CN100463235C - Luminescence module in gallium nitride series and fabricating method - Google Patents

Luminescence module in gallium nitride series and fabricating method Download PDF

Info

Publication number
CN100463235C
CN100463235C CN 200410006381 CN200410006381A CN100463235C CN 100463235 C CN100463235 C CN 100463235C CN 200410006381 CN200410006381 CN 200410006381 CN 200410006381 A CN200410006381 A CN 200410006381A CN 100463235 C CN100463235 C CN 100463235C
Authority
CN
China
Prior art keywords
layer
gallium nitride
based
type
light
Prior art date
Application number
CN 200410006381
Other languages
Chinese (zh)
Other versions
CN1661816A (en
Inventor
洪详峻
赖穆人
Original Assignee
炬鑫科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 炬鑫科技股份有限公司 filed Critical 炬鑫科技股份有限公司
Priority to CN 200410006381 priority Critical patent/CN100463235C/en
Publication of CN1661816A publication Critical patent/CN1661816A/en
Application granted granted Critical
Publication of CN100463235C publication Critical patent/CN100463235C/en

Links

Abstract

本发明是关于一种氮化镓系发光组件及其制造方法。 The present invention relates to a gallium nitride-based light emitting assembly and a manufacturing method. 该发光组件至少包括一发光体及一光取出层,其中该发光体为加以能量后能发光的氮化镓系材料所组成;该光取出层为一电流散布层及一微结构层所组成,位于该发光体上,在某些发光组件结构中则仅为一微结构层。 The light emitting assembly including at least a light emitter and a light extraction layer, wherein after the light emitter is capable of emitting light energy to be a material consisting of gallium nitride-based; the layer is a light extraction and current spreading layer composed of a micro-structure layer, located on the light emitter, the light emitting device structure in a certain micro-structure layer is only. 其中,该微结构层可制为一纳米网络(nano-net)结构,为一氮化钛层,是经氮化一钛层而获得;该微结构层也可制为一具有金属簇(metal clusters)的层膜,为一铂层,且为一经回火处理的铂层。 Wherein the microstructured layer may be prepared as a network nanometers (nano-net) structure, a titanium nitride layer, a titanium layer is nitrided to obtain; the microstructure can also be prepared as a layer having a metallic clusters (metal Clusters) the interlayer film for a platinum layer, and a platinum layer by a tempering treatment.

Description

氮化镓系发光组件及其制造方法 The gallium nitride-based light emitting module manufacturing method thereof

技术领城 Technical collar city

本发明涉及一种发光组件及其制造方法,特别是涉及一种具有金属微结构的光取出层的氮化镓系发光组件及其制造方法。 The present invention relates to a light assembly and a manufacturing method, particularly to a method of manufacturing the light emitting module having a gallium nitride-based metal layer, the light extraction microstructures.

背景抹术 Background wipe surgery

半导体发光二极管(LED)的发展已有数十年历史,其发光效率的改善一直为LED能否进一步用于民生光源的关键;因此,多年来LED的发展方向大致皆在于发光效率的提升上。 Development of semiconductor light emitting diode (LED), has several decades, to improve the luminous efficiency of the LED can further have a light source for critical livelihood; therefore, the LED over the years in that direction on the lifting substantially all of the light emission efficiency. 发光效率的影响因素一般包括选用的半导体材料、组件结构的设计、透明度及全反射现象等。 Luminous efficiency factors typically include a semiconductor material, the design of the device structure, transparency and the like selected total reflection phenomenon.

氮化镓系材料为半导体发光二极管的最常用的材料。 GaN-based materials are the most commonly used material of the semiconductor light emitting diode. 为使氮化镓系材料发出光, 一电压或电流通常必须送入该二极管中;为使电压或电流送入其中, 一对正负电极通常设在该二极管組件上。 Is a gallium nitride-based material to emit light, typically a voltage or current to be fed to the diode; is a voltage or current into which a pair of positive and negative electrodes are usually provided on the diode assembly.

正电极即一般所称的p型电极,负电极则为一般所称的n型电极,因为p型电极的电先流进p型半导体层、而n型电极的电先流进n型半导体层的原因。 p-type electrode that is commonly known as a positive electrode, a negative electrode, compared with the n-type electrodes are generally referred to as the p-electrode electrically flows into the first p-type semiconductor layer and the n-type electrode flow into the first n-type semiconductor layer s reason. P型电极为正电流入之处,其导电所依赖的移动载子为电洞;n型电极为负电流入之处,其导电所赖的移动栽子则为电子。 The P-type electrode to a positive inflow, the conductivity depends to a mobile carrier hole; n-type electrode into the negative current, the conductivity depends on the movement of electrons was seedling. 一般皆知,电洞的移动牵移率远低于电子,因此p型电极处的导电效率远差于n型电极处。 Generally well known, movement of holes is far lower than the electronic shifting retractor, and therefore the efficiency of the conductive p-type electrode is far worse than the n-type electrode.

有鉴于此, 一般皆在p型电极的下方设一电流散布层,用以将进入p型电极的正电荷导引成均匀散布在p型半导体层上,从而使p型电极与n型电极间的电力线能够均匀分布,并因此有效提高光的被激发出效率。 In view of this, in general a current spreading layer are provided under the p-type electrode for the p-type electrode into the positive charges guided to spread evenly on the p-type semiconductor layer, so that the p-type electrode and the n-type electrode Room a power line can be distributed, and thus improve the efficiency of the light is excited.

上述电流散布层的材料可为任意适用的材料,其中镍/金(Ni/Au)双层结构为其中最常见的,其整个LED结构如图1所示的发光二极管结构10,其中包括有基材ll、緩沖层12、 n型氮化镓系层l3、半导体主动层"、p型氮化镓系层15、 p型半导体层16、电流散布层17与p型电极18,其制程步骤可参阅台湾专利558848、 419837等。在该图中,电流散布层n设在p型半导体层16及p型电极18间,用以将p型电极l8的正电荷均匀分布在电流散布层17上,以均匀进入p型半导体层16中。 Said current spreading layer material may be any suitable material, wherein the nickel / gold (Ni / Au) is the most common two-layer structure, a light emitting diode structure LED 1 shown in its entire structure 10, which comprises a base material ll, the buffer layer 12, n-type gallium nitride layer L3, the semiconductor active layer ", the p-type gallium nitride based layer 15, the p-type semiconductor layer 16, the current spreading layer 17 and the p-type electrode 18, which may process steps see Taiwan Patent 558848, 419837, etc. in the figure, the current spreading layer is provided in the p-n-type semiconductor layer 16 and the p-type electrode 18 to the p-type electrode l8 positive charge is uniformly distributed over the current spreading layer 17, 16 uniformly into the p-type semiconductor layer.

然而,这种电流散布层的设计的全反射问题严重,因其表面平坦而使光全反射折回结构中而阻碍输出。 However, this problem totally current spreading layer design serious, because the flat surface of the total reflection light output impede folding structure. 其后,将该电流散布层上方再加以一些粗糙化设计的发光组件被提出,例如将发光组件上方光出射处加以粗糙结构,以使多数光出射时的出射角小于临界角(斯奈尔定律(Snell,s Law)定义),该种粗糙结构通常为半圃形或经截角的金字塔形。 Thereafter, the above current spreading layer is presented together with some lighting assembly roughened design, for example, above the light-emitting element at the light exit be rough structure so that an angle at most less than the critical angle of the light exit (Snell's law (Snell, s Law) definition), this type of structure is typically rough shape by a semi-truncated shape or garden pyramid. 然而,该种粗糙形 However, this kind of rough shape

状的形成工作相当烦杂,且其成本也很高。 Shape forming work is quite complicated, and its cost is also high.

另外,也有其它粗糙化方式被提出,如利用蚀刻方式破坏组件结构上的平面部份,以使该平面部份具有许多非平坦的小切面,并使多数出射光的出射角小于临界角而光不至于全反射回组件结构中。 In addition, there are other ways roughening been proposed, such as using etching damage on a component part of the plane structure, so that the non-planar portion having a plurality of small flat section, and most of the emitted light exit angle less than the critical angle of light It will not totally reflected back to the assembly structure. 这种粗糙化方法包括一平面的随机蚀刻步骤,如先沉积粒子于该平面之上,接着再以该等粒 This roughening method comprises the step of etching a random plane, such as the first particles are deposited on top of the plane, followed by granulation to those

子作为随机蚀刻罩幕,但如此形成的平面图案至少有以下二大缺点: A random sub-etching mask, the planar pattern thus formed at least the following two major disadvantages:

1、 p型电极中可能存有一些小岛状结构,这些岛状结构下方的部份未触及p型电极接触,因此该部份无法贡献发光,总体输出光亦随之下降。 1, p-type electrode, there may be some of the island-like structure, the lower part of the island-like p-type electrode contact structures is not touched, so that the contribution of the light emitting portion can not, in general the output light is also decreased.

2、 由于该组件结构上平面与下方发光区相当靠近,蚀刻方式的使用极可能破坏发光区,如此又增添了导致另一发光量下降的因素。 2, since the light emitted from the plane of the lower zone relatively close to the device structure, using the etching may damage the light emitting region of the electrode, and thus adds another factor leading to the decline in light emission.

由此可见,上述现有的发光组件及其制造方法仍存在有缺陷,而亟待加以进一步改进。 Thus, the conventional light emitting module and a manufacturing method still has defects, and urgent need further improvement. 为了解决发光组件及其制造方法存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般产品又没有适切的结构能够解决上述问题,此显然是相关业者急欲解决的问题。 In order to solve the existing problems and method of manufacturing the light-emitting components, the firms did not dare to think hard and to seek a solution, but has long been seen to be applicable to the design of the development is complete, and general product and no relevance structure can solve the above problems this is obviously related businesses eager to solve the problem.

有鉴于上述现有的氮化镓系发光二极管(LED)结构存在的缺陷,确有必要提出一种具有高光取出效率的氮化镓系发光二极管(LED)结构。 In view of the above defects in the conventional structure of a gallium nitride-based light-emitting diode (LED), it is indeed necessary to provide a gallium nitride-based light emitting diode having high light extraction efficiency (LED) structure. 本发明人基于丰富的实务经验及其专业知识,积极加以研究创新,经过不断研究、设计,并经反复试作样品及改进后,终于创设出确具实用价值的本发明。 After the present invention is based on a wealth of practical experience and professional knowledge, actively pursued research and innovation, through continuous research, design, and after repeated samples and test for improvement, and finally the creation of the present invention indeed has practical value.

发明内容 SUMMARY

本发明的目的在于,克服上述现有的发光组件存在的缺陷,而提出一种新型结构的氮化镓系发光二极管组件,所要解决的技术问题是使其具有较高的光取出效率,从而更加适于实用。 Object of the present invention is to solve the problems of the conventional light-emitting element, a gallium nitride-based light emitting diode proposed a new type of assembly structure, the technical problem to be solved is to have a high light extraction efficiency, and thus more suitable for practical use.

本发明的另一目的在于,克服上述现有的发光组件的制造方法存在的缺陷,而提供一种新的氮化镓系发光组件的制造方法,使得制造该氮化镓系发光二极管组件(LED)的方法其制造步骤不复杂烦冗。 Another object of the present invention is to overcome the above defects of the conventional method of manufacturing a light emitting module, and provide a new method for producing a gallium nitride-based light emitting module, so that the light emitting diode assembly for producing a gallium nitride-based (LED ) the method of manufacturing steps are not complicated redundant trouble.

本发明的目的及解决其技术问题是采用以下技术方案来实现的。 Objects and solve the technical problem of the invention is achieved by the following technical solutions. 依据本发明提出的一种氮化镓系发光组件,该氮化镓系发光组件至少包括:一发光体,为一能发光的氮化镓系材料所组成: 一光取出层,其至少包括一电流散布层,位于该发光体上;以及一微结构层,位于该电流散布层之上, 由氮化一钛层形成一具纳米网络(nano-net)结构的氮化钛层或由回火获得一具金属簇(metal clus ters)结构的铂层。 A gallium nitride-based light emitting module according to the present invention is made, the gallium nitride based light emitting assembly comprising at least: a light emitter capable of emitting light of a gallium nitride based material consisting of: a light-extraction layer, which comprises at least one current spreading layer on the light emitter; and a micro-structure layer, positioned over the current spreading layer, a nano-network (nano-net) structure of a titanium nitride layer is formed of a titanium nitride layer or a tempered obtain a platinum layer metal clusters (metal clus ters) structure.

本发明的目的及解决其技术问题还可以采用以下的技术措施来进一步实现。 The purpose and solve the technical problem of the invention also the following technical measures to further implement can be used.

前述的氮化镓系发光组件,其中所述的发光体为一n型氮化镓系层、一 The gallium nitride-based light emitting module, wherein the emitter is a gallium nitride-based n-type layer, a

半导体主动层及一p型氮化镓系层构成,其中该半导体主动层位于该n型氮化镓系层上,该p型氮化镓系层则位于该主动层上。 The semiconductor active layer, and a p-type gallium nitride-based layers, wherein the semiconductor active layer on the n-type gallium nitride layer, the p-type GaN-based layer is disposed on the active layer.

前述的氮化镓系发光组件,其中所述的发光组件具有一p型电极及一n 型电极,且该p型电极是形成于该光取出层上或该光取出层旁。 The gallium nitride-based lighting assembly, wherein said light emitting component having a p-type electrode and an n-type electrode and the p-type electrode is formed on the side of the light extraction layer or the light extraction layer.

本发明的目的及解决其技术问题是还采用以下的技术方案来实现。 Objects and solve the technical problem of the present invention is also used to achieve the following technical solution. 依据本发明提出的一种制造一氮化镓系发光组件的方法,其至少包括下列步骤:备制一基材;形成一n型氮化镓系层于该基材上;形成一半导体主动层于该n型氮化镓系层;形成一p型氮化镓系层于该半导体主动层上;形成一电流散布层于该p型氮化镓系层上;以及形成一微结构层于该电流散布层上,其中该微结构层是利用先形成一铂层于该p型氮化镓系层上、接着再对该铂层加以回火的方式达成。 According to a method of manufacturing a gallium nitride-based light emitting module proposed by the present invention, at least comprising the steps of: preparing an a substrate; forming an n-type gallium nitride layer on the substrate; forming a semiconductor active layer in the n-type gallium nitride based layer; forming a p-type gallium nitride-based semiconductor layer on the active layer; forming a current spreading layer on the p-type GaN-based layer; and forming a microstructured layer on the the current spreading layer, wherein the microstructured layer is formed using a first way the platinum layer is formed on the p-type GaN-based layer, followed by tempering of the platinum layer to be reached.

本发明的目的及解决其技术问题还可以采用以下的技术措施来进一步实现。 The purpose and solve the technical problem of the invention also the following technical measures to further implement can be used.

前述的制造一氮化镓系发光组件的方法,其中所述的形成一微结构层于该电流散布层上的步骤还包括形成一p型电极及一n型电极于该发光组件上的步骤,且该p型电极是形成在该光取出层上或该光取出层旁。 The steps of the method for producing a gallium nitride-based light emitting module, wherein the microstructure is formed a layer on the current spreading layer further comprises the step of a p-type electrode and an n-type electrode on the light emitting element is formed, and the p-type electrode is formed on the light extraction layer or the light extraction layer next.

本发明的目的及解决其技术问题是还采用以下的技术方案来实现。 Objects and solve the technical problem of the present invention is also used to achieve the following technical solution. 依据本发明提出的一种氮化镓系发光组件,其至少包括: 一基材; 一金属反射层,位于该基材之上;一p型氮化镓系层,位于该金属反射层之上;一半导体主动层,位于该p型氮化镓系层上;一n型氮化镓系层,位于该半导体主动层上;以及一微结构层,位于该n型氮化镓系层之上,由氮化一钛层形成一具纳米网络(nano-net)结构的氮化钛层或由回火一铂层获得一具金属簇结构的铂层。 A gallium nitride-based light emitting module according to the present invention is proposed, comprising at least: a substrate; a reflective metal layer located on the substrate; a p-type gallium nitride layer located above the metal reflective layer ; a semiconductor active layer on the p-type GaN-based layer; an n-type gallium nitride layer on the semiconductor active layer; and a micro-structure layer, positioned over the n-type gallium nitride layer forming a network of nano titanium nitride layer (nano-net) structure composed of a titanium nitride layer or a platinum layer obtained metal cluster structure by tempering a layer of platinum.

本发明的目的及解决其技术问题还可以采用以下的技术措施来进一步实现。 The purpose and solve the technical problem of the invention also the following technical measures to further implement can be used.

前述的氮化镓系发光组件,其中所述的发光组件的导电金属基材下方具有一p型电极,并在该微结构层上具有一n型电极。 The gallium nitride-based light emitting assembly, under the conductive metal substrate, wherein said light emitting assembly having a p-type electrode, and having a n-type electrode on the microstructure layer.

本发明与现有技术相比具有明显的优点和有益效果。 The prior art and the present invention has obvious advantages and beneficial effects compared. 由以上技术方案可知,为了达到前述发明目的,本发明的主要技术内容如下: Seen from the above technical solutions, in order to achieve the foregoing object of the invention, the main technical contents of the present invention are as follows:

本发明在氮化镓系LED结构的电流散布层上形成一微结构表面,借由该微结构降低该电流散布层的光全反射,并因此可达成上述提升发光效率的目的。 The present invention is formed on the current spreading layer is a GaN-based LED structure microstructured surface, to reduce the total reflection of the light current spreading layer by means of the microstructure, and thus achieve the object described above can enhance the luminous efficiency.

本发明具有微结构表面LED组件结构有二主要实施例。 The present invention has a microstructured surface structure of the LED assembly has two main embodiments. 在本发明第一组件结构实施例中, 一氮化钛(TiN)层形成在该电流散布层上,并共同构成—光取出双层结构,该双层结构位于一发光体上。 In the assembly of the first embodiment of the present invention, the structure of embodiment, a titanium nitride (TiN) layer is formed on the current spreading layer, and together form - light extracting two-layer structure, a layered structure is located on the light emitter. 该氮化钛层具有一微结构,该微结构实际上是一纳米网络(nano-net)结构;借由该微结构,该发光 The titanium nitride layer having a microstructure, which microstructure is actually a network nanometers (nano-net) structure; by means of the micro-structure, the light emitting

体中一半导体主动层所产生的光能够比较有效的避免全反射的发生。 In a semiconductor light generated in the active layer can more effectively prevent the occurrence of total reflection.

在本发明第二组件结构实施例中, 一铂(Pt)层形成在该电流散布层上,并共同构成一光取出双层结构,该双层结构位于一发光体上。 In the embodiment of the present invention, the second component configuration example, a platinum (Pt) layer formed on the current spreading layer, and together form a two-layer structure of light extraction, the light emitter is located at a two-layer structure. 该柏层具 The layer has Parkinson

有一微结构,该微结构实际上是一具有金属蔟(metal clusters)的结构;借由该微结构,该发光体中一半导体主动层所产生的光能够比较有效的避免全反射的发生。 Has a microstructure, the microstructure is actually a metal having a nest structure (metal clusters); and by means of the micro-structure, the light emitting body is a semiconductor active layer can be produced more effective to avoid the occurrence of total reflection.

在本发明的第一组件制造方法实施例中, 一氮化镓系发光体结构先予形成; 一电流散布层接着形成在该发光体上;接着在该电流散布层上形成一钛层;接着对该钛层加以氮化处理(nitridation),使其具有一具有纳米网络结构的氮化钛微结构表面。 Embodiment, a gallium nitride-based light emitting structure formed on a first be thoroughly device manufacturing method of the present embodiment of the invention; a current spreading layer is then formed on the light emitting body; then forming a titanium layer on the current spreading layer; then It is nitriding treatment (nitridation) the titanium layer to have a surface of the titanium nitride having a microstructure nano-network structure.

在本发明的第二组件制造方法实施例中, 一氮化镓系发光体结构先予形成; 一电流散布层接着形成在该发光体上;接着在该电流散布层上形成一铂层;接着对该铂层进行回火处理,使其具有一具有金属簇结构的铂微结构表面。 Embodiment, a gallium nitride-based light emitting structure be thoroughly formed in a second device manufacturing method of the present embodiment of the invention; a current spreading layer is then formed on the light emitting body; then forming a platinum layer on the current spreading layer; then tempering treatment of the platinum layer, so that the platinum having a microstructured surface having a structure of metal clusters.

经由上述可知,本发明的发光组件,其至少包括一发光体及一光取出层,其中该发光体为加以能量后能发光的氮化镓系材料所组成;该光取出层为一电流散布层及一微结构层所组成,位于该发光体上,在某些发光组件结构中则仅为一微结构层。 Through the foregoing, the light emitting assembly of the present invention, which comprises at least one light emitter and a light extraction layer, wherein after the light emitter is capable of emitting light energy to be a material consisting of gallium nitride-based; the light extraction layer as a current spreading layer and a microstructured layer, is located on the light emitting body in the light emitting device structure in a certain micro-structure layer is only. 其中,该微结构层可制为一纳米网络(nano-net) 结构,为一氮化钛层,是经氮化一钛层而获得;该微结构层也可制为一具有金属簇(metal clusters)的层膜,为一铂层,且为一经回火处理的铂层。 Wherein the microstructured layer may be prepared as a network nanometers (nano-net) structure, a titanium nitride layer, a titanium layer is nitrided to obtain; the microstructure can also be prepared as a layer having a metallic clusters (metal Clusters) the interlayer film for a platinum layer, and a platinum layer by a tempering treatment.

借由上述技术方案,本发明至少具有下列优点:本发明氮化镓系发光二极管(LED)发光效率的提升技术,能够达到提升发光效率的目的,其不仅具有上述降低全反射及提升光取出效率的优点,而且相对于现有技术通过蚀刻获得粗糙表面结构的发光组件而言,本发明组件结构的制造不复杂烦冗,其光取出层极适合为各种发光组件所采用。 By means of the above technical solutions, the present invention has at least the following advantages: the present invention is a gallium nitride-based light-emitting diode (LED) technology to enhance the luminous efficiency, we can achieve the purpose of enhancing the luminous efficiency, which reduce not only the above totally reflected light and to enhance the extraction efficiency advantages over the prior art and is obtained by etching the light-emitting element in terms of the roughened surface structure, device structure of the present invention for producing less complex redundant trouble, the light extraction layer is very suitable for a variety of light-emitting element employed.

综上所述,本发明特殊的氮化镓系发光组件及其制造方法,克服了上述现有的发光组件存在的缺陷,提高了氮化镓系发光组件光取出效率,同时其制造步骤也有较大的简化,并在同类产品中未见有类似的结构设计或方法公开发表或使用而确属创新,其不论在结构上、功能上或方法上皆有较大的改进,在技术上有较大的进步,并产生了好用及实用的效果,且较现有的发光组件及其制造方法具有增进的多项功效,从而更加适于实用,而具有产业的广泛利用价值,诚为一新颖、进步、实用的新设计。 As described above, the light-emitting gallium nitride-based special assembly and a manufacturing method of the present invention overcomes the shortcomings of the conventional light-emitting element, gallium nitride-based light emitting assembly to improve light extraction efficiency, while it is also more manufacturing steps large simplification, and there are no similar products in similar structural design methods or indeed published or use of innovation, both in its structure, greater improvement on the function or method Jie, a more technically great progress and produce a useful and practical results, and has a number of promotional effectiveness than conventional light-emitting components and its manufacturing method, which is more suitable for practical use, and has a wide range of value industry, honesty is a novel progress and practical new designs.

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。 The above description is only an overview of the technical solution of the present invention, in order to more fully understood from the present disclosure, may be implemented in accordance with the contents of the specification, the following preferred embodiments of the present invention and to be described later in detail with drawings.

附图说明 BRIEF DESCRIPTION

图1是现有习用的氮化镓系发光二极管组件的结构前视示意图。 FIG. 1 is a front view showing the conventional structure of a conventional gallium nitride-based light emitting diode elements.

图2是本发明的第一组件结构实施例的示意图。 FIG 2 is a schematic view of a first embodiment of the device structure of the present invention. 图3是本发明的第二组件结构实施例的示意图。 FIG 3 is a schematic diagram of a second embodiment of the device structure of the present invention.

图4是本发明的第一制造方法实施例,用以制造第一组件结构实施例。 FIG 4 is a first embodiment of the manufacturing method of the present invention, for producing a first assembly structure of the embodiment. 图5是本发明的第二制造方法实施例,用以制造第二组件结构实施例。 FIG 5 is a second embodiment of the manufacturing method of the present invention for manufacturing a second embodiment of the device structure.

图6是本发明的微结构用于另一型发光组件结构的示意图。 FIG 6 is a schematic view of the microstructure of the present invention to another type light emitting device structure. 图7是本发明的微结构层用于一隧透接面(tunneling junction)发光组件上的结构示意图。 FIG 7 is a schematic structural diagram of a lens surface of the light emitting component (tunneling junction) layer of a tunnel microstructure of the present invention.

图8是本发明的微结构层用于一垂直发光组件结构上的结构示意图。 FIG 8 is a schematic structural diagram of a vertical light emitting device structure of the micro-structure layer according to the present invention.

10 : 发光二极管结构 16: P型半导体层 10: light emitting diode structure 16: P-type semiconductor layer

17: 电流散布层 18: P型电极 17: current spreading layer 18: P-type electrode

20: 第一组件结构 21: 基材 20: a first assembly structure 21: substrate

22: 緩冲层 23: n型氮化镓系层 22: buffer layer 23: n-type gallium nitride layer

24: 半导体主动层 25: p型氮化镓系层 24: Semiconductor active layer 25: p-type gallium nitride layer

26: 接触层 27: 光取出层 26: contact layer 27: light extraction layer

28: 电流散布层 29: 微结构层 28: current spreading layer 29: microstructure layer

30: p型电极 31: n型电极 30: p-type electrode 31: n-type electrode

40: 第二组件结构 41: 基材 40: second assembly structure 41: substrate

42: 緩沖层 43: n型氮化镓系层 42: buffer layer 43: n-type gallium nitride layer

44: 半导体主动层 45: p型氮化镓系层 44: Semiconductor active layer 45: p-type gallium nitride layer

46: 接触层 47: 光取出层 46: contact layer 47: light extraction layer

48: 电流散布层 49: 微结构层 48: current spreading layer 49: microstructure layer

50: p型电极 51: n型电极 50: p-type electrode 51: n-type electrode

80: 发光组件结构 85: p型接触层 80: light emitting device structure 85: p-type contact layer

86: 电流散布层 87: 微结构层 86: current spreading layer 87: microstructure layer

88: p型金属电极 90: 隧透4妄面发光组件结构 88: p-type metal electrode 90: 4 jump tunneling through the surface emitting device structure

92: n型氮化镓系层 94: p型氮化镓系层 92: n-type gallium nitride layer 94: p-type gallium nitride layer

95: p+型氮化镓系层 96: n+型氮化镓系层 95: p + type GaN-based layer 96: n + type gallium nitride layer

97: 微结构层 98: p型电极 97: micro-structure layer 98: p-type electrode

99: n型电极 100 .垂直发光组件结构 99:. N-type electrode 100 is the vertical light emitting device structure

101 金属基材 102 .金属反射层 101 metal substrate 102 metal reflective layer

103 :p型氮化镓系层 104 :半导体主动层 103: p-type GaN-based layer 104: semiconductor active layer

105 :n氮化镓系层 106 :微结构层 105: n GaN-based layer 106: micro-structure layer

107 :n型电极 8 107: n-type electrode 8

具体实施方式 Detailed ways

以下结合附图及较佳实施例,对依据本发明提出的氮化镓系发光组件及其制造方法其具体实施方式、结构、特征及其功效,详细说明如后。 The following preferred embodiments and the accompanying drawings, a light-emitting gallium nitride-based component and a manufacturing method thereof according to the present invention provides a specific embodiment, structure, characteristics and efficacy, as will be described in detail.

本发明关于具有微结构表面的光取出层的提出,用来通过全反射的降低而达到提高出射光在光取出层中的光取出效率的作用,现将其结构具体说明如下。 The present invention relates to microstructured surface having a light extraction layer is made, for total reflection is reduced to improve the action of light emitted in the light extraction efficiency of the light extraction layer, and the structure thereof will now be described in detail below.

本发明的氮化镓发光组件结构,包括二个主要实施例,请参阅图2所示,是本发明的第一组件结构20的实施例。 GaN light emitting device structure according to the present invention, comprises two main embodiment, see FIG. 2 is a first embodiment of the present invention, the device structure 20. 在图2中, 一基材21先备制完成,该基材可为蓝宝石、氮化镓或碳化硅等适用材料。 In Figure 2, a first substrate 21 made of the completion of preparation, the substrate can be like sapphire, gallium nitride or silicon carbide suitable material. 一n型氮化镓系层23、 一半导体主动层24及一p型氮化镓系层25依序形成于基材21上,用以在一电压或电流供入该等层膜即n型氮化镓系层23、半导体主动层24及p型氮化镓系层25时产生光,在此称该三层即n型氮化镓系层23、半导体主动层24及p型氮化镓系层25为发光体;其中,该半导体主动层24可为AlGalnN层或InGaN/GaN层等。 A gallium nitride-based n-type layer 23, an active semiconductor layer 24 and a p-type GaN-based layer 25 are sequentially formed on the substrate 21, is fed to a membrane of the layers i.e. n-type voltage or current the gallium nitride based layer 23, the semiconductor active layer 24 and p-type gallium nitride layer 25 generates light, here called the triple i.e. n-type gallium nitride layer 23, the semiconductor active layer 24 and p-type gallium nitride based luminous material layer 25; wherein the semiconductor active layer 24 may be AlGalnN layer or InGaN / GaN layer and the like. 其中,基材21与n型氮化镓系层23之间可选择性设以一緩沖层22,用以使緩沖层22旁的两层基材21和n型氮化镓系层23,使其具有较好的晶格匹配度等。 Wherein, the substrate 21 and the n-type gallium nitride layer 23 is selectively provided with a buffer layer 22, next to the two layers of the substrate 22 and buffer layer 21 of n-type gallium nitride based layer 23, so that having good lattice matching and the like. 接着,p型氮化镓系层25上设以一p型接触层26,该p型接触层26上再设以一光取出层27,其中该接触层26可为p-InGaN或p-AUnGaN层等。 Subsequently, p-type gallium nitride layer 25 is provided at an upper p-type contact layer 26, the p-type contact layer 26 is provided again with a light extraction layer 27, wherein the contact layer 26 may be a p-InGaN or p-AUnGaN layer. 该光取出层27为一电流散布层28 及一微结构层29构成的双层结构。 The light extraction layer 28 and 27 is a micro-structure layer 29 consisting of a two-layer structure current spreading layer. 其中,电流散布层28为透明导电材料制成,至少可为常用的镍/金(Ni/Au)双层结构、镍(Ni)、柏(Pt)、钇(Pd)、铑(Rh)、钌(Ru)、锇(0s)、铱(Ir)、锌(Zn)、铟(In)、锡(Sn)、镁(Mg)及上述物质的氧化物,该等氧化物中也可添加掺杂物,以增加导电性,如可以掺杂铝;其透光波长范围则依发光体选用材料而有不同,通常以能使发光体发出的光大量穿透其中为原则。 Wherein the current spreading layer 28 made of a transparent conductive material, may be used at least a nickel / gold (Ni / Au) layer structure of nickel (Ni), Bo (Pt), yttrium (Pd), rhodium (Rh), ruthenium (Ru), osmium (0s), iridium (Ir), zinc (Zn), indium (in), tin (Sn), magnesium (Mg) oxide and the above-described materials, may be added to these mixed oxide debris, to increase conductivity, as can be doped with aluminum; wavelength range of the transmittance by illuminant selection of different material, typically light can penetrate a large number of light emitter wherein the principle.

该微结构层29为一具纳米网络(nano-net)结构的层膜,且其材料为氮 The micro-structure layer 29 is a network nanometers (nano-net) layer of the film structure, and the material is nitrogen

化钛;为了附图的清晰,其实际表面样式未示于图中。 Titanium; for the clarity of the drawings, the actual surface pattern not shown in FIG. 由于氮化钛的纳米网络结构为极微细尺寸的粗糙结构,半导体主动层24产生的光子在通过该纳米网络^f殷结构层29时能有更大部份以小于临界角的角度出射,因此更多数的产生光子可以自该组件结构中输出。 Since the network structure of the photonic nano roughness of titanium nitride is extremely fine size, the semiconductor active layer 24 is produced by the nanonetwork portion 29 with greater structural layer Yin ^ f angle less than the critical angle at the exit, so the number of photons generated may be output from the component more structure. 相较于常用的粗糙表面发光组件结构而言,由于本发明的微结构尺寸远远小于习用粗糙结构,因此光子能够以小于临界角出射的远远较多,故其全反射程度得以降低,光取出效率因此大增。 Compared to conventional roughened surface in terms of the light emitting device structure, since the size of the microstructure of the present invention is much smaller than the conventional roughness structure, and therefore can be less than the critical angle of photons emitted much more, so that the degree of total reflection can be reduced, light Thus the extraction efficiency greatly increased.

另外,一p型电极30设在该微结构层29上,一n型电极31则可设在n型氮化镓系层的一侧上,用以供电流进发光组件的发光体中(如图2所示)。 Further, a p-type electrode 30 disposed on the microstructured layer 29, an n-type electrode 31 may be disposed on one side of n-type gallium nitride-based layer for the power supply flowing into the light emitting component light emitters (e.g. As shown in FIG. 2).

请参阅图3所示,是本发明的第二组件结构40的实施例,其包括有基材41、緩沖层42、 n型氮化镓系层43、半导体主动层44、 p型氮化镓系层45、 p型接触层46、电流散布层48、微结构层49与电极50、 51,其与第一组件结构实施例的多数层膜相同,但其光取出层47的微结构层49不相同。 Please refer to FIG. 3, the second embodiment is a device structure 40 of the present invention, which comprises a substrate 41, buffer layer 42, n-type gallium nitride layer 43, the semiconductor active layer 44, p-type gallium nitride based layer 45, p-type contact layer 46, the current spreading layer 48, the microstructure layer 49 and the electrodes 50, 51, the same as the majority of the film layer to the first embodiment of the device structure, but the microstructure layer 49 light extraction layer 47 Not the same. 在该实施例中,该微结构层49为一经过回火的柏(Pt)层,其中具有金属蔟(metal clusters)结构,因不易表示而未显示在图中。 In this embodiment, the layer 49 is a microstructure of tempered Bo (Pt) layer, wherein the metal having a nest (metal clusters) configuration, are not shown because easily represented in FIG. 同样地,由于金属簇结构的尺寸远小于现有技术中的粗糙结构,因此能够以小于临界角出射的光子比例大幅增加;由于光子全反射机率的减小,光取出效率当然由此大大提升。 Similarly, since the size of the metal cluster structure is much less than the prior art roughness structure, it is possible to greatly increase the ratio is smaller than the critical angle of photons emitted; due to reduction of the probability of total reflection of photons, of course thereby light extraction efficiency greatly enhanced.

请参阅图4所示,是本发明第一组件结构实施例的制造方法。 Please refer to FIG. 4, it is a manufacturing method according to a first embodiment of the device structure of the present invention. 该方法包括以下一些步骤:首先,备制一基材61的步骤为先备制完成一基材;形成一緩冲层选择性于该基材上62的步骤为一緩沖层选择性形成于该基材上,其形成可以通过分子束磊晶(MBE)及金属有机化学气相沉积(MOCVD)等适用技术进行。 The method comprises the following steps: First, a step of preparing an apparatus for the first substrate 61 made of a completed substrate; forming a buffer layer on the substrate selectively in step a buffer layer 62 is selectively formed on the a substrate, which may be formed by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) and other suitable techniques. 然后,形成一n型氮化镓系层该緩冲层上63的步骤为一n 型氮化镓系层形成于该緩冲层上、形成一半导体主动层该n型氮化镓系层上64的步骤为一半导体主动层形成于该n型氮化镓系层上、形成一p型氮化镓系层该半导体主动层上65的步骤为且一p型氮化镓系层形成于该半导体主动层上。 Then, the step of forming a buffer layer 63 of n-type gallium nitride layer is an n-type gallium nitride layer is formed on the buffer layer, is formed on the n-type layer of a gallium nitride-based semiconductor active layer step 64 is a semiconductor active layer formed on the n-type gallium nitride-based layer, a step of p-type GaN-based layer of the semiconductor active layer 65 is formed on the formed and a p-type gallium nitride layer the semiconductor active layer. 之后,形成一接触层形成于该p型氮化镓系层上66的步骤为一接触层形成于该p型氮化镓系层上。 After forming a contact layer is formed on the step of the p-type GaN-based layer 66 is a contact layer is formed on the p-type GaN-based layer. 接着,形成一电流散布层于该接触层上67的步骤为形成一电流散布层于该接触层上,接着,形成一钛层于该电流散布层上68的步骤为形成一钛层于该电流散布层上。 Next, a current spreading layer on the step on the contact layer 67 to form a current spreading layer on the contact layer, then the step of a titanium layer is dispersed to the current layer 68 is formed so as to form a titanium layer on the current spread layer. 然后,形成一具有纳米网络结构的氮化钛层69的步骤为对该钛层加以氮化,藉以形成一具有纳米网络结构的氮化钛层。 Then, the step of forming a titanium nitride layer 69 of the nano-network structure having the titanium nitride layer to be, thereby forming a titanium nitride layer having a nano-network structure. 此外,微结构层上能够形成以一p型电极,n型氮化镓材料层的一侧上能够形成以一n型电极,如此上述第一组件结构实施例的制造便完成。 In addition, the microstructured layer can be formed in a p-type electrode, on the side of the n-type gallium nitride material layer can be formed in an n-type electrode, the above-described first manufacturing embodiment of the component configuration such embodiment is completed.

请参阅图5所示,是本发明第二组件结构实施例的制造方法,其中步骤71至77与图4所示的步骤61至67相同,步骤78及79则不同于图4 的步骤68及69。 Please refer to FIG. 5, a manufacturing method according to a second embodiment of the present invention, device structure, identical to step 67 wherein the step of 71-77 and 61 shown in FIG. 4, step 78 and 79 differs from the FIG. 4 and 68 69. 本实施例在电流散布层形成之后,形成一柏层于该电流散布层上78的步骤为一铂层再形成于该电流散布层上,形成一具金属簇结构的铂层79的步骤为该铂层接着再进行回火处理,藉以获得一具金属簇结构的柏层。 In this embodiment, after the current spreading layer is formed, the step of forming a layer on the current spreading Bo layer 78 is a platinum layer was formed on the current spreading layer, the step of a metal of the platinum layer 79 is formed cluster structure for the platinum layer followed by tempering so as to obtain a layer of metal clusters Parkinson structure. 此外,微结构层上从而形成一p型电极,n型氮化镓材料层的一侧上从而形成以一n型电极,如此上述第二组件结构实施例的制造便完成。 Further, to thereby form a p-type electrode on the microstructure layer, on the side of the n-type gallium nitride material layer to thereby form an n-type electrode, thus manufacturing the second embodiment device structure is completed.

请参阅图6所示,是一p型金属电极88设在电流散布层86旁而非其上的发光组件结构80,其包括基材81、 n型氮化镓系层82、半导体主动层83、 p型氮化镓系层84、 p型接触层85,而一氮化镓系电流散布层86形成于p型接触层85上,p型金属电极88接着设于氮化镓系电流散布层86之旁及部份区域,本发明的微结构层87最后形成于氮化镓系电流散布层86 上与金属电极88旁。 Refer to FIG. 6, a p-type metal electrode 88 is provided instead of the current spreading layer 86 side on which the light emitting device structure 80 comprising a substrate 81, n-type gallium nitride layer 82, the semiconductor active layer 83 , p-type gallium nitride layer 84, the p-type contact layer 85, and a gallium nitride-based current spreading layer 86 is formed on the p-type contact layer 85, p-type metal electrode 88 is then provided on the gallium nitride-based current spreading layer paraneoplastic partial area 86, the microstructure of the present invention layer 87 is finally formed on a gallium nitride-based current spreading layer 86 and the metal electrode 88 side. 本结构实施例中,微结构层87因不需参与电流散布 This structure of the embodiment, the microstructured layer 87 due to current spreading without participation

的传导工作,故可与p型金属电极88分开形成。 Conducting work, it can be formed with the p-type metal electrode 88 are separated.

请参阅图7所示,关于本发明的微结构层,其用于一种隧透接面(tunneling junction)发光组件结构上的情形为:其中用于其上的微结构层可为上述纳米结构层或含金属簇层,其隧透接面发光组件结构90如图7 所示,包括有基材91、 n型氮化镓系层92、半导体主动层93,并在p型氮化镓系层9 4上设有一p+及n+型氮化镓系层9 5 、 96,其中n+氮化镓系层9 6 位于p+型层95上方,以下将记作p+Zn+型氮化镓系层。 Please refer to FIG. 7, according to the present invention on the microstructure layer, which is permeable for one kind of tunneling junctions (tunneling junction) in the case of the light emitting device structure: wherein a microstructure layer on the nano structure can be a cluster layer or metal-containing layer, through which tunneling junction light emitting device structure 90 shown in Figure 7, includes a substrate 91, n-type gallium nitride layer 92, the semiconductor active layer 93, and the p-type gallium nitride-based is provided with a p + and n + type gallium nitride layer 95 on layer 94, 96, wherein the gallium nitride-based n + p + layer 96 positioned above type layer 95, hereinafter referred to as p + Zn + type GaN-based layer. 接着,本发明的微结构层97直接设在该n+氮化镓系层96上,不需如前述实施例的一电流散布层的存在,因微结构层97下方直接接触的是以电子为主要传导载子的层膜;当然, 一电流散布层仍可选择性加入其中。 Next, the microstructure of the present invention layer 97 is disposed directly on the n + GaN-based layer 96, without the presence of a preceding current spreading layer in the example embodiment, because the bottom of the microstructure layer 97 is in direct contact with the main electronics the conductive layer of the carrier film; of course, a current spreading layer can still be selectively added thereto. 一p型电极98接着设在微结构层97上,一n型电极99则设在n型氮化镓系层92上。 A p-type electrode 98 is then disposed on the microstructured layer 97, an n-type electrode 99 is provided on the n-type gallium nitride layer 92.

请参阅图8所示,再请看本发明微结构层用于一较特殊的发光组件结构的实施例,其示意说明其垂直结构发光组件结构100。 Please refer to FIG. 8, again see the microstructure layer of the present invention a more specific embodiment of structure for the light emitting assembly, which schematically illustrates the structure of a vertical light emitting device structure 100. 如图8所示, 一金属反射层102设于一基材101之上,用于将层膜(包括p型氮化镓系层103、半导体主动层104与n型氮化镓系层105等)所产生的光局限于其上方;该基材101为金属导电材质,用于对p型氮化镓系层103供电,因其n型电极107位于结构100的最上部。 8, a metal reflective layer 102 is disposed on a substrate 101, 103 for the semiconductor active layer 104 and the n-type gallium nitride-based layer-layer film (comprising p-type GaN-based layer 105 and the like ) limited in its light generated above; the substrate 101 is a conductive metallic material, for supplying power to the p-type GaN-based layer 103, an n-type electrode 107 is located at its uppermost portion 100 of the structure. 由于此结构100无电极送入的电洞的低迁移率低问题,因此不需设以电流散布层,当然也能够选择性加入,特此提出说明。 Because of this structure without holes 100 of the lower electrode into the low mobility problems, so no current spreading layer provided at, of course, can be selectively added, description is hereby proposed. 此时,本发明的微结构层106只需直接形成于n型氮化镓系层105上即可。 In this case, the microstructure layer 106 is formed according to the invention can only be directly on the n-type GaN-based layer 105. 接着,n型电极107于该微结构层106上。 Subsequently, n-type electrode 107 on the microstructured layer 106.

点,相对于现有技术通过;刻获得粗糙表面结构的发光组件而言,本发明组件结构的制造不复杂烦冗,其光取出层极适合为各种发光组件所采用。 Point, with respect to the prior art by; terms engraved obtaining the roughened surface structure of the light-emitting element manufactured according to the present invention, device structure is not complicated redundant trouble, the light extraction layer is very suitable for a variety of light-emitting element employed. 本领域技术人员凡而该等范围定义于后述申请专利范围一节中。 Where the person skilled in the range defined in such patent said range section. 本发明的基本实施例已详述于上,以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,能够通 Basic embodiment of the present invention have been described in detail in the above description is only the preferred embodiments of the present invention only, not limitation of the present invention in any form, although the invention has been disclosed above by the preferred embodiments, but not to limit the present invention, any skilled skilled in the art can pass

于不同处^发光组件,本发;的欢层i构光i^层也可用于其上。 ^ At different lighting assembly, the present invention; Huan layer i ^ i layer configuration may also be a light thereon. 总之在 In short

不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,通过本发明的说明轻易推导出的实施例,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。 Without departing from the scope of the technical solutions of the present invention, when various omissions, substitutions can be made or modified by the above disclosed technical content equivalent variations equivalent embodiments, but all without departing from the technical solutions of the present invention, by way of illustration of the present invention is readily Example deduced, according to the technical spirit of the present invention, any simple modification of the above embodiment made equivalent modifications and variations, provided they fall within the scope of the present invention.

Claims (7)

1.一种氮化镓系发光组件,其特征在于该氮化镓系发光组件至少包括:一发光体,为一能发光的氮化镓系材料所组成;一光取出层,其至少包括:一电流散布层,位于该发光体上;以及一微结构层,位于该电流散布层之上,由氮化一钛层形成一具纳米网络结构的氮化钛层或由回火获得一具金属簇结构的铂层。 1. A gallium nitride-based light emitting module, wherein the gallium nitride based light emitting assembly comprising at least: a light emitter capable of emitting light of a gallium nitride based material consisting of; a light-extraction layer, comprising at least: a current spreading layer on the light emitter; and a micro-structure layer, positioned over the current spreading layer, a nano-network structure of a titanium nitride layer is formed by a titanium nitride layer or to obtain a tempered metal platinum layer structure of the cluster.
2、 根据权利要求1所述的氮化镓系发光组件,其特征在于其中所述的发光体为一n型氮化镓系层、 一半导体主动层及一p型氮化镓系层构成,其中该半导体主动层位于该n型氮化镓系层上,该p型氮化镓系层则位于该主动层上。 2. The gallium nitride-based light emitting module according to claim 1, characterized in that wherein said emitter is an n-type gallium nitride layer, a semiconductor active layer, and a p-type gallium nitride-based layers, wherein the semiconductor active layer on the n-type gallium nitride layer, the p-type GaN-based layer is disposed on the active layer.
3、 根据权利要求1所述的氮化镓系发光组件,其特征在于其中所述的发光组件具有一p型电极及一n型电极,且该p型电极是形成于该光取出层上或该光取出层旁。 3. The gallium nitride-based light emitting module according to claim 1, characterized in that said light-emitting assembly having a p-type electrode and an n-type electrode and the p-type electrode is formed on the light extraction layer or the light extraction layer next.
4、 一种制造一氮化镓系发光组件的方法,其特征在于其至少包括下列步骤:备制一基材;形成一n型氮化镓系层于该基材上;形成一半导体主动层于该n型氮化镓系层;形成一p型氮化镓系层于该半导体主动层上;形成一电流散布层于该P型氮化镓系层上;以及形成一微结构层于该电流散布层上,其中该微结构层是利用先形成一铂层于该p型氮化镓系层上、接着再对该铂层加以回火的方式达成。 4. A method of a GaN-based light emitting module manufacturing, characterized in that it comprises at least the steps of: preparing an a substrate; forming an n-type gallium nitride layer on the substrate; forming a semiconductor active layer in the n-type gallium nitride based layer; forming a p-type gallium nitride-based semiconductor layer on the active layer; forming a current spreading layer on the P-type GaN-based layer; and forming a microstructured layer on the the current spreading layer, wherein the microstructured layer is formed using a first way the platinum layer is formed on the p-type GaN-based layer, followed by tempering of the platinum layer to be reached.
5、 根据权利要求4所述的氮化镓系发光组件的制造方法,其特征在于其中所述的形成一微结构层于该电流散布层上的步骤后还包括形成一P型电极及一n型电极于该发光组件上的步骤,且该p型电极是形成在该光取出层上或该光取出层旁。 5. The method of manufacturing a gallium nitride-based light emitting module according to claim 4, characterized in that a micro-structure layer is formed, wherein said step of after the current spreading layer further comprises forming a P-type electrode and an n step-type electrode on the light emitting element, and the p-type electrode is formed on the light extraction layer or the light extraction layer next.
6、 一种氮化镓系发光组件,其特征在于其至少包括:一基材;一金属反射层,位于该基材之上; 一p型氮化镓系层,位于该金属反射层之上; 一半导体主动层,位于该p型氮化镓系层上; 一n型氮化镓系层,位于该半导体主动层上;以及一微结构层,位于该n型氮化镓系层之上,由氮化一钛层形成一具纳米网络结构的氮化钛层或由回火一铂层获得一具金属簇结构的铂层。 6 A gallium nitride-based lighting assembly, characterized in that it comprises at least: a substrate; a reflective metal layer located on the substrate; a p-type gallium nitride layer located above the metal reflective layer ; a semiconductor active layer on the p-type GaN-based layer; an n-type gallium nitride layer on the semiconductor active layer; and a micro-structure layer, positioned over the n-type gallium nitride layer forming a nano-network structure of a titanium nitride layer by a titanium nitride layer or a platinum layer obtained metal cluster structure by tempering a layer of platinum.
7、根据权利要求6所述的氮化镓系发光组件,其特征在于其中所述的发光组件的导电金属基材下方具有一p型电极,并在该微结构层上具有一n型电极。 7. The gallium nitride-based light emitting module according to claim 6, characterized in that the metal substrate under the conductive assembly wherein said light emission having a p-type electrode, and having a n-type electrode on the microstructure layer.
CN 200410006381 2004-02-27 2004-02-27 Luminescence module in gallium nitride series and fabricating method CN100463235C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410006381 CN100463235C (en) 2004-02-27 2004-02-27 Luminescence module in gallium nitride series and fabricating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410006381 CN100463235C (en) 2004-02-27 2004-02-27 Luminescence module in gallium nitride series and fabricating method

Publications (2)

Publication Number Publication Date
CN1661816A CN1661816A (en) 2005-08-31
CN100463235C true CN100463235C (en) 2009-02-18

Family

ID=35010988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410006381 CN100463235C (en) 2004-02-27 2004-02-27 Luminescence module in gallium nitride series and fabricating method

Country Status (1)

Country Link
CN (1) CN100463235C (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176498A (en) 1996-09-06 1998-03-18 东芝株式会社 Compound semicoductor light-emitting device of gallium nitride series
CN1338783A (en) 2000-08-15 2002-03-06 中国科学院半导体研究所 Surficial luminous semiconductor device and method for increasing transverse current
US6495862B1 (en) 1998-12-24 2002-12-17 Kabushiki Kaisha Toshiba Nitride semiconductor LED with embossed lead-out surface
US6611004B2 (en) 2000-06-27 2003-08-26 Sharp Kabushiki Kaisha Gallium nitride based light emitting element
CN2593371Y (en) 2002-12-26 2003-12-17 炬鑫科技股份有限公司 Gallium nitride based LED light-emitting apparatus
CN2593370Y (en) 2002-12-26 2003-12-17 炬鑫科技股份有限公司 Gallium nitride based Ôàó-Ôàñ compounds semiconductor light emitting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176498A (en) 1996-09-06 1998-03-18 东芝株式会社 Compound semicoductor light-emitting device of gallium nitride series
US6495862B1 (en) 1998-12-24 2002-12-17 Kabushiki Kaisha Toshiba Nitride semiconductor LED with embossed lead-out surface
US6611004B2 (en) 2000-06-27 2003-08-26 Sharp Kabushiki Kaisha Gallium nitride based light emitting element
CN1338783A (en) 2000-08-15 2002-03-06 中国科学院半导体研究所 Surficial luminous semiconductor device and method for increasing transverse current
CN2593371Y (en) 2002-12-26 2003-12-17 炬鑫科技股份有限公司 Gallium nitride based LED light-emitting apparatus
CN2593370Y (en) 2002-12-26 2003-12-17 炬鑫科技股份有限公司 Gallium nitride based Ôàó-Ôàñ compounds semiconductor light emitting apparatus

Also Published As

Publication number Publication date
CN1661816A (en) 2005-08-31

Similar Documents

Publication Publication Date Title
TW579607B (en) AlGaInN-based LED having thick epitaxial layer for improved light extraction
Song et al. Ohmic-contact technology for GaN-based light-emitting diodes: Role of p-type contact
KR101154494B1 (en) Highly efficient group-III nitride based light emitting diodes via fabrication of structures on an N-face surface
CN100561758C (en) GaN compound semiconductor light emitting element and method of manufacturing the same
TW579608B (en) Method and structure of forming electrode for light emitting device
US7186580B2 (en) Light emitting diodes (LEDs) with improved light extraction by roughening
US7413918B2 (en) Method of making a light emitting diode
US7732802B2 (en) Semiconductor light emitting device
US7473936B2 (en) Light emitting diodes (LEDs) with improved light extraction by roughening
US20050087755A1 (en) Electrode structure, and semiconductor light-emitting device having the same
CN101714599B (en) Group iii nitride semiconductor light-emitting device and method for producing the same
JP6077549B2 (en) Nanowire-sized photoelectric structure and method of manufacturing the same
KR101287365B1 (en) Light emitting diodes with smooth surface for reflective electrode
JP6162890B2 (en) Micro light emitting diode
KR20120054006A (en) P-contact and light-emitting diode for the ultraviolet spectral range
EP1905103B1 (en) Method of fabricating a light emitting diode having a thermal conductive substrate
KR100682877B1 (en) Light emitting diode and fabrication method of the same
US7897420B2 (en) Light emitting diodes (LEDs) with improved light extraction by roughening
US7563625B2 (en) Method of making light-emitting diodes (LEDs) with improved light extraction by roughening
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
US7012281B2 (en) Light emitting diode device and manufacturing method
US8138518B2 (en) Light emitting diode, package structure and manufacturing method thereof
US6992331B2 (en) Gallium nitride based compound semiconductor light-emitting device
US7524686B2 (en) Method of making light emitting diodes (LEDs) with improved light extraction by roughening
JPWO2009084325A1 (en) LED element and method for manufacturing LED element

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: XUMING PHOTOELECTRICITY INC.

Free format text: FORMER OWNER: JUXIN SCI-TECH CO., LTD.

Effective date: 20121210

CF01