CN100475136C - Pulse meter, method for controlling pulse meter and wristwatch-type information device - Google Patents

Pulse meter, method for controlling pulse meter and wristwatch-type information device Download PDF

Info

Publication number
CN100475136C
CN100475136C CN 200610146863 CN200610146863A CN100475136C CN 100475136 C CN100475136 C CN 100475136C CN 200610146863 CN200610146863 CN 200610146863 CN 200610146863 A CN200610146863 A CN 200610146863A CN 100475136 C CN100475136 C CN 100475136C
Authority
CN
China
Prior art keywords
pulse wave
pulse
body motion
sensor
data
Prior art date
Application number
CN 200610146863
Other languages
Chinese (zh)
Other versions
CN1954771A (en
Inventor
小须田司
川船豊
座光寺诚
青岛一郎
马场教充
Original Assignee
精工爱普生株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003075839 priority Critical
Priority to JP2003-075840 priority
Priority to JP2003-075839 priority
Priority to JP2003-310624 priority
Application filed by 精工爱普生株式会社 filed Critical 精工爱普生株式会社
Priority to CN200410039956.9 priority
Publication of CN1954771A publication Critical patent/CN1954771A/en
Application granted granted Critical
Publication of CN100475136C publication Critical patent/CN100475136C/en

Links

Abstract

本发明提供一种脉搏计及其控制方法、以及手表型信息装置。 The present invention provides a control method and a pulse meter, and the wristwatch type information device. 即使体动成分不具有周期特性时,也能从脉波成分中可靠去除生物体内部产生的体动成分,准确算出脉搏数。 Even when the body motion component having no periodic characteristics, but also from the pulse wave component is removed and reliable body motion components generated inside the living body, an accurate pulse rate is calculated. 脉波检测单元具有脉波传感器13,向起着体动成分去除单元的功能的MPU24输出脉波检测信号。 A pulse wave detecting means has a pulse wave sensor 13, MPU24 outputs a pulse wave detection signal to the function unit for removing body motion components plays. 3轴加速度传感器12检测对应于给静脉血液的流动带来影响的体动的加速度,并作为体动检测信号输出给MPU24。 3-axis acceleration sensor 12 detects acceleration corresponding to motion of the body to affect the flow of venous blood, and as the body motion detection signal is output to the MPU24. 结果,MPU24根据体动检测信号去除脉波检测信号中包含的体动成分,脉搏数算出单元根据去除体动成分后的脉波检测信号来算出脉搏数,并显示在液晶显示装置15上。 A result, the movable body motion detection signal MPU 24 removed volume pulse wave detection signal according to the composition contained in the pulse rate calculating means calculates the pulse rate from the pulse wave detection signal to remove body motion components, and displayed on the liquid crystal display device 15.

Description

脉搏计及其控制方法.、以及手表型信息装置 A pulse meter and a control method., And a wristwatch-type information apparatus

本申请是申请日为2004年3月19日、申请号为200410039956.9、 发明名称为"脉搏计及其控制方法、手表型信息装置、控制程序、记录介质、血管模拟传感器及生物体信息测试装置"的中国发明专利申请的分案申请。 This application is filed March 19, 2004, Application No. 200410039956.9, entitled "a pulse meter and a control method, the wristwatch type information apparatus, a control program, a recording medium, and biometric information vascular analog sensor test apparatus" the Chinese invention patent applications divisional application.

技术领域 FIELD

本发明涉及--种脉搏计、脉搏计的控制方法、手表型信息装置、控制程序、记录介质、血管模拟传感器及生物体信息测试装置,特别涉及一种适合于佩戴在人体手臂上测定步行时或跑步时的脉搏的脉搏计、脉搏计的控制方法、手表型信息装置、控制程序、记录介质、血管模拟传感器及生物体信息测试装置。 When the seed pulse meter, pulse meter control method, the wristwatch type information apparatus, a control program, a recording medium, and biometric information vascular analog sensor test apparatus, and particularly to a foot adapted to be worn on a human arm assay - The present invention relates to pulse or pulse rate during running meter, pulse meter control method, the wristwatch type information apparatus, a control program, a recording medium, and biometric information vascular analog sensor testing apparatus.

背景技术 Background technique

以往,公知的脉搏计佩戴在人体的某些部位上,测定歩行时或跑步时的脉搏。 Conventionally, known pulsometer worn on certain parts of the body, when the measured pulse ho row or running.

例如,专利文献l公开了手表型脉搏计。 For example, Patent Document l discloses a wristwatch type pulse meter.

上述专利文献1所公开的脉搏计釆用的结构是,根据用加速度传感器检测的体动信号的频率分析结果,从脉搏信号的频率分析结果中去除相当于体动信号的所有谐波成分的频率成分,从去除了体动信号的谐波成分的脉波信号的频率分析结果中抽出具有最大功率的频率成分,根据该抽出的频率成分算出脉搏数。 The above-described Patent Document 1 discloses a pulsometer preclude structures are used, the frequency analysis results of the acceleration sensor detects the body motion signal, the frequency harmonics to the body motion signal from the frequency analysis result of the pulse signal corresponds to removing ingredients, in addition to the pulse wave frequency analysis result of the harmonic signal component of body motion signal extracted frequency component with the maximum power from to, the pulse rate is calculated based on the extracted frequency components.

专利文献1 专利第2816944号公报 Patent Document 1 JP Patent No. 2816944

上述以往的脉搏计,通过加速度传感器进行体动成分的检测,所以不能完全掌握脉波传感器信号中包含的由生物体内部产生的体动成分, 体动成分的去除有可能不彻底。 The above-described conventional pulse meter, an acceleration sensor is detected by the body motion components, can not fully grasp the inside of the living body produced by the pulse wave sensor motion component included in the signal, the body motion component removal may not be complete. 以往,由于不能完全掌握体动成分,所以具有以下问题,为了去除脉波传感器信号中包含的体动成分而利用频率分析结果的谐波成分的特征来确定体动信号,去除所确定的体动信号以抽出脉波信号,所以在体动不具有周期特性时,不能去除体动成分,进而不能正确求出脉搏。 Conventionally, can not fully grasp the body motion component, it has a problem, in order to remove body motion components in the pulse wave sensor signals contained in the body motion signal is determined using the feature frequency harmonic component analysis results, the determined body motion removed signal to extract a pulse wave signal, the body motion does not have a periodic nature, can not remove body motion components, and thus the pulse can not be obtained correctly.

发明内容 SUMMARY

本发明的目的是,提供一种脉搏计、脉搏计的控制方法、手表型信息装置、控制程序、记录介质、血管模拟传感器及生物体信息测试装置, 通过更准确地掌握脉波传感器信号中包含的体动成分,即使在体动成分不具有周期特性时,也能从脉波成分中可靠去除由生物体内部产生的体动成分,准确算出脉搏数。 Object of the present invention is to provide a pulse meter, a pulse meter control method, the wristwatch-type information apparatus, a control program, a recording medium, and biometric information vascular analog sensor testing apparatus, by more accurately grasp the pulse wave sensor signals comprising the body motion components even when body motion components have no periodic characteristics, but also from the pulse wave component is reliably removed from the inside of the living body produced motion components, accurately calculate pulse rate.

为了解决上述课题, 一种佩戴在人体上测试生物体信息的生物体信息测试装置,其特征在于,具有:脉波检测单元,其具有脉波传感器, 并输出脉波检测信号;体动成分检测去除单元,检测所述脉波检测信号 To solve the above problems A wearing the biological information on a human test organism testing apparatus information, comprising: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; detecting body motion components removal means for detecting said pulse wave detection signal

中包含的以静脉血液的流动为起因的体动成分,去除所述脉波检测信号 Body motion components included in the flow of venous blood for the cause, the pulse wave detection signal removed

中包含的体动成分;和生物体信息测试单元,根据去除所述体动成分后的所述脉波检测信号来测试生物体信息。 Body motion components contained; test unit and biometric information based on the pulse wave detection signal after removing the body motion components testing biological information.

根据上述结构,脉波检测单元向体动成分检测去除单元输出脉波检测信号。 According to the above configuration, the pulse wave detection means to detect motion component removal unit outputs a pulse wave detection signal.

体动成分检测去除单元检测脉波检测信号中包含的以静脉血液的流动为起因的体动成分,去除脉波检测信号中包含的体动成分。 Removing the body motion components detecting means detects motion components included in the pulse wave detection signal to cause the flow of venous blood to the body, the removal of body motion components in the pulse wave detection signal contained.

这样,生物体信息测试单元,根据去除体动成分后的脉波检测信号来测试生物体信息。 Thus, biometric information about the test unit, according to the pulse wave detection signal to remove body motion components testing biological information.

另外, 一种佩戴在人体上测试脉搏的脉搏计,其特征在于,具有: 脉波检测单元,其具有脉波传感器,并输出脉波检测信号;体动检测单 Further, one kind worn on a human test pulse pulse meter, comprising: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; body motion detecting unit

元,具有加速度传感器,检测对应于给静脉血液的流动带来影响的体动 Yuan body motion, an acceleration sensor for detecting an impact corresponding to the flow of venous blood

的加速度,并作为体动检测信号输出;体动成分去除单元,根据所述体动检测信号,去除所述脉波检测信号中包含的体动成分;和脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号来算出脉搏数。 Acceleration, and outputs a motion detection signal; body motion component removing means, based on the body motion detection signal, removing the body motion components included in the pulse wave detection signal; and a pulse rate calculating means, in accordance with the body removed said pulse wave detection signal to calculate the dynamic component of the pulse rate.

根据上述结构,脉波检测单元向体动成分去除单元输出脉波检测信 According to the above configuration, the pulse wave detection unit removing unit outputs a pulse wave detection signal to body motion components

7体动检测单元检测对应于给静脉血液的流动带来影响的体动的加速度,并作为体动检测信号输出给体动成分去除单元。 Moving body detecting means 7 detects acceleration corresponding to motion of the body to affect the flow of venous blood, and as the body motion detection signal to body motion component remover unit.

这样,体动成分去除单元,根据体动检测信号,去除脉波检测信号中包含的体动成分,脉搏数算出单元,根据去除体动成分后的脉波检测信号来算出脉搏数。 Thus, the body motion component removing means, movable body according to a detection signal, removing the body motion component included in the pulse wave detection signal, the pulse rate calculating means calculates the pulse rate from the pulse wave detection signal to remove body motion components.

该场合时,所述加速度传感器也可以是把沿着佩戴者的手臂末梢方 When this case, the acceleration sensor may also be along the side of the wearer's arm tip

向的轴作为X轴,把垂直于所述第1轴并垂直于手背的轴作为z轴,把 Axis X-axis direction, perpendicular to the first axis and perpendicular to the axis of the back of the z-axis, the

垂直于所述X轴和所述Z轴的轴作为Y轴,检测分别沿着所述X轴、所 Axis perpendicular to the X axis and the Z-axis as Y-axis, respectively, along the X-axis is detected, the

述Y轴、所述Z轴方向的加速度的3轴加速度传感器。 Said Y-axis, the Z-axis direction acceleration in three-axis acceleration sensor. 所述加速度传感器可以配置在所述脉波传感器附近。 The acceleration sensor may be disposed in the vicinity of said pulse wave sensor. 另外,所述加速度传感器还可以以大致层叠状态配置在所述脉波传 Further, the acceleration sensor may also be arranged in a generally stacked state of said pulse wave propagation

感器上。 On the sensor.

所述体动成分去除单元可以具有体动成分生成单元,根据沿着所述X轴方向的加速度成分即X轴加速度成分、沿着所述Y轴方向的加速度成分即Y轴加速度成分以及沿着所述Z轴方向的加速度成分即Z轴加速度成分,生成所述体动成分。 Said body motion component removing unit may have a body motion component generation means, according to the acceleration component along the X-axis direction, i.e., X-axis acceleration component, an acceleration component along the Y-axis direction, i.e., along the Y-axis acceleration component, and the Z-axis direction acceleration component of the Z-axis acceleration component, to generate the body motion component.

所述体动成分去除单元也可以具有体动成分生成单元,把所述Y轴加速度成分和所述Z轴加速度成分视为向量,根据这些向量的合成向量即2轴加速度合成成分和所述X轴加速度成分,生成所述体动成分。 Said body motion component removing means may have a body motion component generation means, said Y-axis acceleration and the Z-axis component of the acceleration vector component considered, according to the resultant vector of these vectors, i.e. 2-axis acceleration and said synthetic component X axis acceleration component, to generate the body motion component.

所述体动成分去除单元也可以具有体动成分生成单元,把所述X轴加速度成分、所述Y轴加速度成分和所述Z轴加速度成分的3个加速度成分视为向量,根据这些向量的合成向量即3轴加速度合成成分,生成所述体动成分。 Said body motion component removing means may have a body motion component generation means, the three X-axis acceleration component of the acceleration component, the component and the Y-axis acceleration component in the Z-axis acceleration vector considered, these vectors synthesis of 3-axis acceleration vector i.e. synthetic components, generating the body motion component.

另外,也可以对所述X轴加速度成分、所述Y轴加速度成分和所述Z轴加速度成分中的至少一个加速度成分进行加权。 It is also possible for the X-axis acceleration component, the Y-axis acceleration component and the acceleration component in the Z-axis acceleration component at least one weighting.

所述体动成分去除单元也可以具有:滤波系数生成单元,根据所述X轴加速度成分、所述Y轴加速度成分和所述Z轴加速度成分,生成自适应滤波系数;和去除处理单元,从此次的所述脉波检测信号中去除把所所述体动成分去除单元也可以使用规定的伪低频信号从所述脉波检测信号中去除作为所述体动成分而包含的规定的低频区域成分。 Said body motion component removing means may have: a filter coefficient generation unit based on the X-axis acceleration component, and the Y-axis acceleration component of the Z-axis acceleration component, generating an adaptive filter coefficient; and the removal processing unit, from said pulse wave detection signal to the time of removing the body motion component removing means may be low-frequency signal using a predetermined pseudo removing the body motion components have a predetermined and included in the pulse wave detection signal in the low frequency region component .

所述体动成分去除单元还可以具有:滤波系数生成单元,为了使用规定的伪低频信号从所述脉波检测信号中去除作为所述体动成分而包含的规定的低频区域成分,而根据所述伪低频成分生成自适应滤波系数; 和去除处理单元,从此次的所述脉波检测信号中去除把所述自适应滤波系数应用于前次的所述脉波检测信号而得到的体动成分。 Said body motion component removing unit may further includes: a filter coefficient generating means for using a predetermined pseudo low frequency signal components of a predetermined low frequency region is removed, as the body motion component included in the pulse wave from said detection signals, and according to the said pseudo low-frequency component generating an adaptive filter coefficient; and the removal processing unit, removing the body motion components to the adaptive filter coefficient applied to the previous pulse wave detection signal obtained from the detection of the pulse wave signal .

另外,还可以具有体动信息检测单元,根据所述脉波检测信号中包含的体动成分,检测节拍或步数。 Further, the information may have a body motion detecting means, the body motion components in accordance with said pulse wave detection signal contained in the detected tempo or steps.

- 一种佩戴在人体上测试脉搏的脉搏计的控制方法,该脉搏计具有: 脉波检测单元,其具有脉波传感器,并输出脉波检测信号;和体动检测单元,具有加速度传感器,检测对应于给静脉血液的流动带来影响的体动的加速度,并作为体动检测信号输出,其特征在于,所述加速度传感器是把沿着佩戴者的手臂末梢方向的轴作为X轴,把垂直于所述第i轴并垂直于手背的轴作为Z轴,把垂直于所述X轴和所述Z轴的轴作为Y 轴,检测分别沿着所述X轴、'所述Y轴、所述Z轴方向的加速度的3轴加速度传感器;具有:体动成分生成步骤,根据沿着所述X轴方向的加速度成分即X轴加速度成分、沿着所述Y轴方向的加速度成分即Y轴加速度成分以及沿着所述Z轴方向的加速度成分即Z轴加速度成分,生成所述体动成分;体动成分去除步骤;从所述脉波检测信号中去除所生成的所述 - one kind of method for controlling a pulse meter is worn on the body of the test pulse, the pulse rate meter includes: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; and a body motion detecting unit including an acceleration sensor for detecting corresponding to the acceleration of the movable body to affect the flow of venous blood, and the body motion detected as a signal output, wherein said acceleration sensor is to arm tip along the axial direction of the wearer as the X axis, the vertical in the i-axis and the axis perpendicular to the Z axis as the back of the hand, the axis perpendicular to the X axis and the Z-axis as Y-axis, respectively, along the X-axis is detected, "the Y-axis, the the 3-axis acceleration sensor is an acceleration of said Z-axis direction; having: a body movement component generating step, according to the acceleration component along the X-axis direction acceleration component of the X-axis, Y-axis acceleration component along the Y-axis direction, acceleration component and an acceleration component along the Z-axis direction of the Z-axis acceleration component, to generate the body motion component; body motion component removing step; removing generated from said pulse wave detection signal of the 动成分;和脉搏数算出步骤,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数。 Motion components; and a pulse rate calculating step, based on said pulse wave detection signal after removing the body motion components, the pulse rate is calculated.

该场合时,所述体动成分去除步骤可以具有体动成分生成步骤,把所述Y轴加速度成分和所述Z轴加速度成分视为向量,根据这些向量的合成向量即2轴加速度合成成分和所述X轴加速度成分,生成所述体动成分。 When this case, the body motion component removing step may include the step of generating the body motion component, said Y-axis acceleration and the Z-axis component of the acceleration vector component considered, i.e. 2-axis acceleration component synthesized according to the synthetic vector of these vectors and the X-axis acceleration component, to generate the body motion component.

所述体动成分去除步骤还可以具有体动成分生成步骤,把所述X轴加速度成分、所述Y轴加速度成分和所述Z轴加速度成分的3个加速度成分视为向量,根据这些向量的合成向量即3轴加速度合成成分生成所述体动成分。 Said body motion component removing step may further include the step of generating the body motion components, the three components of acceleration of the X-axis acceleration component, the component and the Y-axis acceleration component in the Z-axis acceleration vector considered, these vectors synthesis of 3-axis acceleration vector that is generating the synthetic component body motion component.

所述体动成分去除步骤也可以使用规定的伪低频信号从所述脉波检测信号中去除作为所述体动成分而包含的规定的低频区域成分。 A pseudo low frequency signal component of the body motion removing step may be used as the predetermined specified removing the body motion components included in the pulse wave detection signal from the low frequency region component.

一种佩戴在手臂上的手表型信息装置,其特征在于,具有:脉波检测单元,其具有脉波传感器,并输出脉波检测信号;所述加速度传感器是把沿着佩戴者的手臂末梢方向的轴作为X轴,把垂直于所述第1轴并垂直于手背的轴作为Z轴,把垂直于所述X轴和所述Z轴的轴作为Y轴, A watch-type information device worn on the arm, comprising: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; said acceleration sensor is along the peripheral direction of the wearer's arm axis as the X axis, the axis perpendicular to the first axis and perpendicular to the back of the hand as the Z axis, the axis perpendicular to the X axis and the Z-axis as Y-axis,

检测分别沿着所述X轴、所述Y轴、所述Z轴方向的加速度的3轴加速度传感器;体动成分生成单元,根据沿着所述X轴方向的加速度成分即X 轴加速度成分、沿着所述Y轴方向的加速度成分即Y轴加速度成分以及沿着所述Z轴方向的加速度成分即Z轴加速度成分,生成所述体动成分; 体动成分去除单元,从所述脉波检测信号中去除所生成的所述体动成分; 脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数;和显示所述脉搏数的显示单元。 Detecting respectively along the X-axis, the Y-axis, the Z-axis direction acceleration in three axis acceleration sensor; body motion components generating unit based on the acceleration component along the X-axis direction, i.e., X-axis acceleration component, acceleration component along the Y-axis direction i.e. Y-axis acceleration component and the acceleration component along the Z-axis direction of the Z-axis acceleration component, to generate the body motion component; body motion component removing means from said pulse wave the detection signal generated by removing the body motion components; pulse rate calculating means based on said pulse wave detection signal after removing the body motion components, calculating the pulse rate; and displaying the pulse rate display unit.

根据上述结构,所述脉波检测单元向体动成分去除单元输出脉波检测信号。 According to the above configuration, the pulse wave component detecting means to the movable member removing unit outputs a pulse wave detection signal.

体动成分生成单元根据沿着X轴方向的加速度成分即X轴加速度成分、沿着Y轴方向的加速度成分即Y轴加速度成分以及沿着Z轴方向的加速度成分即Z轴加速度成分,生成体动成分。 The generation unit body motion components along the X-axis direction acceleration component of the X-axis acceleration component, an acceleration component along the Y-axis direction and the Y-axis acceleration component along the Z-axis direction acceleration component of the Z-axis acceleration component, generating body moving components.

这样,体动成分去除单元从脉波检测信号中去除体动成分,脉搏数算出单元根据去除体动成分后的脉波检测信号算出脉搏数,显示单元显示所算出的脉搏数。 Thus, movement component removal unit removing the body motion components from the pulse wave detection signal, the pulse rate calculating means calculates the pulse rate from the pulse wave detection signal after the body motion component remover, the display unit displays the calculated pulse number.

一种通过计算机控制佩戴在人体上测试脉搏的脉搏计的控制程序, Controlled by a computer program controlling worn on a human body in a pulse test pulse meter,

该脉搏计具有:脉波检测单元,其具有脉波传感器,并输出脉波检测信号;和体动检测单元,具有加速度传感器,检测对应于给静脉血液的流 The pulse rate meter includes: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; and a body motion detecting means, an acceleration sensor, corresponding to the detection of venous blood flow

动带来影响的体动的加速度,并作为体动检测信号输出,其特征在于, 根据所述体动检测信号去除所述脉波检测信号中包含的体动成分,根据去除所述体动成分后的所述脉波检测信号算出脉搏数。 Dynamic impact body motion acceleration, and outputs the signal as a motion detecting, characterized in that the removal of body motion components included in the pulse wave detection signal based on said body motion detection signal, removing the body motion components in accordance with said pulse wave detection signal to calculate the pulse rate. 一种佩戴在人体上测试脉搏的脉搏计,其特征在于,具有:脉波检 One kind of wear test pulse on human pulse count, comprising: a pulse wave detecting

测单元,其具有脉波传感器,-并输出脉波检测信号:体动成分去除单元, Sensing means, having a pulse wave sensor, - pulse wave detection signal and outputs: Body motion component remover means,

根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去 The height of the wearer and the position of the heart pulse meter wearing position relative difference to

除所述脉波检测信号中包含的体动成分;和脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数。 In addition to the body motion components included in the pulse wave detection signal; and a pulse rate calculating means based on said pulse wave detection signal after removing the body motion components, the pulse rate is calculated.

根据上述结构,脉波检测单元具有脉波传感器,并输出脉波检测信 According to the above configuration, the pulse wave detection means has a pulse wave sensor, and outputs the pulse wave detection signal

体动成分去除单元根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分。 Removing the body motion components in accordance with the height direction of the cell count of a wearer wearing the heart and the pulse position relative difference, removing the body motion components in the pulse wave detection signal is included.

这样,脉搏数算出单元根据去除所述体动成分后的所述脉波检测信号,算出脉搏数。 Thus, the pulse wave detection signal removing unit according to the pulse rate of the body motion component is calculated, the pulse rate is calculated.

该场合时,所述体动成分去除单元也可以具有体动检测单元,检测作为所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的函数而表示的体动成分,并输出体动检测信号。 When this case, the body motion component removing means may have a function of the body motion detecting means detects the direction of the height as the heart of the wearer and the wearing position of the pulse meter of a relatively poor representation of the body motion components, body motion and outputs a detection signal.

所述体动检测单元也可以具有检测所述体动成分的压力传感器。 The body motion detection unit may also have a pressure sensor for detecting the body motion components. 所述压力传感器可以配置在所述脉波传感器的附近。 The pressure sensor may be disposed in the vicinity of said pulse wave sensor. 所述压力传感器还可以以大致层叠状态配置在所述脉波传感器上。 The pressure sensor may also be arranged in a generally stacked state on the pulse wave sensor. 所述体动成分去除单元还可以具有:差检测单元,检测佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差;和体动成分生成单 Said body motion component removing unit may further have: a difference in the height direction of the wearer relative position difference detection unit which detects the position of the heart and the wearer of the pulsometer; and a body motion component generating unit

元,根据所述差和所述脉波检测信号,生成所述体动成分。 Element, according to the difference between the pulse wave detection signal and generating the body motion component.

所述差检测单元可以具有角度传感器,检测实际配置状态相对于该 The difference detecting unit may have an angle sensor for detecting the actual configuration state with respect to the

脉搏计的基准角度的角度差,作为所述高度方向的相对差。 Reference angle pulse meter angle difference, a relative difference in the height direction. 所述角度传感器可以配置在所述脉波传感器的附近。 The angle sensor may be disposed in the vicinity of said pulse wave sensor. 所述角度传感器还可以以大致层叠状态配置在所述脉波传感器上。 The angle sensor may also be arranged in a generally stacked state on the pulse wave sensor. 所述角度传感器根据静止加速度检测所述角度差-所述角度传感器也可以具有旋转锤,根据所述旋转锤的旋转状态检 The angle sensor according to the angular difference detected stationary acceleration - the angle sensor may also have a rotary hammer according to the rotation state of the rotating weight of the subject

所述i检测单元也可以具有角度差校正单元,在所述角度差被视为该脉搏计的佩戴位置位于相对于所述佩戴者的心脏位置更高的位置时, I The detection unit may have an angle difference correction unit, the angular difference is considered when the wearing a pulse meter located higher with respect to the wearer of the heart position,

11根据规定的所述体动成分的衰减曲线校正所述角度差。 11 the body motion component attenuation correction curve according to the predetermined angular difference.

所述体动成分去除单元还可以具有去除处理单元,从所述脉波检测信号中减去对应基于所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的所述体动成分的体动成分检测信号。 Said body motion component remover removing unit may further include a processing unit, from said pulse wave detection signal corresponding to subtracting the height direction based on the heart of the wearer and the wearing position of the pulse meter of the body relative difference body motion components movable component detection signal.

所述体动成分去除单元还可以具有:第1频率分析单元,对对应基于所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的所述体动成分的体动成分检测信号进行频率分析,生成第1频率分析数 Said body motion component removing unit may further includes: a first frequency component of the body motion analysis unit, based on a height direction corresponding to the heart of the wearer and the wearing position of the pulse meter of a relatively movable component of the difference thereof performing frequency analysis on the detection signal, generating a first number of frequency analysis

据;第2频率分析单元,对所述脉波检测信号进行频率分析,生成第2 频率分析数据;和去除处理单元,对所述第2频率分析数据进行减去所述第1频率分析数据的减法处理。 According; second frequency analysis unit, a detection signal of the pulse wave frequency analysis, frequency analysis to generate the second data; and the removal processing means for subtracting the first frequency analysis data of the second frequency analysis data subtraction process.

所述体动成分去除单元还可以具有:滤波系数生成单元,根据所述脉波检测信号以及对应基于所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的所述体动成分的体动成分检测信号,生成自适应滤波系数;和去除处理单元,从所述脉波检测信号中减去应ffl了所述自适应滤波系数的所述体动成分检测信号。 Said body motion component removing unit may further includes: a filter coefficient generating means, according to the direction of the height and the pulse wave detection signal corresponding to a wearing position on the wearer and the position of the heart pulse meter body opposite the difference body motion components movable component detection signal, generating an adaptive filter coefficient; and the removal processing unit, from said pulse wave detection signal to be subtracted ffl the dynamic component of the detection signal of said adaptive filter coefficient thereof.

另外,还可以具有体动信息检测单元,根据佩戴者的心脏位置和该 Further, the body may also have a motion information detection unit, according to the heart of the wearer and

脉搏计的佩戴位置的高度方向的相对差,并根据所述脉波检测信号中包 The relative difference in position in the height direction wearing a pulse meter, and the package according to the pulse wave detection signal

含的体动成分检测节拍或步数。 Containing the beat component detecting body motion or steps.

一种具有脉波检测单元的脉搏计的控制方法,该脉波检测单元具有 The method of controlling a pulse meter having a pulse wave detection unit, the pulse wave detection unit having

脉波传感器,并输出脉波检测信号,其特征在于,具有:体动成分去除步骤,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;和脉搏数算出步骤,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数。 Pulse wave sensor, and outputs a pulse wave detection signal, comprising: a body motion component removing step, the height of the wearer and the position of the heart pulse meter wearing position relative difference between the pulse wave detection signal removed body motion components contained; and a pulse rate calculating step, based on said pulse wave detection signal after removing the body motion components, the pulse rate is calculated.

一种佩戴在身体的脉波检测位置的手表型信息装置,具有脉波检测单元,其具有脉波传感器,并输出脉波检测信号;和佩戴在手臂上的装置主体单元,其特征在于,所述装置主体单元具有:体动成分去除单元, One kind worn wristwatch type pulse wave detecting apparatus information of the position of the body, having a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; wearing device body unit and on the arm, characterized by said device body unit includes: a body motion component removing means,

根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数;和显示所述脉搏数的显示单元。 The relative difference between the height position of the heart of the wearer and the wearing position of the pulse meter, removing the body motion components included in the pulse wave detection signal; a pulse rate calculating means, after said removing said body motion components in accordance with pulse wave detection signal to calculate the pulse rate; and a display unit that displays the number of the pulse.

根据上述结构,装置主体单元的体动成分去除单元根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分。 According to the constitution described above, the apparatus body motion component removing unit in the height direction gauge unit according to the heart of the wearer and the wearing position pulse relative difference, removing the body motion components in the pulse wave detection signal is included. 由此,脉搏数算出单元,根据去除体动成分后的脉波检测信号,算出脉搏数,显示单元显示脉搏数。 Thus, the pulse rate calculating means according to the pulse wave detection signal to remove body motion components, calculates pulse rate, pulse rate display unit displays.

一种通过计算机控制具有脉波检测单元的脉搏计的控制程序,该脉波检测单元具有脉波传感器,'并输出脉波检测信号,其特征在于,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分,根据去除体动成分后的脉波检测信号,算出脉搏数。 A method of controlling a control program by a computer of a pulse meter having a pulse wave detection unit, pulse wave detection unit which has a pulse wave sensor, 'and outputs a pulse wave detection signal, characterized in that, according to the heart of the wearer of the pulsometer and wearing position in the height direction relative difference, removing said body motion components included in the pulse wave detection signal, the pulse wave detection signal to remove body motion components, the pulse rate is calculated.

另外,也可以把上述控制程序记录在计算机可读的记录介质上。 Further, the control program can be recorded on a computer-readable recording medium.

---种佩戴在人体上模拟静脉血液的流动的血管模拟传感器,其特征在于,具有:壳体;粘度被设定为相当于所述静脉血液的粘度,并被填充在所述壳体内的伪血液;和检测所述伪血液的流动的流动检测传感器。 --- species wearing flowing venous blood vessel is simulated analog sensor on a human body, comprising: a housing; viscosity is set to be equivalent to the venous blood viscosity, and filled within the housing pseudo-blood; and detecting the pseudo blood flow sensor detecting a flow.

根据上述结构,在佩戴于人体上的状态下,通过用流动检测传感器检测填充在壳体内的伪血液的流动,可以推测由生物体内部产生的体动成分。 According to the above configuration, in a state worn on the body, the flow through the flow detection sensor within the housing is filled with pseudo-blood, can be estimated from the inside of the living body produced motion component.

该场合时,所述壳体可以用具有刚性的材料形成。 When the case, the housing may be formed of a rigid material.

另外,所述壳体由具有透明性的两端被堵塞的筒状树脂形成,所述流动检测传感器的结构可以做成测定所述伪血液的液面变化的光传感器。 Further, the housing having transparency both ends are blocked cylindrical resin forming the flow detection sensor structure can be made light sensor measures the change in the level of pseudo-blood.

此外,所述壳体由两端被堵塞的筒状树脂形成,所述流动检测传感器也可以被设于所述壳体--端,构成检测压力随所述伪血液的移动而变化的压力传感器。 Further, both ends of the housing is formed by a cylindrical resin is blocked, the flow detection sensor may also be provided in the housing - end, constituting a pressure detecting the moving dummy blood with varying pressure sensor .

所述壳体还可以用具有弹性的材料形成。 The housing may also be formed of an elastic material.

所述壳体呈两端被堵塞的筒状,所述流动检测传感器可以被设于所述壳体一端,构成检测压力随所述伪血液的移动而变化的压力传感器。 The housing has a cylindrical shape both ends are blocked, the flow detection sensor may be provided at an end of said housing, with said pressure detecting movement constituting dummy blood pressure sensor varies.

另外,所述壳体呈两端被堵塞的筒状,所述流动检测传感器可以被设于所述壳体侧面,构成检测压力随所述伪血液的移动而变化的压力传/^^S 。 Further, the housing has a cylindrical shape both ends are blocked, the flow detection sensor may be provided in the housing side, with a pressure detecting constituting the moving dummy blood pressure varies pass / ^^ S.

--种佩戴在人体上模拟静脉血液的流动的血管模拟传感器,其特征在于,具有加速度传感器,在所述人体的末梢方向具有灵敏度轴,输出对应于所述静脉血液向所述末梢方向流动的输出信号。 - kind of analog sensors worn vascular flow simulation venous blood in humans, characterized in that an acceleration sensor having a sensitivity axis in the distal direction of the body, corresponding to the output to the venous blood flow to the peripheral direction, output signal.

根据上述结构,加速度传感器在佩戴在人体上的状态下,通过输出对应于静脉血液向末梢方向流动的输出信号,可以推测由生物体内部发生的体动成分。 According to the above configuration, the acceleration sensor in a state worn on a human body, by outputting an output signal corresponding to venous blood flow in the peripheral direction, presumably generated by body motion components inside the organism.

--种佩戴在人体上测试脉搏的脉搏计,其特征在于,具有:脉波检测单元,其具有脉波传感器,并输出脉波检测信号;上述任一个血管模 - the test species on a human body wearing a pulse meter pulse, characterized in comprising: a pulse wave detecting means, having a pulse wave sensor, and outputs a pulse wave detection signal; any of the above mold vessel

拟传感器;体动成分去除单元,从所述脉波检测信号中去除相当于所述流动检测传感器的输出信号的伪体动成分;和脉搏算出单元,根据去除 Quasi sensor; a body motion component removing unit that removes the dummy body motion components corresponding to the flow sensor detecting an output signal from said pulse wave detection signal; and a pulse calculating unit, according to remove

所述伪体动成分后的所述脉波检测信号,算出脉搏数。 The body of the dummy pulse wave detection signal after motion components, the pulse rate is calculated.

根据上述结构,脉波检测单元向脉搏数算出单元输出脉波检测信号。 According to the above configuration, the pulse wave detecting means detecting unit outputs a pulse wave signal calculating the pulse rate. 体动成分去除单元从脉波检测信号中去除相当于流动检测传感器的 Body motion component remover removing unit corresponds to the flow from the pulse wave detection sensor detection signal

输出信号的伪体动成分。 Dummy body movement component of the output signal.

这样,脉搏算出单元根据去除伪体动成分后的脉波检测信号,算出 Thus, the pulse calculating unit according to the pulse wave detection signal to remove the pseudo-body motion components, calculated

脉搏数。 Pulse rate.

该场合时,所述血管模拟传感器可以配置在所述脉波传感器的附近。 When this case, the blood vessel may be analog sensors disposed in the vicinity of said pulse wave sensor. 所述血管模拟传感器也可以以相对于所述脉波传感器大致层叠的状 The vessel may be analog sensors with respect to the pulse wave sensor is substantially laminated shape

态配置在离开所述人体的方向。 State arranged in the direction away from the body.

所述体动成分去除单元也可以具有去除处理单元,从所述脉波检测 Said body motion component removing means may have a removal processing unit, from said pulse wave detection

信号减去相当于所述流动检测传感器的输出信号的体动成分检测信号。 Subtracting the body motion signal component detection signal corresponds to the flow detection of the output signal of the sensor.

所述体动成分去除单元还可以具有:第1频率分析单元,对相当于所述流动检测传感器的输出信号的体动成分检测信号进行频率分析,生成第1频率分析数据;第2频率分析单元,对所述脉波检测信号进行频 Said body motion component removing unit may further includes: a first frequency analysis unit, a detection signal of body motion components corresponding to the flow detection sensor output signal frequency analysis, frequency analysis to generate a first data; a second frequency analysis unit , the frequency of the pulse wave detection signal

率分析,生成第2.频率分析数据;和去除处理单元,对所述第2频率分析数据进行减去所述第1频率分析数据的减法处理。 Rate analysis, frequency analysis data 2. Generation; and the removal processing means, the second frequency analysis data by subtracting the first subtraction processing frequency analysis data.

所述体动成分去除单元还可以具有:滤波系数生成单元,根据相当于所述流动检测传感器的输出信号的体动成分检测信号,生成自适应滤波系数;和去除处理单元,从所述脉波检测信号中减去应用了所述自适应滤波系数的所述体动成分检测信号。 Said body motion component removing unit may further includes: a filter coefficient generating means in accordance with the detection signal component corresponding to body motion detection sensor of the flow of the output signal, generating an adaptive filter coefficient; and the removal processing unit, from said pulse wave subtracting a detection signal of the adaptive filter coefficient applied to the body motion component detection signal.

生物体信息测试装置的特征在于,具有:上述任一个血管模拟传感器;和生物体信息检测单元,根据所述血管模拟传感器的输出信号,检测对应所述人体运动的节拍或步数。 Biometric feature information of the test apparatus comprising: any of the above vessel analog sensors; and a living body information detection unit, an analog output signal of the vessel sensor detects the beat corresponding to body movement or steps according.

附图说明 BRIEF DESCRIPTION

图1是第1实施方式的脉搏测定装置的佩戴状态的说明图。 FIG 1 is a view illustrating the wearing state of the pulse measurement apparatus according to the first embodiment.

图2是第1实施方式的脉搏测定装置的剖面图。 FIG 2 is a sectional view of a first embodiment of the pulse measurement device.

图3是第1实施方式的脉搏测定装置的概要结构方框图。 3 is a schematic block diagram showing apparatus according to the first embodiment of the pulse measurement.

图4是2轴加速度向量的合成向量变化量和脉波传感器的输出中包 FIG 4 is a synthesized vector and the amount of change of the pulse wave sensor 2-axis acceleration output packet vector

含的体动分量(跳动(stroke)分量)的关系说明图。 Relationship between body motion component containing (jitter (Stroke) components) described in FIG.

图5是第1实施方式的自适应滤波器的--个示例的概要结构方框图。 FIG 5 is an adaptive filter according to the first embodiment - a schematic block diagram showing an example of. 图6是把对应从X轴加速度传感器12X输出的X轴加速度检测信号 FIG 6 is an X-axis acceleration detection signal corresponding to the output from the acceleration sensor 12X X-axis

的X轴加速度数据Kx按时间序列顺序排列的曲线图。 X-axis acceleration data Kx graph showing chronological series order.

图7是向对应图6的X轴加速度数据Kx实施FFT而得到的频率分析结果。 FIG 7 is a frequency analysis result of the acceleration data in the X-axis of FIG. 6 corresponding to the FFT Kx obtained.

图8是把对应从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度数据Ky按时间序列顺序排列的曲线图。 FIG 8 is a graph corresponding to the Y-axis acceleration detection signal outputted from the acceleration sensor 12Y of the Y-axis Y-axis acceleration data Ky arranged in time series order.

图9是向对应图8的Y轴加速度数据Ky实施FFT而得到的频率分析结果。 FIG 9 is the FFT frequency analysis results Ky Y-axis acceleration data corresponding to FIG. 8 is obtained.

图10是把对应从Z轴加速度传感器12Z输出的Z轴加速度检测信号 FIG 10 is the Z-axis acceleration detection signal corresponding to the Z-axis output of the acceleration sensor 12Z

的Z轴加速度数据Kz按时间序列顺序排列的曲线图。 Z-axis acceleration data Kz graph showing chronological series order.

图11是向对应图10的Z轴加速度数据Kz实施FFT而得到的频率分未l; ^ir単. FIG 11 is a frequency FFT Kz embodiment corresponding to the Z-axis acceleration data obtained in FIG. 10 min no l; ^ ir radiolabeling.

T乂1知水o Qe 1 T o known water

图12是把对应从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度数据Ky、对应从Z轴加速度传感器12Z输出的Z轴加速度检测信号的Z轴加速度数据Kz分别作为向量使用,把作为其合成向量而得到的合成加速度向量数据按时间序列顺序排列的曲线图。 FIG 12 is to correspond to the Y-axis acceleration detection signal of the acceleration sensor 12Y outputs from the Y-axis Y-axis acceleration data Ky, corresponding to the Z-axis acceleration detection signal from the Z-axis acceleration sensor 12Z output of the Z axis acceleration data Kz, respectively, as a vector used, the graph combined acceleration vector data obtained as the result vector arranged in time series order. 图13是向对应图12的合成加速度向量数据(二/^7^7)实施FFT而得到的频率分析结果。 FIG 13 is a result of frequency analysis data to the composite acceleration vector (b / ^ 7 ^ 7) corresponding to the embodiment of FIG. 12 FFT obtained.

图14是把预先设定的伪低频信号(使用三角波)按时间序列顺序排 FIG 14 is the pseudo-low-frequency signal set in advance (triangular wave) time series order row

图15是向对应图14的伪低频信号实施FFT而得到的频率分析结果。 FIG 15 is a pseudo low frequency analysis results to the FFT signal corresponding to FIG. 14 is obtained. 图16是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 16 is a graph showing an example of the pulse wave detection data arranged in time series order. 图17向对应图16的脉波检测数据实施FFT而得到的频率分析结果。 Embodiment 17 FIG frequency FFT to obtain a pulse wave detection data corresponding to the analysis result of FIG. 16. 图18是对图16的脉波检测信号,把自适应滤波应用于图6的放大X轴加速度检测信号、图12的合成加速度向量信号及图14的伪低频信号-, 把对所得到的信号进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 18 is a pulse wave detection signal 16, the adaptive filtering is applied to the X-axis acceleration detection signal amplifying FIG 6, the pseudo-low-frequency signal combined acceleration vector signal in FIG 12 and FIG 14 -, the resultant signal graph obtained by synthesizing residual data arranged in time series order.

图19是向图18的残差数据实施FFT而得到的频率分析结果。 FIG 19 is a frequency obtained by the residual data to the FFT analysis results of FIG. 18. 图20是对图16的脉波检测信号,把自适应滤波应用于图6的放大X轴加速度检测信号及图12的合成加速度向量信号,把对所得到的信号进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 20 is a pulse wave detection signal 16, the adaptive filter used in synthetic acceleration vector X-axis acceleration signal amplifying detection signals of FIG. 6 and FIG. 12, the resultant signal obtained by combining the residual data graph showing chronological series order.

图21是向图20的残差数据实施FFT而得到的频率分析结果。 FIG 21 is a frequency obtained by the FFT analysis result of the residual data 20 of FIG. 图22是第1实施方式的第1变形例的自适应滤波器的一个示例的概要结构方框图。 FIG 22 is a schematic block diagram showing one example of an adaptive filter according to the modification of the first embodiment.

图23是把X轴加速度数据Kx按时间序列顺序排列的曲线图。 FIG 23 is a graph showing the X-axis acceleration data Kx arranged in time series order.

图24是向对应图23的X轴加速度数据Kx实施FFT而得到的频率分 FIG 24 is a FFT frequency Kx embodiment corresponds to the X-axis acceleration data obtained in FIG. 23 minutes

析结果。 Analytical results.

图25是把Y轴加速度数据Ky按时间序列顺序排列的曲线图。 FIG 25 is a graph showing the Y-axis acceleration data Ky arranged in time series order. 图26是向对应图25的Y轴加速度数据Ky实施FFT而得到的频率分析结果。 FIG 26 is the FFT frequency analysis results Ky Y-axis acceleration data corresponding to FIG. 25 is obtained.

图27是把Z轴加速度数据Kz按时间序列顺序排列的曲线图。 FIG 27 is the Z-axis acceleration data Kz graph showing chronological series order. 图28是向对应图27的Z轴加速度数据Kz实施FFT而得到的频率分析结果。 FIG 28 is the FFT frequency analysis results Kz Z-axis acceleration data corresponding to FIG. 27 is obtained.

图29是把合成加速度向量数据(二^7T^T^7)按时间序列顺序排列的曲线图。 FIG 29 is a graph showing the chronological order of the synthetic acceleration vector data series (B ^ 7T ^ T ^ 7). 图30是向合成加速度向量数据(=v^^T^^1 )实施FFT而得到的频率分析结果。 FIG 30 is a frequency analysis results to the composite acceleration vector data (= v ^^ T ^^ 1) obtained by the FFT.

图31是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 31 is a graph showing an example of a pulse wave detection data arranged in time series order. 图32是向对应图31的脉波检测数据实施FFT而得到的频率分析结果。 FIG 32 is a frequency analysis results obtained by the FFT data corresponding to the pulse wave detector 31 of FIG.

图33是对图31的脉波检测数据,把自适应滤波应用于图29的合成加速度向量数据及图14的伪低频信号,把对所得到的数据进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 33 is a pulse wave detection data of FIG. 31, the low-frequency signal to a pseudo-adaptive filtering combined acceleration vector data of FIG. 29 and FIG. 14, the data obtained by synthesizing data obtained residual time series graph order.

图34是向图33的残差数据实施FFT而得到的频率分析结果。 FIG 34 is a frequency obtained by the FFT to the residual data 33 of an analysis result of FIG. 图35是第1实施方式的第2变形例的自适应滤波器的-一个示例的概要结构方框图。 FIG 35 is an adaptive filter of the second modification of the first embodiment - a schematic block diagram showing one example.

图36是把脉波检测数据按时间序列顺序排列的-一个示例的曲线图。 FIG 36 is a pulse wave detection data arranged in time sequence - a graph showing an example of. 图37是向对应图36的脉波检测数据实施FFT而得到的频率分析结果。 FIG 37 is a frequency analysis results obtained by the FFT data corresponding to the pulse wave detector 36 of FIG.

图38是对图31的脉波检测数据,把自适应滤波应用于图29的合成加速度向量信号及图14的伪低频信号,把对所得到的数据进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 38 is a pulse wave detection data of FIG. 31, the low-frequency signal adaptive filtering is applied to the dummy signal and the combined acceleration vector of FIG. 29 to FIG. 14, the residual data of the data obtained by synthesizing the obtained time series graph order.

图39是向图38的残差数据实施FFT而得到的频率分析结果。 FIG 39 is a frequency analysis result obtained by the residual data to the FFT 38 of FIG. 图40是第1实施方式的第3变形例的自适应滤波器的一个示例的概要结构方框图。 FIG 40 is a schematic block diagram showing one example of an adaptive filter according to a third modification of the first embodiment.

图41是第1实施方式的自适应滤波器的一个示例的概要结构方框图。 FIG 41 is a schematic block diagram showing one example of the adaptive filter of the first embodiment.

图42是压力变化量和脉波传感器的输出中包含的体动分量(跳动分 FIG 42 is a variation of the output pressure pulse wave sensor and the body motion component included (beat points

图43是第2实施方式的脉搏测定系统的概要结构图。 FIG 43 is a schematic configuration diagram of the pulse measurement system of the second embodiment. 图44是传感器模块的各个传感器的配置示例说明图。 FIG 44 is a configuration example of a sensor module of each sensor described in FIG. 图45是脉搏测定装置的概要结构方框图。 FIG 45 is a schematic block diagram showing the structure of the pulse measurement means.

图46是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 46 is a graph showing an example of a pulse wave detection data arranged in time series order. 图47是把对应图46的脉波检测数据的压力检测数据在同一时间轴上按时间序列顺序排列的曲线图。 FIG 47 is a graph showing the pressure detection data of FIG. 46 corresponding to the detected pulse wave data on the same time arranged in time series order.

图48是把根据图46的脉波检测数据和图6的压力检测数据算出的差数据按时间序列顺序排列的曲线图。 FIG 48 is a graph showing the calculated according to the pressure pulse wave of FIG. 46 and FIG. 6 of the detection data difference data detection data arranged in time series order.

图49是向图48的差数据实施FFT而得到的频率分析结果。 FIG 49 is a frequency analysis result obtained difference data to the FFT 48 of FIG.

图50是脉波检测数据的频率分析结果的说明图。 FIG 50 is a diagram illustrating the results of frequency analysis of the pulse wave detection data.

图51是压力检测数据的频率分析结果的说明图。 FIG 51 is an explanatory view of a frequency analysis result of the pressure detection data.

图52是频率分析后的脉波检测数据和频率分析后的压力检测数据之差即差数据的说明图。 FIG 52 is a pressure difference between the pulse wave detection data and the frequency after the frequency analysis of the detection data of the difference data that is described in FIG.

图53是第2实施方式的自适应滤波器的一个示例的概要结构方框图。 FIG 53 is a schematic block diagram showing one example of the adaptive filter of the second embodiment.

图54是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 54 is a graph showing an example of a pulse wave detection data arranged in time series order. 图55是把对应图54的脉波检测数据的压力检测数据在同一时间轴 FIG 55 is a pressure detecting data corresponding to FIG. 54, the pulse wave data detected in the same time axis

上按时间序列顺序排列的曲线图。 On the graph are arranged in time series order.

图56是把自适应滤波器应用于图54的脉波检测数据及图55的压力 FIG 56 is an adaptive filter to the pressure data and the pulse wave detector 55 of FIG. 54

检测数据,把所得到的残差数据按时间序列顺序排列的曲线图。 Test data, a graph of the residual data resulting arranged in time series order. 图57是向图56的残差数据实施FFT而得到的频率分析结果。 FIG 57 is a frequency analysis result obtained by the residual data to the FFT 56 of FIG. 图58是第2实施方式的第3变形例的脉搏测定系统的概要结构方框图。 FIG 58 is a schematic block diagram showing a third pulse measurement system in the second modification of the embodiment of FIG.

图59是传感器模块111A的传感器的配置示例说明图。 FIG 59 is a configuration example of a sensor of the sensor module 111A of FIG. 图60是传感器模块111B的传感器的配置示例说明图。 FIG 60 is a configuration example of a sensor of the sensor module 111B of FIG. 图61是手臂的高度变化量和和脉波传感器的输出中包含的体动分量(跳动分量)的关系说明图。 FIG 61 is a explanatory view showing the relationship between amount of change in the output arm and the height and the pulse wave sensor comprises a body motion component (jitter component).

图62是手臂的角度和方向的关系说明图。 FIG 62 is an explanatory view the relationship between the angle and direction of the arm.

图63是初始状态下的手臂位置(手臂方向)中,手臂位置的高度变化量和作为角度传感器的输出的体动分量(跳动分量)的关系说明图。 FIG. 63 is a relationship between the position of the arm in the initial state (the direction of the arm), the height of the arm position and the amount of change of the output member as the movable component of the angle sensor (beat component) described in FIG.

图64是把高度变化量固定时,作为因手臂位置而变化的角度传感器的输出的体动分量(跳动分量)的变化说明图。 FIG 64 is a fixed height changes the amount of change, as an output thereof varies depending arm position an angle sensor of the movable components (beat component) described in FIG.

图65是初始状态下的手臂位置(手臂方向)中,手臂位置的高度变化量和校正后的角度传感器的输出中包含的体动分量(跳动分量)的关 FIG 65 is a closed position of the arm in the initial state (the direction of the arm), the output of the height variation and the correction of the angle arm position sensor comprises a body motion component (jitter component)

18系说明图。 18 is an explanation view.

图66是把第3实施方式的脉搏计装配到钟表壳中的剖面图。 FIG. 66 is the pulse count of the third embodiment fitted to a cross-sectional view of the timepiece housing.

图67是角度传感器即差动电容型传感器的传感器结构概图。 I.e., the angle sensor 67 is a structural overview of a differential capacitive sensor type sensor.

图68是差动电容型传感器的局部放大图。 FIG 68 is a partially enlarged view of a differential capacitive sensor.

图69是差动电容型传感器的工作说明图。 FIG 69 is a working explanatory view of a differential capacitive sensor.

图70是用作角度传感器的旋转锤型角度传感器的正面图。 FIG 70 is a front view of a rotary hammer type angle sensor is used as the angle sensor.

图71是图70的旋转锤型角度传感器的侧面图。 FIG 71 is a side view of the rotary pendulum type angle sensor 70 of FIG.

图72是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 72 is a graph showing an example of a pulse wave detection data arranged in time series order.

图73是向图72的脉波检测数据实施FFT而得到的频率分析结果。 FIG 73 is a frequency obtained by the FFT analysis result to the pulse wave detection data 72 of FIG.

图74是把角度检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 74 is a graph showing an example of the angle detection data arranged in time series order.

图75是向图74的角度检测数据实施FFT而得到的频率分析结果。 FIG 75 is a frequency analysis result of the angle detection data FFT embodiment of FIG. 74 is obtained.

图76是把自适应滤波器应用于图72的脉波检测数据及图74的角度 FIG 76 is a perspective of the adaptive filter to the pulse wave detection data of FIG. 72 and FIG. 74

检测数据,把所得到的残差数据按时间序列顺序排列的曲线图。 Test data, a graph of the residual data resulting arranged in time series order. 图77是向图76的残差数据实施FFT而得到的频率分析结果。 FIG 77 is a frequency analysis result obtained by the residual data to the FFT 76 of FIG. 图78是把校正后的角度检测数据按时间序列顺序排列时的一个示 FIG 78 is a diagram of the angle when the corrected detected data arranged in time series order

例的曲线图。 Examples of the graph.

图79是向校正后的角度检测数据实施FFT而得到的频率分析结果。 FIG 79 is a frequency analysis result of the detection to the FFT data corrected angle obtained. 图80是把自适应滤波器应用于图72的脉波检测数据及图78的校正后的角度检测数据,把所得到的残差数据按时间序列顺序排列时的曲线图。 FIG 80 is the angle detection adaptive filter to FIG corrected pulse wave data detected data 78 and FIG. 72, a graph obtained when the residual data arranged in time series order.

图81是向图80的残差数据实施FFT而得到的频率分析结果。 FIG 81 is a frequency analysis result obtained by the residual data to the FFT 80. FIG.

图82是佩戴在人体上模拟静脉血液移动(流动)的血管模拟传感器的原理说明图。 FIG 82 is a schematic simulated venous blood movement (flow) on the wear body vessel analog sensor described in FIG.

图83是第1刚体型血管模拟传感器的示意图。 FIG 83 is a schematic diagram of the first rigid body vessel analog sensors.

图8.4是第2刚体型血管模拟传感器的示意图。 Figure 8.4 is a schematic view of the second vessel just integrated analog sensors.

图85是第1弹性体型血管模拟传感器的示意图。 FIG 85 is a schematic view of a first elastomeric vascular analog sensors.

图86是第2弹性体型血管模拟传感器的示意图。 FIG 86 is a diagram showing a second elastomeric vascular analog sensors.

图87是刚体型血管模拟传感器和脉波传感器的输出中包含的休动成分(跳动成分)的关系说明图。 Rigid body 87 is an explanatory view the relationship between the output of analog sensors and the blood vessel pulse wave sensor contained Hugh movable component (jitter component). 图88是弹性体型血管模拟传感器和脉波传感器的输出中包含的体 FIG 88 is an analog sensor output and the elastomeric vessel in pulse wave sensor comprises a body

图89是第4实施方式的脉搏测定系统的概要结构图。 FIG 89 is a schematic configuration diagram of a pulse measurement system according to a fourth embodiment.

图90是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 FIG 90 is a configuration example of a sensor module in the wearing state of each sensor described in FIG.

图91是脉搏测定装置的概要结构方框图。 FIG 91 is a schematic block diagram showing the structure of the pulse measurement means.

图92是把脉波检测数据按时间序列顺序排列的-一个示例的曲线图。 FIG 92 is a pulse wave detection data arranged in time sequence - a graph showing an example of.

图93是把对应图92的脉波检测数据的压力检测数据在同一时间轴上按时间序列顺序排列的曲线图。 FIG 93 is a graph showing the pressure detection data of FIG. 92 corresponding to the detected pulse wave data on the same time arranged in time series order.

图94是把根据图92的脉波检测数据和图93的压力检测数据算出的差数据按时间序列顺序排列的曲线图。 FIG 94 is a graph showing the calculated according to the pressure pulse wave of FIG. 92 and FIG. 93 of the detection data difference data detection data arranged in time series order.

图95是向图94的差数据实施FFT而得到的频率分析结果。 FIG 95 is a frequency obtained by the FFT 94 to the difference data of the analysis results of FIG.

图96是脉波检测数据的频率分析结果的说明图。 FIG 96 is a diagram illustrating the results of frequency analysis of the pulse wave detection data.

图97是压力检测数据的频率分析结果的说明图。 FIG 97 is an explanatory view showing results of frequency analysis of the pressure sensing data.

图98是频率分析后的脉波检测数据和频率分析后的压力检测数据之差即差数据的说明图。 FIG 98 is a pressure difference between the pulse wave detection data and the frequency after the frequency analysis of the detection data of the difference data that is described in FIG.

图99是自适应滤波器的一个示例的概要结构方框图。 FIG 99 is a block diagram of an exemplary schematic configuration of the adaptive filter.

图100是把脉波检测数据按时间序列顺序排列的-一个示例的曲线图。 FIG 100 is a pulse wave detection data arranged in time sequence - a graph showing an example of.

图101是把对应图100的脉波检测数据的压力检测数据在同一时间 FIG. 101 is the pressure pulse wave detected data corresponding to FIG detected data 100 at the same time

轴上按时间序列顺序排列的曲线图。 Axis of the graph are arranged in time series order.

图102是把自适应滤波器应用于图100的脉波检测数据及图20的压力检测数据,把所得到的残差数据按时间序列顺序排列时曲线图。 FIG 102 is an adaptive filter to the view of the pressure pulse wave detection data and the detection data 100 of FIG. 20, a graph obtained when the residual data arranged in time series order. 图103是向图102的残差数据实施FFT而得到的频率分析结果。 FIG 103 is a frequency analysis result obtained by the residual data to the FFT 102 of FIG. 图104是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 104 is a configuration example of a sensor module in the wearing state of each sensor described in FIG.

图105是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 FIG 105 is an example of the configuration of each sensor in the sensor module described in FIG wearing state.

图106是作为加速度传感器,使用3轴(X、 Y、 Z轴)加速度传感器时的后述X轴方向的加速度和脉波传感器的输出中包含的体动成分(跳 FIG as an acceleration sensor 106, using a 3-axis (X, Y, Z-axis) and the output acceleration body motion components in the pulse wave sensor described later, when the X-axis direction acceleration sensor included (jumping

20动成分)的关系说明图。 Relationship between the movable component 20). FIG.

图107是作为加速度传感器,使用后述的3轴加速度传感器时的Y 107 as an acceleration sensor, Y-axis acceleration sensor 3 when described later is used

图108是作为加速度传感器,使用后述的3轴(X、 Y、 Z轴)加速度传感器时的Z轴方向的加速度和脉波传感器的输出中包含的体动成分(跳动成分)的关系说明图。 FIG 108 as an acceleration sensor, the relationship between the output of the acceleration and the pulse wave sensor in the Z axis direction when the (X, Y, Z-axis) acceleration sensor described below is used three axes included in the body motion component (jitter component) described in FIG. . . 图109是3轴的说明图。 Figure 109 is an explanatory view of the shaft 3.

图110是第5实施方式的脉搏测定装置的外观透视图。 FIG 110 is an external perspective view of a fifth embodiment of the pulse measurement device. 图111是图110的传感器模块的剖面图。 FIG. 111 is a sectional view of the sensor module 110 of FIG.

图112是把第6实施方式的脉搏测定装置装配到钟表壳中的外观透视图。 The measuring device 112 is fitted into the watch case external perspective view of a sixth embodiment of the pulse.

图113是图112的脉搏测定装置的剖面图。 FIG 113 is a sectional view showing a pulse wave measuring apparatus 112 of FIG. 具体实施方式 Detailed ways

以下,参照附图说明本发明的最佳实施方式。 The following describes a preferred embodiment of the present invention with reference to embodiments. [1]第l实施方式 [1] First Embodiment l

图1是第1实施方式的脉搏测定装置的佩戴状态说明图。 FIG 1 is a wearing state pulse measurement apparatus according to the first embodiment described embodiment of FIG.

脉搏测定装置10佩戴在使用者手臂11上来使用,具有装置主体(钟表壳)IOA、和用于把装置主体IOA佩戴在手臂上的表带IOB。 Pulse measuring device 10 worn on the user's arm 11 used up, the device having a main body (watch case) IOA, and means for the body IOA IOB band worn on the arm.

图2是第1实施方式的脉搏测定装置的剖面图。 FIG 2 is a sectional view of a first embodiment of the pulse measurement device.

把表带10B缠绕在手腕上以佩戴脉搏测定装置10时,装置主体10A 的背面侧紧贴在手腕背部。 10B wound around the wrist strap to be worn pulse wave measuring device 10, the back surface side of the apparatus body 10A in close contact with the back of the wrist.

因此,在装置主体10A的背面侧设置3轴(X轴、Y轴、Z轴)加速度传感器12及脉波传感器13。 Therefore, an 3-axis (X axis, Y axis, Z-axis) acceleration sensor 12 and the pulse wave sensor 13 on the back side of the apparatus body 10A. 该场合时,3轴加速度传感器12起着体动传感器的功能。 When this case, the three-axis acceleration sensor 12 plays a function of the body motion sensor.

如图2所示,脉波传感器单元13具有:射出脉波检测用光的LED13A; 接受从人体反射的检测用光的PD (光电探测器)13B;和透明玻璃13C, 保护LED13A和PD13B,同时透过LED13A的照射光、通过生物体所得到的 2, the pulse wave sensor unit 13 includes: a pulse wave detecting emitted light of LED13A; receiving light reflected from the human body is detected PD (photodetector) 13B; and a transparent glass. 13C, and protection LED13A PD13B, while irradiation light transmitted through LED13A by organisms obtained

输出中包含的体动成分(跳动成分)的反射光,使其入射到PD13B。 Output of the reflected light component included in the body motion (jitter component) made incident to PD13B. 其中,透明玻璃13C由构成装置主体10A的后盖14固定着。 Wherein the transparent cover glass 13C secured by the body of the device 14, 10A.

根据该脉波传感器单元13的结构,来自LED13A的光通过透明玻璃55照射手腕背部,其反射光被光电二极管13B所接受。 The structure of the pulse wave sensor unit 13, light from LED13A glass 55 is irradiated through the transparent back of the wrist, the reflected light is accepted by the photodiode 13B.

在装置主体10A的表面侧设置液晶显示装置15,除当前时间和曰期外,还显示基于脉波传感器13的检测结果的脉搏数服等生物体信息。 Means disposed on the surface side of the liquid crystal display device 15 main body 10A, in addition to the current time period and said further display based on detection results of the pulse wave sensor 13 serving biological information such as pulse rate.

在装置主体10A的内部,在主基板16的上侧设有CPU等各种IC电路,由此构成数据处理电路17。 Inside the apparatus body 10A, on the side of the main board 16 is provided with various IC circuit such as a CPU, whereby the data processing circuit 17.

在主基板16的背面侧设有电池18,由电池18向3轴加速度传感器12、脉波传感器13、液晶显示装置15及主基板16提供电源。 The back surface side of the main substrate 16 provided with a battery 18, a battery 18 to three-axis acceleration sensor 12, the pulse wave sensor 13, the liquid crystal display device 15 provides power and the main board 16.

3轴加速度传感器12、脉波传感器13和主基板16通过热封件(heat seal) 19而连接。 3-axis acceleration sensor 12, the pulse wave sensor 13 and main board 16 are connected by a heat seal (heat seal) 19. 这样,利用热封件19形成的布线,主基板16向3轴加速度传感器12和脉波传感器13提供电源。 Thus, a wiring formed of the heat seal member 19, a main board 16 supplies power to the triaxial acceleration sensor 12 and the pulse wave sensor 13.

结果,3轴加速度传感器12向主基板16提供加速度检测信号。 As a result, three-axis acceleration sensor 12 provides an acceleration detection signal to the main board 16. 脉波传感器13向主基板16提供脉波检测信号。 Pulse wave sensor 13 provides a pulse wave detection signal to the main board 16.

数据处理电路17对加速度检测信号和脉波检测信号进行FFT处理, 通过分析其处理结果,算出脉搏数服。 The data processing circuit 17 detects the acceleration signal and the pulse wave detection signal is subjected to FFT processing, the analysis processing result, calculates the pulse rate service. 另外,如图1所示,在装置主体10A的外侧面设有用于进行时间调整和显示模式切换等的按钮开关20A、 20B、 20C、 20D、 20E。 Further, as shown in FIG. 1, the outer side surface of the apparatus body 10A is provided with a button switch for performing time adjustment and display mode switching or the like 20A, 20B, 20C, 20D, 20E.

图3是第1实施方式的脉搏测定装置的概要结构方框图。 3 is a schematic block diagram showing apparatus according to the first embodiment of the pulse measurement.

如果大致划分脉搏测定装置IO,具有:上述3轴加速度传感器12、 脉波传感器13、液晶显示装置15、以及脉波信号放大电路21、加速度信号放大电路22、 A/D变换电路23、 MPU24、 RAM25和R0M26.。 Means IO if roughly divided pulse measurement, comprising: the three-axis acceleration sensor 12, the pulse wave sensor 13, the liquid crystal display device 15, and the pulse wave signal amplifier 21, an acceleration signal amplification circuit 22, A / D conversion circuit circuit 23, MPU24, RAM25 and R0M26 ..

3轴加速度传感器12具有:图1或图2所示的检测X轴方向的加速度的X轴加速度传感器12X、检测Y轴方向的加速度的Y轴加速度传感器12Y、检测Z轴方向的加速度的Z轴加速度传感器12Z。 Having a three-axis acceleration sensor 12: acceleration detecting the X-axis direction shown in FIG. 1 or FIG. 2 X-axis acceleration sensor 12X, Y-axis direction acceleration detecting the Y-axis acceleration sensor 12Y, detects acceleration in the Z axis direction Z axis acceleration sensor 12Z.

脉波信号放大电路21以规定的放大率放大从脉波传感器13输出的脉波检测信号,并作为放大脉波检测信号输出给A/D变换电路23。 Pulse wave signal at a predetermined amplification factor amplifying circuit 21 amplifies the pulse wave detection signal output from pulse wave sensor 13, and outputs the amplified signal to a pulse wave detected as the A / D conversion circuit 23.

加速度信号放大电路22以规定的放大率分别放大从3轴加速度体动传感器12输出的X轴加速度检测信号、Y轴加速度检测信号和Z轴加速度检测信号,并作为放大X轴加速度检测信号、放大Y轴加速度检测信号和放大Z轴加速度检测信号输出给A/D变换电路23。 Acceleration signal amplifying circuit 22 is amplified at a predetermined amplification factor respectively detect X-axis acceleration signal from the three-axis acceleration output of body motion sensor 12, Y-axis and Z-axis acceleration signal detecting acceleration detection signal, and the X-axis acceleration is detected as the amplification signal, amplifying Y-axis acceleration signal detecting and amplifying Z axis acceleration detection signal to the A / D conversion circuit 23.

A/D变换电路23把所输入的放大脉波检测信号、放大X轴加速度检测信号、放大Y轴加速度检测信号、放大Z轴加速度检测信号、和放大压力检测信号分别单独进行模拟/数字变换,并作为脉波检测数据、X轴加速度检测数据Kx、 Y轴加速度检测数据Ky、 Z轴加速度检测数据Kz输出给MPU24。 Amplifying the pulse wave detection signal A / D conversion circuit 23 is input, an enlarged X-axis acceleration detection signal, amplified Y-axis acceleration detection signal, amplifies the Z-axis acceleration detection signal, and amplifies the pressure detection signal are analog / digital conversion alone, and as a pulse wave detection data, X-axis acceleration detection data Kx, Y axis acceleration detected data Ky, Z axis acceleration detection data is output to Kz MPU24.

MPU24把脉波检测数据、X轴加速度检测数据Kx、 Y轴加速度检测数据Ky、 Z轴加速度检测数据Kz存储在RAM25中,同时根据存储在R0M26 的控制程序算出脉搏数,并显示在显示装置15上。 MPU24 pulse wave detector data, X-axis acceleration detection data Kx, Y axis acceleration detected data Ky, Z axis acceleration detection data Kz stored in the RAM 25, while according to the storage in the R0M26 of the control program calculates a pulse rate, and displayed on the display device 15 .

具体而言,MPU24把根据存储在RAM25中的脉波检测数据、X轴加速度检测数据Kx、 Y轴加速度检测数据Ky、 Z轴加速度检测数据Kz所得到的体动检测数据按时间序列顺序排列,并对所对应的每个取样时间求出脉波检测数据和体动检测数据的两者之差即残差数据。 Specifically, the MPU 24 detects pulse wave data stored in the RAM25, X-axis acceleration detection data Kx, Y axis acceleration detected data Ky, Z axis acceleration detection data obtained Kz body motion detection data arranged in time series order, and each sampling time corresponding to the difference between them is obtained pulse wave data and the detected body motion detection data, i.e. residual data.

然后,进行该残差数据的频率分析(FFT:快速傅立叶变换),抽出脉波的谐波成分,根据其频率算出脉搏数。 Then, frequency analysis of the residual data (FFT: Fast Fourier Transform) to extract harmonic components of the pulse wave, the pulse rate is calculated according to the frequency. 下面,具体说明脉搏数算出处理。 Next, the pulse rate calculation process specifically described.

首先,在具体说明第1实施方式之前,说明第1实施方式的工作原理。 First, in the detailed description of the first embodiment before describing the operating principle of the first embodiment.

用于检测脉波的脉波传感器的输出中,除脉波成分外,还包含各种体动成分。 The output of the pulse wave sensor for detecting a pulse wave, the pulse wave component in addition, also contain various body motion component. 己知该体动成分是起因于脉搏被测定者即使用者的运动(步行、跑步动作、手臂摆动等)的、由生物体内部的变化而产生的。 The known body motion component due to the pulse is measured person i.e. the user's exercise (walking or running motion, the swing arm, etc.) by the change of the internal generated organisms.

可是,把3轴加速度传感器用作检测体动成分的传感器时,已知, 特别是末梢方向、即X轴方向的体动成分的影响大,但也不能忽视其他2 轴(Y轴和Z轴)方向的体动成分。 However, when the movable component of the sensor 3-axis acceleration sensor is used as the sample, it is known, in particular the peripheral direction, i.e., body motion components have a large influence X-axis direction, but can not ignore the other two axes (Y-axis and Z-axis ) direction of the body motion component.

因此,发明者们把使产生同一体动成分时的2轴方向的加速度作为向量,研究了2轴加速度向量的合成向量的变化量和脉波传感器的输出中包含的体动分量(跳动分量)的关系。 Accordingly, the inventors that the acceleration is generated when the 2-axis direction integrally with the movable component as vector components of body motion study (beat component) output change amount of the pulse wave sensor and the resultant vector of two-axis acceleration vector contained in Relationship. 图4是2轴加速度向量的合成向量的变化量和脉波传感器的输出中包含的体动分量(跳动分量)的关系说明图。 FIG 4 is a relationship between the output shaft 2 of the resultant vector of the acceleration vector and the amount of change in the pulse wave sensor comprises a body motion component (jitter component) described in FIG.

如图4所示可以得知,2轴加速度向量的合成向量的变化量和脉波传感器的输出中包含的体动分量(跳动分量)大致成正比关系。 4 can be known, the output change amount of the pulse wave sensor and the resultant vector of two-axis acceleration vector included in the body motion component is substantially proportional to (beat component).

换言之,如果能够检测2轴加速度向量的合成向量的变化量,则可以推测脉波传感器的输出中包含的静脉血液的影响量。 In other words, if the amount of change can be detected resultant vector of two-axis acceleration vector, it can be speculated that the amount of venous blood affect the output of the pulse wave sensor included.

在本第1实施方式中,通过外部的3轴加速度传感器检测因静脉起因的体动成分,同时以规定比例从脉波传感器的输出中减去这些检测输出,从而可以根据去除了静脉血液的影响的信号准确检测脉搏数。 In the first embodiment, by an external three-axis acceleration sensor detects a motion component due to the body causes the vein, while a predetermined ratio subtracted from the output of the pulse wave detection output of the sensor, can be removed according to the influence of venous blood the accurate detection of the pulse rate signal.

图5是第1实施方式的自适应滤波器的一个示例的概要结构方框图。 FIG 5 is a schematic block diagram showing one example of the adaptive filter of the first embodiment.

如果大致划分自适应滤波器30,具有:滤波系数生成单元31和合成单元32。 If adaptive filter 30 is roughly divided, comprising: a filter coefficient generating unit 31 and the synthesizing unit 32.

滤波系数生成单元31的系数控制单元31A起着体动成分去除单元的功能,根据应用了合成单元32前次输出的滤波后的数据来生成自适应滤波系数h。 Coefficient filter coefficient generating unit 31 plays a function of the control unit 31A body motion component remover means, for generating an adaptive filter coefficient h after applying the data output of the synthesizing unit 32 the previous filter.

滤波系数生成单元31把系数控制单元31A生成的自适应滤波系数h 应用于所输入的体动成分检测信号即X轴加速度数据Kx、 Y轴加速度数据Ky和Z轴加速度数据Kz的合成数据即合成加速度向量数据(=y)、 以及伪低频信号(=z),分别生成体动去除数据h (x)、 h (y)、 h (z), 并输出给合成单元32。 Filter coefficient generating unit 31 controls the coefficient generating unit 31A adaptive filter coefficient h of the body motion component detection signal applied to the input X-axis acceleration data Kx, Y-axis acceleration data Ky and Kz Z-axis acceleration data synthesized data that is synthesized acceleration vector data (= y), and a pseudo low frequency signal (= z), respectively, removing the body motion data to generate h (x), h (y), h (z), and outputs to the synthesizing unit 32.

合成单元32起着去除处理单元的功能,合成前次输出的脉波检测数据(=脉波成分+体动成分)和体动去除数据h (x)、 h (y)、 h (z),从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分e (n): Synthesizing unit 32 plays the function of removing the processing unit, the pulse wave detection data output from the previous synthesis (= pulse wave component and the body motion component) and removing the body motion data h (x), h (y), h (z), essentially removing (subtracting) the body motion pulse wave component contained in the detection data, extracts the pulse wave component e (n):

下面,说明使用伪低频信号的理由。 Next, the reason for using a pseudo low frequency signal.

根据发明者们的实验,即使从脉波检测数据中去除体动去除数据h G)、 h (y)、 h (z),因所得到的脉波成分中残留有低频波动成分,所以往往不能准确求出脉搏数。 The inventors of the experiment, even if the pulse wave detection data is removed from the body motion removing data h G), h (y), h (z), the pulse wave component obtained by the remaining low-frequency fluctuation components can not so often obtain accurate pulse rate.

这可考虑为呼吸和神经的影响,但对其进行检测并去除其影响需要 This can be considered as respiration and affect the nerves, but its impact needs to be detected and removed

24大型系统,所以不可能实现便携式脉搏测定装置。 24 large systems, it is impossible to realize portable pulse measuring device.

因此,发明者们将体动检测传感器即3轴加速度传感器的输出信号与相当于该低频波动成分的频率的伪低频信号相乘,并且实施自适应滤波,从而可以去除该影响。 Accordingly, the inventors i.e. body motion detection sensor output signal and the 3-axis acceleration sensor corresponds to multiplying the pseudo-low-frequency signal frequency fluctuation low frequency component, and adaptive filtering embodiment, this effect can be removed.

此时,从伪低频信号在进行频率分析时具有规定的频率分布,需要去除低频波动成分,和其频带区域小于等于0.5H'z的观点考虑,优选小于等于0.5Hz的三角波或矩形波。 At this time, with a predetermined pseudo-low-frequency signal from the frequency distribution of the frequency analysis is performed, the low frequency ripple component needs to be removed, and the band region thereof viewpoint 0.5H'z less, preferably less than equal to a triangular wave or a rectangular wave of 0.5Hz. 该频带区域和波形形状根据实际包含的低频波动成分可以适当变更。 The band region and waveform shape may be suitably changed according to fluctuation of the low-frequency component actually contained.

下面,说明本第1实施方式的具体的脉搏数算出处理。 Next, a specific number of the pulse of the first embodiment according to the present embodiment calculating process.

图6是把对应从X轴加速度传感器12X输出的X轴加速度检测信号的X轴加速度数据Kx按时间序列顺序排列的曲线图。 FIG 6 is an X-axis acceleration data corresponding to the X-axis acceleration detection signal outputted from the acceleration sensor 12X Kx X-axis of the graph are arranged in time series order.

图7是对对应图6的X轴加速度数据Kx进行FFT而得到的频率分析 FIG 7 is a frequency analysis of the X-axis acceleration data Kx corresponding to FIG. 6 is obtained by FFT

结果。 result. ' '

图8是把对应从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度数据Ky按时间序列顺序排列的曲线图。 FIG 8 is a graph corresponding to the Y-axis acceleration detection signal outputted from the acceleration sensor 12Y of the Y-axis Y-axis acceleration data Ky arranged in time series order.

图9是对对应图8的Y轴加速度数据Ky进行FFT而得到的频率分析结果。 9 is a frequency analysis results of the Y-axis acceleration data Ky performs FFT corresponding to FIG. 8 is obtained.

图10是把对应从Z轴加速度传感器12Z输出的Z轴加速度检测信号的Z轴加速度数据Kz按时间序列顺序排列的曲线图。 FIG 10 is the Z-axis Z-axis acceleration data corresponding to the acceleration detection signal from the Z axis output of the acceleration sensor 12Z Kz graph showing chronological series order.

图11是对对应图10的Z轴加速度数据Kz进行FFT而得到的频率分析结果。 FIG 11 is a result of frequency analysis of the Z-axis acceleration data Kz map 10 is obtained by the FFT.

如果比较图6、图8和图10可知,作为体动成分,X轴加速度成分的影响大于Y轴加速度成分和Z轴加速度成分的影响。 If the comparison of FIG. 6, FIG. 8 and FIG. 10, a body movement component, the influence of the X-axis acceleration component is greater than the acceleration component and the influence of the Z Y axis acceleration component axis.

因此,发明者们为了在维持测定精度同时又简化处理,如前面所述, 把Y轴加速度成分和Z轴加速度成分作为一个整体来进行处理,检测2 轴加速度向量的合成向量变化量。 Accordingly, the inventors in order to maintain accuracy while simplifying the measurement process, as described above, the Y-axis acceleration and the Z-axis acceleration component composition as a whole to be processed, the amount of change detection vector Synthesis of 2-axis acceleration vector.

图丄2是把对应从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度数据Ky、对应从Z轴加速度传感器12Z输出的Z轴加速度检测信号的Z轴加速度数据Kz分别作为向量使用,把作为其合成向量而得到的合成加速度向量数据按时间序列顺序排列的曲线图。 FIG Shang 2 is to correspond to the Y-axis acceleration data Ky Y-axis acceleration detecting signal Y-axis acceleration sensor 12Y outputs, corresponding to the acceleration data Z Z axis acceleration detection signal from the Z-axis acceleration sensor 12Z output Kz, respectively, as a vector using , the graph of the synthetic acceleration vector data obtained as the result vector arranged in time series order.

图13是向对应图12的合成加速度向量数据(二V^7^7)、即对2轴加速度合成成分进行FFT而得到的频率分析结果。 FIG 13 is that the synthesis of the 2-axis acceleration component FFT frequency analysis result obtained by the combined acceleration vector data (two V ^ 7 ^ 7) corresponding to FIG. 12.

图14是把预先设定的伪低频信号(使用三角波)按时间序列顺序排列的曲线图。 FIG 14 is the pseudo-low-frequency signal set in advance (triangular wave) arranged in a graph in time series order.

图1.5是对对应图14的伪低频信号进行FFT而得到的频率分析结果。 Figure 1.5 is a result of frequency analysis of the pseudo-low-frequency signal performs FFT corresponding to FIG. 14 is obtained. 如图15所示,该频率大致小于等于0.5Hz,具有规定的频率分布。 15, this frequency is substantially less 0.5Hz, having a predetermined frequency distribution. 图16是把脉波检测数据按时间序列顺序排列的^一个示例的曲线图。 FIG 16 is a graph showing an example of a ^ pulse wave detection data arranged in time series order. 图17对对应图16的脉波检测数据进行FFT而得到的频率分析结果。 The frequency of the pulse wave detection data corresponding to FIG 17. FIG 16 is obtained by the FFT analysis. 首先,MPU24顺序读出存储在RAM25中的脉波检测数据、X轴加速度 First, MPU24 reads pulse wave detection data sequentially stored in the RAM25, X-axis acceleration

检测数据、Y轴加速度检测数据、Z轴加速度检测数据,把一个取样时间 Test data, Y-axis acceleration data detected, Z axis acceleration data detected, to a sampling time

中的脉波检测数据输出给合成单元32。 Pulse wave detection data output to the synthesizing unit 32.

与此并行,MPU24向滤波系数生成单元31输出对应于输出给合成单 In parallel with this, the output unit 31 MPU24 to the filter coefficients corresponding to the generated output to the synthesizing single

元32的脉波检测数据的X轴加速度检测数据Kx、Y轴加速度检测数据Ky、 Element Kx X-axis acceleration detecting pulse wave data detected data 32, Y-axis acceleration detected data Ky,

Z轴加速度检测数据Kz。 Z axis acceleration detection data Kz.

这样,滤波系数生成单元31的系数控制单元31A根据应用了合成单 Thus, the filter coefficient generation coefficient unit 31 in accordance with the application control unit 31A of synthesizing single

元32前次输出的滤波后的数据,生成自适应滤波系数h。 The filtered data output from the last element 32, generating an adaptive filter coefficient h.

滤波系数生成单元31在系数控制单元31A的控制下,分别把自适应 The filter coefficient generating unit 31 controls the coefficient control unit 31A, respectively, the adaptive

滤波系数h应用于所输入的体动成分检测信号即X轴加速度检测数据Kx (-x)、 Y轴加速度检测数据Ky和Z轴加速度检测数据Kz的合成数据即 Body motion detection signal applied to the input filter coefficients h, i.e., X-axis acceleration detected data Kx (-x), Y axis acceleration detected data Ky and Kz Z-axis acceleration detected data synthesized data i.e.

合成加速度向量数据(=y)、以及伪低频信号(=z),分别生成体动去 Synthetic acceleration vector data (= y), and a pseudo low frequency signal (= z), to generate body motion

除数据h (x)、 h (y)、 h (z),输出给合成单元32。 In addition to the data h (x), h (y), h (z), outputs to the combining unit 32.

这样,合成单元32合成此次的脉波检测数据和体动去除数据h (x)、 Thus, the pulse wave detection data combining unit 32 and the body of the synthesized motion data removal h (x),

h (y)、 h (z),从实质上去除(减去)此次的脉波检测数据中包含的体 h (y), h (z), substantially removed from the body (minus) the pulse wave detection data contained in the

动成分,抽出脉波成分,输出应用了自适应滤波后的数据即残差数据e (n)。 Motion components, extracting the pulse wave component, the output application data i.e. residual data adaptive filtering e (n).

图18是对图—16的脉波检测信号,把自适应滤波应用于图6的放大X轴加速度检测信号、图12的合成加速度向量信号及图14的伪低频信号, 把对所得到的信号进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 18 is a pulse wave detection signal of FIG -16, adaptive filtering is applied to the X-axis acceleration detection signal amplifying FIG 6, the pseudo-low-frequency signal combined acceleration vector signal in FIG. 12 and FIG. 14, the resultant signal graph obtained by synthesizing residual data arranged in time series order.

然后,MPU24对残差数据进行FFT。 Then, MPU24 residual data FFT.

图19是对图18的残差数据进行FFT而得到的频率分析结果。 FIG 19 is a result of frequency analysis of the residual data of FIG. 18 is obtained by the FFT. 由此所得到的频率分析结果实质上已从脉波传感器的输出信号(脉 Whereby the output signal frequency analysis result obtained substantially from the pulse wave sensor (pulse

波成分+体动成分)中去除了静脉起因的体动成分,即成为主要对应脉 Wave component and the body motion component) in addition to the vein due to body motion component, i.e. corresponding to a major vein

波成分的脉波数据。 Wave component of the pulse wave data.

下面为了比较,说明未使用伪低频信号时得到的脉波数据。 For comparison the following described pulse wave data obtained pseudo low frequency signal is not used.

图20是对图16的脉波检测信号,把自适应滤波应用于图6的放大 FIG 20 is a pulse wave detection signal 16, applied to the adaptive filter 6 in an enlarged FIG.

X轴加速度检测信号及图12的合成加速度向量信号,把对所得到的信号 X-axis acceleration signal detecting and FIG synthetic acceleration vector signal 12, the signal obtained

进行合成而得到的残差数据按时间序列顺序排列的曲线图。 Graph obtained by synthesizing residual data arranged in time series order.

图21是对图20的残差数据进行FFT而得到的频率分析结果。 FIG 21 is a result of frequency analysis of the residual data of FIG. 20 is obtained by the FFT. 通过比较图19和图21可容易得知,根据本第1实施方式的结构, By comparing FIGS. 19 and 21 can easily know the structure of the first embodiment according to the present embodiment,

可以降低低频波动成分,进而容易去除检测脉搏数时的低频波动成分的影响。 The low frequency ripple component can be reduced, and thus easy to remove to low frequency fluctuation component is detected when the pulse rate. 另外,MPU24主要把所得到的含有脉波成分的脉波数据中的最大频率成分作为脉搏波谱,根据其频率算出脉搏数。 Further, the main MPU 24 to the maximum pulse wave frequency component of the pulse wave component data contained in the resulting spectrum as a pulse, the pulse rate is calculated according to the frequency.

然后,MPU24把脉搏数显示在液晶显示装置15上。 Then, MPU24 the pulse rate is displayed on the liquid crystal display device 15. 如上所述,根据本第1实施方式,通过使用起着体动传感器的功能的3轴加速度传感器12及脉波传感器13,并使用准低频信号,从而可以可靠地检测把握生物体内部产生的体动成分的主要原因即静脉的波动。 As described above, the first embodiment according to the present embodiment, by using a three-axis acceleration sensor plays a function of the body movement sensor 12 and the pulse wave sensor 13, and using a quasi-low frequency signals can be detected reliably grasp the inside of the living body produced the main reason movable component that is, intravenously fluctuations. 因此,能够可靠去除体动成分,进而进行准确的脉波成分检测以及准确 Therefore, the body motion component can be surely removed, and thus accurate and precise detection of the pulse wave component

'^ ^:i]第l变形例 '^ ^: I] l of modification

以上说明的是使用Y轴加速度数据Ky和Z轴加速度数据Kz的合成数据即合成加速度向量数据(=、/^^)时的实施方式,但本第i变形例是使用把X轴加速度数据、Y轴加速度数据和Z轴加速度数据这3个加速度数据合成后的合成加速度向量数据(=Vl777^7^7 )、即使用 Using the above-described Y-axis acceleration data Ky and Kz Z-axis acceleration data synthesized data that is combined acceleration vector data (= / ^^) when the embodiment, but the present embodiment is a modification of the i using the X-axis acceleration data, Y-axis acceleration data and Z acceleration data of the three-axis acceleration data thus synthesized acceleration vector data (= Vl777 ^ 7 ^ 7), i.e., using

3轴加速度合成成分时的实施方式。 The embodiment when acceleration in the three axes synthetic ingredients.

图22是第1实施方式的第1变形例的自适应滤波器的--个示例的概要结构方框图。 FIG 22 is an adaptive filter according to the first modification of the first embodiment - a schematic block diagram showing an example of.

如果大致划分自适应滤波器40,具有:滤波系数生成单元41、求积 If adaptive filter 40 is roughly divided, comprising: a filter coefficient generating unit 41, quadrature

单元42和合成单元43。 Unit 42 and combining unit 43.

滤波系数生成单元41起着体动成分去除单元的功能,根据应用了合成单元43前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating body motion component remover 41 plays a functional unit means, depending on the application of the filtered data output from the previous synthesis unit 43, generating an adaptive filter coefficient h.

与此并行,求积单元42.将X轴加速度数据、Y轴加速度数据和Z轴加速度数据这3个加速度数据合成后的合成加速度向量数据(= V^+A"2+^2 )乘以预先设定的伪低频信号,并输出给滤波系数生成单元41。 In parallel with this, the quadrature unit 42. The data of the X-axis acceleration, Y-axis acceleration data and Z acceleration data of the three-axis acceleration data Synthesis acceleration vector data (= V ^ + A "2 + ^ 2) by multiplying a pseudo low frequency signal set in advance, and outputs the filter coefficient generating unit 41.

结果,滤波系数生成单元41把所生成的自适应滤波系数h应用于求积单元42的输出中,生成体动去除数据h (K^ + Ky2 + Kz2),并输出给合成单元43。 As a result, the filter coefficient generating unit 41 generates the adaptive filter coefficient applied to the output h of quadrature element 42, removing the body motion data to generate h (K ^ + Ky2 + Kz2), and outputs to the synthesizing unit 43.

合成单元43起着去除处理单元的功能,合成前次输出的脉波检测数据(=脉波成分+体动成分)和体动去除数据h (Kx2 + Ky2 + Kz2),从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分e Synthesizing unit 43 plays the function of removing the processing unit, the pulse wave detection data output from the previous synthesis (= pulse wave component and the body motion component) and removing the body motion data h (Kx2 + Ky2 + Kz2), from substantially removed (minus to) the body motion components in the pulse wave detection data contained in the extracted pulse wave component e

(n)。 (N).

下面,具体说明第l变形例的脉搏数算出处理。 The following detailed description of the pulse rate calculation process modification l. 图23是把对应于从X轴加速度传感器12X输出的X轴加速度检测信号的X轴加速度检测数据Kx按时间序列顺序排列的曲线图。 FIG 23 is a 12X acceleration sensor corresponding to the output from the X-axis X-axis acceleration detecting signal detected X-axis acceleration data Kx graph showing chronological series order.

图24是对对应图23的X轴加速度数据Kx进行FFT而得到的频率分 FIG 24 is a frequency corresponding to the X-axis acceleration data Kx FIG. 23 performs FFT points obtained

-太p々士頃 - Guests are too p々

17 i 5口木。 17 i 5 Kou wood.

图25是把对应于从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度检测数据Ky按时间序列顺序排列的曲线图。 FIG 25 is a graph showing the acceleration sensor 12Y corresponds to the Y axis output from the Y-axis acceleration detection signal Ky Y-axis acceleration detected data arranged in time series order.

图26是对对应图25的Y轴加速度数据Ky进行FFT而得到的频率分秒T fe采。 26 Minutes T fe is the frequency of the Y-axis acceleration data mining Ky corresponding to FIG. 25 performs FFT obtained.

图27是把对应于从Z轴加速度传感器12Z输出的Z轴加速度检测信号的Z轴加速度检测数据Kz按时间序列顺序排列的曲线图。 FIG 27 is a Z-axis corresponding to the acceleration detection signal from the acceleration sensor of Z axis 12Z of the Z-axis acceleration output detected data Kz graph showing chronological series order.

图28是对对应图27的Z轴加速度数据Kz进行FFT而得到的频率分 FIG 28 is a frequency corresponding to the Z-axis acceleration data Kz FIG. 27 performs FFT points obtained

析结果c图29是把对应于从X轴加速度传感器12X输出的X轴加速度数据Kx、对应于从Y轴加速度传感器12Y输出的Y轴加速度检测信号的Y轴加速度检测数据Ky、对应于从Z轴加速度传感器12Z输出的Z轴加速度检测信号的Z轴加速度检测数据Kz分别作为向量使用,把作为其合成向量所得到的合成加速度向量数据(=V^^7T^7)按时间序列顺序排列的曲线图。 Analysis results c in FIG. 29 corresponding to the X-axis acceleration data Kx acceleration sensor 12X outputted from the X-axis, corresponding to the Y-axis acceleration detected data Ky Y-axis acceleration detecting signal Y-axis acceleration sensor 12Y outputs, corresponding to the Z Z-axis Z-axis acceleration data detected acceleration detection signal outputted from the triaxial acceleration sensor 12Z Kz are used as a vector, the synthetic acceleration vector data (= V ^^ 7T ^ 7) as a synthesis vector obtained in chronological order of the sequence Graph.

图30是对对应图29的合成加速度向量数据(二V^2+《v'2+【72 ) 进行FFT而得到的频率分析结果。 FIG 30 is a result of frequency analysis of the combined acceleration vector data is FFT (two V ^ 2 + "v'2 + {72) corresponding to FIG. 29 is obtained.

图31是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 31 is a graph showing an example of a pulse wave detection data arranged in time series order. 图32是对对应图31的脉波检测数据进行h下T而得到的频率分析结 FIG 32 is a frequency analysis result of the pulse wave detection data corresponding to h of FIG. 31 is obtained at T

果c Fruit c

首先,MPU24顺序读出存储在RAM25中的脉波检测数据、X轴加速度检测数据、Y轴加速度检测数据、Z轴加速度检测数据,把----个取样时间中的脉波检测数据输出给合成单元43。 First of all, MPU 24 sequentially reads out the pulse wave detection data stored in the RAM25, X-axis acceleration detection data, Y-axis acceleration data detected, Z axis acceleration data detected, the detected pulse wave data output ---- sampling time to synthesizing unit 43.

与此并行,MPU24向求积单元42输出对应于输出给合成单元43的脉波检测数据的X轴加速度检测数据Kx、 Y轴加速度检测数据Ky、 Z轴加速度检测数据Kz。 In parallel with this, MPU 24 is output to the pulse wave corresponding to the detection data synthesizing unit 43 detects the X-axis acceleration data Kx Quadrature output unit 42, Y-axis acceleration detected data Ky, Z axis acceleration data detected Kz.

求积单元42将X轴加速度数据、Y轴加速度数据和Z轴加速度数据这3个加速度数据合成后的合成加速度向量数据(=V^~+^2+/。2—)乘以图14及图15所示的伪低频信号,并输出给滤波系数生成单元41。 Quadrature unit 42 after the X-axis acceleration data, Y acceleration data and Z-axis acceleration data of the three-axis acceleration data Synthesis acceleration vector data (= V ^ ~ + ^ 2 + /. 2-) is multiplied by 14, and FIG. FIG 15 is a pseudo low frequency signal, and outputs the filter coefficient generating unit 41.

这样,滤波系数生成单元41根据应用了合成单元43前次输出的滤波后的数据,生成自适应滤波系数h。 Thus, the filter coefficient generating unit 41 is applied according to the filtered data output from the previous synthesis unit 43, generating an adaptive filter coefficient h.

滤波系数生成单元41把自适应滤波系数h应用于所输入的合成加速度向量数据(二V^7^^7),生成体动去除数据h ('Kx'4Ky」+ Kz", 并输出给合成单元43。 Filter coefficient generating unit 41 is applied to the adaptive filter coefficient h combined acceleration vector data (two V ^ 7 ^^ 7) input, removing the body motion data generating h ( 'Kx'4Ky "+ Kz", and outputs the synthesized unit 43.

由此,合成单元43将此次的脉波数据和体动去除数据h (K/ + Ky2 + KzO进行合成,从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分,输出应用了自适应滤波后的数据即残差数据e图33是对图31的脉波检测数据,把自适应滤波应用于图29的合成加速度向量数据及图14的伪低频信号,合成其数据而得到的残差数据按时间序列顺序排列的曲线图。 Accordingly, the synthesizing unit 43 and the pulse wave data from which body motion removing data h (K / + Ky2 + KzO synthesized, substantially removing the body motion components from (minus) the pulse wave detection data contained in the extracting pulse wave components, the output application data adaptive filtering e i.e. residual data 33 is data for detecting the pulse wave of FIG. 31, the adaptive filtering combined acceleration vector data is applied to FIG. 29 and FIG. 14 of the dummy graph low-frequency signal, which is synthesized residual data obtained by the data arranged in time series order.

然后,MPU24对残差数据进行FFT。 Then, MPU24 residual data FFT.

图34是对图33的残差数据进行FFT而得到的频率分析结果。 FIG 34 is a result of frequency analysis of the residual data of FIG. 33 is obtained by the FFT. 这样,所得到的频率分析结果和第1实施方式比,在低频区域(〈0. 5Hz)仍残留有与脉波成分无关的波谱,但并不给脉波成分的频带区域(2Hz〜2.5Hz)带来影响,而是实质上从脉波传感器的输出信号(脉波成分+体动成分)中去除了静脉起因的体动成分的波谱,即形成主要对应于脉波成分的脉波数据。 Thus, the frequency analysis results obtained than the first embodiment, in a low frequency region (<0. 5Hz) still remains independent of the spectrum of the pulse wave component, but not to the frequency band of the pulse wave component (2Hz~2.5Hz ) impact, but substantially vein to cause body motion spectrum component from the addition output signal (pulse wave component of body motion component +) pulse wave sensor, i.e., formed mainly corresponds to the pulse wave component of the pulse wave data. [1.2]第2变形例 [1.2] Modification 2

以上说明的是把伪低频信号用于处理时的情况,但本第2变形例是为了简化处理和装置结构,而不把伪低频信号用于处理时的变形例。 The above description is for the case where the pseudo-low-frequency signal processing, but the present second modification is to simplify the apparatus configuration and processing, the pseudo-low-frequency signal without modification for example when the processing.

图35是第1实施方式的第2变形例的自适应滤波器的---个示例的概要结构方框图。 FIG 35 is a schematic block diagram showing a configuration example of an adaptive filter --- a second modification of the first embodiment.

如果大致划分自适应滤波器50,具有:滤波系数生成单元51和合成单元52。 If adaptive filter 50 is roughly divided, comprising: a filter coefficient generating unit 51 and synthesis unit 52.

滤波系数生成单元51的系数控制单元51A起着体动成分去除单元的功能,根据应用了合成单元52前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating unit 51 controls the coefficient units 51A plays a body motion component remover unit functions, depending on the application of the filtered data output from the previous synthesis unit 52, generating an adaptive filter coefficient h.

滤波系数生成单元51把系数控制单元51A生成的自适应滤波系数h 应用于所输入的体动成分检测信号即X轴加速度检测数据Kx、 Y轴加速度检测数据Ky和Z轴加速度检测数据Kz,分别生成体动去除数据h (x)、 h (y)、 h (z),输出给合成单元52。 Detecting body motion components A signal adaptive filtering coefficients of the filter coefficient generating unit 51 generates the coefficient h of the control unit 51A is applied to the input X-axis acceleration detection data Kx, Y-axis acceleration and the Z-axis detection data Ky acceleration detected data Kz, respectively removing the body motion data to generate h (x), h (y), h (z), the output of the synthesis unit 52.

合成单元52起着去除处理单元的功能,将前次抽出的脉波检测数据(=脉波成分+体动成分)和体动去除数据h (K?+Ky2 + Kz"进行合成, 从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分e (n)。 Synthesizing unit 52 plays the function of removing the processing unit, the detection of the previous pulse wave data out (= pulse wave component and the body motion component) and removing the body motion data h (K? + Ky2 + Kz "are synthesized essentially from removing (subtracting) the body motion pulse wave component contained in the detection data, extracts the pulse wave component e (n).

下面,具体说明处理数据的一个示例。 Hereinafter, a specific example of data processing instructions. 图36是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 36 is a graph showing an example of a pulse wave detection data arranged in time series order. 图37是对对应图36的脉波检测数据进行FFT而得到的频率分析结果。 FIG 37 is a result of frequency analysis of the pulse wave corresponding to the detection data of FIG. 36 is obtained by the FFT.

图38是对图31的脉波检测数据,把自适应滤波应用于图29的合成加速度向量数据及图14的伪低频信号,进行合成而得到的残差数据按时间序列顺序排列的曲线图。 FIG 38 is a pulse wave detection data of FIG. 31, the low-frequency signal to a pseudo-adaptive filtering combined acceleration vector data of FIG. 29 and FIG. 14, obtained by combining the residual data graph are arranged in time series order.

图39是对图38的残差数据进行FFT而得到的频率分析结果。 FIG 39 is a result of frequency analysis of the residual data of FIG. 38 is obtained by the FFT.

MPU24通过对残差数据e (n)进行FFT',从而所得到频率分析结果如图34所示,和第1实施方式相同,实质上从脉波传感器的输出信号(二脉波成分+体动成分)中去除了因静脉造成的体动成分,即成为主要对应脉波成分的脉波数据。 MPU24 data by the residual e (n) FFT ', so that the resulting frequency analysis results shown in Figure 34, and the same as the first embodiment, the output signal substantially from the pulse wave sensor (pulse wave component, two body motion component) removes the body motion component caused by vein, i.e., a major component of the pulse wave corresponding to the pulse wave data.

[1.3]第3变形例 [1.3] Modification 3

本第3变形例是上述第1变形例的进一步变形例,是在第1变形例中采用不使用伪低频信号的结构的变形例。 This embodiment is a further modification of the third modification of the first modification, the configuration of modification example is not using the pseudo low frequency signal in the first modification.

图40是第1实施方式的第3变形例的自适应滤波器的一个示例的概 FIG 40 is a schematic example of a third modification of the adaptive filter according to a first embodiment

要结构方框图。 To block diagram showing.

如果大致划分自适应滤波器60,具有:滤波系数生成单元61和合成单元62。 If adaptive filter 60 is roughly divided, comprising: a filter coefficient generating unit 61 and synthesis unit 62.

滤波系数生成单元61起着体动成分去除单元的功能,根据应用了合成单元62前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating unit 61 plays a functional body motion component removing means, according to the application of the filtered data output from the previous synthesis unit 62, generating an adaptive filter coefficient h.

滤波系数生成单元61把所生成的自适应滤波系数h应用于将X轴加速度检测数据Kx、 Y轴加速度检测数据Ky和Z轴加速度检测数据Kz这3 个加速度数据进行合成后的合成加速度向量数据(=), 生成体动去除数据h (Kx2 + Ky2 + Kz2),输出给合成单元62。 Filter coefficient generating unit 61 supplies the generated adaptive filter coefficients h used in synthetic acceleration vector data after detecting the X-axis acceleration data Kx, Y axis acceleration detected data Ky and Kz Z-axis acceleration data detected three acceleration data synthesized (=), removing the body motion data to generate h (Kx2 + Ky2 + Kz2), outputs to the combining unit 62.

合成单元62起着去除处理单元的功能,将前次抽出的脉波检测数据(-脉波成分+体动成分)和体动去除数据h (Kx'+K/ + Kz,进行合成, 从实质i:去除〔减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分e (n)。 Synthesizing unit 62 plays the function of removing the processing unit, the previous pulse wave detection data out (- pulse wave component and the body motion component) and removing the body motion data h (Kx '+ K / + Kz, are synthesized from the substance i: [removed subtracting) the body motion pulse wave component contained in the detection data, extracts the pulse wave component e (n).

根据本第3变形例,可以得到和第1变形例相同的效果,同时由于 According to the third modification, the same effect can be obtained, and the modification of the first embodiment, and because

31不使用伪低频信号,所以能够进一步实现装置结构及处理的简化。 31 does not use a pseudo low frequency signals is simplified apparatus configuration and processing can be further achieved.

[1.4]第4变形例 [1.4] Fourth Modification

本第4变形例是在第1实施方式中采用不使用伪低频信号的结构的变形例。 This fourth modification is to use the structure of the modified embodiment does not use the dummy low-frequency signal in the first embodiment.

图4i是第1实施方式的自适应滤波器的一个示例的概要结构方框 Fig 4i is a schematic configuration example of a block adaptive filter according to the first embodiment

如果大致划分自适应滤波器70,具有:滤波系数生成单元71和合成单元72。 If adaptive filter 70 is roughly divided, comprising: a filter coefficient generating unit 71 and the synthesizing unit 72.

滤波系数生成单元71的系数控制单元71A起着体动成分去除单元的功能,根据应用了合成单元72前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating unit 71 controls the coefficient 71A plays a body motion component remover means a functional unit, depending on the application of the filtered data output from the previous synthesis unit 72, generating an adaptive filter coefficient h.

滤波系数生成单元71把系数控制单元71A生成的自适应滤波系数h 应用于所输入的体动成分检测信号即X轴加速度检测数据Kx (=x)、 Y 轴加速度检测数据Ky和Z轴加速度检测数据Kz的合成数据即合成加速度向量数据(=y),分别生成体动去除数据h (x)、 h (y),输出给合成单元72。 Filter coefficient generating unit 71, coefficient control of the adaptive filter coefficient generating unit 71A detects body motion component signal h is applied to the input X-axis acceleration detected data Kx (= x), Y axis acceleration detected data and the Z-axis acceleration detecting Ky Kz synthesized data i.e. data combined acceleration vector data (= y), respectively, removing the body motion data to generate h (x), h (y), the output of the synthesis unit 72.

合成单元72起着去除处理单元的功能,将前次抽出的脉波检测数据(=脉波成分+体动成分)和体动去除数据h (x)、 h (y)进行合成,从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分e (n)。 Synthesizing unit 72 plays the function of removing the processing unit, the detection of the previous pulse wave data out (= pulse wave component and the body motion component) and removing the body motion data h (x), h (y) are synthesized substantially from removing (subtracting) the body motion pulse wave component contained in the detection data, extracts the pulse wave component e (n).

根据本第4变形例,可以得到和第1实施方式相同的效果,同时由于不使用伪低频信号,所以能够进一步实现装置结构及处理的简化。 According to the fourth embodiment of the present modification, the first embodiment can be obtained and the same effects, and does not use a pseudo low frequency signals, it is possible to further simplify the apparatus structure and process implementation. [1.5]第5变形例 [1.5] Fifth Modification

在以上说明中,在算出将X轴加速度数据Kx、 Y轴加速度数据Ky和Z轴加速度数据Kz这3个加速度数据进行合成后的合成加速度向量数据(二麵+A:v2卞A1-7 )或将Y轴加速度检测数据Ky和Z轴加速度数据Kz In the above description, the synthetic acceleration vector data after calculating the X-axis acceleration data Kx, Y-axis acceleration data Ky and Kz Z-axis acceleration data of acceleration data of the three synthesized (dihedral + A: v2 Bian A1-7) or Y-axis acceleration data detected Z-axis acceleration data Ky and Kz

这2个加速度数据进行合成后的合成加速度向量数据(=^^"^.)时, 未进行任何加权,但也可以是对作为各个合成加速度向量数据的基础的加速度数据进行适当加权的结构。例如,利用X轴加速度数据Kx、 Y轴加速度数据Ky和Z轴加速度数据Kz这3个加速度数据求出合成加速度向量数据时,也可以使用下述公式。<formula>formula see original document page 0</formula> When the two data subjected to the acceleration Synthesis acceleration vector data (= ^^ '^.), Without any weighting, but it may be on the acceleration data as vector data of each of the combined acceleration appropriately weighted base structure. For example, using the X-axis acceleration data Kx, Y-axis acceleration data Ky and Kz Z-axis acceleration data of the acceleration data obtaining three combined acceleration vector data, the following formula may be used. <formula> formula see original document page 0 < / formula>

其中,a〉b^c>0 Wherein, a> b ^ c> 0

另外,即使在不使用合成加速度向量数据的场合,也可对X轴加速度数据Kx、 Y轴加速度数据Ky和Z轴加速度数据Kz同样进行适当加权, 并使用自适应滤波系数。 Further, even in the case of using the synthetic acceleration vector data, the data may Kx X-axis acceleration, Y-axis acceleration data Ky and Kz Z-axis acceleration data appropriately weighted in the same manner, using the adaptive filter coefficient.

此外,也可以对伪低频信号进行加权。 Moreover, weighted pseudo may be a low frequency signal.

以上说明了在手臂上安装3轴加速度传感器时的情况,但也可以设在手指根部和手指前端。 The above described case where the three-axis acceleration sensor is mounted on the arm, but may be provided in the base of the finger and the front end of the finger. [2]第2实施方式 [2] Second Embodiment

本第2实施方式是用压力传感器来取代第1实施方式的3轴加速度 The second embodiment of the present embodiment is used to replace the pressure sensor of the first embodiment of the three-axis acceleration

传感器的实施方式。 Embodiment of the sensor. [2.1]原理 [2.1] Principle

首先,在具体说明第2实施方式之前,说明第2实施方式的工作原理。 First, in the detailed description of the second embodiment before describing the operating principle of the second embodiment.

用于检测脉波的脉波传感器的输出中,除脉波成分外,还包含各种体动成分。 The output of the pulse wave sensor for detecting a pulse wave, the pulse wave component in addition, also contain various body motion component. 该体动成分已知是起因于脉搏被测定者即使用者的运动(步行、跑步动作、手臂摆动等)的、由于生物体内部的变化而产生的。 The body movement component is known to cause a pulse to be measured by the user i.e. exercise (walking or running motion, the swing arm, etc.), since the internal organism generated.

因此,把加速度传感器用作检测体动成分的传感器时,虽能够检测使用者的运动,但由于脉波传感器的输出中包含的体'动成分是起因于该运动的、由于生物体内部的变化而产生的,所以很难准确检测脉波传感器的输出中包含的真正体动成分。 Accordingly, the acceleration sensor is used as a sensor for detecting body motion components, although capable of detecting the movement of the user, but since the output of the pulse wave sensor comprising a body 'is a motion component due to the movement, since the internal organism is generated, the output is difficult to accurately detect the pulse wave sensor comprises a true body movement component.

另一方面,作为由生物体内部产生的体动成分,作为对用作脉波传感器的光传感器影响最大的成分,不能忽视静脉血液的影响。 On the other hand, as the inside of the living body is produced by motion components, as the greatest impact sensor is used as a component of an optical pulse wave sensor can not ignore the influence of venous blood.

可是,已知由于静脉壁的伸展性大,在血压上升时静脉壁拉长,在该部分存有大量血液,伴随有体表面的压力随静脉膨胀而增加的现象。 However, it is known since the extension of the large vein wall, vein wall when stretched increased blood pressure, there are a large portion of the blood, along with the surface of the pressure has increased venous expansion phenomenon.

随之,发明者们研究了使产生同一体动成分时的体表面的压力变化 Following this, the inventors have studied the change that the pressure generated when the surface of the movable component with one

33量和脉波传感器的输出中包含的体动分量(跳动分量)的关系。 Relationship between the body motion components (beat component) output of pulse wave sensor 33 and the amount contained.

图42是压力变化量和脉波传感器的输出中包含的体动分量(跳动分量)的关系说明图。 FIG. 42 is a relationship between the output pressure and the amount of change in the pulse wave sensor comprises a body motion component (jitter component) described in FIG.

如图42所示,可知压力变化量和脉波传感器的输出中包含的体动分量(跳动分量)具有大致成正比的关系。 42, the body motion component found (beat component) and the output pressure change amount in the pulse wave sensor comprises a substantially proportional relationship with.

换言之,如果能够检测体表面的压力变化量,则可以推测脉波传感器的输出中包含的静脉血液的影响量。 In other words, if the surface of the pressure variation can be detected, it can be speculated that the amount of venous blood affect the output of the pulse wave sensor included.

在本第2实施方式中,利用外部的压力传感器检测静脉的膨胀、即因静脉造成的体动成分,同时以规定比例从脉波传感器的输出中将其减去,从而根据去除了静脉血液的影响的信号来准确检测脉搏数。 In the second embodiment, the external pressure sensor detects the expansion of the vein, i.e., body motion component caused by vein, while a predetermined ratio in the output from the pulse wave sensor is subtracted, thereby removing the venous blood in accordance with the Effects signal to accurately detect the pulse rate.

[2.2]详细说明 [2.2] Detailed Description

下面,详细说明第2实施方式。 Next, a detailed description of the second embodiment.

图43是第2实施方式的脉搏测定系统的概要结构图。 FIG 43 is a schematic configuration diagram of the pulse measurement system of the second embodiment.

如果大致划分脉搏测定装置80,具有:佩戴在使用者手指上的传感器模块81;和通过布线L与传感器模块81相连接、并佩戴在使用者手臂上的装置主体82。 If the pulse measurement device 80 is roughly divided, comprising: a worn on the user's finger sensor module 81; and L are connected by wiring to the sensor module 81, and worn on the user device body arm 82.

图44是传感器模块的各个传感器的配置示例说明图。 FIG 44 is a configuration example of a sensor module of each sensor described in FIG.

如果大致划分传感器模块,其结构具有:主要检测脉波成分的脉波传感器83;和主要检测体动成分的压力传感器84。 If roughly divided into a sensor module structure comprising: a main pulse wave sensor 83 detects the pulse wave component; and a pressure sensor detecting motion component main body 84.

其中,脉波传感器83具有:射出检测用光的LED83A;和接受从人体反射出的检测用光的PD (光电探测器)。 Wherein the pulse wave sensor 83 includes: a detection light emitted from the LED83A; and receive reflected light from the detection of human PD (photodetectors).

图45是脉搏测定装置的概要结构方框图。 FIG 45 is a schematic block diagram showing the structure of the pulse measurement means.

如果大致划分脉搏测定装置80,具有:前述的脉波传感器83及体动传感器84;以及脉波信号放大电路91;体动信号放大电路92; A/D变换电路93; MPU94; RAM95; R0M96;和液晶显示装置等显示装置97- If roughly divided pulse measurement device 80, having: the pulse wave sensor 83 and the body movement sensor 84; and a pulse wave signal amplifying circuit 91; body motion signal amplifying circuit 92; A / D conversion circuit 93; MPU94; RAM95; R0M96; and a display device like a liquid crystal display device 97-

在本第2实施方式中,体动传感器84是使用压力传感器。 In the second embodiment described above, body movement sensor 84 is a pressure sensor.

脉波信号放大电路91以规定的放大率放大从脉波传感器83输出的脉波检测信号,并作为放大脉波检测信号输出给A/D变换电路93。 Pulse wave signal amplifying circuit 91 at a predetermined amplification factor to the A / D conversion circuit 93 detects the pulse wave signal output from pulse wave sensor 83, and outputs the amplified detection signal as a pulse wave.

体动信号放大电路92以规定的放大率放大从体动传感器84输出的压力检测信号,并作为放大压力检测信号输出给A/D变换电路93。 A body motion signal amplifying circuit 92 at a predetermined amplification factor body movement sensor pressure detection signal 84 outputted from the pressure detecting and amplifying a signal to A / D conversion circuit 93.

A/D变换电路93把所输入的放大脉波检测信号和放大压力检测信号 Amplifying the pulse wave detection signal A / D converting circuit 93 and amplifying the input pressure detection signal

分别单独进行模拟/数字变换,并作为脉波检测数据和压力检测数据输出 Individually for analog / digital conversion, and the pressure detector and the detected data is outputted as the pulse wave data

给MPU94。 To MPU94. ' '

MPU94把脉波检测数据和压力检测数据(体动检测数据)存储在 MPU94 pressure pulse wave detection data and detection data (body motion detection data) is stored in

RAM95中,同时根据存储在R0M96的控制程序算出脉搏数,并显示在显示 RAM95 while the pulse rate is calculated according to a control program stored in the R0M96 and displayed on the display

具体而言,MPU94把存储在RAM95中的脉波检测数据和压力检测数据(体动检测数据)按时间序列顺序排列,并对所对应的每个取样时间求出脉波检测数据和压力检测数据的两者之差即差数据。 Specifically, in the RAM95 and the pulse wave detection data detected pressure data (the body movement detection data) MPU94 the memory in time series order, and the sampling time corresponding to each data and obtains the pressure pulse wave detected data detected i.e., the difference of the two difference data.

然后,进行该残差数据的频率分析(FFT:快速傅立叶变换),抽出脉波的谐波成分,根据其频率算出脉搏数。 Then, frequency analysis of the residual data (FFT: Fast Fourier Transform) to extract harmonic components of the pulse wave, the pulse rate is calculated according to the frequency.

下面,具体说明脉搏数算出处理。 Next, the pulse rate calculation process specifically described.

图46是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 46 is a graph showing an example of a pulse wave detection data arranged in time series order.

图47是把对应图46的脉波检测数据的压力检测数据在同一时间轴上按时间序列顺序排列的曲线图。 FIG 47 is a graph showing the pressure detection data of FIG. 46 corresponding to the detected pulse wave data on the same time arranged in time series order.

首先,MPU94顺序读出存储在RAM95中的脉波检测数据和压力检测数据,从某个取样时间的脉波检测数据中减去同一取样时间的压力检测数据,从而算出差数据。 First, MPU94 sequentially reads out the pulse wave detection data and detection data stored in the pressure in the RAM95, the pressure subtracting the detection data of the same sampling time from the pulse wave data detected in a certain sampling time, thereby calculating a difference data.

图48是把根据图46的脉波检测数据和图47的压力检测数据算出的 FIG 48 is the pressure calculated from the detection data of FIG. 46 and the pulse wave detection data 47 of FIG.

差数据按时间序列顺序排列的曲线图。 Graph showing chronological difference data series order. 然后,MPU94对差数据进行FFT。 Then, MPU94 of poor data FFT.

图49是对图48的差数据进行FFT而得到的频率分析结果。 FIG 49 is a result of frequency analysis of FIG. 48 is the difference data obtained by the FFT.

这样,所得到的频率分析结果实质上已从脉波传感器的输出信号(脉波成分十体动成分)中去除静脉起因的体动成分,即形成主要针对脉波成分的脉波数据。 Thus, the frequency analysis results obtained substantially from the output signal (pulse wave component of body motion component ten) removing the pulse wave sensor causes the movable component of the vein, i.e. form the main data for the pulse wave of the pulse wave component.

MPU94把所得到的脉波数据中的最大频率成分作为脉搏波谱,根据其频率算出脉搏数。 MPU94 the maximum frequency component of the pulse wave data obtained as the pulse spectrum, calculated from the pulse rate frequency.

然后,MPU94把脉搏数显示在显示装置97上。 Then, MPU94 the pulse rate is displayed on the display device 97. 如上所述,根据本第2实施方式,可以使用压力传感器可靠地检测把握以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, the second embodiment according to the present embodiment, a pressure sensor may be used to reliably detect the grasp internal body motion component produced by the organism is the main cause fluctuations in the vein. 因此,能够可靠去除体动成分,进行准确地脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, to accurately detect the pulse wave component, and further an accurate pulse rate can be determined.

[2.3]第l变形例 [2.3] Modification of l

下面,说明第2实施方式的第1变形例。 Next, a first modification of the second embodiment.

以上说明的结构是,在进行频率分析(FFT)之前,从脉波检测数据中减去压力检测数据,算出差数据,但本第1变形例是对脉波检测数据及压力检测数据进行频率分析之后,算出差数据的变形例。 The above-described structure, prior to frequency analysis (an FFT), a pressure detection data is subtracted from the pulse wave detection data, calculates a difference data, but the present embodiment is a modification of the first pulse wave detected pressure data and the detected data for frequency analysis Thereafter, the calculated travel modification data. 以下将说明第1变形例。 The first modification will be described below.

在本第1变形例中,MPU94分别对存储在RAM95中的脉波检测数据及压力检测数据(体动检测数据)进行频率分析(FFT)。 In the first modification, MPU94 respectively in the RAM95 of the pulse wave detection data and the detection data storage pressure (body motion detection data) frequency analysis (FFT).

然后,MPU94求出频率分析后的脉波检测数据及频率分析后的压力检测数据之差即差数据。 Then, after the pressure difference between the pulse wave detection data and frequency after the frequency analysis of the detection data obtained MPU94 i.e. the difference data.

从所得到的差数据中抽出脉波的谐波成分,根据其频率算出脉搏数。 Pulse wave extracting harmonic components from the difference data obtained, the pulse rate is calculated according to the frequency.

下面,具体说明脉搏数算出处理。 Next, the pulse rate calculation process specifically described.

图50是脉波检测数据的频率分析结果的说明图。 FIG 50 is a diagram illustrating the results of frequency analysis of the pulse wave detection data. 图51是压力检测数据的频率分析结果的说明图。 FIG 51 is an explanatory view of a frequency analysis result of the pressure detection data. 首先,MPU94分别顺序读出存储在RAM95中的脉波检测数据及压力检测数据,并进行FFT,进行频率分析。 First, MPU94 are sequentially read out the pulse wave detection data and detection data stored in the pressure in the RAM95, and an FFT, frequency analysis is performed.

图52是频率分析后的脉波检测数据和频率分析后的压力检测数据 FIG 52 is a pressure detection data and the detection data of the pulse wave frequency after frequency analysis

之差即差数据的说明图。 I.e. the difference between the difference data described in FIG.

然后,MPU94比较频率分析后的脉波检测数据和频率分析后的压力 Then after the pressure pulse wave detected and the frequency after the data comparison frequency analysis MPU94

检测数据,求出同-•---频率成分的差,生成差数据。 Test data obtained with the - • --- difference frequency component, generating difference data.

这样,作为所得到的差数据的频率分析结果,实质上已从脉波传感器的输出信号(脉波成分+体动成分)中去除因静脉造成的体动成分, 即成为主要针对脉波成分的脉波数据。 Thus, the frequency of the difference data obtained results substantially from the output signal (pulse wave component of body motion component +) removing the pulse wave sensor body movement component caused by venous, i.e. for the pulse wave as the main component pulse wave data.

MPU94把所得到的脉波数据中的最大频率成分作为脉搏波谱,根据其频率算出脉搏数。 MPU94 the maximum frequency component of the pulse wave data obtained as the pulse spectrum, calculated from the pulse rate frequency. 然后,MPU94把脉搏数显示在显示装置97上。 Then, MPU94 the pulse rate is displayed on the display device 97.

如上所述,本第2实施方式的第1变形例也能可靠地检测把握以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, the present embodiment of the second modification of the first embodiment can detect reliably grasp the inside of the living body motion components to produce the main cause is fluctuations in the vein. 因此,能够可靠去除体动成分,进行准确的脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, accurate detection of the pulse wave component, and further an accurate pulse rate can be determined.

[2.4]第2变形例 [2.4] Modification 2

下面,说明第2实施方式的第2变形例。 Next, a second modification of the second embodiment.

以上说明的结构是,在进行频率分析(FFT)之前或之后,从脉波检测数据中减去压力检测数据,算出差数据,但本第2变形例是使用自适应滤波从脉波检测数据中去除体动成分时的变形例。 The above-described structure, prior to frequency analysis (FFT) or after the pressure is subtracted from the pulse wave detection data in the detection data, calculates a difference data, but the present second modification is to use an adaptive filter from the pulse wave detection data modification in body motion component remover.

图53是自适应滤波器的一个示例的概要结构方框图。 FIG 53 is a schematic block diagram showing a configuration example of an adaptive filter. 如果大致划分自适应滤波器100,具有滤波系数生成单元101和合成单元102。 If the adaptive filter 100 is roughly divided, it has a filter coefficient generating unit 101 and a synthesizing unit 102.

滤波系数生成单元101起着体动成分去除单元的功能,根据应用了合成单元102前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating unit plays a body motion component remover 101 is a functional unit, depending on the application of the filtered data output from the previous combining unit 102, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于所输入的起着体动成分检测信号的功能的压力检测数据(=k (n)),生成体动去除数据(二h'k (n)),并输出给合成单元102。 The adaptive filter coefficient applied to the function h movable body component detection signal inputted plays a pressure detection data (= k (n)), removing the body motion data is generated (ii h'k (n)), and outputs it to the synthesizing unit 102.

合成单元102起着去除处理单元的功能,将前次抽出的脉波检测数据(二脉波成分+体动成分)和体动去除数据进行合成,从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分。 Synthesizing unit 102 plays the function of removing the processing unit, the previous pulse wave detection data extracted (the second pulse wave component and the body motion component) and the removal of body motion data is synthesized from substantially removed (subtracted) the pulse wave detection data contained in the body motion components, extracting the pulse wave component.

下面,具体说明本第2变形例的脉搏数算出处理。 Next, a detailed description of the second embodiment of the pulse number of this modification process was calculated.

图54是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 54 is a graph showing an example of a pulse wave detection data arranged in time series order.

图55是把对应图54的脉波检测数据的压力检测数据在同—-时间轴上按时间序列顺序排列的曲线图。 FIG 55 is a pressure detecting data corresponding to FIG. 54, the pulse wave data detected in the same - are arranged on the time axis of the graph in time series order.

首先,MPU94顺序读出存储在RAM95中的脉波检测数据及压力检测数据,把-一个取样时间中的脉搏检测数据输出给合成单元102。 First, MPU94 sequentially reads out the pulse wave detection data and detection data stored in the pressure in the RAM95, the - pulse detection data output in a sampling time to the synthesis units 102.

MPU94把对应于输出给合成单元102的脉波检测数据的压力检测数据输出给滤波系数生成单元101。 MPU94 outputs corresponding to the pulse wave detection to the data synthesis unit 102 outputs a pressure detection data generating unit 101 to the filter coefficients.

这样,滤波系数生成单元101根据应用了合成单元1〔)2前次输出的滤波后的数据,生成自适应滤波系数h。 Thus, the filter coefficient generating unit 101 according to the application unit 1 [synthesis) the filtered data output from the previous two, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于所输 The adaptive filter coefficient applied to the input h

入的起着体动成分检测信号的功能的压力检测数据(=k (n)),把体动去除数据(二h'k (n))输出给合成单元102。 It plays the function of the body motion component detection signal detected pressure data (= k (n)), removing the body motion data (two h'k (n)) to the synthesis unit 102 outputs.

由此,合成单元102将此次的脉波数据和体动去除数据进行合成, 从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分,输出残差数据(=应用了滤波后的数据)。 Accordingly, the synthesizing unit 102 and the pulse wave data from which body motion removing the synthesized data from which body motion components substantially removed (subtracted) the pulse wave detection data contained in the extracted pulse wave components, the output residual difference data (= the filtered data applications).

图56是把自适应滤波应用于图54的脉波检测数据及图55的压力检测数据,把所得到的残差数据按时间序列顺序排列的曲线图。 The adaptive filter 56 is applied to the pressure pulse wave detection data and the detection data of FIG 55 FIG 54, the graph of the obtained residual data arranged in time series order.

然后,MPU94对残差数据进行FFT。 Then, MPU94 residual data FFT.

图57是对图56的残差数据进行FFT而得到的频率分析结果。 FIG 57 is a frequency analysis result of FIG. 56 residual data obtained by performing an FFT. 这样,所得到的频率分析结果实质上已从脉波传感器的输出信号(脉 Thus, the frequency analysis results obtained from a substantially pulse wave sensor output signal (pulse

波成分十体动成分)中去除因静脉造成的体动成分,即成为主要针对脉 Ten wave component of body motion component) by removing the body motion component caused by venous, i.e. for a major vein

波成分的脉波数据。 Wave component of the pulse wave data.

MPU94把所得到的主要含有脉波成分的脉波数据中的最大频率成分 The maximum pulse wave frequency component of the pulse wave data mainly containing component obtained by the MPU94 in

作为脉波波谱,根据其频率算出脉搏数。 As the pulse wave spectrum, calculated from the pulse rate frequency. MPU94把脉搏数显示在显示装置97上。 MPU94 the pulse rate is displayed on the display device 97.

如上所述,本第2实施方式的第2变形例也能可靠地检测把握以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, the present second modification of the second embodiment can detect reliably grasp the inside of the living body motion components to produce the main cause for the fluctuation of the vein. 因此,能够可靠去除体动成分,进行准确的脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, accurate detection of the pulse wave component, and further an accurate pulse rate can be determined.

[2.5]第3变形例 [2.5] Modification 3

下面,说明第2实施方式的第3变形例。 Next, a third modification of the second embodiment.

以上说明的是传感器模块具有脉波传感器和压力传感器时的情况, 但本第3变形例是把模块传感器分成两个,把脉波传感器和压力传感器分别佩戴在手指上时的变形例。 Described above is a case where a sensor module having a sensor and a pressure pulse wave sensor, but the present embodiment is a modification of the module 3 is divided into two sensors, pulse wave sensor and a pressure sensor respectively modified embodiment when worn on the finger.

图58是第2实施方式的第3变形例的脉搏测定系统的概要结构方框图。 FIG 58 is a schematic block diagram showing a third pulse measurement system in the second modification of the embodiment of FIG.

如果大致划分脉搏测定装置110,具有:佩戴在使用者的第1手指 If the apparatus 110 is roughly divided pulse measurement, comprising: a first worn on the user's finger 1

上的模块传感器111A;佩戴在使用者的第2手指上的模块传感器lilB: The sensor module 111A; worn on the user's second finger sensor module lilB:

和装置主体112,通过布线Ll连接模块传感器111A,通过布线L2连接模块传感器111B,并佩戴在使用者手臂上。 And a device main body 112, the sensor module via a wiring 111A connecting Ll, L2 is connected through a wire sensor module 111B, and worn on the user arm.

图59是传感器模块111A的传感器的配置示例说明图。 FIG 59 is a configuration example of a sensor of the sensor module 111A of FIG. 传感器模块111A具有主要检测体动成分的压力传感器84。 A pressure sensor having a sensor module 111A motion components main body 84 is detected. 图60是传感器模块111B的传感器的配置示例说明图。 FIG 60 is a configuration example of a sensor of the sensor module 111B of FIG. 传感器模块11 IB具有主要检测脉波成分的脉波传感器83,脉波传 The sensor module 11 IB of the pulse wave sensor 83 detects a pulse wave having a main component, the pulse wave propagation

感器83具有:射出检测用光的LED83A;和接受从人体反射出的检测用光 Sensor 83 includes: a detection light emitted from the LED83A; and receive reflected light from the human body detection

的PD (光电探测器)83B。 The PD (photodetector) 83B.

关于实际检测动作,和上述的第2实施方式相同,所以省略详细说明。 About the actual detection operation, and the above-described second embodiment, and detailed description is omitted.

根据本第3变形例,在不同手指上分别佩戴主要检测体动成分的压力传感器84和主要检测脉波成分的脉波传感器83,来进行测试,所以可以降低另一方传感器的机械配置的影响和因另一方传感器的输出信号造成的对输出信号的噪音影响等。 According to the third modification of the present embodiment, each wearing a pressure pulse wave sensor 83 and main sensor 84 detects the pulse wave component detecting main body motion components in the different fingers to be tested, the mechanical impact can be reduced and the configuration of the other sensors affected by the noise caused by the output signal of the other sensor output signal, and the like.

[3]第3实施方式 [3] 3rd Embodiment

[3.1]原理 [3.1] principle

首先,在具体说明第3实施方式之前,说明第3实施方式的工作原理。 First, in the third embodiment described in detail before describing the operating principle of the third embodiment.

上述第2实施方式的结构是为了检测因静脉血液造成的体动成分, 而利用压力传感器检测静脉血液的压力。 Structure of the second embodiment is to detect the body motion component caused by venous blood, and with a pressure sensor for detecting the pressure of the venous blood. 但是,本第3实施方式是着眼于使用者的心脏位置和脉搏计的佩戴位置的高度方向的相对差与静脉计的压力具有正比关系的实施方式。 However, the third embodiment of the present embodiment is relatively poor venous pressure gauge in the height direction of the user looks at the heart of the wearing position and pulse meter having a proportional relationship to the embodiment. 即,本第3实施方式是把使用者的心脏位置和脉搏计的佩戴位置的高度方向的相对差作为以佩戴了脉搏计的手臂的肩关节为中心的角度(例如,手臂朝向正下方下垂时为O。,手臂呈水平状态时为90。),来进行检测时的实施方式。 That is, the third embodiment of the present embodiment is a difference in the height direction relative to the user's location and the heart pulse meter wearing position as the shoulder joint to a person wearing a pulse meter as a center angle arm (e.g., arm droop downward toward the positive is O., when the arm is in a horizontal state 90.), the embodiment is performed when the detection.

随之,发明者们研究了使产生同一体动成分时的(手臂的)高度变化量和脉波传感器的输出中包含的体动分量(跳动分量)的关系。 Following this, the inventors have studied the cause generating the body motion component and the pulse height of the output change amount of the contained wave sensor (arm) when the movable integrally with the component (jitter component) relationship.

图61是手臂的高度变化量和脉波传感器的输出中包含的体动分量(跳动分量)的关系说明图。 FIG 61 is a explanatory view showing the relationship between the output arm and the height variation of the pulse wave sensor comprises a body motion component (jitter component).

如图6i所示,可知手臂的高度变化量和脉波传感器的输出中包含的体动分量(跳动分量)具有大致成正比的关系。 FIG 6i, it is seen the body motion components (beat component) and the output of the height variation of the pulse wave sensor arm having contained substantially proportional relation.

换言之,如果能够检测手臂的高度变化量,则可以推测脉波传感器的输出中包含的静脉血液的影响量。 In other words, if the amount of change in the height of the arm can be detected, it can be speculated that the amount of venous blood affect the output of the pulse wave sensor included.

图62是手臂的角度和方向的关系说明图。 FIG 62 is an explanatory view the relationship between the angle and direction of the arm.

在本第3实施方式中,把手臂朝向正下方下垂时设为手臂的角虔=0° 、 方向=朝下;手臂呈水平状态时设为手臂的角度=90° 、方向=居中; 手臂朝向正上方抬起时设为手臂的角度=180° 、方向二朝上。 In the third embodiment, the arm toward the set angle = 0 ° Qian arm hanging directly below, = downward direction; set the arm in a horizontal state when the arm angle = 90 °, center = directions; toward the arm It is set positive when the arm lifted upward angle = 180 °, two upward direction.

另外,把在手臂朝向正下方下垂时和手臂呈水平状态时中间并朝向手臂时的方向设为斜向下,把在手臂呈水平状态时和手臂朝向正上方抬起时中间并朝向手臂时的方向设为斜向上。 Further, in the direction toward the arm at the time of and immediately below the sagging middle arm in a horizontal state and is set diagonally downward toward the arm, when the arm in a horizontal state and a lift arm when the arm directly above the middle and facing towards set on a diagonal direction.

图63是初始状态下的手臂位置(手臂方向)中,手臂位置的高度变化量和作为角度传感器的输出的体动分量(跳动分量)的关系说明图。 FIG. 63 is a relationship between the position of the arm in the initial state (the direction of the arm), the height of the arm position and the amount of change of the output member as the movable component of the angle sensor (beat component) described in FIG.

如图63所示,可知在初始状态下的手臂的高度方向位置低于使用者的心脏位置时,即手臂方向是从朝下到居中时,即使改变手臂位置的高度时,在任一手臂方向,角度传感器的输出即体动分量(跳动分量)的变化都显示同一倾向。 When shown in Figure 63, seen in the height direction of the arm in the initial state, a position lower than the position of the user's heart, i.e. to the arm downward direction from the center, even when changing the height position of the arm, the arm in either direction, i.e., variations in the output of the angle sensor body motion components (beat component) showed the same tendency.

另一方面,还可知在初始状态下的手臂的高度方向位置高于使用者的心脏位置时,即手臂方向是从斜向上到朝上时,伴随静脉血液的压力降低,作为角度传感器的输出的体动分量(跳动分量)具有整体降低的倾向。 On the other hand, also when seen in the height direction of the arm in the initial state, a position higher than the position of the user's heart, i.e., when the arm from a direction oblique to the upward, venous blood pressure reduction is accompanied, as an output of the angle sensor a body motion component (jitter component) tends overall to decrease.

图64是把高度变化量固定时,作为因手臂位置而变化的角度传感器的输出的体动分量(跳动分量)的变化说明图。 FIG 64 is a fixed height changes the amount of change, as an output thereof varies depending arm position an angle sensor of the movable components (beat component) described in FIG.

如图64所示,可知在手臂角度大于90°时,检测到作为角度传感 Shown in Figure 64, seen at an angle larger than the arm 90 °, an angle sensor is detected as

器的输出的体动分量变小。 'S body motion component output becomes small.

根据这些结果,在手臂角度大于90°时,对角度传感器的输出进行 According to these results, when the arm angle greater than 90 °, the output of the angle sensor is

一图65是初始状态下的手臂位置(手臂方向)中,手臂位置的高度变化量和校正后的角度传感器的输出中包含的体动分量(跳动分量)的关系说明图。 FIG 65 is an explanatory view showing the relationship between the position of the arm in the initial state (the direction of the arm), the output of the height variation and the correction of the angle arm position sensor comprises a body motion component (jitter component). 该场合时,在图63所示示例中,在手臂角度大于90°日寸,通过手臂的角度X、利用下述公式校正了对应于角度传感器的输出的体动分量(跳动分量)Y。 When the case in the example shown in FIG 63, the arm angle greater than 90 ° day inch, through the arm of the angle X, corrected body motion component corresponding to the angle sensor output (beat component) Y using the following formula.

<formula>formula see original document page 0</formula> 其中,y:高度变化量(mV) X:角度(度) <Formula> formula see original document page 0 </ formula> where, y: height variation (mV) X: Angle (degrees)

Y:校正后的高度变化量(mV) Y: height change amount corrected (mV)

结果,如图65所示,可以在不受手臂位置影响的状态下检测脉波传感器的输出中包含的体动分量(跳动分量)。 As a result, as shown in Figure 65, the sensor can detect the pulse wave output is not included in the arm position under the influence of the state of the body motion components (beat component).

因此,在本第3实施方式中,利用外部的角度传感器检测使用者的心脏位置和脉搏计的佩戴位置的高度方向的相对差,以规定比例从脉波传感器的输出中减去因静脉造成的体动成分,从而可以根据去除了静脉血液影响的信号来准确检测脉搏数。 Accordingly, in the present third embodiment, the relative difference in the angle direction by the height sensor for detecting the user position outside the heart and pulse meter wearing position, a predetermined ratio subtracted from the output of the pulse wave sensor caused by venous a body motion component can be in addition to the influence of venous blood signal to accurately detect the pulse rate according to.

[3.2]详细说明 [3.2] Detailed Description

下面,详细说明第3实施方式。 Next, a detailed description of the third embodiment.

图66是把第3实施方式的脉搏计装配到钟表壳中的剖面图。 FIG. 66 is the pulse count of the third embodiment fitted to a cross-sectional view of the timepiece housing. 所示示例中,在脉搏测定装置120的钟表壳121的背面设有脉波传感器83和角度传感器122。 In the illustrated example, the rear surface 121 of watch case 120 is provided a pulse wave sensor 83 and the angle sensor 122 in the pulse measurement.

如图66所示,上述的脉波传感器单元83在钟表壳121的背面侧与主体形成为一体。 As shown in FIG. 66, the above-described pulse wave sensor unit 83 is formed integrally on the back surface side of the main body 121 of the watch case. 在钟表壳121设有用于将其佩戴在手臂上的表带123, 把表带123缠绕在手腕上进行佩戴时,钟表壳121的背面侧紧贴在手腕 In the watch case 121 is provided for which is worn on the arm of the strap 123, the strap 123 is wound around the wrist is worn, the back side of the watch case 121 close to the wrist

V邻 V o

hi 口P 。 hi port P.

在钟表壳121的背面侧设置构成脉波传感器单元83的透明玻璃83C。 83C transparent glass is provided on the back surface side of the pulse wave sensor unit 83 constituting the watch case 121. 该透明玻璃83C通过后盖124固定在钟表壳121上。 83C through the transparent glass cover 124 is fixed to the watch case 121. 透明玻璃83C保护构成脉波传感器83的LED83A和PD83B,同时透过LED83A的照射光、通过生物体所得到的反射光,使入射到PD83B。 83C protective transparent glass constituting the pulse wave sensor 83 and the LED83A PD83B, while transmitting light LED83A irradiated by the reflected light of the obtained living body, the incident PD83B.

在钟表壳121的表面侧设置液晶显示装置等显示装置97,除显示当前时间和日期外,还显示基于脉波传感器83的检测结果的脉搏数HR等生物体信息。 It is provided on the surface side of the liquid crystal display watch case 121 like the display means 97, in addition to displaying the current time and date, but also the display pulse based on detection results of the pulse wave sensor 83 of the number of HR and other biometric information. 在钟表壳121的内部,在主基板126的上侧设有CPU等各种IC电路, 由此构成数据处理电路127。 Inside the watch case 121, on the side of the main board 126 is provided with various IC circuit such as a CPU, whereby the data processing circuit 127.

在主基板126的背面侧设有电池128,从电池128向显示装置97、 主基板126、及脉波传感器83提供电源。 Battery 128 is provided on the back surface side of the main substrate 126 from the battery 128 to the display device 97, the main substrate 126, and the pulse wave sensor 83 provides power.

主基板126和脉波传感器83通过热封件129而连接。 Main substrate 126 and the pulse wave sensor 83 is connected to member 129 by heat sealing. 这样,利用热封件129形成的布线,从主基板126向脉波传感器83和角度传感器122 提供电源,从脉波传感器83向主基板126提供脉波检测信号,从角度传感器122提供角度检测信号。 Thus, a wiring formed of the heat seal 129, to provide power from the main board 126 to the pulse wave sensor 83 and the angle sensor 122, there is provided a pulse wave detection signal to the main base 126 from the pulse wave sensor 83, angle detection signal provided from the angle sensor 122 .

数据处理电路127对脉波信号进行FFT处理,通过分析其处理结果, 算出脉搏数服。 The data processing circuit 127 for the pulse wave signal FFT processing, the analysis processing result, calculates the pulse rate service. 另外,在钟表壳121的外侧面设有用于进行时间调整和显示模式切换等未图示的按钮幵关。 Further, the outer side surface of the watch case 121 is provided with buttons for Jian off time adjustment and display mode switch (not shown).

把表带123缠绕佩戴在手腕上时,钟表壳121的背面侧面向手腕背部。 When the strap 123 is wound worn on the wrist, the back surface of the back side of the watch case 121 to the wrist. 所以,来自LED83A的光通过透明玻璃83C5照射在手腕背部,其反射光入射到TO83B并被接受。 Therefore, 83C5 irradiated from LED83A transparent glass in the back of the wrist, the reflected light is incident through the light receiving and TO83B.

图67是把差动电容型传感器用作角度传感器时的传感器结构概图。 FIG 67 is a structural overview of a sensor when the sensor is used as a differential capacitive angle sensor.

图68是未施加加速度的状态下的差动电容型传感器的局部放大图。 FIG 68 is a partially enlarged view of a differential capacitive sensor in a state of non-acceleration is applied.

差动电容型加速度传感器122A是两轴角度传感器,具有第1灵敏度轴LX1和第2灵敏度轴LX2。 122A differential capacitor type acceleration sensor is a two-axis angle sensor having a first sensitivity and the second sensitivity axis LX1 axis LX2.

差动电容型加速度传感器122A的一对固定轴131支撑着具有挠性的各个撑条132。 A pair of fixed shaft 131 of the differential capacitive acceleration sensor 122A is supported a flexible struts 132 each. 一对撑条132从两侧支撑着梁133。 One pair of struts 132 support the beam 133 from both sides.

在各个梁133设置突起设于侧方的电极133A。 Beam 133 is provided in each projection provided on the side of the electrode 133A. 该电极133A在一对固定外侧电极腿、134B上被保持在距各个固定外侧电极1MA、 134B 的距离大致相同的位置处,并与各个固定外侧电极134相对。 The electrode 133A is held at a fixed outward from respective electrodes 1MA, 134B from substantially the same position on a pair of stationary outer electrodes leg, 134B, and fixed relative to the respective outer electrode 134.

这样,电极133A和各个固定外侧电极134/\、 134B分别起着大致具有相同容量的电容的功能。 Thus, each of the fixed electrode 133A and the outer electrode 134 / \, 134B are substantially the play function of a capacitor having the same capacity.

图69是施加了加速度的状态下的差动电容型传感器的局部说明图。 FIG 69 is a partial explanatory view of applied differential capacitive sensor in a state of acceleration.

在图68所示状态下,如果差动电容型加速度传感器122A倾斜,则撑条132因重力加速度而弯曲,形成图69所示状态。 In the state shown in FIG. 68, if the differential capacitor type acceleration sensor 122A is inclined, the struts 132 bend due to gravitational acceleration, a state shown in FIG. 69.

结果,例如是图69所示情况时,电极133A和和固定外侧电极134A As a result, for example, the case shown in FIG. 69, the electrodes 133A and 134A and the fixed outer electrode

42的距离Gl大于电极133A和固定外侧电极134B的距离G2。 Gl 42 greater than the distance from the G2 electrode 133A and 134B of the fixed outer electrode. 即,由电极133A和固定外侧电极134B构成的电容容量变大。 That is, the capacitance constituted by the electrodes 133A and the fixed outer electrode 134B becomes greater.

因此,该容量差与重力加速度的大小、即倾斜角度成正比,所以通 Thus, the capacity difference and the size of the gravitational acceleration, i.e., proportional to the inclination angle, so that through

图70是用作角度传感器的旋转锤型角度传感器的正面图。 FIG 70 is a front view of a rotary hammer type angle sensor is used as the angle sensor.

图71是图70的旋转锤型角度传感器的侧面图。 FIG 71 is a side view of the rotary pendulum type angle sensor 70 of FIG.

如果大致划分旋转锤型角度传感器122B,具有:支撑轴141;由支撑轴141支撑着可以旋转的旋转锤142;与旋转锤142 —起旋转的同时, 形成有相位不同的两种切槽组的切槽板143;保持支撑轴141的固定板144;和配置在与固定板144上的切槽板143相对的位置的光学式传感器单元145。 If the weight is roughly divided type rotary angle sensor 122B, having: a support shaft 141; supported by the support shaft 141 may be rotated with the rotation of the hammer 142; 142 oscillating weight - and from rotating, two kinds of different phases are formed slot group slot plate 143; holding plate 144 fixed to the support shaft 141; and an optical sensor unit 145 disposed opposite to the position of the slots on the fixing plate 143 in the plate 144.

根据上述结构,旋转锤142根据角度变化而旋转,光学式传感器单元145向各个切槽组输出具有相当于切槽板143的旋转量的脉冲数的角度检测信号。 The above-described configuration, the hammer 142 rotates according to the rotation angle changes depending on the optical sensor unit 145 having a number of pulses angle detection signal corresponding to the amount of rotation of the respective slot plate 143 to the cut set of output grooves. 此时,各个切槽组的角度检测信号的相位关系在旋转锤的旋转方向上是不同的,所以也能检测角度的变化方向。 At this time, the phase relationship of the angle detection signal group each slot in the direction of rotation of the rotary weight is different, so it can detect a change in the direction of angle.

下面,具体说明第3实施方式的脉搏数算出处理。 The following detailed description of the third embodiment, the pulse rate calculating process.

图72是把脉波检测数据按时间序列顺序排列时的一个示例的曲线图。 FIG 72 is a graph showing an example of the pulse wave detecting when the data are arranged in time series order. 图73是对图72的脉波检测数据进行FFT而得到的频率分析结果。 FIG 73 is a result of frequency analysis of the pulse wave detector 72 performs FFT data obtained. 图74是把角度检测数据按时间序列顺序排列时的一个示例的曲线图。 FIG 74 is a graph showing an example of the time series order of chronological angle detection data. 图75是对图74的角度检测数据进行FFT而得到的频率分析结果。 FIG 75 is a frequency analysis result of the angle detection data of FIG. 74 is obtained by the FFT.

脉搏测定装置的结构和第2实施方式相同,所以参照图45的概要结构方框图进行说明。 And the same configuration as the second embodiment of the pulse measurement device, the structure of FIG. 45 is a schematic block diagram will be described with reference to. 此时,体动传感器84是角度传感器。 At this time, body motion sensor 84 is an angle sensor. MPU94用来实现图53所示的自适应滤波的功能。 MPU94 used to implement the adaptive filtering function 53 shown in FIG.

首先,MPU94顺序读出存储在RAM95中的脉波检测数据及角度检测数据,把某个取样时间中的脉搏检测数据输出给合成单元102。 First, MPU94 sequentially reads out the pulse wave detection data and detection data stored in the angle in the RAM95, the detected pulse data output in a sampling time to the synthesis units 102.

MPU94把对应于各个脉波检测数据的角度检测数据输出给滤波系数生成单元1.01。 MPU94 pulse wave corresponding to the respective detection data detected angle data to the filter coefficient generating unit 1.01.

这样,滤波系数生成单元101根据应用了合成单元102前次输出的滤波后的数据,生成自适应滤波系数h。 Thus, the filter coefficient generating unit 101 according to the application of the filtered data output from the previous combining unit 102, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于所输入的起着体动成分检测信号的功能的角度检测数据(二k (n)),把体动去除数据(二hk (n))输出给合成单元102。 H the adaptive filter coefficient applied to the input function plays a body motion component detection signal of the angle detection data (b k (n)), removing the body motion data (two hk (n)) to the synthesis unit 102 outputs.

由此,合成单元102将此次的脉波数据和体动去除数据进行合成, 从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分,输出残差数据(=应用滤波后的数据)。 Accordingly, the synthesizing unit 102 and the pulse wave data from which body motion removing the synthesized data from which body motion components substantially removed (subtracted) the pulse wave detection data contained in the extracted pulse wave components, the output residual difference data (data after filter application =).

图76是把自适应滤波应用于图72的脉波检测数据及图74的角度检测数据,把所得到的残差数据按时间序列顺序排列的曲线图。 The adaptive filter 76 is applied to the pulse wave detection data of FIG. 72 and FIG. 74 of the angle detection data, the graph of the obtained residual data arranged in time series order.

然后MPU94对图76的残差数据进行FFT。 Then MPU94 performs FFT residual data 76 of FIG.

图77是对图76的残差数据进行FFT而得到的频率分析结果。 FIG 77 is a frequency analysis result of FIG. 76 residual data is obtained by performing an FFT.

这样,所得到的频率分析结果实质上已从脉波传感器的输出信号(脉波成分+体动成分)中去除因静脉造成的体动成分,即形成主要针对脉波成分的脉波数据。 Thus, the frequency analysis results obtained substantially from the output signal (pulse wave component of body motion component +) removing the pulse wave sensor body movement component caused by venous, i.e. form the main data for the pulse wave of the pulse wave component.

MPU94把所得到的主要含有脉波成分的脉波数据中的最大频率成分作为脉波波谱SP1,根据其频率算出脉搏数。 The maximum pulse wave frequency component of the pulse wave data mainly containing the component MPU94 the obtained pulse wave spectrum as SP1, the pulse rate is calculated according to the frequency.

MPU94把脉搏数显示在显示装置97上。 MPU94 the pulse rate is displayed on the display device 97.

但是,以上说明的是对角度传感器的输出未做校正时的情况,如上所述,手臂的角度高于90°时,检测到较小的作为角度传感器的输出的体动分量。 However, the above described the case when the output of the angle sensor without making the correction, as described above, when the arm angle is higher than 90 °, smaller as the detected output angle sensor body motion component. 因此,在手臂的角度高于90°时,对角度传感器的输出进行校正。 Thus, when the arm angle of greater than 90 °, the output of the angle sensor is corrected. 图78是把校正后的角度检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 78 is a graph showing an example of the angle of the corrected detection data arranged in time series order. 图79是对图78的校正后的角度检测数据进行FFT而得到的频率分析结果。 FIG 79 is a FFT frequency analysis result for the corrected angle detection data of FIG. 78 is obtained.

同样,MPU94顺序读出存储在RAM95中的脉波检测数据及角度检测数据,把某个取样时间中的脉搏检测数据输出给合成单元102,把对应各个脉波检测数据的校正后的角度检测数据输出给滤波系数生成单元101。 Similarly, MPU94 sequentially reads out the pulse wave detection data in the RAM95 and the angle of detection data, the detection data output of a pulse in the sampling time to the synthesis units 102, each corresponding to the angle after correction of the pulse wave detection data detected data is output to the filter coefficient generating unit 101.

这样,滤波系数生成单元101根据应用了合成单元102前次输出的滤波后的数据,生成自适应滤波系数h。 Thus, the filter coefficient generating unit 101 according to the application of the filtered data output from the previous combining unit 102, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于所输入的起着体动成分检测信号的功能的角度检测数据,向合成单元32输出体动去除数据(=h*k (n)),合成单元32将此次的脉波数据和体动去除数据进行合成,从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分,输出残差数据〔=应用了滤波后的数据)。 The angle function of the detected data signal component detection movable body plays adaptive filter coefficient h is applied to the input, to the synthesizing unit 32 outputs the moving body removing data (= h * k (n)), the synthesizing unit 32 and pulse wave data from which body motion removing the synthesized data from which body motion components substantially removed (subtracted) the pulse wave detection data contained in the extracted pulse wave components, the output [residual data after filter application = data).

图80是把自适应滤波器应用于图72的脉波检测数据及图78的校正后的角度检测数据,把所得到的残差数据按时间序列顺序排列的曲线图。 FIG 80 is the angle detection adaptive filter to FIG corrected pulse wave data detected data 78 and FIG. 72, a graph of the resulting residual data arranged in time series order. 然后MPU94对该残差数据进行FFT。 Then MPU94 the residual data FFT.

图81是对图80的残差数据进行FFT而得到的频率分析结果。 FIG 81 is the FFT frequency analysis results obtained for the residual data 80 of FIG. 如图81所示,可知所得到的频率分析结果中的脉搏波谱SP1的峰高和图77所示的频率分析结果没有变化,但抑制了其他波谱的峰高,MPU94 把脉波数据中的最大频率成分作为脉搏波谱SP1,根据其频率可以更可靠地算出脉搏数。 As shown in FIG. 81, it is understood the frequency analysis results shown in FIG. 77 and the peak heights of the frequency analysis results obtained in the pulse spectrum SP1 is not changed, but other high suppressed peak spectra, MPU94 pulse wave data of maximum frequency component as the pulse spectrum SP1, which according to the frequency of the pulse rate can be more reliably calculated.

如上所述,根据本第3实施方式,能够进一步可靠地检测把握特别是进行了角度校正时以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, the third embodiment according to the present embodiment, it is possible to further reliably detect the grasp is especially a body motion components when the internal angle correction organisms is the main cause fluctuations in the vein. 因此,能够可靠去除体动成分,进行准确的脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, accurate detection of the pulse wave component, and further an accurate pulse rate can be determined.

[4]第2实施方式及第3实施方式的变形例 [4] Modification of the second embodiment of the third embodiment

[4.1]第l变形例 [4.1] Modification of l

以上说明的是在脉波传感器的附近或分别设置体动传感器(压力传感器或角度传感器),但也可以形成在离开人体的方向以大致层叠的状态把体动传感器配置在脉波传感器上的结构。 Described above in the vicinity or the body movement sensor (a pressure sensor or an angle sensor) are provided pulse wave sensor, but may be formed in a direction away from the body in a state substantially stacked the body movement sensor is arranged on the pulse wave sensor structure .

[4.2]第2变形例 [4.2] Modification 2

以上说明的是预先在R0M96内存储了控制用程序的情况,但也可以形成把控制用程序预先记录在各种磁盘、光盘、存储卡等记录介质中, 从这些记录介质中读取并安装的结构。 Described above is previously stored in the control program of the R0M96, it may be formed to a control program recorded in a recording medium of various disk, optical disk, memory card or the like, which is read from the recording medium and installed in structure. 另外,也可以形成设置通信接口, 通过因特网、LAN等网络下载控制用程序,然后安装并执行的结构。 Further, the communication interface may be formed provided, via the Internet, LAN, etc. Download control program and install and execute the structure.

[5]第4实施方式 [5] Fourth Embodiment

[5. 1]原理 [5.1] Principle

首先,在具体说明第4实施方式之前,说明第4实施方式的工作原理。 First, in the fourth embodiment described in detail before describing the operating principle of the fourth embodiment.

用于检测脉波的脉波传感器的输出中,除脉波成分外,还包含各种体动成分。 The output of the pulse wave sensor for detecting a pulse wave, the pulse wave component in addition, also contain various body motion component. 该体动成分己知是起因于脉搏被测定者即使用者的运动(歩行、跑歩动作、手臂摆动等)的由于生物体内部的变化而产生的。 The body movement component is known to cause a pulse to be measured i.e. the user's motion (by walk, run ho action, swing arm, etc.) in the interior of the living body due to a change produced. 作为 As a

检测生物体内部的体动成分的方法,如上所述,使用从发光元件即LED 向生物体内部照射检测光,利用受光元件即PD (光电探测器)接受该反射光的方法。 A method for detecting internal biological body motion components, described above, i.e. from the light emitting element LED irradiates detection light to a living body to the inside, using the method of receiving the reflected light i.e. light receiving element PD (photodetector) is.

该场合时,照射到生物体内部的检测光被流过皮肤附近的细动静脉的血液和生物体组织所吸收、散射,在未伴随有体动的安静状态下,由PD所接受的检测光的光量变化中,占支配性地位的是因脉动而形成的动脉血液的变化,而因静脉血液、组织而形成的吸光成分大致一定。 When this case, the irradiated light is detected inside the living body to flow through the fine vein blood and body tissue close to the skin absorption, scattering, in a quiet state of the body motion is not accompanied by the detection light received by PD light amount variation, on the dominant variation is due to pulsation of the arterial blood is formed, and the light absorption due to venous blood components, tissue and form substantially constant.

但是,在伴随有体动的运动状态下(步行时、跑步时等),除因脉动而形成的动脉血液的变化外,还和体动同歩产生因惯性而形成的静脉血液的流动和组织变形等变动。 However, accompanying the motion state body motion (walking, running, etc.), in addition to changes in arterial blood due to pulsation is formed, further, and the body motion with ho generated venous blood due to inertia formed flow and tissue deformation changes.

结果,照射到生物体内部的检测光的吸光、反射特性发生变化,在PD被接受,不能忽视其影响。 As a result, the inside of the detection light irradiated to the living body light absorption, reflection characteristics change, is accepted in the PD, its influence can not be ignored.

另一方面,利用具有伸縮性的表带(例如支撑体)把检测体动成分的传感器以按压状态佩戴在使用者的体表面上时,由于抑制了组织变形等变动,所以在这种状况下主要检测到静脉血液的移动。 On the other hand, the use of a stretchable band (e.g., support) moving the sensor component in a sample worn on the surface of the pressing state of the user, since a fluctuation in the tissue deformation, so in this situation the the main movement detecting the venous blood.

因此,在本第4实施方式,去除生物体内的体动成分时,着眼于静脉血液的移动,通过模拟静脉血液的流动来推测体动成分,以便从脉波传感器的输出信号中去除该体动成分。 Thus, in the present fourth embodiment, the removal of body motion components in the living body, focusing on the venous blood moving through the flow simulation venous blood to infer motion components thereof, in order to remove the body motion from the output signal of the pulse wave sensor ingredient.

图82是安装在人体上模拟静脉血液移动(流动)的血管模拟传感器的原理说明图。 FIG 82 is a schematic simulated venous blood movement (flow) of blood vessels in the analog sensor installation instructions FIG.

静脉血液和动脉血液相比,血压低,所以容易受到因重力和手臂摆动而形成的惯性力的影响。 Compared to venous blood and arterial blood, lower blood pressure, it is easily affected by gravity and inertial force formed by the swing arm.

所以,如图82所示,向模拟末梢方向的血管的圆筒状密闭容器部位内封入具有一定粘性的液体LQ,如果从外部观察该液体的移动(流动), 可以推测静脉血液的移动(流动),能够根据所推测的静脉血液的移动观察由生物体内部产生的体动成分。 Therefore, as shown, the liquid LQ is filled with a certain viscosity in a cylindrical hermetic container vessels to the analogue portion of distal direction, if watching the movement of the liquid (flow) from the outside, can be inferred venous blood movement (flow 82 ), the movable component can be observed according to the estimated body moves venous blood generated inside the living body.

因此,在本第4实施方式,通过用压力传感器、光学传感器等传感器检测封入到圆筒状密闭容器内的液体移动,从而可以根据该传感器的输出信号检测由生物体内部产生的体动成分。 Accordingly, in the fourth embodiment of the present embodiment, the liquid moves within the sealed vessel by the pressure sensor detected by the sensor, an optical sensor or the like is sealed to a cylindrical shape, which body motion components can be output signal of the sensor generated inside the living body.

结果,根据本第4实施方式,能够根据已去除静脉血液的影响的信号可靠检测脉搏数。 As a result, the fourth embodiment according to the present embodiment, it is possible according to the number of vein blood was removed reliably detect the pulse signal.

[5.2]血管模拟传感器 [5.2] Vascular analog sensor

下面,说明血管模拟传感器的结构形式。 Next, structure of vascular analog sensors.

作为血管模拟传感器的结构形式,可大致划分刚体型、弹性体型、 加速度传感器型。 As a form of vascular structures analog sensors, it can be broadly classified rigid body, the elastic body, an acceleration sensor type.

刚体型是向具有刚性的圆筒状密闭容器内封入了显示与血液相同的流动现象的具有粘性的液体的传感器。 The sensor having a rigid body is enclosed within a rigid cylindrical sealed container display in the same phenomenon of blood flow of a viscous liquid.

另一方面,弹性体型是堵塞具有弹性的管两端,向管内封入了显示与血液相同的流动现象的具有粘性(例如,1〜100cP)的液体的传感器。 On the other hand, both ends of the elastic body is an elastic tube blockage, sealed shows the same phenomenon of blood flow into the inner tube having a viscosity (e.g., 1~100cP) of the liquid sensor.

图83是第1刚体型血管模拟传感器的示意图。 FIG 83 is a schematic diagram of the first rigid body vessel analog sensors.

血管模拟传感器150具有两端被堵塞了的树脂(塑料)制壳体151, 向其内部封入为了在该壳体151内显示与静脉血液相同的流动现象的设定粘性的伪血液152。 Vascular analog sensor 150 having both ends blocked resin (plastic) housing made of 151, its interior is sealed to the display setting viscous flow phenomena venous blood same pseudo blood 152 within the housing 151. 另外,在壳体151的长度方向一端设置检测压力伴随伪血液152的移动而变化的压力传感器(流动检测传感器)153。 Further, in the longitudinal direction of the housing 151 is provided at one end of a pressure sensor (flow detection sensor) 153 detects the pressure with the movement of the dummy blood 152 varies.

图84是第2刚体型血管模拟传感器的示意图。 FIG 84 is a schematic view of the second vessel just integrated analog sensors.

血管模拟传感器160具有两端被堵塞了的树脂(塑料)制壳体161, 向其内部封入为了在该壳体161内显示与静脉血液相同的流动现象的设定粘性的伪血液162。 Vascular analog sensor 160 having both ends blocked resin (plastic) housing made of 161, its interior is sealed in order to display the pseudo-blood viscosity and setting the same venous blood flow phenomena within the housing 162 of 161. 另外,在壳体161的侧壁设置检测伪血液162的移动状态的光学传感器(流动检测传感器)163。 Further, an optical sensor (detecting flow sensor) 163 detects the state of the dummy blood movement in the side wall 162 of the housing 161. 该光学传感器163具有: 照射检测光的LED164,和接受检测光的PD165。 The optical sensor 163 has: LED164 irradiating the detection light, the detection light receiving and PD165.

此时,伪血液i62被着色成和检测光颜色相同的颜色,光学传感器163检测液面状态的变化。 At this time, the dummy blood i62 is colored the same color of the color detection light, the optical sensor 163 detects a change in state of the liquid surface.

图85是第1弹性体型血管模拟传感器的示意图。 FIG 85 is a schematic view of a first elastomeric vascular analog sensors.

血管模拟传感器170具有两端被堵塞了的橡胶等弹性树脂制壳体171,向其内部封入为了在该壳体171内显示与静脉血液相同的流动现象的设定粘性的伪血液172。 Vascular analog sensor 170 having both ends blocked rubber elastic resin case 171, the inside thereof is sealed in order to display the pseudo-blood viscosity and setting the same venous blood flow phenomena within the housing 172 171. 另外,在壳体171的长度方向一端设置检测压力伴随伪血液H2的移动而变化的压力传感器(流动检测传感器)173。 Further, in the longitudinal direction of the housing 171 is provided at one end of a pressure sensor (flow detection sensor) 173 detects the pressure with the movement of the dummy blood varies H2.

47图86是第2弹性体型血管模拟传感器的示意图。 47 FIG. 86 is a schematic diagram of the second elastomeric vascular analog sensors.

血管模拟传感器180具有两端被堵塞了的橡胶等弹性树脂制壳体181,向其内部封入为了在该壳体181内显示与静脉血液相同的流动现象的设定粘性的伪血液182。 Vascular analog sensor 180 having both ends blocked rubber elastic resin case 181, the inside thereof is sealed in order to display the pseudo-blood viscosity and setting the same venous blood flow phenomena within the housing 182 of 181. 另外,在壳体18i的侧壁设置检测压力伴随伪血液182的移动而变化的压力传感器(流动检测传感器)183。 Further, a pressure detector provided in a mobile housing sidewall 18i accompanying pseudo blood 182 varies the pressure sensor (flow detection sensor) 183.

加速度传感器型是把在图82的末梢方向具有灵敏度方向的加速度传感器用作血管模拟传感器。 Type acceleration sensor is an acceleration sensor having a sensitivity to the direction of the tip direction in FIG. 82 is used as the analog sensor vessel.

下面,说明刚体型和弹性体型血管模拟传感器与用其他的脉波传感器检测的体动成分(跳动成分)的关系。 Next, the relationship between the blood vessel and the other analog sensor pulse wave sensor for detecting body motion components (beat component) and the elastomeric body immediately.

图87是刚体型血管模拟传感器和脉波传感器的输出中包含的体动成分(跳动成分)的关系说明图。 FIG 87 is a rigid body and the relationship between the output of vascular analog sensor comprises a pulse wave sensor body motion components (beat component) described in FIG.

如图87所示,可知刚体型血管模拟传感器的输出和脉波传感器的输出中包含的体动成分(跳动成分)的大小具有大致成正比的相关关系。 As shown in FIG. 87, the output size of known analog sensors vessel just integrated output and the pulse wave sensor comprises a body motion component (jitter component) having a substantially proportional relation.

图88是弹性体型血管模拟传感器和脉波传感器的输出中包含的体动成分(跳动成分)的关系说明图。 FIG. 88 is a relationship between the output and the elastomeric vessel analog sensor comprises a pulse wave sensor body motion components (beat component) described in FIG.

如图88所示,可知弹性体型血管模拟传感器的输出和刚体型血管模 As shown in FIG. 88, it is understood analog sensor output elastomeric and rigid vessel body molding vessel

拟传感器的输出相同,与脉波传感器的输出中包含的体动成分(跳动成分)的大小具有大致成正比的相关关系。 Proposed the same output of the sensor, the size of the output pulse wave sensor comprises a body motion component (jitter component) having a substantially proportional relation.

因此,可知如果以在脉波传感器的输出中包含的体动成分(跳动成 Thus, if the movable component found in the output comprises a pulse wave sensor (jitter into

分)中占支配性地位的是因静脉血液的移动而形成的体动成分为前提, Fraction) on the dominant motion component due to the body movement of venous blood is formed as a precondition,

则使用任一血管模拟传感器都能推测脉波传感器的输出中包含的体动分 Using a vessel according to any analog sensor output estimation can be included in the pulse wave sensor body motion points

c c

[5.3]详细说明下面,详细说明第4实施方式。 [5.3] the following detailed description, the fourth embodiment in detail. 图89是第4实施方式的脉搏测定系统的概要结构图。 FIG 89 is a schematic configuration diagram of a pulse measurement system according to a fourth embodiment. 如果大致划分脉搏测定装置190,具有:佩戴在使用者手指上的传感器模块191;和通过布线LN与传感器模块191相连接、并佩戴在使用者手臂上的装置主体192。 If the apparatus 190 is roughly divided pulse measurement, comprising: a worn on the user's finger sensor module 191; and LN are connected by wiring to the sensor module 191, and on the user's arm wearing device body 192.

图90是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 FIG 90 is a configuration example of a sensor module in the wearing state of each sensor described in FIG. 如果大致划分传感器模块191,其结构具有:主要检测脉波成分的脉波传感器83;和主要检测体动成分的上述第1刚体型血管模拟传感器 If the sensor module 191 is roughly divided, the structure comprising: a main pulse wave sensor 83 detects the pulse wave component; the first rigid body 1 and the main blood vessels analog sensor detects body motion component

150。 150.

该场合时,第1刚体型血管模拟传感器150被配置在脉波传感器83 的附近,同时以相对于脉波传感器83在离开使用者(人体)的方向大致层叠的状态配置。 When the case, a first rigid body vessel analog sensor 150 is disposed in the vicinity of the pulse wave sensor 83, while the pulse wave sensor 83 in a direction away from the user (human body) with respect to a state substantially layered configuration.

其中,脉波传感器83具有:射出检测用光的LED83A;和接受从人体反射出的检测用光的PD83B。 Wherein the pulse wave sensor 83 includes: a detection light emitted from the LED83A; and receive reflected light from the human body detection PD83B.

图91是脉搏测定装置的概要结构方框图。 FIG 91 is a schematic block diagram showing the structure of the pulse measurement means.

如果大致划分脉搏测定装置,具有:上述的脉波传感器83;体动传感器84 (在本第4实施方式中是血管模拟传感器150);脉波信号放大电路91;体动信号放大电路92; A/D变换电路93; MPU94; RAM95; R0M96; 和显示装置97。 If roughly divided pulse measurement device comprising: the above-described pulse wave sensor 83; body movement sensor 84 (vascular analog sensor 150 in the present fourth embodiment); pulse wave signal amplifying circuit 91; body motion signal amplifying circuit 92; A / D conversion circuit 93; MPU94; RAM95; R0M96; and a display device 97. 脉波信号放大电路91以规定的放大率放大从脉波传感器83输出的脉波检测信号,并作为放大脉波检测信号输出给A/D变换电路93。 Pulse wave signal amplifying circuit 91 at a predetermined amplification factor to the A / D conversion circuit 93 detects the pulse wave signal output from pulse wave sensor 83, and outputs the amplified detection signal as a pulse wave.

体动信号放大电路92以规定的放大率放大基于伪血液152的移动的压力检测信号,并作为放大压力检测信号输出给A/D变换电路93,该伪血液152是从起着体动传感器84的功能的第1刚体型血管模拟传感器150 输出的。 A body motion signal amplifying circuit 92 at a predetermined amplification factor based on the pressure detection signal of the moving dummy blood 152, and outputs the amplified signal as a pressure detecting A / D conversion circuit 93, the dummy blood 152 from the body motion sensor 84 plays function 150 outputs a first vessel immediately integrated analog sensors.

A/D变换电路93把所输入的放大脉波检测信号和放大压力检测信号分别单独进行模拟/数字变换,并作为脉波检测数据和压力检测数据输出给MP駆。 Amplifying the pulse wave detection signal A / D converting circuit 93 and amplifying the input pressure detection signal individually for analog / digital conversion, and detecting the pulse wave data and the detected data is outputted as a pressure to the MP Qu.

MPU94把脉波检测数据和对应于从第1刚体型血管模拟传感器150 输出的压力检测信号的压力检测数据(体动检测数据)存储在RAM95中, 同时根据存储在R0M96的控制程序算出脉搏数,并显示在显示装置97上。 MPU94 pulse wave detection data and corresponding to the pressure of the first rigid body 150 outputs vascular analog sensor pressure detection signal of the detection data (body motion detection data) is stored in the RAM95, the pulse rate at the same time is calculated based on the control program stored in the R0M96 and 97 displayed on the display device.

具体而言,MPU94把存储在RAM95中的脉波检测数据和压力检测数据(体动检测数据)按时间序列顺序排列,并对所对应的每个取样时间求出脉波检测数据和压力检测数据的两者之差即差数据。 Specifically, in the RAM95 and the pulse wave detection data detected pressure data (the body movement detection data) MPU94 the memory in time series order, and the sampling time corresponding to each data and obtains the pressure pulse wave detected data detected i.e., the difference of the two difference data.

然后,进行该差数据的频率分析(FFT:快速傅立叶变换),抽出脉波的谐波成分,根据其频率算出脉搏数。 Then, the difference data is frequency analysis (FFT: Fast Fourier Transform) to extract harmonic components of the pulse wave, the pulse rate is calculated according to the frequency. 下面,具体说明脉搏数算出处理。 Next, the pulse rate calculation process specifically described.

图92是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 92 is a graph showing an example of a pulse wave detection data arranged in time series order.

图93是把对应图92的脉波检测数据的压力检测数据在同-一时间轴上按时间序列顺序排列的曲线图。 FIG 93 is a pressure detecting data corresponding to FIG. 92, the pulse wave data detected in the same - graph chronologically arranged on a time axis.

首先,MPU94顺序读出存储在RAM95中的脉波检测数据及压力检测数据,从某个取样时间的脉波检测数据中减去同一取样时间的压力检测数据,从而算出差数据。 First, MPU94 sequentially reads out the pulse wave detection data and detection data stored in the pressure in the RAM95, the pressure subtracting the detection data of the same sampling time from the pulse wave data detected in a certain sampling time, thereby calculating a difference data.

图94是把根据图92的脉波检测数据和图93的压力检测数据算出的 FIG 94 is a pressure map 92 in accordance with the pulse wave detection data and the detection data is calculated 93

差数据按时间序列顺序排列的曲线图。 Graph showing chronological difference data series order. 然后,MPU94对差数据进行FFT。 Then, MPU94 of poor data FFT.

图95是对图94的差数据进行FFT而得到的频率分析结果。 FIG 95 is a frequency difference between the data of FIG. 94 is obtained by the FFT analysis.

这样,所得到的频率分析结果实质上已从脉波传感器的输出信号(脉波成分+体动成分)中去除因静脉造成的体动成分,即成为主要针对脉波成分的脉波数据。 Thus, the frequency analysis results obtained substantially from the output signal (pulse wave component of body motion component +) pulse wave sensor by removing the body motion component caused by venous, i.e., the data for the pulse wave as the main component of the pulse wave.

MPU94把所得到的脉波数据中的最大频率成分作为脉搏波谱PH1,根据其频率算出脉搏数。 MPU94 the maximum frequency component of the pulse wave data obtained in the spectrum as a pulse PH1, the pulse rate is calculated according to the frequency.

然后,MPU94把脉搏数显示在显示装置97上。 Then, MPU94 the pulse rate is displayed on the display device 97.

如上所述,根据本第4实施方式,可以根据来自血管模拟传感器的输出信号更可靠地推测以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, the fourth embodiment according to the present embodiment, it can be more reliably estimated to inside of the living body motion components generated in the main reason for the fluctuation of the vein from the blood vessel based on the output signal of the analog sensor. 因此,能够可靠去除体动成分,进行准确的脉波成分检测进而可以测定准确的脉搏数。 Accordingly, it is possible reliably remove body motion components, an accurate detection of the pulse wave component further pulse rate can be measured accurately.

在本第4实施方式中,作为刚体型血管模拟传感器,使用第l刚体型血管模拟传感器150迸行了说明,但也可以使用第2刚体型血管模拟传感器160。 In the fourth embodiment, just as vascular analog sensor body, just use the l-integrated analog sensor 150 into line blood vessels have been described, it is also possible to use just the second analog sensor-integrated vessel 160.

[5.4]第4实施方式的第1变形例 [5.4] First modification of the fourth embodiment.

以上说明的结构是在进行频率分析(FFT)之前从脉波检测数据中减去对应于从第1刚体型血管模拟传感器150输出的压力检测信号的压力检测数据,算出差数据,但本第4实施方式的第1变形例是在对脉波检测数据以及对应于从第1刚体型血管模拟传感器150输出的压力检测信号的压力检测数据进行频率分析之后,算出差数据的变形例。 The above-described structure performing frequency analysis (FFT) prior to subtracting from the pulse wave detection data corresponds to the pressure detection data of the first rigid body 150 outputs analog sensor vessel from a pressure detection signal, calculates a difference data, but the present 4 a first modification of the embodiment is a modification of the embodiment of the pulse wave detection data and corresponding to the pressure after performing frequency analysis on the detected data size of the first rigid vessel 150 outputs analog sensor signals from the pressure detection, calculating a difference data. 以下将说明第l变形例。 L of modification will be described below.

在本第1变形例中,MPU94分别对存储在RAM95中的脉波检测数据及对应于从第1刚体型血管模拟传感器150输出的压力检测信号的压力检测数据(体动检测数据)进行频率分析(FF'n。 In the first modification, MPU94 respectively in the RAM95 of the pulse wave detection data and corresponding to the analysis of the stored frequency pressure detection data (body motion detection data) of the first rigid body 150 outputs vascular analog sensor pressure detection signal from (FF'n.

然后,MPU94求出频率分析后的脉波检测数据及频率分析后的压力检测数据之差即差数据。 Then, after the pressure difference between the pulse wave detection data and frequency after the frequency analysis of the detection data obtained MPU94 i.e. the difference data.

从所得到的差数据中抽出脉波的谐波成分,根据其频率算出脉搏数。 Pulse wave extracting harmonic components from the difference data obtained, the pulse rate is calculated according to the frequency.

下面,具体说明脉搏数算出处理。 Next, the pulse rate calculation process specifically described.

图96是脉波检测数据的频率分析结果的说明图。 FIG 96 is a diagram illustrating the results of frequency analysis of the pulse wave detection data.

图97是对应于从第1刚体型血管模拟传感器150输出的压力检测信号的压力检领U数据的频率分析结果的说明图。 FIG 97 is an explanatory diagram corresponding to the analysis result from the frequency of the pressure data of the subject U collar first rigid vessel body 150 outputs an analog pressure sensor detecting signal.

首先,MPU94分别顺序读出存储在RAM95中的脉波检测数据及压力检测数据,并进行FFT及频率分析。 First, MPU94 are sequentially read out the pulse wave detection data and detection data stored in the pressure in the RAM95, and FFT and frequency analysis.

图98是频率分析后的脉波检测数据和频率分析后的压力检测数据之差即差数据的说明图。 FIG 98 is a pressure difference between the pulse wave detection data and the frequency after the frequency analysis of the detection data of the difference data that is described in FIG.

然后,MPU94比较频率分析后的脉波检测数据和频率分析后的压力检测数据,求出同一频率成分的差,生成差数据。 Then, the pressure detecting the pulse wave analysis data after the test data and Comparative MPU94 frequency after frequency analysis to obtain the same difference frequency component, generating difference data.

这样,作为所得到的差数据的频率分析结果,实质上已从脉波传感器的输出信号(脉波成分+体动成分)中去除因静脉造成的体动成分, 即成为主要针对脉波成分的脉波数据。 Thus, the frequency of the difference data obtained results substantially from the output signal (pulse wave component of body motion component +) removing the pulse wave sensor body movement component caused by venous, i.e. for the pulse wave as the main component pulse wave data.

MPU94把所得到的脉波数据中的最大频率成分作为脉搏波谱PH1,根据其频率算出脉搏数。 MPU94 the maximum frequency component of the pulse wave data obtained in the spectrum as a pulse PH1, the pulse rate is calculated according to the frequency.

然后,MPU94把脉搏数显示在显示装置97上。 Then, MPU94 the pulse rate is displayed on the display device 97.

如上所述,本第4实施方式的第1变形例利用血管模拟传感器能更可靠地推测以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, according to the first modification of the fourth embodiment using a vessel analog sensor can be more reliably estimated inside of the living body to produce the dynamic component is the main cause fluctuations vein. 因此, 能够可靠去除体动成分,进行准确的脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, accurate detection of the pulse wave component, and further an accurate pulse rate can be determined. [5.5]第2变形例 [5.5] Modification 2

下面,说明第4实施方式的第2变形例。 Next, a second modification of the fourth embodiment.

以上说明的结构是,在进行频率分析(FFT)之前或之后,从脉波检测数据中减去对应于从第1刚体型血管模拟传感器150输出的压力检测信号的压力检测数据,算出差数据,但本第4实施方式的第2变形例是使用自适应滤波从脉波检测数据中去除对应于从血管模拟传感器输出的压力检测信号的体动成分时的变形例。 The above-described structure, prior to performing frequency analysis (FFT) or after the detection data from the pulse wave is subtracted from the pressure corresponding to the first rigid body vessel 150 outputs an analog pressure detection signal of the sensor detection data, calculates a difference data, However, a fourth modification of the second embodiment according to the present embodiment is a modification of the adaptive filter is removed when the movable component corresponding to the detection signal from the pressure vessel body analog sensor output from the pulse wave detection data.

图99是自适应滤波器的一个示例的概要结构方框图。 FIG 99 is a block diagram of an exemplary schematic configuration of the adaptive filter. 如果大致划分自适应滤波器200,具有滤波系数生成单元201和合成单元202。 If the adaptive filter 200 is roughly divided, it has a filter coefficient generating unit 201 and the synthesis unit 202.

滤波系数生成单元201起着体动成分去除单元的功能,根据应用了合成单元202前次输出的滤波后的数据,生成自适应滤波系数h。 Filter coefficient generating body motion component remover 201 unit plays a functional unit, depending on the application of the filtered data output from the previous combining unit 202, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于从血管模拟传感器输入的起着体动成分检测信号的功能的压力检测数据(=k (n)),生成体动去除数据(=h,k (n)),并输出给合成单元202。 The pressure applied to the adaptive filter coefficient h motion detection data from function component detection signal plays vascular analog sensor input (= k (n)), removing the body motion data is generated (= h, k (n)), and outputs to the synthesizing unit 202.

合成单元202起着去除处理单元的功能,将前次抽出的脉波检测数据(=脉波成分+体动成分)和体动去除数据进行合成,从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉波成分。 Synthesizing unit 202 plays a functional removal processing unit of the last detected pulse wave out data (= the pulse wave component and the body motion component) and the removal of body motion data is synthesized from substantially removed (subtracted) the pulse wave detection data contained in the body motion components, extracting the pulse wave component.

下面,进一步具体说明本第2变形例的脉搏数算出处理。 Next, a second modification is further described in detail several embodiments of the present pulse rate calculation process.

图100是把脉波检测数据按时间序列顺序排列的一个示例的曲线图。 FIG 100 is a graph showing an example of a pulse wave detection data arranged in time series order.

图101是把从血管模拟传感器输入的对应于图100的脉波检测数据 FIG 101 is a blood vessel from the analog sensor inputs corresponding to the pulse wave detection data 100 of FIG.

的压力检测数据在同一时间轴上按时间序列顺序排列的曲线图。 Graph of pressure detection data on the same time arranged in time series order.

首先,MPU94顺序读出存储在RAM95中的脉波检测数据及压力检测数据,把某个取样时间中的脉搏检测数据输出给合成单元202。 First, MPU94 sequentially reads out the pulse wave detection data and detection data stored in the pressure in the RAM95, the detected pulse data output in a sampling time to the synthesis units 202.

把对应于各个脉波检测数据的压力检测数据输出给滤波系数生成单元201。 Corresponding to each of the pressure pulse wave detected detection data is output to the filter coefficient data generation unit 201.

这样,滤波系数生成单元201根据应用了合成单元202前次输出的滤波后的数据,生成自适应滤波系数h。 Thus, the filter coefficient generating unit 201 according to the application of the filtered data output from the previous combining unit 202, generating an adaptive filter coefficient h. 把自适应滤波系数h应用于从血管模拟传感器输入的起着体动成分检测信号的功能的压力检测数据(二k H is applied to the adaptive filter coefficient from the input analog sensor plays a vascular component of motion detection function of the pressure detected data signal (B k

〔n)),把体动去除数据(=h*k (n))输出给合成单元202。 [N)), removing the body motion data (= h * k (n)) to the synthesis unit 202 outputs.

由此,合成单元202将此次的脉波数据和体动去除数据进行合成, Accordingly, the synthesizing unit 202 and the pulse wave data from which body motion removing synthesized data,

从实质上去除(减去)此次的脉波检测数据中包含的体动成分,抽出脉 Substantially removing the body motion components from (minus) the pulse wave detection data contained in the extracted pulse

波成分,输出残差数据(=应用了滤波后的数据)。 Wave component residual data output (= application data after filtering).

图102是把自适应滤波应用于图100的脉波检测数据及图101的血 FIG adaptive filter 102 is applied to the blood pulse wave detection data of FIG. 100 and 101 of FIG.

管模拟传感器所输出的压力检测数据,把所得到的残差数据按时间序列 Pressure analog detection data output from the sensor tube, the residual data of the obtained time series

顺序排列的曲线图。 Graph order.

然后,MPU94对残差数据进行FFT。 Then, MPU94 residual data FFT.

图103是向图102的残差数据进行FFT而得到的频率分析结果。 FIG FFT 103 is the residual data 102. FIG frequency analysis results obtained.

这样,所得到的频率分析结果,实质上已从脉波传感器的输出信号(脉波成分+体动成分)中去除根据血管模拟传感器的输出而推测的因静脉造成的体动成分,即成为主要针对脉波成分的脉波数据。 Thus, the frequency analysis results obtained substantially from the output signal (pulse wave component of body motion component +) pulse wave sensor body motion components are removed by venous blood vessel based on the output result of the estimation of analog sensors, i.e., a major data for the pulse wave of the pulse wave component.

MPU94把所得到的主要含有脉波成分的脉波数据中的最大频率成分作为脉搏波谱,根据其频率算出脉搏数。 The maximum pulse wave frequency component of the pulse wave data mainly containing component MPU94 The resulting pulse as the spectra calculated from the pulse rate frequency.

MPU94把脉搏数显示在显示装置97上。 MPU94 the pulse rate is displayed on the display device 97.

如上所述,本第4实施方式的第2变形例,可以利用血管模拟传感器更可靠地推测以生物体内部产生的体动成分为主要原因的静脉波动。 As described above, according to the fourth modification of the embodiment 2, the vessel may utilize analog sensor more reliably estimated to inside of the living body motion components generated in the main reason for the fluctuations in the vein. 因此,能够可靠去除体动成分,进行准确的脉波成分检测,进而可以测定准确的脉搏数。 Therefore, the body motion component can be surely removed, accurate detection of the pulse wave component, and further an accurate pulse rate can be determined.

[5.6]第3变形例 [5.6] Modification 3

下面,说明第4实施方式的第3变形例。 Next, a third modification of the fourth embodiment.

以上说明的是传感器模块具有刚体型血管模拟传感器时的情况,但本第3变形例是模块传感器具有弹性体型血管模拟传感器时的变形例。 Described above is a case where a sensor module having a body vessel just analog sensor, but the present embodiment is a modification of the third sensor module having a modification in which the vascular elastomeric analog sensor. 图104是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 104 is a configuration example of a sensor module in the wearing state of each sensor described in FIG.

如果大致划分传感器模块191A,具有:主要检测脉波成分的脉波传 If the sensor module is roughly divided 191A, comprising: a pulse wave detecting a pulse wave transmission main component

感器83;和主要检测体动成分的上述第1弹性体型血管模拟传感器170。 Sensor 83; and a major component of the body motion detecting a first elastomeric vascular analog sensor 170.

根据这种结构,可以在更接近实际静脉的状态下,可靠地推测由生物体内部产生的体动成分,能够去除体动成分。 According to this structure, in a state closer to the actual vein reliably estimated body motion components generated inside the living body, the body motion component can be removed.

在本第3变形例中,作为弹性体型血管模拟传感器,使用第1弹性体型血管模拟传感器170进行了说明,但也可以使用第2弹性体型血管 In the third modification, as the elastomeric vessel analog sensor, a blood vessel using a first elastomeric analog sensor 170 has been described, it is also possible to use elastomeric second vessel

[5.7]第4变形例 [5.7] Fourth Modification

以下,说明第4实施方式的第4变形例。 Hereinafter, a fourth modification of the fourth embodiment.

以上说明的是传感器模块具有刚体型或弹性体型血管模拟传感器时的情况,但本第4实施方式的第4变形例是传感器模块具有作为血管模拟传感器的加速度传感器的变形例。 Described above is a case where a sensor module having a rigid body or an elastic body vessel analog sensor, but the present fourth modification of the fourth embodiment is a modified embodiment of a sensor module having the acceleration sensor as an analog sensor, a blood vessel.

图105是佩戴状态下的传感器模块的各个传感器的配置示例说明图。 FIG 105 is an example of the configuration of each sensor in the sensor module described in FIG wearing state.

如果大致划分传感器模块191B,具有:主要检测脉波成分的脉波传感器83;和主要检测图82所示的末梢方向的加速度的加速度传感器210。 If the sensor module is roughly divided 191B, comprising: a pulse wave sensor 83 mainly detects the pulse wave component; distal direction and acceleration shown in Fig. 82 mainly detects an acceleration sensor 210.

此时,作为血管模拟传感器的加速度传感器210被配置在脉波传感 In this case, an acceleration sensor as an analog sensor vessel 210 is configured in the pulse wave sensor

器83的附近,同时以相对于脉波传感器83在离开使用者(人体)的方 Near 83, while with respect to the pulse wave sensor 83 in the direction away from the user (human body)

向大致层叠的状态配置。 A state arranged substantially stacked.

下面,详细说明加速度传感器210的结构。 Next, the detailed structure of the acceleration sensor 210 of FIG.

图106是作为加速度传感器,使用3轴(X、 Y、 Z轴)加速度传感器时的后述X轴方向的加速度和脉波传感器的输出中包含的体动成分(跳动成分)的关系说明图。 FIG 106 as an acceleration sensor using a 3-axis (X, Y, Z-axis) described later, the relationship between outputs of the acceleration and the pulse wave sensor in the X axis direction is included in the body motion component (jitter components) an explanatory view of an acceleration sensor.

图107是作为加速度传感器,使用后述的3轴加速度传感器时的Y 轴方向的加速度和脉波传感器的输出中包含的体动成分(跳动成分)的关系说明图。 107 as an acceleration sensor, the relationship between the movable component of the output of the acceleration sensor and the pulse wave when the Y-axis direction of three-axis acceleration sensor described below is used in the body comprising (jitter components) described in FIG.

图108是作为加速度传感器,使用后述的3轴(X、 Y、 Z轴)加速度传感器时的Z轴方向的加速度和脉波传感器的输出中包含的体动成分(:跳动成分)的关系说明图。 FIG 108 as an acceleration sensor, the output of the acceleration, and the pulse wave sensor in the Z axis direction when the acceleration sensor is three-axis (X, Y, Z-axis) described later is used included a body movement component (: jitter components) Relationship Description Fig. 图109是3轴的说明图。 109 FIG. 3 is an explanatory view of the shaft.

如图109所示,X轴是向图82所示的末梢方向(指尖方向)延伸的轴,Y轴是把手掌放于平面上时,与X轴垂直的平面上的轴,Z轴是垂直于支撑手掌的平面的轴。 As shown, the shaft 109 is the X axis extending in the peripheral direction (direction of finger) as shown in FIG. 82, Y-axis is placed upon the palm on the plane, and the axes of the plane perpendicular to the X axis, Z axis axis perpendicular to the support plane of the palm.

如图1Q6〜图108所示,可知脉波传感器的输出信号中包含的体动成分中占支配性地位的X轴方向的成分。 As shown in FIG. 1Q6~ 108, body motion component can be seen the output signal of the pulse wave component contained in the sensor on the dominant X-axis direction. 因此,作为加速度传感器210, 如果使用可以仅检测X轴方向、即图82所示的末梢方向的加速度的单轴加速度传感器,则可以推测由脉波传感器检测的体动成分。 Accordingly, the acceleration sensor 210, can only be used if the detected X-axis direction, i.e. uniaxial acceleration sensor is acceleration in the direction of the tip shown in FIG. 82, it can be inferred by the pulse wave sensor for detecting the body motion component.

[6]第5实施方式 [6] fifth embodiment

在上述第4实施方式中,把脉波传感器和血管模拟传感器一起构成传感器模块,但本第5实施方式是把体动传感器(血管模拟传感器或加速度传感器)装配到装置主体上的实施方式。 In the fourth embodiment, the pulse wave sensor and the vascular analog sensor together comprise a sensor module, the present fifth embodiment is the body movement sensor (vascular analog sensor or an acceleration sensor) fitted to the embodiment of the apparatus main body.

图110是第5实施方式的脉搏测定装置的外观透视图。 FIG 110 is an external perspective view of a fifth embodiment of the pulse measurement device. 图111是图IIO的传感器模块的剖面图。 FIG. 111 is a sectional view of the sensor module of FIG IIO.

如果大致划分脉搏测定装置220,具有:佩戴在使用者手指上的传感器模块221;和通过布线LN连接传感器模块221并佩戴在使用者手臂上的装置主体222。 If the pulse measuring device 220 is roughly divided, comprising: a worn on the user's finger sensor module 221; and 221 and through arm worn on the user device body sensor module 222 connected to the wiring LN.

如图in所示,如果大致划分传感器模块221,具有主要检测脉波成分的脉波传感器83。 As shown in the pulse wave sensor 83, if roughly divided into a sensor module 221 having a main component of the pulse wave detection.

其中,脉波传感器83具有:射出检测用光的LED83A;和接受从人体反射的检测用光的PD83B。 Wherein the pulse wave sensor 83 includes: a detection light emitted from the LED83A; and receiving light reflected from the human body detection PD83B.

如图110所示,体动传感器(血管模拟传感器或加速度传感器)84 以其灵敏度轴与人体的末梢方向(指尖方向)大致一致的状态被收容在装置主体222内。 FIG. 110, the body movement sensor (vascular analog sensor or an acceleration sensor) 84 sensitivity axis thereof substantially coincides with the direction of the tip of the human body (the direction of finger) in a state of being housed within the device main body 222.

关于第5实施方式的具体动作,和第4实施方式相同,所以省略其详细说明。 In particular regard to the operation of the fifth embodiment, and the same as the fourth embodiment, detailed description thereof is omitted.

如上所述,根据本第5实施方式,在第4实施方式的效果的基础上, 由于体动传感器被装配到装置主体内,可以利用体动传感器准确无误地 As described above, the fifth embodiment according to the present embodiment, the effect of the fourth embodiment of the embodiment, since the body movement sensor is fitted into the apparatus main body, using a body movement sensor can be accurately

检测手指运动等细微运动,能够使传感器模块小型化,更容易佩戴,并且也提高了使用者的佩戴使用感。 Other minor motion detecting a finger movement, the sensor module can be made compact, easier to wear, and also to improve the wearing feeling of use of the user. [7]第6实施方式 [7] sixth embodiment

在上述第4实施方式或第5实施方式中,分别设置传感器模块和装置主体,并通过布线进行连接,但本第6实施方式是把传感器模块装配到装置主体内的实施方式。 In the fourth embodiment or the fifth embodiment, the sensor modules are provided and the apparatus main body, and connected by wiring, a sixth embodiment of the present embodiment is fitted to the sensor module embodiment of the apparatus main body.

图112是把第6实施方式的脉搏测定装置230装配到钟表壳中的外观透视图。 112 is the pulse of the sixth embodiment of the measuring device 230 is fitted to an appearance perspective view of the watch case. 图113是图112的脉搏测定装置的剖面图,是把第6实施方式的脉搏测定装置装配到钟表壳中的剖面图。 FIG 113 is a sectional view showing a pulse wave measuring apparatus of FIG. 112, the measuring device is fitted to a cross-sectional view of the timepiece casing in a sixth embodiment of the pulse.

本实施方式在钟表壳231的背面设有脉波传感器83和血管模拟传感器232时的示例。 In the present embodiment, the back surface of the watch case 231 is provided with an example of the pulse wave sensor 232 when the analog sensor 83 and the blood vessel.

如图113所示,上述脉波传感器83和主体一起形成于钟表壳231的背面侧。 As shown in FIG. 113, is formed on the back side of the watch case 231 together with the pulse wave sensor 83 and main body. 在钟表壳231设置用于将其佩戴在手臂上的表带233,把表带2'33缠绕佩戴在手腕上时,钟表壳231的背面侧密贴在手腕背部。 In the watch case 231 is provided for which is worn on the arm of the strap 233, the strap 2'33 wound when worn on the wrist, the back side of the watch case 231 in tight contact with the wrist back.

构成脉波传感器单元83的透明玻璃83C通过后盖234固定在钟表壳231的背面侧。 83C transparent glass constituting the pulse wave sensor unit 83 is fixed to the rear surface 234 side of the watch case 231 through the rear cover. 透明玻璃83C保护构成脉波传感器83的LED83A和PD83B, 同时透过LED83A的照射光、通过生物体所得到的反射光,使入射到PD83B。 83C protective transparent glass constituting the pulse wave sensor 83 and the LED83A PD83B, while transmitting light LED83A irradiated by the reflected light of the obtained living body, the incident PD83B.

在钟表壳231的表面侧设置液晶显示装置等显示装置97,除显示当前时间和日期外,还显示基于脉波传感器83的检测结果的脉搏数HR等生物体信息。 Liquid crystal disposed on a surface side of the watch case 231 and the like displayed on the display means 97, in addition to displaying the current time and date, but also the display pulse based on detection results of the pulse wave sensor 83 of the number of HR and other biometric information.

在钟表壳231的内部,在主基板236的上侧设有CPU等各种IC电路, 由此构成数据处理电路237。 Inside the watch case 231, on the side of the main board 236 is provided with various IC circuit such as a CPU, whereby the data processing circuit 237.

在主基板236的背面侧设有电池238,由电池238对显示装置97、 主基板236、脉波传感器83及血管模拟传感器232提供电源。 The back surface side of the main substrate 236 is provided with a battery 238, a display device 97 238, main substrate 236, the pulse wave sensor 83 and the sensor 232 provides analog blood vessel by a battery power supply.

主基板236和脉波传感器83通过热封件239而连接。 Main substrate 236 and the pulse wave sensor 83 is connected to member 239 by heat sealing. 这样,利用热封件239形成的布线,由主基板236对脉波传感器83提供电源,由脉波传感器83向主基板236提供脉波检测信号。 Thus, a wiring formed of the heat seal 239, to provide power for the pulse wave sensor 83 by the main substrate 236, there is provided a pulse wave detection signal to the main board 236 by the pulse wave sensor 83.

数据处理电路237对脉波信号进行FFT处理,通过分析其处理结果, 算出脉搏数服。 The data processing circuit 237 for the pulse wave signal FFT processing, the analysis processing result, calculates the pulse rate service. 另外,在钟表壳231的外侧面设有用于进行时间调整和 Further, the outer side surface of the watch case 231 is provided for performing time adjustment and

显示模式切换等未图示的按钮开关。 Display mode switching button switch (not shown) and the like.

把表带233缠绕佩戴在手腕上时,钟表壳231的背面侧面向手腕背 When the strap 233 is wound worn on the wrist, the back side of the watch case back 231 to the wrist

咅l所以,来自LED83A的光通过透明玻璃83C照射在手腕背部,其反射光由光电二极管83B接受。 Pou l Therefore, from the back of the wrist LED83A in which reflected light is received by the photodiode light 83B is irradiated through the transparent glass 83C. 关于第6实施方式的具体动作,和第4实施方式相同,所以省略其详细说明。 In particular regard to the operation of the sixth embodiment, and the same as the fourth embodiment, detailed description thereof is omitted.

如上所述,根据本第6实施方式,在第4实施方式的效果的基础上, 由于把传感器模块装配到装置主体内,所以更容易佩戴c [8]第4:实施方式〜第6实施方式的变形例 As described above, the sixth embodiment according to the present embodiment, the effect of the fourth embodiment of the embodiment, since the sensor module is assembled into the apparatus body, it is easier to wear c [8] 4: embodiment to the sixth embodiment modification

以上说明的是预先在R0M96内存储了控制用程序的情况,但也可以形成把控制用程序预先记录在各种磁盘、光盘、存储卡等记录介质中, 从这些记录介质中读取并安装的结构。 Described above is previously stored in the control program of the R0M96, it may be formed to a control program recorded in a recording medium of various disk, optical disk, memory card or the like, which is read from the recording medium and installed in structure. 另外,也可以形成设置通信接口, 通过因特网、LAN等网络下载控制用程序,然后安装并执行的结构。 Further, the communication interface may be formed provided, via the Internet, LAN, etc. Download control program and install and execute the structure.

发明效果 Effect of the Invention

根据本发明,能够可靠检测脉波检测信号中包含的体动成分,根据去除体动成分后的脉波检测信号算出脉搏数,所以能够可靠去除由生物体内部产生的体动成分、特别是因静脉血液产生的体动成分,容易确定对应脉波成分的波谱,提高脉波检测精度。 According to the present invention, it is possible to reliably detect the pulse wave detection signal included in the body motion component is calculated based on the detection pulse number of the pulse wave signal after removing the body motion components, it is possible to reliably remove body motion components generated inside the living body, in particular because venous blood generated motion components, is easy to determine the corresponding spectral component of the pulse wave, the pulse wave detection accuracy.

57 57

Claims (15)

1.一种佩戴在人体上测试脉搏的脉搏计,该脉搏计具有: 脉波检测单元,具有脉波传感器,并输出脉波检测信号; 体动成分去除单元,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;和脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数, 其特征在于, 所述体动成分去除单元具有差检测单元,该差检测单元检测所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差, 所述差检测单元具有角度传感器,该角度传感器以佩戴了脉搏计的手臂的肩关节为中心,检测实际配置状态相对于该脉搏计的基准角度的角度差作为所述高度方向的相对差。 A test pulse is worn on the human pulse count, the pulse rate meter includes: a pulse wave detection unit having a pulse wave sensor, and outputs a pulse wave detection signal; body motion component removing means, according to the heart of the wearer and the relative difference in the height direction position wearing a pulse meter, removing the body motion components included in the pulse wave detection signal; and a pulse rate calculating means based on said pulse wave detection signal after removing the body motion components, the calculated pulse number, wherein, said body motion component removing unit includes a difference detection unit, the relative difference in the height direction difference detecting means for detecting the heart of the wearer and the wearing position pulse meter, the difference detecting means having an angle sensor, the angle sensor in a pulse meter is wearing the shoulder as the center arm, arranged to detect the actual state of the phase angle of the reference angle pulse meter, as the difference between the relative difference in height direction.
2. 根据权利要求1所述的脉搏计,其特征在于,所述角度传感器被配置在所述脉波传感器的附近。 The pulse rate monitor according to claim 1, characterized in that the angle sensor is arranged in the vicinity of said pulse wave sensor.
3. 根据权利要求1所述的脉搏计,其特征在于,所述角度传感器以层叠状态配置在所述脉波传感器上。 3. The pulse rate monitor according to claim 1, characterized in that the angle sensor arranged in a laminated state on the pulse wave sensor.
4. 根据权利要求1所述的脉搏计,其特征在于,所述角度传感器根据静止加速度检测所述角度差。 Pulse rate monitor according to claim 1, characterized in that the angle sensor detecting the difference according to the static angular acceleration.
5. 根据权利要求l所述的脉搏计,其特征在于,所述角度传感器具有旋转锤,根据所述旋转锤的旋转状态检测所述角度差。 The pulse rate monitor as claimed in claim l, characterized in that the angle sensor having a rotating hammer, hammer according to the rotation state of the rotation detecting the angular difference.
6. 根据权利要求1所述的脉搏计,其特征在于,所述差检测单元具有角度差校正单元,该角度差校正单元在所述角度差被视为该脉搏计的佩戴位置位于相对于所述佩戴者的心脏位置更高的位置时,根据规定的所述体动成分的衰减曲线校正所述角度差。 The pulse rate monitor according to claim 1, characterized in that the angular difference detection unit has a differential correction unit, the aberration correcting unit angular difference is regarded as the angle of the pulsometer is positioned relative to the wearing position At higher heart of the wearer of said position, said body motion component attenuation correction curve according to the predetermined angular difference.
7. 根据权利要求1〜6中任一项所述的脉搏计,其特征在于,所述体动成分去除单元具有去除处理单元,该去除处理单元从所述脉波检测信号中减去对应基于所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的所述体动成分的体动成分检测信号。 The 1~6 pulse meter as claimed in any of claims, wherein said body motion component remover removing unit having a processing unit, the removal processing unit subtracts from the signal corresponding to the pulse wave detection based on said body motion component body relative difference in the height direction of the wearer and the position of the heart pulse meter wearing position of the movable component of the detection signal.
8. —种具有脉波检测单元的脉搏计的控制方法,该脉波检测单元具有脉波传感器,并输出脉波信号,该控制方法特征在于,具有:以佩戴了脉搏计的手臂的肩关节为中心,检测实际配置状态相对于该脉搏计的基准角度的角度差作为佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的步骤;体动成分去除步骤,根据所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;和脉搏数算出步骤,根据去除所述体动成分后的所述脉波检测信号, 算出脉搏数。 8. - control methods the pulse wave detection unit having a pulse meter, the pulse wave detection means has a pulse wave sensor, and outputs a pulse wave signal, the control method comprising: a shoulder to the wearer of the pulsometer arm as the center, detects the actual configuration state of the phase angle of the reference angle pulse meter difference in height direction of the wearer as the heart and the pulse meter wearing position relative difference step; step of removing the body motion component, according to the wearer the relative difference in the height direction and the position of the heart's pulse meter wearing position, removing the body motion component included in the pulse wave detection signal; and a pulse rate calculating step, according to said pulse after removing the body motion components wave detection signal to calculate the pulse rate.
9. 一种佩戴在身体的脉波检测位置的手表型信息装置,具有脉波检测单元,该脉搏检测单元具有脉波传感器,并输出脉波检测信号;和佩戴在手臂上的装置主体单元,所述装置主体单元具有:体动成分去除单元,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号, 算出脉搏数;和显示所述脉搏数的显示单元,其特征在于,所述体动成分去除单元具有差检测单元,该差检测单元检测所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,所述差检测单元具有角度传感器,该角度传感器以佩戴了脉搏计的手臂的肩关节为中心,检测实际配置状态相对于该脉搏计的基准角度的角度差作为所述高度方向的相对差。 A worn the wristwatch type pulse wave detecting apparatus information of the position of the body, with the pulse wave detection unit, the detection pulse having a pulse wave sensor unit, and outputs a pulse wave detection signal; and a device worn on the arm body unit, the device body unit includes: a body motion component removing means, the relative difference in the height direction of the wearer meter according to the heart pulse and the wearing position, removing the body motion components included in the pulse wave detection signal; a pulse rate is calculated means, based on the pulse wave detection signal after removing the body motion components, calculating the pulse rate; and a display unit displaying the pulse rate, wherein, said body motion component removing unit includes a difference detection unit, the difference detecting means for detecting the heart of the wearer and the wearing position in the height direction of the relative difference in the pulse count, the difference detection unit has an angle sensor, the angle sensor in a pulse meter is wearing the shoulder as the center arm, the detection the actual configuration state with respect to the relative difference between the reference angle pulse meter as an angle difference in the height direction.
10. —种佩戴在人体上测试脉搏的脉搏计,该脉搏计特征在于,具有:脉波检测单元,具有脉波传感器,并输出脉波检测信号; 体动成分去除单元,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;和脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数,其特征在于,所述体动成分去除单元具有体动检测单元,该体动检测单元检测作为所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的函数而表示的体动成分,并输出体动检测信号,所述体动检测单元具有检测静脉血压力的压力传感器。 10. - the test species on a human body wearing a pulse meter pulse, the pulse meter comprising: a pulse wave detection unit having a pulse wave sensor, and outputs a pulse wave detection signal; body motion component removing means in accordance with the wearer's heart the relative difference in the height direction and the position of the pulse meter wearing position, removing the body motion components included in the pulse wave detection signal; and a pulse rate calculating means, said pulse wave detection signal after removing the body motion components in accordance with calculating the pulse rate, wherein, said body motion component removing means has a height difference relative to the direction of the body motion detecting unit, the body motion detection means detects a position of the heart of the wearer and the wearing position of the pulse meter of represented by a function of the body motion components, and outputs the detected body motion signal, the body motion detecting unit includes a pressure sensor for detecting venous pressure.
11. 根据权利要求10所述的脉搏计,其特征在于,所述压力传感器被配置在所述脉波传感器的附近。 11. The pulse meter according to claim 10, wherein the pressure sensor is arranged in the vicinity of said pulse wave sensor.
12. 根据权利要求10所述的脉搏计,其特征在于,所述压力传感器以层叠状态配置在所述脉波传感器上。 12. The pulse meter according to claim 10, wherein said pressure sensor is arranged in a laminated state on the pulse wave sensor.
13. 根据权利要求10〜12中任一项所述的脉搏计,其特征在于,所述体动成分去除单元具有去除处理单元,该去除处理单元从所述脉波检测信号中减去对应基于所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的所述体动成分的体动成分检测信号。 10~12 according to claim any one of a pulse meter, characterized in that said body motion component remover unit having a removal processing means, corresponding to the removal processing unit subtracts the pulse wave based on the detection signal said body motion component body relative difference in the height direction of the wearer and the position of the heart pulse meter wearing position of the movable component of the detection signal.
14. 一种具有脉波检测单元的脉搏计的控制方法,该脉波检测单元具有脉波传感器,并输出脉波信号,该控制方法特征在于,具有:检测静脉血压力以得到作为成正比的佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的函数而表示的体动成分,并输出体动检测信号的步骤;体动成分去除步骤,根据所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分; 和脉搏数算出步骤,根据去除所述体动成分后的所述脉波检测信号, 算出脉搏数。 A method of controlling a pulse wave detection unit having a pulse meter, the pulse wave detection means has a pulse wave sensor, and outputs a pulse wave signal, the control method comprising: detecting a blood pressure proportional to afford a body movement component, and the step of detecting the body motion signal output function of the relative difference in the height direction of the wearer and the heart of the wearing position of the pulse meter and expressed; body motion component removing step, according to the heart of the wearer and the height direction of the pulse meter of a relatively poor wearing position, removing the body motion components included in the pulse wave detection signal; and a step of calculating the pulse rate, the pulse wave detection signal after removing the body motion components in accordance with, The pulse rate is calculated.
15. —种佩戴在身体的脉波检测位置的手表型信息装置,具有脉波检测单元,该脉搏检测单元具有脉波传感器,并输出脉波检测信号;和佩戴在手臂上的装置主体单元,所述装置主体单元具有:体动成分去除单元,根据佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差,去除所述脉波检测信号中包含的体动成分;脉搏数算出单元,根据去除所述体动成分后的所述脉波检测信号,算出脉搏数;和显示所述脉搏数的显示单元, 其特征在于,所述体动成分去除单元具有体动检测单元,该体动检测单元检测作为所述佩戴者的心脏位置和该脉搏计的佩戴位置的高度方向的相对差的函数而表示的体动成分,并输出体动检测信号,所述体动检测单元具有检测静脉血压力的压力传感器。 15. - species worn the wristwatch type pulse wave detecting apparatus information of the position of the body, with the pulse wave detection unit, the detection pulse having a pulse wave sensor unit, and outputs a pulse wave detection signal; and a device worn on the arm body unit, the device body unit includes: a body motion component removing means, the relative difference in the height direction of the wearer meter according to the heart pulse and the wearing position, removing the body motion components included in the pulse wave detection signal; a pulse rate is calculated means, based on the pulse wave detection signal after removing the body motion components, calculating the pulse rate; and a display unit displaying the pulse rate, wherein, said body motion component removing unit includes a body motion detecting means, the functions as a body motion detecting means detects the direction of the wearer's height and position of the heart of the wearing position of the pulse meter of a relatively poor representation of the moving components, and outputs the detected body motion signal, the body motion detection means having detected the pressure sensor of the blood pressure.
CN 200610146863 2003-03-19 2004-03-19 Pulse meter, method for controlling pulse meter and wristwatch-type information device CN100475136C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003075839 2003-03-19
JP2003-075840 2003-03-19
JP2003-075839 2003-03-19
JP2003-310624 2003-09-02
CN200410039956.9 2004-03-19

Publications (2)

Publication Number Publication Date
CN1954771A CN1954771A (en) 2007-05-02
CN100475136C true CN100475136C (en) 2009-04-08

Family

ID=38062463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610146863 CN100475136C (en) 2003-03-19 2004-03-19 Pulse meter, method for controlling pulse meter and wristwatch-type information device

Country Status (1)

Country Link
CN (1) CN100475136C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742369B2 (en) * 2011-03-29 2015-07-01 セイコーエプソン株式会社 Pulse wave meter and signal processing method
JP5821658B2 (en) * 2012-01-25 2015-11-24 オムロンヘルスケア株式会社 Measuring apparatus and measuring method
CN102599898A (en) * 2012-04-12 2012-07-25 田小俊 Portable health manager
CN102988036B (en) * 2012-12-26 2014-08-06 中国科学院自动化研究所 Method for measuring pulse rate
JP5979604B2 (en) * 2013-02-06 2016-08-24 カシオ計算機株式会社 Biological information detection apparatus, biological information detection method, and biological information detection program
CN103099611B (en) * 2013-03-07 2014-10-15 南京盟联信息科技有限公司 Sphygmomanometer for interference suppression and interference suppression system
CN104665794B (en) * 2013-11-29 2018-06-12 深圳迈瑞生物医疗电子股份有限公司 Blood pressure detecting signal correction method and blood pressure detector
CN105411563A (en) * 2014-09-12 2016-03-23 路提科技股份有限公司 Wearable electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795300A (en) 1994-06-01 1998-08-18 Advanced Body Metrics Corporation Heart pulse monitor
CN1206337A (en) 1996-09-10 1999-01-27 精工爱普生株式会社 Organism state measuring device and relaxation instructing device
US6198951B1 (en) 1997-09-05 2001-03-06 Seiko Epson Corporation Reflection photodetector and biological information measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795300A (en) 1994-06-01 1998-08-18 Advanced Body Metrics Corporation Heart pulse monitor
CN1206337A (en) 1996-09-10 1999-01-27 精工爱普生株式会社 Organism state measuring device and relaxation instructing device
US6198951B1 (en) 1997-09-05 2001-03-06 Seiko Epson Corporation Reflection photodetector and biological information measuring instrument

Also Published As

Publication number Publication date
CN1954771A (en) 2007-05-02

Similar Documents

Publication Publication Date Title
US6129676A (en) Movement rate monitor
EP1827218B1 (en) Methods for reducing influences resulting from movement artefacts of a sensor system comprising a capacitive electrode
Luinge et al. Inclination measurement of human movement using a 3-D accelerometer with autocalibration
US4757453A (en) Body activity monitor using piezoelectric transducers on arms and legs
EP0842635A1 (en) Motion prescription support device
CN1287733C (en) Body motion detector
CN1231175C (en) Pulse wave detection method, artery position detection method and pulse wave detection apparatus
Terrier et al. High-precision satellite positioning system as a new tool to study the biomechanics of human locomotion
Redmond et al. Observations on the design and specification of a wrist-worn human activity monitoring system
JP2006524798A (en) Device for performing sensitive measurements of various parameters and sensors particularly useful in such devices
ES2364951T3 (en) System and method for the measurement of the kinematic information of the march.
ES2301737T3 (en) Procedure and measurement device for the determination of blood pressure.
US5795300A (en) Heart pulse monitor
US8260405B2 (en) Monitoring apparatus for monitoring a user&#39;s heart rate and/or heart rate variation; wristwatch comprising such a monitoring apparatus
JP2012513227A (en) Walking monitor
US5908396A (en) Pitch measurement device, electronic instrument, and pitch measurement method
US6589184B2 (en) Implantable intravascular pressure determining device and method
CN1178064C (en) Impulse force estimating device and method
US9039614B2 (en) Methods, systems and devices for measuring fingertip heart rate
JP2005066323A (en) Portable detector for measuring movement of person wearing it and the method
Giansanti et al. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers
US9168420B1 (en) Force measurement system
US5776070A (en) Pulse rate counter utilizing body movement amptitude detection
US20040186695A1 (en) Body motion detection device, pitch meter, wristwatch-type information processing device, method for controlling thereof, control program, and storage medium
WO2005034751A2 (en) Stride-monitoring device

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted