CN100426521C - Spin transistor - Google Patents

Spin transistor Download PDF

Info

Publication number
CN100426521C
CN100426521C CNB2004100804856A CN200410080485A CN100426521C CN 100426521 C CN100426521 C CN 100426521C CN B2004100804856 A CNB2004100804856 A CN B2004100804856A CN 200410080485 A CN200410080485 A CN 200410080485A CN 100426521 C CN100426521 C CN 100426521C
Authority
CN
China
Prior art keywords
diode
spin transistor
emitter
transistor according
collector electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100804856A
Other languages
Chinese (zh)
Other versions
CN1761069A (en
Inventor
黄瀛文
卢志权
谢蓝青
姚永德
黄得瑞
朱朝居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CNB2004100804856A priority Critical patent/CN100426521C/en
Publication of CN1761069A publication Critical patent/CN1761069A/en
Application granted granted Critical
Publication of CN100426521C publication Critical patent/CN100426521C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

The present invention relates to a spin transistor which improves the change rate of current which passes through a magneto resistor of a potential barrier by a single potential barrier structure. The spin transistor comprises an emitting electrode, a collecting electrode, a base electrode and a base electrode resistor, wherein the base electrode is a magneto resistor assembly which can provide different resistance under the condition of different external magnetic fields. The collecting electrode is a passive assembly used for providing a single potential barrier; the base electrode is arranged between the emitting electrode and the collecting electrode and is respectively conducted with the emitting electrode and the collecting electrode by electric property. The base electrode resistor is connected with the base electrode so as to provide bias voltage.

Description

Spin transistor
Technical field
The invention relates to a kind of transistor, particularly about a kind of spin transistor (spin transistor, or magneto transistor) of applying electronic spin properties.
Background technology
Spin transistor is the electronic building brick of a new generation, utilizes electronic spin characteristic and externally-applied magnetic field to be used for the Control current flow, and then produces the effect of similar conventional transistor.Therefore revolve on the electronic spin characteristic has and two kinds of spin states of backspin (spin up and spin down), utilize the assembly of electron spin characteristic only to utilize electron charge that the more control parameter is arranged and make circuit design more flexible than traditional components.
The spin transistor of being developed at present is double potential barrier (barrier) spin transistor structure, in transistor, provide two kinds of potential barriers and in conjunction with the magneto-resistor assembly, whether to utilize under the situation of spinning electron different magnetic moment ordered states in the magneto-resistor assembly, produce the magnetoelectricity rheologyization by potential barrier.The spin transistor framework and the processing procedure that are proposed as nineteen ninety-five Monsma, be that silicon substrate with two Doped n-type ions sticks together respectively as emitter and collector electrode with face-to-face mode vacuum, spin metal valve of therebetween (spin valve) is as base stage (base), and the material of Spin Valve is platinum (Pt)/cobalt (Co)/copper (Cu)/cobalt (Co).Transistorized emitter/base and base stage/collector electrode are Schottky barrier (Schottky barrier) contact structure.Apply forward bias voltage drop in emitter/base, then electronics strides across potential barrier injection base stage from silicon substrate becomes hot electron.And whether identical thermionic transmission will be subjected to the two cobalt layer direction of magnetization the influence in the Spin Valve, and when the two cobalt layer direction of magnetization are opposite, no matter be from spinning up or the downward electronics that spins is all hindered, the electric current that passes through is less.Parallel when the direction of magnetization of two-layer cobalt layer, increase from the probability that the electronics that spins up passes through this moment, and electric current increases.The advantage of this assembly is for can reaching magnetic current changing rate 200% or more in room temperature, but output current is very little, and its purposes is restricted, and owing to make difficultly, modular construction is difficult to microminiaturization.
The spin transistor structure of another kind of double potential barrier is to be proposed in nineteen ninety-five by Mizushima, be on as n p type gallium arensidep (GaAs) substrate of collector electrode, to make a magneto-resistor assembly as base stage, the aluminium oxide that is formed by aluminaization is as a potential barrier, and plates metal as emitter on aluminium oxide.Though this structure can solve the problem in the manufacturing process, make easily miniaturization of assembly, and the magnetic current changing rate can reach 3400% at low temperatures.But the cost costliness of GaAs substrate, the homogeneity of the alumina layer that the alumina metals layer is produced is not easy control, simultaneously, for preventing to destroy alumina layer, need to use less input current to cause output current also can't improve, and this structure just can reach good magnetic current changing rate at low temperatures.
For improving the operating temperature of double potential barrier spin transistor structure, design a kind of new magnetic channel transistor (magnetic tunnel transistor) in Parkin in 2002, can at room temperature operate, and reach the output and the magnetic current changing rate of 1 micromicroampere (μ A) can be greatly to 64%.This structure is the ferrocobalt layer (Co of growth one deck 3 nanometers (nm) on as the n p type gallium arensidep substrate of collector electrode 84Fe 16) as base stage,, on alumina layer, form the ferrocobalt layer (Co of 5 nanometers (nm) again at its surperficial growth layer of aluminum metal level and be oxidized into alumina layer 84Fe 16) as emitter.Be characterized in the antiferromagnetic iridium manganese alloy of evaporation layer (Ir on emitter 22Mn 78) as pinning layer, the direction of magnetization of emitter can be pegged (pinned), cover tantalum (Ta) metal level of one deck 5 nanometers above again.Control suitable externally-applied magnetic field again, promptly can only change the direction of magnetization of base stage, but do not influence the direction of magnetization of emitter, so, i.e. the spin direction of may command incident electron.But the method has the cost costliness of GaAs substrate equally, the homogeneity of the alumina layer that the alumina metals layer is produced is not allowed manageable problem, and to reach preferable magnetic current changing rate, need the good coating of quality to form the magneto-resistor assembly of high current changing rate, on making, have sizable difficulty.
Summary of the invention
The invention provides a kind of spin transistor, as emitter, and utilize the passive component that single potential barrier is provided as collector electrode with the magneto-resistor assembly, base stage is formed between the two, makes the collector electrode working point produce drift in conjunction with base resistance again.Can increase rate of change effectively by single barrier structure, and improve output current by the magneto-resistor electric current of potential barrier.
Spin transistor of the present invention contains emitter, collector electrode, base stage and base resistance, and it is the magneto-resistor assembly that emitter and base stage form what is formed by magnetoresistance effect, so that different resistance to be provided under the situation of different externally-applied magnetic fields respectively; Current collection is passive component very, and single potential barrier is provided; Base stage is interval between emitter and the collector electrode, electrically conducts respectively in emitter and collector electrode; Base resistance is connected in base stage to provide different bias voltages according to different externally-applied magnetic fields.The magneto-resistor assembly can be via the control of externally-applied magnetic field, and generation high resistance and low resistance, so can under fixed voltage, produce different big or small emitter currents, make that under the situation of different externally-applied magnetic fields the collector current of the potential barrier by passive component also changes thereupon.And the base resistance that is connected base stage can produce different bias voltage (bias) according to different externally-applied magnetic fields, makes the collector electrode working point produce drift, and this effect can more increase the rate of change of collector current.
Wherein, the magneto-resistor assembly can comprise ferromagnetic layer, and directly is connected with collector electrode.So, promptly utilize ferromagnetic layer that the magneto-resistor assembly comprised, make emitter and base stage form the magneto-resistor assembly, and electrically conduct with the passive component of collector electrode as base stage.
For making purpose of the present invention, structural feature and function thereof are had further understanding, conjunction with figs. is described in detail as follows:
Description of drawings
Fig. 1 is the spin transistor structural representation of the embodiment of the invention;
Fig. 2 is the collector current rate of change measuring circuit schematic diagram of spin transistor;
Fig. 3 is the current changing rate measurement result figure that wears the spin transistor of tunnel formula magneto-resistor assembly;
Fig. 4 is the current changing rate measurement result figure that wears the spin transistor of tunnel formula magneto-resistor assembly;
Fig. 5 is the current changing rate measurement result figure of the spin transistor of spin valve magnetic resistor assembly; And
Fig. 6 is the current changing rate measurement result figure of the spin transistor of spin valve magnetic resistor assembly.
Wherein, Reference numeral:
110 emitters
120 base stages
121 base resistances
130 collector electrodes
131 ohmic contact layers
140 emitter voltages
150 base voltages
160 ampere meters
Embodiment
With reference to figure 1, it is the spin transistor structural representation of first embodiment of the invention, comprise emitter 110, base stage 120, base resistance 121, collector electrode 130 and ohmic contact layer 131, emitter 110 is by the formed magneto-resistor assembly of magnetoresistance effect, externally-applied magnetic field being arranged or not having under the situation of externally-applied magnetic field, provide different resistance with respectively; Collector electrode 130 is for containing the p-n substrate that p-n connects face, in order to single potential barrier to be provided, and gold-plated with as ohmic contact layer 131 on collector electrode; Base stage 120 is at interval between emitter 110 and collector electrode 130, to be connected to emitter 110 and collector electrode 130; 121 of base resistances are connected in base stage 120.Wherein, the magneto-resistor assembly can be wears tunnel formula magneto-resistor assembly, the spin valve magnetic resistor assembly, any magneto-resistor assembly that changes its resistance value because magnetic field changes such as giant magnetoresistance assembly and impact type magneto-resistor assembly, passive component also can be selected Schottky diode or other diode except the p-n diode, as the p-i-n diode, plane doping barrier diode (planar-doped-barrier diode), tunnel diode (tunnel diode), diode (resonant-tunneling diode) is then worn in resonance, the resonance energy interband is worn diode (resonant-interband-tunneling diode) then, unipotential is built and is worn diode (single-barrier tunnel diode) then, unipotential barrier energy interband is worn diode (single-barrierinterband-tunneling diode) then, real space conduction diodes (real-space-transferdiode), heterostructure thermionic diode (heterostructure hot-electron diode), diode (impact-ionization-avalanche transit-timediode) when the bump avalanche of ionization crosses, energy barrier injects diode (barrier-injection transit-time diode) when crossing, p-i-n optical diode (p-i-n photodiode), Schottky optical diode (Schottky-barrierphotodiode) and avalanche photodiode any passive components such as (avalanche photodiode).
The collector current rate of change of spin transistor needs to learn through measurement, with reference to figure 2, it is the collector current rate of change measuring circuit schematic diagram of spin transistor, provide emitter voltage source and base voltage source respectively at emitter 110 ends and base stage 120 ends, so that emitter voltage (VE) 140 and base voltage (VB) 150 to be provided, and measure collector electrode 130 electric currents of output with ampere meter 160.Emitter 110 electric currents of input are emitter 110 to the voltage (VEB) of 120 of the base stages resistance divided by the magneto-resistor assembly.Therefore, according under the situation of different externally-applied magnetic fields, the magneto-resistor assembly will provide different resistance, and then produce different input currents, obtain corresponding output current.
Because spin transistor of the present invention is single potential barrier (single potential barrier) structure, not only simplify whole spin transistor structure, make the making of each assembly all can be integrated into semi-conductive manufacturing process, can be on a substrate with emitter, base stage and collector electrode integration and making, this substrate can be semiconductor substrate, as silicon substrate or GaAs substrate, also can use plastics or glass substrate.This structure also can significantly increase input current, makes the corresponding lifting of output current, and then promotes the collector current rate of change.
Room temperature current changing rate for actual verification spin transistor of the present invention, carry out the measurement of room temperature current changing rate as the magneto-resistor assembly in the embodiment of the invention to wear tunnel formula magneto-resistor assembly, wear tunnel formula magneto-resistor assembly and be by first ferromagnetic layer, insulating barrier, second ferromagnetic layer is stacking forms, first ferromagnetic layer is engaged in passive component, and the while is as the base stage of spin transistor.With the base resistance of 2000 ohm (Ω), the emitter voltage of 600 millivolts (mV) and 0 volt base voltage are as the measurement parameter of experiment; The result of its current changing rate as shown in Figure 3, its emitter current is reduced to 83.6 by 91.5 and is received ampere, current changing rate can reach 9.45%; Collector current is reduced to 41.3 by 46.6 and is received ampere, and current changing rate can reach 12.8%.Base resistance is increased to 100000 ohm (Ω), and emitter voltage is that the base voltage of 65 millivolts (mV) and 0 volt is measured; The result of its current changing rate as shown in Figure 4, its emitter current is reduced to 90.6 by 97.8 and is received ampere, current changing rate can reach 13.6%; Collector current is reduced to 74.8 by 80.3 and is received ampere, and current changing rate can reach 7.5.Hence one can see that, by changing base resistance, emitter voltage and base voltage, can change the magnetic current changing rate of spin transistor.
Carry out the measurement of room temperature current changing rate with the spin valve magnetic resistor assembly as the magneto-resistor assembly in the embodiment of the invention again, the spin valve magnetic resistor assembly is that base stage engages with passive component at interval.With the base resistance of 100 ohm (Ω), the base voltage of 1.26 volts emitter voltage and 0 volt is as the measurement parameter of experiment; The result of its current changing rate as shown in Figure 5, its emitter current is reduced to 5.03 milliamperes by 5.15 milliamperes, current changing rate can reach 2.28%; Base current is reduced to 4.61 milliamperes by 4.68 milliamperes, and current changing rate can reach 1.52%; Collector current is reduced to 0.41 milliampere by 0.46, and current changing rate can reach 11%.Emitter voltage is adjusted into 1 volt, keeps the base resistance of 100 ohm (Ω) and 0 volt base voltage; The result of its current changing rate as shown in Figure 6, its emitter current is reduced to 3.922 milliamperes by 3.988 milliamperes, current changing rate can reach 1.716%; Base current is reduced to 3.906 milliamperes by 3.964 milliamperes, and current changing rate can reach 1.502%; Collector current is reduced to 10.28 micromicroamperes (μ A) by 20 micromicroamperes, and current changing rate can reach 94.55%.
In sum, spin transistor of the present invention has bigger output current and electric current change rate, can at room temperature obtain this result.And can change output current, current changing rate and current gain by adjusting emitter voltage, base voltage and base resistance, make that the spin transistor range of application is more extensive.
Certainly; the present invention also can have other various embodiments; under the situation that does not deviate from spirit of the present invention and essence thereof; those of ordinary skill in the art work as can make various corresponding changes and distortion according to the present invention, but these corresponding changes and distortion all should belong to the protection range of the appended claim of the present invention.

Claims (10)

1, a kind of spin transistor is characterized in that, it includes:
One collector electrode is a passive component, in order to a potential barrier to be provided;
One emitter and a base stage, the magneto-resistor assembly that formation one is formed by a magnetoresistance effect, to provide different resistance, this base stage to be interval between this emitter and this collector electrode under the situation respectively at different externally-applied magnetic fields, this emitter and this collector electrode form by this base stage and electrically conduct; And
One base resistance is connected in this base stage to provide different bias voltages according to different externally-applied magnetic fields.
2, spin transistor according to claim 1 is characterized in that, this magnetoresistance effect comprises a ferromagnetic layer, is adjacent to this collector electrode, and this ferromagnetic layer is used as this base stage.
3, spin transistor according to claim 1 is characterized in that, this magneto-resistor assembly be selected from wear group that tunnel formula magneto-resistor assembly, spin valve magnetic resistor assembly, giant magnetoresistance assembly and impact type magneto-resistor assembly formed one of them.
4, spin transistor according to claim 1 is characterized in that, this passive component be selected from a diode and a resistance one of them.
5, spin transistor according to claim 4, it is characterized in that this diode is selected from p-n diode, p-i-n diode, Schottky diode, plane doping barrier diode, tunnel diode, resonance and wears then diode, resonance energy interband and wear then diode, unipotential and build and wear then that diode, unipotential barrier energy interband are worn then diode, real space conduction diodes, heterostructure thermionic diode, diode, energy barrier injected diode, p-i-n optical diode, Schottky optical diode and avalanche photodiode when crossing when the bump avalanche of ionization crossed.
6, spin transistor according to claim 1 is characterized in that, it comprises an ohmic contact layer, is connected in this collector electrode so that external electrically conducting to be provided.
7, spin transistor according to claim 1 is characterized in that, this emitter, base stage and collector electrode are arranged on the substrate.
8, spin transistor according to claim 7 is characterized in that, this substrate be selected from group that silicon substrate and GaAs substrate formed one of them.
9, spin transistor according to claim 7 is characterized in that, this substrate is a plastic base.
10, spin transistor according to claim 7 is characterized in that, this substrate is a glass substrate.
CNB2004100804856A 2004-10-11 2004-10-11 Spin transistor Expired - Fee Related CN100426521C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100804856A CN100426521C (en) 2004-10-11 2004-10-11 Spin transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100804856A CN100426521C (en) 2004-10-11 2004-10-11 Spin transistor

Publications (2)

Publication Number Publication Date
CN1761069A CN1761069A (en) 2006-04-19
CN100426521C true CN100426521C (en) 2008-10-15

Family

ID=36707061

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100804856A Expired - Fee Related CN100426521C (en) 2004-10-11 2004-10-11 Spin transistor

Country Status (1)

Country Link
CN (1) CN100426521C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221521A1 (en) * 2015-11-03 2017-05-04 Forschungszentrum Jülich GmbH Tunnel diode and transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432373A (en) * 1992-12-15 1995-07-11 Bell Communications Research, Inc. Magnetic spin transistor
US6218718B1 (en) * 1996-04-26 2001-04-17 Isis Innovation Limited Spin transistor
WO2004055901A2 (en) * 2002-12-13 2004-07-01 Thales High performance spin-valve transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432373A (en) * 1992-12-15 1995-07-11 Bell Communications Research, Inc. Magnetic spin transistor
US6218718B1 (en) * 1996-04-26 2001-04-17 Isis Innovation Limited Spin transistor
WO2004055901A2 (en) * 2002-12-13 2004-07-01 Thales High performance spin-valve transistor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
magnetocurrent in a bipolar spin transistor at roomtemperature. Y.W. Huang et al.Appl. Phys. Lett.,Vol.85 No.14. 2004
magnetocurrent in a bipolar spin transistor at roomtemperature. Y.W. Huang et al.Appl. Phys. Lett.,Vol.85 No.14. 2004 *
room temperature operation of a high output current magnetictunnel transistor. Sebastiaan van Dijken et al.Appl. Phys. Lett.,Vol.80 No.18. 2002
room temperature operation of a high output current magnetictunnel transistor. Sebastiaan van Dijken et al.Appl. Phys. Lett.,Vol.80 No.18. 2002 *
电子线路. 梁明理,65,高等教育出版社. 2002
电子线路. 梁明理,65,高等教育出版社. 2002 *

Also Published As

Publication number Publication date
CN1761069A (en) 2006-04-19

Similar Documents

Publication Publication Date Title
KR100583688B1 (en) Semiconductor element comprising a semimagnetic contact
CN101140952B (en) Spin mosfet
US6876574B2 (en) Magnetoresistive device and electronic device
KR19990077881A (en) tunneling magnetoresistance element and magnetic sensor, magnetic head and magnetic memory for using the same
US5962905A (en) Magnetoresistive element
US20070115597A1 (en) Spin injection devices
US7531883B2 (en) Magneto-resistance transistor and method thereof
Kumar et al. Low-field magnetocurrent above 200% in a spin-valve transistor at room temperature
CN100426521C (en) Spin transistor
US20050260774A1 (en) Method of incorporating magnetic materials in a semiconductor manufacturing process
US7259437B2 (en) High performance spin-valve transistor
CN100495752C (en) Transistor with magneto resistnace
KR100795246B1 (en) Spin transistor and method thereof
JPH0126182B2 (en)
US5514899A (en) Dual-emitter lateral magnetometer
TWI241044B (en) Magneto-resistance transistor
JP2010266337A (en) Thin-film magnetic sensor
TWI246775B (en) Spin transistor
JP3469675B2 (en) Magnetic spin element
Schurig et al. 1B4. 02
JPH11154388A (en) Magnetoresistive memory element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081015

Termination date: 20161011

CF01 Termination of patent right due to non-payment of annual fee