CN100518638C - Passive physiological monitoring (P2M) system - Google Patents

Passive physiological monitoring (P2M) system Download PDF

Info

Publication number
CN100518638C
CN100518638C CNB028288653A CN02828865A CN100518638C CN 100518638 C CN100518638 C CN 100518638C CN B028288653 A CNB028288653 A CN B028288653A CN 02828865 A CN02828865 A CN 02828865A CN 100518638 C CN100518638 C CN 100518638C
Authority
CN
China
Prior art keywords
patient
sensor
apparatus according
signal
physiological
Prior art date
Application number
CNB028288653A
Other languages
Chinese (zh)
Other versions
CN1625368A (en
Inventor
C·J·沙利文
K·C·K·张
P·K·沙利文
P·伯南布哥怀斯
Original Assignee
赫艾纳医疗公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赫艾纳医疗公司 filed Critical 赫艾纳医疗公司
Priority to PCT/US2002/009280 priority Critical patent/WO2003082111A1/en
Publication of CN1625368A publication Critical patent/CN1625368A/en
Application granted granted Critical
Publication of CN100518638C publication Critical patent/CN100518638C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/01Emergency care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G1/00Stretchers
    • A61G1/04Parts, details or accessories, e.g. head-, foot-, or like rests specially adapted for stretchers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/30General characteristics of devices characterised by sensor means

Abstract

被动式生理监视设备以及方法具有一个用于检测生理现象的传感器。 Passive physiological monitoring device having a sensor and a method for detecting a physiological phenomena. 转换器将所检测的数据转换成电信号,计算机接收并计算所述信号并把计算后的数据输出,用于实时交互显示。 Converter converting the detected data into an electrical signal, the computer receives the signal and calculates and outputs the calculated data for displaying real-time interaction. 所述传感器是聚偏氟乙烯的压电膜。 The sensor is a piezoelectric film of polyvinylidene fluoride ethylene. 所检测的信号包括反映心排血量、心脏功能、内出血、呼吸、脉搏、呼吸暂停以及体温的机械的、热的以及声学信号。 The detected reflected signal includes cardiac output, cardiac function, hemorrhage, respiration, pulse, respiration, and temperature of the suspension of the mechanical, thermal and acoustic signal. 所述传感器可以是设置在救护(MEDEVAC)担架(73)上的阵列(77),或者用于测量来自患者(63)躯体的声学和液压信号的其它装置,用于现场监视、医院监视、运送监视、家庭、远程监视。 The sensor may be disposed ambulance (MEDEVAC) Stretcher array (77) on (73), or for measuring from a patient (63) and the other hydraulic signal means an acoustic body for on-site monitoring, hospital monitoring, transport monitoring, home, remote monitoring.

Description

被动式生理监视(P2IVI)系统 Passive physiological monitoring (P2IVI) system

背景技术 Background technique

士兵受到损伤后,尽量减少将其运送到适当级别的医疗护理机构的时间是非常必要的,这样可保证伤病士兵得到及时治疗,而及时治疗对于伤病士兵的幸存至关重要。 After the soldiers damage, minimizing the time to transport them to the appropriate level of health care institutions is necessary, it will ensure that injured soldiers receive timely treatment, and timely treatment is critical to surviving soldiers of injuries. 在此期间,在救护直升机环境中的航空医学护理常常用来验明和运送伤员。 In the meantime, the rescue helicopter aviation environment often used to verify the medical care and transport the wounded.

无论是战争时期还是和平时期,由军事单位进行日常的航空医学护送(aeromedical evacuations),其使患者和飞行/医疗人员暴露于噪音或环境压力和恶劣的监视条件下。 Whether it is war or peacetime, military units daily by aviation medical escort (aeromedical evacuations), so that patients and their flight / medical personnel exposed to noise or ambient pressure and poor monitoring conditions. 和在平民社区一样,军队护士根据可靠和有效的监视设备来在各种环境下提供精确的患者监视,其中有一些对使用传统监视仪器是具有敌意和鲁莽的。 As in the civilian community, military nurses to provide accurate patient monitoring in a variety of environments based on reliable and efficient monitoring equipment, some of which monitor the use of traditional instruments are hostile and reckless. 尽管航空医学护送对于多数人来说是一个救生过程,但医务人员在高噪声环境下监视生命特征几乎是不可能的。 Although aeromedical escort for most people it is a life-saving procedure, but the medical staff monitor vital signs in high-noise environments is almost impossible.

一般情况下,生命特征的监视仅是一项的简单的常规程序,包括脉搏、呼吸和血压数据的收集。 In general, monitoring vital signs is only a simple conventional procedures, including collecting the pulse, respiration and blood pressure data. 在一个相对安静的环境中,这些参数可轻易地测定。 In a relatively quiet environment, these parameters may be easily measured. 然而,由于几个原因使得在直升机环境中采集所关心的生理信号是一个挑战性的问题。 However, due to several reasons in a helicopter environment acquiring physiological signals of interest is a challenging problem. 在生命特征收集上的限制包括高噪音、振动、听觉干扰、无效的监视设备、局促的工作条件、空中护送期间的庞大设备以及由一些医疗设备所引起的与飞机系统的电磁干扰。 Restrictions on the collection of vital signs, including high noise, vibrations, auditory disturbance, ineffective monitoring equipment, cramped working conditions, large equipment during air escort and electromagnetic interference caused by a number of medical equipment and aircraft systems. 引线和电极的另外的复杂性又与噪音和环境问题混合在一起。 Lead and additional complexity electrode and mixed with the noise and the environment together. 生命特征的生理参数在该直升机所产生的频率范围内。 Vital physiological parameters of the helicopter in the frequency range generated. 同样在这些频率上,直升机频率具有更大的功率。 Also in these frequencies, the frequency of helicopters with greater power. 振动和声学人为因素也是较大的问题。 Vibration and acoustic human factors are a big problem. 因此,该信噪比问题必须用除了低通和高通滤波方法之外的其它方式解决。 Thus, the signal to noise ratio must be addressed in other ways in addition to the low-pass and high-pass filtering method. 由于工作条件的限制,医务人员不能使用听诊器精确地监视心脏活动或者血压。 Due to the limitation of the working conditions, medical personnel can not use a stethoscope accurately monitor blood pressure or heart activity.

军队医疗系统需要便携式、非侵入式设备,该设备能够在欠理想环境下的战地环境中对士兵的生命特征进行监视。 The military medical system needs a portable, non-invasive device that can monitor the vital signs of soldiers in a battlefield environment in less than ideal environments. 该系统需要对在整个护理分送范围的军队医务人员有用,例如在大量伤亡的状况、航空医学护送、地面伤员护送、医院监护以及特护单位中。 The system needs to be useful for military medical personnel throughout the distribution range of care, such as in the situation of a large number of casualties, aviation medical escort, escort the ground wounded, hospital care and intensive care units. 最近研究发现, 随旋翼式救护飞机飞行的百分之三十二的航空医疗设备在至少一次环境测试中失败。 Recent studies have found that, with the rotary wing aviation medical equipment ambulance aircraft flying Thirty-two percent failed at least one test environment.

石英晶体是一种当施加压力时会产生电场即具有压电效应的矿物质。 Quartz crystal is an electric field is generated when pressure is applied i.e. when the mineral has a piezoelectric effect. 材料学家已经发现具有压电特性的其它材料。 Material scientists have found that other materials having piezoelectric properties. 压电材料的多功能性和潜在用途己为人们所知,但有时费用过高。 Piezoelectric material versatility and potential uses has been known for, but sometimes exorbitant fees.

然而,现在在制造成本上的最新下降允许工程师和研究人员有更大的应用。 Now, however, the latest decline in manufacturing costs to allow engineers and researchers have more applications. 压电材料的优越品质已经应用于医学、安全、声学、国防、 地质及其他领域。 Piezoelectric materials have been used in medicine for superior quality, security, acoustics, defense, geology and other fields. 应用压电材料的开发还处于初期。 Development and application of piezoelectric material is still in its infancy.

基于压电仪器的医疗实践和研究应用正方兴未艾。 Medical practice and research applications of piezo-based instrument is in the ascendant. 压电方法已经成功地用于体积描记法、利用压电接触式传声器的血压监视器、对鸟类胚胎和人工孵化的鱼苗/小鸟的心率监视以及各种压电探针。 The method has been successfully used for the piezoelectric body plethysmography using a piezoelectric microphone contacting a blood pressure monitor, a heart rate monitor and avian embryos hatching fry / bird and various piezoelectric probes. 压电材料用作对运动进行感测的检测器以测定人的颤动、响应药理操作的小 The piezoelectric material is used as the motion sensing detector to determine the person's fibrillation, small pharmacological response operation

的动物躯体运动、用于核磁共振(NMR)动物试验的呼吸运动。 Animal body movement, for nuclear magnetic resonance (NMR) respiratory motion animal testing. 与超声波结合,压电方法已经用于评估冠状动脉的血液动力学特性、弹性张量、动脉内的图像和受体范围尺寸(receptor field dimension)。 And ultrasonic bonding, the piezoelectric characteristics of methods have been used to assess coronary hemodynamics, the elastic tensor, and the image size in the range of arterial receptors (receptor field dimension). 此外, 压电传感器已经附着于胸腔壁并与自动听诊设备和用于肺声分析的微型电子计算机一起使用。 Further, the piezoelectric sensor has been attached to the chest wall and used with automatic devices for pulmonary auscultation sound micro-computer analysis. 压电膜(piezoelectric film)已经被应用并研究,以测定关节接触压力,同时压电盘已经被用来记录肌音和神经肌肉块的定性监视。 The piezoelectric film (piezoelectric film) have been studied and applied to determine the joint contact pressure, while the piezoelectric disc has been used to qualitatively monitor the recorded sound muscle neuromuscular block.

随机波动理论通常用于海洋工程中来分析伪周期现象,但也可将其用于显示呼吸和心率的频谱峰。 Random fluctuation theory is commonly used in marine engineering to analyze the pseudo-periodic phenomenon, but also can be used to display spectrum peak of respiration and heart rate. 人的心跳、呼吸和血压实际上是重复的,其反映了复杂的机械-声学事件。 Human heartbeat, breathing and blood pressure are actually duplicates, which reflects the complexity of mechanical - acoustic event. 然而,压电仪器开发的各种问题阻止它的全面实现。 However, the problems of piezoelectric instrument developed to prevent its full realization. 人颤动的测量仅仅当该环境绝对地寂静时才能顺利进行。 People fibrillation measurement can proceed smoothly only when the environment absolutely silent. 实际上,在大多数的医院房间里,通常存在诸如设备、风扇、人说话以及患者自身声音之类的外界噪声。 In fact, in most of the hospital room, there is usually such supplies, fans, and people talking outside noise like the patient's own voice. 那些噪音掩盖了所关心的信号并使其失真,因此限制了压电仪器的实用性。 Those noise masks the signal of interest and distort, thus limiting the usefulness of piezoelectric instrument. 在实验性动物研究中,动物噪音使数据收集很难进行。 In experimental animal studies, the animal noises to make data collection difficult. 在非实验室环境下,由于其固有的信号-噪音问题,用于人体的压电仪器的医疗应用仍存在问题。 In the non-laboratory environment, due to its inherent signal - noise problems for human medical applications of piezoelectric instrument is still a problem.

军队护士的一个主要任务是保证伤病士兵得到及时的护理和/或护送到指定的医疗护理机构。 A major task is to ensure the army nurse injuries soldiers receive timely care and / or escorted to the designated health care institutions. 在战场受伤和伤员转运之间的时间段内, In the period between the battlefield wounded and transport the wounded,

26进行适当医学处理行动对于士兵们的福利是关键的,并可能是生死之别。 Action 26 is the key to proper medical treatment for soldiers' welfare, and may be life and death. 诊疗开始和护送(例如通过救护直升机)发生时的期间是关键时间。 Diagnosis and treatment begin and escort (for example, by ambulance helicopter) during the time of occurrence is the key time.

令人遗憾的是,直升机环境中固有的特别大的噪音和振动使护士和医务人员不能够精确地测量生命特征。 Unfortunately, the helicopter environment inherent in particularly large noise and vibration so that nurses and medical personnel are not able to accurately measure the vital signs. 不仅是电子医疗监视器由于强烈振动而变得无效;而且利用听诊器测量脉搏和血压的传统方法在高噪音下也变得不可靠。 Electronic medical monitors not only becomes invalid due to strong vibrations; and the use of a stethoscope measuring pulse and blood pressure has become the conventional method is not reliable under high noise conditions. 在空中护送期间的局促的工作条件和庞大设备使这些问题扩大化。 Cramped working conditions and large equipment in the air during the escort of these problems magnify.

大多数传统方法采用这样的设备,这些设备使用电极、引线、电线和包套(wrapped cuff)来测量一个或多个生命特征,这些设备例如为血压计、ECG(心电图)监视器、脉搏氧饱和度仪。 Most conventional method of using such a device, the device using an electrode, lead wire and sheath (wrapped cuff) to measure one or more vital signs, blood pressure monitor, for example, these devices, the ECG (electrocardiogram) monitors, pulse oximetry, instrument. 现有的监视器需要一些附件,因此不是被动式的或者无源的(passive)。 Existing monitor requires some attachments, so not passive or passive (passive). 此外,传统设备对噪音高度敏感,例如直升机或者飞机的发动机和叶轮等的噪音。 Further, the conventional apparatus is highly sensitive to noise, such as noise or helicopter aircraft engines and the like impeller.

很显然,这种共同的情况都需要一个这样的监视器,其中在有高噪音和振动的医疗护送期间,该监视器可以始终地和精确地测量生命特征。 Obviously, this common situation requires such a monitor, which in medical high noise and vibration during escort, the monitor can always be accurately measured and vital signs. 监视器是相对自治的,护士或者技术人员的干预并不是必须的。 Monitor is relatively autonomous, nurse or technician intervention is not necessary. 随着用于远程监视和通讯的遥测技术具有更多的能力,信息可经由无线通信实时传递到医务人员及其他护理人员所在位置。 As the technology for remote monitoring and telemetry communications with more capabilities, real-time information can be transmitted to medical personnel and other locations where the nursing staff via wireless communication.

目前需要开发用于生理监视的更好的方法和设备。 At present we need to develop better methods and equipment for physiological monitoring.

发明内容 SUMMARY

本发明被称为被动式生理监视、pZM或者简单地P2M。 The present invention is referred to as passive physiological monitoring, pZM or simply P2M. 带有大量信息(例如血压)的数据记录被测量、记录,并随后可以被描绘出, 以确定监视主体的身体状态。 With a large amount of information (e.g. blood pressure) is measured data record, record, and may then be depicted, to determine the physical condition monitoring subjects.

在材料科学和数据处理的最新发展己经为利用压电膜、电活性含氟聚合物的新监视设备创造了可能性。 Recent developments in materials science and data already processed for the piezoelectric film, a new monitoring device electroactive creates the potential of the fluoropolymer. 尽管压电膜的医学应用仍然处于初级阶段,但医疗设备的试验是有前途的。 Although the medical applications of the piezoelectric film is still in its infancy, but test medical devices are promising.

利用被称为"水击作用"的工程现象作为在血压计算中数据分析的工作模型的基础,该心血管系统被模型化为管系、泵及其他附件。 Which is called "water hammer" phenomenon as a basis for engineering work in the blood pressure calculation model of data analysis, the cardiovascular system is modeled as piping, pumps and other accessories.

"水击作用"是当家庭用水突然被截断,穿过管道和阀门构成的家庭上下水管道网络而传播的压縮波。 "Water hammer" is the compressional wave is suddenly cut off when the domestic water through the piping and valves family down the water pipe network configuration and communication. 结果会导致一个明显的声响和上下水管道系统的损坏。 The results will lead to a significant damage to the sound and down the water pipe system. 突然的速度变化会引起管道压力的增加,从而出现水击作用,通常在阀门关闭期间水被截断之后产生。 A sudden change in speed causes an increase in line pressure, so that water hammer occurs, then the water produced during the normally closed valve is truncated. 该压縮波的描述如下: The compression wave is described as follows:

c = (l/p) * (dP/dV) (1) c = (l / p) * (dP / dV) (1)

其中c-压縮波的速度(ft/sec); C- wherein compressional wave velocity (ft / sec);

dV=在速度上的变化(Vimtial-Vfinal); dV = change in velocity (Vimtial-Vfinal);

p=流体密度;以及dP=压力变化。 p = fluid density; and dP = pressure change.

Skalak (1966)用粘性流的线性化理论开发出一种理论,可用于理解动脉和静脉中的主波形特征。 Skalak (1966) developed with a linear theory of viscous flow of the theory, and can be used to understand the main arterial waveform characteristics vein. 血管系统等同于非均匀传输管路的网络。 Vascular system is equivalent to the non-uniform transmission line network.

在Skala的理论前,Womersly (1957)已经把那些原理用在表示动脉段的单个均匀管上,并把结果与在狗上提取的试验数据进行比较。 Before Skala theory, Womersly (1957) have used the principle of those represented on a single uniform cell arterial segment, and the test results were compared with data extracted in the dog. 在被测流动和从被测压力梯度中计算出的流动之间具有良好的一致性。 Good agreement between the calculated and the measured flow from the flow measured pressure gradient.

Anliker (1968)表明与血管内的波传播有关的分散现象是血管及其他心脏参数分布(distubility)的潜在量度标准。 Anliker (1968) shows that the wave propagation intravascular dispersion phenomena related to a potential measure of blood vessels and other cardiac parameters distribution (distubility) of. Anliker假定血管就象充满非粘性可压縮流体的薄壁圆柱壳一样工作。 Anliker assumed as vascular filled thin-walled cylindrical shell non-tacky compressible fluid as work. 更完全的模型已经提供了良好的一致性。 A more complete model already provides a good consistency.

Karr (1982)研究关于人体的压力波速度并开发出一种确定脉搏传播速度的方法。 Karr (1982) research on the body's pressure wave velocity and developed a method to determine the pulse propagation velocity. 该发明认识到这种信息可能用来确定在动脉壁上血小板集结、胆固醇集聚以及动脉壁厚度。 The invention recognizes that such information may be used to determine arterial wall assembly platelets, cholesterol accumulation and arterial wall thickness.

公式(1)可根据脉搏波传播速度(c)和流动速度(v)之间的分散关系确定来自心脏脉搏的压力变化(dP)。 Equation (1) may determine the change in pressure (dP) of a pulse from the heart to the pulse wave propagation velocity (c) and the dispersion relation between the flow velocity (v). Karr的方法测量流动速度, 以确定与收縮压(pS)和舒张压(pD)有关的dP。 Karr method of measuring the flow rate, to determine systolic pressure (pS) and diastolic pressure (the pD) related to dP.

这个新发明根据心跳和呼吸共同测量压力能。 This new invention is able to measure the pressure according to the common heartbeat and breathing. 通过去除能量谱中呼吸的影响可确定心脏对能量谱的影响。 Effects on the heart may be determined energy spectrum by removing the influence of the energy spectrum breathing. 通过把速度能量谱的计算结果与利用电磁和多普勒法得到的速度测量结果进行比较,可滤出呼吸能量。 Velocity energy by the spectrum calculation result obtained by the speed of electromagnetic Doppler method and the measurement results are compared, can breath filtered off energy. 由于交感神经紧张(sympathetic tone)可以影响血压测量的准确性,因此新监视器可设计成,它的压电传感器中的一个用作专用多普勒传感器,该多普勒传感器利用超声波学来调整与患者交感神经紧张有关的数据判读。 Since the sympathetic tone (sympathetic tone) can affect the accuracy of blood pressure measurement, the new monitor can be designed so that the piezoelectric sensor in a specific Doppler sensor used, the Doppler sensor using ultrasonics to adjust and the sympathetic nervous patient-related data interpretation. P2M信号的选择性省略和P2M传感器数据与来自躯体其他部分的数据的选择性比较,以及在两个或多个同时触发的传感器之间的比较,把心脏的能量影响分离出来。 Comparison, and the comparison signal P2M P2M selectively omitted and sensor data from the data selectively with other body parts of two or more between the sensor triggered simultaneously, the impact energy of the heart isolated. 从脚部确定的P2M能量谱不同于从胸部得出的能量谱,其提供了当脚部能谱基本上没有来自呼吸的能量时分离心脏能量的方法。 P2M determined from the energy spectrum of the foot differs from the energy spectrum derived from the chest, which is provided a method of isolating cardiac power spectrum when the foot is substantially no energy from breathing.

一旦速度(v)己知,在收縮和舒张压(2)和伯努利方程(3)之间的关系被用来测量血压。 Once the speed (v) known in the systolic and diastolic blood pressure (2) and the relationship between the Bernoulli equation (3) is used to measure blood pressure. 伯努利方程为流体力学的基本关系式,该关系式从牛顿力学和能量守恒定律中导出。 Bernoulli equation of fluid mechanics basic relationship, this relationship is derived from the law of conservation of energy and Newtonian mechanics. 可推导出相同公式的更压縮的形式,以反映出更复杂的不稳定流动。 It can be deduced a more compressed form of the same formula, to reflect a more complex unsteady flow.

p = pD + (l/3" (pS + pD) (2) p = pD + (l / 3 "(pS + pD) (2)

其中 among them

pS=收縮压; pS = systolic blood pressure;

pD=舒张压;以及 pD = diastolic blood pressure; and

p = /0gh+(l/2) *p * V2 (3) p = / 0gh + (l / 2) * p * V2 (3)

其中 among them

;0=流体密度, ; 0 = fluid density,

g=重力常数,以及 g = gravitational constant, and

h=高度,主要會g量项(head energy term)。 h = height, the amount of the main part g term (head energy term).

从这些公式中,我们可推导出pD和pS的表达式,这两个均为脉搏波传播速度(c)、流动速度(v)和脉波压力(dP)的函数: From these equations, we can derive an expression for pS and pD, which are the two pulse wave velocity (C), the flow velocity (v) and a pressure pulse wave (dP) function:

pD^(l/2)"承v2-〃dV (4) pS=pD + p * C * dV (5) pD ^ (l / 2) "v2-〃dV bearing (4) pS = pD + p * C * dV (5)

P2M非常适于在包括但不限于以下情况中几个区域来辅助医务人 Ideal P2M including, but not limited to a case in several areas to assist medical personnel

:

(1)在例如救援直升机的强噪音和振动环境下对重伤员的生命特征进行医疗监视,在该场合当前的监视技术是非常麻烦或者不可能的; C2)监视由于例如航空意外事故、地震和洪水等严重灾害造成的伤 (1) carried out under strong noise and vibration environments such as rescue helicopter for medical vital signs monitoring seriously injured, in this case the current surveillance technology is cumbersome or impossible; C2) monitoring due, for example aviation accidents, earthquakes and serious injury caused by disasters such as floods

贝;(3) 通过采用医务人员容易现场使用的"聪明担架"对大量患者进行的生理监视; Shellfish; (3) through the use of the medical staff of a large number of physiological monitoring of patients is easy to use in the field of "smart stretcher";

(4) 在不打扰患者情况下持续的军用医院的病床监视;以及 (4) without disturbing the bed to monitor ongoing military hospital under the condition of the patient; and

(5) 当由于医疗设备暂时超载而延迟处理时的患者监视。 (5) when the medical device is temporarily overloaded due to delays in processing patient monitoring.

P2M的开发或者被动式传感器阵列(多传感器系统)在被动式监视中是一项重大的革新。 P2M development or passive sensor array (sensor systems) is a major innovation in the passive surveillance. 通过使用被动式传感器的网格,减少来自不同衬垫(pad)的相关信号的噪音,以从生物信号中识别出噪音。 By using the passive sensor grid to reduce noise-related signals from different pads (PAD) to identify a biological signal from the noise. 这在高噪声环境下是非常重要的。 This high-noise environments is very important. 另外,被动式多传感器系统的重要性在于,它提供更加全面地监视患者的机会。 In addition, the importance of passive multi-sensor system is that it provides opportunities for more comprehensive monitoring of patients. 作为一种工具,被动式传感器网格提供了创新的方法来在不利的环境条件下监视患者。 As a tool, passive sensor grid provides an innovative way to monitor patients under adverse environmental conditions. 该系统提供这样一种工具,利用该工具,可测量除了血压、心率以及呼吸以外的各种参数。 The system provides a tool with which the tool, in addition to measure blood pressure, heart rate, and respiration various parameters. 除了别的以外,这些参数包括但不局限于,患者运动以及睡眠习惯、在躯体不同部分上的脉搏强度、相对血流量以及心排血 Among other things, these parameters include, but are not limited to, patient motion and sleep habits, the pulse strength on different parts of the body, the relative blood flow and cardiac output

该被动式生理(P2M)系统的主要部件为被动式传感器、用于放大 The main components of the passive physiological (P2M) system is a passive sensor, for amplifying

的硬件、滤波器、数据-采集以及信号-分析软件。 Hardware, filter, data - acquisition, and signal - analysis software. 在一个优选实施例中, In a preferred embodiment,

该单个被动式传感器的尺寸为20厘米x 25厘米,优选的是包围在防护罩内。 The size of the single passive sensor 20 cm x 25 cm, preferably is enclosed within the shield. 来自该传感器的引线连接到电子仪器(放大器、滤波器、数据-釆集卡、台式计算机)上,其中对原始模拟电压信号进行过滤和放大, 并转换为数字形式。 It leads from the sensor connected to the electronic apparatus (amplifiers, filters, data - set Bian card, a desktop computer), in which the original analog voltage signal is filtered and amplified, and converted into digital form. 然后,以频率分析形式进行数据的数字滤波和软件操作。 Then, the digital filtering software and data in the form of frequency analysis operations. 最后,利用信号处理技术来从该数字信号中提取生理信息。 Finally, the physiological information is extracted from the digital signal by signal processing techniques.

优选地,传感器衬垫直接位于仰卧在救护担架上的患者后背的下面。 Preferably, the sensor is located directly beneath the pad lying on the back of the ambulance stretcher patient. 由心肺功能产生的机械/声音信号经由躯体传送到被动式传感器, 该被动式传感器把信号转换成模拟电压。 Mechanical / acoustic signal produced by the body to the heart and lung function is transmitted via a passive sensor, the passive sensor signal is converted into an analog voltage. 在图6中示出了现有P2M装置的例子。 In FIG. 6 shows an example of the conventional apparatus P2M. 在被用于实验室设备的主要硬件为:台式计算机、多功能可编程的电荷放大器以及围绕支架以包装所有硬件的封装机架(mll-aroimd rack)。 The main hardware is used for laboratory equipment as: a desktop computer, a programmable multi-functional charge amplifier and wrap all around the holder to the hardware enclosed chassis (mll-aroimd rack). 为了保持最初研究与开发的多功能性,大多数设备选择以牺牲空间效率来提高功能性。 In order to maintain the versatility of the initial research and development, equipment selection at the expense of the majority of space efficiency to improve functionality.

本发明的一个目的是为军用医疗团体提供便宜的、非限制性的、 便携式、轻型、精密的以及可靠的设备,该设备可被用于现场或者固定设施上,以提供在高噪音和振动环境下对心率、呼吸以及血压的精 An object of the present invention to provide a cheap medical community for military, non-limiting, a portable, light, reliable and precise apparatus, the apparatus can be used on-site or in fixed installations to provide high noise and vibration in the environment the fine heart rate, respiration and blood pressure

30确测量,从而改进在大量伤亡情况、航空医学护送以及医院处置中的 30 accurate measurement to improve in a lot of casualties, aeromedical escort and disposal of hospital

医疗护理。 Medical care.

本发明的一个目的是调节信号噪声,以在军用和民用医疗环境中允许在患者的救护运输、医院病床监护及其他应用场合中利用压电仪器。 An object of the present invention is to adjust the noise signal to allow the piezoelectric device in a patient transport ambulance, hospital beds and other monitoring applications in military and civilian medical environments.

本发明的一个目的是在不同的现场环境中利用压电膜开发出实验性的生理监视仪。 An object of the present invention is to develop an experimental apparatus using the piezoelectric film physiological monitoring of the scene in different environments. 准确性、精确性、用户特性以及患者舒适度的变化确定了收集有关生命特征数据的现场仪器的价值。 Accuracy, precision, user comfort characteristics and changes in patient vital to determine the collection of relevant data field device value.

本发明的一个目的是提供在不在患者身上采用电引线或者导线的情况下、监视生命机能的非侵入式的手段。 An object of the present invention is to provide in the case of electrical lead wires or not the patient, non-invasive means for monitoring vital functions. 通过利用人体的声学和电磁信号确定心率、呼吸和血压。 Determining heart rate, respiration and blood pressure through use of human acoustic and electromagnetic signals.

在本公开中,发明的这些和进一步的以及其他的目的和特征是明显的,其中本公开包括上面的和正在写下的说明书,以及权利要求书和附图。 In the present disclosure, these and further and other objects and features of the invention will be apparent, the present disclosure which includes the above and the drawings and description are written, and from the claims.

附图说明 BRIEF DESCRIPTION

图1为P2M系统部件的示意图。 1 is a schematic P2M system components. 图2为P2M系统的透视图。 FIG 2 is a perspective view P2M system.

图3为P2M试验台试验结果和人评估测量结果的图解对比。 FIG 3 is a bench test results and P2M human graphical comparison of the evaluation of the measurement results.

图4为在采集模式中该P2M系统的面板屏幕和用户界面的正视图。 FIG 4 is a front view of a panel in the acquisition mode and the screen of the user interface system P2M.

图5为在监护模式中该P2M系统的面板屏幕的正视图。 FIG 5 is a front view of a panel in the monitor mode, the screen P2M system.

图6为该P2M传感器优选实施例的示意图。 FIG 6 is a schematic diagram of the preferred embodiment of the sensor for P2M.

图7示出了该P2M系统的一个图形用户界面(GUI)。 FIG 7 illustrates a graphical user interface of the system P2M (GUI).

图8示出了该P2M系统的图形用户界面,其正显示了生理数据的时间序列和频域表示。 Figure 8 shows the P2M system graphical user interface, which shows the time sequence and the positive frequency domain representation of the physiological data.

图9示出了脉搏波传递时间(PWTT)的测量。 FIG 9 illustrates a transmission pulse wave measurement time (PWTT) a.

图IO在一幅图中示出了系统测试和评估结果。 In FIG IO is shown a system test and evaluation results.

图U为在惠勒军用机场(Wheeler Army Air Field)的高噪音和振动试验。 FIG U is a high noise and vibration tests military airport Wheeler (Wheeler Army Air Field) of.

图12示出了透过防弹衣的测量。 FIG 12 shows the measurement through the body armor. 图13示出了透过防弹衣和军用确定防毒姿态护具(MOPP gear)组 FIG 13 shows a flak jackets and military determined through anti-virus pose brace (MOPP gear) group

'、图l工4示出了合并到救护担架中的利用被动式传感器阵列和微电子器件的被动式生理监视仪(P2M)系统的示意图。 ', Figure l shows a schematic station 4 using the passive sensors incorporated into an array of microelectronic devices and ambulance stretcher passive physiological monitoring device (P2M) system.

具体实施方式 Detailed ways

该优选P2M系统为带有两个主要子系统的监视装置,其中一个用于测量信号,而另一个用于把数据处理成有意义的信息。 The monitoring apparatus is preferably P2M system having two major subsystems, one for the measurement signal, and the other for processing the data into meaningful information.

图1示出了该系统的示意图,而图2示出了该系统的透视图。 FIG 1 shows a schematic diagram of the system, while FIG. 2 shows a perspective view of the system. 首先,该压电膜, 一种电活性含氟聚合物把如由心跳所引起的运动的机械能转换成能够支持时间序列分析技术的电压测量值。 First, the piezoelectric film, the fluorine-containing polymer electroactive exercise heartbeat caused by the mechanical energy is converted into voltage measurements to support time series analysis techniques. 然后,利用微型计算机控制系统记录和分析该电压,这样做的原因是要把信号从背景噪声区别开来并把它显示在屏幕上或者打印输出。 Then, the voltage is analyzed using a microcomputer and controls the recording system, the reason for this is to make the signal from the background noise and to distinguish it displayed on a screen or printout. 诸如使用高通和低通滤波器的预先放大和预先调节之类的技术降低了噪声。 Such as using high-pass and low-pass filters and pre-adjusted pre-amplification techniques such noise is reduced.

采用的压电材料1为聚合物聚偏氟乙烯(PVDF),该聚合物可成形为电缆、薄膜或者厚瓦片。 A piezoelectric material used for the polymer polyvinylidene fluoride (PVDF), the polymer can be formed into a cable, film or thick tiles. PVDF压电膜在环境中是结实的、重量轻、 柔软、固有地牢靠、耐用、容易修补以及可以过大件或者拆卸运输。 PVDF piezoelectric film is strong in the environment, light weight, soft, inherently reliable, durable, easy to repair and can be disassembled for transportation or too large. 由于该材料是惰性的,因此可在人体内使用。 Since the material is inert, and therefore can be used in the human body. 紫外线辐射无害地穿过以不同厚度制造的PVDF膜。 Harmful ultraviolet radiation to pass through the PVDF membranes of different thicknesses manufactured. 此外,该压电膜是防水的,可工作在0 到145摄氏度之间,并在受力状态下不会撕裂。 In addition, the piezoelectric film is waterproof, the work can be between 0 to 145 degrees Celsius, and will not tear under the stress state. PVDF可把温度读数转换成电输出。 PVDF temperature readings may be converted into an electrical output. 该PVDF膜并入在填充流体的乙烯树脂垫内,表面积大约为10cmxl0cm。 The PVDF membrane is incorporated in the fluid-filled pad vinyl, surface area of ​​about 10cmxl0cm. 该垫位于患者的之上/下面/上面的不同位置处。 The pad is located above the patient / below / above different positions.

P2M测定心脏和呼吸运动,并监视脉搏、呼吸和暂停呼吸事件3。 P2M determination of cardiac and respiratory motion, and monitor pulse, breathing and apnea events 3. 心脏和呼吸运动通过原始信号的选择性过滤器同时记录。 Heart and respiratory motion through a selective filter of the original signal recorded simultaneously. 该压电元件1 是一个压力传感的检测器,该检测器用作提供高动态范围和线性度的高灵敏度的应变仪。 The piezoelectric element 1 is a pressure sensor of the detector, the detector used to provide high dynamic range and linearity of a strain gauge with high sensitivity. 模拟信号经由带通滤波器传送到放大器(x200 — x5000) 5并可视地显示。 The analog signal to the amplifier via a bandpass filter (x200 - x5000) 5 and visually displayed. 利用超过5kHz取样频率的多通道转换器7, 将模拟声学信号变为数字值。 Multichannel than 5kHz sampling frequency converter 7, the analog acoustic signal into a digital value. 利用快速傅里叶变换(FFT),将数据转换到频域。 Using Fast Fourier Transform (FFT), converts the data into the frequency domain. 该系统利用微型计算机9来记录、分析和表示数据,这样可进行数据的在线评估和实时判定。 The system uses a microcomputer 9 for recording, analysis and presentation of data, so that online assessment and real-time data can be determined.

在其最简单的操作模式中,PVDF压电膜1用作压电应变仪。 In its simplest mode of operation, PVDF piezoelectric film as a piezoelectric strain gauge. 该电压输出达到四个数量级,这比来自电阻导线方式使用的电路中的未放大的信号所产生的输出高。 The voltage output to four orders of magnitude higher output than that produced by non-amplified signal from the circuit resistance of the wire used in the embodiment. 线性度和频率响应都很好。 Linearity and frequency response are very good. 尽管与现有应变仪类似,但由于该装置是自发电的,因此不需要施加电流。 Although similar to the conventional strain gauges, but since the device is self-generating, and so no current is applied. 与该应变仪不同的是,本发明并不产生随持续应力无限增大的电荷。 The strain gauge is different, the present invention does not produce sustained stress with increased unlimitedly charge. 该聚合物膜测定的最慢频率是对于一个电事件出现一千秒,而最高为一千兆赫(微波)。 Slow clock the polymer film is measured for a power event occurs one thousand seconds, and up to one gigahertz (microwave). 该压电膜为被动式的,并且在生物学上是安全的,这与那些需要外加电流的传统应变仪相反。 The piezoelectric film is passive, and is biologically safe, as opposed to requiring the applied current conventional strain gauges.

PVDF板是批量生产的成品(COTS),其类型和规格根据最佳灵敏度范围和弹性来选择。 PVDF mass plate is finished (COTS), their type and size is selected according to the optimum sensitivity range and flexibility. 每个板包含七英尺附加屏蔽双绞线(用于噪声抑制)引线ll,以传送该板所产生的电荷。 Each plate contains an additional seven feet unshielded twisted pair (for noise reduction) leads ll, to transfer the charge generated by the plate.

压电板1位于患者胸部和脚的下面,或者在躯体的同样远处,或者可包套一样放在身上。 1 is located below the piezoelectric plate and the chest of a patient's foot, or the same distance in the trunk, or may be covering the same on the body. 由患者呼吸和心跳施加的压力变化使该压电膜产生电压,该电压经由无磁微型同轴电缆11通过一个射频滤波器13 传送。 Pressure variations exerted by the patient so that the breathing and heartbeat of the piezoelectric film generates a voltage, the voltage non-transmission via a coaxial cable 11 through a micro-magnetic RF filter 13. 然后该信号传送到用于数据处理的高输入阻抗放大器5和计算机系统7。 The signal is then transferred to the high input impedance amplifier 5, and a computer system for data processing 7. 传统的示波器和图表记录器显示该输出。 Traditional oscilloscope and display the chart recorder output. 然后,呼吸和心率15通过来自该时间序列数据的能量谱计算出。 Then, breathing and heart rate by 15 from the power spectrum of time series data is calculated.

几种技术可降低噪音和振动干扰。 Several techniques can reduce noise and vibration disturbance. 主动削减(Active Cancellation) 采用两个压电传感器,其中一个并不与躯体接触。 Active reduction (Active Cancellation) using two piezoelectric sensors, one of which is not in contact with the body. 未附于躯体上的那个传感器暴露于环境声学和振动信号中,同时附于躯体上的传感器暴露于环境以及躯体信号中。 It is not attached to the body of the sensor is exposed to ambient sound and vibration signals while the sensor is attached to the body and the body is exposed to the ambient signal. 从一个输出中减去另一个输出即可获得所关心的躯体信号。 Another body can be obtained by subtracting the output signal of interest from one output.

另一个优选的减少噪音技术包括带通滤波器/带阻滤波器。 Another preferred noise reduction technique comprises a bandpass filter / band-stop filter. 通过识别外部电子或者声噪声及其特殊的频率,带通或者带阻滤波器从总信号中去除外部信号。 By identifying and external electronic or acoustic noise specific frequency, a band-pass or band reject filter removes the external signal from the total signal.

另外,利用期望信号现有知识的信号处理技术把所希望的信息从该压电信号中提取出来。 Further, the signal with the desired signal processing techniques of the prior knowledge of the desired information extracted from the piezoelectric signal. 频谱技术有助于识别所关心事件的频率和幅度,并把它们从外部噪声中辨别出来。 Spectrum technology to help identify the frequency and magnitude of events of interest, and to distinguish them from external noise.

心脏活动分析采用0.1 - 4.0 Hz的带通频率界限,而呼吸分析采用从O.Ol - 3.0 Hz的频率界限。 Analysis of cardiac activity using 0.1 - 4.0 Hz band-pass frequency limit, and breath analysis using from O.Ol - frequency limit of 3.0 Hz. 将被过滤的心脏和呼吸信号供给记录系统。 The filtered signal is supplied to record heart and respiratory system. 通过对原始信号进行Ol -20Hz频率界限的带通滤波可分析躯体运动。 Band-pass filtering of the original signal Ol -20Hz frequency limit can be analyzed body motion.

33一旦由薄膜传感器产生的信号变为电压、并被放大和滤波,则由 Once the signal 33 generated by the film sensor becomes the voltage, and is amplified and filtered by

P2M仪器进行处理。 P2M instrument for processing. 该硬件设备包括但不局限于,能够处理大量数据的具有增强RAM和磁盘容量的586处理器计算机9。 The hardware devices include, but are not limited to, capable of processing large amounts of data with enhanced RAM and disk capacity of 586 9-processor computer. 具有音频范围的接线板(board)便于进行数据采集、信号预处理和信号处理。 Wiring board (Board) having an audio range to facilitate data acquisition, signal pre-processing and signal processing.

对于系统操作,主程序17把数据采集/控制、信号处理/分析和数据显示/用户界面的三个独立的软件模块组合在一起。 For system operation, the main program 17 data acquisition / control, signal processing / analysis and data display / user interface of three separate software modules together. 所有三个子程序均使用LabVIEWTM"G"图形化编程语言。 All three subroutines are using LabVIEWTM "G" graphical programming language. 模拟电压信号在时域和频域上被数字化并分析。 The analog voltage signal is digitized and analyzed in the time domain and frequency domain. 用于信号预处理和分析而开发的程序包括数字滤波、频谱分析、自相关以及噪音抑制程序。 A signal pre-processing and analysis program developed for digital filtering, spectral analysis, correlation, and since noise suppression program. 数据在监视模式或者采集方式中均可实时显示。 Real-time data can be displayed on the monitor mode or acquisition mode. 当进行新数据更新时,监护模式显示当前数据并丢弃旧的读数,而采集模式将数据保存起来以用于以后的分析。 When new data update, monitor mode displays the current data and discard the old reading, and data acquisition mode to save them for later analysis. 在采集模式中,数据量不能超过计算机的硬盘存储容量。 In the acquisition mode, the data amount can not exceed the hard disk storage capacity of the computer.

如图2所示,为了保护和便于运送,整个P2M系统19装入一个金属工艺的机柜21中,该机柜具有脚轮(未示出)和锁定玻璃门(未示出)。 As shown, for ease of transport and protection, into a metal enclosure 21 the entire process P2M system 19, the rack having a caster (not shown) and a glass door lock (not shown) 2. 该设备进一歩包括安装了传感器的救护担架23。 Ho into the apparatus comprises a sensor installed in the ambulance stretcher 23. 该装置可以合并到担架上从而不需要患者附加装置,或者可以被小型化为具有无线通信装置的口袋中的便携式现场设备。 The apparatus may be incorporated into the patient on the stretcher so that no additional means or may be miniaturized to the pocket portable field devices having a wireless communication device in.

为了验证P2M系统的可用性和准确性,进行了有效的实地和分析试验。 In order to verify the availability and accuracy of P2M system was effective field testing and analysis. 压电膜测量机械信号、热信号和声学信号。 The piezoelectric film to measure mechanical signal, a thermal signal and an acoustic signal. 为了非侵入地测量生命信号,高灵敏度是必需的。 In order to non-invasively measure vital signals, high sensitivity is required. 对于脉搏率,心脏的物理跳动作为机械脉冲通过躯体传递到压力薄膜传感器衬垫。 For the pulse rate, the physical beating of the heart as a mechanical pressure pulse is delivered to the body by a thin film sensor pads. 通过基于胸部运动而传递到传感器上的机械脉冲来测量呼吸。 Based chest motion is transmitted by the mechanical pulse to the sensor to measure respiration. 敏感的压力薄膜传感器衬垫测量所有的外部运动和语音,形成叠加在生理信号上的电压信号输出。 A pressure sensitive film sensor pads measure all voice and external movement, outputs a voltage signal superimposed on the physiological signals. 结果,由主体形成的运动或者语音可引起读数误差。 As a result, movement or speech formed by the body may cause reading errors.

在该测量环境下,P2M传感器测量所有的物理冲击,包括患者的生理信号、周围的人为噪音和活动信号、来自机器的噪音和振动以及灯和仪器发出的电磁(EM)噪音。 In the measurement environment, sensors to measure all P2M physical impact, including the physiological signals of a patient, human activities and noise surrounding the signal, electromagnetic (EM) noise and vibration from the machine and the lamp and instrument noise emitted. 尽管输出信号包括了所有的这些信号,但多数都很微弱,不会对测量造成影响,然而诸如EM噪音之类的其它噪音却会破坏读数。 Although the output signal includes all of these signals, but most are very weak, it will not affect the measurement, however, such as other EM noise like the noise it will destroy reading. 通过滤波器和其他信号处理算法对信号进行处理可以去除该噪音。 The noise filter may be removed and other signal processing algorithms processed by the signal. 然后,通过程序对预处理信号进行分析,该程序包括识别原始信号频率的快速傅里叶变换(FFT)。 Then, pre-analyzed signal program, which includes identifying a fast Fourier transform of the original signal (FFT). 对于一个寂静的、不能说话的患者,主频率通常是呼吸,第二最高频率是心率。 Silent for a patient unable to speak, the dominant frequency typically breathing, heart rate is the second highest frequency. 患者体位及频率谐波会使这种区别复杂化,需要额外的逻辑来分离并识别心脏和呼吸的频率峰值。 Position of the patient and make this distinction frequency harmonics complicated, requires additional logic to identify and to separate the heart and breathing frequency peaks. 该逻辑算法必须足够强壮,以便能够在各种条件下确定呼吸和心脏的峰值。 The logic algorithm must be sufficiently strong to be able to determine the peak of the heart and breathing under various conditions.

为了提高分辩率,选择大量高采样率的数据点,并以较低速率重新取样,以简化精确分析的计算。 In order to improve the resolution, a large number of data points to select a high sampling rate, and resampling at a lower rate, to simplify the calculation of accurate analysis. 该最小采样间隔为三十秒。 The minimum sampling interval is thirty seconds.

图3示出了利用P2M系统进行的二十个呼吸/脉搏率的测量结果。 Figure 3 shows results of measurement using the system P2M twenty breaths / pulse rate. 作为一种对比,同时还进行了人为评估(human evaluator)的测量。 As a comparison, we were also assessed human (human evaluator) measurements. 在理想条件下,P2M精确地测量脉搏25和呼吸27,但是患者的运动或者语音会干扰精密测量。 Under ideal conditions, to accurately measure the pulse P2M 25 and 27 breathing, patient movement or speech but can interfere with accurate measurement. 心率测量质量没有由于缺少呼吸而降低,同时P2M以小于每分钟跳动的误差与该对比测量结果29、 31匹配。 Heart rate measurement quality is not reduced due to lack of breathing, while less than P2M beats per minute with the comparative measurement error of 29, 31 match.

图4示出了处于采集模式的P2M的面板。 FIG 4 shows a panel P2M in acquisition mode. 上部曲线图33显示了所有生理信号的时间-序列测量的三十秒窗口。 The upper curve 33 shows all the time physiological signal - measured thirty second window sequence. 在上部(时间序列)曲线图33中示出了心跳尖峰信号,以及对应于呼吸信号的低频正弦函数。 The upper portion (time series) of the graph 33 shows a spike heartbeat, and respiration function corresponding to low frequency sinusoidal signal. 下部曲线图35在频域中示出了同样的数据。 The lower curve in FIG. 35 shows the same frequency domain data. 该第一和最大尖峰信号37 对应于大约16.4次呼吸/每分钟。 The first signal and the maximum peak corresponds to approximately 16.4 37 breaths / minute. 该对比组31测量17±2次呼吸/每分钟。 The measurement control group 17 ± 2 31 breaths / minute. 该尖峰的较大幅度显示呼吸是通过传感器衬垫测量的最大脉冲。 The spike is breathing a relatively large display maximum pulse measured by the sensor pads. 第二大的尖峰39为每分钟六十次,这与指尖夹心率监视器所测量的实际心率一致。 The second largest peak 39 sixty times per minute, which is consistent with the actual heart rate, a heart rate monitor fingertip clip measured. 通过该幅度测出的能量小于存在于该呼吸频率中的能量的三分之一,而且该比率随着患者的生理和传感器衬垫的位置而变化。 One third of the amplitude of the energy detected by the energy is less than is present in the respiratory frequency, and the ratio as the position of the sensor pads and physiological changes of the patient. 在下部曲线图中的较小尖峰信号41代表呼吸和心率谐波,该谐波的结果不是理想的正弦函数。 Small spikes in the lower portion of the graph 41 represents the breathing and heart rate harmonic, the harmonic result is not ideal sinusoidal function. 由于心率可能会以和呼吸谐波完全相同的频率下降,所以有必要用逻辑算法来检査谐波。 Since the decrease in heart rate and breathing may be the same as the frequency of the harmonic, it is necessary to check logic algorithm harmonics. 该心率和呼吸谐波可通过在躯体不同部分取得的信号进行比较而区分。 The heart rate and respiratory harmonics can be distinguished by comparing the signals obtained in different parts of the body.

在界面程序的面板上的按钮和菜单43能够对数据采集和分析程序进行控制。 And a menu button on the front panel 43 of the interface program is capable of controlling the data acquisition and analysis program. 可存储三十秒的数据记录,用于存档或者另外的评估。 Storing data records may be thirty seconds, for archiving or otherwise assessed.

图5示出了在监视模式下的P2M系统。 FIG. 5 shows a system P2M in monitor mode. 上部曲线图45示出了时间序列数据,其具有叠加在低频呼吸波49之上的典型高频心跳尖峰信号47。 The upper curve 45 shows the time-series data, which has a typical heartbeat frequency spikes 47 superimposed on the low frequency respiratory wave 49. 中部曲线图51示出了每五秒更新一次的心率53和呼吸55。 Middle graph 51 shows updated once every five seconds heart rate and breathing 53 55. 当得到新的五秒数据串时,最旧的五秒数据被丢弃,同时通过分析带有新数据的三十秒数据串,重新计算心率和呼吸。 When five seconds to obtain a new string of data, the oldest data is discarded five seconds, thirty seconds By analyzing the data with the new data sequence is recalculated heart rate and respiration. 上部曲线53为红色, The upper curve 53 of red,

35表示心率;下部曲线55为蓝色,表示呼吸。 35 represents the heart rate; lower curve 55 is blue, indicating breathing. 在中间50s范围中心率表现稳定,在中间十几秒中有呼吸。 In the mid-50s range was stable heart rate, breathing in the middle of ten seconds. 用人为控制的测量顺利地对这两者(2)进行比较。 Artificially measurement control is smoothly these two (2) were compared. 在25次更新之后的反常点57可归因于患者运动或者外部以及不定的噪音/振动事件。 In abnormal points after 57 of 25 update is attributable to patient motion or external and uncertain Noise / vibration events. 下部曲线图59示出了时间序列信号的快速傅里叶变换。 The lower curve 59 shows a Fast Fourier Transform of the time-series signal. 心跳的规则电压信号提供了作为与血压有关的电平的强度信号。 Regular heartbeat signal voltage level as the intensity signal related to blood pressure. 在躯体不同部位的信号之间的时间或者二次信号的图案提供了有关血液流动的循环或者阻塞或者干涉的信息。 Provided the time between the pattern signals in different parts of the body or a secondary signal related to the blood flow or circulation blockage or interference information.

在另一个优选实施例中,图6表示具有定位在患者63身上的单个被动式传感器61的P2M系统的示意图。 In another preferred embodiment, FIG. 6 shows a schematic diagram of a patient 63 is positioned upon a single passive sensor 61 P2M system. 图7示出了P2M系统的一个图形用户界面(GUI)。 FIG 7 illustrates a system P2M a graphical user interface (GUI). 上部曲线图65示出了数字电压数据的30秒窗口,其中低频振荡由呼吸引起,而高频率尖峰是对担架上的患者进行心跳测量的结果。 The upper curve 65 shows a window of 30 seconds digital voltage data, wherein the low frequency oscillations caused by breathing, and the high frequency spikes are the result of the patient on the stretcher heartbeat measurement. 该时间序列信号通过傅里叶变换转换为频率数据, 并显示为一种能量谱,如中部曲线图67中。 This time series signal is converted into frequency data using a Fourier transform, and displayed as an energy spectrum, as the middle graph in FIG. 67. 根据该数据,可通过对与主频率69有关的能量进行检查而获取脉搏和呼吸。 According to the data acquired by the pulse and breathing frequency of inspection and 69 related to the primary energy.

在血压测量的优选方法中,可利用脉博波分析来进行血压(收縮压和舒张压)的被动式测量。 In a preferred method of blood pressure measurement, it can be passive measurement of blood pressure (systolic and diastolic) Analysis by Bobo pulse. 脉搏波速度(PWV)的测量和特征化, 或者另一方面,脉搏波传递时间(PWTT),固有地需要一个以上的测量位置。 Pulse wave velocity (PWV) measurement and characterization, or alternatively, the pulse wave transit time (PWTT), inherently require more than one measurement position. 因此,需要多个传感器在不同位置进行测量。 Therefore, a plurality of measuring sensors at different locations. 例如,传感器可沿着肱动脉测量脉搏波特性,可连同此处所描述的其它测量一起进行。 For example, the sensors may be performed in conjunction with other measurements as described herein along the brachial artery to measure the pulse wave characteristics.

图8示出了在沿着胳臂的两个位置处的脉搏测量结果。 Figure 8 shows the measurement result of the pulse at two positions along the arm. 在两个相应峰值71、 73之间的时间分离给出了脉搏波传播时间(PWTT)。 In the two respective peaks 71, 73 of the separation between the time given by the pulse wave transit time (PWTT). 该值可用于相关的收縮压和舒张压。 This value is available for the relevant systolic and diastolic pressures. 同样地,对于PWTT和血压的几个测量必须同时进行校准,以建立校准曲线。 Likewise, for the PWTT measuring blood pressure and several must be calibrated to establish a calibration curve. BarscMorff & Erig示出了血压(收縮压和舒张压)与PWV和PWTT之间的关系成近似的线性关 BarscMorff & Erig shows a relationship between blood pressure (systolic and diastolic) and PWV and PWTT into approximate linear relationship

在1998年2月在TAMC进行了P2M系统的测试和评估。 In February 1998, it was tested and evaluated P2M system in TAMC. 利用P2M、 Use P2M,

-种电子仪器监视器以及人为评估进行了脉搏和呼吸的同时测量。 Electronic measuring instruments monitor, and human assessment of the pulse and breathing at the same time -. 图9 示出了在TAMC进行测试的一幅图片。 Figure 9 illustrates a test image in TAMC. 总共对11名志愿者按照该试验项目的测试规程进行了监视。 A total of 11 volunteers were monitored in accordance with the test procedures of the pilot project.

图IO显示了该测试的结果。 Figure IO shows the results of this test. 与传统方法相比,P2M的精确度超过95%,同时P2M与传统方法不一致的几种情况被证明是在本系统的软件中的随后的修改和改进中很有价值。 Compared with the conventional method, the accuracy of P2M exceeds 95%, while the conventional method with inconsistent P2M several cases proved to be the following modifications and improvements in the software of the present system is useful value. 此外,利用P2M、电子仪器监视器和人为评估,12名自愿护士进行了脉搏和呼吸的生理监视。 Further, with P2M, monitors electronic equipment and human evaluation, nurses were 12 voluntary physiological monitoring pulse and respiration. 该监视进行之后,护士完成了使用上述三种方法的比较和分级调查。 After the monitoring carried out, the nurses completed the survey to compare and rank the above three methods.

1999年3月5日,在惠勒军用机场,进行在高噪音和振动环境下用于脉搏和呼吸的P2M系统测试。 March 5, 1999, at the military airport Wheeler, conducted for pulse and breathing P2M system tested in high noise and vibration environments. 在救护直升机地面示范(static display)期间进行测试。 During the testing ground ambulance helicopter demonstration (static display). 测试的主要目的是利用P2M、传声器和加速度计对高噪音/振动环境特征化。 The main purpose of the test is to use P2M, microphones and accelerometers for high noise / vibration environment characterization. 结果表明,通过滤波和信号分析,该P2M能够从由直升机所引起的高振幅和频率噪声中辨别生理信号,以精确地输出脉搏和呼吸。 The results show that by filtering and signal analysis, the physiological signal can be discerned from P2M amplitude and high frequency noise caused by the helicopter in order to accurately output pulse and breathing. 由于该高噪声环境会使传统方法无效,所以在该测试中没有进行传统方法。 Due to the high noise environment causes ineffective traditional methods, so no conventional method in this test.

图11示出了在1999年3月5日在惠勒军用机场的P2M高噪音和振动试验。 Figure 11 shows in 1999 March 5 P2M high noise and vibration tests at the military airport of Wheeler.

随后,在1999年3月5日的惠勒测试期间,为了回复航空随机医生的调查,还测试了P2M系统透过多层衣服和护具精确监视脉搏和呼吸的能力。 Subsequently, during the test Wheeler March 5, 1999, in order to respond to the doctor's aviation random survey also tested P2M system through the layers of clothing and protective gear to accurately monitor pulse and breathing ability. 利用P2M系统对防弹片护身装甲、军用确定防毒姿态护具及这两者的组合进行了测试。 Pair combination determined flak body armor for military and antivirus posture brace both tested using P2M system. 结果表明,在主体和传感器之间具有附加层的情况下,P2M测试的精确度仍然较高,这主要由于增加的接触面积和机械和声学信号通过这些固体层有效传输。 The results show that the case has an additional layer between the body and the sensor accuracy test P2M remains high, mainly due to the increased contact area and mechanical and acoustical signal transmission through the solid layer effective.

已经证明精确地测量脉搏和呼吸的单传感器P2M结构相对于主传感器衬垫来说对患者位置很敏感。 Has been demonstrated to accurately measure the single pulse and respiration sensors P2M relative to the main structure of the sensor pads is very sensitive to the position of the patient. 通过该系统接收到的生理信号质量和大小取决于位置。 Received physiological signal through the system depends on the location and size of the mass. 优选的最佳位置是将传感器直接定位在患者胸部中心以下。 Preferred optimum position sensor is positioned directly in the center of the chest or less patient. 如果该传感器从该位置移开,或者如果该患者体位变化, 则该输入信号的整体性也变化。 If the sensor is moved away from that position, or if the patient changes position, the integrity of the input signal changes. 这样,优选的配置是以覆盖担架整个区域的模式来利用多个传感器,患者躺在其中,以便无论患者运动还是静止,都始终有一个或多个活动传感器处于最佳的测量位置。 Thus, the preferred configuration is to cover the entire area of ​​the pattern using a plurality of sensors to a stretcher, where the patient is lying, so that regardless of patient motion or stationary, there are always one or more active sensors in an optimal measurement position.

在一个优选实施例中,本发明是一种利用一组分布式传感器(或者"多传感器")的被动式系统,其中这些传感器能够精确地和强壮地监视人体的某些生理信号。 In a preferred embodiment, the present invention is a use of a set of distributed sensors (or "multi-sensor") is a passive system, wherein the sensor is capable of accurately and to monitor certain physiological signals strong human body. 随后,可对这些信号进行处理,用于确定护士及其他护理人员当前使用的生命特征,例如心率、呼吸和收縮压/ 舒张压。 Subsequently, these signals may be processed to determine the life characteristics of nurses and other caregivers currently used, such as heart rate, respiration and systolic / diastolic pressure.

37诸如心排血量、心脏功能和内出血之类参数的被动式监视处于本发明范围。 37, such as cardiac output, cardiac function monitoring and passive bleeding such parameters in the range of the present invention. 本发明特别地提供一种被动式的(完全非侵入性的)、不显眼的以及一种自治式设备;即该设备决不干扰患者的活动,也不干扰其他监视设备,同时能够用最少的技术知识来操作。 The present invention particularly provides a passive (completely non-invasive), unobtrusive, and an autonomous apparatus; i.e., the device will not interfere with the activities of the patient, it does not interfere with other monitoring devices, while being able to use a minimum of technical knowledge to operate. 此外,该设备可在高噪声环境及其他使替代和现有方法无效的情况下可靠地运行。 Furthermore, the device can operate reliably in high-noise environments and other conditions for alternative and conventional methods ineffective. 这些环境包括但不限于,通过直升机或者救护车的救护(MEDEVAC)以及透过军用确定防毒姿态(MOPP)护具和防弹衣进行的操作。 These environments include but are not limited to, operation by ambulance or helicopter rescue (MEDEVAC) and through military posture determining Antivirus (MOPP) body armor and protective gear.

随着用于这种恶劣和有噪音操作的可靠的多传感器监视系统的发展,在医院ICU (重点护理病室)环境中,噪音基本上较少,此处的应用更加简单。 As used in this harsh and reliable development of multi-sensor monitoring system noise operation, the hospital ICU (intensive care ward) environment, basically less noise, easier application here. 即使在无噪音环境下,利用患者不察觉的传感器系统, 进行完全非侵入式、被动式的、脉搏、呼吸、血压(和心排血量的检测、内部流血、休克等等)测量具有重要的内在价值。 Even in a noise-free environment, the sensor system is not aware of the patient, completely non-invasive, passive, pulse, respiration, blood pressure (and cardiac output detecting internal bleeding, shock, etc.) has an important measure intrinsic value. 这种系统的被动式和自治式操作适用于遥测技术和实时远程监视,同时本发明最后的特征就是用于远程和遥控监视的遥测设计特征。 Such passive systems and autonomous operation applies to real-time remote monitoring and telemetry, while the present invention is characterized in that the final design features for remote telemetry and remote monitoring.

图14示出了并入一个救护担架中的利用被动式传感器阵列和微电子器件的P2M的示意图。 FIG 14 illustrates a rescue stretcher incorporated in the sensor array using a passive microelectronic devices and P2M FIG. 在下面图14中示出了并入救护担架中有创造性技术的示意图。 In next FIG. 14 shows a schematic view of the ambulance stretcher is incorporated in inventive art. 该担架75含有一个具有32个传感器的阵列77内, 其中每个传感器都测量来自患者63的声学和液压输入。 The stretcher 75 comprises a transducer array 32 having 77, wherein each sensor input measuring acoustical and hydraulic pressure from the patient 63. 这些信号中每一个都包含生理地产生的信号和环境噪音的测量结果。 These signals each include a measurement signal and the ambient noise generated physiologically. 在每个衬垫上的环境噪音类似,而生理地产生的信号是位置相关的。 Similar environmental noise on each pad and the signal generated is physiologically relevant location. 该信息通过检验技术可被用来从噪音中分离出信号。 This information can be used by checking technique separated from the noise signal.

位置相关的生理信号被用来判断患者体位、心率、呼吸、血压、 脉搏强度分布以及潜在的一些心排血量的测量。 Location-related physiological signal is used to determine the patient position, heart rate, respiration, blood pressure, pulse intensity distribution, and potentially some of the cardiac output measurement.

除了救护担架外,本发明还可并入很多应用中。 Ambulance stretcher addition, the present invention may be incorporated into many applications. 在医院病床或者在家里采用的普通床垫上对被动式传感器阵列进行配置的操作没有太多变化。 Or be configured in a passive sensor arrays on a common hospital bed mattress at home using an operation is not much change. 要特别说明的是,早产儿护理区域。 Special note is that preterm child care areas. 在这种情况下,将传感器引线固定到婴儿上通常是很困难的,并会导致敏感的皮肤受到刺激以及引线的缠结。 In this case, the sensor wire secured to the infant is often difficult and can cause irritation to sensitive skin and lead by entanglement. 该传感器可并入民用和军用部门中采用的设备中。 The sensor device may be incorporated in civil and military sectors employed. 该传感器也可并入现场设备、衣服和军服中。 The sensors may also be incorporated into the field devices in clothes and uniforms. 这包括但并不限于,颈部衣领、防弹衣、生物和/或化学危害防护服、提取装置(extraction device)、衣服、在座位和座椅靠背上的垫。 This includes, but is not limited to, neck collar, body armor, biological and / or chemical hazard protection clothing, extraction apparatus (extraction device), clothes, on the seat cushion and the seat back. 诸如固定式自行车、跑步机或者行走器之类的训练设备可得益于把传感器结合到支架上。 Such as a stationary bicycle, treadmill or walking training device is such benefit may be bound to the sensor to the bracket.

生理指标如心率可通过把柄测定,这有助于调节锻炼状态。 Physiological indicators such as heart rate may be measured by a handle, which helps regulate the exercise state. 其它的有效应用可包括把被动式传感器系统用在心理测验的椅子或者床上。 Other applications may include the effective passive sensor system for use in a chair or bed psychometric. 主体的生理征兆的监视可提供讨论期间触发字词或者事件所引起的情绪波动的指示。 Monitor physiological signs of the body may provide an indication trigger mood swings during the discussion of words or events caused. 在不需要许多试验情况下,可对每个传感器的尺寸、阵列中传感器数量以及该传感器阵列的配置进行调整,满以足特 In many cases it does not require the test can be adjusted to configure the size of each sensor array and the number of sensors of the sensor array, in sufficient full Laid

定的需要和情况。 Set of needs and circumstances. 例如,对于床垫,可需要在一个矩形阵列中的32个或者更多个传感器。 For example, a mattress may be required in a rectangular array of 32 or more sensors.

优选的被动式传感器可采用压电膜和陶瓷、水诊器、传声器或者压力传感器。 Preferred passive sensor and the ceramic piezoelectric film may be employed, hydrophones, microphones or pressure sensors. 放大硬件可包括信号放大电路和诸如电荷放大器之类的硬件。 Amplifying hardware may include hardware, such as a signal amplifying circuit and a charge amplifier or the like. 该系统使用数据采集硬件和信号处理硬件(电路)以及软件。 The system uses a data acquisition hardware and signal processing hardware (circuitry) and software. 对于传感器和患者之间的连接,可采用固体、流态化的(空气)或者流体的层,例如凝胶、水、泡沫、橡胶、塑料等等。 For the connection between the sensor and the patient, it can be a solid, fluidized (air) or a fluid layer, such as a gel, water, foam, rubber, plastic and the like. 该连接有助于生理信号的传送。 This connection helps to transfer the physiological signal.

本发明具有巨大的医疗价值,可用于现场监视、医院监视、运送监视和家庭/远程监视。 The invention has great medical value, can be used for on-site monitoring, hospital surveillance, monitoring shipping and home / remote monitoring. 例如,本发明可以应用于每家对患者进行被动式监视的医院。 For example, the present invention can be used in hospitals each passive patient monitoring. 本发明对于患者来说不易觉察,这增加了监视过程的 The present invention is imperceptible for the patient, which increases the monitoring process

舒适度。 Comfort.

尽管已参照具体的实施例对本发明进行了描述,但在不脱离本发明范围情况下可作出本发明的各种修改和变化。 While specific embodiments of the present invention has been described with reference to, but various modifications and changes without departing from the present invention can be made under the scope of the invention.

Claims (170)

1. 一种用于被动地监视患者生理的设备,所述设备包括:至少两个传感器,每个所述传感器包括一个压电膜,用于对来自患者的生理信号和来自患者周围环境的环境信号进行检测;与所述至少两个传感器进行通信的转换器,用于把所述生理和环境信号转换成数字信号;与所述转换器通信的处理器,用于通过比较所述至少两个传感器之间的所述数字信号,从所述数字信号中隔离出生理数字信号,以提供生理数据;以及与所述处理器通信的监视器,用于实时显示所述生理数据。 1. A method for passively monitoring a patient's physiology, the apparatus comprising: at least two sensors, each sensor comprises a piezoelectric film, a physiological signal from the patient and from the patient environment surrounding environment signal is detected; conversion in communication with the at least two sensors for the environment and the physiological signal into a digital signal; a converter in communication with said processor for comparing said at least two the digital signals between the sensors, the isolation from said digital signal a digital physiological signal to provide physiological data; and a processor in communication with the monitor for displaying the physiological data in real time.
2. 根据权利要求1所述的设备,其中所述的压电膜包括聚偏氟乙烯膜。 2. The apparatus according to claim 1, wherein the piezoelectric film comprises polyvinylidene fluoride film.
3. 根据权利要求1所述的设备,进一步包括与所述至少两个传感器连接的至少一个带通滤波器,用于滤出所述环境信号中的至少一个。 3. The apparatus according to claim 1, further comprising at least one band-pass filter connected to the at least two sensors for filtering out the at least one environment signal.
4. 根据权利要求3所述的设备,进一步包括与所述带通滤波器连接的一个前置放大器,用于对所述生理和环境信号中的至少一个进行前置放大。 4. The apparatus of claim 3, further comprising a preamplifier-pass filter connected to the belt, for at least one pre-environment and the physiological signal amplification.
5. 根据权利要求1所述的设备,其中所述生理和环境信号从包括机械的、热的以及声学信号的组中选择。 5. The apparatus according to claim 1, wherein the physiological and environmental signals selected from the group consisting of mechanical, thermal and acoustic signal.
6. 根据权利要求1所述的设备,排血量、心脏功能、内出血、呼吸、组合。 6. The apparatus according to claim 1, cardiac output, cardiac function, hemorrhage, respiratory, combinations thereof.
7. 根据权利要求2所述的设备,烯膜的衬垫。 7. The apparatus according to claim 2, alkenyl liner film.
8. 根据权利要求7所述的设备,号传送的装满流体的接触面。 8. The apparatus of claim 7, the contact surface is filled with a fluid transfer number. 其中所述生理和环境信号表明心脉搏、呼吸暂停、体温信号及其进一步包括并入了所述聚偏氟乙其中所述衬垫是用于促进生理信 Wherein the physiological and environmental signals indicate heart pulse, apnea, temperature signal and further comprising incorporating the polyvinylidene fluoride wherein the liner is a channel for facilitating a physiological
9. 根据权利要求8所述的设备,其中所述流体是从包括凝胶、水、空气、泡沬、橡胶和塑料或者其组合的组中选择的非活性物质。 9. The apparatus of claim 8, wherein the fluid is selected from the group consisting of a gel, water, air, Foam, rubber and plastic, or a combination of non-active substance.
10. 根据权利要求1所述的设备,其中所述处理器进一步包括频率傅里叶变换,用于把所述生理数字信号转换成频率数据。 10. The apparatus according to claim 1, wherein said processor further comprises a Fourier frequency transform for converting said digital signal into a frequency physiological data.
11. 根据权利要求10所述的设备,进一步包括用于记录、分析和显示所述频率数据的微型电子计算机,以对所述频率数据进行在线评估,同时对所述频率数据进行实时响应。 11. The apparatus of claim 10, further comprising means for recording, analysis and display of the micro-computer frequency data to the frequency evaluated online data, while the data in real time in response to the frequency.
12. 根据权利要求1所述的设备,其中所述压电膜被置于患者下不同位置处。 12. The apparatus according to claim 1, wherein said piezoelectric film is disposed at a different position in the patient.
13. 根据权利要求1所述的设备,其中所述压电膜作为包套置于患者身上。 13. The apparatus according to claim 1, wherein said piezoelectric film is placed on the patient as a wrap.
14. 一种用于监视患者生理的被动式生理监视设备,包括:多个传感器,所述传感器用于通过放置在患者身上而检测数据,所述多个传感器中的每一个均包括一个压电膜,所述压电膜包括用于检测来自躯体的数据并把所述检测数据转换成电压测量值的聚合物,所述聚合物包括聚偏氟乙烯,其中所述多个传感器包括多对传感器,所述多对传感器用于检测来自所述患者的所述检测数据以及用于独立地检测环境噪声;与所述多个传感器中的每一个通信的转换器,用于将所述检测数据转换成信号;与所述转换器通信的计算装置,用于接收和计算所述信号并用于输出计算后的数据;以及与所述计算装置通信的仪器,用于与所述装置进行实时交互,并用于显示所述计算后的数据。 14. A passive physiological monitoring apparatus for monitoring a patient physiology, comprising: a plurality of sensors, and a sensor for detecting the data by placing on a patient, each of said plurality of sensors comprises a piezoelectric film , the piezoelectric film comprising a body for detecting data from the detection data and converting voltage measurements into a polymer, the polymer comprising a polyvinylidene fluoride, wherein said plurality of sensors comprises a plurality of sensors, the plurality of sensors for detecting the detection data from the patient and for independently detecting ambient noise; a converter in communication with each of the plurality of sensors, for converting the detected data into signal; and said computing means in communication converter, for receiving said signal and for calculating and outputting calculation data; and means for communicating with the computing device, for real-time interaction with the device, and for calculating the display data.
15. 根据权利要求1或14所述的设备,其中所述传感器中的至少一个位于衬底上,所述衬底是家具。 15. The apparatus of claim 1 or claim 14, wherein said at least one sensor is located on the substrate, the substrate is furniture.
16. 根据权利要求1或14所述的设备,其中所述传感器中的至少一个位于从以下组中选择的衬底上,所述组包括衣服的一部分、撑架、床、担架、颈部衣领、防弹衣、躯体防护护具、制服、提取装置、训练设备、垫子、座位以及座椅靠背。 16. The apparatus of claim 1 or claim 14, wherein said at least one sensor is located on the substrate selected from the group, the group includes a portion of the garment, bracket, beds, stretchers, neck clothing collar, body armor, body protective goggles, uniforms, extracting means, exercise equipment, cushions, seat and seat back.
17. 根据权利要求14所述的设备,其中所述多个传感器被配置以在所述患者身上的多个位置测量脉搏波速度。 17. The apparatus according to claim 14, wherein said plurality of sensors is configured to measure the pulse wave velocity plurality of positions in the patient.
18. 根据权利要求14所述的设备,其中所述多个传感器被配置以在所述患者身上的多个位置测量脉搏波传递时间。 18. The apparatus according to claim 14, wherein said plurality of sensors is configured to measure the pulse wave at a plurality of locations on the patient delivery time.
19. 根据权利要求1所述的设备,其中所述至少两个传感器包括一个传感器阵列,其中的传感器分布在不同位置,用于利用每个传感器测量来自所述患者的声学和机械信号。 19. The apparatus according to claim 1, wherein said at least two sensors comprises an array of sensors, wherein the sensors distributed over different locations, with each sensor for measuring the acoustical and mechanical signals from the patient.
20. 根据权利要求19所述的设备,进一步包括并入所述传感器阵列的担架,用于当所述患者位于所述担架上时,测量来自所述患者和来自所述邻近区域的声学和液压信号。 20. The apparatus according to claim 19, further comprising a sensor array incorporated into the stretcher, for when the patient is on the stretcher, and acoustic measurements from the patient and the hydraulic pressure from the neighboring region signal.
21. 根据权利要求20所述的设备,其中所述声学和液压信号包括来自患者的生理信号和来自所述邻近区域的环境信号。 21. The apparatus according to claim 20, wherein the physiological signal comprises an acoustic signal and hydraulic pressure from the patient and the environment from the signals of the adjacent region.
22. —种用于被动地监视患者生理的设备,所述设备包括:与患者接触的第一压电传感器;处于与患者靠近但不接触的位置上的第二压电传感器;用所述第一传感器检测生理信号和环境信号,同时用所述第二传感器检测环境信号;转换器,其用于把所述生理和环境信号转换成生理和环境数字信号;处理器,其用于通过从所述第一传感器所检测的信号中减去所述第二传感器所检测的环境信号,把所述生理数字信号与所述环境数字信号分离开来;以及显示器,其用于显示所述生理数字信号。 22. - species for passively monitor the patient's physiology, the apparatus comprising: a first piezoelectric sensor in contact with a patient; in the second piezoelectric sensor at a position close to but not in contact with the patient; the second with a sensor detecting physiological signals and environmental signals, simultaneously with the second sensor to detect ambient signal; a converter for converting signals into the physiological environment and the physiological and environmental digital signal; processor for through from the detected by the sensor signal of said first subtracting said second ambient signal detected by the sensor, to the physiological environment of the digital signal and the digital signal is separated; and a display, said digital signal for displaying physiological .
23. 根据权利要求22所述的设备,进一步包括带通滤波器,其用于滤出所述环境信号。 23. The apparatus according to claim 22, further comprising a bandpass filter for filtering out the signal environment.
24. 根据权利要求22所述的设备,其中所述传感器适于对机械以及声学信号进行检测。 24. The apparatus according to claim 22, wherein said sensor is adapted to detect a mechanical and an acoustic signal.
25. 根据权利要求22所述的设备,进一步包括:第三传感器,其在远离所述第一传感器的位置处放置在所述患者身上;以及用所述第一和第三传感器测量脉搏波速度。 25. The apparatus according to claim 22, further comprising: a third sensor placed on the patient at a location remote from the first sensor; and with the first and third sensors measure the pulse wave velocity .
26. 根据权利要求22所述的设备,其中所述第一传感器与所述患者接触,而第二传感器处于患者周围但不与所述患者接触的环境下。 26. The apparatus according to claim 22, wherein said first sensor is in contact with the patient, and the second sensor is an environment about the patient, but not in contact with the patient.
27. 根据权利要求26所述的设备,其中所述处理器把分别由所述第一和第二传感器所检测的生理信号和环境信号进行比较,以便分离出所述生理信号。 27. The apparatus according to claim 26, wherein said processor compares each of the physiological signal and the first and second ambient signal detected by the sensor, so as to separate the physiological signal.
28. 根据权利要求22所述的设备,其中第一传感器位于第一位置,第二传感器位于第二位置,且其中所述处理器根据所述第一传感器和所述第二传感器之间的生理信号的时间差来确定脉搏波速度。 28. The apparatus according to claim 22, wherein the first sensor is in the first position, a second sensor in the second position, and wherein the processor between the first physiological sensor and the second sensor determining the time difference between the signal pulse wave velocity.
29. 根据权利要求28所述的设备,其中所述处理器根据所述脉搏波速度计算血压数据。 29. The apparatus according to claim 28, wherein said processor calculates the blood pressure data based on the pulse wave velocity.
30. 根据权利要求25所述的设备,其中所述处理器适于将所述脉搏波速度转换成收縮压和舒张压数据,并且所述显示器适于显示所述血压数据。 30. The apparatus according to claim 25, wherein the processor is adapted to convert the pulse wave velocity to systolic and diastolic pressure data, and the display is adapted to display said blood pressure data.
31. 根据权利要求22所述的设备,进一步包括:第三传感器,其在远离所述第一传感器的位置处接合于所述患者;以及测量在所述第一传感器和所述第三传感器之间的脉搏波传递时间。 31. The apparatus according to claim 22, further comprising: a third sensor at a location remote from the first sensor is bonded to the patient; and measuring the first sensor and the third sensors between the pulse wave transit time.
32. 根据权利要求31所述的设备,其中所述处理器适于把所述脉搏波传递时间转换成收縮压和舒张压数据,并且所述显示器适于显示所述血压数据。 32. The apparatus according to claim 31, wherein the processor is adapted to convert said pulse wave transmission time data to the systolic and diastolic pressure, and the display is adapted to display said blood pressure data.
33. 根据权利要求22所述的设备,其中所述传感器适于透过一层或者多层衣服、防弹衣或者其组合检测所述生理信号。 33. The apparatus according to claim 22, wherein said sensor is adapted to pass through one or more layers of clothing, body armor, or a combination of the detection of the physiological signal.
34. —种用于被动地监视患者生理的设备,所述设备包括: 第一压电传感器,其接合于所述患者;第二压电传感器,其在与所述患者靠近但不接触的位置处;所述第一传感器适于检测生理信号和环境信号,所述第二传感器适于检测环境信号;处理器,其用于通过从所述第一传感器所检测的信号中减去所述第二传感器所检测的环境信号,把所述生理信号从所述环境信号中分离出来;以及显示器,其用于显示所述生理信号。 34. - species for passively monitor the patient's physiology, the apparatus comprising: a first piezoelectric sensor, which is bonded to the patient; position of the second piezoelectric sensor, which is close to but not in contact with the patient at; a first sensor adapted to detect the physiological signals and environmental signals, the second sensor adapted to detect environmental signal; a processor for a signal from the first sensor is detected by subtracting the second environment signals detected by the sensor, the signal separation from the physiological environment of the signal out; and a display for displaying the physiological signals.
35. 根据权利要求34所述的设备,进一步包括: 第三压电传感器,其在远离所述第一压电传感器的位置处接合于所述患者;用所述第三传感器检测生理信号和环境信号;且其中所述处理器进一步适于将来自所述第一传感器的所述生理和环境信号与来自所述第三传感器的所述生理和环境信号进行比较,以确定所述第一和第三传感器在所述患者上的位置。 35. The apparatus according to claim 34, further comprising: a third piezoelectric sensor, which is at a location remote from said first piezoelectric sensor is bonded to the patient; with the third sensor signal and detecting a physiological environment signal; the physiological and environmental signals and wherein said processor is further adapted from the first sensor is compared with the physiological and environmental signals from the third sensor to determine the first and second three position sensors on the patient.
36. —种用于在振动环境中被动地监视患者生理的设备,所述设备包括:至少两个压电传感器,用于对来自患者的生理信号和来自患者周围环境的振动信号进行检测;与所述至少两个传感器进行通信的转换器,用于把所述生理信号和环境振动信号转换成数字信号;与所述转换器通信的处理器,用于通过使所述至少两个传感器之间的所述数字信号相关,以从所述数字信号中隔离出生理数字信号,提供生理数据;以及与所述处理器通信的监视器,用于实时显示所述生理数据。 36. - species vibration environments for passively monitoring a patient's physiology, the apparatus comprising: at least two piezoelectric sensors for physiological signals from the patient and from the patient ambient vibration signal is detected; and converting said at least two sensors in communication, for the physiological signal and the ambient vibration signal into a digital signal; a converter in communication with the processor for at least between the two sensors by related to the digital signal, to isolate the digital signal from said digital signal a physiological provide physiological data; and a processor in communication with the monitor for displaying the physiological data in real time.
37. 根据权利要求36所述的设备,其中每个所述压电传感器包括聚偏氟乙烯膜。 37. The apparatus according to claim 36, wherein each of said piezoelectric transducer comprises a PVDF film.
38. 根据权利要求37所述的设备,其中所述衬垫包括用于促进生理信号传送的流体接触面,所述流体是从包括凝胶、水、空气、泡沬、 橡胶和塑料或者其组合的组中选择的非活性物质。 38. The apparatus according to claim 37, wherein said liner comprises a contact surface for facilitating fluid physiological signal transmitted from said fluid comprises a gel, water, air, Foam, rubber and plastic, or a combination thereof selected from the group of non-active substance.
39. 根据权利要求36所述的设备,其中所述压电传感器被置于所述患者下不同位置处。 39. The apparatus according to claim 36, wherein said piezoelectric sensor is positioned at different locations in said patient.
40. 根据权利要求36所述的设备,其中所述生理信号和环境振动信号包括机械的、热的以及声学信号,和/或其中所述生理和环境信号表明心脏功能、呼吸功能及其组合。 40. The apparatus according to claim 36, wherein the physiological signal and the ambient vibration signal includes a mechanical, thermal and acoustic signals, and / or wherein the physiological and environmental signals indicate cardiac function, respiratory function, and combinations thereof.
41. 根据权利要求36所述的设备,其中所述处理器进一步包括时间序列变换,用于把所述生理数字信号转换成包括呼吸和心率谐波的频率信号,以及通过选择性地比较来自患者躯体不同位置的信号来区分所述呼吸和心率谐波,并且其中所述设备包括微型电子计算机,其用于计算来自所述数字信号的频谱和通过识别对应于选定的生理参数的频谱的峰值,提取与所述患者生理有关的信号。 41. The apparatus according to claim 36, wherein said processor further comprises a time series conversion, for converting said digital signal into a physiological respiration and heart rate frequency signal comprising harmonics, and from the patient by selectively comparing signals of different positions of the body to distinguish the respiratory and heart rate harmonic, and wherein said apparatus comprises a micro-computer, for calculating from the frequency spectrum of the digital signal and by identifying the corresponding frequency spectrum to the selected physiological parameter peak , extracting a signal related to the patient's physiology.
42. —种用于监视患者生理的被动式生理监视设备,其包括: 多个传感器,所述传感器在患者躯体的多个位置上被动地检测数据,所述多个传感器中的每一个均包括一个压电传感器,所述压电传感器用于检测来自所述患者躯体的声学和机械信号并把所述检测数据转换成电压测量值,其中所述多个传感器包括至少一对传感器,用于检测来自所述患者的数据;一个与所述多个传感器中的每一个通信的转换器,用于将所述检测数据转换成信号;一个与所述转换器通信的计算装置,用于接收和计算所述信号并用于输出计算后的数据;以及一个用于实时显示所述计算后的数据的显示器。 42. - Species physiological monitoring apparatus for passive monitoring of a patient physiology, comprising: a plurality of sensors that passively detect data in a plurality of positions on the patient's body, each of said plurality of sensors comprises a the piezoelectric sensor, the piezoelectric sensor for detecting the patient's body from a mechanical and acoustic signals and converts the voltage measurements to the detection data, wherein said plurality of sensors comprises at least a pair of sensors for detecting from the patient data; a converter in communication with each of said plurality of sensors, for converting the detection data into a signal; a converter with a computing device in communication, for receiving and calculating said signal and for outputting calculation data; and a display for displaying data in real time after the calculation.
43. 根据权利要求42所述的设备,其中所述多个传感器中的至少一个位于衬底上,所述衬底是家具。 43. The apparatus according to claim 42, wherein said at least one of the plurality of sensors located on the substrate, the substrate is furniture.
44. 根据权利要求42所述的设备,其中所述多个传感器中的至少一个位于从以下组中选择的衬底上,所述组包括衣服的一部分、撑架、 床、担架、颈部衣领、防弹衣、躯体防护护具、制服、提取装置、训练设备、垫子、座位以及座椅靠背。 44. The apparatus according to claim 42, wherein said plurality of sensors located on the substrate at least one selected from the group, the group includes a portion of the garment, bracket, beds, stretchers, neck clothing collar, body armor, body protective goggles, uniforms, extracting means, exercise equipment, cushions, seat and seat back.
45. 根据权利要求42所述的设备,进一步包括并入了传感器阵列的患者支撑面,用于当所述患者位于所述患者支撑面上时,利用每个所述传感器测量来自所述患者和来自邻近区域的声学和机械信号。 45. The apparatus according to claim 42, further comprising a patient support surface incorporating a sensor array, for the patient when the patient is located upon the support surface, with each said sensor from the patient and measuring acoustical and mechanical signals from the neighboring region.
46. 根据权利要求42所述的设备,其中所述多个传感器被置于患者支撑面上的不同位置,并且所述计算装置通过确定来自所述传感器的相应信号之间的时间差计算血压数据,和/或其中所述多个传感器包括至少一个位置靠近所述患者四肢的传感器,用于从呼吸中分离出心脏能量。 46. ​​The apparatus according to claim 42, wherein said plurality of sensors are placed at different positions of the patient support surface, and the calculation means calculates the blood pressure data by determining the time difference between the respective signals from the sensor, and / or wherein said plurality of sensors comprises at least one position sensor proximate the patient's limb, for separating energy from cardiac breath.
47. 根据权利要求42所述的设备,其中所述多个传感器被配置以在所述患者身上的多个位置测量脉搏波速度,和/或所述多个传感器被配置以在所述患者身上的多个位置测量脉搏波传递时间。 47. The apparatus according to claim 42, wherein said plurality of sensors is configured to measure the pulse wave velocity plurality of positions on the patient and / or the plurality of sensors are arranged to the patient a plurality of position measuring pulse wave transit time.
48. 根据权利要求36所述的设备,进一步包括并入传感器阵列的患者支撑面,用于当所述患者位于所述患者支撑面上时,测量来自所述患者的声学和机械信号。 48. The apparatus according to claim 36, further comprising a patient support surface of the sensor array is incorporated, when said patient is in said patient support surface, the patient's mechanical and acoustic measurements from the signals.
49. 根据权利要求46所述的设备,其中所述多个传感器包括至少三个在所述患者躯体上的三个不同位置的传感器。 49. The apparatus according to claim 46, wherein said plurality of sensors comprises at least three sensors in the three different positions on the patient's body.
50. 根据权利要求42所述的设备,其中所述计算装置使所述传感器检测的信号相关,以隔离出生理信号。 50. The apparatus according to claim 42, wherein said calculating means detects a signal related to the sensor, to isolate the physiological signals.
51. 根据权利要求42所述的设备,其中第一传感器被置于第一位置,且第二传感器被置于第二位置,并且其中所述计算装置根据所述第一传感器和第二传感器之间的生理信号时间差来确定脉搏波速度。 51. The apparatus according to claim 42, wherein the first sensor is placed in a first position, and the second sensor is in the second position, and wherein said means of the first sensor and the second sensor calculates physiological signal to determine the difference in time between the pulse wave velocity.
52. 根据权利要求42所述的设备,其中所述传感器中的每一个被配置以从所述患者检测生理数据和检测在所述患者躯体上的不同位置的外部患者运动,并且所述计算装置通过相关性区分生理数据信号和由于外部运动形成的信号。 52. The apparatus according to claim 42, each of which is configured to detect the physiological data from the patient and the detection of the external motion of the patient in different positions on the patient's body, and wherein said computing means of said sensors by distinguishing correlation physiological data and a signal due to an external motion formation.
53. —种用于被动地监视患者生理的设备,包括: 第一传感器,其适于与所述患者连接;第二传感器,其适于在远离所述第一传感器的位置处与所述患者连接;所述第一和第二传感器适于检测生理信号和环境噪声以及振动; 处理器,其用于将来自所述第一传感器的生理信号和环境噪声及振动与所述第二传感器的生理信号和环境噪声及振动进行比较,用于从所述环境噪声及振动中分离出选定的生理信号。 53. - species for passively monitoring a patient's physiological apparatus, comprising: a first sensor, which is adapted to be connected to the patient; a second sensor, which is adapted to the first sensor at a remote location of the patient ; said first and second sensor adapted to detect a physiological signal and environmental noise and vibration; a processor for physiological signal and the physiological environment of noise and vibration from the first sensor and the second sensor signal and an environmental noise and vibration compared, for separating a selected physiological signal from the environmental noise and vibration.
54. 根据权利要求53所述的设备,其中所述处理器进一步适于测量所述第一传感器和第二传感器之间的脉搏波传递时间;和将所述脉搏波传递时间转换成收縮压和舒张压的血压数据并且显示所述血压数据。 54. The apparatus according to claim 53, wherein the processor is further adapted to measure the pulse wave between said first and second sensors delivery time; and the pulse wave transit time is converted into the systolic and diastolic blood pressure data and display the blood pressure data.
55. —种用于被动地监视患者生理的设备,所述设备包括: 第一压电传感器,其适于通过连接所述患者和包括所述第一压电传感器的患者支撑面,来接合所述患者;第二压电传感器,其处于一个用于检测环境噪声而不是来自所述患者的生理信号的位置;第三压电传感器,其适于在远离所述第一传感器的位置处接合于所述患者;所述第一和第二传感器适于检测生理信号和环境噪声,并且所述第二传感器适于检测环境噪声;处理器,用于通过从所述第一和第三传感器所检测的信号中减去所述第二传感器所检测的环境噪声,把所述生理信号从所述环境噪声中分离出来;所述处理器进一步适于把来自所述第一传感器的所述生理信号和环境噪声与来自所述第三传感器的所述生理信号和环境噪声进行比较,用于隔离所选择的那些生理信号;以及显示器,其用于 55. - species for passively monitor the patient's physiology, the apparatus comprising: a first piezoelectric sensor, which is adapted to connect the patient and the patient support surface comprising the first piezoelectric sensor bonded to the said patient; a second piezoelectric sensor, it is in a position for detecting the ambient noise instead of a physiological signal from the patient; a third piezoelectric sensor, which is adapted to engage at a location remote from the first sensor said patient; said first and second sensor adapted to detect a physiological signal and the ambient noise, and the second sensor is adapted to detect ambient noise; processor for detecting the first and the third sensor from the subtracting the ambient noise signal detected by the sensor of said second, said physiological signal is separated from the ambient noise; the processor is further adapted to the physiological signal from the first sensor and ambient noise is compared with the physiological signal and the ambient noise from the third sensor signal for that physiological isolate selected; and a display for 示所选择的那些生理信号。 Those selected physiological signals shown.
56. —种用于被动地监视患者生理的设备,其包括: 多个传感器,所述传感器中的每一个能够同时检测患者的多个生理参数,并且适合被放置在所述患者躯体上的不同位置;与所述传感器通信的转换器,用于将所述检测的生理参数转换成数字信号;和与所述转换器通信的处理器,用于接收所述数字信号和提取与所述患者的一个或多个选定的生理参数有关的信号。 56. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors, each capable of simultaneously detecting a plurality of different physiological parameters of the patient, and adapted to be placed on the patient's body in the sensor position; said sensor in communication with the converter for converting the detected physiological parameters into a digital signal; and a processor in communication with the converter for receiving the digital signal and extracting the patient one or more physiological parameters related to the selected signal.
57. 根据权利要求56所述的设备,其中所述传感器被并入一个由所述传感器的阵列覆盖的担架中。 57. The apparatus according to claim 56, wherein the sensor is incorporated in a stretcher covered by the array of the sensor.
58. 根据权利要求56所述的设备,其中所述传感器被置于一个衬垫中。 58. The apparatus according to claim 56, wherein the sensor is placed in a pad.
59. 根据权利要求56所述的设备,其中所述多个生理参数包括呼吸率和心率。 59. The apparatus according to claim 56, wherein the plurality of physiological parameter comprises respiration rate and heart rate.
60. 根据权利要求56所述的设备,其中所述传感器中的每一个能够同时检测来自所述患者的生理参数的声学和机械信号。 60. The apparatus according to claim 56, wherein each of the sensors can detect the acoustic and mechanical physiological parameter signal from the patient.
61. 根据权利要求56所述的设备,进一步包括与所述处理器通信的监视器,用于实时显示所述生理信号。 61. The apparatus according to claim 56, further comprising a monitor in communication with said processor for real-time display of the physiological signal.
62. —种用于在振动环境中被动地监视患者生理的设备,其包括: 传感器,其适于与所述患者连接,所述传感器包括压电膜;所述传感器适于检测所述患者的机械能,所述机械能包括与所述患者生理有关的能量和由振动环境造成的能量;转换器,用于将所述检测的机械能转换成信号;以及处理器,用于提取对应于所述患者生理的信号,用于分离与所述患者的选定生理参数有关的信号,以及用于输出表示所述患者的选定生理参数的信号。 62. - species for passively monitoring a patient's physiological environment vibration device, comprising: a sensor, which is adapted to be connected with the patient, said sensor comprising a piezoelectric film; a sensor adapted to detect the patient mechanical energy, said mechanical energy related to the patient comprises a physiological energy and energy caused by the vibration environment; a converter for converting the detected signal is converted into mechanical energy; and a processor for extracting corresponding to the patient's physiology signal, for separating the selected physiological parameters of the patient signal and for outputting a signal indicative of the selected physiological parameter of a patient.
63. 根据权利要求62所述的设备,其中所述压电膜包括聚偏氟乙烯膜。 63. The apparatus according to claim 62, wherein the piezoelectric film comprises polyvinylidene fluoride film.
64. 根据权利要求62所述的设备,其中所述振动环境包括医疗运输器。 64. The apparatus according to claim 62, wherein said vibrating conveyor including medical environment.
65. 根据权利要求62所述的设备,其中所述振动环境包括直升机。 65. The apparatus according to claim 62, wherein said vibration environment including helicopters.
66. 根据权利要求65所述的设备,其中所述选定的生理参数是从包括呼吸率和脉搏率的组中选择的。 66. The apparatus according to claim 65, wherein said selected physiological parameter is selected from the group consisting of respiratory rate and pulse rate of.
67. 根据权利要求62所述的设备,其中所述振动环境包括救护车。 67. The apparatus according to claim 62, wherein said vibration environment comprising an ambulance.
68. 根据权利要求62所述的设备,其中所述传感器沿着患者支撑面放置。 68. The apparatus according to claim 62, wherein the sensor is positioned along the patient support surface.
69. 根据权利要求62所述的设备,其中所述传感器适于放置在所述患者身上。 69. The apparatus according to claim 62, wherein said sensor is adapted to be placed on the patient.
70. 根据权利要求62所述的设备,其中所述传感器的尺寸为约20厘米X25厘米,且被装在保护套中。 70. The apparatus according to claim 62, wherein the size of the sensor is about 20 cm X25 cm, and is mounted in the protective cover.
71. 根据权利要求62所述的设备或多层衣服检测所述患者的机械能。 71. The apparatus of layers of clothing or the patient is detected mechanical energy according to claim 62.
72. 根据权利要求62所述的设备或多层被褥检测所述患者的机械能。 72. The mechanical energy device of claim 62 or more layers of the patient's bedding detecting claim.
73. 根据权利要求62所述的设备列方式排列的所述压电膜。 73. The apparatus as claimed in claim 62 column-wise arrangement of the piezoelectric film requirements.
74. 根据权利要求62所述的设备膜的衬垫。 74. The film liner device according to claim 62.
75. —种用于在环境中被动地监视患者生理的设备,其包括: 第一传感器,其适于与所述患者相连接;第二传感器,其适于在远离所述第一传感器的位置与所述患者相连接;所述第一传感器和所述第二传感器都适于检测所述患者的生理参数和所述患者周围环境的条件;转换器,用于将所述检测的生理参数和环境条件转换成信号;以及处理器,用于使来自所述第一和第二传感器的信号相关以提取与所述患者生理有关的信号。 75. - species in the environment for passively monitoring a patient's physiological apparatus, comprising: a first sensor, which is adapted to be connected to the patient; a second position sensor, which is remote from the first sensor is adapted to connected to the patient; the first sensor and the second sensor are adapted to the conditions and the patient physiological parameter detecting surroundings of the patient; converter for converting the detected physiological parameters and environmental conditions into a signal; and a processor for signals from the first and second sensors associated with the patient's physiology to extract the relevant signals.
76. 根据权利要求75所述的设备,其中所述第一和第二传感器包括被动式传感器,用于检测所述患者躯体的机械活动。 76. The apparatus according to claim 75, wherein said first and second sensor comprises a passive sensor for detecting the mechanical activity of the patient's body.
77. 根据权利要求76所述的设备,其中所述传感器包括压电传感器。 77. The apparatus according to claim 76, wherein said sensor comprises a piezoelectric sensor.
78. 根据权利要求75所述的设备,其中所述第一和第二传感器中,其中所述传感器适于穿过一层,其中所述传感器适于穿过一层,其中所述传感器包括多个以阵,进一步包括其中具有所述压电的每个都包括压电膜。 78. The apparatus according to claim 75, wherein said first and second sensors, wherein the sensor is adapted to pass through one layer, wherein the sensor is adapted to pass through one layer, wherein said sensor comprises a plurality in an array, wherein further comprising having each of said piezoelectric film comprises a piezoelectric.
79. 根据权利要求76所述的设备,其中每个所述传感器包括聚偏氟乙烯膜。 79. The apparatus according to claim 76, wherein each sensor comprises polyvinylidene fluoride film.
80. 根据权利要求78所述的设备,其中一个接触面置于所述膜和所述患者之间,用于促进从所述患者到所述膜的生理参数传送。 80. The apparatus according to claim 78, wherein a contact surface disposed between the membrane and the patient for facilitating the physiological parameters from the patient to the membrane.
81. 根据权利要求80所述的设备,其中所述接触面是从包括凝胶、 水、空气、泡沫、橡胶和塑料的组选择的。 81. The apparatus according to claim 80, wherein said contact surface is selected from the group consisting of gelatin, water, air, foam, rubber and plastic are.
82. 根据权利要求75所述的设备,其中所述传感器适于检测所述患者周围环境中的噪声和振动。 82. The apparatus according to claim 75, wherein said sensor is adapted to detect the ambient noise and vibration environment of the patient.
83. 根据权利要求75所述的设备,进一步包括: 第三传感器,其适于被放置在一个与所述患者隔离的位置处,用于检测所述环境条件而不检测所述患者的所述生理参数;而且所述处理器进一步适于通过从所述第一和第二传感器产生的信号减去所述第三传感器产生的信号,减少在所述第一和第二传感器产生的信号中的环境干扰。 The third sensor, which is adapted to be placed at a position isolated from the patient for detecting the environmental condition of the patient does not detect: 83. The apparatus according to claim 75, further comprising physiological parameter; and said processor is further adapted to subtract the signal generated by said third sensor signal generated from said first and second sensor signals to reduce the generation of said first and second sensors in environmental interference.
84. 根据权利要求75所述的设备,进一步包括: 从所述信号中计算能量频谱;和通过识别对应于所述患者的生理参数的所述能量频谱中的峰值, 提取与所述患者生理有关的信号。 84. The apparatus according to claim 75, further comprising: calculating an energy spectrum from the signal; and the energy spectrum by identifying the peak corresponding to the physiological parameter of the patient, the patient-related physiological extracts signal of.
85. —种用于被动地监视患者生理的设备,包括: 多个沿着患者支撑面放置的传感器,所述传感器中的每一个能够被动地检测所述患者的生理参数和所述患者周围环境的条件;转换器,其用于将所述检测的生理参数和环境条件转换成信号;和处理器,其用于使所述传感器之间的信号相关,以提取与所述患者生理有关的信号。 85. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors positioned along the patient support surface, each of a physiological parameter of the patient can be passively detect the sensor and the patient surroundings conditions; converter for converting the physiological parameters and environmental conditions of the detection into a signal; and a processor for correlation between the sensor signal to extract signals related to the physiological patient .
86. 根据权利要求85所述的设备,其中所述传感器适于检测来自所述患者周围环境的噪声和振动。 86. The apparatus according to claim 85, wherein said sensor is adapted to detect the ambient noise and vibration from the patient.
87. 根据权利要求85所述的设备,其中所述传感器适于检测所述患者的机械能。 87. The apparatus according to claim 85, wherein said sensor is adapted to detect the patient's mechanical energy.
88. 根据权利要求85所述的设备,其中所述传感器包括多个压电膜,其沿着所述患者支撑面以阵列方式放置。 88. The apparatus according to claim 85, wherein said sensor comprises a plurality of piezoelectric film which are placed in an array along the patient support surface.
89. —种用于在振动环境中被动地监视患者生理的设备,包括: 多个独立的传感器,其适于在所述患者躯体上的不同位置处与所述患者相连接;所述传感器适于在每个所述位置处检测由于生理原因引起的所述患者躯体的机械能和由于环境振动引起的所述患者躯体的机械能; 转换器,其用于将所述检测的机械能转换成多个信号;以及处理器,其用于使所述传感器之间的所述信号相关以提取与所述患者生理有关的信号。 89. - species vibration environments for passively monitoring a patient's physiological apparatus, comprising: a plurality of independent sensor adapted at different positions relative to the patient connected to the patient's body; a transducer adapted detecting the patient due to physiological causes physical and mechanical energy due to vibration of the patient body due to environmental mechanical energy at each said location; converter for converting the mechanical energy of the detected signals into a plurality of ; and a processor for extracting the patient related to physiologically relevant signal between the signal of the sensor.
90. 根据权利要求89所述的设备,其中所述多个传感器中的每个传感器包括压电膜。 90. The apparatus according to claim 89, wherein each of said plurality of sensors comprises a piezoelectric film sensor.
91. 根据权利要求89所述的设备,其中每一个所述传感器包括聚偏氟乙烯膜。 91. The apparatus according to claim 89, wherein each said sensor comprises a polyvinylidene fluoride membrane.
92. 根据权利要求89所述的设备,其中所述传感器适于检测与心脏和呼吸功能有关的所述患者的机械能。 92. The apparatus according to claim 89, wherein said sensor is adapted to detect the patient's heart-related and respiratory function mechanical energy.
93. —种适合在振动环境中被动地监视患者生理的设备,其包括: 至少两个传感器,每个所述传感器能够被动地检测在患者躯体的不同位置的患者生理参数和来自所述患者周围环境的振动;与所述传感器进行通信的转换器,用于把所述检测的生理参数和环境振动转换成数字信号;和与所述转换器通信的处理器,用于处理所述数字信号,以通过使传感器之间的信号相关来提取与所述患者生理有关的信号。 93. - species suitable for passive monitoring of a patient's physiological environment vibration device, comprising: at least two sensors, each sensor capable of detecting a physiological parameter of a patient passively at various locations in and around the patient's body from the patient vibration environment; with the sensor transducer in communication, physiological parameters and for converting the detected vibration environment into a digital signal; and a processor in communication with the converter for processing the digital signal, by causing the correlation between the sensor signal and extracting a signal related to the patient's physiology.
94. 根据权利要求93所述的设备,其中所述传感器包括被动式传感器,用于检测所述患者躯体的机械能和产生响应所述机械能的电信号。 94. The apparatus according to claim 93, wherein said sensor comprises a passive sensor for detecting the patient's body and produce mechanical energy of the mechanical energy in response to an electrical signal.
95. 根据权利要求93所述的设备,其中每一个所述传感器包括压电膜。 95. The apparatus according to claim 93, wherein each said sensor comprises a piezoelectric film.
96. 根据权利要求95所述的设备,其中每一个所述传感器包括聚偏氟乙烯膜。 96. The apparatus according to claim 95, wherein each said sensor comprises a polyvinylidene fluoride membrane.
97. 根据权利要求95所述的设备,进一步包括一个并入了所述压电膜的衬垫。 97. The apparatus according to claim 95, further comprising a gasket incorporating the piezoelectric film.
98. 根据权利要求93所述的设备,进一步包括与所述处理器通信的监视器,用于实时显示所述生理数据。 98. The apparatus according to claim 93, further comprising a monitor in communication with said processor for displaying the physiological data in real time.
99. 根据权利要求93所述的设备,其中所述处理器与所述转换器进行无线通信。 99. The apparatus according to claim 93, wherein the processor and the transducer in wireless communication.
100. 根据权利要求93所述的设备,其中所述传感器沿着患者支撑面放置。 100. The apparatus according to claim 93, wherein the sensor is positioned along the patient support surface.
101. 根据权利要求100所述的设备,其中所述患者支撑面包括医疗运输器。 101. The apparatus according to claim 100, wherein the patient support surface comprises a medical conveyor.
102. 根据权利要求93所述的设备,其中所述传感器被置于医院被褥中。 102. The apparatus according to claim 93, wherein said sensor is positioned in hospital bedding.
103. 根据权利要求93所述的设备,其中所述处理器还从所述数字信号计算能量频,以及通过识别对应于选定的生理参数的所述能量频谱的峰值,提取与所述患者生理有关的信号。 103. The apparatus according to claim 93, wherein said digital signal processor further calculating from said frequency energy, and by identifying the energy corresponding to the selected physiological parameter of a peak spectrum, extracting said patient physiological related signal.
104. 根据权利要求93所述的设备,进一步包括并入了所述传感器的衬垫,所述衬垫内的接触面是由从包括凝胶、水、空气、泡沫、橡胶和塑料的组中选择的材料制成的。 104. The apparatus according to claim 93, further comprising incorporating the sensor pad, the contact surface of the inner liner is made from the group consisting of gelatin, water, air, foam, rubber and plastics made of a material selected.
105. 根据权利要求93所述的设备,其中所述处理器提取与所述患者的心脏和呼吸活动有关的信号。 105. The apparatus according to claim 93, wherein the processor extracts the signal related to the patient's heart and respiratory activity.
106. —种用于被动地监视患者生理的设备,其包括: 沿着患者支撑面放置的多个传感器,所述传感器中的每一个能够被动地检测在患者躯体上的不同位置的所述患者的生理参数和由于所述患者周围环境造成的周围的噪声和振动;与所述传感器进行通信的转换器,用于把所述检测的生理参数和周围的噪声和振动转换成数字信号;与所述转换器通信的处理器,用于接收所述数字信号和使之相关, 以提取与所述患者生理有关的信号;以及与所述处理器通信的监视器,用于实时显示所述生理信号。 106. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors placed along the patient support surface, each of the sensors can be passively detect different positions of the patient on the patient's body physiological parameter and the noise and vibration due to the ambient environment surrounding the patient caused; conversion in communication with the sensor, for converting the noise and vibration of the detected physiological parameters into a digital signal and the surrounding; and the said communication processor converter for receiving the digital signal and so related to extract the relevant patient physiological signal; and a processor in communication with the monitor for real-time display of said physiological signal .
107. 根据权利要求106所述的设备,其中所述传感器包括被动式传感器,用于检测所述患者躯体的机械能和产生响应所述活动的电信号。 107. The apparatus according to claim 106, wherein the sensor comprises a passive sensor for detecting the patient's body and produce mechanical energy of the electrical signal in response to activity.
108. 根据权利要求106所述的设备,其中所述每一个所述传感器包括压电膜。 108. The apparatus according to claim 106, wherein said each of said sensors comprises a piezoelectric film.
109. 根据权利要求106所述的设备,其中所述患者支撑面是家具。 109. The apparatus according to claim 106, wherein said patient support surface furniture.
110. 根据权利要求106所述的设备,其中所述患者支撑面选自撑架、床、担架、工作桌、垫子、座位和座椅靠背。 110. The apparatus according to claim 106, wherein said patient support surface is selected from the bracket, beds, stretchers, work tables, cushions, seat and seat back.
111. 根据权利要求106所述的设备,其中所述患者支撑面是轮床。 111. The apparatus according to claim 106, wherein said patient support surface is a gurney.
112. 根据权利要求106所述的设备,其中所述传感器被配置以在所述患者躯体上的多个位置之间测量脉搏波传递时间。 112. The apparatus according to claim 106, wherein the sensor is arranged in between a plurality of positions on the patient's body to measure the pulse wave transit time.
113. —种用于被动地监视患者生理的设备,其包括: 多个传感器,用于被动地检测患者躯体上的多个不同位置的机械能;与所述传感器进行通信的转换器,用于把所述检测的机械能转换成反映所述患者躯体在每个所述位置的运动的多个数字信号;以及与所述转换器通信的处理器,用于处理所述数字信号,以提取与至少一个选定的所述患者生理参数有关的信号和得到表示所述选定的生理参数的输出信号,所述处理器使所述多个传感器之间的数字信号相关,以减弱周围环境条件造成的信号。 113. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors configured to passively detect a plurality of different positions on the patient's body mechanical energy; conversion in communication with the sensor, for the detecting said mechanical energy into the patient's body reflect the movement of the plurality of digital signals each of said position; and a processor in communication with the converter for processing the digital signals, to extract at least a and a signal related to the patient to obtain a physiological parameter represented by the selected output signal of the selected physiological parameter, said processor causes digital signals between said plurality of sensors related to attenuate a signal caused by ambient conditions .
114. 根据权利要求113所述的设备,其中所述传感器被配置成检测由于病人的生理状况引起的机械能和来自所述患者周围环境条件的振动。 114. The apparatus according to claim 113, wherein the sensor is configured to detect a physiological condition of the patient since the mechanical energy due to vibration of the patient and from ambient conditions.
115. 根据权利要求113所述的设备,其中所述处理器处理所述数字信号,以提取与所述患者的心脏活动有关的信号。 115. The apparatus of claim 113 wherein said processor processes said digital signal to extract the cardiac activity of the patient associated signaling requirements.
116. 根据权利要求113所述的设备,其中所述处理器处理所述数字信号,以提取与所述患者的呼吸活动有关的信号。 116. The apparatus of claim 113 wherein said processor processes said digital signal to extract the patient's breathing activity signal relating to requirements.
117. 根据权利要求113所述的设备,其中所述处理器处理所述数字信号,以提取与所述患者的心脏和呼吸活动有关的信号。 117. The apparatus of claim 113 wherein said processor processes said digital signal to extract the patient's heart and respiratory activity signal relating to requirements.
118. 根据权利要求113所述的设备,其中所述处理器使所述多个传感器之间的信号相关,以减弱与环境振动有关的信号。 118. The apparatus according to claim 113, wherein said signal processor causes the correlation between the plurality of sensors to attenuate the signal related to environmental vibration.
119. 根据权利要求113所述的设备,其中所述多个传感器包括多个压电膜。 119. The apparatus according to claim 113, wherein said plurality of sensors comprises a plurality of piezoelectric films.
120. 根据权利要求119所述的设备,进一步包括并入了所述膜的衬垫,所述衬垫被配置成靠着患者的躯体放置。 120. The apparatus according to claim 119, further comprising incorporating the membrane liner, the liner is configured to be placed against the patient's body.
121. —种用于被动地监视患者生理的设备,其包括: 多个传感器,用于被动地检测患者躯体上的多个不同位置的机械能,所述传感器中的至少一个适合放置在所述患者四肢的区域中;与所述传感器通信的转换器,用于将所述检测的机械能转换成多个数字信号;和与所述转换器通信的处理器,用于通过选择性地忽略信号来提取由于所述患者的心脏活动产生的信号。 121. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors configured to passively detect a plurality of different positions on the patient's body mechanical energy, said at least one sensor adapted to be placed in the patient in the region of the limbs; converter with communication with the sensor, for detecting said plurality of mechanical energy is converted into a digital signal; and a processor in communication with said converter, for extracting a signal by selectively ignoring Since the signal generated by the patient's heart activity.
122. 根据权利要求121所述的设备,其中所述至少一个传感器适合放置在所述患者的脚上。 122. The apparatus according to claim 121, wherein the at least one sensor adapted to be positioned on the foot of the patient.
123. 根据权利要求121所述的设备,其中所述多个传感器中的每个传感器包括压电膜。 123. The apparatus according to claim 121, wherein each of said plurality of sensors comprises a piezoelectric film sensor.
124. 根据权利要求121所述的设备,其中所述多个传感器中的每个传感器包括聚偏氟乙烯膜。 124. The apparatus according to claim 121, wherein said plurality of sensors each sensor comprising a polyvinylidene fluoride film.
125. —种用于被动地监视患者生理的设备,其包括: 多个传感器,用于检测患者躯体上的多个不同位置的机械能; 与所述传感器通信的转换器,用于将所述检测的机械能转换成多个数字信号;和与所述转换器通信的处理器,用于通过选择性地比较来自所述患者躯体上的所述不同位置的信号来提取由于所述患者的心脏活动产生的信号。 125. - species for passively monitoring a patient's physiological apparatus, comprising: a plurality of sensors, a plurality of different positions on the body of a patient detected mechanical energy; sensor in communication with said converter, for detecting the a plurality of mechanical energy is converted into a digital signal; and a processor in communication with said converter, the signal for different positions on the patient's body by selectively extracted from the comparison due to the patient's heart activities signal of.
126. 根据权利要求125所述的设备,其中所述多个传感器的每个传感器包括压电膜。 126. The apparatus according to claim 125, wherein each of the plurality of sensor comprises a piezoelectric film.
127. 根据权利要求125所述的设备,其中所述多个传感器的每个传感器包括聚偏氟乙烯膜。 127. The apparatus according to claim 125, wherein each of the plurality of sensor comprises polyvinylidene fluoride film.
128. 根据权利要求125所述的设备,其中所述处理器进一步将所述数字信号转换成包括呼吸和心率谐波的频率信号,并且通过选择性地比较来自所述患者躯体上的所述不同位置的信号来区分心率和呼吸谐波。 128. The apparatus according to claim 125, wherein the processor is further converted into the digital signal comprises a respiration signal and a heart rate frequency harmonics, and comparing the patient's body on the ground by selectively from different position signal to distinguish between harmonic heart rate and respiration.
129. 根据权利要求125的设备,其中:所述多个传感器包括至少两个传感器,用于对患者躯体的不同部分的生理参数进行检测;以及所述处理器与所述转换器通信,用于根据来自所述至少两个传感器的对应信号之间的时间差来确定脉搏波速度,和将所述脉搏波速度转换成对应于血压数据的信号。 129. The apparatus of claim 125, wherein: said plurality of sensors comprises at least two sensors for physiological parameters of different parts of the patient's body is detected; and a processor in communication with said converter, for determining a pulse wave velocity, and converting the pulse wave velocity to correspond to the pressure data in accordance with a signal corresponding to the time difference between signals from said at least two sensors.
130. 根据权利要求129所述的设备,其中所述至少两个传感器包括沿着患者支撑面置于第一位置的第一传感器和沿着所述患者支撑面置于远离所述第一位置的第二位置的第二传感器。 130. The apparatus of claim 129, a first position, wherein said at least two sensors comprises a patient support surface disposed along a first position and a first sensor placed along the patient support surface remote from said a second sensor a second position.
131. 根据权利要求129所述的设备,其中所述处理器将所述脉搏波速度转换成对应于收縮压和舒张压数据的信号。 131. The apparatus according to claim 129, wherein the processor is converted into the pulse wave velocity signal corresponding to diastolic and systolic data.
132. 根据权利要求129所述的设备,其中所述至少两个传感器包括至少三个传感器,用于在患者躯体的至少三个不同部分检测所述患者的生理参数,并且所述处理器根据来自所述至少三个传感器的信号之间的时间差来确定脉搏波速度。 132. The apparatus according to claim 129, wherein said at least two sensors comprises at least three sensors for detecting physiological parameters of the patient's body, at least three different portions of the patient, and from the processor in accordance with the time between the at least three sensor signals to determine the difference between the pulse wave velocity.
133. —种用于被动地监视患者生理的设备,其包括: 至少两个传感器,每个所述传感器包括压电膜,用于对患者躯体上的不同部分的患者生理参数进行检测;与所述传感器进行通信的转换器,用于把所述检测的生理参数转换成数字信号;和与所述转换器通信的处理器,用于根据来自所述传感器的对应信号之间的时间差来确定脉搏波传递时间,和将所述脉搏波传递时间转换成对应于血压数据的信号。 133. - species for passively monitoring a patient's physiological apparatus, comprising: at least two sensors, each said sensor comprises a piezoelectric film, for different patient physiological parameter portion of the patient's body is detected; and the said sensor in communication converter, for converting the detected physiological parameters into a digital signal; and a processor in communication with said converter, for determining based on the time difference between the pulse signals from the sensor corresponding to wave transmission time, and transmission time of the pulse wave is converted into a signal corresponding to the blood pressure data.
134. 根据权利要求133所述的设备,其中所述至少两个传感器包括沿着患者支撑面置于第一位置的第一传感器和沿着所述患者支撑面置于远离所述第一位置的第二位置的第二传感器。 134. The apparatus of claim 133 a first position, wherein said at least two sensors comprises a patient support surface disposed along a first position and a first sensor placed along the patient support surface remote from said a second sensor a second position.
135. 根据权利要求133所述的设备,其中所述处理器将所述脉搏波传递时间转换成对应于收縮压和舒张压数据的信号。 135. The apparatus according to claim 133, wherein the processor of the transmitting pulse wave corresponding to the time signal converted into data of systolic and diastolic pressure.
136. 根据权利要求133所述的设备,其中所述至少两个传感器包括至少三个传感器,用于在患者躯体的至少三个不同部分检测所述患者的生理参数,并且所述处理器根据来自所述至少三个传感器的信号之间的时间差来确定脉搏波传递时间。 136. The apparatus according to claim 133, wherein said at least two sensors comprises at least three sensors for detecting physiological parameters of the patient's body, at least three different portions of the patient, and from the processor in accordance with the time between the at least three sensor signals to determine the difference between the pulse wave transit time.
137. 根据权利要求125所述的设备,其中:所述多个传感器包括至少三个传感器,用于对患者躯体上的至少三个不同部分的患者生理参数进行检测;以及所述处理器与所述转换器通信,用于提取表示在所述患者躯体上的每个所述不同位置的患者心率的信号,比较来自所述患者躯体上的不同位置的心率信号,以确定在所述患者躯体上的所述不同位置的对应心率信号之间的时间间距,基于所述时间间距计算通过所述患者躯体的脉搏波传播速率,并且将所述脉搏波传播速率转换成对应于血压数据的信号。 137. The apparatus according to claim 125, wherein: said plurality of sensors comprises at least three sensors, patient physiological parameter for at least three different parts of the patient's body is detected; and wherein the processor communicating said converter, for extracting each of the patient's heart rate represents different positions of signals on the patient's body, the heart rate signal from a comparison of different positions on the patient's body, to determine the patient's body heart rate signal corresponding to the time between the different locations of the pitch, calculates the pulse wave propagation velocity through the patient's body based on the time interval, and converting the pulse wave propagation velocity signal to correspond to the blood pressure data.
138. 根据权利要求137所述的设备,其中所述传感器中的每一个包括压电膜。 138. The apparatus according to claim 137, wherein each of said sensors comprises a piezoelectric film.
139. 根据权利要求137所述的设备,其中所述多个传感器中的每个传感器包括聚偏氟乙烯膜。 139. The apparatus according to claim 137, wherein said plurality of sensors each sensor comprising a polyvinylidene fluoride film.
140. 根据权利要求137所述的设备,其中所述血压信号包括收縮压和舒张压数据。 140. The apparatus according to claim 137, wherein said blood pressure signal comprises a systolic and diastolic data.
141. 根据权利要求125所述的设备,包括:所述多个传感器适于在患者躯体上的不同位置处与所述患者相连;所述传感器适于检测所述患者的生理活动; 所述转换器适于将所述检测的生理活动转换成信号;以及所述处理器适于测量所述传感器之间的脉搏波传递时间,并且适于将所述脉搏波传递时间转换成血压数据。 141. The apparatus according to claim 125, comprising: a plurality of sensors adapted to be connected at the patient's body at different locations with the patient; sensor adapted to detect the physiological activity of the patient; the conversion It is adapted to convert the detected physical activity into a signal; and the processor is adapted to measure the pulse wave between the transmission time of the sensor, and adapted to the transfer time of the pulse wave data is converted into the blood pressure.
142. 根据权利要求141所述的设备,其中所述血压数据包括收縮压和舒张压数据。 142. The apparatus according to claim 141, wherein said pressure data comprises data of systolic and diastolic pressures.
143. 根据权利要求141所述的设备,其中所述不同位置彼此远离。 143. The apparatus according to claim 141, wherein said different positions away from each other.
144. 根据权利要求141所述的设备,其中所述传感器适于穿过一层或多层衣服检测生理活动。 144. The apparatus according to claim 141, wherein the sensor is adapted to pass through one or more layers of clothing detecting a physiological activity.
145. 根据权利要求141所述的设备,其中所述传感器适于穿过一层或多层被褥检测生理活动。 145. The apparatus according to claim 141, wherein the sensor is adapted to detect through one or more layers of bedding physiological activities.
146. 根据权利要求125所述的设备,包括:所述多个传感器适于在患者躯体上的不同位置处与所述患者相连;所述传感器适于检测所述患者的生理活动; 所述转换器适于将所述检测的生理活动转换成信号;以及所述处理器适于利用所述传感器测量脉搏波速度,并适于将所述脉搏波速度转换成血压数据。 146. The apparatus according to claim 125, comprising: a plurality of sensors adapted to be connected at the patient's body at different locations with the patient; sensor adapted to detect the physiological activity of the patient; the conversion It is adapted to convert the detected physical activity into a signal; and the processor is adapted to use the sensor to measure the pulse wave velocity, and is adapted to convert the pressure data into a pulse wave velocity.
147. 根据权利要求146所述的设备,其中所述血压数据包括收縮压和舒张压数据。 147. The apparatus according to claim 146, wherein said pressure data comprises data of systolic and diastolic pressures.
148. 根据权利要求146所述的设备,其中所述不同位置彼此远离。 148. The apparatus according to claim 146, wherein said different positions away from each other.
149. 根据权利要求146所述的设备,其中所述传感器适于穿过一层或多层衣服检测生理活动。 149. The apparatus according to claim 146, wherein the sensor is adapted to pass through one or more layers of clothing detecting a physiological activity.
150. 根据权利要求146所述的设备,其中所述传感器适于穿过一层或多层被褥检测生理活动。 150. The apparatus according to claim 146, wherein the sensor is adapted to detect through one or more layers of bedding physiological activities.
151. —种用于被动地监视移动患者生理的设备,其包括-至少两个传感器,每个所述传感器被配置以检测由于生理参数引起的患者机械能和由于所述患者躯体上的不同位置的外部运动引起的患者机械能;与所述传感器进行通信的转换器,用于把所述检测的机械能转换成数字信号;和与所述转换器通信的处理器,用于处理所述数字信号,以通过使所述传感器之间的信号相关来区分由于生理参数引起的信号和由于外部运动引起的信号。 151. - species for passively monitoring a mobile patient's physiological apparatus, comprising - at least two sensors, each sensor is configured to be able to detect different physical locations on the patient physiological parameter as the patient due to mechanical Because external patient motion induced mechanical energy; with the sensor transducer in communication, for detecting said mechanical energy is converted into a digital signal; and a processor in communication with the converter for processing the digital signal to by correlation of the signal to distinguish between the sensor due to the physiological parameter signal and a signal due to an external cause exercise-induced.
152. 根据权利要求151所述的设备,其中所述传感器中的每一个包括压电膜。 152. The apparatus according to claim 151, wherein each of said sensors comprises a piezoelectric film.
153. 根据权利要求151所述的设备,其中所述传感器中的每一个包括聚偏氟乙烯膜。 153. The apparatus according to claim 151, wherein each of said sensors comprises a polyvinylidene fluoride membrane.
154. 根据权利要求151所述的设备,其中所述传感器沿着患者支撑面放置。 154. The apparatus according to claim 151, wherein the sensor is positioned along the patient support surface.
155. 根据权利要求151所述的设备,进一步包括并入了所述传感器的衬垫。 155. The apparatus according to claim 151, further comprising incorporating the sensor pad.
156. —种用于在直升机环境中被动地监视患者生理的设备,包括: 运动传感器,其适于与所述患者相连接;所述运动传感器适于检测所述患者的机械能,所述机械能包括与所述患者生理有关的能量和与直升机环境有关的能量;转换器,其用于将所述检测的机械能转换成信号;以及处理器,其用于提取对应于所述患者生理的信号,用于分离与所述患者的选定生理参数有关的信号,以及用于输出表示所述患者的选定生理参数的信号。 156. - species for passively monitoring a patient's physiological environment in a helicopter apparatus, comprising: a motion sensor, which is adapted to be connected to the patient; the patient motion sensor adapted to detect the mechanical energy, said mechanical energy comprises patient relating to the physiological environment of energy and the energy associated with the helicopter; converter for converting the detected signal is converted into mechanical energy; and a processor for extracting a signal corresponding to the patient's physiology, with separating the selected physiological parameter associated with the patient signal and for outputting a signal indicative of the selected physiological parameter of a patient.
157. 根据权利要求156所述的设备,其中所述传感器包括压电膜。 157. The apparatus according to claim 156, wherein the sensor comprises a piezoelectric film.
158. 根据权利要求156所述的设备,进一步包括多个传感器,其适于在所述患者躯体上的不同位置处与所述患者相连接,并且用于检测所述患者的机械能。 158. The apparatus according to claim 156, further comprising a plurality of sensors at different locations and adapted to be connected to the patient on the patient's body, the patient and for detecting mechanical energy.
159. 根据权利要求1所述的设备,其中所述至少两个传感器包括一个传感器阵列,其中的传感器分布在患者支撑面上的不同位置之上。 159. The apparatus according to claim 1, wherein said at least two sensors comprises an array of sensors, wherein the sensors distributed over the different positions of the patient support surface.
160. 根据权利要求159所述的设备,其中所述阵列包括矩形阵列。 160. The apparatus according to claim 159, wherein said array comprises a rectangular array.
161. 根据权利要求159所述的设备,其中所述阵列包括按相邻行和列分布的传感器。 161. The apparatus according to claim 159, wherein said array comprises a sensor by adjacent rows and columns.
162. 根据权利要求161所述的设备,其中所述患者支撑面选自由病床和担架构成的组中。 162. The apparatus 161 according to the group claim, wherein the patient support surface selected from the group consisting of beds and stretchers.
163. 根据权利要求159所述的设备,其中所述传感器被排列成一种基本覆盖了所述患者支撑面整个区域的图案。 163. The apparatus according to claim 159, wherein the sensor is arranged in a basic pattern covering the entire area of ​​the patient support surface.
164. 根据权利要求1所述的设备,其中每个所述传感器的形状为矩形。 164. The apparatus according to claim 1, wherein the shape of each of the sensor is rectangular.
165. 根据权利要求164所述的设备,其中每个所述传感器的尺寸为约20厘米x25厘米。 165. The apparatus according to claim 164, wherein each of said sensor size is about 20 cm x25 cm.
166. 根据权利要求1所述的设备,其中所述至少两个传感器包括多个传感器,其沿着所述患者支撑面的长度方向放置在不同位置处。 166. The apparatus according to claim 1, wherein said at least two sensors comprises a plurality of sensors placed at different positions along the longitudinal direction of the patient support surface.
167. 根据权利要求1所述的设备,其中所述至少两个传感器包括多个传感器,其沿着所述患者支撑面的横向方向放置在不同位置处。 167. The apparatus according to claim 1, wherein said at least two sensors comprises a plurality of sensors placed at different positions along the transverse direction of the patient support surface.
168. 根据权利要求166所述的设备,其中所述至少两个传感器进一步包括多个传感器,其沿着所述患者支撑面的横向方向放置在不同位置处。 168. The apparatus according to claim 166, wherein said at least two sensors further comprises a plurality of sensors placed at different positions along the transverse direction of the patient support surface.
169. 根据权利要求36所述的设备,进一步包括并入压电传感器的衬垫。 169. The apparatus according to claim 36, further comprising incorporating a piezoelectric sensor pad.
170. 根据权利要求42所述的设备,其中所述计算装置响应所述脉搏波速度进一步计算血压数据。 170. The apparatus according to claim 42, wherein said computing means responsive to said pulse wave velocity calculation further blood pressure data.
CNB028288653A 2002-03-25 2002-03-25 Passive physiological monitoring (P2M) system CN100518638C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2002/009280 WO2003082111A1 (en) 2002-03-25 2002-03-25 Passive physiological monitoring (p2m) system

Publications (2)

Publication Number Publication Date
CN1625368A CN1625368A (en) 2005-06-08
CN100518638C true CN100518638C (en) 2009-07-29

Family

ID=28673380

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028288653A CN100518638C (en) 2002-03-25 2002-03-25 Passive physiological monitoring (P2M) system

Country Status (7)

Country Link
EP (1) EP1494586A4 (en)
JP (1) JP4344247B2 (en)
CN (1) CN100518638C (en)
AU (1) AU2002311781B2 (en)
CA (1) CA2479972A1 (en)
HK (1) HK1075190A1 (en)
WO (1) WO2003082111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106236041A (en) * 2016-08-23 2016-12-21 电子科技大学 A kind of measure in real time and accurately heart rate and the algorithm of breathing rate and system

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666151B2 (en) 2002-11-20 2010-02-23 Hoana Medical, Inc. Devices and methods for passive patient monitoring
WO2005000108A2 (en) 2003-06-26 2005-01-06 Hoana Medical, Inc. Radiation stress non-invasive blood pressure method
CN100544667C (en) 2003-12-04 2009-09-30 赫艾纳医疗公司 Intelligent medical vigilance system
IL160308D0 (en) * 2004-02-10 2004-07-25 Itshak Y Ben Yesha Method for determining heart rate
US7652581B2 (en) 2004-02-18 2010-01-26 Hoana Medical, Inc. Method and system for integrating a passive sensor array with a mattress for patient monitoring
FI120961B (en) * 2004-07-01 2010-05-31 Emfit Oy Method and apparatus for measuring and monitoring vital signs or presence
JP2008302133A (en) * 2007-06-11 2008-12-18 Aisin Seiki Co Ltd Device for sleep apnea correction
JP5192904B2 (en) * 2008-05-21 2013-05-08 パナソニック株式会社 Heart rate respiration measuring device
CN102648845A (en) * 2011-02-23 2012-08-29 深圳市迈迪加科技发展有限公司 Automatic wireless monitoring and early-warning system for heartbeat and breath in sleep
CN102100558A (en) * 2011-02-23 2011-06-22 北京大学深圳研究生院 Wireless respiration monitoring device
CN102805617A (en) * 2011-05-30 2012-12-05 张国源 Small electronic physiological monitoring system with heart frequency spectrum monitoring function and monitoring method for monitoring system
CN102415884A (en) * 2011-09-09 2012-04-18 北京大学深圳研究生院 Piezoelectric film sensor and multiple chip package (MCP) form of wireless breath detection circuit
CN102429642B (en) * 2011-09-26 2014-03-05 深圳市视聆科技开发有限公司 Method and system for acquiring physiological information and converter
CN102512760B (en) * 2011-11-25 2014-08-06 上海交通大学 Embedded energy collector based on respiratory movement
JP2014008070A (en) * 2012-06-27 2014-01-20 Nissan Motor Co Ltd Stress state estimation device and stress state estimation method
CN102988050B (en) * 2012-11-16 2017-05-31 汇嘉健康生活科技有限公司 Inductive layer and its monitoring of respiration mattress
CA2896555A1 (en) * 2012-12-31 2014-07-03 Volcano Corporation Intravascular devices, systems, and methods
CN104274158A (en) * 2013-07-10 2015-01-14 上海宽带技术及应用工程研究中心 Furniture physical sign detection device and furniture type physical sign monitoring system
CN104274181B (en) * 2013-07-10 2018-12-18 上海宽带技术及应用工程研究中心 Furniture type sign detection method, system and monitoring system
CN104510451A (en) * 2013-09-29 2015-04-15 海思康利(北京)新技术有限公司 Non-load monitoring system
CN105916436A (en) * 2014-01-16 2016-08-31 诺基亚技术有限公司 Device and method for measuring arterial signals
CN104287698B (en) * 2014-09-16 2016-04-06 苏州能斯达电子科技有限公司 Flexibility for cervical region pulse detection can attach sensor and preparation method thereof
CN104257366B (en) * 2014-09-16 2016-06-01 苏州能斯达电子科技有限公司 A kind of wearable physiology sign detecting sensor, preparation method and Monitoring systems thereof
CN104257359B (en) * 2014-09-16 2016-04-06 苏州能斯达电子科技有限公司 A kind of wearable flexible sensor of monitoring wrist pulse and preparation method thereof
CN105590530A (en) * 2014-10-21 2016-05-18 天津市医学堂科技有限公司 Proximity detection and application technology-based first-aid transfer model
CN104545825B (en) * 2014-11-25 2017-11-24 中原工学院 PVDF fexible film body temperature heart sound integrated sensors
CN104490399B (en) * 2014-12-19 2017-08-01 北京智谷睿拓技术服务有限公司 Human motion information capture method and apparatus
CN104840307A (en) * 2015-01-28 2015-08-19 张家港市协和医疗器械有限公司 Medical stretcher with wireless blood pressure transmitting device
CN104644346A (en) * 2015-01-29 2015-05-27 张家港市协和医疗器械有限公司 Ambulance stretcher with electrocardiogram wireless transmission device
CN105012085A (en) * 2015-07-14 2015-11-04 苏克莉 Multifunctional transport frame for cardiovascular department
CN105380656A (en) * 2015-11-02 2016-03-09 上海斐讯数据通信技术有限公司 Intelligent protective instrument and motion monitoring system and method adopting same
CN106923807A (en) * 2015-12-31 2017-07-07 北京大学深圳研究生院 Based on the method and system that temperature is corrected to blood pressure measurement
CN106562761A (en) * 2016-08-10 2017-04-19 深圳市格兰莫尔寝室用品有限公司 Physiological signal collection device, method and sleep monitoring and improving device
CN106562762B (en) * 2016-08-10 2019-10-25 深圳市格兰莫尔科技有限公司 A kind of sleep monitor and improve device and method
WO2018100572A1 (en) * 2016-11-30 2018-06-07 Aeromedical Group Ltd. Device, system and method for medical evacuation
EP3420893A1 (en) * 2017-06-30 2019-01-02 Nokia Technologies Oy Methods, apparatus, computer programs, systems for calculating a pulse wave velocity of a subject

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198394B1 (en) 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6261237B1 (en) 1998-08-20 2001-07-17 Medacoustics, Inc. Thin film piezoelectric polymer sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975182A (en) * 1972-11-20 1974-07-19
US5148002A (en) * 1991-03-14 1992-09-15 Kuo David D Multi-functional garment system
US5544651A (en) * 1992-09-08 1996-08-13 Wilk; Peter J. Medical system and associated method for automatic treatment
US5853005A (en) * 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
IL119721A (en) * 1996-11-29 2005-08-31 Mindlife Ltd Method and system for monitoring the physiological condition of a patient
JP2001525706A (en) * 1997-05-16 2001-12-11 レスメッド・リミテッド Respiratory analysis system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198394B1 (en) 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6261237B1 (en) 1998-08-20 2001-07-17 Medacoustics, Inc. Thin film piezoelectric polymer sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106236041A (en) * 2016-08-23 2016-12-21 电子科技大学 A kind of measure in real time and accurately heart rate and the algorithm of breathing rate and system
CN106236041B (en) * 2016-08-23 2019-06-25 电子科技大学 A kind of algorithm and system measuring heart rate and respiratory rate in real time and accurately

Also Published As

Publication number Publication date
CN1625368A (en) 2005-06-08
AU2002311781B2 (en) 2009-09-03
HK1075190A1 (en) 2010-04-09
EP1494586A1 (en) 2005-01-12
EP1494586A4 (en) 2009-07-22
AU2002311781A1 (en) 2003-10-13
JP4344247B2 (en) 2009-10-14
JP2006504443A (en) 2006-02-09
WO2003082111A1 (en) 2003-10-09
CA2479972A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
EP2020919B1 (en) Apparatus, system, and method for monitoring physiological signs
US5913826A (en) Wideband external pulse cardiac monitor
US7011410B2 (en) Method and apparatus for monitoring eye tremor
US6816266B2 (en) Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
CN100475128C (en) Biological information monitoring system
US6852083B2 (en) System and method of determining whether to recalibrate a blood pressure monitor
JP2009509630A (en) System and method for non-invasive detection and monitoring of cardiac and blood parameters
US5830131A (en) Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
DE60313796T2 (en) Force or pressure sensor
JP3703496B2 (en) Apparatus and method for measuring induced perturbations and measuring physiological parameters
Alihanka et al. A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration
US6852086B2 (en) Detection of signs of attempted deception and other emotional stresses by detecting changes in weight distribution of a standing or sitting person
US4195643A (en) Diagnostic force analysis system
US20040260156A1 (en) Chair and ancillary apparatus with medical diagnostic features in a remote health monitoring system
EP1416847B1 (en) Cardio-pulmonary monitoring device
US20030208109A1 (en) Chair and ancillary apparatus with medical diagnostic features in a remote health monitoring system
US9241637B2 (en) Systems and methods for monitoring the circulatory system
US7396331B2 (en) System and process for non-invasive collection and analysis of physiological signals
US5590650A (en) Non-invasive medical monitor system
US8747330B2 (en) Body-worn monitor for measuring respiratory rate
JP2008536545A (en) System for continuous blood pressure monitoring
US9173594B2 (en) Body-worn monitor for measuring respiratory rate
JP2011505997A (en) Adhesive patch for measuring acoustic signals
CN100592892C (en) Devices and methods for passive patient monitoring
Chiu et al. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1075190

Country of ref document: HK

C14 Grant of patent or utility model
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1075190

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee