CN100477539C - Coupler for coupling data signal to power transmission cable - Google Patents

Coupler for coupling data signal to power transmission cable Download PDF


Publication number
CN100477539C CN 01822880 CN01822880A CN100477539C CN 100477539 C CN100477539 C CN 100477539C CN 01822880 CN01822880 CN 01822880 CN 01822880 A CN01822880 A CN 01822880A CN 100477539 C CN100477539 C CN 100477539C
Prior art keywords
Prior art date
Application number
CN 01822880
Other languages
Chinese (zh)
Other versions
CN1493111A (en
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/752,705 priority Critical patent/US6452482B1/en
Priority to US09/752,705 priority
Application filed by 埃姆别特公司 filed Critical 埃姆别特公司
Publication of CN1493111A publication Critical patent/CN1493111A/en
Application granted granted Critical
Publication of CN100477539C publication Critical patent/CN100477539C/en



    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits
    • H04B2203/5487Systems for power line communications using coupling circuits cables


一种用于允许经输电电缆(100)传送数据信号的装置。 An apparatus for allowing transmission via cable (100) for transmitting a data signal. 该装置包括第一绕组(225),用于经该输电电缆的导线耦合该数据信号;以及第二绕组(235),电感耦合到该第一绕组(225),用于经数据端口耦合该数据信号。 The apparatus comprises a first winding (225), coupled to the conductors of the transmission cable data signal; and a second winding (235), coupled to the first inductive winding (225), via a data port coupled to the data signal. 一种用于识别电力线的多条中性线(105)中的一条中性线的装置,包括接收器(902),用于检测来自所述输电电缆的选定中性线的信号以及信号大小的指示器(905)。 A plurality of neutral wires (105) in a neutral line apparatus, comprising a receiver (902) for identifying a power line, a signal magnitude detector and a signal from a selected neutral wire of the power transmission cable the indicator (905).


将数据信号耦合到输电电缆的耦合器 The data signal is coupled to the coupler of the transmission cable

技术领域 FIELD

本发明涉及配电系统上的数据信息的通信,以及更具体地说,涉及使用用于经输电电缆中的导线耦合数据信息的电感耦合器。 The present invention relates to data communications on the power distribution system, and more particularly, relates to the use of inductive coupler for coupling data via a wire transmission cable information.

背景技术 Background technique

使用所谓的"载波"系统,已经将家庭或企业的范围内的低电压电力线用作用于点对点或网络通信的媒介,在该"载波"系统中,将 So-called "carrier" system, has been in the range of low voltage power line is used as a home or business or medium for the ad hoc network communication, the "carrier" system, the

数据信息调制到高频(HF)载波并在电力线上传送。 Data modulated to a high frequency (HF) carrier and transmitted on the power line. 在Internet数据干线和每个住所间需要"最后一英里"连接的Internet访问将大大地增强这些网络的效用。 We need "last mile" Internet access connections will greatly enhance the utility of these networks among Internet data trunk and each domicile.

通过MV-LV配电变压器,将通常为4-66KV的中压(MV)降低到通常为100至500伏的低电压(LV)。 By MV-LV distribution transformer, it will generally be reduced to medium-pressure (MV) 4-66KV generally to a low voltage of 100 to 500 volts (LV). 经配电变压器,中压配电网格为许多家庭和企业供电。 By distribution transformers, medium-voltage distribution grids to supply many homes and businesses. 如果数据出现在中压电网上,将期望将宽带数据流从变电所耦合到邻近的整个区域,但配电变压器有效地阻止高频能量,从而阻止数据到达LV引入线。 If the data is present in the piezoelectric Internet, it would be desirable to couple broadband data streams from the adjacent substation to the entire area, but the distribution transformers effectively block high frequency energy, thereby preventing the introduction of data reaches line LV.

在使用额定低电压为125伏或更低的国家,诸如北美,通常将从配电变压器到家庭或企业中的电力负载的引入线保持在短于约50米, 以便最小化经过这些线的电压降并保持适当的电压调节。 In countries using nominal low voltages of 125 volts or less, such as North America, usually from the distribution transformer to the inlet of a home or business electric power load is maintained at less than about 50 meters, so as to minimize the voltage across these lines down and maintain appropriate voltage regulation. 通常,每个配电变压器仅为1至IO家庭或企业供电。 Typically, each distribution transformer is only 1 to IO power a home or business. 对这种少量的潜在用户,实现昂贵的高数据率输送,诸如光纤或TI,以及通过电力线通信装置将其耦合到变压的低压端是不经济的。 Such a small number of potential users, an expensive high data rate to achieve delivery, such as optical fibers or TI, and by the power line communication means coupled to the low pressure side of the transformer is not economical. 因此,为将中压配电网格开发成数据回程通道,需要旁路配电变压器的装置。 Therefore, the voltage distribution network into a data format developed in the return path, the device needs to bypass the distribution transformer.

在配电系统中,通常在变电所的HV-MV降低变压器,将通常为100-800kV的高压(HV)降低到中压。 In the distribution system, generally reduces transformer substation HV-MV, will generally be reduced to 100-800kV high voltage (HV) to the intermediate pressure. 配电变压器的高频阻止特性将中压配电网格与在低压和高压(HV)线上出现的高频噪声隔离开来。 High-frequency blocking characteristics of distribution transformers in the medium voltage distribution network and the high frequency noise in cells isolated low and high voltage (HV) line appears open. 因此,中压网格是相对静止的媒介,对数据分配系统或"回程线"传送高速数据很理想。 Thus, the grid is relatively static pressure medium, the data distribution system or "backhaul line" very high-speed data transfer over. 送高速数据很理想。 To send high-speed data very satisfactory.

上述变压器实际上阻止兆赫频率范围内的所有能量。 Practically all the energy of the transformer prevents the megahertz frequency range. 为将高频调 It is a high frequency tone

制数据从MV线耦合到LV线,必须在每个变压站安装旁路装置。 System data line is coupled from the MV lines to the LV, the bypass device must be installed in each substation. 装置是目前可获得的并用于低频、代数据率数据耦合应用。 Means are currently available and used for low frequency generation of data rate data coupling applications. 这些应用通常称为电力线通信(PLC)。 These applications usually called Power Line Communication (PLC). 这些装置通常包括必须经受住基础脉冲加载(BIL)电压,通常为50kV的高压串瞎耦合电容器。 These devices typically include a base pulse must withstand load (BIL) voltage, typically a high voltage coupling capacitor blind string 50kV. 因此,这些装置昂贵、庞大,并且对整个电网可靠性有影响。 Therefore, these devices are expensive, bulky, and the impact on the reliability of the entire grid. 另外,在某些情况下, 在安装它们期间,需要从用户断电。 Further, in some cases, during their installation, required by a switch from the user.

在具有在100-120伏范围内的额定低电压的国家中,诸如日本和美国,配电变压器的数量特别大。 In countries with in the range of 100-120 volts nominal low voltage, such as Japan and the United States, the number of distribution transformers is especially large. 这是因为将MV-LV配电变压器放在相对接近负载以便保持馈电电阻为低。 This is because the MV-LV distribution transformers placed relatively close to the load in order to maintain a low feed resistance. 需要低馈电电阻以便随着改变负载电流,保持合理的电压调节电平,即,供电电压中的最小变化。 Low feed resistance needs to change with the load current, to maintain a reasonable level of voltage regulation, that is, minimal variation in supply voltage. 用于距离超过50米的LV馈电线将需要不可能实施的粗导线。 LV feed lines for distances greater than 50 meters thick wire embodiment would require the impossible.

为使数据耦合器有效,在上下文中,必须将其视为结合MV电力线的高频特性以及其他连接到这些线的部件,诸如变压器、功率因数补偿电压器、PLC耦合电容器以及断开开关一起操作。 For valid data coupler, in this context it must be considered in conjunction with the high frequency characteristics MV power lines and other components connected to these lines, such as an operation with a transformer, power factor compensation voltage generators, PLC coupling capacitors, and disconnect switch . 这些部件在不同国家和地区中以不同电压操作。 These components operate at different voltages in different countries and regions. 操作电压电平在兆赫频率时,对中压电力装置的几何结构以及这些装置的终端阻抗具有直接的影响。 Operating voltage level when MHz, has a direct impact on the geometry voltage power apparatus and the terminal impedance of these devices. 影响MV电力线上的高频信号的其他因素包括网络的几何结构,例如, 分支、使用电缆连接到高阻抗架空线的低压阻抗地下,以及由于断开形状的动作,将网络分成子网的可能性。 Other factors affecting high frequency signals MV power lines include the geometry of the network, e.g., branch, cable connection to a high impedance low voltage overhead line impedance underground, and because of the shape of the disconnection operation, the possibility of the network into subnets . 因此,在用在每个国家和MV 电压电平的装置的特定特征的情况下,必须考虑MV-LV耦合器装置的适用性。 Thus, in a case where a particular feature is used in each country and the MV device voltage levels, applicability, MV-LV coupler device must be considered.

架空传输线的特征在于以基本上恒定的间隔运转两条或多条导线,在它们间具有空气介质。 Characterized in that the overhead transmission line is operated at a substantially constant interval two or more wires having an air dielectric between them. 这些线具有300至500欧姆范围内的特性阻抗,以及非常低的损耗。 The line having a characteristic impedance in the 300 to 500 ohms range, and very low loss. 同轴地下电缆包括由电介质围绕的中心导线,在中心导线上,缠绕中性导线。 Coaxial underground cables comprise a center conductor surrounded by a dielectric, in the center conductor, neutral conductor winding. 这些电缆具有20至40欧姆范围内的特性阻抗,并显示用于兆赫信息的损耗,根据电介质的损耗属性,该报耗可为每百米2dB—样低。 These cables have a characteristic impedance in the range of 20 to 40 ohms, and display loss for Megahertz information, electrical losses according to the properties of the media, like paper consumption may be low per 2dB- meters.

设置为从单个相位到中性或三相网格中从相位到相位操作的MV-LV配电变压器在MV端具有初级绕组,该初级绕组呈现为具有用于10MHz频率的40至300欧姆范围内的阻抗。 From a single phase to three-phase to neutral or from phase to phase grid operation MV-LV distribution transformer having a primary winding in the MV side, rendering the primary winding within a range of 40 to 300 ohms with a frequency of 10MHz impedance. 功率因数补偿电容器具有大的额定电容值(例如,0.05-1^),但它由它们的结构固有的串联电感初始确定它们的高频阻抗。 Power factor correction capacitors have large nominal capacitance values ​​(e.g., ^ 0.05), but their high frequency impedance initially determined by the series inductance inherent in their structure. PLC耦合电容器具有更低的额定电容,例如,2.2至10nF,但具有相对于电力电缆的特性阻抗,相对低的高频阻抗。 PLC coupling capacitors have lower nominal capacitance, e.g., 2.2 to 10nF, but with respect to the characteristic impedance of the power cable, a relatively low frequency impedance. 上述任何一个装置在兆赫范围内可产生谐振,即,复数阻抗的虚部变为0欧姆,但这些装置在这些频率不具有高Q因素,因此阻抗的大小对串联谐振来说,通常不接近零或对并联谐振来说,不会接近极其高的值。 Any of these means may generate resonance in the megahertz range, i.e., the imaginary part of the complex impedance becomes zero ohms, but the devices do not have high Q factors at these frequencies, the impedance of the series resonance magnitude is usually not close to zero or the parallel resonance is not close to the extremely high values.

用在MV网格上的另一种装置,特别是在日本,为远程控制三相断开开关。 Another device on the MV grids, especially in Japan, is a remotely controlled three phase disconnect switch. 当在经过这类开关的相位线上传送数据信号时,即使当通过开关断开该相位线,也需要保持数据的连续性。 When such a phase-line switch signal transfer data, even when the switch is turned off through the phase line, need to maintain the continuity of the data.


本发明的目的是提供用于将数据信号耦合到输电电缆的导线的改进的耦合器。 Object of the present invention to provide a data signal for coupling to an improved wire transmission cable coupler.

本发明的另一目的是提供廉价并具有高数据率电容的这种耦合器。 Another object of the present invention is to provide an inexpensive and have a high data rate such capacitive coupling.

本发明的另一目的是提供能在不中断向用户供电的服务的情况下安装的耦合器。 Another object of the present invention is to provide a can be mounted without interrupting power supply of the service to the user coupler.

本发明的另一目的是提供仅使用具有实际上无限使用寿命的无源元件的这种耦合器。 Another object of the present invention is to provide such a coupler using only passive components having a virtually unlimited service life.

通过用于经输电电缆允许数据信号通信的装置来实现本发明的这些和其他目的,包括(a)第一绕组,用于经输电电缆的导线,耦合数据信号;以及(b)第二绕组,电感耦合到第一绕组,用于经数据端口耦合数据信号。 To achieve these and other objects of the present invention, comprising (a) a first winding, for transmission via the wire cable, the coupling means via the data signal transmission cable allows data communications signal; and (b) a second winding, inductively coupled to the first winding, for coupling the data signal via a data port.


图1是根据本发明,表示用作通信媒介的中性线的典型地下同轴中压配电电缆的图解。 FIG 1 according to this invention, an illustrative typical underground coaxial distribution cable serving as a communication medium in neutral pressure.

图2A是根据本发明,使用用于数据通信的单一中性线的单端传输线的装置的图解。 2A is the present invention, illustrating the single-ended transmission line means a single neutral wire for data communication use. 图2B是图2A的装置的示意性表示。 FIG 2B is a schematic representation of the apparatus of FIG. 2A.

图3A是根据本发明,其中将两条中性线用作用于传送数据信号的传输线的输电电缆的图解。 3A is according to the invention in which two neutral wires as a transmission cable for illustrating a transmission line transmitting a data signal.

图3B是图3A中所示的装置的示例性表示。 3B is an exemplary apparatus shown in FIG. 3A. FIG.

图3C是对图3A中所示的装置的备选方案的使用多条中性线以形成数据传输线的示意性表示。 3C is a plurality of neutral-to-use alternative to the device shown in FIG. 3A to form a data transmission line is schematically represented. . .

图3D是用于实现图3C中所示的装置的技术的图解。 FIG 3D is a diagrammatic technique for realizing the device shown in FIG. 3C.

图4A和4B示例说明用于与由数据信号差动驱动的一对中性导线一起使用的耦合器的磁芯拓扑结构的实施例。 4A and 4B illustrate exemplary embodiments of a magnetic core topology for a coupler for use with a pair of neutral conductors differential driven by the data signal.

图5A是具有由放置环形磁芯而引入的高阻抗的电缆的装置的图解。 FIG 5A is a diagram of a cable means having a high impedance introduced by placement of the toroidal core.

图5B是图5A的装置的示意性表示。 5B is a schematic representation of the apparatus of FIG. 5A.

图6A-6C是根据本发明,使用两条中性线以及磁感应的平衡传输 Figures 6A-6C according to the present invention, a balanced transmission line and a neutral two magnetic induction

线的几个装置的图解。 Line illustrates several means.

图6D是6A至6C的装置的示意性表示。 6D is a schematic of the apparatus of FIG. 6A to 6C.

图7是根据本发明,使用磁感应的平衡传输线的示意图。 FIG 7 is a schematic view of the present invention, a magnetic induction of the balanced transmission line.

图8是使用具有多组中性线的多条传输线的本发明的实施例的示意图。 FIG 8 is a schematic of an embodiment of the present invention having a plurality of transmission lines using a plurality of sets of neutral.

图9A是用于识别输电电缆的多条导线中的一个的系统的示意图。 9A is a schematic diagram of a system for identifying a plurality of conductors in the transmission cable. 图9B是用于识别输电电缆的多条导线中的一个的系统的图解。 FIG 9B is an illustration of a system for identifying a plurality of wires of a power transmission cable of. 图IOA和10B是根据本发明,在配电系统上实现的数据通信网部 FIG IOA and 10B according to the present invention, a data communication network implemented on the power distribution unit system

分的示意图,其中在配电系统的相导线上运送数据。 Partial schematic, wherein the phase conductor carrying data in a power distribution system.

图IIA是根据本发明,用于经相导线耦合数据的电感耦合器的实 FIG IIA according to the present invention, the inductive coupler for coupling data via a phase conductor solid

施例的图解。 It illustrates an example of application.

图11B是图11A中所示的实施例的示意表示。 11B is a schematic of the embodiment shown in FIG. 11A. FIG.

图12是在电感耦合器处具有背对背调制解调器的网络部分的示意图。 FIG 12 is a schematic diagram of a network having back-part of the modem at the inductive coupler.

图13是根据本发明,用于在电网段间无源耦合调制数据的技术的示意图。 According to the present invention, FIG 13 is a schematic view of the grid segments art passively coupled between the modulated data.

图14是用于使用背对背调制解调器,在电网段间耦合调制数据的技术的示意图。 FIG 14 is a back to back using a modem, a schematic diagram art coupling modulated data between segments grid.

6图15是根据本发明,示意性表示用于将数据耦合到数据通信网的实现方式中的配电系统的相导线的几种技术的示意图。 6 according to the present invention, FIG 15 is a schematic diagram showing the phase conductors of several technologies distribution system implementation in a data communication network for coupling to the data.

图16A是根据本发明,用于端接传输线终端的电感耦合器的示意图。 According to the present invention, FIG. 16A is a schematic view of an inductive coupler for terminating a transmission line terminal.

图16B是根据本发明,使用用于将调制解调器连接到传输线空端(deadend )的电感耦合器的示意图。 FIG. 16B according to the present invention, a schematic view of a transmission line to connect the modem to the blank end (The deadend) for the inductive coupler. . .

图16C是根据本发明,用维护通过网格断开开关的数据信号的连续性的电感耦合器的装置的示意图。 According to the present invention, FIG. 16C is a schematic view of the switching device is off by a data signal through the grid to maintain continuity of the inductive coupler.

具体实施方式 Detailed ways

架空和地下中压传输线可用于数字数据的双向传输。 Overhead and underground medium voltage transmission lines may be used for two-way transmission of digital data. 这些传输线遍及电力公司变电所与遍及邻近放置的一个或多个MV-LV配电变压器间的通路。 These transmission lines throughout the power company substation and throughout the path between the MV-LV distribution transformers placed adjacent to one or more. MV-LV配电变压器将中压电源降到低压,然后,将该低压输送到家庭和企业。 MV-LV distribution transformer medium voltage power down to low voltage, then the low-pressure delivery to homes and businesses.

本发明涉及使用中压网格中的耦合器。 The present invention relates to a coupler of the MV grid. 该耦合器用于允许经输电电缆传送数据信号。 The coupler allows for transmitting data signals via the transmission cable. 其具有用于经输电电缆的导线耦合数据信号的第一绕组,以及电感耦合到第一绕组的第二绕组,用于经数据端口耦合该数据信号。 Having a winding wire through a first data signal transmission cable is coupled, and a second winding inductively coupled to the first winding, via a data port coupled to the data signal.

本发明的一个实施例釆用具有一条或多条中性线,S卩,与同轴电缆类似,缠绕在电缆的外层的导线的输电电缆。 One embodiment of the present invention having preclude the use of one or more neutral, S Jie, similar to the coaxial cable wound on the cable outer conductor transmission cable. 输电电缆的一条或多条中性线用作用于一个或多个数据信号的导线。 One or more electrical transmission cable is used as a neutral conductor or a plurality of data signals.

另一实施例采用输电电缆的相导线。 Another embodiment employs the phase conductors of the transmission cable. 在这种情况下,输电电缆的相导线用作用于一个或多个数据信号的导线。 In this case, the phase conductor of the power transmission cable serves as a conductor for one or more data signals.

图1是根据本发明,具有耦合到此的电感耦合器的典型的地下同轴中压配电电缆100的图解。 Figure 1 is according to the invention having a typical underground coaxial inductive coupler coupled thereto a medium voltage distribution cable 100 is illustrated. 电缆100具有螺旋缠绕在磁芯绝缘体120 上的N多条中性导线105,磁芯绝缘体环绕导相线(phase conducting wire) 115。 Cable 100 having a spiral wound on the magnetic core of the insulator 120 of the plurality of neutral wires 105 N, an insulator surrounding the conductive core phase (phase conducting wire) 115. 例如,在可从Pirelli Cavi e Sistemi SpA,Viale Sarca,222,Milano,Italy20126获得的Pirelli Cable X-0802/4202/0692 TRXLPE 25KV 260密耳1/0 A WG AL电缆中,存在绝缘环绕的相导线, 在该相导线上,缠绕8股2.8mm直径铜线。 For example, in a Pirelli Cable X-0802, available from Pirelli Cavi e Sistemi SpA, Viale Sarca, 222, Milano, Italy20126 / 4202/0692 TRXLPE 25KV 260 mils 1/0 A WG AL cables, the presence of a phase conductor surrounded by insulation on the phase conductors, 2.8mm diameter copper wire winding 8 shares. 具有12至16中性导线的电缆也是普通的。 Cable having 12 to 16 neutral conductors are also common. 在电缆段中使中性导线105彼此分开并隔离。 Neutral conductor 105 are separated and isolated from each other in a cable segment manipulation. 在电缆100端,暴露每个中性导线105的绞合线并切向缠绕,与电缆端隔开一小段距离形成铜线环125以便形成终端。 At the end of the cable 100, exposing each neutral conductor 105 and strand tangentially wound copper wire ring 125 spaced a short distance from the cable end is formed so as to form a terminal. 将这些胶合线集聚成单股绞合线130 并连接到MV-LV配电变压器的接地接线柱。 These glue line aggregate into a single stranded wire 130 and connected to the ground terminal of the MV-LV distribution transformer.

耦合器140己经与导相线115隔离开来,已经证明后者能经受稳态和设定该电缆的额定电压的瞬态电压。 Coupler 140 has with the guide line 115 to isolate the phase, which has proved to withstand steady-state and transient voltage set rated voltage of the cable. 正利用的现有绝缘材料消除了再次用于该耦合器而提供的费用。 Is using a conventional insulating material eliminates the costs for the coupling again provided. 该耦合器可用普通塑料材料包装。 The coupler can be an ordinary plastic packaging material.

耦合器140包括第一绕组(图1中未示出)以及第二绕组(图1 中未示出)。 Coupler 140 includes a first winding (not shown in FIG. 1) and a second winding (not shown in FIG. 1). 由电缆本身提供第一绕组同时第二绕组能包括一匝或两匝具有最小绝缘度的绞合、小直径连接线。 A first winding provided by the cable itself while the second winding can comprise one turn or two turns of stranded, small diameter cable insulation having a minimum degree.

在地下电缆中,诸如,电缆100,由于其提供现有的绝缘体120 来提供与中压线绝缘,因此,使用电感耦合器140特别具有成本效率。 Underground cables, such as cable 100, as it provides the existing insulator 120 to provide isolation of the medium voltage line, therefore, the use of inductive coupler 140 is particularly cost effective.

根据本发明的电感耦合器也适合与架空输电电缆一起使用。 The inductive coupler of the present invention are also suitable for use with an overhead power transmission cable. 电感耦合器通常比电容耦合器廉价,因为增加电感耦合器绝缘材料的厚度基本上不降低该耦合器的性能,而增加电容中的绝缘厚度直接降低其每单位面积的电容,并需要更大的平板面积(plate area)。 Inductive coupler is generally less expensive than a capacitive coupler, as increasing the thickness of the inductive coupler of the insulating material does not substantially reduce the performance of the coupler, while increasing the insulation thickness in the capacitor directly reduce the capacitance per unit area, and require greater plate area (plate area). 因此,与电容耦合器相比,电感耦合器对制造来说相当低廉。 Thus, as compared with capacitive coupling, inductive coupler manufacturing is very low.

有几个本发明的备选实施例。 There are several alternative embodiments of the present invention. 对地下电缆来说, 一个实施例可利用能形成高频传输线的一条或多条地下电缆的中性线,同时保持选定的中性线的电力传导功能。 For underground cable, one embodiment may be formed using a high frequency transmission line of one or more neutral underground cables, while maintaining a selected power conduction neutral line.

图2A是根据本发明,使用用于数据通信的单条中性线的单端传输线的装置的图解。 2A is the present invention, illustrating the single-ended transmission line means of a single neutral wire for data communication use. 图2B是图2A的装置的示意性表示。 FIG 2B is a schematic representation of the apparatus of FIG. 2A. 电缆200包括多条中性导线205,例如,能视为平直数据传输线(flat data transmission) 的、以平缓的螺旋形缠绕在高压绝缘体240和中心相导线245 (center phase conductor )上的导线。 Cable 200 includes a plurality of neutral conductors 205, e.g., data transmission lines can be regarded as flat (flat data transmission) to a gentle spiral wound high-voltage insulator 240 and a center phase conductor on conductor 245 (center phase conductor).

绝缘一个选定的绞合中性导线205,即,中性导线202以便充当用于数据信号的数据传输线导线,以及剩余的中性导线205,主要是两个与中性导线202相邻的中性导线205,用作第二数据传输线导线。 Insulating a selected neutral conductor strand 205, i.e., neutral conductor 202 serving as a data transmission line to a data signal conductor, and the remaining neutral conductors 205, mainly two neutral conductors 202 adjacent to the of the guidewire 205, as the second data transmission line conductor. 对如上所述的Pirelli电缆的横截面,就频率范围为l-50MHz中的信号来说, 估计特性阻抗为95欧姆,该频率范围的子域通常用在数据传输中。 The cross section of the Pirelli cable described above, can l-50MHz frequency range of the signal, the estimated characteristic impedance of 95 ohms, the sub-field frequency range commonly used in data transmission.

为实现图2A中的装置,在已经安装的地下电缆中,从几个中性导线205选择出中性导线202,以及在电缆200的每一端切入暴露210 部分。 Is implemented in the apparatus of FIG. 2A, the cable has been installed in the ground, the neutral conductor 205 selected from the several neutral conductor 202, and the cut portion 210 is exposed at each end of the cable 200. 中性导线202的引线215仍然连接到耦合器220的第一绕组225 。 Neutral conductor leads 215,202 of the coupler 220 is still connected to a first winding 225. 因此,在中性导线202和地之间串联连接第一绕组225。 Thus, between neutral conductor 202 and a first winding 225 connected in series. 将耦合器220 的第二绕组235耦合到端口255,通过该端口255,传送和接收数据。 The coupler 220 couples the second port 255 to the winding 235, through the port 255, transmit and receive data. 因此,将电缆200用作能经耦合器220连接到通信装置,诸如调制解调器(未示出)的高频传输线。 Thus, as the cable 200 can be connected via a coupler 220 to a communication device, such as a high frequency transmission line modem (not shown). . .

从电学上说,耦合器220为变压器。 He said electrically from the coupler 220 is a transformer. 在用于导电的频率,通过这种变压器的初级,即,第一绕组225的阻抗是可忽略的。 Frequency for conduction, through the primary, i.e., first winding 225 of the impedance are negligible such a transformer. 与中性导线202和引线215连接的第一绕组225应当用与中性导线202 —样粗的导线缠绕。 Thick wire wound like - a first winding 225 and the neutral conductor 202 and lead 215 is connected to the neutral wire 202 should be used. 在这些情况下,选定的带有数据的中性导线202实质上具有与其他中性线相同的阻抗。 In these cases, the selected data with a neutral conductor 202 having substantially the same with other neutral line impedance. 其将载有实质上与其他中性线的每一个相同的电流,并且将不能降低中性电路的总载流量以及冲击电流容量。 Which contains substantially the same current as each of the other neutral wires, and will not reduce the total carrying capacity of the neutral circuit, and surge current capacity.

在图2A和2B中,单个中性导线202的中性线电流穿过耦合器220。 2A and 2B, a single neutral conductor 202 passes through the neutral current coupler 220. 对具有8条中性线的200安培电缆来说,带有数据的导线将具有25安培均方值的最大稳态电流。 To 200 amps cable having eight neutral wires, the wire having the data having the maximum steady state current of 25 amps mean square value. 对较小载流量电缆以及对具有更多中性导线的电缆来说,穿过单个中性导线的最大稳态电流是很小的。 Smaller ampacity cable and for a cable having a more neutral conductor, the maximum steady-state current through a single neutral conductor is small. 耦合器220必须能在没有磁芯饱和的情况下,处理由该电流生成的磁通量,以便执行其数据耦合功能。 Coupler 220 must be in the absence of core saturation, the magnetic flux generated by the processing of the current, in order to perform its data coupling function.

中性导线202在用于高频数据信号的第一方向中载有电流。 202 neutral conductor carrying a current in a first direction for a high frequency data signal. 其他中性导线205在相反的方向中载有倾向于相消的数据信号的回流,从而由于调制数据信号,大大地降低辐射磁场的强度。 Other neutral wires 205 in opposite directions at reflux for carrying data signals tend destructive, so that since a modulated data signal, greatly reducing the intensity of the radiation field. 该装置也对来自外部电场的噪声耦合提供静电屏蔽效应。 The apparatus also provides an electrostatic shielding effect of noise coupling from an external electric field.

图3A是根据本发明的输电电缆300的图解,其中将两条中性线用作用于传送数据信号的传输线。 FIG 3A is an illustration of the transmission cable 300 of the present invention, in which two neutral wires as a transmission line for data signals. 图3B是图3A中所示的装置的示意性表不0 3B is a schematic representation of the device shown in FIG. 3A is not 0

耦合器307,例如,高频变压器。 Coupler 307, for example, high-frequency transformers. 与两条相邻的中性线302、 305 串联安装。 With two adjacent neutral wires 302, 305 mounted in series. 正好在它们连接到中性连接环330的点前切断最好彼此并联且相邻的中性线302、 305。 They are just connected to a neutral cutting preferably parallel to each other and adjacent the neutral line 302, before the point 305 is connected to ring 330.

参考图3B,将从电缆300延伸的中性线302、 305的引线连接到耦合器307的第一绕组310。 3B, the wire cable 300 extending from the neutral line 302, 305 is connected to a first winding 307 of coupler 310. 因此,第一绕组310串联连接在中性导线302和中性导线305之间。 Thus, a first winding 310 connected in series between neutral conductor 302 and neutral conductor 305. 第一绕组包括中心抽头312和磁芯315。 The first winding 312 includes a center tap 315 and a magnetic core. 中心抽头312连接到中性连接环330。 The center tap 312 is connected to a neutral connection ring 330.

第一绕组310的一部分310A连接到中性线302并以第一方向缠绕在磁芯315上,以及第一绕组310的第二部分310B连接到中性线305 并以相反的方向缠绕在磁芯315上。 310 first winding part 310A connected to the neutral line 302 in a first direction and wound around the magnetic core 315, a first winding 310 and a second portion 310B connected to the neutral wire 305 and wound in opposite directions in the core 315 on. 部分310A和310B用直径稍微大于电力电缆中性线的导线制成,因此,能具有稳态和冲击电流以及至少具有未选定的中性导线。 Portions 310A and 310B with a diameter slightly larger than the power cable neutral conductor is made, thus, has a steady state and can rush current and having at least a neutral conductor is not selected. 部分310A和310B的每一个本身可视为绕组。 Section 310A and 310B of each winding itself can be considered.

图3A的装置确保仅与两个中性线302、 305串联插入可忽略的阻抗,并且不干扰基本上均等划分所有中性线间的工频(power frequency )电流。 Apparatus of FIG. 3A ensures that only 302, 305 may be inserted in series with two neutral negligible impedance line, and does not interfere substantially equally divided frequency (power frequency) all current between the neutral line. 对在前所述的Pirelli电缆来说,估计充当平行线传输线的平行线302和305的特征阻抗为约130欧姆。 Pirelli Cables of the previously described, the estimation function as parallel transmission lines 302 and 305 parallel lines of characteristic impedance of about 130 ohms. 同时,在工频, 图3A和3B中所示的装置由于在绕组310A和310B中的相反方向中流动的中性电流导致通过磁芯可忽略的净磁通量,从而导致磁通量抵消。 Meanwhile, the frequency, the device shown in FIGS. 3A and 3B, since the neutral current flowing in the windings 310A and 310B in the opposite direction resulting in a net magnetic flux through the magnetic core may be negligible, resulting in cancellation of magnetic flux.

另一绕组320连接到端口350,通过该端口,传送和接收数据。 Another winding 320 is connected to the port 350, through the port, transmitting and receiving data. 绕组320与中性电源电路325绝缘,从而避免能感应寄生噪声并进入数据电路的故障电涌的接地环。 Winding the neutral power supply circuit 320 insulation 325, thereby avoiding spurious noise and can be induced to enter the data of ground fault surge circuit ring.

可将电缆300看作能经耦合器307连接到通信装置的高频传输线。 Cable 300 can be thought of as a high frequency transmission line can be connected to the communication device 307 is coupled. 在这种结构中,通过中性导线302、 305,差动驱动数据信号。 In such a configuration, the neutral conductor 302, 305, the differential drive data signals. 对指定的驱动功率电平,这种传输线应当发射比图2中所述的单端装置更低的电磁辐射。 Driving the power level specified, such a transmission line should be lower than in single-ended apparatus according to FIG. 2 emitted electromagnetic radiation.

图3C是使用多条中性线以形成数据传输线,对图3A和3B中所示的装置的备选方案的示意性表示。 FIG. 3C using a plurality of neutral wires to form a data transmission line, a schematic representation of an alternative embodiment of the device shown in FIGS. 3A and 3B. 电缆300具有多条中性线330,这些中性线330基本上彼此平行,具有与该多条中性线330的第二子集330B的各条中性线交替的该多条中性线330的第一子集330A的各条中性线。 Cable 300 having a plurality of neutral wires 330, 330 which are substantially parallel to each other neutral line having a neutral line of the plurality of pieces of neutral wires 330 alternating 330B and a second subset of the plurality of neutral wires 330 pieces of the neutral line of a first subset 330A. 将第一子集330A共同看作第一中性导线并连接到一起以便形成耦合器307A的第一绞合引线332。 The first subset 330A regarded as a first neutral conductor and a common connection to the coupler together to form a first stranded lead 332 307A. 将第二子集330B共同看作第二中性导线,并连接到一起以形成耦合器307A的第二绞合引线333。 The second subset 330B considered common second neutral conductor and joined together to form a second stranded lead 333 to coupler 307A. 最好,将多条中性线330构造成并联连接的N/2传输线,其中N为中性线330的数量,以及N/2为每个子集330A和330B中中性线的数量。 Preferably, the plurality of neutral wires 330 is configured to be connected in parallel to N / 2 transmission lines, where N is the number of neutral wires 330, and N / 2 is the number of subsets 330A and 330B each in the neutral line. 这种并联连接的结果是将电缆300生成的衰减降低了约N/2倍,并且将特性阻抗降低了约相同的倍数。 The result of this parallel connection is the attenuation of the cable 300 generates reduced by about N / 2 times, and the characteristic impedance is reduced by about the same factor. 图3D是表示如何方便地实施图3C的装置的图。 FIG. 3D shows how convenient embodiment of the apparatus of FIG. 3C. 为便于将第一子集330A连接到第一绞合引线332,将第一绝缘环335放在所有中性导线,即第一子集330A和第二子集330B,最接近将放置耦合器307A 的点的上。 To facilitate connection of a first subset 330A to first stranded lead 332, a first insulating ring 335 is placed all neutral conductors, i.e., first subset 330A and second subset 330B, the place closest to the coupler 307A on point. 将第一子集330A缠绕在第一绝缘环335上并连接在一起以形成第一绞合引线332。 The first subset 330A is wound on a first insulating ring 335 and joined together to form a first stranded lead 332. 同样地,将第二子集330B缠绕在可绝缘或不绝缘的第二环345上,并连接以形成第二绞合引线333。 Likewise, second subset 330B may be wound on a second insulating or not insulating ring 345, and connected to form a second stranded lead 333. 相对于由图3A的双线实现方式所发射的,改进几何对称的电流以及降低的电压电平将会进一步降低电磁辐射。 Emitted by double lines with respect to the implementation of Fig. 3A, improved geometrical symmetry of the current and voltage level will be further reduced to reduce the electromagnetic radiation.

电力公司可能反对切断两条中性线并通过耦合器来重新连接它们。 Power company might object to cutting two neutral wires and reconnecting them through a coupler. 根据本发明,可以与图3A和3B所示的实施例等效的拓扑地和电磁的方式将磁芯"缠绕"在两条选定的中性线上。 According to the present invention, equivalent to the embodiment illustrated in FIGS. 3A and 3B and topologically electromagnetically the magnetic core "wrapped around" the two selected neutral line.

图4A和4B示例说明用于与一对中性导线一起使用的耦合器的磁芯拓扑结构的实施例,由数据信号差动驱动该对中性导线。 4A and 4B illustrates an exemplary embodiment of a magnetic core topology coupler for use with a pair of neutral wires, the data signals from the differential to drive the neutral wire. 该磁芯具有与第一中性导线相邻的第一区域,以及与第二中性导线相邻的第二区域。 The core has a first region adjacent the first neutral conductor, and a second region adjacent to a second neutral conductor. 该耦合器包括缠绕在磁芯部分的绕组。 The coupler includes a winding wound around the core portion. 通过该磁芯,该绕组感应第一方向中第一中性导线中的第一电流,以及感应与第一方向相反的第二方向中第二中性导线的第二电流。 With this magnetic core, a first winding direction of the induced current in the first neutral conductor in a first and a second direction opposite the first direction and a second induction current in the second neutral conductor.

参考图4A,可将磁芯400形象化为在交点处不接触的数字"8"。 Figures 4A, a core 400 may be visualized as a non-contact at the intersection point "8." 数字"8"形成拓扑"扭曲"。 The number "8" is formed topological "twist." 第一区包括数字"8"的第一环405,通过第一环405,传送第一中性导线410。 The first region comprises a number "8" of the first ring 405, the first ring 405, a first neutral conductor 410 transmits. 第二区域包括数字"8"的第二环415。 The second region comprises a number "8" in the second ring 415. 通过第二环405,传送第二中性导线420。 The second ring 405, a second neutral conductor 420 transmits. 磁芯400实际上是连续的一个窗口的磁芯,通过该磁芯,在相反的方向中穿过导线410 和420,从而抵消由于工频电流的磁通量。 Core 400 is actually a continuous core window, through which the core, through the wires 410 and 420 in the opposite direction, so as to cancel the magnetic flux due to power frequency currents. 绕组425感应中性线410 和420中的反相高频信号电流。 Sensing winding 425 and the neutral line 410 in the inverted high-frequency signal 420.

数字"8"拓扑结构可在电缆的表面上实现,而不用切断中性导线。 The number "8" topology can be implemented on the surface of the cable, without cutting the neutral conductors. 如图4B中所示,用第一环405中的第一间隙430以及第二环415中的第二间隙构造包括磁芯段400A和400B的磁芯。 As shown in FIG. 4B, a gap with a second configuration of the first gap in the first ring and the second ring 405 430 415 includes a magnetic core of core segments 400A and 400B. 中性导线410穿过第一间隙430以及中性导线420穿过第二间隙435。 A first neutral conductor 410 passes through the gap 430 and neutral conductor 420 passes through the second gap 435. 通过相对于中性导线410和420的绝缘部分440放置磁芯400A和400B,将中性导线410 和420放在磁通量的通路中。 By insulated with respect to the neutral conductor 410 and core portion 420 is placed 440 400A and 400B, the neutral conductor 410 and 420 on the magnetic flux path.

用于避免物理切断中性线的另一方法是与它们并联地插入用于高 Another method for avoiding the physical cutting of the neutral wires are inserted in parallel with a high

ii频的高阻抗而不用切割导线。 ii high frequency impedance without cutting the wire. 本发明通过用一个或多个环形磁芯来环绕整个电缆来实现此。 The present invention is by treatment with one or more ring core around the entire cable to implement this.

图5A是具有将环形磁芯放在电缆上感应的高频高阻抗的电缆的装置的图解。 5A is a diagrammatic apparatus having a high-frequency high impedance cable to an annular magnetic core on the sensing cable. 图5B是图5A的装置的示意性表示。 5B is a schematic representation of the apparatus of FIG. 5A.

将一个或多个环形磁芯502布置在输电电缆500部分。 One or more of the ring core portion 502 is disposed in the transmission cable 500. 将耦合器515的第一绕组530 (图5B)相对于环形磁芯502,电缆500向内连接在第一中性导线510和第二中性导线512之间。 A first coupler coil 530 515 (FIG. 5B) with respect to the toroidal core 502, inner cable 500 is connected between a first neutral conductor 510 and a second neutral conductor 512. 耦合器515的第二绕组515为调制解调器端口520提供数据通路。 Coupling the second winding 515 515 provides a data path to a modem port 520.

第一和第二中性导线510、 512是电缆500内多条中性导线505中的两个。 The first and second neutral conductor 510, 512 are two of a plurality of neutral wires 505 of the cable 500. 实际上每个中性导线505将看见仅在中性连接环525前的扼流圈502A(图5B)。 Each neutral conductor 505 will actually see a choke 502A just prior to a neutral connection ring 525 (FIG. 5B). 因此,环形磁芯502在每个中性线505和地之间插入绝缘电抗,最好是约几微亨大小。 Therefore, the toroidal core 502 is inserted between each insulating reactance and the neutral line 505, preferably from about a few micro-Henry magnitude.

环形磁芯502具有机械插件的两半的分裂铁芯,提供机械插件以便准确地铁芯两半配合,并将铁芯紧固到电缆500上。 Split cores annular core 502 having a mechanical plug halves, there is provided a mechanical plug in order to accurately fit the core halves, the core and secured to the cable 500. 该实施例的优点在于在安装环形磁芯502期间,不需要切割任何一个中性线505。 An advantage of this embodiment is that during the installation of the toroidal core 502 does not require any cutting a neutral line 505.

能将数据信号传送到通过耦合器515的端口520连接并耦合到环形磁芯502的中性导线510、 512上游的调制解调器(未示出)并从该调制解调器接收数据信号。 Data signals transmitted to the link can be coupled to a neutral conductor 510 and core 502 of the annular port 520 through the coupler 515, a modem (not shown), and 512 upstream of the received data signal from the modem. 可将电缆500视为具有通过充当扼流圈的超环面在,部分与地隔离的连接端点535和540的高频传输线。 The cable 500 may be considered in high frequency transmission lines having a surface by acting as a toroidal choke coil, and the isolated portion of the connection terminals 535 and 540.

在工频,由于所有通过环形磁芯505中,通过流过多条中性线505 的相反方向的中性电流平衡在一个方向中流动的中间导线517的相电流,通过环形磁芯502的净电流基本上为零。 In the frequency, phase current since all the intermediate conductor 505 through the annular core, the opposite direction of the flow through the neutral line 505 bar excess of neutral current flowing in a balance direction 517, the net 502 through the annular core current is substantially zero. 从而避免铁芯饱和。 Thereby avoiding core saturation. 由于存在环形磁芯502,中心线505间的动力电流分布仍然保持不变,同时由环形磁芯502的扼流作用感应的非常小的电抗,其同等地影响所有中性线。 Since there is an annular magnetic core 502, the power current distribution between the center line 505 remains unchanged, while the effect induced by the toroidal core choke 502 very small reactance, which affect all neutral wires equally.

图6A至6C是根据本发明,使用两条传输线以及磁感应的平衡传输线的几个装置的图解。 6A to 6C according to the present invention, illustrating the use of several means of two transmission lines and magnetic induction of the balanced transmission line. 图6D是图6A至6C的装置的示意性表示。 6D is a schematic of the apparatus of FIG 6A to 6C. 同样,所获得的优点是对可通电或可不通电的电路来说,避免切割或操纵中性线。 Similarly, the advantages obtained are energizable circuit is energized or not, to avoid cutting or manipulating the neutral line.

图6A至6D的每一个实施例使用两条中性线作为传输线。 FIG embodiment uses two neutral wires 6A to 6D each embodiment as a transmission line. 在与接地连接环相邻的中性线部分中磁感应信号电流。 In the neutral line connected to the ground ring portion adjacent to the magnetic induction signal current. 开口磁芯(诸如"E"铁芯)位于接近并垂直于两条中性线。 An opening core (such as "E" core) located proximate and perpendicular to the two neutral wires.

如图6A所示,开口磁芯605具有位于接近并垂直于电缆600的两条中性线602的第一中性线的第一引线606,以及位于接近并垂直于中性线602的第二中性线的第二引线607,以及第三引线,即公共引线610,位于第一引线606和第二引线607之间。 6A, the magnetic core 605 having an opening located proximate and perpendicular to the two neutral wires 600 of the cable leads 606,602 of the first first neutral line, and is located close to the neutral line 602 and perpendicular to the second the second lead 607 of the neutral line, and a third lead, i.e., the common wiring 610, 607 located between the first lead and the second lead 606. 公共引线610具有缠绕在其上的绕组608。 A common lead 610 having a winding wound thereon 608. . .

绕组608缠绕在位于电缆600的两条中性线602之间的公共引线610上。 Winding 608 is wound on the common lead 602 of the cable 610 between the two neutral wires 600. 该装置感应彼此相反方向中的中性线602的各个中的电流。 The sensing means in directions opposite to each other in each of the neutral line 602 of the current. 可选择地将在接地连接环625 (图6B)中端接在一起的中性线602的段615 (图6B)视为通过引线606和610的极面间和引线607和610的极面间的间隙的一匝线圈。 Alternatively, the ring 625 is connected to the ground (FIG. 6B) in the neutral line termination segments 615,602 together (FIG. 6B) by regarded as a pole face and the pole faces 606 between the leads 610 and the leads 607 and 610 a gap of turns of the coil. 因此,绕组608中的信号电流将感应两条中性线602中的信号电流,将差分信号发射到由这两个中性线602形成的传输线。 Thus, the signal current in winding 608 will induce signal current in the two neutral wires 602, the differential signal is transmitted to the transmission line by the two neutral line 602 is formed.

参考图6C,为降低标准铁芯形状(例如,"E"铁芯)中引线间的相对大的气隙大小,以及增加耦合系数,能使用一对具有所提供的间隙627的环形磁芯620,中性线602穿过间隙627。 6C, the shape of the core to reduce the standard (e.g., "E" core) having a relatively large size of the air gap between the leads, and to increase the coupling coefficient, a pair of annular cores can be provided with a gap 627 620 , the neutral line 602 through the gap 627. 将绕组630缠绕在每个环形磁芯620的一部分,即公共引线632上。 The coil 630 wound around each of the annular core portion 620, i.e., the common wiring 632.

图6A-6C的实施例的等效电路如图6D所示。 An equivalent circuit of the embodiment of FIG. 6A-6C 6D. 在其中感应磁通量的中性线602部分充当在连接环625处连接在一起的两个反向绕组635。 Wherein the magnetic flux induced in the neutral portion 602 to act as two oppositely connected together at a connecting ring 625 winding 635. 绕组645提供用于连接到调制解调器(未示出)的端口640。 Winding 645 provides a port 640 for connection to a modem (not shown).

在铁芯的公共引线中抵消工频磁通势(MMF),但在每个侧引线上完全出现。 Offset frequency magnetomotive force (MMF) in the core of the common wiring, but appear completely on each side lead. 然而,必须大于中性线的直径的气隙通常将防止这些侧引线变得饱和。 However, it must be greater than the diameter of the neutral line of the gap will prevent these side lead typically becomes saturated.

图6A-6D的实施例的优点是避免中断和与中性线602物理连接。 Advantage of the embodiment of Figures 6A-6D to avoid interruption and physical connection and the neutral line 602. 在工频时中性线间的电流分布将基本上保持不变,畎;与整个电缆段上的整体中性线阻抗相比,由铁芯扼流效应感应的非常小的电抗将引入可忽略的电抗。 When frequency current distribution among the neutral wires will remain essentially unchanged, drains; compared to the overall neutral wire impedance over the entire cable segment, a very small reactance induced by the core's choking effect will be negligible introduced reactance. 可将电缆600视为经耦合器在每个终端连接到通信装置的高频传输线。 It may be considered high frequency transmission line cable 600 is coupled at each terminal is connected to the communication device.

图7是根据本发明,使用磁感应的平衡传输线的示意图。 FIG 7 is a schematic view of the present invention, a magnetic induction of the balanced transmission line. 该实施例与图6D的类似,但代替耦合到一对中性线的单个磁芯或超环面对, 其耦合到按对组织的所有中性线。 This embodiment is similar to FIG. 6D, but instead of one pair of magnetic core coupled to a single neutral or toroidal face, all coupled to a neutral line by the organization. 对具有奇数导线的电缆来说,可剩下一条导线不用。 With an odd number of cable wires, the remaining one wire can not. 为实现此,可采用图6A至6D的具有等于中性线对的数量的耦合器数量以及连接在一起的耦合器绕组的任何一个实施例。 To achieve this, 6A to 6D may be employed having an equal number of neutral wire, and the number of couplers connected together for winding the coupler any of the embodiments. 为最小辐射,可反相交替中性线。 Minimum radiation, alternate neutral wires may be inverted.

与图6A至6D的实施例类似,图7的实施例包括具有第一绕组720 和第二绕组740的耦合器,第一绕组用于经输电电缆700的第一中性导线702耦合数据信号,第二绕组,电嬅耦合到第一绕组720,用于经数据端口耦合数据信号。 Similar to the embodiment of FIGS. 6A to 6D, the embodiment in FIG 7 includes a coupler having a first winding 720 and second winding 740, a first transmission cable through a first winding to the neutral conductor 700 is coupled data signal 702, a second winding, Miriam electrically coupled to the first winding 720 for coupling a data signal via a data port. 通常,图7的实施例对此增强以包括第三绕组725,用于经输电电缆700的第二中性导线705,耦合该数据信号, 以及第四绕组745,电感耦合到第三绕组,用于经数据端口760耦合该数据信号。 Typically, this Example 7 FIG enhanced to include a third winding 725, for transmission via a second neutral conductor 705 of cable 700, is coupled to the data signal, and a fourth winding 745, inductively coupled to third winding, with coupled to the data signal via the data port 760. 该数据信号经第一中性导线702、第一绕组720以及第二绕组740在第一通路中传播,以及经第二中性导线705、第三绕组725 以及第四绕组745在第二通路中传播。 The data signal via first neutral conductors 702, first winding 720 and second winding 740 in a first propagation path, and via a second neutral conductor 705, third winding 725 and fourth winding 745 in the second passage propagation.

图7示例说明使用根据图6D的实施例的所有中性线对。 FIG 7 The example demonstrates the use of all neutral embodiment of FIG. 6D. 以与图6D的选定对600类似的方式,导线对702、 705、 710和715均执行为传输线。 In FIG. 6D selected 600 in a similar manner, the wires are performed as a transmission line pair 702, 705, 710 and 715. 通过铁芯的磁通量的中性线段充当绕组720、 725、 730和735, 并驱动中性线对为传输线。 Neutral line of the magnetic flux through the core 720 acts as a winding, 725, 730 and 735, and drive the neutral wire pairs as transmission lines. 如所示,可并联或以提供一致定相的任何串-并联结合连接绕组740、 745、 750和755,以便将数据信号提供给端口760。 As shown, may be connected in parallel or in any sequence consistent with the given - in conjunction with the parallel-connected coils 740, 745, 750 and 755, so as to provide data signals to port 760. 由于电力电缆700的中心相导线715受到来自耦合线圈的相等的和反向磁通量,相导线715不影响信号传输。 Since the power center conductor cable 700 with 715 being equal and reverse flux from the coupling coils, phase conductor 715 does not affect the signal transmission.

图7的实施例的一些优点是(a)可不选择一对中性导线来执行耦合器的安装,因此不识别该段的远端的那些导线(注意倒相在这里是可能的,但不影响数据流,因为调制解调器能忍受整个信号的反相), (b)数据传输是可能的,即使在其运转期间损坏电缆700,以及使一些中性线意外接地,(c)最好抵消外部场以及降低辐射,以及(d)降低电缆段上的通路损耗。 Some advantages of the embodiment of FIG. 7 is (a) selecting a pair of neutral conductor not to perform the installation of the coupler, and therefore does not recognize that the wire distal end of the segment (note that phase inversion is possible here, but does not affect data flow, as modems can tolerate the entire inverted signal), (B) data transmission is possible, even if cable 700 is damaged during its run, and some of the neutral line so that accidental grounding, (c) is preferably offset by the external field and reduce radiation, and (d) reducing the path loss on the cable segment.

图8是使用具有多组中性线的多传输线的本发明的实施例的示意图。 FIG 8 is a schematic of an embodiment of the present invention having a plurality of transmission lines using a plurality of sets of neutral. 该实施例利用在图6A-6D中表示的任何一个实施例,但代替单个信号通路,其采用多条中性能传输线802、 805、 810、 815来提供多阻抗传输通道。 This embodiment utilizes any of the embodiments shown in FIGS. 6A-6D, but instead of a single signal path which employs a plurality of transmission performance line 802, 805, 810, 815 to provide a multi-impedance transmission channel. 图8表示四个传输通道。 8 shows four transmission channels.

与图6A-6D的实施例类似,图8的实施例包括具有第一绕组820 以及第二绕组825的耦合器,第一绕组820用于经输电电缆800的第一中性导线802耦合数据信号,以及第二绕组825,电感耦合到第一绕组820,用于经数据端口830耦合数据信号。 Similar to the embodiment of FIGS. 6A-6D, the embodiment of FIG. 8 includes a coupler having a first winding 820 and second winding 825, a first winding 820 for coupling a first neutral conductor 802 via the data signal transmission cable 800 and a second winding 825, inductively coupled to first winding 820, via the data port 830 for coupling data signals. 通常,图8的实施例对此的改进是包括第三绕组835,用于经输电电缆800的第二中性导线805 耦合第二数据信号,以及电感耦合到第三绕组835的第四绕组840,用于将第二数据信号耦合到第二数据端口845。 Typically, FIG. 8 of this embodiment comprises a third winding 835 is improved, a transmission cable via a second neutral conductor 805 is coupled to a second data signal 800, inductively coupled to third winding and a fourth winding 840 835 the for the second data signal is coupled to a second data port 845.

可利用用于实现(a)在一个或多个通道上全双工传输数据,(b) 多个单向或双向通道,从而增加整个带宽,(c)冗余传输数据以最小化误差,(d)实现具有单独时钟、选通以及数据线的多导线接口,以及(e)使用用于监视命令、误差通知或用在网络管理中的其他数据的这种多重性。 Be utilized for realizing the (a) full duplex transmission of data on one or more channels, (b) multiple unidirectional or bi-directional channels, thus increasing the entire bandwidth, (c) redundant transmission of data to minimize errors, ( d) having such a multiplicity implement separate clock, strobe and data lines, multi-wire interfaces, and (e) using a monitor command, an error notification used in network management, or other data.

对在图6A至6D中所示的每个实施例,以及对图3-8所示的增强, 选择在电缆的一端的一个或两个中性线暗指必须在电缆的远端识别相同导线。 In each of the embodiments shown in FIGS. 6A to 6D, as shown in FIG. 3-8 and enhancements to choose imply the same must be identified at the distal end of the cable wires in one or two neutral wires at one end of the cable .

图9A是用于识别输电电缆的多条导线的一条的系统900的示意图,以及图9B是该系统卯0的图解。 9A is a schematic view of a plurality of wires for identifying a transmission cable system 900, and FIG 9B is a diagram of the system 0 d. 系统900包括用于从输电电缆的选定的中性线读出信号的接收器卯2,以及信号大小的指示器905。 The system 900 includes a receiver for reading out from the selected neutral wire transmission cable sockets indicator signal 9052, and the size of the signal. 将该信号应用到输电电缆上的第一点926的选定线925。 The signal line 925 is applied to a selected point 926 on the first transmission cable. 接收器902检测远离第一点的输电电缆上的第二点927的信号。 The second signal receiver 902 of the transmission cable 927 on a first point away from the detector.

系统900也包括具有径向槽920的铁氧体超环面915,选定的中性线925穿过该径向槽,以及缠绕在铁氧体超环面(ferrite toroid) 915 部分并连接到接收器902的输入端935的绕组930。 The system 900 also includes a ferrite toroid 915 having a radial slot 920, the selected neutral wire 925 through the radial slot, and wound around a ferrite toroid (ferrite toroid) 915 and is connected to portion receiver input 902 of the end windings 930,935. 经铁氧体超环面915从选定中性线925电感耦合信号。 Inductively coupled signal line 925 via the neutral ferrite toroid 915 from the selected. 经电感耦合器924,将信号应用到第一点926的选定中性线925。 Via the inductive coupler 924, the signal is applied to the first neutral point 926 of the selected 925.

在将连接的第一电缆端,选定导线,以及连接的耦合器。 A first end of the cable to connect the selected wire, and a coupler attached. 图9A表示正选定的一对中性线。 9A shows a selected pair of positive neutral. 通过在MHz范围内的低功率、高频振荡器, 驱动耦合器。 By low power in the MHz range, high frequency oscillator, the drive coupler. 这使得高频电流在选定的导线中更强烈流动。 This makes it more intense high-frequency current flowing in the selected wire.

在远端,将无线接收器卯0变为同一频率。 At the distal end, the wireless receiver d 0 to the same frequency. 该无线接收器的特别之处在于它具有信号强度测量计905以及用于优化增益的手动或自动增益控制。 The radio receiver is special in that it has a signal strength meter 905 and manual or automatic gain control for optimizing the gain. 另外,接收器的天线包括具有稍微大于中性线925的直径的径向槽920的铁氧体超环面915,以及缠绕在连接到接收器天线输入端935的超环面915上的线圈。 In addition, the receiver comprises an antenna having a diameter slightly larger than the neutral line of the radial slots 925 of the ferrite toroid of 915,920, and a coil wound on the receiver antenna is connected to the input terminal of the toroid of 915,935. 最好,将超环面915固定安装到接收安装者手持该接收器以便使该槽定向到与中性导线925成直线并接近该中性导线,以及观察信号强度测量计905上的读数。 Preferably, the super annulus 915 is fixedly mounted to the receiving handset by the receiver is mounted so as to be directed to the groove 925 in line with a neutral conductor and the neutral conductor proximity, and whether the reading on the signal strength meter 905 was observed. 然后,该安装者与电缆成切线移动该接收器,轮流检测每条导线。 Then the installer moves tangentially to the cable receiver, a polling each wire. 产生信号强度测量计上的最大读数的该导线将在那些在该电缆的其他端处直接激励的导线。 The maximum reading on the wire generates a signal strength meter will be those measured at the other end of the wire cable directly excited.

因此,用于识别输电电缆的多条中性线中的一条的方法,包括步骤:(a)在输电电缆上的第一点,将信号应用于选定的中性线上,(b) 在远离第一点的输电电缆上的第二条,读出多条中性线的每一条上的信号的相对值,以及(c)从相对值识别出选定的中性线。 Thus, a method for identifying a plurality of neutral wires of the power transmission cable, comprising the steps of: (a) a first point on the power transmission cable, a signal is applied to the selected neutral line, (b) at the second transmission cable away from the first point, the relative value of the signal on each of a plurality of read-out of the neutral line, and (c) the relative value of the identified selected neutral wire. 该识别步骤将选定的中性线识别为具有最大相对值的多条中性线中的一条。 The step of identifying the selected neutral wire identified as having one of a plurality of neutral relative value of the maximum. 应用步骤包括将信号电感耦合到选定的中性线,以及读出步骤包括电感耦合来自选定的中性线的信号。 Applying step comprises inductively coupling the signal to a selected neutral wire, and comprising the step of reading out a signal from the neutral line of a selected inductive coupling.

迄今为止,已经在具有多个、单独的、相互绝缘的中性线的情况下描述了本发明。 To date, having a plurality of separate, mutually insulated case where the neutral line of the present invention is described. 然而,许多配电网不使用具有相互绝缘的中性线的电缆,而是具有以与导电铜带连接在一起的网格或多条导线的它们的中性线。 However, many power distribution network without the use of cables with mutually insulated neutral wires, but rather have their neutral wires in a mesh or a copper tape with a conductive strip connected to the wires. 图10A、 IOB、 11A和11B以及它们相关的描述涉及本发明应用于其他普通中压电网,诸如在架空线上具有的那些网格以及在单个中性导线的伪同轴地下电缆上具有的那些网格。 FIG. 10A, IOB, 11A and 11B and their associated descriptions relate to the present invention is applied to other common medium voltage power grid, such as those having a mesh overhead line and having a pseudo-coaxial underground cables on a single neutral conductor of those grid.

需要避免与中压相导线物理连接的耦合器,因为这种耦合器将不需要经受住该相导线的稳态和冲击电压,从而简化耦合器的结构和降低成本。 The need to avoid MV conductors is coupled to a physical connection, as such a coupler would not need to withstand steady state and surge voltage of the phase conductor, thus simplifying the structure and reducing the cost of the coupler. 然而,使用目前提出的电感耦合器预先假定可通过其流动电流的电路连续性,而中压电路可包括在它们的终端的物理开路,或连接到变压器绕组,在射频时,该变压器绕组的高阻抗可接近开路终端的效果。 However, the use of the currently proposed inductive coupler presupposes a circuit continuity through which current flows, and the medium voltage circuit may include a physical terminal thereof open, or connected to the transformer winding at a radio frequency, high winding of the transformer impedance effect of accessible open terminal. 根据本发明,当使用电容耦合的端口,在电缆的未端增加高频终端时,可将电感耦合器用在中压数据回程网中,以及同样在一个或多个中间位置是,用在大的配电网中。 According to the present invention, when using a capacitive coupling port, the terminal is not increased high frequency end of the cable may be inductive coupling is used in a medium voltage data backhaul network, and also in one or more intermediate position, with a large distribution network. 地下输电线的相导线可用作传输线,当它们具有在高频时有效时的负载终端时,该负载终端用于将数据信号耦合到传输线,或耦合来自传输线的数据信号的通信。 Underground power line phase conductors of the transmission line may be used, when they have active terminal load at high frequencies, the load data signal terminal for coupling to the transmission line, data or communication signals coupled from the transmission line.

在配电系统中,将中压网格连接到出现远远高于高频时该信号的电缆的特性阻抗的装置上。 In power distribution systems, the medium voltage grid appears on the device connected to the characteristic impedance of the cable is much higher than when the high-frequency signal. 这些装置有效地呈现为髙频信号的开路。 These means effectively presents an open circuit to Gao pilot signal. 将调制过的数据分组耦合到这种开路电缆上将导致由电缆的未端反射的大部分的耦合波,并可能被数据接收器解释成新的分组。 The modulated data packets is coupled to the coupled wave that most open cable will not cause reflected by the end of the cable, and the receiver could be interpreted as a new data packet. 这种反射的另外的不期望的特征将会把数据接收器引入断定新的分组正在占用该电缆的歧途,以及共享网络的"载波监听"将会遇到损失可用传输时间。 Further features of such undesirable reflection of the data receiver will conclude that the introduction of a new packet is occupying the wrong cable, and a shared network "carrier sense" will encounter the loss of available transmission time. 对具有相当大的高频损耗的电缆和导线来说,这些反射将快速消散,并且不会产生问题。 Cables and wires with significant high frequency losses, these reflections will quickly dissipate, and not cause problems. 然而,对架空线和一些地下伪同轴线来说,这些损耗很低,以及强烈的反射信号将干扰直流信号(direct signal)。 However, overhead lines and some underground pseudo-coaxial lines, these losses are low, and strong reflected signals interfere with the current signal (direct signal). 图IOA和10B是在配电系统上实现的数据通信网部分的示意图, 其中在配电系统的相导线上载有数据。 FIG IOA and 10B are schematic section of a data communication network implemented on the power distribution system in which the phase conductors of the power distribution system carrying data. 本发明使用电感和电容耦合器的组合。 The present invention uses a combination of inductive and capacitive couplers. 如下所述,网络包括(a)用于经相导线耦合数据信号,并具有用于进一步耦合数据信号的数据端口的电感耦合器;以及(b)电容耦合器,连接在相导线和地之间,接近输电电缆的未端,用于吸收反射的数据信号以及可选地用作用于耦合数据信号的数据端口。 As described below, the network comprising (a) a data signal via the phase conductor is coupled, inductively coupled, and having a data port for further coupling of the data signal; and between (b) a capacitive coupler, connected to the phase conductor and ground , not close to the end of the transmission cable, for absorbing the reflected data signal and a data port coupled optionally be used as a data signal. 在接近配电变压器1010的中间节点1005处使用电感耦合器1002。 Distribution transformer near the intermediate node 1010 at 1005 using inductive coupler 1002. 每个电感耦合器1002提供用于连接到低压网络上的调制解调器(未示出)的端口1015,该调制解调器由每个配电变压器1010的次级线圈供电。 Each inductive coupler 1002 provides a modem for connecting to the low voltage network (not shown) of port 1015, the modem is powered by the secondary winding of each distribution transformer 1010. 电容耦合器连接在导线或电缆端和局部接地之间,以便同时吸收反射和提供信号耦合节点1025, g卩,信号耦合节点1025位于电容耦合器1020和地之间,用于耦合相导线间的数据信号以及用于提供用于该数据信号的另一数据端口。 Capacitive coupling is connected between the wire or cable and a local ground terminal, so as to absorb reflected and provide signal coupling nodes 1025, Jie g between the signal coupling node 1025 is located in a capacitive coupler 1020 and ground, for coupling between the phase conductor further data ports of the data signal and for providing a data signal. 该"导线或电缆端"包括点1018,在该处,将电力从高压至低压变压器输送到电缆中。 The "end of the wire or cable" includes a point 1018, where the power transmission transformer from high to low pressure into the cable. 在环形拓扑结构中,电缆返回该位置但达到空端。 In the ring topology, but to achieve this position the cable return empty end. 在这些"空端"感应电容耦合器1020。 In these "dead end" inductive capacitive coupler 1020. 要是在电网中T-分支1030 产生短线1035,那么使用电容耦合器来端接该短线1035的空端。 If 1030 is generated in the short-term grid 1035 T- branch, then the use of capacitive coupling to the terminating end of the empty stub 1035. 图IIA是根据本发明,用于经相导线耦合数据的电感耦合器1102 的实施例的图解。 FIG IIA according to the present invention, for illustrating an embodiment of an inductive coupler coupled through phase conductor 1102 data. 图11B是图11A中所示的实施例的示意性表示。 11B is a schematic exemplary embodiment shown in FIG. 11A. FIG. 电感耦合器1102包括第一绕组1104,用于经相导线1110耦合数据信号,以及第二绕组1115,电感耦合到第一绕组1104,用于经数据端口1145耦合数据信号。 Inductive coupler 1102 includes a first winding 1104, for coupling the phase conductor 1110 is coupled via a data signal, and a second winding 1115, to a first inductive winding 1104, a data port 1145 coupled via a data signal. 电感耦合器1102包括铁芯1105,相导线1110 穿过该铁芯。 Inductive coupler 1102 includes a core 1105 through which phase conductor 1110 core. 通过铁芯1105的这种相导线1110的结构用作第一绕组,即,单匝绕组。 This structure is used as a first winding phase conductor 1110 through core 1105, i.e., single turn winding. 第二绕组1115缠绕在部分铁芯1105上。 1115 in the second winding portion wound around the core 1105. 电感耦合器1102是变流器,其中将铁芯1105放在一段相导线1110 上。 An inductive coupler 1102 is a current transformer in which core 1105 is placed over a period of the phase conductors 1110. 通过将铁芯1105放在一段地下电缆上,电感耦合器1102也可与地下电缆一起使用,该段地下电缆未被具有穿过铁芯1105的作为一匝绕组的电力电缆相位线的中性导线护层覆盖。 1105 on the core by some underground cables, inductive coupler 1102 may be used with an underground cable, the section of underground cables not having a neutral conductor 1105 through core power cable as a phase line of turn of the winding sheath covering. 铁芯1105由铁氧体或在调制数据所需的频率范围上具有实际导磁率和相对低损耗的其他软磁材料制成。 1105 is made of ferrite or iron core having a magnetic permeability and relatively low loss practical other soft magnetic material in the desired frequency range of the modulation data. 铁芯1105具有足以允许操作电感耦合器1102而不会饱和的气隙1120,即使当通过相导线1110的电流与额定用于导线1110的最大电流,g卩,200安培均方根(rms) —样高。 1105 sufficient to allow operation of the core with the inductive coupler 1102 without saturation of the air gap 1120, even when the maximum current and the nominal current through phase conductor 1110 is a wire 1110, g Jie, 200 amps rms (rms) - like high. 电感耦合器1102具有足以在相关频率范围上对调制解调器发射机提供可测量的高频阻抗的初级磁化电感,但在配电频率时为可忽略的阻抗。 Inductive coupler 1102 having a frequency sufficient to provide a measurable impedance to a modem transmitter over the relevant frequency range of the primary magnetizing inductance, but in a frequency distribution of negligible impedance. 电感耦合器1102具有远低于传输线的特性阻抗的漏电感和反射初级阻抗,传输线的相导线1110是相关频率范围上的元件。 Inductive coupler 1102 having much lower than the characteristic impedance of the transmission line and the reflected leakage inductance of the primary impedance, transmission line phase conductor 1110 is a component of the frequency range of interest. 电感耦合器1102具有与第二绕组1115串联的高电压电容器1125 和数据端口1145,并连接到配电变压器1130的低电压输出,gp,电力线输出,以便防止第二绕组1115短路低电压电源电路1135。 Inductive coupler 1102 has a high voltage capacitor 1125 and data port 1145 in series with second winding 1115, and is connected to the output of the low voltage distribution transformer 1130, GP, the output of the power line, in order to prevent second winding 1115 1135 short-circuited low-voltage power circuit . 因此,电容器1125耦合第二绕组1115和电力线输出间的数据信号。 Thus, the data signal between second winding 1125 of the coupling capacitor 1115 and the power line output. 电感耦合器1102也具有与第二绕组1115并联连接的电涌保护器1140,以保护低电压电路1135,以及连接到此的任何电子通信装置免受高振幅脉冲的影响,该高振幅脉冲可出现在相导线1110上并通过电感耦合器1102耦合到低电压线上。 Inductive coupler 1102 also has a surge protector 1115 connected in parallel with second winding 1140, to protect the low-voltage circuit 1135, and any electronic communication device connected thereto from the effects of high-amplitude pulse, the high-amplitude pulse may appear and a low voltage line coupled to the phase conductors in inductive coupler 1110 through 1102. 注意当仅将一个LV相位线1150以及LV中性线1155连接到耦合器1102时,其他相位线1160将经电容和电感耦合,在一段LV引入线上接收稍微衰减的信号。 Note that when only one LV phase line 1150 and LV neutral line 1155 are connected to coupler 1102, the other phase line 1160 will receive a slightly attenuated signal is introduced over a period of LV line via capacitive and inductive coupling. 重要的考虑因素,以及所需的目的是最小化来自用于传送数据的导线和电缆的电磁辐射。 An important consideration, and the desired object is to minimize the electromagnetic radiation from the wires and cables used for transmitting data. 这些线以辐射电磁千扰,即使埋到几英尺的地下。 These one thousand lines radiate electromagnetic interference, even if buried a few feet underground. 寄生谐振也可防止在某些窄的频带在传送。 Parasitic resonances can be prevented in certain narrow frequency bands in transmission. 应当采用一种或多种技术来最小化辐射、容许谐振,并提供坚固和可靠的数据通道。 One or more techniques should be employed to minimize radiation, tolerate resonances, and provide a robust and reliable data channel. 用于最小化辐射的选择包括:(A)在连接到中压网格或来自中压网格的调制解调器中使用扩展频谱调制。 Selecting for minimizing radiation include: (A) connected to the pressure from the intermediate pressure modem grid or mesh in using spread spectrum modulation. 扩展频谱调制采用相对低的频谱功率密度(例如,-55dBm/Hz)。 Spread-spectrum modulation using a relatively low spectral power density (e.g., -55dBm / Hz). (B)最小化调制数据的功率电平。 (B) to minimize the power level of the modulation data. 该功率电平应当足够髙以便克服该线上的任何噪声,以及任何自生成的装置噪声,例如,内部噪声、 放大器噪声等等。 The power level should be sufficient to overcome Gao any noise on the line, and any self generated equipment noise, e.g., internal noise, amplifier noise and the like. 通过釆用相对隔离中压线和有噪声的低压和髙压网格,能最小化线路噪声。 By MV line and preclude the use of noisy and relatively low pressure isolation Gao pressure grids, line noise can be minimized. 这能通过在每个电感耦合器处放置背对背调制解调器来实现。 This can be placed back to back modems at each inductive coupler is achieved. 背对背调制解调器用于重新生成位流以及重新调制另外的媒介上的数据传送。 To-back modems used to regenerate the bit stream, and modulation of data transmitted over an additional medium. 图12是在电感耦合器处具有背对背调制解调器的网络部分的示意图。 FIG 12 is a schematic diagram of a network having back-part of the modem at the inductive coupler. 第一调制解调器1202具有耦合到电感耦合器1102的第二绕组的数据端口的第一端口1125,用于发送和接收调制数据信号,以及第二端口1210,用于进一步耦合数字数据。 The first modem 1202 has a first port 1125 coupled to data port of the second winding of the inductive coupler 1102 for sending and receiving a modulated data signal, and a second port 1210 for further coupling of digital data. 第二调制解调器105具有耦合到第一调制解调器1202的第二端口1210的第一数字数据端口1230, 以及用于进一步耦合调制数据信号的第二端口1235。 The second modem 105 is coupled to a first modem having a first port of the second digital data port 1210 1202 1230, and a second port 1235 for further coupling of the modulated data signal. 可选地,路由器1220可插入第一调制解调器1202和第二调制解调器1205之间。 Optionally, a router 1220 may be interposed between first modem 1202 and second modem 1205. 上述装置的优点是:A) LV网格的噪声不能达到MV网格。 Advantage of the above device is that: A) LV grid noise can not reach the MV grid. 通过与数据连接1210串联的光绝缘体,可进一步提高绝缘度。 1210 series by connecting the insulators and the data light can be further improved degree of insulation. B) 能优化用于LV网格的使用不同于MV调制解调器的技术或参数的扩展频谱或其他调制解调器。 B) can be optimized for LV grids using spread spectrum or other modem is different from the technical parameters of the MV or modem. 电感耦合器在耦合节点处引入相对于导线或电缆特性阻抗,很小的另外的串联阻抗,从而最小化反射和功率消耗。 Inductive coupler incorporated with respect to the characteristic impedance of a wire or cable, a small additional series impedance at the coupling node, and thereby minimize the reflected power consumption. 在这种情况下,调制数据可成功地穿过大量中间节点。 In this case, data may be modulated through a large number of intermediate nodes successfully. 最好,电磁和漏电感足够小以便最小化阻抗干扰,但足够大来提供足够的耦合。 Preferably, electromagnetic and leakage inductance is small enough to minimize impedance disturbance but large enough to provide sufficient coupling. 在这里意指为调制解调器和由耦合器提供的阻抗间的有意的阻抗不匹配。 Here means not intentionally match the impedance between the modem and the impedance provided by the coupler. C) 可采用路由器以及其他网络装置1220,用于在家庭和外部网间进行调制。 C) Routers and other network devices can be 1220 for the home gateway and the external modulation. 在用于最小化辐射的总量上的一个参数是在线路和耦合器间的方向中的信号电平的衰减,因为在中压电力线上的信号电平必须足够强以克服这种衰减。 A parameter for minimizing the total amount of radiation in a direction between line and coupler in the attenuation of the signal level, since the signal voltage level in the power line must be strong enough to overcome this attenuation. 通过将更多的电源应用到驱动该线路的耦合器上以便建立与最大允许辐射电平一致的最大可容许的传输功率电平,可容19易克服耦合器和线路间的方向中的衰减,而没有另外的辐射。 By the application of more power to the coupler driving the line so as to establish the maximum transmission power level with the maximum permissible radiation electrode allows the same level, can accommodate 19 easily overcomes the direction between coupler and line attenuation, without additional radiation. 例如,如果将每个耦合器设计成lOdB耦合损耗,那么传输功率可增加10dB以便补偿,以及仅从调制解调器的损耗预算中扣除第二耦合器的10dB。 For example, if each coupler is designed to lOdB coupling loss, then 10dB transmit power can be increased to compensate, and only the loss budget of the second modem deducted 10dB coupler. 图13是根据本发明,用于电网段间的无源耦合调制数据的技术的示意图。 According to the present invention, FIG 13 is a schematic illustration of a passive technique the coupled modulated data between segments of a power grid. 图l3表示在具有含有第一中性导线1302的第一段1302、含有第二中性导线1330的第二段1303的配电系统上实现的数据通信网1300。 FIG. L3 shows a neutral conductor having a first section comprising a first 13021302 containing the data communication network 1300 implemented over a second neutral conductor 1303. The second section 1330 of the power distribution system. 网络1330包括第一耦合器1306,用于经第一中性导线1320电感耦合数据信号,并具有和于坦步耦合数据信号的数据端口1335,以及第二耦合器B07,具有耦合到第一电感耦合器1306的数据端口1335 的数据端口1340,以及用于经第二中性导线1330,电感耦合数据信号。 Network 1330 includes a first coupler 1306 for inductively coupling a data signal 1320 via a first neutral conductor, and having a first inductance and a coupling step in Tan data signal data port 1335, and a second coupler B07, coupled with the data port 1306 coupled to data port 13,401,335, and for the neutral conductor 1330 via a second inductive coupling data signals. 第一段1302包括在配电变压器1345的第一侧的第一配电电缆1315。 First segment 1302 includes a first power distribution cable 1315 on a first side of a distribution transformer 1345. 第二段1303包括在配电变压器1345的第二侧的第二配电1325 电缆。 Second segment 1303 includes a second power distribution cable 1325 on a second side of the distribution transformer 1345. 输电变压器1345具有对电力线1350的输出。 Transmission transformer 1345 having an output power line 1350. 网络1300进一步包括第一电感耦合器1306的数据端口1335和输出电力线1350间的电容器BIO,用于将数据信号耦合到输出电力线1350上。 Further comprising a data network 1300 a first inductive coupler 1335 and output port 1306 of the power line between the capacitor BIO 1350, for coupling the data signal to output power line 1350. 每个变压器到变压器段变为多链路链中的单独链路。 Each transformer segment becomes the transformer multilink chain links alone. 将耦合器连接到每个电缆终端上,从而每个变压器需要两个耦合器,除空端段上的最后一个变压器外。 The coupler is attached to each cable termination, thus requiring two couplers per transformer, except for the last transformer on a dead end segment. 通过使在变压器的每个端上的两个耦合器的数据端口1335和1340彼此连接,可实现段的无源链接。 1335 and 1340 through the data port connected to each other so that at each side of the transformer two couplers may be achieved passive link segment. 通过串联耦合电容器1310,可实现对连接到LV线1350的通信装置的无源连接。 Through series coupled capacitor 1310 can be realized passive connection means connected to the communication line 1350 of the LV. 在网络馈电点,诸如变电所,以及用户的房屋的低压引出线处连接类似的调制解调器。 Feed point in the network, such as a substation, and a low voltage lead connected to the user's house similar to a modem. 图14是用于使用背对背调制解调器,耦合电网段间的调制数据的技术的示意图。 FIG 14 is a modem back to back, schematic art coupling modulated data between segments using grid. 图14表示在配电系统上实现的数据通信网1400,该配电系统具有含有第一中性导线1420的第一段1402、含有第二中性导线1430的第二段1403。 14 shows a power distribution system implemented on a data communications network 1400, the power distribution system having a first section comprising a first neutral conductor 14021420, the second section comprising a second neutral conductor of 14,031,430. 网络1400包括第一耦合器,用于经第一中性导线1420电感耦合数据信号,并具有用于进一步耦合数据信号的数据端口1435,以及第二耦合器1407,具有耦合到第一电感耦器1406的数据端口1435的数据端口1440,以及用于经第二中性导线1430电感耦合数据信号。 Network 1400 includes a first coupler 1420 for inductively coupling a data signal via first neutral conductor, and having a data port 1435 for further coupling of the data signal, and a second coupler 1407 having a first inductor coupled to the coupling device data port 1406 14401435 data port, and for coupling data via a second neutral conductor 1430 inductive signal. 第一调制解调器1460包括调制数据信号1465的第一端口,耦合到第一耦合器1406的数据端口1435,以及具有用于数字数据1470的第二端口,用于进一步耦合该数据信号。 The first modem 1460 includes a first port for modulated data signals 1465 coupled to data port first coupler 14351406, and having a second port for digital data 1470 for further coupling of the data signal. 第二调制解调器1480具有用于数字数据1475的第一端口,耦合到第一调制解调器1460的第二端口1470,以及第二端口1485,用于进一步耦合调制数据信号。 The second modem 1480 has a first port for digital data 1475 coupled to second port of the first modem 14,701,460, and a second port 1485 for further coupling modulated data signal. 配电系统包括具有输出电力线145(3的配电变压器1445。网络1400 进一步包括第二调制解调器1480的第一端口1485和输出电力线1450 间的电容器1410,用于将该调制数据信号耦合到输出电力线1450。中压电缆可包括长电缆段,诸如从变电所到回路中的第一配电变压器。为便于安装和服务,可用在每个节点的进入孔分段该长段。在这些点处,在中压连接器(用于中心导线),以及接地的中性线集电环中端接电缆段。这引入了在一条或多条中性线上带有的数据传输线的不连续性。为忽略该不连续性,安装一对耦合器,将一个耦合器安装在接地端,通过彼此连接的它们的初级线圈,产生桥接。本发明也提供使用穿过配电系统段的相导线,实现数据通信网。图15是根据本发明,示意性表示用于将数据耦合到在数据通信网1500的实现中的配电系统的相导线的几种技术。将 Distribution system includes a power line 145 having an output (3 distribution transformer 1445. Network 1400 further comprises a first terminal capacitor second modem 1410 and output power line 1485 1450 1480, the modulated data signal to output power line 1450 is coupled to the medium voltage cable may include a long cable segment, such as. for ease of installation and service, the long section of the segment available to the loop from the substation to the first distribution transformer in each node of the access hole. at these points, in the neutral voltage connectors (for center conductor), and a ground collector ring terminating cable segment. this introduces a discontinuity in one or more data transmission lines with the neutral line of the article. of ignores the discontinuity, install a pair of couplers, a coupler is mounted on the ground, through the primary coil thereof connected to each other, the bridge is generated. the present invention also provides a power distribution system using a phase wire through the section, data communication network. FIG. 15 is according to the present invention, showing schematically for coupling data to a phase conductor of the power distribution system in a data communication network 1500 implemented in several techniques. the 容耦合器放在由HV-MV压降变压器馈电的架空线上。变压器第二阻抗是与架空线上相同或更大。在这里可使用端接器-耦合器,例如,具有数据端口的电容耦合器,(a) 二者均用来将调制解调器耦合到该线路上,以及(b)将该线路与近似等于输电电缆的特性阻抗(因为通过其变压器反射调制解调器或假负载电阻器阻抗)的电阻端接。 因此,图15显示该配电系统包括变电所HV-MV压降变压器1502。电容耦合器1535,即,端接器-耦合器位于接近压降变压器1502的次级绕组。元件,诸如调制解调器1525,当通过电容耦合器反射时,具有几乎等于输电电缆的特性阻抗的阻抗。在诸如在日本的系统中,其中用户打算运转长度达上百米的非常低阻抗同轴地下电缆到架空网格的开始处,用于电感耦合器的最佳位置是在地下-架空转变点的架空端处。在这里,地下电缆的低阻抗 Capacitive coupling transformer by the voltage drop on overhead lines fed by HV-MV second impedance transformer is equal to or larger overhead lines may be used herein terminator - coupler, e.g., with data ports capacitive coupling, (a) both for the modem coupled to the line, and (b) and the line is approximately equal to the characteristic impedance of the transmission cable (as a modem or reflected through its transformer dummy resistor impedance) resistor termination Thus, FIG. 15 shows the power distribution system includes a substation HV-MV voltage drop transformer 1502. capacitive coupler 1535, i.e., terminator - a coupler positioned near the pressure drop of the transformer secondary winding of 1502 elements. , such as a modem 1525, when reflected by the capacitive coupling, having nearly equal to the characteristic impedance of a transmission cable in a system such as Japan, where the user intends to run on the meter length of a very low impedance coaxial underground cables to at the beginning of an overhead grid, the preferred location for inductive couplers is at the ground - overhead overhead transition point at the end where the low impedance underground cables 架空线端就象短路,并形成闭合电流回路。因此,配电系统包括架空电缆1515、 1516和地下电缆1510间的转换点1545,其中地下电缆1510具有远小于架空电缆1515的特性阻抗。 一个或多个电感耦合器1540、 1541均位于架空电缆1515、 1516上,接近转换点1545。通过由反相电流驱动的每个耦合器对的构件,能对称地实现在三相架空电缆1515、 1516上放置电感耦合器1540、 1541。这种驱动将基本上抵消远场电磁辐射,并易于与任何调整标准兼容。因此,网络1500 可包括一对电感耦合器1540、 1541,以便该对的第一电感耦合器,例如1540感应第一方向中的相导线,例如1515中的第一电流,以及该对的第二感应耦合器,例如,1541,感应在与第一电流相反的方向中的第二相导线,例如1516中的第二电流。 Overhead line as a short-circuit end, and a closed current loop is formed. Thus, the power distribution system comprises a conversion point 1545 overhead cable 1515, 1516 and an underground cable 1510, in which underground cable 1510 having a much smaller than the characteristic impedance of overhead cable 1515. One or a plurality of inductive couplers 1540, 1541 are located on overhead cable 1515, the 1516, 1545. near the transition points by each coupler member driven by the reverse-phase current can be symmetrically achieved in a three phase overhead cable 1515, 1516 on the placement of inductive couplers 1540, 1541. this drive will substantially cancel the far field electromagnetic radiation, and readily compatible with any standard adjustment. Accordingly, network 1500 may include a pair of inductive couplers 1540, 1541, so that the first inductor pair coupling, for example with induction conductor a first direction 1540, for example, in 1515 a first current and a second pair of the inductive coupler, e.g., 1541, induced in the second phase opposite to the first direction of current wire, for example 1516 second current. 另外,可用在其他相位中感应的相等和反向电流,在远离电感耦合器超过一个波长的距离处,驱动单相,同时抵消大多数远场辐射。 Further, the available reverse equal, and current induced in the other phases, at a distance away from the inductive coupler than one wavelength, the single-phase drive, while canceling most far-field radiation. 例如,可使用一个电感耦合器1540,以及在该线路下一个波长后,可依赖传输线感应效应来平衡电流。 For example, using one inductive coupler 1540, and after the line at a wavelength, transmission line induction effects may depend to balance current. 也可将电感耦合器放置在馈给配电变压器初级线圈的线路上,因为一些类型的配电变压器的变压器初级线圈电感可具有与架空线相同的数量级,并形成闭合回路。 Inductive coupler can also be placed on the distribution line is fed to the primary winding of the transformer, because some types of distribution transformer primary inductance of the transformer may have the same order of magnitude as the overhead line, and form a closed loop. 由于该回路载有相对低的工频电流,通常在2-8安培范围内,很少趋向铁芯饱和,以及可构造具有很少或无气隙的耦合器铁芯。 Since the circuit contains a relatively low frequency current, typically in the 2-8 Ampere range, little tendency core saturation, and may be configured with little or no air gap coupler core. 如图15中所示,电感耦合器1550位于馈给配电系统的配电变压器的初级绕组1555的线路上。 As shown in FIG. 15, the line inductive coupler 1550 is located in the feed distribution transformer primary winding distribution system 1555. 由于电感耦合器1550所察觉的电路阻抗的大小可与几百欧姆一样高,以及沿连接到电感耦合器1550的一段输电线的调制解调器1560 通常具有50欧姆的阻抗,可存在实际上的阻抗不匹配。 Since the inductive coupler 1550 perceived size of the circuit impedance of a few hundred ohms may be as high, and along a section connected to the transmission line of the inductive coupler 1560 1550 modem typically have a 50 ohm impedance, there may be practical impedance mismatch . 如图15所示,配电系统1500可包括PLC电容器和/或功率因素补偿电容器,例如,相导线如1516和地间的电容器1565。 15, power distribution system 1500 may include a PLC capacitor and / or the power factor compensating capacitor, e.g., capacitor 1565 phase conductor 1516 and the ground. 电容器1565 可具有低于输电电缆1516的阻抗。 Capacitor 1565 may have an impedance lower than the transmission cable 1516. PLC和功率因素电容器可具有高RF阻抗,在这种情况下,它们将不会显著地干扰在电网上通过的HF 信号。 PLC and power factor capacitors may have a high RF impedance, in which case they will not significantly disturb HF signals passing on the grid. 对具有其大小与电力线的特性阻抗相同数量级或更低的RF阻抗的那些装置,诸如电容器1565来说,可与电容器1565串联插入串联扼流圈1570。 Having its size and the characteristics of the power line impedance means that the RF impedance of the same order of magnitude or less, such as a capacitor 1565, a capacitor 1565 may be inserted in series with the series choke 1570. 通过在引线1575上放置一个或多个搭锁的分裂磁芯,串联扼流圈1570可包括到电容器1565的现有的引线1575。 By placing one or more snap-on split magnetic cores over lead 1575, a series choke 1570 may comprise an existing lead wire 1575 to capacitor 1565. 工频电流相对较低,因此,铁芯饱和将不是问题。 Frequency current is relatively low, therefore, core saturation will not be a problem. 这些扼流圈的电感阻抗的微亨大小将不影响电容器的工频机能。 The micro-Henry magnitude of these chokes inductive impedance of the capacitor will not affect the function of frequency. 也可使用有损耗铁芯,因为它们仅增加扼流圈的高频阻抗,并增加电容器的绝缘度。 Lossy core may also be used, because they increase only high frequency impedance of the choke, and to increase the degree of insulation of the capacitor.

必须将传输线反射的效应视为它们产生可引入数据流误差的回波。 Effect of transmission line reflections must be considered as they produce echoes may introduce errors in the data stream. 扩展频谱调制很可能是用于这种载有回波传输的侯选方法,因为其容忍窄频带吸收以及窄带噪声,以及由于其低频谱功率密度,最小 Spread-spectrum modulation is likely to be candidates for such carrier has the echo transmission method, since it tolerate a narrow band and narrow band noise absorption, as well as due to its low spectral power density, minimum

化发射的电磁辐射。 Emission of electromagnetic radiation. 对扩展频谱调制解调器来说,为6-10dB或更低于直流信号电平的反射的内部分组信号将不影响数据接受。 For spread spectrum modems, reflected as an internal packet 6-10dB or more lower than the signal level of the DC signal will not affect the data is accepted. 将内部分组反射信号定义为在直接接收原始分组期间到达的反射。 The reflected signal is defined as the inner packet during the direct reception of the original packet arrives reflection.

可由(a)配电变压器,具有或不具有另外的电感耦合器阻抗,(b) 线路终端,通常设计成与线路阻抗匹配相当好,(c)T-分支,以及(d) PLC或功率因素补偿电容器产生电力线上的阻抗干扰。 By (a) distribution transformers, with or without additional inductive coupler impedance, (b) the line termination, impedance matching circuit is generally designed to be quite good, (c) T- branches, and (d) PLC or power factor compensation capacitors an impedance of the power line interference. 这些阻抗间断性的反射系数通常将不超过0.5,以及反射信号经过出站并返回线路本身的损耗,即,吸收损耗和辐射损耗,因此,期望其反射信号的振幅比直流信号弱6-10dB以上。 The reflection coefficient of the impedance discontinuity will generally not exceed 0.5, and the reflected signal through the outbound and return loss of the lines themselves, i.e., absorption loss, and radiation loss, and therefore, it is desirable that the amplitude of the reflected signal is weaker than the DC signal over 6-10dB . 因此,在数据分组期间到达的反射信号将呈现为低振幅噪声,并且将不阻止正确接收的指定数据信号。 Thus, the reflected signal data packet arrival period will appear as low amplitude noise, and will not prevent the specified data signal is correctly received.

对放在以高阻抗线的低阻抗馈电点,诸如转换点1545上的耦合器 Placed on a low impedance feedpoint at the high impedance lines, such as a point on the coupler converter 1545

来说,由于阻抗不匹配引起的损耗和反射是不期望的。 , The loss and reflection due to the impedance mismatch caused by undesirable. 由于非常重的 Due to the very heavy

电力线不能缠绕在耦合器铁芯上,次级线圈可仅仅具有一匝,以及初级线圈可具有不少于i匝。 The power line is not wound around the coupler core, the secondary coil may have only one turn, and the primary coil may have less than i turns. 因此,根据匝数比,反射在电力线上的阻 Thus, according to the turns ratio of the reflected power line hindrance

抗将等于调制解调器的阻抗、其四分之一,或更低。 Anti equal to the impedance of the modem, a quarter, or less. 对具有50欧姆的终端阻抗的调制解调器来说,该反射阻抗远低于它们的特性阻抗。 Having a modem termination impedance is 50 ohms, the reflected impedance is much lower than their characteristic impedance. 提高阻抗匹配的一种解决方案是用几百欧姆的输出阻抗构造调制解调 One solution to improving impedance matching with an output impedance of several hundred ohms modem configuration

胆益o O bile benefits

另一种解决方案是并联连接耦合器的相位-反相与它们的初始级圈。 Another solution is the phase coupler connected in parallel - with their initial stage inverter ring. 有必要串联次级线圈(MV线)。 Necessary series coil (MV lines). 因此,通过相位-反相电感耦合器对,可将50欧姆调制解调器阻抗变换成100欧姆的反射阻抗。 Thus, the phase - inductively coupled inverter pair, can be converted into a 50-ohm modem impedance 100 ohm reflected impedance. 可通过使用多个与它们的初级线圈并联的耦合器,实现电力线端上变压器(耦合器)绕组的串联连接,以及调制解调器端的并联连接,可进一步执行该原理。 It can be, and are connected in parallel by using multiple couplers with their primary winding connected in parallel, the power line side of the transformer (coupler) windings connected in series to the modem side, the principle can be further performed.

例如,图15表示第一感应耦合器1540以及第二感应耦合器1541。 For example, FIG. 15 shows a first inductive coupler 1540 and a second inductive coupler 1541. 第一感应耦合器1540经第一绕组1540A,感应相导线1515中的第一方向中的第一电流,以及第二感应耦合器1541,经第二绕组1541A, 感应相导线1516中相反方向中的第二电流。 A first inductive coupler 1540 via a first winding 1540A, a first phase induced current in a first direction in the wire 1515, and a second inductive coupler 1541 via a second winding 1541A, sensing leads 1516 in the opposite direction The second current. 第一绕组1540A和第二绕组1541A彼此并联连接。 A first winding 1540A and second winding 1541A are connected in parallel. 在图15中,第一绕组1540A和第二绕组1541A 用点标记以显示该相位关系。 In FIG 15, first winding 1540A and second winding 1541A marked with dots to show this phase relationship. 必须将在架空馈电点处的电感耦合器设计成经得住可达到上百安培的总的馈电电流的影响。 Overhead feed point at the inductive coupler must be designed to withstand impact can reach hundreds of amperes of electrical current to the total feed. 由于即使昇有这种电流的一匝线圈将使适合于高频工作的当前可用的磁性材料的铁芯饱和,该"主线路"耦合器通常必须在其磁路中包括气隙。 Core material currently available even when such current has a L-turn coil suitable for high frequency operation will saturated, the "main line" coupler must generally include an air gap in its magnetic circuit. 为实现足够的磁化电感,这类耦合器将需要形成在电力线的方向中非常粗的一个铁芯的等效的几个铁心o图16A-16C是示意性表示在配电系统上实现的通信网络中的电容耦合器的几种用法。 FIG equivalent to several core o achieve sufficient magnetization inductance, such couplers will need to be formed in the direction of the power line in a very coarse core 16A-16C are a schematic showing a communications network implemented in the power distribution system the several uses of capacitive coupling. 在网络中的节点处使用这些电容耦合器,其中电感耦合器可能无效,例如,在存在对RF电流的有效开路的点处。 At a node in the network using the capacitive coupling, inductive coupling which may be void, for example, in the presence of an effective open circuit to RF current point. 诸如用在图10A和10B的电容耦合器1020如图16A所示,在此标记为电容耦合器1600。 Used as shown in FIGS. 10A and 10B capacitive coupler 1020 of FIG. 16A, this flag 1600 is capacitive coupling. 按照正EE说明386,电容耦合器1600应当能连续地经受住由相导线和一系列BIL脉冲,诸如用于15kV工作电压的125kV提供的工作电压。 EE instructions 386 in positive, capacitive coupler 1600 should be able to withstand continuous operating voltage of 125kV live phase conductor and a series of BIL pulses, such as a operating voltage supplied 15kV. 按照上述说明,还应当构造电容耦合器1600 以便消除电晕击穿。 According to the above description, the capacitive coupling also be configured so as to eliminate corona breakdown 1600. 经其在最低相关频率时的阻抗为一小部分输电电缆的特性阻抗的高压电容器1620,例如10nF,电容耦合器1600连接到MV线上。 Through which the impedance at the lowest relevant frequency is a fraction of a high voltage capacitor 1620 characteristic impedance of the transmission cable, such as 10nF, capacitive coupler 1600 is connected to the MV line. 可选地,电容耦合器1600可包括与电容器1620串联连接的保险丝1625, 以避免弄错应当在短路情况下的中压线。 Optionally, capacitive coupler 1600 may include a fuse 1625 is connected to the capacitor 1620 in series, in order to avoid a mistake in the pressure line should be in short-circuit conditions. 高电阻泄流电阻器1605与每个电容器1620并联连接以便当不将它们连接到激励电路时使它们放电。 High resistance bleeder resistors 1605 are connected in parallel with each capacitor 1620 to discharge them so that when they are not connected to the drive circuit. 充电电容器将会对人员产生危险。 Charging capacitor will produce danger to personnel. 为进一步将数据端口1630与MV线隔离,使用高频绝缘变压器1615, 以及如果需要的话,还包括用于阻抗变换的可选的非单一匝数比。 Data port 1630 is further isolated from the MV lines, a high frequency isolation transformer 1615, and if required, further comprising an optional non-unitary turns ratio impedance conversion. 为保护连接到数据端口1630的装置,通过数据端口1630的终端可连接诸如金属氧化物变阻器(MOV)的电涌保护器以便限制另外由MV线耦合到这些装置的脉冲振幅。 Means data port 1630 is connected to the protection, it can be connected such as a metal oxide varistor (MOV) of the surge protector terminal through data port 1630 to limit further coupled by a cable to the MV pulse amplitude of these devices. 最好,在安装电容器的网络中,将电容耦合器1600的一个疯子连接到中压相位线,以及将另一端子连接到中性(用于单一脉冲线)或第二脉冲线(用于多相线)。 Preferably, the capacitor is mounted in a network, a capacitive coupler 1600 is connected to the maniac phase line voltage, and the other terminal connected to neutral (for single pulse line) or the second line pulse (for multi- line).

当用来端接传输线的空端时,可使用电容耦合器1600以及连接到数据端口1630的端接电阻器1635以便匹配输电电缆的特性阻抗。 When used to terminate a transmission line dead end, 1635 may be used to match the characteristic impedance of the transmission cable capacitive coupler 1600 coupled to data port 1630, and a terminating resistor.

图16B示例说明使用电容耦合器1600,用于将调制解调器1636 耦合到输电电缆的空端。 FIG 16B illustrate an example of the use of capacitive coupler 1600 for coupling a modem 1636 to the dead end of the transmission cable. 将调制解调器1636连接到数据端口1630。 The modem 1636 coupled to data port 1630.

图16C是用于维持通过网格分段开关的数据信号的连续性的电容耦合器的装置的示意图。 16C is a schematic view through the apparatus to maintain the continuity of the data signal is capacitively coupled switch segment of the grid used. 图16C表示具有相导线的配电系统,该相导线具有在开关1602的第一侧的第一段1601,以及在开关1602的第二侧的第二段1603。 FIG 16C shows the power distribution system having a phase conductor, the phase conductor having a first section 1601 of the first side of the switch 1602, and a second segment 1603 on a second side of the switch 1602. 第一电容耦合器1650经第一段1601耦合数据信号, 并具有用于进一步耦合数据信号的数据端口1635。 A first capacitive coupler 1650 coupled to the data signal via first segment 1601, and having a data port 1635 for further coupling of the data signal. 第二电容耦合器1600具有耦合到第一电容耦合器1650数据端口1635的数据端口1665, 并经第二段1603耦合该数据信号。 A second capacitive coupler 1600 has a first capacitor coupled to a data port coupled to data port 1650 of 16,651,635, and the data signal via second segment 1603 is coupled. 因此,当打开开关1602时,维持第一段1601和第二段1603间的数据信号的传输, Thus, when the switch 1602 is opened, to maintain the transmission of data signals between the first segment 1601 and second segment 1603,

本发明采用各种网络协议来扩展物理范围和提高可靠性。 The present invention employs a variety of network protocols to extend physical range and improve reliability. 在通过电感耦合器并面临阻抗不匹配、T形接头,以及辐射损耗后,可用于调制解调器的接收器的信号的振幅可变得很弱。 After passing through inductive couplers and face impedance mismatch, T-junctions, and radiation loss, the amplitude of the signal may be a modem receiver may become very weak. 不管该弱化是与调制解调器的内部噪声还是与中压线上的周围电噪声有关,这将是物理点, 超过该物理点,不能检测信号并且将其解调成具有可接受的低误差率的数据。 Weakening is regardless of whether the modem is internal noise associated with the ambient noise power voltage line, this will be a physical point beyond which the physical points, the signal can not be detected and demodulated into data with an acceptably low error rate .

如果也使用高阻抗扼流圈来将中压网格分离成独立段,可增加双向调制解调器来重新生成并加强该信号。 If a high impedance chokes are also used to separate the intermediate-pressure section of the grid into independent, bi-directional modems may be increased to regenerate and strengthen the signal.

数据通信网能采用包括从节点到节点传递数据令牌的通信协议。 Data communication network can employ communication protocols including transmission of data from node to node token. 在每个节点,存储、解释提供信令或控制,或包括作为有效负载的数据分组的令牌并将其路由到调制解调器的局部数据用户或网络上的下一结点。 At each node, storage, interpretation provides signaling or control, or includes a next node on the packet payload as the data token and routes user data to a modem or a local network. 如果每个节点总是在线的话,存储、解释和转发令牌所需的时间将显著地降低这种网络的有效净数据率。 If each node is always online, then, the time required to store, interpret and forwarding the token will significantly reduce the effective net data rate of such a network.

根据本发明,仅将某些节点编程为在任何指定时刻均为有效,艮卩, 该令牌所寻址的节点以及维持网络上所有点的最小信号振幅所需的沿网络分布的最小固定节点子集。 According to the present invention, only certain nodes are programmed to active at any given moment, Gen Jie, the token is addressed to the desired node and a minimum signal amplitude for all points on the network is maintained along the distribution network of the minimum fixed node Subset. 当该节点的子集有效时,将会有时间延迟和作为增加物理范围和提高误差率的响应的降低的净数据率间的有利折衷。 When this subset of nodes is active, there will be a time delay and increased physical range and improved as advantageous a compromise between reduced net data rate in response to the error rate. 能通过手动测量中压网的所有节点间的衰减来实现识别永久有效节点元的确定。 By manually measuring the attenuation between all nodes in the network pressure to achieve permanent identification element nodes determined. 最好,测量电压振幅和/或信号噪声皆电路具有调制解调器,并由网络媒介访问控制层来询问。 Preferably, the measured voltage amplitude and / or signal to noise are circuit having a modem, media access control layer by a network to ask. 还应当将这些节点编程为接受使它们保持在永久有效中继模式的命令,甚至接受它们不寻址的令牌或分组。 These nodes should also be programmed to accept that they remain in permanent relay mode command, even they do not accept the packet or token addressed.

然后,能实现确定应当将哪些节点设置为永久有效的算法,并向所有节点发出命令流以便将适当的节点设置成永久有效。 Then, to determine which nodes should achieve the permanent set algorithm, all nodes and sends the command stream to the appropriate node is arranged to be permanent. 每次运行该算法时,改变中压输出线路的结构,但这是相对偶尔的事件。 When the algorithm for each run, changing the structure of the output voltage line, but this is a relatively occasional event.

紧挨节点将享用等于最大网络率的数据率,同时通过可靠的、低误差率服务,虽然以较低数据率服务相隔更远的节点。 Node immediately enjoy a data rate equal to the maximum network rate while by reliable, low error rate service, although at a lower data rate service node further apart. 原则上,要求所述的装置消除中压通信的所有距离限制。 In principle, the apparatus required to remove all pressure from the limits of communication. 由选定的导线以及其相邻导线形成的传输线固有宽带宽、低损耗以及低分散介质。 Inherent broadband transmission line formed by the selected conductor and its adjacent conductor width, low loss and low dispersion medium. 对架空线, 该损耗是由趋肤效应和辐射引起的,由于大多数频率这些线是谐振的, 后者相对无效。 Of overhead lines, the losses are caused by the skin effect and radiation, since most of these lines is a resonance frequency, which is relatively inefficient. 对地下线来说,该损耗是由趋肤效应和绝缘损耗,例如,塑料外层和半导线材料的内层引起的。 For underground line, the losses are due to the skin effect and dielectric losses, e.g., outer layer of plastic and an inner layer of semi-conductor material causes.

本发明产生低电磁发射并具有对外部噪声的低敏感度,特别是当与扩展频谱技术一起使用时。 The present invention produces a low electromagnetic emission and has a low susceptibility to external noise, especially when used with spread spectrum techniques when. 由于低电缆-耦合器损耗,也将功率电平保持在低电平。 Due to the low cable - coupling loss, the power level will be maintained at the low level. 对外部噪声源的敏感度将与辐射成比例,以及具有最 Sensitivity to external noise sources would be proportional to the radiation, and a most

低电磁干扰(EMI)的调制解调器也将是基于互惠原理,最好抵抗外部噪声接受的那些调制解调器。 Low electromagnetic interference (EMI) modems will also be based on reciprocity principle, the best resistance to those modems to accept external noise.

对单端模式(见图2A),选定导线的两个相邻导线以与用于电和磁辐射模式的中心导线起反相动作。 Single-ended mode (see FIG. 2A), the selected two adjacent wires with the center conductor wire for electrical and magnetic radiation modes from inverter operation. 相隔一定距离的观察员将看到基本上抵消的场。 Distance from the observer will see substantially cancel the field.

对平衡模式,有远场抵消和接地相邻导线的保护效应。 Balance mode, there is a protective effect leads the far-field cancellation and the adjacent ground. 对变压器终端(见图2B),最小化耦合损耗,以及驱动功率将保持相对较低, 给出最低EMI电平。 The transformer terminal (see FIG. 2B), the coupling loss is minimized, and the driving power will be kept relatively low, giving the lowest EMI levels. 对扼流圈终端,驱动功率电平将稍微高些。 Terminal of the choke coil, the driving power level will be slightly higher.

如果调制解调器充当转发器,那么能将驱动功率电平保持到单段所需的最小电平,进一步降低辐射。 If the modem acting as repeaters, then drive power levels can held to a single desired minimum level segment, further reducing radiation.

根据本发明的数据通信网提供用于非常高数据率的容量,例如, 10Mbps。 The data communication network of the invention provides for a very high data rate capacity, e.g., 10Mbps. 如果使用高频磁性和介电材料的话,耦合器是具有能达到至少好几十兆赫的带宽的磁性和静电装置。 If a high frequency magnetic and dielectric materials, then, the coupler having a bandwidth magnetic and electrostatic means can reach at least several tens of megahertz. 不太损耗并具有最小分散的 Less loss and has a minimum dispersion

26传输线能实施超过20MHz的频率。 Transmission line 26 can be implemented over frequency of 20MHz. 这些频率可用于使用各种调制方案的调制解调器,并且即使在每赫兹1比特的情况下,将产生髙的数据率。 These frequencies may be used for a variety of modem modulation scheme, and even in the case of 1 bit per Hertz, would produce a data rate of Gao.

如果数据编码消除了长串所有1和所有0,也可使用基带信令。 If all the data coding eliminates long strings of all 0 and 1, the base-band signaling may also be used. 通过包括再生(转发器)的段内连接,频带将远大于通过无源连接段所获得的频带。 By including the regeneration (repeaters) connected segments, will be greater than the band obtained by passive band connecting section. . .

可在极少或不中断对用户的电力服务的情况下,安装本发明的耦合器。 It may be little or no interruption of power service to the user, mounting the coupler of the present invention. 也可在不受高压影响的情况下完成安装。 You may complete the installation without being affected by high pressure. 采用戴手套的线路工人,管理当局可允许将电感耦合器放在电缆,即使该电缆处于使用中。 Using gloved linemen, the authorities may allow the inductive coupler on the cable, even if the cable is in use. 即使管理当局坚持工人不能在通电电缆上工作,附近中压网格的回路结构允许断开单个电缆段,而不中断对用户的服务。 Even if authorities persist workers can not work on the power cables, the loop structure near the medium-voltage grid allowed off a single cable segment, without interrupting service to users. 对相对少的电容耦合器来说,可需要单个短时停电。 Of a relatively small capacitive coupling, it may require a single short power outage.

本发明允许即使在停电期间,连续操作数据通信网。 The present invention allows even during a power failure, continuous operation of the data communication network. 即使在中断中压电力期间,连续操作。 Even in pressure during the power interruption, the continuous operation.

本发明对电网格的可靠性有极少或没有影响。 The reliability of the present invention have little or no effect on the mesh. 电感耦合器不存在会影响电力流动的故障方式。 Inductively coupling power failure can affect the flow does not exist. 少量具有保险丝的电容耦合器也不会影响线路故障。 Fuse having a small capacitive coupling does not affect the line fault.

对图2A和2B的实施例,用更粗导线缠绕该耦合器将排队由于过电流的故障,以及在选定中性线和耦合器间使用工业标准连接将会最小化连接故障。 FIG 2A and Example 2B, winding the wire with a thicker line coupling due to the fault over-current, and will minimize connection failure in a selected industry standard connection and the coupler between neutral. 在出现开路的情况下,将不振动载电流的容量的(Nl) /N,或在所述的情形下,为87.5%。 In the event of an open circuit, it does not vibrate the current carrying capacity of (Nl) / N, or, in the case, 87.5%. 由于电缆通常以远低于其200A容量运行,这种故障将没有影响。 Since the cable usually runs far below its capacity 200A, such a failure would have no effect.

耦合器的短路将影响数据通信,但这仅仅将中性导线恢复到其原始状态。 Short circuit of the coupler would impact data communications, but only to restore the neutral conductor to its original state. 因此,不会不利地影响电网。 Therefore, without adversely affecting the power grid.

耦合器的中性或任何其他部分对地短路将对MV线没有影响,因 Neutral or any other part of the coupler will have no effect on the MV line shorted to ground, due to

为其中性将紧接连接到接地棒。 Wherein the property is immediately connected to the ground bar. 磁性电路的开、短或饱和故障将对提供电力或系统安全没有影响。 Open, short or saturation of a power failure or system security will be provided no effect on the magnetic circuit.

耦合器仅使用无源元件,暗指实质上的服务的无限寿命。 A coupler using only passive components, implies substantially unlimited service life. 电感耦合器可是任何适当的变压器或电感器。 Inductive coupler can be any suitable transformer or inductor.

在无源实现中,电感耦合器仅使用无源元件,例如,缠绕在磁芯上的导线,并且这些没有磨损力学订。 In the passive implementation, the inductive couplers use only passive components, e.g., wound on the core wire, no wear and the mechanical set. 电感耦合器也不具有磨损力学。 Inductive coupler does not have a mechanical wear. 无源结构以及电感耦合器安装的简易性对耦合到中压配电线、以及将它们用作回程数据通道的问题提供低成本解决方案。 Passive inductive coupler mounting structure and the ease of coupling to medium voltage distribution line, and issues them as a data backhaul channel low-cost solution. 为主电感以 The main inductance to

及安装成本最小,安装时间应当小于15分钟。 Minimum installation cost and installation time should be less than 15 minutes.

这些实施例的明显好处在于与利用中压导线来运送数据的电感旁路耦合器相比,使用中性线。 The obvious benefit is that as compared with the embodiment using the medium voltage wires to convey the shunt inductor coupled data using neutral. 后者与中压线,至少每个变压器接触, 而且必须经受得住整个故障电压。 MV line with the latter, at least in contact with each transformer, and must withstand the entire fault voltage. 例如,必须测试用于15kV均方根对地相位电缆的的耦合器用于125kVBIL。 For example, it must be tested for 15kV cable of rms phase coupling for 125kVBIL. 这使得电容耦合器体积很大并且很昂贵,并且对系统来说增加了更多的潜在故障点。 This makes the capacitive coupler very bulky and expensive, and increases the more potential points of failure for the system.

应当理解到本领域的技术人员能建议各种替代方案以及修改。 It will be appreciated that those skilled in the art can suggest a variety of alternatives, and modifications. 发明包括落在附加权利要求的范围内的所有这些替代、修改和变化。 The invention includes all such alternatives, modifications and variations that fall within the scope of the appended claims.

Claims (5)

1.一种用于数据信号的耦合器,包括: 铁芯,能穿过配电系统的相导线以作为第一绕组,以及第二绕组,缠绕在一部分所述铁芯上; 其中所述第一绕组具有在所述电力配电系统被忽略不计的阻抗,以及其中,经所述铁芯将所述数据信号电感耦合在所述相导线和所述第二绕组间。 1. A method for coupling a data signal, comprising: a core, can pass through the phase conductors of the power distribution system as a first winding and a second winding wound on said core portion; wherein said first having a winding in the electric power distribution system is negligible impedance, and wherein the core via the inductive coupling of the data signal phase between the wire and the second winding.
2. 如权利要求1所述的耦合器,其特征在于所述铁芯包括气隙。 2. A coupler according to claim 1, characterized in that said core comprises an air gap.
3. 如权利要求1所述的耦合器,进一步包括与所述第二绕组串联的电容器。 The coupler as claimed in claim 1, further comprising a second winding in series with the capacitor.
4. 如权利要求1所述的耦合器,进一步包括与所述第二绕组并联连接的电涌保护器。 4. A coupler according to claim 1, further comprising a surge protector connected in parallel with said second winding.
5. 如权利要求1所述的耦合器,其中,所述耦合器包括射频变压器。 5. The coupler according to claim 1, wherein said coupler comprises a radio frequency transformer.
CN 01822880 1999-12-30 2001-05-04 Coupler for coupling data signal to power transmission cable CN100477539C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/752,705 US6452482B1 (en) 1999-12-30 2000-12-28 Inductive coupling of a data signal to a power transmission cable
US09/752,705 2000-12-28

Publications (2)

Publication Number Publication Date
CN1493111A CN1493111A (en) 2004-04-28
CN100477539C true CN100477539C (en) 2009-04-08



Family Applications (2)

Application Number Title Priority Date Filing Date
CN 01822880 CN100477539C (en) 1999-12-30 2001-05-04 Coupler for coupling data signal to power transmission cable
CN 200910000553 CN101505175B (en) 1999-12-30 2001-05-04 Coupler for coupling a data signal to a power transmission cable

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200910000553 CN101505175B (en) 1999-12-30 2001-05-04 Coupler for coupling a data signal to a power transmission cable

Country Status (16)

Country Link
US (3) US6452482B1 (en)
EP (1) EP1350329B1 (en)
JP (2) JP2004517545A (en)
KR (1) KR100755145B1 (en)
CN (2) CN100477539C (en)
AT (1) AT343139T (en)
AU (1) AU2001259563B8 (en)
BR (1) BR0116627A (en)
CA (1) CA2433604A1 (en)
DE (1) DE60124010T2 (en)
EA (1) EA006177B1 (en)
ES (1) ES2274887T3 (en)
IL (2) IL156650D0 (en)
MX (1) MXPA03005853A (en)
PT (1) PT1350329E (en)
WO (1) WO2002054605A1 (en)

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6452482B1 (en) * 1999-12-30 2002-09-17 Ambient Corporation Inductive coupling of a data signal to a power transmission cable
US7154382B2 (en) * 1999-12-30 2006-12-26 Ambient Corporation Arrangement of inductive couplers for data communication
MXPA02007139A (en) * 2000-01-20 2004-09-06 Current Tech Llc Method of isolating data in a power line communication network.
US6496104B2 (en) 2000-03-15 2002-12-17 Current Technologies, L.L.C. System and method for communication via power lines using ultra-short pulses
US6965302B2 (en) * 2000-04-14 2005-11-15 Current Technologies, Llc Power line communication system and method of using the same
US7064654B2 (en) * 2002-12-10 2006-06-20 Current Technologies, Llc Power line communication system and method of operating the same
US7224272B2 (en) * 2002-12-10 2007-05-29 Current Technologies, Llc Power line repeater system and method
US6998962B2 (en) * 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
US6980090B2 (en) * 2002-12-10 2005-12-27 Current Technologies, Llc Device and method for coupling with electrical distribution network infrastructure to provide communications
US6965303B2 (en) * 2002-12-10 2005-11-15 Current Technologies, Llc Power line communication system and method
US7436321B2 (en) * 2002-12-10 2008-10-14 Current Technologies, Llc Power line communication system with automated meter reading
US6980091B2 (en) * 2002-12-10 2005-12-27 Current Technologies, Llc Power line communication system and method of operating the same
KR20030019349A (en) * 2000-04-14 2003-03-06 커런트 테크놀로지스, 엘엘씨 Digital communication utilizing medium voltage power distribution lines
US7248148B2 (en) * 2000-08-09 2007-07-24 Current Technologies, Llc Power line coupling device and method of using the same
US7245201B1 (en) 2000-08-09 2007-07-17 Current Technologies, Llc Power line coupling device and method of using the same
US6980089B1 (en) * 2000-08-09 2005-12-27 Current Technologies, Llc Non-intrusive coupling to shielded power cable
US6995657B2 (en) * 2000-08-14 2006-02-07 Main.Net Communications Ltd. Power line communication system
WO2003009083A2 (en) * 2001-07-17 2003-01-30 Main.Net Communications Ltd. Dual purpose power line modem
US7406536B2 (en) * 2001-07-23 2008-07-29 Main.Net Communications Ltd. Dynamic power line access connection
DE10041702C2 (en) * 2000-08-24 2002-07-11 Siemens Ag A method for transmitting high-frequency signals on low-voltage networks and associated arrangement
US20040037317A1 (en) * 2000-09-20 2004-02-26 Yeshayahu Zalitzky Multimedia communications over power lines
AU3079402A (en) * 2000-12-15 2002-06-24 Current Tech Llc Interfacing fiber optic data with electrical power systems
EP1371219A4 (en) * 2001-02-14 2006-06-21 Current Tech Llc Data communication over a power line
US7103240B2 (en) * 2001-02-14 2006-09-05 Current Technologies, Llc Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line
US20020110311A1 (en) * 2001-02-14 2002-08-15 Kline Paul A. Apparatus and method for providing a power line communication device for safe transmission of high-frequency, high-bandwidth signals over existing power distribution lines
US7194528B1 (en) 2001-05-18 2007-03-20 Current Grid, Llc Method and apparatus for processing inbound data within a powerline based communication system
US7245472B2 (en) * 2001-05-18 2007-07-17 Curretn Grid, Llc Medium voltage signal coupling structure for last leg power grid high-speed data network
US7173938B1 (en) 2001-05-18 2007-02-06 Current Grid, Llc Method and apparatus for processing outbound data within a powerline based communication system
WO2002101952A1 (en) * 2001-06-12 2002-12-19 Main.Net Communications Ltd. Coupling circuits for power line communications
US6614326B2 (en) * 2001-07-10 2003-09-02 Eaton Corporation Power-line coupler having a circuit breaker form or a panelboard employing the same
DE10142410A1 (en) * 2001-08-31 2003-04-03 Bosch Gmbh Robert Supply line structure for supplying power to electrical components of a motor vehicle
DE10142409A1 (en) * 2001-08-31 2003-04-17 Bosch Gmbh Robert Supply line structure for transmitting information between automotive components
WO2003044967A2 (en) * 2001-10-27 2003-05-30 Enikia Llc Power line communication system with autonomous network segments
GB2383486B (en) * 2001-12-19 2005-02-16 Microwave Solutions Ltd Detector device
US7053756B2 (en) * 2001-12-21 2006-05-30 Current Technologies, Llc Facilitating communication of data signals on electric power systems
CN1653794A (en) * 2002-03-14 2005-08-10 安比恩特公司 Protecting medium voltage inductive coupled device from electrical transients
WO2003100996A2 (en) * 2002-05-28 2003-12-04 Amperion, Inc. Broadband communications using a medium-voltage power line
US7173935B2 (en) * 2002-06-07 2007-02-06 Current Grid, Llc Last leg utility grid high-speed data communication network having virtual local area network functionality
NL1020925C2 (en) * 2002-06-21 2004-01-20 Stichting Tech Wetenschapp Method and system for transmitting an information signal over a power cable.
US7102478B2 (en) * 2002-06-21 2006-09-05 Current Technologies, Llc Power line coupling device and method of using the same
US6982611B2 (en) * 2002-06-24 2006-01-03 Current Technologies, Llc Power line coupling device and method of using the same
US7091872B1 (en) * 2002-07-01 2006-08-15 Metrotech Corporation Controlled power source for underground line location
US6993317B2 (en) * 2002-10-02 2006-01-31 Amperion, Inc. Method and system for signal repeating in powerline communications
KR20050049548A (en) * 2002-10-17 2005-05-25 앰비언트 코오퍼레이션 Repeaters sharing a common medium for communications
AU2003294419A1 (en) * 2002-11-19 2004-06-15 University Of Utah Device and method for detecting anomolies in a wire and related sensing methods
AU2003291173A1 (en) * 2002-11-26 2004-06-18 Ambient Corporation Arrangement of an inductive coupler for power line communications
US7046124B2 (en) * 2003-01-21 2006-05-16 Current Technologies, Llc Power line coupling device and method of using the same
US7312694B2 (en) 2003-03-14 2007-12-25 Ameren Corporation Capacitive couplers and methods for communicating data over an electrical power delivery system
US7075414B2 (en) * 2003-05-13 2006-07-11 Current Technologies, Llc Device and method for communicating data signals through multiple power line conductors
AU2003237572A1 (en) * 2003-06-29 2005-01-21 Main.Net Communications Ltd. Dynamic power line bandwidth limit
US20060291575A1 (en) * 2003-07-03 2006-12-28 Berkman William H Power Line Communication System and Method
TWI221691B (en) * 2003-07-04 2004-10-01 Primax Electronics Ltd Hub protected from peak
DE10331744A1 (en) 2003-07-11 2005-02-10 IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH Inductive coupling circuit and method for message transmission in electric power distribution networks
US7259482B2 (en) * 2003-09-24 2007-08-21 Belkin International, Inc. Distance extender and method making use of same
US7280033B2 (en) * 2003-10-15 2007-10-09 Current Technologies, Llc Surface wave power line communications system and method
US7123206B2 (en) * 2003-10-24 2006-10-17 Medtronic Minimed, Inc. System and method for multiple antennas having a single core
DE10360565A1 (en) * 2003-12-22 2005-07-14 BSH Bosch und Siemens Hausgeräte GmbH Circuit arrangement for the transmission of data signals from and / or to domestic appliances
US7852837B1 (en) 2003-12-24 2010-12-14 At&T Intellectual Property Ii, L.P. Wi-Fi/BPL dual mode repeaters for power line networks
US7079012B2 (en) 2004-01-21 2006-07-18 Evans Wetmore System and method for distributing broadband communication signals over power lines
US8552709B2 (en) * 2004-02-18 2013-10-08 Tasco Inc. Systems and methods for locating a circuit
US7088232B2 (en) 2004-03-03 2006-08-08 Evans Wetmore System and method for reducing radiation when distributing broadband communication signals over power lines
US7636396B1 (en) 2004-04-26 2009-12-22 Dgi Creations, Llc Method of testing remote power line carrier pick-up coil
US7606298B1 (en) 2004-04-26 2009-10-20 Dgi Creations, Llc Method of testing remote power line carrier pick-up coil
US8938021B1 (en) 2004-05-06 2015-01-20 Paul Shala Henry Outbound interference reduction in a broadband powerline system
ES2387197T3 (en) * 2004-08-04 2012-09-17 Quadlogic Controls Corporation Method and system for coupling radio frequency signals with power lines medium voltage, with self-device symptom
US7145440B2 (en) * 2004-10-12 2006-12-05 At&T Corp. Broadband coupler technique for electrical connection to power lines
US7170367B2 (en) * 2004-10-25 2007-01-30 Ambient Corporation Inductive coupler for power line communications
US7321291B2 (en) * 2004-10-26 2008-01-22 Current Technologies, Llc Power line communications system and method of operating the same
US9172429B2 (en) * 2004-12-01 2015-10-27 At&T Intellectual Property Ii, L.P. Interference control in a broadband powerline communication system
US8462902B1 (en) 2004-12-01 2013-06-11 At&T Intellectual Property Ii, L.P. Interference control in a broadband powerline communication system
US7148799B2 (en) 2004-12-14 2006-12-12 Ambient Corporation Arrangement of daisy chained inductive couplers for data communication
US7265664B2 (en) 2005-04-04 2007-09-04 Current Technologies, Llc Power line communications system and method
US7630401B2 (en) * 2005-04-28 2009-12-08 Sony Corporation Bandwith management in a network
US7307512B2 (en) * 2005-04-29 2007-12-11 Current Technologies, Llc Power line coupling device and method of use
US20060255930A1 (en) * 2005-05-12 2006-11-16 Berkman William H Power line communications system and method
CA2607429A1 (en) * 2005-05-20 2006-11-30 Ambient Corporation Inductive coupler for power line communications, having a member that provides an intended path for a flashover to discharge to ground
US7526256B2 (en) * 2005-05-25 2009-04-28 Broadcom Corporation Transformer-based multi-band RF front-end architecture
US7319717B2 (en) * 2005-06-28 2008-01-15 International Broadband Electric Communications, Inc. Device and method for enabling communications signals using a medium voltage power line
US7414526B2 (en) * 2005-06-28 2008-08-19 International Broadband Communications, Inc. Coupling of communications signals to a power line
US7522812B2 (en) * 2005-07-15 2009-04-21 International Broadband Electric Communications, Inc. Coupling of communications signals to a power line
US7667344B2 (en) * 2005-07-15 2010-02-23 International Broadband Electric Communications, Inc. Coupling communications signals to underground power lines
US7778514B2 (en) * 2005-07-15 2010-08-17 International Broadband Electric Communications, Inc. Coupling of communications signals to a power line
US7234944B2 (en) * 2005-08-26 2007-06-26 Panduit Corp. Patch field documentation and revision systems
US20070054622A1 (en) * 2005-09-02 2007-03-08 Berkman William H Hybrid power line wireless communication system
US7675897B2 (en) 2005-09-06 2010-03-09 Current Technologies, Llc Power line communications system with differentiated data services
US7856007B2 (en) * 2005-10-21 2010-12-21 Current Technologies, Llc Power line communication voice over IP system and method
KR20070064881A (en) * 2005-12-19 2007-06-22 삼성전자주식회사 Apparatus for adjusting phase between the different phases in power line communication system
US8194132B2 (en) 2006-01-20 2012-06-05 Old World Industries, Llc System for monitoring an area adjacent a vehicle
US7535685B2 (en) * 2006-01-31 2009-05-19 Amperion, Inc. Radio frequency signal coupler, coupling system and method
US7764943B2 (en) * 2006-03-27 2010-07-27 Current Technologies, Llc Overhead and underground power line communication system and method using a bypass
ES2325510B1 (en) * 2006-06-27 2010-04-07 New Broadband Network Solutions, S.L. Inductive signal injector plc data.
US20080008604A1 (en) * 2006-07-06 2008-01-10 Bristol Compressors, Inc. High-frequency control of devices internal to a hermetic compressor
US8287245B2 (en) * 2006-07-06 2012-10-16 Bristol Compressors International, Inc. System and method for control of devices internal to a hermetic compressor
US8093745B2 (en) * 2006-07-07 2012-01-10 Ambient Corporation Sensing current flowing through a power line
US20080056338A1 (en) * 2006-08-28 2008-03-06 David Stanley Yaney Power Line Communication Device and Method with Frequency Shifted Modem
US7432782B2 (en) * 2006-09-08 2008-10-07 Ycl Electronics Co., Ltd. Signal splitter
US7937065B2 (en) * 2006-09-11 2011-05-03 Main.Net Communications Ltd. System and method for communicating over neutral power lines
DE102006049507B4 (en) * 2006-10-17 2016-05-25 Sew-Eurodrive Gmbh & Co Kg System and method of operating a plant
ES2323995B1 (en) 2006-11-06 2010-05-13 Diseño De Sistemas En Silicio S.A. Method of reducing the common mode for communications equipment power line.
US20080157589A1 (en) * 2006-12-28 2008-07-03 Monster, Llc Power line radio frequency signal interface with consumer protection and filtering products
FI121522B (en) 2007-06-06 2010-12-15 Abb Oy A method for controlling a frequency converter unit and the inverter assembly
KR100965701B1 (en) * 2007-06-08 2010-06-24 파나소닉 전공 주식회사 Power line communication system
US7795994B2 (en) * 2007-06-26 2010-09-14 Current Technologies, Llc Power line coupling device and method
US7876174B2 (en) * 2007-06-26 2011-01-25 Current Technologies, Llc Power line coupling device and method
US8570178B2 (en) * 2007-09-24 2013-10-29 Ppc Broadband, Inc. Coaxial cable connector with internal floating ground circuitry and method of use thereof
US8773255B2 (en) 2007-09-24 2014-07-08 Ppc Broadband, Inc. Status sensing and reporting interface
US8400319B2 (en) * 2007-09-24 2013-03-19 John Mezzalingua Associates, Inc. Coaxial cable connector with an external sensor and method of use thereof
US8400318B2 (en) * 2007-09-24 2013-03-19 John Mezzalingua Associates, Inc. Method for determining electrical power signal levels in a transmission system
US8618944B2 (en) * 2009-12-03 2013-12-31 Ppc Broadband, Inc. Coaxial cable connector parameter monitoring system
US20090085726A1 (en) * 2007-09-27 2009-04-02 Radtke William O Power Line Communications Coupling Device and Method
US8065099B2 (en) * 2007-12-20 2011-11-22 Tollgrade Communications, Inc. Power distribution monitoring system and method
FR2932338A1 (en) * 2008-06-10 2009-12-11 Commissariat Energie Atomique tranmission system of an electric signal, in particular frequentiel and radiation measuring device equipped with such a system
US7880476B1 (en) * 2008-07-29 2011-02-01 Mckenzie Fiona A M Method to and apparatus for detecting and locating a fault in an electrical conductor wire
US20100027599A1 (en) * 2008-07-30 2010-02-04 Anthony Di Chiro Power Line Communications Adapter
US8711711B2 (en) 2008-10-31 2014-04-29 Howard University System and method of detecting and locating intermittent and other faults
US8050002B2 (en) * 2008-10-31 2011-11-01 Howard University Housing arrangement for fault determination apparatus and method for installing the same
US8102779B2 (en) 2008-10-31 2012-01-24 Howard University System and method of detecting and locating intermittent electrical faults in electrical systems
US8897635B2 (en) * 2008-10-31 2014-11-25 Howard University System and method of detecting and locating intermittent and other faults
US8279058B2 (en) * 2008-11-06 2012-10-02 Current Technologies International Gmbh System, device and method for communicating over power lines
US8376774B2 (en) * 2008-11-17 2013-02-19 Rochester Institute Of Technology Power extracting device and method of use thereof
US8414326B2 (en) * 2008-11-17 2013-04-09 Rochester Institute Of Technology Internal coaxial cable connector integrated circuit and method of use thereof
US8303334B2 (en) * 2008-11-17 2012-11-06 John Mezzalingua Associates, Inc. Embedded coupler device and method of use thereof
US8419464B2 (en) * 2008-11-17 2013-04-16 Ppc Broadband, Inc. Coaxial connector with integrated molded substrate and method of use thereof
US8155143B2 (en) * 2009-03-03 2012-04-10 Aboundi, Inc. Transmission line adapter and system
US8798821B2 (en) 2009-03-17 2014-08-05 General Electric Company System and method for communicating data in a locomotive consist or other vehicle consist
US8935022B2 (en) 2009-03-17 2015-01-13 General Electric Company Data communication system and method
US9379775B2 (en) 2009-03-17 2016-06-28 General Electric Company Data communication system and method
US8532850B2 (en) 2009-03-17 2013-09-10 General Electric Company System and method for communicating data in locomotive consist or other vehicle consist
US8583299B2 (en) 2009-03-17 2013-11-12 General Electric Company System and method for communicating data in a train having one or more locomotive consists
US9637147B2 (en) 2009-03-17 2017-05-02 General Electronic Company Data communication system and method
US20110018704A1 (en) * 2009-07-24 2011-01-27 Burrows Zachary M System, Device and Method for Providing Power Line Communications
CN101847500B (en) * 2010-04-22 2011-12-21 珠海天瑞电力科技有限公司 Inductance coupling device for broadband communication by using middle-pressure overhead power transmission line
US8655517B2 (en) 2010-05-19 2014-02-18 General Electric Company Communication system and method for a rail vehicle consist
US8825239B2 (en) 2010-05-19 2014-09-02 General Electric Company Communication system and method for a rail vehicle consist
US20120126804A1 (en) * 2010-06-04 2012-05-24 University Of California Apparatus and method for detecting faulty concentric neutrals in a live power distribution cable
US8702043B2 (en) 2010-09-28 2014-04-22 General Electric Company Rail vehicle control communication system and method for communicating with a rail vehicle
US10144440B2 (en) 2010-11-17 2018-12-04 General Electric Company Methods and systems for data communications
US9513630B2 (en) 2010-11-17 2016-12-06 General Electric Company Methods and systems for data communications
US8604936B2 (en) 2010-12-13 2013-12-10 Ppc Broadband, Inc. Coaxial cable connector, system and method of use thereof
US8816832B2 (en) * 2011-02-15 2014-08-26 Sigma Designs Israel S.D.I Ltd. System for coupling a power line communication device to a power line network
US20120235829A1 (en) * 2011-03-17 2012-09-20 Sarmad Adnan Systems and methods of oilfield equipment via inductive coupling
US20120249118A1 (en) * 2011-03-30 2012-10-04 Kent Haddon Cable identification device
FR2980946B1 (en) * 2011-10-03 2014-03-21 Schneider Electric Ind Sas Method for current consumers location points in a system for distribution of electric current, processing device, current sensor and current counter associated
US8914170B2 (en) 2011-12-07 2014-12-16 General Electric Company System and method for communicating data in a vehicle system
DE102012211916A1 (en) * 2012-07-09 2014-01-09 Siemens Aktiengesellschaft Method and arrangement for transmitting data through an electrical conductor of a power grid
US9033547B2 (en) 2012-08-20 2015-05-19 Cooper Technologies Company Lighting applications using organic light emitting diodes
TWI482389B (en) * 2013-03-01 2015-04-21 Luxx Lighting Technology Taiwan Ltd Inductive power transfer system, and transmitter and receiver devices thereof
US9509146B2 (en) 2013-03-05 2016-11-29 Cooper Technologies Company Inductive power transmission for electrical devices
UA107036C2 (en) 2013-04-03 2014-11-10 Ростислав Володимирович Босенко Coexistence of DIFFERENTIAL CAPACITIVE antenna ports in wireless CAPACITIVE signal reception and transmission systems and / or capacitive WIRELESS TRANSMISSION OF ENERGY SUPPLY
US9391669B2 (en) * 2013-07-03 2016-07-12 Northern Microdesign, Inc. Communication using multiple conductor cable
WO2015010975A1 (en) * 2013-07-26 2015-01-29 Koninklijke Philips N.V. Picking-up signals in electrically contactless manners
EP2852069A1 (en) 2013-09-24 2015-03-25 ABB Research Ltd. System for transmitting and receiving a power line communication signal over the power bus of a power electronic converter
US9842686B2 (en) 2014-01-22 2017-12-12 Electrochem Solutions, Inc. Split winding repeater
WO2015153305A1 (en) * 2014-04-04 2015-10-08 Shell Oil Company Insulated conductors formed using a final reduction step after heat treating
US9685993B2 (en) * 2015-04-02 2017-06-20 AMTB Technology Power line communication control system
TWI565250B (en) 2015-08-31 2017-01-01 Amtb Tech
US10250066B2 (en) 2016-05-11 2019-04-02 Greatbatch Ltd. Wireless charging autoclavable batteries inside a sterilizable tray
TWI659219B (en) 2018-06-13 2019-05-11 中原大學 System having main supply and environment noise shielding capability for use in monitoring electrical characteristics of electrical cable and method for monitoring electrical characteristics of electrical cable

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357598A (en) 1981-04-09 1982-11-02 Westinghouse Electric Corp. Three-phase power distribution network communication system
US5210519A (en) 1990-06-22 1993-05-11 British Aerospace Public Limited Company Digital data transmission

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004110A (en) 1975-10-07 1977-01-18 Westinghouse Electric Corporation Power supply for power line carrier communication systems
US4065763A (en) * 1975-12-08 1977-12-27 Westinghouse Electric Corporation Distribution network power line communication system
US4016429A (en) 1976-01-16 1977-04-05 Westinghouse Electric Corporation Power line carrier communication system for signaling customer locations through ground wire conductors
US4142178A (en) 1977-04-25 1979-02-27 Westinghouse Electric Corp. High voltage signal coupler for a distribution network power line carrier communication system
US4188619A (en) 1978-08-17 1980-02-12 Rockwell International Corporation Transformer arrangement for coupling a communication signal to a three-phase power line
US4481501A (en) 1978-08-17 1984-11-06 Rockwell International Corporation Transformer arrangement for coupling a communication signal to a three-phase power line
US4254402A (en) 1979-08-17 1981-03-03 Rockwell International Corporation Transformer arrangement for coupling a communication signal to a three-phase power line
US4323882A (en) 1980-06-02 1982-04-06 General Electric Company Method of, and apparatus for, inserting carrier frequency signal information onto distribution transformer primary winding
US4433326A (en) * 1981-02-04 1984-02-21 General Electric Company Power line communication system using the neutral and ground conductors of a residential branch circuit
US4408186A (en) 1981-02-04 1983-10-04 General Electric Co. Power line communication over ground and neutral conductors of plural residential branch circuits
US4433284A (en) 1982-04-07 1984-02-21 Rockwell International Corporation Power line communications bypass around delta-wye transformer
US4473816A (en) 1982-04-13 1984-09-25 Rockwell International Corporation Communications signal bypass around power line transformer
US4709339A (en) * 1983-04-13 1987-11-24 Fernandes Roosevelt A Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
US4602240A (en) 1984-03-22 1986-07-22 General Electric Company Apparatus for and method of attenuating power line carrier communication signals passing between substation distribution lines and transmission lines through substation transformers
US4675648A (en) 1984-04-17 1987-06-23 Honeywell Inc. Passive signal coupler between power distribution systems for the transmission of data signals over the power lines
US4668934A (en) * 1984-10-22 1987-05-26 Westinghouse Electric Corp. Receiver apparatus for three-phase power line carrier communications
US4644321A (en) * 1984-10-22 1987-02-17 Westinghouse Electric Corp. Wireless power line communication apparatus
JPS61237527A (en) 1985-04-12 1986-10-22 Mitsubishi Electric Corp Distribution line carrier system
JPS62104231A (en) * 1985-10-30 1987-05-14 Hitachi Ltd Supervisory system of terminal station
CH671658A5 (en) * 1986-01-15 1989-09-15 Bbc Brown Boveri & Cie
JPS6335724A (en) * 1986-07-31 1988-02-16 Nippon Steel Corp Smelting and reducing furnace
US4772870A (en) * 1986-11-20 1988-09-20 Reyes Ronald R Power line communication system
US4745391A (en) 1987-02-26 1988-05-17 General Electric Company Method of, and apparatus for, information communication via a power line conductor
US5181026A (en) * 1990-01-12 1993-01-19 Granville Group, Inc., The Power transmission line monitoring system
JPH01139641A (en) * 1987-11-26 1989-06-01 Matsushita Electric Works Ltd Unsaturated polyester resin composition
JPH01221929A (en) * 1988-02-29 1989-09-05 Mitsui Petrochem Ind Ltd Signal discrimination method
JPH01276933A (en) * 1988-04-28 1989-11-07 Toshiba Corp Transformer bypass circuit
US4937529A (en) * 1989-01-30 1990-06-26 Toole Iii Charles S O Electrical conductor identifying assembly
WO1990009601A1 (en) * 1989-02-13 1990-08-23 Radiodetection Limited Conductor tracing system
US4903006A (en) * 1989-02-16 1990-02-20 Thermo King Corporation Power line communication system
US6104707A (en) * 1989-04-28 2000-08-15 Videocom, Inc. Transformer coupler for communication over various lines
US5818127A (en) * 1989-04-28 1998-10-06 Videocom, Inc. Transmission of FM video signals over various lines
US5559377A (en) 1989-04-28 1996-09-24 Abraham; Charles Transformer coupler for communication over various lines
US5717685A (en) 1989-04-28 1998-02-10 Abraham; Charles Transformer coupler for communication over various lines
US5066939A (en) * 1989-10-04 1991-11-19 Mansfield Jr Amos R Method and means of operating a power line carrier communication system
US5257006A (en) 1990-09-21 1993-10-26 Echelon Corporation Method and apparatus for power line communications
US5101161A (en) * 1990-10-12 1992-03-31 Boston Edison Company Non-destructive status determination for electric power cables
US5581229A (en) * 1990-12-19 1996-12-03 Hunt Technologies, Inc. Communication system for a power distribution line
AU1918892A (en) * 1991-05-10 1992-12-30 Echelon Corporation Power line communication while avoiding determinable interference harmonics
FR2682837B1 (en) * 1991-10-17 1994-01-07 Electricite De France Circuit directional separator-coupler for powerline has average frequency on power line has low voltage.
DE69124244T2 (en) * 1991-11-12 1997-08-21 Molex Inc Drahtanwesenheits- and identification system
US5301208A (en) * 1992-02-25 1994-04-05 The United States Of America As Represented By The Secretary Of The Air Force Transformer bus coupler
US5351272A (en) 1992-05-18 1994-09-27 Abraham Karoly C Communications apparatus and method for transmitting and receiving multiple modulated signals over electrical lines
US5297729A (en) * 1992-08-28 1994-03-29 Combustion Concepts, Inc. Furnace apparatus
CA2107519C (en) * 1992-10-05 2002-04-09 Stephen George Seberger Communication system and method
US6144292A (en) * 1992-10-22 2000-11-07 Norweb Plc Powerline communications network employing TDMA, FDMA and/or CDMA
GB9222205D0 (en) * 1992-10-22 1992-12-02 Norweb Plc Low voltage filter
US5406249A (en) * 1993-03-09 1995-04-11 Metricom, Inc. Method and structure for coupling power-line carrier current signals using common-mode coupling
US5424710A (en) * 1993-07-14 1995-06-13 Echelon Corporation Power coupler for coupling power from a transmission line to a node thereon
GB9324152D0 (en) 1993-11-24 1994-01-12 Remote Metering Systems Ltd Mains communication system
DE4417351C2 (en) * 1994-05-18 1998-06-18 Beha C Gmbh A continuity tester for a plurality of electric lines
US6023106A (en) * 1994-12-02 2000-02-08 Abraham; Charles Power line circuits and adaptors for coupling carrier frequency current signals between power lines
DE69611561D1 (en) 1995-03-23 2001-02-22 Ibm Effective optical system for a high-resolution projection display with reflection light valves
US5705974A (en) * 1995-05-09 1998-01-06 Elcom Technologies Corporation Power line communications system and coupling circuit for power line communications system
FR2737623A1 (en) * 1995-08-02 1997-02-07 Philips Electronics Nv Telecommunication system through power supply lines
GB9524948D0 (en) * 1995-12-06 1996-02-07 Int Computers Ltd Combined data and power transmission
US5777769A (en) * 1995-12-28 1998-07-07 Lucent Technologies Inc. Device and method for providing high speed data transfer through a drop line of a power line carrier communication system
JPH09274972A (en) * 1996-02-05 1997-10-21 Cable Tec Japan:Kk Connector for transmission of video signal, video signal transmission device provided with the connector and video signal transmission system
US5684826A (en) 1996-02-08 1997-11-04 Acex Technologies, Inc. RS-485 multipoint power line modem
SE9600989D0 (en) * 1996-03-15 1996-03-15 Abb Research Ltd Method and apparatus for space-charge measurement in cables with a pulsed electro acoustic method
US5694108A (en) 1996-05-01 1997-12-02 Abb Power T&D Company Inc. Apparatus and methods for power network coupling
JPH09326734A (en) * 1996-06-05 1997-12-16 Secom Co Ltd Power feed system
GB9616543D0 (en) * 1996-08-06 1996-09-25 Northern Telecom Ltd Power line communications
US5844949A (en) * 1996-10-09 1998-12-01 General Electric Company Power line communication system
US5691691A (en) * 1997-01-06 1997-11-25 Motorola, Inc. Power-line communication system using pulse transmission on the AC line
JPH10200544A (en) * 1997-01-14 1998-07-31 Matsushita Electric Works Ltd Communication system
US5995911A (en) * 1997-02-12 1999-11-30 Power Measurement Ltd. Digital sensor apparatus and system for protection, control, and management of electricity distribution systems
US5864284A (en) 1997-03-06 1999-01-26 Sanderson; Lelon Wayne Apparatus for coupling radio-frequency signals to and from a cable of a power distribution network
US5994998A (en) * 1997-05-29 1999-11-30 3Com Corporation Power transfer apparatus for concurrently transmitting data and power over data wires
US6449348B1 (en) * 1997-05-29 2002-09-10 3Com Corporation Power transfer apparatus for use by network devices including telephone equipment
US6313738B1 (en) * 1997-06-09 2001-11-06 At&T Corp. Adaptive noise cancellation system
DE19728500C1 (en) * 1997-07-03 1999-02-11 Energieversorgung Ostbayern Ag A data transmission system for transmitting data via at least one electrical power cable
US5952914A (en) * 1997-09-10 1999-09-14 At&T Corp. Power line communication systems
US6154488A (en) * 1997-09-23 2000-11-28 Hunt Technologies, Inc. Low frequency bilateral communication over distributed power lines
US6037678A (en) * 1997-10-03 2000-03-14 Northern Telecom Limited Coupling communications signals to a power line
US6040759A (en) * 1998-02-17 2000-03-21 Sanderson; Lelon Wayne Communication system for providing broadband data services using a high-voltage cable of a power system
GB2335335A (en) 1998-03-13 1999-09-15 Northern Telecom Ltd Carrying speech-band signals over power lines
GB2336746A (en) * 1998-03-17 1999-10-27 Northern Telecom Ltd Transmitting communications signals over a power line network
US5982276A (en) * 1998-05-07 1999-11-09 Media Fusion Corp. Magnetic field based power transmission line communication method and system
GB9816953D0 (en) * 1998-08-04 1998-09-30 Nor Web Dpl Limited Power networks
GB9817840D0 (en) * 1998-08-14 1998-10-14 Nor Web Dpl Limited Signal connection device for a power line telecommunication system
JP2000111599A (en) * 1998-10-02 2000-04-21 Gakusho Yo Ground monitor of electrostatic ground system
JP3473455B2 (en) * 1998-11-12 2003-12-02 三菱電機株式会社 Feed line superimposition communication device of the mobile
US6529120B1 (en) * 1999-03-25 2003-03-04 Intech 21, Inc. System for communicating over a transmission line
US6297729B1 (en) 1999-03-29 2001-10-02 International Business Machines Corporation Method and apparatus for securing communications along ac power lines
US6300881B1 (en) * 1999-06-09 2001-10-09 Motorola, Inc. Data transfer system and method for communicating utility consumption data over power line carriers
JP2001127806A (en) * 1999-09-14 2001-05-11 Koninkl Philips Electronics Nv Network
US6331814B1 (en) * 1999-11-25 2001-12-18 International Business Machines Corporation Adapter device for the transmission of digital data over an AC power line
US6452482B1 (en) * 1999-12-30 2002-09-17 Ambient Corporation Inductive coupling of a data signal to a power transmission cable
JP3869616B2 (en) * 2000-03-17 2007-01-17 株式会社中条エンジニアリング Monitoring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357598A (en) 1981-04-09 1982-11-02 Westinghouse Electric Corp. Three-phase power distribution network communication system
US5210519A (en) 1990-06-22 1993-05-11 British Aerospace Public Limited Company Digital data transmission

Also Published As

Publication number Publication date
AU2001259563B2 (en) 2006-03-02
CN101505175B (en) 2013-01-30
US20030160684A1 (en) 2003-08-28
US6452482B1 (en) 2002-09-17
EA200300733A1 (en) 2003-12-25
US20020027496A1 (en) 2002-03-07
AT343139T (en) 2006-11-15
BR0116627A (en) 2003-12-23
EP1350329B1 (en) 2006-10-18
AU2001259563B8 (en) 2006-10-26
ES2274887T3 (en) 2007-06-01
CA2433604A1 (en) 2002-07-11
MXPA03005853A (en) 2005-02-14
US6646447B2 (en) 2003-11-11
EA006177B1 (en) 2005-10-27
IL156650A (en) 2009-02-11
DE60124010D1 (en) 2006-11-30
JP2004517545A (en) 2004-06-10
EP1350329A1 (en) 2003-10-08
KR20040018247A (en) 2004-03-02
DE60124010T2 (en) 2007-04-19
JP2011172259A (en) 2011-09-01
WO2002054605A1 (en) 2002-07-11
PT1350329E (en) 2007-02-28
CN101505175A (en) 2009-08-12
CN1493111A (en) 2004-04-28
US6897764B2 (en) 2005-05-24
US20020105413A1 (en) 2002-08-08
IL156650D0 (en) 2004-01-04
KR100755145B1 (en) 2007-09-04
EP1350329A4 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
US5929750A (en) Transmission network and filter therefor
US5717685A (en) Transformer coupler for communication over various lines
AU777724B2 (en) High frequency network communications over various lines
US7286035B2 (en) Highly insulated inductive data couplers
US7158012B2 (en) Non-invasive powerline communications system
US5559377A (en) Transformer coupler for communication over various lines
US8723667B2 (en) System, device and method for managing a power distribution network
CA1177557A (en) Power line communication over ground and neutral conductors of plural residential branch circuits
US6977578B2 (en) Method of isolating data in a power line communications network
US20020171535A1 (en) Coupling broadband modems to power lines
US7091831B2 (en) Method and apparatus for attaching power line communications to customer premises
US5856776A (en) Method and apparatus for signal coupling at medium voltage in a power line carrier communications system
US3924223A (en) Power line communication system having a protective terminating impedance arrangement
US20010054953A1 (en) Digital communications utilizing medium voltage power distribution lines
US4473817A (en) Coupling power line communications signals around distribution transformers
US2488400A (en) Toroidal coil-terminal bushing coupling power line and telephone circuit
US4433326A (en) Power line communication system using the neutral and ground conductors of a residential branch circuit
US6975212B2 (en) Method and apparatus for attaching power line communications to customer premises
EP1277290B1 (en) Method and device for conditioning electric installations in buildings for the rapid transmission of data
US20110103274A1 (en) Signal repeater system arrangement for stable data communication
EP0470185B1 (en) Power-line communication apparatus
AU2006249723B2 (en) Power line communications interface and surge protector
US20090085726A1 (en) Power Line Communications Coupling Device and Method
EP0053638A1 (en) Current mode data or power bus
US7265664B2 (en) Power line communications system and method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right