CN100449816C - High work function transparent conductive oxide film electrode and its preparing method - Google Patents

High work function transparent conductive oxide film electrode and its preparing method Download PDF

Info

Publication number
CN100449816C
CN100449816C CN 200510027788 CN200510027788A CN100449816C CN 100449816 C CN100449816 C CN 100449816C CN 200510027788 CN200510027788 CN 200510027788 CN 200510027788 A CN200510027788 A CN 200510027788A CN 100449816 C CN100449816 C CN 100449816C
Authority
CN
China
Prior art keywords
work function
sub
gt
lt
tungsten
Prior art date
Application number
CN 200510027788
Other languages
Chinese (zh)
Other versions
CN1738071A (en
Inventor
群 张
李喜峰
章壮健
丽 黄
缪维娜
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to CN 200510027788 priority Critical patent/CN100449816C/en
Publication of CN1738071A publication Critical patent/CN1738071A/en
Application granted granted Critical
Publication of CN100449816C publication Critical patent/CN100449816C/en

Links

Abstract

本发明是一种高功函数铂钨共掺氧化铟(In<sub>2</sub>O<sub>3</sub>:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极及其制备方法。 The present invention is a high work function of platinum-tungsten co-doped indium oxide (In <sub> 2 </ sub> O <sub> 3 </ sub>: Pt, W) / tungsten-doped indium oxide (of IWO) transparent conductive Double oxide thin film electrode and its preparation method. 本发明以普通玻璃为基板,利用掺钨金属铟镶嵌靶和铂+掺钨金属铟镶嵌靶,通过反应直流磁控溅射技术,在本发明的工作压强和氧分压、溅射电流和溅射电压的条件下制备具有高功函数透明氧化物In<sub>2</sub>O<sub>3</sub>:Pt,W/IWO薄膜电极。 The present invention is an ordinary glass substrate, by using a mosaic target doped indium tungsten and tungsten doped indium oxide + platinum mosaic target, by reactive DC magnetron sputtering, the working pressure of the present invention and an oxygen partial pressure, the sputtering current and splashed preparation of a transparent oxide having a high work function in <sub> 2 </ sub> O <sub> 3 </ sub> under emitter voltage of: Pt, W / IWO film electrode. 所制备的薄膜具有低电阻率、高透射率和高功函数等优良的光电特性。 The prepared film having excellent photoelectric characteristics of low resistivity, high transmittance and high work function. 通过掺铂含量和In<sub>2</sub>O<sub>3</sub>:Pt,W层厚度调制透明导电氧化物薄膜的功函数。 By doping platinum content and In <sub> 2 </ sub> O <sub> 3 </ sub>: Pt, the work function of the layer thickness W of the transparent conductive oxide thin film modulation. 本发明获得的高功函数透明导电氧化物薄膜电极在新型有机光电器件领域具有良好的应用前景。 High work function transparent conductive oxide thin film electrode obtained by the present invention has a good prospect in the new field of organic optoelectronic devices.

Description

一种高功函数透明导电氧化物薄膜电极及其制备方法 A high-work function of the transparent conductive oxide thin film electrode and preparation method

技术领域 FIELD

本发明属于有机发光二极管(OLEDs)技术领域,具体涉及一种高功函数透明导电氧化物薄膜电极及其应用反应直流磁控溅射法制备高功函数铀、钨共掺氧化铟(In2O3=Pt5W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极的方法。 The present invention belongs to the organic light emitting diode (the OLEDs) technologies, and particularly relates to a high work function transparent conductive oxide thin film electrode reaction and its application Preparation of DC magnetron sputtering a high work function uranium, tungsten co-doped indium oxide (In2O3 = Pt5W ) / tungsten-doped indium oxide (of IWO) bilayer electrode of transparent conductive oxide thin film method.

背景技术 Background technique

有机电致发光器件(OLEDs)由于具有高效率、高亮度、宽视角、低功耗、自发光、响应速度快等特点,在许多领域具有潜在的应用,因此得到了人们广泛的关注。 The organic electroluminescent device (the OLEDs) because of high efficiency, high brightness, wide viewing angle, low power consumption, self-emission, fast response characteristics, have potential applications in many fields, and therefore has been widely attention. 而OLEDs对阴、阳透明电极的功函数有不同的要求。 OLEDs have the different requirements of male and female work function of the transparent electrode. 作为阴极的电极材料要具有低的表面功函数以利于电子的注入;作为阳极的电极材料其功函数与阳极有机材料的HOMO相匹配时有利于提高空穴的注入效率。 As an electrode material for the cathode to facilitate injection of electrons having a low surface work function; as an electrode material for the anode work function of the anode and the HOMO of the organic material to match help to improve hole injection efficiency. 而OLEDs的性能与空穴注入过程有非常密切的关系,通常使用掺锡氧化烟(ITO)做OLEDs的阳极,作为OLED中空穴注入层的ΙΤ0,它对OLED性能起着关键的作用。 And OLEDs the hole injection performance procedure has a very close relationship, normally used smoke tin oxide doped (ITO) as the anode in OLEDs, as an OLED ΙΤ0 hole injection layer, it plays a key role in the performance of OLED. 这是因为在OLED器件中,ITO的功函数(典型为4.5~4.7 eV)与有机层(有机小分子或聚合物)离化势(5.4eV左右)的不匹配导致阳极ITO与空穴传输层之间形成一能量势垒,这一能量势全直接影响载流子(空穴)的传输效率。 This is because in an OLED device, the work function of ITO (typically 4.5 ~ 4.7 eV) and the organic layer (organic small molecule or polymer) does not match the ionization potential (about 5.4eV) of the ITO anode lead and the hole transport layer It is formed between an energy barrier, the potential energy of a direct impact on the whole carrier (hole) transport efficiency. 因此作为空穴注入层的电极材料应具有较高的功函数,降低甚至消除接触势垒,最大限度地提高阳极载流子的注入效率,从而提髙整个OLEDs的内量子效率,同时降低OLEDs器件的工作电压,极大地提高OLEDs器件的效率、寿命和稳定性。 Thus as the electrode material of the hole injection layer should have a high work function, reducing or even eliminating the contact of the barrier, to maximize the efficiency of injection of carriers of the anode, thereby improving the internal quantum efficiency of OLEDs Gao whole, while reducing device OLEDs operating voltage greatly improve the efficiency of OLEDs, lifetime and stability. 因此若能进一步提高作为空穴注入层的功函数到5.4 eV左右,那么空穴的注入效率可以进一步提升,器件的域值电压可以降低,发光效率可以改善。 So if further improved as the work function of the hole injection layer to about 5.4 eV, then the hole injection efficiency can be further enhanced, the threshold voltage of the device can be reduced, emission efficiency can be improved. 因此,制备具有髙功函数透明导电氧化物薄膜电极的研究具有很大的应用价值,目前尚无相关研究报导。 Therefore, the study Gao work function transparent conductive oxide thin film electrodes prepared with great value, there is no research reports.

发明内容 SUMMARY

本发明的目的在于提供一种具有工业生产性、工艺稳定性好的高功函数铂鹤共掺氧化铟(In203:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极及其制备方法。 Object of the present invention is to provide an industrial production process stability good high work function of platinum indium oxide codoped crane (In203: Pt, W) / tungsten-doped indium oxide (of IWO) transparent conductive oxide thin film electrode bilayer its preparation method.

本发明提出一种高功函数透明导电氧化物薄膜电极,该电极由钼钨共掺氧化铟即In2O3=Pt5W/掺钨氧化铟即IWO两层组成,其中In2O3=Pt5W层厚0.1-10 nm, IWO层厚50-200nm,其功函数为4.5-5.5 eV。 The present invention provides a high work function transparent conductive oxide film an electrode made of molybdenum, tungsten-doped indium oxide co i.e. In2O3 = Pt5W / tungsten doped indium oxide IWO i.e. two layers, wherein In2O3 Pt5W thickness of 0.1-10 nm =, IWO thickness of 50-200nm, the work function of 4.5-5.5 eV.

本发明提出的制备高功函数铂钨共掺氧化铟(In2O3=Pt5Wy掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极的方法是利用现有技术的直流磁控截射方法制备髙功函数铀钨共掺氧化铟(In2O^PtjW)/捧铕氧化铟(IWO)双层透明导电薄膜电极。本发明的制备是以掺钨金属铟镲嵌靶和铀+掺钨金属铟镲嵌靶为靶材,以通常的玻璃为基板,基板温度200-380X:,通过反应直流磁控截射法,使Ar离子束照射靶材,将靶材截射,在溅射电流100~250mA, The method of DC magnetron cut exit the high work function of platinum tungsten prepared by the present invention co-doped indium oxide (In2O3 = Pt5Wy tungsten doped indium oxide (of IWO) bilayer electrode of transparent conductive oxide thin film is to use the prior art preparation work Gao function uranium oxide, indium co-doped tungsten (In2O ^ PtjW) / indium holding europium oxide (of IWO) bilayer transparent conductive thin film electrode prepared according to the present invention is an indium-doped tungsten and uranium target embedded hat + doped indium tungsten target embedded cymbals as a target, a usual glass substrate, the substrate temperature 200-380X :, cut by DC magnetron sputtering method reaction, an Ar ion beam irradiation target, the target cut shot, the sputtering current 100 ~ 250mA,

派射电压300~600V,反应室内的工作压强为UXlOl^Xli^Pa, O2反应气体的分压百分含量Ρ(02)[=Ρο2/(Ρο2+Ραγ)]为2.0〜20.0%,在前述制备条件下首先镀透明导电IWO薄膜,溅射时间为5〜30分钟,然后在IWO薄膜上镀In203:Pt,W薄膜,雅射时间为1-50秒,采用上述方法最后形成具有高功函数的铂钨共掺氧化铟(In203:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极。 Send emitter voltage 300 ~ 600V, the working pressure in the reaction chamber is UXlOl ^ Xli ^ Pa, the percentage of the partial pressure of the reactant gas Ρ O2 (02) [= Ρο2 / (Ρο2 + Ραγ)] is 2.0~20.0%, in the preparation conditions IWO first transparent conductive coating film, the sputtering time of 5~30 minutes, and then coated on the IWO film In203: Pt, W film, Ya emission duration from 1 to 50 seconds, and finally by the above method has a high work function is formed platinum tungsten co-doped indium oxide (In203: Pt, W) / tungsten-doped indium oxide (of IWO) double transparent conductive oxide thin film electrode.

上述掺钨金属铟锿嵌靶,即在金属铟圆靶上的磁控溅射区内的小孔中均勻镶嵌钨金属丝;上述怕+掺钨金属铟镶嵌靶,即在掺钨金属钢镶嵌靶上均勻放置金属钿丝或钼片;一般将柏丝或铂片紧靠钨金属丝处即可。 The above-described tungsten doped indium einsteinium embedded target, i.e., aperture area magnetron sputtering on the target circle indium tungsten wire embedded uniformly; and the fear + tungsten doped indium mosaic target, i.e., metal-doped tungsten steel inlay evenly spaced metal wires or tin sheet molybdenum target; Lopez generally tungsten or platinum sheet against the wire can.

本发明较好的制备条件如下: The present invention is preferably prepared under the following conditions:

本发明中,基板温度为150-380 V。 In the present invention, the substrate temperature is 150-380 V.

本发明中,O2反应气体的分压为10-15%。 The present invention, the O2 partial pressure of the reaction gas is 10-15%.

本发明中,反应直流磁控溅射镀膜时,溅射条件为:溅射电流120-200mA,溅射电压400 -450 V0 In the present invention, the reaction is DC magnetron sputtering, sputtering conditions: Sputtering current 120-200mA, the sputtering voltage 400 -450 V0

本发明中,镀IWO薄膜溅射时间5-10分钟,然后在IWO薄膜上镀In2O3=Pt5W薄膜的溅射时间为1-40秒。 In the present invention, the plating time is 5-10 minutes IWO film sputtering, plating and sputtering time Pt5W In2O3 = 1 to 40 seconds in a thin film on the IWO film.

本发明中,通过可变气导阀将O2和Ar气体通入反应室,可变气导阀是直流磁控溅射镀膜通入气体的现有技术。 In the present invention, the pilot valve by a variable O2 gas and Ar gas into the reaction chamber, the variable air prior art pilot valve is introduced into a DC magnetron sputtering gas.

本发明方法制得的高功函数钼钨共掺氧化铟(In203:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极厚度为50-200 nm,可根据需要,通过控制溅射IWO薄膜和In2OyPtjW薄膜时间来控制各自的膜厚以及总膜厚。 The process of the present invention, a high work function to obtain a total of molybdenum and tungsten doped indium oxide (In203: Pt, W) / tungsten-doped indium oxide (of IWO) bilayer electrode is a transparent conductive oxide film having a thickness of 50-200 nm, according to need, by IWO film and controlling the sputtering time to control the respective In2OyPtjW film thickness and the total film thickness.

实验结果表明,利用反应直流磁控溅射的方法在普通玻璃基板上制备的In2O3IPtjWZIWO薄膜具有高功函数、低电阻率和高可见光透射率的特性,其光电性能可与ITO产品比拟,而且其功函数(5.5 eV)高于ITO的功函数(4.7 eV)。 Experimental results show that, In2O3IPtjWZIWO film by a reactive DC magnetron sputtering method is prepared on a glass substrate having a common characteristic a high work function, low resistivity and a high visible light transmittance, the optical properties of the product compared with ITO, and its power function (5.5 eV) work function than ITO (4.7 eV). 本发明方法具有工业生产前景,工艺稳定性好,是一种制备高功函数柏钨共掺氧化铟(In203:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜电极,提供新型光电器件优良性能的有效新方法。 The method of the present invention has an industrial production outlook, good process stability, a high work function Bo preparing tungsten-doped indium oxide co (In203: Pt, W) / tungsten-doped indium oxide (of IWO) double transparent conductive oxide thin film electrode, effective novel optoelectronic provide a novel method excellent in performance of the device.

附田说明 Tian attached instructions

图I为本发明方法制备的高功函数铂钨共掺氧化铟On,O,:PtWV擦钨氧化铟(IWO)双层图I为高功函数钼钨共掺氧化铟(In2O3=Pt5W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜的透射率图。 FIG high work function of platinum tungsten I prepared by the process of the present invention is co-doped indium oxide On, O,: PtWV rub indium tungsten oxide (of IWO) FIG. I is a double high work function of molybdenum and tungsten co-doped indium oxide (In2O3 = Pt5W) / tungsten doped indium oxide (of IWO) FIG double transmittance of the transparent conductive oxide thin film.

图3为高功函数钼钨共掺氧化铟(In203:Pt,W)/掺钨氧化铟(IWO)双层透明导电氧化物薄膜与ITO,ZAO薄膜的电性能比较图。 Figure 3 is a high work function of molybdenum and tungsten co-doped indium oxide (In203: Pt, W) / tungsten-doped indium oxide (of IWO) bilayer film and the transparent conductive oxide ITO, ZAO film electrical properties comparison of FIG.

具休实施方式 With Hugh Embodiment

本发明的具体实施方式如下: DETAILED DESCRIPTION The present invention is as follows:

实施例1,制备掺钨氧化铟靶:将纯度为99.99%的In金属熔融成囫靶,在圆靶的磁控溅射区内的小孔中均匀对称地嵌入纯度为99.99%的4wt%钩丝制备而成,靶直径为51mm,厚度为2.5 mm。 Example 1. Preparation of tungsten-doped indium oxide target: purity 99.99% In the molten metal into a target Hu, symmetrical embedded in a purity of 99.99% 4wt% hook aperture magnetron sputtering zone of the target circle prepared from wire, a target having a diameter of 51mm, a thickness of 2.5 mm. 制备怕钨共掺氧化铟靶:在掺钨氧化铟靶上均勻的放入10_/。 Preparation of tungsten co-doped indium oxide fear target: 10_ uniformly placed on a tungsten-doped indium oxide target /. 的Pt片。 The Pt film. 基片是普通载玻片,先后经过纯水、酒精和丙酮超声波各15分钟淸洗。 The substrate is an ordinary slide has through water, alcohol and acetone Qing ultrasonic wave for 15 minutes each wash.

基板温度:380Γ。 Substrate temperature: 380Γ.

把材与基板的间距固定为75 mm» The spacing member and the substrate is fixed to 75 mm »

薄膜沉积前先将反应室抽真空到低于2X 10_3 Pa,然后通过可变气导阀将O2和Ar气体通入反应室。 Before the first film deposition chamber was evacuated to less than 2X 10_3 Pa, and then turned by the variable valve O2 gas and Ar gas into the reaction chamber. 反应室内的工作压强为2.5X10^3,截射电流为150 mA,截射电压为500V,控制O2反应气体的百分含量Ρ(Ο2)[=Ρ02/(Ρ02+Ρατ)]为14.0%。 Working pressure in the reaction chamber is 2.5X10 ^ 3, to cut the emission current 150 mA, the voltage is cut exit 500V, controlling the percentage of reactive gas O2 Ρ (Ο2) [= Ρ02 / (Ρ02 + Ρατ)] was 14.0%. 薄膜即制备在普通玻璃片上。 I.e., the film prepared in ordinary glass.

镀IWO薄膜,溅射时间8分钟,薄膜厚度为120 rnn;然后在IWO薄膜上镀In2O3=Pt5W膜,溅射时间为40秒,薄膜厚度为IOrnn;总膜厚为130 nm。 IWO film plating, sputtering time 8 minutes, the film thickness of 120 rnn; then plated on the IWO film In2O3 = Pt5W film, the sputtering time is 40 seconds, a film thickness of IOrnn; a total thickness of 130 nm.

实施例2,与实施例I同样方法,在下述条件下制得髙功函数钿钨共掺氧化铟(In203:Pt,W)/钨掺氧化铟(IWO)双层透明导电氧化物薄膜:溅射电流为250mA,溅射电压为400 V,通过可变气导阀将O2和Ar气体通入反应室,反应室内的工作压强为I.OX IO11Pa,并控制O2气体的百分含量P(O2)为4.0%。 Example 2, with the same manner as Example I under the following conditions to obtain a work function Gao tungsten-tin oxide, indium co-doped (In203: Pt, W) / tungsten-doped indium oxide (of IWO) double transparent conductive oxide film: sputtering the emission current is 250mA, the sputtering voltage was 400 V, the pilot valve by a variable O2 gas and Ar gas into the reaction chamber, the working pressure in the reaction chamber is I.OX IO11Pa, and the percentage of control P O2 gas (O2 ) was 4.0%. 镀IWO薄膜,截射时间6分钟,薄膜厚度为90nm;然后在IWO薄膜上镀In203:Pt,W膜,溉射时间为10秒,薄膜厚度为2 nm;总膜厚为90 nm» IWO plating film, cut shot time of 6 minutes, and a film thickness of 90 nm; In203 then coated on the IWO film: Pt, W film, irrigation shot time was 10 seconds, a film thickness of 2 nm; total film thickness of 90 nm »

利用表面轮廓仪(Kosaka ET3000型)测量薄膜的厚度d,在室温下采用(Bio-RadMicroscience HL5500 Hall system)霍尔测试系统测量薄膜的电学性能。 Using a surface profiler (Kosaka ET3000) Measurement of film thickness d, using (Bio-RadMicroscience HL5500 Hall system) test system for measuring a Hall electrical properties of the film at room temperature. 采用X射线衍射仪P«D)(RigakuD/max-rBM,CuKa射线源)分析薄膜的晶态结构:采用原子力显微镜(AFM)(Park Scientific Instrument, AutoProbe CP, USA)分析薄膜的表面形貌;利用能量色散X射线(EDX)分析薄膜的含量;利用VGESCA-LabMK-II电子能谱仪上做非原位测量得到紫外 X-ray diffraction P «D) (RigakuD / max-rBM, CuKa-ray source) analysis of the crystalline structure of the film: atomic force microscopy (AFM) (Park Scientific Instrument, AutoProbe CP, USA) analysis of surface morphology; analysis of content of the film using an energy dispersive X-ray (EDX); VGESCA-LabMK-II using electron energy spectrometer making non-situ measured UV

Claims (7)

1、一种高功函数透明导电氧化物薄膜电极,其特征是该电极由铀钨共掺氧化铟即In2O3:Pt,W/掺钨氧化铟即IWO两层组成,其中In203:Pt,W层厚0.1-10 nm,IWO层厚50-200nm,其功函数为4.5-5.5 eV。 A high work function transparent conductive oxide thin film electrode, wherein the electrode is made of tungsten co-doped indium oxide of uranium that is In2O3: Pt, W / tungsten-doped indium oxide IWO i.e. two layers, wherein In203: Pt, W layer thickness of 0.1-10 nm, IWO thickness of 50-200nm, the work function of 4.5-5.5 eV.
2、一种高功函数透明导电氧化物薄膜电极的制备方法,其特征是利用反应直流磁控溅射法制备In203:Pt,W/IW0透明导电氧化物薄膜,具体制备条件如下: (1)制备温度为200〜380 0Ci (2)采用掺钨金属铟镶嵌靶,即在金属铟圆靶上的磁控溅射区内的小孔中均匀镶嵌钨金属丝; (3)采用铀+掺钨金属铟镶嵌靶,即在掺钨金属铟镶嵌靶上均勻的放置金属铂丝或铂片; (4)将O2和Ar气体通入反应室使工作压强为2.5 X IO'1〜2.5 X IO0Pa,控制O2反应气体的分压为2.0〜20.0 (5)直流磁控溅射电流为100〜250 mA,溅射电压为300 - 600 V; (6)首先镀透明导电氧化物IWO薄膜,溅射时间为5〜30分钟;然后在IWO薄膜上镀In203:Pt,W薄膜,溅射时间为1-50秒。 2, a method for preparing a high work function transparent conductive oxide thin film electrode, characterized by a reactive DC magnetron sputtering Preparation In203: Pt, W / IW0 transparent conductive oxide thin film, the specific preparation conditions are as follows: (1) preparation temperature is 200~380 0Ci (2) using the tungsten-doped indium mosaic target, i.e., aperture area magnetron sputtering on the target circle indium tungsten wire embedded in a uniform; (3) use of uranium doped tungsten + indium mosaic target, i.e., uniform metal platinum wire placed on a platinum plate or tungsten-doped indium mosaic target; (4) the O2 and Ar gas into the reaction chamber the working pressure of 2.5 X IO'1~2.5 X IO0Pa, O2 partial pressure of the reaction gas is 2.0~20.0 (5) direct current magnetron sputtering 100~250 mA, the sputtering voltage is 300 - 600 V; (6) first, a transparent conductive oxide coated IWO film, sputtering time is 5~30 minutes; and then coated on the IWO film In203: Pt, W film, the sputtering time of 1-50 seconds.
3、根据权利要求2所述的高功函数透明导电氧化物薄膜电极的制备方法,其特征是制备温度为150-380 0Co 3, a thin film electrode prepared high work function transparent conducting oxides according to claim 2, characterized in that the preparation temperature of 150-380 0Co
4、根据权利要求2所述的高功函数透明导电氧化物薄膜电极的制备方法,其特征是O2反应气体的分压为10-15%。 4. The process according to the thin film electrode is a high work function transparent conducting oxides in claim 2, wherein the O2 partial pressure of the reaction gas is 10-15%.
5、根据权利要求2所述的高功函数透明导电氧化物薄膜电极的制备方法,其特征是反应直流磁控溅射镀膜时,溅射条件为:溅射电流120-200mA,溅射电压400-450V。 5. The process according to the high work function electrode film of the transparent conductive oxide in claim 2, characterized in that the reaction is DC magnetron sputtering, sputtering conditions: Sputtering current 120-200mA, the sputtering voltage 400 -450V.
6、根据权利要求2所述的高功函数透明导电氧化物薄膜电极的制备方法,其特征是镀IWO薄膜濺射时间5-10分钟,然后在IWO薄膜上镀In203:Pt,W薄膜的溅射时间为1-40秒。 Preparation of the high work function electrode film of the transparent conductive oxide 6, according to claim 2, wherein the plating IWO film sputtering time of 5-10 minutes, and then coated on the IWO film In203: Pt, W sputtered film exit time is 1-40 seconds.
7、根据权利要求2所述的高功函数透明导电氧化物薄膜电极的制备方法,其特征是通过可变气导阀将O2和Ar气体通入反应室。 Preparation of the high work function electrode film of the transparent conductive oxide 7, according to claim 2, characterized in that the pilot valve by a variable O2 gas and Ar gas into the reaction chamber.
CN 200510027788 2005-07-15 2005-07-15 High work function transparent conductive oxide film electrode and its preparing method CN100449816C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510027788 CN100449816C (en) 2005-07-15 2005-07-15 High work function transparent conductive oxide film electrode and its preparing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510027788 CN100449816C (en) 2005-07-15 2005-07-15 High work function transparent conductive oxide film electrode and its preparing method

Publications (2)

Publication Number Publication Date
CN1738071A CN1738071A (en) 2006-02-22
CN100449816C true CN100449816C (en) 2009-01-07

Family

ID=36080787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510027788 CN100449816C (en) 2005-07-15 2005-07-15 High work function transparent conductive oxide film electrode and its preparing method

Country Status (1)

Country Link
CN (1) CN100449816C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158049B (en) 2007-07-31 2010-06-02 北京工业大学 Method for preparing P-type transparent conductive oxide CuAlO2 film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366017B1 (en) * 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
US6875320B2 (en) * 2003-05-05 2005-04-05 Eastman Kodak Company Highly transparent top electrode for OLED device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366017B1 (en) * 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
US6875320B2 (en) * 2003-05-05 2005-04-05 Eastman Kodak Company Highly transparent top electrode for OLED device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Linear Model Application for the Design of TransparentConductive In2O3 Electrodes. A.Axelevitch, ect.IEEE. 1996 *

Also Published As

Publication number Publication date
CN1738071A (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP5376750B2 (en) Semiconductor thin film, and a manufacturing method thereof and a thin film transistor, active matrix drive display panel,
Kim et al. Doped ZnO thin films as anode materials for organic light-emitting diodes
Wang et al. The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes
CN1938791B (en) Transparent conductive film, process for producing the same, transparent conductive base material and luminescent device
Meyer et al. Transparent inverted organic light‐emitting diodes with a tungsten oxide buffer layer
KR100606642B1 (en) Target for transparent conductive thin film, Transparent conductive thin film and Manufacturing method thereof, Electrode material for display, and Organic electroluminescence element and solar Cell
US20120218621A1 (en) Materials and device stack for market viable electrochromic devices
JPH10261487A (en) Organic electroluminescent element and manufacture thereof
JP2001348296A (en) Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
CN1879238A (en) Electronic device comprising a protective barrier layer stack
CN101383400A (en) Organic light emitting device using high conductive hole transport material as hole transport layer
KR20070098314A (en) Surface treatment method of ito using oxygen plasma and thermal treatment and oled device using the same method
Lee et al. Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application
US6891324B2 (en) Carbon-metal nano-composite materials for field emission cathodes and devices
JP2000068073A (en) Organic electroluminescent element and its manufacture
EP2432040A2 (en) Organic light-emitting diode and method for manufacturing same
Morales‐Masis et al. An Indium‐Free Anode for Large‐Area Flexible OLEDs: Defect‐Free Transparent Conductive Zinc Tin Oxide
CN101587941B (en) Organic electroluminescent display device
Jeong et al. The insert of zinc oxide thin film in indium tin oxide anode for organic electroluminescence devices
Lee et al. Development of inverted OLED with top ITO anode by plasma damage-free sputtering
JP4670877B2 (en) Zinc oxide-based transparent conductive film laminate and a transparent conductive substrate and the device
CN100586243C (en) Red organic electroluminescent devices and its preparation method
US6917158B2 (en) High-qualty aluminum-doped zinc oxide layer as transparent conductive electrode for organic light-emitting devices
CN1156035C (en) Protecting film of organic luminescent device and its packaging method
US20040041508A1 (en) Electrode and device using the same

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right