number)

氮杂环化合物0—50份(摩尔数) Heterocyclic compounds 0-50 parts (number of moles)

所述的聚合物指呈路易斯碱性的、在薄膜状态下具有一定透明性的聚合物,如聚乙烯醇、聚氧化乙烯、聚乙烯吡咯烷酮、聚丙烯酸酯、聚乙烯醇縮丁瞎等,但不仅限于此。 The polymer refers to the form of the Lewis base, in a thin film state having a certain transparency of the polymer, such as polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyacrylates, polyvinyl butyral and the like blind, but It is not limited to this.

所述的路易斯酸组分是指能提供质子or)的、非挥发性的无机、有机酸或酸式盐,如磷酸、硫酸、磷钨酸、磷酸二氢铵等,但不仅限于此。 The Lewis acid component refers to provide protons or), non-volatile inorganic or organic acid salts, such as phosphoric acid, sulfuric acid, phosphoric acid, ammonium dihydrogen phosphate and the like, but is not limited thereto.

所述的氮杂环化合物为具有路易斯碱性的含氮杂环的有机小分子,如咪唑,1-甲基咪 Said heterocyclic compounds having a Lewis basic nitrogen-containing heterocyclic small organic molecules, such as imidazole, 1-methylimidazole

唑,吡啶,吡唑等氮杂环化合物的一种或几种的混合物,但不仅限于此。 A mixture of one or more of nitrogen heterocyclic compounds, thiazole, pyridine, pyrazole etc., but is not limited thereto. 当聚合物为100 份(重复单元摩尔数)时,氮杂环化合物可用0—50份(摩尔数)。 When the polymer is 100 parts (number of moles of repeating units), 0-50 parts by available nitrogen heterocyclic compounds (number of moles). 较好的可用5—50份。 Preferably 5 to 50 parts available.

本发明涉及的全固态电致变色器件的制备方法如下:首先,采用真空溅射镀膜法分别在透明玻璃上制备电致变色层、离子储存层;然后采用凝胶法在电致变色层或离子储存层上制备离子导电层,再将五层膜依次热压复合,也可采用溶胶凝胶法在其它模板上制备离子导电层,再将五层膜依次热压复合;最后采用环氧树脂对器件进行密封。 All-solid electrolyte prepared according to the present invention relates to an electrochromic device is as follows: First, the electrochromic layer were prepared on a transparent glass by a vacuum sputtering method, an ion storage layer; and gel method or an ion in the electrochromic layer electrically preparation of an ion storage layer on the conductive layer, and then sequentially pressing the composite five-layer film, may also be employed sol-gel method of preparing an ion conductive layer on the other templates, and then sequentially pressing five-layer film composite; Finally epoxy resin sealing device. 密封时,注意使透明导电层部分裸露,或预先引入接出导线。 When sealed, the transparent conductive layer noted that the exposed portion, or the previously introduced wire bonding.

上述真空溅射镀膜法为常规方法,制备过程的条件控制根据所采用的材料不同而有所区别。 The vacuum sputtering method as a conventional method, manufacturing process control condition depending on the material used and differ.

制备离子导电层所用溶胶凝胶法,可采用下述两种方法中的一种,具体步骤如下: (l)按照前述的摩尔配比将相应的酸性组分和碱性的氮杂环化合物溶于相应的溶剂中,在20-180'C下恒温搅拌1-6小时,制备相应的盐。 Preparation of ion-conductive layer by sol-gel method, the following method may be used in one of two specific steps are as follows: (l) the molar ratio of the respective acidic components and basic heterocyclic compounds dissolved the corresponding solvent, 20-180'C at constant temperature with stirring for 1-6 hours, to prepare the corresponding salt. 再将聚合物溶于相应的溶剂中,将由前一步制备所得的盐加入到反应容器中,混合均匀,将此溶用浇铸涂膜的方法在聚四氟乙烯板(或直接在器件)上成膜,真空干燥后,即得全固态的聚合物非水质子导电膜。 Then the polymer is dissolved in the corresponding solvent, was prepared by the previous step was added resulting salt into the reaction vessel, mixed, this coating film solution cast method (or directly in the device) to the polytetrafluoroethylene plate film, vacuum drying, or a non-conductive film quality of the all-solid polymer. (2)按照前述的配比将相应量的聚合物、酸性组分和碱性的氮杂环化合物溶于相应的溶剂中,在20-18(TC下恒温搅拌1-6小时,混合均匀,将此溶液采用浇铸涂膜的方法在聚 (2) in accordance with the ratio of the corresponding amount of polymer, the acidic components and basic heterocyclic compounds dissolved in appropriate solvent, in the 20-18 (TC stirred for 1-6 hours at constant temperature, mixing, the solution cast coating method using polyethylene

四氟乙烯板(或直接在器件)上成膜,真空干燥后,即得全固态的聚合物非水质子导电膜。 Tetrafluoroethylene plate (or directly in the device) after the film formation, the vacuum drying, to obtain a non-conductive film quality of the all-solid polymer.

本发明研究了采用不同种类的聚合物非水质子导电材料作为离子导电层的全固态电致变色器件,发现聚合物非水质子导电材料比传统的小分子非水锂盐或无机质子电解质, 更容易成膜、更容易分散,器件封装更为容易,器件的变色效果优异,变色响应速率快于采用锂离子导电聚合物电解质的器件。 The present inventors studied the kinds of polymers with different non-conductive material quality as a full-solid electrolyte ion conducting layer electrochromic device, find a non-aqueous electrolyte lithium salts or an inorganic proton-conductive polymer material, a non-water quality than traditional small molecule, more film formation is easy, easier to disperse, easier device package, excellent color effect device, the response rate is faster than electrochromic devices using a lithium ion conductive polymer electrolyte.

嫩困说明 Description sleepy tender

图l电致变色器件的结构和着/褪色反应的示意图。 And the structure / l discoloration reaction schematic view of an electrochromic device.

图2不同掺杂度的PVA-xNH4H2P04复合膜的电导率对温度的依赖性曲线。 2 PVA-xNH4H2P04 conductivity of the composite membrane of FIG different doping dependence of the temperature curve.

图3 PVA/酸、PVA/咪唑/酸复合膜的电导率对温度的依赖性曲线。 FIG. 3 PVA / acid, the conductivity of PVA / imidazole / acid composite film versus temperature dependence.

图4全固态电致变色器件的着色态和褪色态,其中,(a)为加了正向电压的着色态,(b)为加了反向电压的褪色态。 FIG 4 all-solid-state electrochromic device coloration and bleaching states state, wherein, (A) is added to a colored state forward voltage, (b) is added to a reverse voltage state fading.

图5为复合膜的全固态电致变色器件加了正向电压的着色态和加了反向电压的褪色态在1.9v电压下30s后的可见光谱图。 FIG 5 is a full-solid electrolyte composite film electrochromic devices plus the forward voltage of the colored state and processing state fading spectrum of visible light at a reverse voltage of 1.9v voltage 30s. 其中,(a)基于PM/0.067H3P0" (b)基于PVA/0. 067H3P04, (c) 基于PVP/0. 067H3P04。 Wherein, (a) based on the PM / 0.067H3P0 "(b) based on PVA / 0. 067H3P04, (c) based on PVP / 0. 067H3P04.

图中标号:l为透明导电层,2为离子储存层,3为离子导电层,4为电致变色层,5为透明基片。 FIG numeral: l as the transparent conductive layer, an ion storage layer 2, an ion conducting layer 3, 4 is the electrochromic layer 5 is a transparent substrate. 具体实錄方式 Record specific way

以下实施例是仅为更进一步具体说明本发明,在不违反本发明的主旨下,本发明应不限于以下实验例具体明示的内容。 The following examples are merely further illustrate the invention, without violating the spirit of the present invention, the present invention should not be limited to the content of the following experimental Examples specifically stated. 实施例l 所用原料如下: Example l The following raw materials:

ITO导电玻璃,80Q/口,东泰真空镀膜工程有限公司产品。 ITO conductive glass, 80Q / port, vacuum coating Engineering Co. Dongtai product.

氧化钨,分析纯,上海化学试剂公司提供。 Tungsten oxide, AR, Shanghai Chemical Reagent Company.

氧化镍,分析纯,上海化学试剂公司提供。 Nickel oxide, AR, Shanghai Chemical Reagent Company.

聚乙烯醇,数均分子量Mn为17200, Aldrich公司产品。 Polyvinyl alcohol, a number average molecular weight Mn of 17200, Aldrich Company.

磷酸二氢铵,分析纯,上海化学试剂公司提供。 Ammonium dihydrogen phosphate, AR, Shanghai Chemical Reagent Company. 电致变色器件各层的制备: Preparation of the electrochromic device electrochromic layers:

(l)将ITO导电玻璃(80Q/口)先用0.1%的氢氧化钠和双氧水的混合溶液超声波清洗,再用丙酮超声清洗,最后用去离子水冲洗干净,放在红外灯下烘干备用。 (L) The ITO conductive glass (80Q / mouth) to a mixed solution of 0.1% sodium hydroxide and an ultrasonic hydrogen peroxide cleaning, ultrasonic cleaning with acetone, rinsed with deionized water, dried under an infrared lamp on standby . (2) 电致变色层的制备:将氧化钨粉末(99. 99%分析纯)压制成直径1(^左右的小圆柱, 在120(TC烧结5小时后以备蒸镀;氧化钨膜层在DMDE450型光学多层真空镀膜机(北京仪器厂,镀膜室尺寸O450X537mm)中由电子束蒸发的方法沉积制备。 (2) Preparation of the electrochromic layer: tungsten oxide powder (99.99% analytically pure) pressed into a diameter (^ around small cylinder, in the 120 (TC sintered for 5 hours to prepare a vapor deposition; tungsten oxide film layer DMDE450 prepared multilayer optical methods vacuum coating machine (Beijing Instrument, the coating chamber dimensions O450X537mm) by an electron beam evaporation deposition.

(3) 离子存储层的制备:将氧化镍粉末(99.99%分析纯)压制成直径lcm左右的小圆柱直接用于蒸镀,氧化镍薄膜在DMDE450型光学多层真空镀膜机(北京仪器厂,镀膜室尺寸0450X537mm)中由电子束蒸发的方法沉积制备。 (3) Preparation of the ion-storage layer: the nickel oxide powder (99.99% analytically pure) pressed into the small cylinder diameter of about lcm was used directly in the vapor deposition, the nickel oxide film in the optical multilayer DMDE450 type vacuum coating machine (Beijing Instrument Factory, the method of coating chamber size 0450X537mm) by an electron beam evaporation deposition prepared.

(4) 离子导电层的制备:将100份(重复单元摩尔数)聚乙烯醇(PVA) (MW-17200) 溶于去离子水,用磁力搅拌器在90—105'C下恒温搅拌至PVA完全溶解,得透明均一的粘稠液体。 Preparation of (4) the ion conductive layer: 100 parts (number of moles of repeating units) of polyvinyl alcohol (PVA) (MW-17200) were dissolved in deionized water with a magnetic stirrer at constant temperature with stirring to PVA 90-105'C completely dissolved to give a transparent homogeneous viscous liquid. 然后降温到7(TC,加入6. 7份(摩尔数)磷酸二氢铵,在70'C下恒温搅拌2小时,混合均匀,将此溶液采用浇铸涂膜的方法在聚四氟乙烯板上成膜,真空干燥后,即得全固态的聚合物非水质子导电膜。 The temperature was lowered to 7 (TC, was added 6.7 parts (number of moles) of ammonium dihydrogen phosphate, stirred for 2 hours at 70'C under constant temperature, mixing, this solution was cast coating method using a Teflon plate deposition, vacuum drying, or a non-conductive film quality of the all-solid polymer.

(5) 全面态电致变色器件的组装:将上面制得的电解质膜按图1所示方式采用热压法与其它几层复合,采用环氧树脂密封器件,密封时注意使ITO层部分裸露或预先引入接出导线。 Assembly (5) full state electrochromic device: the above-prepared electrolyte membrane by using a hot press method shown in FIG. 1 and other layers of the composite, epoxy sealing means, take care that the sealing layer portion exposed ITO or a previously introduced wire bonding.

质子导电层和电致变色器件(ECD)性能的测试: Proton-conductive layer and an electrochromic device (ECD) Performance test:

(1) 质子导电率的测试:采用CHI-660型电化学分析仪(上海辰华仪器公司)测定复合膜的交流阻抗谱,换算成直流质子电导率如图2所示。 (1) Test of proton conductivity: using CHI-660 electrochemical analyzer (Shanghai Hua Instruments e) determining the AC impedance spectra of the composite film, in terms of dc proton conductivity as shown in FIG.

(2) ECD透过率的测试:在ECD的正向和反向分别加上1.9伏的电压,其电致变色效果如图4所示,采用760CTR双光束紫外可见光分光光度计(上海精密科学仪器有限公司)测定ECD的透光率如图5所示。 (2) Test ECD transmittance: ECD respectively plus forward and reverse voltage of 1.9 volts, the electrochromic effect shown in Figure 4, using 760CTR double beam UV-visible spectrophotometer (Shanghai Precision Scientific instrument Co., Ltd.) measurement of the light transmittance of the ECD shown in FIG.

所用原料如下: The materials used are as follows:

聚乙烯吡咯烷酮(K=27.0—33.0),上海润捷化学试剂有限公司提供。 Polyvinylpyrrolidone (K = 27.0-33.0), Czech Republic-run Shanghai Chemical Reagent Co., Ltd. to provide. 咪唑,上海润捷化学试剂有限公司提供。 Imidazole, Shanghai, Czech Republic-run chemical reagents Limited. 磷酸(85wt^),上海联合化工厂产品。 Phosphoric acid (85wt ^), Shanghai United Chemical Products. 所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯吡咯烷酮100份(重复单元摩尔数) 100 parts of polyvinyl pyrrolidone (moles of repeating units)

磷酸50份(摩尔数) 全固态电致变色器件的其它层和器件组装的制备流程与实施例1所示类似。 50 parts of phosphoric acid (mol) prepared solid-state electrical device assembly processes and other layers of the electrochromic device similar to that shown in Example 1. 得到的复合膜的质子电导率和器件的电致变色性能与图2、图3、图4和图5所示类似。 Proton conductivity and electrical devices of a composite film obtained photochromic performance and FIG 2, FIG 3, FIG 4 is similar to FIG. 5 and FIG. 实施例3 Example 3

6聚丙烯酸,MW为5-6M, ACROS公司产品。 6 polyacrylic acid, MW is 5-6M, ACROS the company's products.

磷酸(85wtM),上海联合化工厂产品。 Phosphoric acid (85wtM), Shanghai United Chemical Products. 所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚丙烯酸ioo份(重复单元摩尔数) Ioo parts of polyacrylic acid (number of moles of repeating units)

磷酸50份(摩尔数) 聚合物非水质子导电材料和全固态电致变色器件的制备流程与实施例1所示类似。 50 parts of phosphoric acid preparation process quality non-conductive material (molar number) polymer and a solid-state electrochromic device similar to that shown in Example 1. 得到的复合膜的质子电导率和器件的电致变色性能与图2、图3、图4和图5所示类似。 Proton conductivity and electrical devices of a composite film obtained photochromic performance and FIG 2, FIG 3, FIG 4 is similar to FIG. 5 and FIG. 实施例4 Example 4

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯醇(Mn=17200) 100份(重复单元摩尔数) 磷酸26份(摩尔数) Polyvinyl alcohol (Mn = 17200) 100 parts (number of moles of repeating units) phosphoric acid 26 parts (number of moles)

聚合物非水质子导电材料和全固态电致变色器件的制备流程与实施例l所示类似。 Preparation process quality non-conductive polymer material and solid-state electrochromic device is similar to the embodiment illustrated l. 得到的复合膜的质子电导率和器件的电致变色性能与图2、图3、图4和图5所示类似。 Proton conductivity and electrical devices of a composite film obtained photochromic performance and FIG 2, FIG 3, FIG 4 is similar to FIG. 5 and FIG. 实施例5 Example 5

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚氧化乙烯100份(重复单元摩尔数) 100 parts of polyethylene oxide (moles of repeating units) ethylene

磷酸二氢铰6.7份(摩尔数) 聚合物非水质子导电材料和全固态电致变色器件的制备流程与实施例1所示类似。 Preparation process hinge dihydrogen phosphate 6.7 parts Water non-conductive material (molar number) polymer and a solid-state electrochromic device similar to that shown in Example 1. 得到的复合膜的质子导电性能和器件的电致变色性能与图2、图3、图4和图5所示类似。 Proton conductivity and electrical devices composite membrane obtained photochromic performance and FIG 2, FIG 3, FIG 4 is similar to FIG. 5 and FIG. 实施例6 Example 6

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯醇(Mn=17200) 100份(重复单元摩尔数) Polyvinyl alcohol (Mn = 17200) 100 parts (number of moles of repeating units)

磷酸6.7份(摩尔数) 6.7 parts of phosphoric acid (mol)

咪唑6.7份(靡尔数) 按照上述配比将磷酸和咪唑溶于去离子水中,在90'C下恒温搅拌4小时,制备磷酸咪唑盐。 6.7 parts of imidazole (extravagant Soar) and phosphoric acid in the above ratio of imidazole dissolved in deionized water, stirred for 4 hours at 90'C under constant temperature, the preparation of imidazole phosphate salts. 将聚乙烯醉溶于去离子水,用磁力搅拌器在IO(TC下恒温搅拌至PVA完全溶解,得透明均一的粘稠液体。将由前一步制备所得的磷酸咪唑盐加入到反应容器中,在80'C下继续搅拌混合均匀。将此溶液采用浇铸涂膜的方法在聚四氟乙烯板上成膜,真空干燥后,得到全固态的PVA/磷酸/咪唑复合质子导电膜。全固态电致变色器件的制备其它流程与实施例1所示类似。得到的复合膜的质子导电性能见图3,器件的电致变色性能与图4和图5所示类似。 The polyethylene was dissolved in deionized water drunk, with a magnetic stirrer IO (TC PVA at constant stirring until completely dissolved, to obtain a transparent homogeneous viscous liquid. Obtained by the previous step of preparation of imidazole phosphate salt is added to the reaction vessel, stirring was continued at 80'C evenly mixed. this solution casting method of coating deposition on a Teflon plate and dried in vacuo to give the PVA / phosphate / imidazole compound of the solid-state proton conducting membrane. all-solid electrochromic other processes electrochromic device was prepared similar to Example 1 proton conductivity of the obtained composite membrane shown in Figure 3, similar to the electrochromic properties of the device of FIG. 4 and FIG. 5.

实施例7 Example 7

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯醇缩丁醛100份(重复单元摩尔数) 100 parts of polyvinyl butyral (the number of moles of repeating units)

磷酸6.7份(摩尔数) 咪唑6.7份(摩尔数) 聚合物非水质子导电材料的制备流程与实施例6所示相同。 6.7 parts of phosphoric acid prepared in the same process (number of moles) imidazole 6.7 parts of a non-conductive material quality (number of moles) of the polymer of Example 6 shown in FIG. 电致变色层和离子储存层分别采用氧化钼和氧化镍,涂膜过程和器件制备流程与实施例1所示类似。 Electrochromic layer and the ion storage layer of nickel oxide and molybdenum oxide were used, the coating process and of fabrication process device similar to that shown in Example 1. 得到的复合膜的质子电导率和器件的电致变色性能与图3、图4和图5所示类似。 Proton conductivity and electrical devices of a composite film obtained photochromic performance and FIG. 3, FIG. 4 and 5 is similar to FIG. 实施例8 Example 8

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯醇(Mn=17200) 100份(重复单元摩尔数) 磷酸6.7份(摩尔数) 咪唑6.7份(摩尔数) 聚合物非水质子导电材料的制备流程与实施例6所示相同。 6 the same as polyvinylalcohol (Mn = 17200) 100 parts (number of moles of repeating units) phosphate 6.7 parts (molar number) imidazole 6.7 parts of water protons preparation process non-conductive material (molar number) Example polymer. 电致变色层和离子储存层分别采用氧化钼和氧化镍,涂膜过程和器件制备流程与实施例1所示类似。 Electrochromic layer and the ion storage layer of nickel oxide and molybdenum oxide were used, the coating process and of fabrication process device similar to that shown in Example 1. 得到的复合膜的质子电导率见图3,器件的电致变色性能与图4和图5所示类似。 The proton conductivity of the obtained composite membrane shown in Figure 3, as shown in FIG electrochromic properties of the device 4 and 5 is similar to FIG.

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚乙烯醇(Mn=17200) 100份(重复单元摩尔数) 硫酸6.7份(摩尔数) 咪唑6.7份(摩尔数) 聚合物非水质子导电材料的制备流程与实施例6所示相同。 6.7 parts of the same fabrication process of a non-conductive material quality (number of moles) polymer as shown in Example 6 of polyvinyl alcohol (Mn = 17200) 100 parts (number of moles of repeating units) of sulfuric acid 6.7 parts (number of moles) imidazole. 电致变色层和离子储存层分别采用氧化钼和氧化镍,涂膜过程和器件制备流程与实施例1所示类似。 Electrochromic layer and the ion storage layer of nickel oxide and molybdenum oxide were used, the coating process and of fabrication process device similar to that shown in Example 1. 得到的复合膜的质子电导率见图3,器件的电致变色性能与图4和图5所示类似。 The proton conductivity of the obtained composite membrane shown in Figure 3, as shown in FIG electrochromic properties of the device 4 and 5 is similar to FIG.

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚丙烯酸100份(重复单元摩尔数) 100 parts of polyacrylic acid (number of moles of repeating units)

磷酸6.7份(摩尔数) 咪唑6.7份(摩尔数) 6.7 parts of phosphoric acid (mol) imidazole 6.7 parts (molar number)

聚合物非水质子导电材料的制备流程与实施例6所示相同。 The same fabrication process of a non-conductive material quality polymer of Example 6 shown in FIG. 电致变色层和离子储存层 Electrochromic layer and the ion-storage layer

8分别采用氧化钼和氧化镍,涂膜过程和器件制备流程与实施例1所示类似。 8 molybdenum and nickel oxide were used, the coating process and of fabrication process device similar to that shown in Example 1. 得到的复合膜的质子电导率如图3,得到的器件的电致变色性能与图4和图5所示类似。 The proton conductivity of the composite membrane obtained in FIG. 3, the electrochromic properties of the device of FIG. 4 similarly obtained and shown in FIG. 实施例11 Example 11

所制备的聚合物质子导电膜的原料配比如下 Ratio of raw materials of the proton conducting membrane of the polymer prepared as follows

聚氧化乙烯(MW-400000) IOO份(重复单元摩尔数) 磷酸6.7份(摩尔数) 咪唑6.7份(摩尔数) Polyethylene oxide (MW-400000) IOO parts (number of moles of repeating units) phosphate 6.7 parts (molar number) imidazole 6.7 parts (molar number)

聚合物非水质子导电材料的制备流程与实施例6所示相同。 The same fabrication process of a non-conductive material quality polymer of Example 6 shown in FIG. 电致变色层和离子储存层分别采用氧化钼和氧化镍,涂膜过程和器件制备流程与实施例1所示类似。 Electrochromic layer and the ion storage layer of nickel oxide and molybdenum oxide were used, the coating process and of fabrication process device similar to that shown in Example 1. 得到的复合膜的质子导电性能和器件的电致变色性能与图3、图4和图5所示类似。 Proton conductivity and electrical devices composite membrane obtained photochromic performance and FIG. 3, FIG. 4 and 5 is similar to FIG.

上述实施例中,各组分原料和用量以及制备过程的参数,仅是为了描述本发明而选取的代表,实际上大量的实验表明,在实验内容部分所限定的范围内均能获得与上述相类似性能的全固态电致变色器件。 The above-described embodiments, the components and amounts of raw materials and manufacturing process parameters, merely describe the present invention in order to select a representative, in fact, a large number of experiments show that the above can be obtained in the experimental phase portion of the content range defined electrical properties similar solid-state electrochromic device.

Claims (6)

1、一种以聚合物非水质子导电膜作为电解质的全固态电致变色器件,其特征在于依次由透明导电层、电致变色层、离子导电层、离子存储层、透明导电层五层结构组成,其中,离子导电层采用路易斯酸组分掺杂的路易斯碱聚合物非水质子导电材料;这里,所述的路易斯酸组分掺杂的路易斯碱聚合物的组成如下:聚合物100份,按重复单元摩尔数计,路易斯酸组分6.7—50份,按摩尔数计,氮杂环化合物0—6.7份,按摩尔数计;其中,聚合物是指呈路易斯碱性的、在薄膜状态下具有透明性的聚合物;路易斯酸组分是指能提供质子(H+)的、非挥发性的无机、有机酸或酸式盐;氮杂环化合物为具有路易斯碱性的含氮杂环的有机小分子。 1. A polymer film as a non-conductive water quality all-solid electrolyte is electrically electrochromic device, comprising in sequence a transparent conductive layer, an electrochromic layer, an ion conductive layer, an ion storage layer, five-layer structure of the transparent conductive layer composition, wherein the ion conductive layer using the Lewis acid component of the non-doped water proton-conductive polymer material is a Lewis base; herein, the composition of the Lewis acid the Lewis base component of the doped polymer were as follows: 100 parts of polymer, a repeating unit moles of the Lewis acid component 6.7-50 parts by mole, heterocyclic compounds 0-6.7 parts by mole; wherein the polymer refers to the form of the Lewis base, in a thin film state the polymer having transparency; Lewis acid component refers to provide protons (H +), non-volatile inorganic or organic acid salts; heterocyclic compounds having a Lewis basic nitrogen-containing heterocycle small organic molecules.
2、 根据权利要求1所述的全固态电致变色器件,其特征在于所述的透明导电层为氧化铟锡、聚噻吩、聚吡啶之一种。 2, the all-solid electrolyte according to claim 1 electrochromic device, characterized in that the transparent conductive layer is indium tin oxide, polythiophene, poly one kind of pyridine.
3、 根据权利要求1所述的全固态电致变色器件,其特征在于所述的电致变色层为氧化钨、氧化钼、氧化铱以及聚苯胺、聚吡啶、聚瞎吩及其衍生物之一种。 3, the all-solid electrolyte according to claim 1 electrochromic device, characterized in that the electrochromic layer of tungsten oxide, molybdenum oxide, iridium oxide and polyaniline, polypyridine, polythiophene and derivatives thereof of the blind one kind.
4、 根据权利要求1所述的全固态电致变色器件,其特征在于所述的离子存储层为氧化镍。 4, all-solid electrolyte according to claim 1, wherein said electrochromic device, characterized in that the ion storage layer is nickel oxide.
5、 一种如权利要求1所述的全固态电致变色器件的制备方法,其特征在于具体步骤如下:首先,采用真空溅射镀膜法分别在透明玻璃上制备电致变色层、离子储存层;然后采用凝胶法在电致变色层或离子储存层上制备离子导电层,再将五层热压复合,或者采用溶胶凝胶法在其它模板上制备离子导电层,再将五层热压复合;最后采用环氧树脂对器件进行密封。 5. A solid electrolyte as claimed in full production method according to claim 1 electrochromic device actuator, wherein the following steps: First, a vacuum sputter coating electrochromic layer were prepared on a transparent glass, ion storage layer ; activated gel was then prepared using the ion conductive layer on the layer of electrochromic or ion-storage layer at a power, then five pressing compound, or prepared using a sol-gel method on the other templates ion conducting layer, and then pressing five compound; Finally, the device is sealed with an epoxy resin.
6、 根据权利要求5所述的制备方法,其特征在于制备离子导电层的溶胶凝胶法采用下述两种方法中的一种,具体步骤如下:(1 )按照组份的摩尔配比将相应量的酸性组分和碱性的氮杂环化合物溶于相应的溶剂中,在20-180'C下恒温搅拌l-6小时,制备相应的盐;再将聚合物溶于相应的溶剂中,将由前一步制备所得的盐加入到反应容器中,混合均匀,将此溶液釆用浇铸涂膜的方法在聚四氟乙烯板或直接在器件上成膜,真空干燥后,即得全固态的聚合物非水质子导电膜。 6. The process according to claim 5, characterized in that the sol-gel process for preparing the ion conductive layer is one of two methods in the following specific steps are as follows: (1) the molar ratio of the components in accordance with the heterocyclic compounds corresponding to the amount of acidic and basic components dissolved in the corresponding solvent, was stirred 20-180'C l-6 hours at a constant temperature, the preparation of the corresponding salts; then the polymer is dissolved in the appropriate solvent , obtained by the previous step of preparation of the salt was added to the reaction vessel, mixed, preclude the use of this solution casting method of forming a coating film of PTFE plate or directly on the device, and dried in vacuo to obtain a solid-state in a non-conductive polymer film quality. (2)按照组份的摩尔配比将相应量的聚合物、酸性组分和碱性的氮杂环化合物溶于相应的溶剂中,在20-180'C下恒温搅拌l-6小时,混合均匀,将此溶液采用浇铸涂膜的方法在聚四氟乙烯板或直接在器件上成膜,真空干燥后,即得全固态的聚合物非水质子导电膜。 (2) the molar ratio of the components in accordance with the corresponding amount of nitrogen heterocyclic compound polymers, acidic and basic components are dissolved in the appropriate solvent, under constant stirring at 20-180'C l-6 hours mixing homogeneous solution was cast coating method or direct deposition on a Teflon plate and dried in vacuo, to obtain a non-conductive film quality all-solid polymer on the device. 聚合物路易斯酸组分氮杂环化合物100份,按重复单元摩尔数计,6.7—50份,按摩尔数计,0—6.7份,按摩尔数计; Lewis acid component polymer 100 parts nitrogen heterocyclic compound, a repeating unit moles of 6.7-50 parts, by moles, 0-6.7 parts by mole;
CN 200510026849 2005-06-17 2005-06-17 Fully-solid-state electrochromic device and making method therefor CN100523976C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510026849 CN100523976C (en) 2005-06-17 2005-06-17 Fully-solid-state electrochromic device and making method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510026849 CN100523976C (en) 2005-06-17 2005-06-17 Fully-solid-state electrochromic device and making method therefor

Publications (2)

Publication Number Publication Date
CN1710481A CN1710481A (en) 2005-12-21
CN100523976C true CN100523976C (en) 2009-08-05

Family

ID=35706741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510026849 CN100523976C (en) 2005-06-17 2005-06-17 Fully-solid-state electrochromic device and making method therefor

Country Status (1)

Country Link
CN (1) CN100523976C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2013312B9 (en) 2006-06-23 2013-02-06 E.I. Du Pont De Nemours And Company Electrochromic electrolyte blends
CN100410791C (en) 2006-09-28 2008-08-13 同济大学 Method for preparing full solid electrochromic device with sol-gel
EP1935452A1 (en) 2006-12-19 2008-06-25 Philips Electronics N.V. Electrochromic device and photodynamic treatment device comprising such an electrochromic device
US9664974B2 (en) 2009-03-31 2017-05-30 View, Inc. Fabrication of low defectivity electrochromic devices
CN107015411A (en) * 2010-04-30 2017-08-04 唯景公司 Electrochromic devices, and method and device for producing the same
US9261751B2 (en) 2010-04-30 2016-02-16 View, Inc. Electrochromic devices
CN102841473B (en) * 2011-06-23 2016-03-30 比亚迪股份有限公司 Electrochromic device and method for preparing an electroluminescent
EP3189373A4 (en) 2014-09-05 2018-02-28 View, Inc. Counter electrode for electrochromic devices
CN104298044A (en) * 2014-10-30 2015-01-21 中山市亨立达机械有限公司 Space shuttle window glass with adjustable light transmittance
US10228601B2 (en) 2014-11-26 2019-03-12 View, Inc. Counter electrode for electrochromic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326561A (en) 1998-11-10 2001-12-12 马格纳控股公司马格纳奥特加分公司 Electrochromic glass component
CN1341232A (en) 1999-02-18 2002-03-20 日石三菱株式会社 Electrochemical element
JP2002322385A (en) 2001-04-24 2002-11-08 Sumitomo Chem Co Ltd Temperature sensitive color phase reversible composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326561A (en) 1998-11-10 2001-12-12 马格纳控股公司马格纳奥特加分公司 Electrochromic glass component
CN1341232A (en) 1999-02-18 2002-03-20 日石三菱株式会社 Electrochemical element
JP2002322385A (en) 2001-04-24 2002-11-08 Sumitomo Chem Co Ltd Temperature sensitive color phase reversible composition

Also Published As

Publication number Publication date
CN1710481A (en) 2005-12-21

Similar Documents

Publication Publication Date Title
Wu et al. A thermoplastic gel electrolyte for stable quasi‐solid‐state dye‐sensitized solar cells
Stathatos et al. A High‐Performance Solid‐State Dye‐Sensitized Photoelectrochemical Cell Employing a Nanocomposite Gel Electrolyte Made by the Sol–Gel Route
Kumar et al. Ionic liquid based sodium ion conducting gel polymer electrolytes
EP1456861B1 (en) A polymer gel hybrid solar cell
Dautremont-Smith Transition metal oxide electrochromic materials and displays: a review: Part 2: oxides with anodic coloration
US6183914B1 (en) Polymer-based hydroxide conducting membranes
AU663382B2 (en) Electrochromic structures and methods
Fabretto et al. Polymeric material with metal-like conductivity for next generation organic electronic devices
De Paoli et al. All polymeric solid state electrochromic devices
Rauh Electrochromic windows: an overview
US20040150867A1 (en) Electrochromic counter electrode
Ileperuma et al. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes
EP0731519B1 (en) Protonic conductor and electrochemical device using the same
JP2602233B2 (en) Electrochromic variable transmittance glass
Hagfeldt et al. Fast electrochromic switching with nanocrystalline oxide semiconductor films
Wang et al. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell
Bisquert et al. Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating
Livage et al. Sol–gel electrochromic coatings and devices: a review
De Paoli et al. All-polymeric electrochromic and photoelectrochemical devices: new advances
Yang et al. Electrochromic energy storage devices
Wu et al. A novel thermosetting gel electrolyte for stable quasi‐solid‐state dye‐sensitized solar cells
Wu et al. Gel polymer electrolyte based on poly (acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell
EP2709129A1 (en) Solid state dye-sensitized solar cell employing composite polymer electrolyte
DeLongchamp et al. Layer‐by‐layer assembly of PEDOT/polyaniline electrochromic devices
JP3353905B2 (en) Electrochromic glass

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right