CN100466631C - Blank-interface text transmission method, network accessing apparatus and system - Google Patents

Blank-interface text transmission method, network accessing apparatus and system Download PDF

Info

Publication number
CN100466631C
CN100466631C CNB2006101617485A CN200610161748A CN100466631C CN 100466631 C CN100466631 C CN 100466631C CN B2006101617485 A CNB2006101617485 A CN B2006101617485A CN 200610161748 A CN200610161748 A CN 200610161748A CN 100466631 C CN100466631 C CN 100466631C
Authority
CN
China
Prior art keywords
message
network
layers
blank
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101617485A
Other languages
Chinese (zh)
Other versions
CN1980193A (en
Inventor
徐子振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CNB2006101617485A priority Critical patent/CN100466631C/en
Publication of CN1980193A publication Critical patent/CN1980193A/en
Application granted granted Critical
Publication of CN100466631C publication Critical patent/CN100466631C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/4061Push-to services, e.g. push-to-talk or push-to-video
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • G01S1/026Means for monitoring or calibrating of associated receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1639Details related to the display arrangement, including those related to the mounting of the display in the housing the display being based on projection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/305Authentication, i.e. establishing the identity or authorisation of security principals by remotely controlling device operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6209Protecting access to data via a platform, e.g. using keys or access control rules to a single file or object, e.g. in a secure envelope, encrypted and accessed using a key, or with access control rules appended to the object itself
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/74Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information operating in dual or compartmented mode, i.e. at least one secure mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/88Detecting or preventing theft or loss
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10398Improvement or modification of read or write signals signal quality assessment jitter, timing deviations or phase and frequency errors
    • G11B20/10425Improvement or modification of read or write signals signal quality assessment jitter, timing deviations or phase and frequency errors by counting out-of-lock events of a PLL
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25754Star network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2678Time synchronisation
    • H04B7/2687Inter base stations synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0077Multicode, e.g. multiple codes assigned to one user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • H04J3/0655Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP] using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1841Resequencing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/187Details of sliding window management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/417Bus networks with decentralised control with deterministic access, e.g. token passing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/497Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/156Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5087Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to voice services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/091Measuring contribution of individual network components to actual service level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/15Flow control; Congestion control in relation to multipoint traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/193Flow control; Congestion control at layers above the network layer at the transport layer, e.g. TCP related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/74Admission control; Resource allocation measures in reaction to resource unavailability
    • H04L47/745Reaction in network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • H04L47/765Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the end-points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/824Applicable to portable or mobile terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/48Message addressing, e.g. address format or anonymous messages, aliases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/58Message adaptation for wireless communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/255Maintenance or indexing of mapping tables
    • H04L61/2553Binding renewal aspects, e.g. using keep-alive messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/126Applying verification of the received information the source of the received data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/613Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/70Media network packetisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/765Media network packet handling intermediate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1034Reaction to server failures by a load balancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/085Secret sharing or secret splitting, e.g. threshold schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/304Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy based on error correction codes, e.g. McEliece
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72415User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories for remote control of appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/0024Services and arrangements where telephone services are combined with data services
    • H04M7/0057Services where the data services network provides a telephone service in addition or as an alternative, e.g. for backup purposes, to the telephone service provided by the telephone services network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/12Arrangements for interconnection between switching centres for working between exchanges having different types of switching equipment, e.g. power-driven and step by step or decimal and non-decimal
    • H04M7/1205Arrangements for interconnection between switching centres for working between exchanges having different types of switching equipment, e.g. power-driven and step by step or decimal and non-decimal where the types of switching equipement comprises PSTN/ISDN equipment and switching equipment of networks other than PSTN/ISDN, e.g. Internet Protocol networks
    • H04M7/1295Details of dual tone multiple frequency signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00912Arrangements for controlling a still picture apparatus or components thereof not otherwise provided for
    • H04N1/00957Compiling jobs, e.g. for batch processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N1/32101Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N1/32106Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title separate from the image data, e.g. in a different computer file
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/527Global motion vector estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/254Management at additional data server, e.g. shopping server, rights management server
    • H04N21/2543Billing, e.g. for subscription services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/418External card to be used in combination with the client device, e.g. for conditional access
    • H04N21/4181External card to be used in combination with the client device, e.g. for conditional access for conditional access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/462Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities
    • H04N21/4623Processing of entitlement messages, e.g. ECM [Entitlement Control Message] or EMM [Entitlement Management Message]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/47211End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for requesting pay-per-view content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6175Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving transmission via Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6187Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving transmission via a telephone network, e.g. POTS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6582Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/4448Receiver circuitry for the reception of television signals according to analogue transmission standards for frame-grabbing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/46Receiver circuitry for the reception of television signals according to analogue transmission standards for receiving on more than one standard at will
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0112Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards corresponding to a cinematograph film standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/162Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
    • H04N7/163Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • H04N7/17327Transmission or handling of upstream communications with deferred transmission or handling of upstream communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/642Multi-standard receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • H04N9/7925Processing of colour television signals in connection with recording for more than one processing mode for more than one standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0025Provisions for signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/58Arrangements providing connection between main exchange and sub-exchange or satellite
    • H04Q3/60Arrangements providing connection between main exchange and sub-exchange or satellite for connecting to satellites or concentrators which connect one or more exchange lines with a group of local lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/102Route integrity, e.g. using trusted paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • H04W8/265Network addressing or numbering for mobility support for initial activation of new user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/08Trunked mobile radio systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2105Dual mode as a secondary aspect
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2115Third party
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/22Signal processing not specific to the method of recording or reproducing; Circuits therefor for reducing distortions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40273Bus for use in transportation systems the transportation system being a vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42221Conversation recording systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0094Multifunctional device, i.e. a device capable of all of reading, reproducing, copying, facsimile transception, file transception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3212Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a job, e.g. communication, capture or filing of an image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3212Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a job, e.g. communication, capture or filing of an image
    • H04N2201/3222Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a job, e.g. communication, capture or filing of an image of processing required or performed, e.g. forwarding, urgent or confidential handling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/32Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
    • H04N2201/3201Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
    • H04N2201/3274Storage or retrieval of prestored additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information
    • H04N5/45Picture in picture, e.g. displaying simultaneously another television channel in a region of the screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/775Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/84Television signal recording using optical recording
    • H04N5/85Television signal recording using optical recording on discs or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/907Television signal recording using static stores, e.g. storage tubes or semiconductor memories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/0122Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal the input and the output signals having different aspect ratios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1302Relay switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13039Asymmetrical two-way transmission, e.g. ADSL, HDSL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1304Coordinate switches, crossbar, 4/2 with relays, coupling field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13076Distributing frame, MDF, cross-connect switch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13095PIN / Access code, authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13109Initializing, personal profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13298Local loop systems, access network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13349Network management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/10Push-to-Talk [PTT] or Push-On-Call services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • H04W76/45Connection management for selective distribution or broadcast for Push-to-Talk [PTT] or Push-to-Talk over cellular [PoC] services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • H04W8/245Transfer of terminal data from a network towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S370/00Multiplex communications
    • Y10S370/901Wide area network
    • Y10S370/902Packet switching
    • Y10S370/903Osi compliant network
    • Y10S370/906Fiber data distribution interface, FDDI
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S370/00Multiplex communications
    • Y10S370/901Wide area network
    • Y10S370/902Packet switching
    • Y10S370/903Osi compliant network
    • Y10S370/907Synchronous optical network, SONET

Abstract

The invention includes steps: terminal sends aerial port message of using Internet protocol IP in concourse sublayer (CS) to network access facility (NAF); NAF removes media access layer MAC of aerial port in aerial port message received from terminal, and adds two layer capsulation of network protocol so as to form message, which is sent to backbone network, of fixed network; in capsulation of data link layer, two layers information at source end facility fills in two layers information of NAF. Transmission method of aerial port message in an instance disclosed in the invention includes procedures: removing two layer capsulation of fixed network protocol in fixed network message received from backbone network, and adding aerial MAC of using IP CS, NAF sends it to terminal. The invention also discloses network access facility and system. The invention expands service range of terminal.

Description

The transmission method of blank-interface text, network access equipment and system
Technical field
The present invention relates to the message transmissions technology of the communications field, particularly a kind of transmission method of blank-interface text, network access equipment and system.
Background technology
WiMAX based on the IEEE802.16 standard satisfies the wireless metropolitan area network technology that last mile of " " inserts in the communication network, it can either satisfy transmission market, big, medium-sized and small enterprises inserts and the outdoor utility of family's access, also can satisfy family and individual's indoor application, it can either satisfy fixing WiMAX and insert the portable access of low speed in also can satisfying.On technical standard, solved the problem aspect physical layer environment (outdoor radio frequency transmission) and the service quality (QoS) two so that the WiMAX product can outdoor and indoor application, can carry out that data insert and the real-time requirement than higher speech and video traffic.
The IEEE802.16 standard definition physical layer and medium Access Layer (MAC).They are the data transmission formats according to the characteristic definition of eating dishes without rice or wine to transmit data, are different with the physical layer in the fixed network ICP/IP protocol and the definition of MAC layer.Wherein, physical layer mainly is that data are carried out modulation, and multiple modulation systems such as OFDMA are supported in processing such as encoding and decoding.The MAC layer is subdivided into convergence sub-layer (CS layer), common part sublayer (CPS layer) and Security Sublayer again.
In the MAC layer, the CS layer has mainly been described the forming process of several formation MAC service data units (SDU), can be connected with the IP layer that comprises IPV4 and IPV6 with ethernet layer.Because the superstructure difference that CS connects, CS can be divided into two kinds of IP CS and ETH CS.For IP CS, the payload user data of MAC layer (payload) is only inserted the IP message, directly the bearing IP packet data; For ETH CS, the payload of MAC layer inserts the Ethernet message, carrying Ethernet message data.
The CPS layer has mainly been described the forming process of Medium Access Control (MAC) Protocol Data Unit (PDU), and the MAC management function and the service that provide, mainly contain: uplink scheduling service, bandwidth request mechanism, contention scheme, network registry and initialization, search, renewal channel descriptor parameter, SS added processes such as multicast group and QOS.Security Sublayer is that data are carried out encryption and decryption.
Because the CS layer adopts different technology, feasible message according to the IEEE802.16 standard transmission may be the IP message that directly carries by air protocol, also may be the Ethernet message by the air protocol carrying.
When adopting IP CS technology, because the direct bearing IP packet of air protocol, therefore arrive two layers of information that do not have in the message of network access equipment in the fixed network agreement.When this message need transmit by backbone network, and backbone network is when adopting protocol transmission data such as TCP/IP or ATM, prior art does not provide the mode of filling in two layers of information in the corresponding fixed network agreement, so network access equipment can't send to the blank-interface text that receives on the backbone network and transmits.
The problems referred to above are described for a specific example.DHCP (DHCP) proposes on Bootstrap Protocol (BOOTP) basis, and its effect is to provide configuration information to the Internet main frame in the TCP/IP network.DHCP adopts client (Client)/server (Server) pattern, proposes configuration application (comprising parameters such as IP address allocated, subnet mask, default gateway) by user end to server, and server returns corresponding configuration information according to strategy.The DHCP message adopts UDP to encapsulate as transport layer protocol.
If subscriber station (SS) and base station (BS) adopt IPCS on eating dishes without rice or wine, SS will dynamically obtain the IP address, needs to initiate dhcp process.The DHCP message has only the IP message part when transmitting on eating dishes without rice or wine, do not have two layers of information of TCP/IP; And the BS network side adopts Ethernet, and the message bearing mode is to utilize Ethernet bearing IP message, like this, because the DHCP message that receives does not have two layers of information, therefore according to existing protocol, BS can't fill source MAC, the DHCP message can not be sent on the Ethernet to transmit.
Not only can there be the problems referred to above for the DHCP message, need the message of two layers of information of fixed network agreement for other, as ARP(Address Resolution Protocol), Reverse Address Resolution Protocol (RARP) etc., when these messages are adopting when transmitting between the WiMAX terminal of IP CS and backbone device, all similar problem can appear.Certainly, the fixed network agreement also not only is confined to ICP/IP protocol, during for the above-mentioned message of transmission in other fixed networks such as ATM, also has identical problem.
As seen, when adopting IP CS, the WiMAX terminal sends blank-interface text behind network access equipment, when if this message need transmit in the backbone network of supporting the fixed network agreement, network access equipment this message can't be converted to comprise correct two layers of information the fixed network message transmissions in backbone network, greatly limited the business of WiMAX terminal and carried out.
Summary of the invention
In view of this, the method and system that the embodiment of the invention provides a kind of blank-interface text to be converted to the conversion of fixed network message can be expanded the type of service that the WiMAX terminal is supported.
The embodiment of the invention also provides a kind of fixed network message to be converted to the method and system of blank-interface text, can realize expanding the type of service that the WiMAX terminal is supported.
The embodiment of the invention also provides a kind of network access equipment, can realize the conversion of blank-interface text and fixed network message.
For achieving the above object, the embodiment of the invention adopts following technical scheme:
A kind of transmission method of blank-interface text comprises:
When terminal when backbone network sends message, terminal will adopt the blank-interface text of Internet protocol IP convergence sub-layer CS to send to network access equipment, fill in two layers of information when transmitting this IP message in the fixed network in two layers of information of the IP message in blank-interface text; Network access equipment receives the blank-interface text of self terminal, extract IP message wherein, two layers of encapsulation of stamping the fixed network agreement send to backbone network behind the formation fixed network message, in described two layers of encapsulation, two layers of information of source end equipment are filled in two layers of information of network access equipment;
When backbone network when terminal sends message, network access equipment will receive two layers of encapsulation removing the fixed network agreement from the fixed network message of backbone network, and the IP message is encapsulated in the blank-interface text, send to terminal, eat dishes without rice or wine to adopt IP CS.
A kind of network access equipment comprises: terminal interface unit, uplink conversion unit, network side interface unit and descending converter unit, wherein,
Described terminal interface unit be used for the blank-interface text of the employing IP CS that receiving terminal sends, and the blank-interface text that described descending converter unit is sent sends to terminal;
Described uplink conversion unit, be used for extracting the IP message of the blank-interface text that described terminal interface unit receives, and two layers of encapsulation of stamping the fixed network agreement, send to described network side interface unit after forming the fixed network message, in described two layers of encapsulation, two layers of information of source end equipment are filled in two layers of information of network access equipment self;
Described network side interface unit is used to receive the fixed network message that backbone network sends, and also is used for the fixed network message that described uplink conversion unit sends is sent to backbone network;
Described descending converter unit is used for the fixed network message that described network side interface unit receives is removed two layers of encapsulation of fixed network agreement, and extraction IP message is encapsulated in and sends to described terminal interface unit in the blank-interface text, eats dishes without rice or wine to adopt IP CS.
A kind of blank-interface text is converted to the system of fixed network message, comprises terminal, network access equipment and backbone network, wherein,
Described terminal is used for adopting the blank-interface text of IP CS to send to described network access equipment, fills in two layers of information when transmitting this message in the fixed network in two layers of information of the IP message in blank-interface text; Also be used to receive the blank-interface text that described network access equipment sends, eat dishes without rice or wine to adopt IP CS;
Described network access equipment, be used for receiving the blank-interface text of self terminal to extract the IP message, two layers of encapsulation of stamping the fixed network agreement send to described backbone network behind the formation fixed network message, in described two layers of encapsulation, two layers of information are filled in two layers of information of network access equipment; The fixed network message that also is used for being received from described backbone network removes two layers of encapsulation of fixed network agreement, extracts the IP message and is encapsulated in and sends to described terminal in the blank-interface text, eats dishes without rice or wine to adopt IP CS.
As seen from the above technical solution, in embodiments of the present invention, when between terminal and backbone network, pass message mutually by network access equipment, and the interface between terminal and network access equipment is when eating dishes without rice or wine, on the up direction of message, terminal is filled in two layers of information when transmitting this message in the fixed network in two layers of information of the IP message of eating dishes without rice or wine, it is packaged into to adopt the air protocol message of IP CS to send to network access equipment then; After network access equipment receives blank-interface text, extract the IP message, two layers of encapsulation of stamping the fixed network agreement are mail to backbone network thereby blank-interface text is converted to the fixed network message.Particularly, two layers of information utilizing network access equipment in two layers of encapsulation are as two layers of information in the data link layer, also promptly by network access equipment as the message that comprises two layers of information between the fixed network agency of terminal and backbone network alternately.On the down direction of message, network access equipment receives the fixed network message that backbone network sends, and removes two layers of encapsulation of fixed network agreement, and extraction IP message is encapsulated in and sends to terminal in the blank-interface text, and eats dishes without rice or wine to adopt IP CS.By the embodiment of the invention, promptly can finish the mutual conversion between fixed network message and blank-interface text, make the WiMAX terminal can carry out fixed network services, greatly expand the scope of business of WiMAX terminal.
Description of drawings
Fig. 1 is the transmission method particular flow sheet of blank-interface text on the up direction in the embodiment of the invention.
Fig. 2 is the transmission method particular flow sheet of blank-interface text on the down direction in the embodiment of the invention.
The transmission system concrete structure figure of the blank-interface text that provides in the embodiment of the invention is provided Fig. 3.
The concrete structure figure of the network access equipment that provides in the embodiment of the invention is provided Fig. 4.
Embodiment
For the purpose, technological means and the advantage that make the embodiment of the invention is clearer, the embodiment of the invention is described in further detail below in conjunction with accompanying drawing.
The basic thought of the embodiment of the invention is: when terminal when network side sends message, terminal is filled in two layers of information when transmitting this message in the fixed network in two layers of information of IP message, and this message is packaged into adopts the blank-interface text of IP CS to send to network access equipment, network access equipment extracts the IP message after receiving uplink message, stamp two layers of encapsulation of fixed network agreement, thereby realize that blank-interface text is converted to the fixed network message; When network side when terminal sends message, on the down direction of message, network access equipment receives downlink message, and removes two layers of encapsulation of fixed network agreement, the IP message is encapsulated in the blank-interface text that adopts IP CS sends to terminal, thereby realize that the fixed network message is converted to blank-interface text.
Therefore on the up direction of the embodiment of the invention, the transmission method overall procedure of blank-interface text may further comprise the steps:
Step 1, terminal will adopt the blank-interface text of Internet protocol IP convergence sub-layer CS to send to network access equipment, fill in two layers of information when transmitting this message in the fixed network in two layers of information of the IP message content of eating dishes without rice or wine.
In message, fill two layers of information, can guarantee that this message arrives the destination device (as server) of backbone network after, this destination device can correctly be discerned the different terminals that sends message.
Step 2, network access equipment receive the blank-interface text of self terminal, extract two layers of encapsulation that IP message is wherein stamped the fixed network agreement, send to backbone network after forming the fixed network message, two layers of information that two layers of information in two layers of encapsulation are filled in network access equipment.
Ethernet is the double layer network technology at present most widely used a kind of ICP/IP protocol, and when backbone network adopted Ethernet, the IP message need be stamped the Ethernet encapsulation.Source MAC in the Ethernet encapsulation is filled in the MAC Address relevant with network access equipment, particularly, it can be the MAC Address of this network access equipment self, ethernet address as base station (BS), also can be the MAC Address in the ethernet mac address pond of presetting in this network access equipment, as the ethernet address in the ethernet mac address pond of BS.Difference according to selecting the MAC Address mode can be divided into two kinds with choosing of source MAC, is respectively 1:1 MAC and N:1 MAC.1:1 MAC is meant, for the message of same network access equipment to backbone network forwarding different terminals, selects different ethernet source MAC Address, is specially the different ethernet mac address of selection from the address pool of this network access equipment; N:1 MAC is meant, for the message of same network access equipment to backbone network forwarding different terminals, selects identical ethernet source MAC Address, is specially the ethernet mac address that adopts this network access equipment oneself.
On the down direction of the embodiment of the invention, the overall procedure of transmission blank-interface text comprises:
Network access equipment will receive two layers of encapsulation removing the fixed network agreement from the fixed network message of backbone network, stamp and eat dishes without rice or wine to send to terminal after the encapsulation, eat dishes without rice or wine to adopt IP CS.
When blank-interface text and fixed network message are changed mutually, according to the difference of concrete message, the fill substance of message with and the business field of using also inequality.Between terminal and backbone network, be example alternately with the DHCP message below, the embodiment of conversion method, network access equipment and the network system of blank-interface text of the present invention and fixed network message is described.
Fig. 1 is the transmission method particular flow sheet of blank-interface text on the up direction in the embodiment of the invention.In the present embodiment, terminal is for obtaining configuration information, and the Dynamic Host Configuration Protocol server in backbone network sends the DHCP message, the configuration application is proposed, two layers of transmission of backbone network adopt the Ethernet that meets ICP/IP protocol to carry out, and network access equipment is specially base station (BS), and terminal is specially subscriber station (SS).In ICP/IP protocol, two layers are data link layer.As shown in Figure 1, this method comprises:
Step 101, SS fills in the DHCP message.
According to the regulation of DHCP agreement, DHCP message format territory is described as shown in table 1.Promptly all DHCP messages all will meet the form of this table, fill in the DHCP message content.
Field Length (byte) Describe
Op 1 Message op code/message type (type of message) 1 BOOTREQUEST 2 BOOTREPLY
Htype 1 Hardware address type (hardware address type), 1 expression Ethernet, this and ARP ask or reply in the implication represented of field of the same name identical.
Hlen 1 Hardware address length (hardware address length), 6 bytes.
Hops 1 Jumping figure, Client is set to 0, also can be by an acting server setting
Xid 4 Transaction ID by the random number that Client selects, is used for the coupling of mutual message between Server and the Client.
Secs 2 Seconds (second number) is filled by Client, begins address acquisition or address from Client and renews second number that has used the back.
Flags 2 B: leftmost bit, Broadcast flag; MBZ: remaining bits gives in the future and uses for keeping the position.
Ciaddr 4 Client IPaddress, having only Client is BOUND, RENEW, REBINDING state, and can respond ARP requests the time, just can be filled.
Yiaddr 4 ' your ' be IP address (Client)
Siaddr 4 Among the bootstrap, the IP address of next Server is filled in Offer and ACK message by Server.
Giaddr 4 Use when carrying out message interaction by Relay Relay agency's IP address.
Chaddr 16 Client hardware address, client must be provided with its " client's hardware address " field.
Sname 64 " server host name " field is that a null value stops string, is filled in by server.
File 128 Boot file name is that a null value stops string.Among the DHCPDISCOVER " generic " name or null character (NUL); DHCPOFFER provides effective directory path full name.
Options Var The optional parameters territory, the option list of definition.Introduced the definition of whole option among the RFC2132.
Table 1
Because the DHCP message utilizes ICP/IP protocol to carry out when backbone network transmits, so in the DHCP message shown in the table 1, the data link layer information that " chaddr ", " htype " and three fields of " hlen " need be filled in the terminal ICP/IP protocol stack that sends to the DHCP message.Particularly, stipulate in the present embodiment that " chaddr " field is filled in the MAC Address (SSID) of this terminal when dispatching from the factory, " htype " field is filled out one writing and is represented Ethernet, and " hlen " field is filled in the MAC Address byte length of SS, i.e. " 6 ".After filling in the DHCP message content according to aforesaid way, Dynamic Host Configuration Protocol server just can be according to the different terminal of data link layer information Recognition in the message.
Step 102 is stamped encapsulation with the DHCP original message, forms the IP message.
The DHCP message filled in of mode shown in 101 adopts UDP to encapsulate as transport layer protocol set by step.When breaking into the UDP bag, the UDP source port number that SS mails to the DHCP message of Dynamic Host Configuration Protocol server is 67, and the UDP source port number that Dynamic Host Configuration Protocol server mails to the DHCP message of SS is 68.Then, again the UDP bag is stamped the IP encapsulation, form the IP message.
Step 103, terminal is stamped the MAC encapsulation formation blank-interface text of eating dishes without rice or wine with the IP message of DHCP message and is sent to BS, wherein, eats dishes without rice or wine to adopt IP CS.
In the present embodiment, the MAC layer of eating dishes without rice or wine adopts IP CS, therefore can directly carry the IP bag of DHCP message, sends to BS by eating dishes without rice or wine.
Step 104, BS receives the DHCP message by eating dishes without rice or wine, and extracts IP message wherein, stamps the data link layer encapsulation, sends to the Dynamic Host Configuration Protocol server in the backbone network behind the formation fixed network message.
In the present embodiment, backbone network adopts Ethernet to transmit, so the data link layer encapsulation is specially the Ethernet encapsulation.In this step, BS extracts IP bag wherein after eating dishes without rice or wine to receive the DHCP message, add the Ethernet encapsulation.
Wherein, the selection of ethernet address can be adopted the mode of 1:1 MAC or N:1 MAC.If adopt the mode of 1:1 MAC, then from the ethernet mac address pond that BS sets in advance, select ethernet mac address as the source MAC in the DHCP message Ethernet frame head, in this case, the DHCP message of transmitting different SS by same BS is assigned with different ethernet address.If adopt the mode of N:1 MAC, then with the ethernet address of BS as the source MAC in the Ethernet frame head of DHCP message, in this case, the DHCP message of being transmitted different SS by same BS is assigned with identical ethernet address.No matter adopt the mode of 1:1 MAC or N:1 MAC, BS is all as the ARP proxy of SS, and the fixed network message of DHCP is sent to Dynamic Host Configuration Protocol server in the backbone network.
The DHCP message that Dynamic Host Configuration Protocol server receives the BS transmission is identical with message of the prior art, according to its message content, returns the DHCP message that carries configuration information to SS, and this message will at first send to BS.
Fig. 2 is the transmission method particular flow sheet of blank-interface text on the down direction in the embodiment of the invention.The above-mentioned DHCP message that sends to SS by Dynamic Host Configuration Protocol server need be used this method and finish the message conversion.As shown in Figure 2, this method comprises:
Step 201, BS receives the DHCP message that Dynamic Host Configuration Protocol server sends, and the data link layer encapsulation of this message is removed, and takes out the IP bag.
In this step, the DHCP message is encapsulated in the ethernet frame and is sent by Dynamic Host Configuration Protocol server, because in the present embodiment, BS need send to SS with the DHCP message by eating dishes without rice or wine, eat dishes without rice or wine to transmit IP message (IP CS), therefore BS will at first remove the Ethernet encapsulation of DHCP message, takes out the IP message.
Step 202 is stamped the MAC encapsulation of eating dishes without rice or wine with the IP message and is formed blank-interface text, sends to SS, wherein, eats dishes without rice or wine to adopt IP CS.
In this step because the MAC layer of eating dishes without rice or wine adopts IP CS, therefore with the IP bag directly as the MAC layer payload of eating dishes without rice or wine, after stamping the MAC that eats dishes without rice or wine and encapsulating, mail to SS by eating dishes without rice or wine.
The above-mentioned method embodiment of conversion mutually that is between the blank-interface text that provides in the embodiment of the invention and fixed network message.By the way, promptly can finish the blank-interface text of DHCP and the mutual conversion between the fixed network message.Like this, the WiMAX terminal just can be utilized DHCP message application configuration, has expanded the type of service that the WiMAX terminal is supported.The embodiment of network access equipment and network system also is provided in the present embodiment, can be used to implement said method.
The concrete structure figure of the blank-interface text transmission system that provides in the embodiment of the invention is provided Fig. 3.As shown in Figure 3, this network system comprises: terminal 310, network access equipment 320 and backbone network 330.
With reference to the concrete condition in the present embodiment, terminal 310 can be embodied as SS in this network system, and network access equipment 320 can be embodied as BS, and backbone network 330 can be embodied as Ethernet, and also comprises Dynamic Host Configuration Protocol server 331 in backbone network 330.
Particularly, in this system, terminal 310, be used for and adopt the DHCP blank-interface text of IP CS to send to network access equipment 320, in this DHCP message, two layers of information when two layers of information extends this as this message of transmission in the Ethernet, particularly, " chaddr " field is filled in the MAC Address (SSID) of this terminal that is provided with when dispatching from the factory, " htype " field is filled out one writing and is represented Ethernet, " hlen " field is filled in the byte length that the terminal MAC Address takies, i.e. and " 6 ", expression terminal MAC Address length is 6 bytes.Terminal 310 also is used to receive the DHCP blank-interface text of the employing IP CS that network access equipment 320 sends, carries the configuration information that Dynamic Host Configuration Protocol server returns in this DHCP blank-interface text.
Network access equipment 320 is used for receiving the DHCP blank-interface text of self terminal 310 to remove the MAC encapsulation of eating dishes without rice or wine, and extracts the IP message, stamps and sends to backbone network 330 after Ethernet encapsulates, and specifically sends in the Dynamic Host Configuration Protocol server 331.In the encapsulation of the Ethernet of this DHCP message, the source ethernet mac address is filled in the ethernet mac address relevant with network access equipment 331, and choosing of this relevant MAC Address can be adopted 1:1 MAC or N:1 MAC mode.This network access equipment 320 also is used for removing the Ethernet encapsulation and extracting the IP message receiving DHCP fixed network message from backbone network 330 Dynamic Host Configuration Protocol server 331, stamps and eats dishes without rice or wine to send to terminal 310 after the MAC encapsulation, eats dishes without rice or wine to adopt IPCS.
In said system, the concrete structure of network access equipment 320 comprises as shown in Figure 4: terminal interface unit 321, uplink conversion unit 322, network side interface unit 323 and descending converter unit 324.
In this network access equipment 320, terminal interface unit 321 be used for the DHCP blank-interface text of the employing IP CS that receiving terminal 310 sends, and the blank-interface text that descending converter unit 324 is sent sends to terminal 310.
Uplink conversion unit 322, be used for extracting the IP message of the blank-interface text that terminal interface unit 321 receives, and stamp Ethernet encapsulation, send to network side interface unit 323 after forming the fixed network message, in the Ethernet encapsulation, the source ethernet mac address is filled in the MAC Address relevant with network access equipment, and the mode of choosing of this ethernet mac address can adopt 1:1 MAC or N:1 MAC mode.
Network side interface unit 323 is used for receiving the DHCP fixed network message that backbone network 330 Dynamic Host Configuration Protocol server 331 send, and the DHCP fixed network message that is used for that also uplink conversion unit 322 is sent sends to the Dynamic Host Configuration Protocol server 331 of backbone network 330.
Descending converter unit 324 is used for the DHCP fixed network message that network side interface unit 323 receives is removed the Ethernet encapsulation, stamps the MAC encapsulation of eating dishes without rice or wine, and forms blank-interface text and sends to terminal interface unit 321, wherein, eats dishes without rice or wine to adopt IP CS.
In above-mentioned network access equipment 320, can further include ethernet mac address pond memory cell, be used to store ethernet mac address; Uplink conversion unit 322 is further used for extracting ethernet mac address as the source MAC in the Ethernet encapsulation from the memory cell of ethernet mac address pond.
The above-mentioned system that the embodiment of the invention provides and the embodiment of network access equipment of being.In the present embodiment, SS can adopt various forms, as portable terminal (MS) etc.
In an embodiment of the present invention, realized normal transmission between the Dynamic Host Configuration Protocol server of DHCP message in WiMAX terminal and Ethernet, make and eat dishes without rice or wine to adopt IP CS, utilize IEEE802.16e carrying DHCP message, data link layer information in the DHCP message still can be filled, and Dynamic Host Configuration Protocol server still can be according to the different terminal of data link layer information Recognition in the DHCP message.Simultaneously, eat dishes without rice or wine to adopt IP CS, the BS network side adopts Ethernet, can realize the intercommunication of IEEE802.16e carrying DHCP message and Ethernet bearing DHCP message.Based on above-mentioned change, allow the BS network side to adopt Ethernet, eat dishes without rice or wine to adopt under the situation of IP CS, carry out the business relevant with Ethernet.
In the above-described embodiments, all, the specific embodiment of the present invention is described with the example that is transmitted as of DHCP message at ethernet device and WiMAX terminal room.In actual applications, need the message of two layers of information in the fixed network protocol stack for other, as ARP(Address Resolution Protocol), Reverse Address Resolution Protocol (RARP) etc., when these messages are adopting when transmitting between the WiMAX terminal of IP CS and backbone device, the mode described in the embodiment of the invention of can using is equally transmitted, thereby makes the WiMAX terminal can support the business of utilizing these messages to carry out; In addition, backbone network also not only is confined to meet the Ethernet of TCP/IP, can be the double layer network of supporting arbitrarily, as token-ring network, atm network etc., thereby realizes between the network of WiMAX terminal and different fixed network types the purpose of biography message mutually.When specifically carrying out the message conversion, similar with the mode of the embodiment of the invention, concrete message content difference to some extent when just transmitting, network access equipment is when two layers of encapsulation carrying out the fixed network agreement, at different double layer networks, encapsulate accordingly, other operating procedure is all identical, just repeats no more here.
In a word,, promptly can realize the transmission of blank-interface text, make the WiMAX terminal can carry out fixed network services, greatly expand the scope of business of WiMAX terminal by the embodiment of the invention.
Being preferred embodiment of the present invention only below, is not to be used to limit protection scope of the present invention.Within the spirit and principles in the present invention all, any modification of being done, be equal to replacement, improvement etc., all should be included within protection scope of the present invention.

Claims (10)

1, a kind of transmission method of blank-interface text is characterized in that, this method comprises:
When terminal when backbone network sends message, terminal will adopt the blank-interface text of Internet protocol IP convergence sub-layer CS to send to network access equipment, fill in two layers of information when transmitting this IP message in the fixed network in two layers of information of the IP message in blank-interface text; Network access equipment receives the blank-interface text of self terminal, extract IP message wherein, two layers of encapsulation of stamping the fixed network agreement send to backbone network behind the formation fixed network message, in described two layers of encapsulation, two layers of information of source end equipment are filled in two layers of information of network access equipment;
When backbone network when terminal sends message, the fixed network message that network access equipment will be received from backbone network removes two layers of encapsulation of fixed network agreement, and the IP message is encapsulated in the blank-interface text, sends to terminal, eats dishes without rice or wine to adopt IP CS.
2, method according to claim 1 is characterized in that, when described backbone network was Ethernet, in the encapsulation of described Ethernet, the source ethernet mac address was filled in the ethernet mac address relevant with network access equipment;
The described ethernet mac address relevant with network access equipment is: the ethernet mac address of described network access equipment, perhaps, the MAC Address in the ethernet mac address pond that described network access equipment is preset.
3, method according to claim 1 and 2 is characterized in that, the message of described empty port load-supporting is dynamic host configuration protocol DHCP message, address analysis protocol message or RARP message.
4, method according to claim 1 is characterized in that, described backbone network is Ethernet, token-ring network or other double layer network.
5, method according to claim 1 and 2 is characterized in that, when described blank-interface text is the DHCP message, when described backbone network is Ethernet, fills in as follows in two layers of information that relate in described DHCP message:
In hardware address chaddr field, fill in the MAC Address of described terminal oneself,
In hardware address type htype field, fill in the code name of expression Ethernet,
In hardware address length hlen field, fill in described MAC Address byte length.
6, method according to claim 1 is characterized in that, described fixed network message is dynamic host configuration protocol DHCP message, address analysis protocol message or RARP message.
7, a kind of network access equipment is characterized in that, this network access equipment comprises: terminal interface unit, uplink conversion unit, network side interface unit and descending converter unit, wherein,
Described terminal interface unit be used for the blank-interface text of the employing IPCS that receiving terminal sends, and the blank-interface text that described descending converter unit is sent sends to terminal;
Described uplink conversion unit, be used for extracting the IP message of the blank-interface text that described terminal interface unit receives, and two layers of encapsulation of stamping the fixed network agreement, send to described network side interface unit after forming the fixed network message, in described two layers of encapsulation, two layers of information of source end equipment are filled in two layers of information of network access equipment self;
Described network side interface unit is used to receive the fixed network message that backbone network sends, and also is used for the fixed network message that described uplink conversion unit sends is sent to backbone network;
Described descending converter unit is used for the fixed network message that described network side interface unit receives is removed two layers of encapsulation of fixed network agreement, and extraction IP message is encapsulated in and sends to described terminal interface unit in the blank-interface text, eats dishes without rice or wine to adopt IP CS.
8, network access equipment according to claim 7 is characterized in that, when backbone network was Ethernet, described uplink conversion unit was used for the ethernet mac address of the network access equipment source MAC as the Ethernet encapsulation.
9, network access equipment according to claim 7 is characterized in that, when backbone network was Ethernet, this network access equipment further comprised ethernet mac address pond memory cell, is used to store ethernet mac address;
Described uplink conversion unit is further used for extracting ethernet mac address as the source MAC in the Ethernet encapsulation from the memory cell of described ethernet mac address pond.
10, a kind of blank-interface text is converted to the system of fixed network message, comprises backbone network, it is characterized in that, this system further comprises terminal and network access equipment, wherein,
Described terminal is used for adopting the blank-interface text of IP CS to send to described network access equipment, fills in two layers of information when transmitting this IP message in the fixed network in two layers of information of the IP message in blank-interface text; Also be used to receive the blank-interface text that described network access equipment sends, eat dishes without rice or wine to adopt IP CS;
Described network access equipment, be used for receiving the blank-interface text of self terminal to extract the IP message, two layers of encapsulation of stamping the fixed network agreement send to described backbone network behind the formation fixed network message, in described two layers of encapsulation, two layers of information are filled in two layers of information of network access equipment; The fixed network message that also is used for being received from described backbone network removes two layers of encapsulation of fixed network agreement, extracts the IP message and is encapsulated in and sends to described terminal in the blank-interface text, eats dishes without rice or wine to adopt IP CS.
CNB2006101617485A 2006-12-19 2006-12-19 Blank-interface text transmission method, network accessing apparatus and system Expired - Fee Related CN100466631C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101617485A CN100466631C (en) 2006-12-19 2006-12-19 Blank-interface text transmission method, network accessing apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101617485A CN100466631C (en) 2006-12-19 2006-12-19 Blank-interface text transmission method, network accessing apparatus and system

Publications (2)

Publication Number Publication Date
CN1980193A CN1980193A (en) 2007-06-13
CN100466631C true CN100466631C (en) 2009-03-04

Family

ID=38131203

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101617485A Expired - Fee Related CN100466631C (en) 2006-12-19 2006-12-19 Blank-interface text transmission method, network accessing apparatus and system

Country Status (1)

Country Link
CN (1) CN100466631C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026116A1 (en) * 2014-08-21 2016-02-25 华为技术有限公司 Air interface data transmission method, device and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494565B (en) * 2008-01-24 2011-01-26 中国移动通信集团公司 Method for processing node defect of distributed wireless access system
CN101494597B (en) * 2008-01-24 2012-06-06 中国移动通信集团公司 Method, apparatus and system for obtaining network resource configuration information
US9294161B2 (en) * 2012-04-26 2016-03-22 Huawei Technologies Co., Ltd. System and method for interference coordination
CN113746945B (en) * 2020-05-30 2023-09-12 华为技术有限公司 Reverse address resolution method and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039115A1 (en) * 2003-10-16 2005-04-28 Telefonaktiebolaget L M Ericsson (Publ) Arrangement and method for providing user stations with access to service providing networks
US20060098614A1 (en) * 2004-10-07 2006-05-11 Samsung Electronics Co., Ltd. Apparatus and method for providing indoor and outdoor wireless access in broadband wireless access communication system
CN1848823A (en) * 2005-04-15 2006-10-18 华为技术有限公司 System and method for intercommunicating with mobile network short message based on IP switch-in network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039115A1 (en) * 2003-10-16 2005-04-28 Telefonaktiebolaget L M Ericsson (Publ) Arrangement and method for providing user stations with access to service providing networks
US20060098614A1 (en) * 2004-10-07 2006-05-11 Samsung Electronics Co., Ltd. Apparatus and method for providing indoor and outdoor wireless access in broadband wireless access communication system
CN1848823A (en) * 2005-04-15 2006-10-18 华为技术有限公司 System and method for intercommunicating with mobile network short message based on IP switch-in network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WiMAX技术标准及组网技术. 马瑛,刘芳.山东通信技术,第26卷第1期. 2006
WiMAX技术标准及组网技术. 马瑛,刘芳.山东通信技术,第26卷第1期. 2006 *
WiMAX组网及以太网汇聚子层设计与优化. 马楠,张治,邓钢.计算机系统应用,第6期. 2006
WiMAX组网及以太网汇聚子层设计与优化. 马楠,张治,邓钢.计算机系统应用,第6期. 2006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026116A1 (en) * 2014-08-21 2016-02-25 华为技术有限公司 Air interface data transmission method, device and system

Also Published As

Publication number Publication date
CN100466631K3 (en)
CN1980193A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
CN102577268B (en) Apparatus and method for transmitting a MAC PDU based on MAC header type information
US6683866B1 (en) Method and apparatus for data transportation and synchronization between MAC and physical layers in a wireless communication system
JP4327800B2 (en) Access to CDMA / UMTS services via a WLAN access point using a gateway node between the WLAN access point and the serving network
CN103685592B (en) A kind of wireless bridge and the method for realizing dhcp address application
CN101384020B (en) Wireless relay system and data transmission method
CN102484813B (en) Apparatus and methods for transmitting and receiving MAC PDU using MAC headers
US20030174682A1 (en) System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media
US20090161581A1 (en) ADDRESS AUTOCONFIGURATION METHOD AND SYSTEM FOR IPv6-BASED LOW-POWER WIRELESS PERSONAL AREA NETWORK
CN101056258B (en) Method capable of reducing the information exchange redundancy in the WLAN 802.11
EP1168754B1 (en) Addressing scheme to be used in an IP-based radio access network
US20080069019A1 (en) Method for performing synchronisation for multicast broadcast services in a wireless access communication network, corresponding multicast broadcast server and base station
CN100466631C (en) Blank-interface text transmission method, network accessing apparatus and system
CN101917741A (en) Wireless communication system
CN102647793A (en) Stand alone wimax system and method
CN101577738A (en) Address distribution method and equipment thereof
US20080304440A1 (en) Terminal and Method for Accessing Wireless Connection
CN101374266A (en) Data transmission and receiving method, wireless access point equipment, gateway and communication system
CN104853385A (en) Dynamic mechanism for efficient information transmission in WIFI system based on OFDMA technology
CN105636010B (en) The method of two data of layer transmission is realized in a kind of LTE system
CN102868781B (en) A kind of wireless bridge and realize the method for DHCP safety
CZ2002621A3 (en) Radio communication system and method for multitask communication
US8837356B2 (en) Method for identifying connection, mobile station and base station
Ehammer et al. AeroMACS—An airport communications system
JP2000196673A (en) Hybrid mobile communication system, hybrid mobile communication equipment and hybrid mobile communicating method
KR100360778B1 (en) Apparatus and method for MAC frame construction for OFDM based on wireless LAN

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20141219

EXPY Termination of patent right or utility model