New! View global litigation for patent families

CN100424898C - Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery - Google Patents

Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery Download PDF

Info

Publication number
CN100424898C
CN100424898C CN 200510004653 CN200510004653A CN100424898C CN 100424898 C CN100424898 C CN 100424898C CN 200510004653 CN200510004653 CN 200510004653 CN 200510004653 A CN200510004653 A CN 200510004653A CN 100424898 C CN100424898 C CN 100424898C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
solar
battery
laminar
structure
manufacturing
Prior art date
Application number
CN 200510004653
Other languages
Chinese (zh)
Other versions
CN1808727A (en )
Inventor
李崇华
陈建清
Original Assignee
李崇华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明是关于一种太阳电池层状结构的制造方法、太阳电池电极及太阳电池,尤指一种可形成一具有复数个次微米级空洞的层状结构且可提升太阳电池光电转换效率的制造方法。 The present invention relates to a solar cell manufacturing method of a layered structure, solar cell electrode and a solar battery, particularly to a manufacturing may be formed having a plurality of sub-micron thin laminar structure and can enhance the photoelectric conversion efficiency of the solar cell method. 本方法包括(A)提供一具有复数层纳米球层于表面的基板,(B)形成至少一硅层于纳米球层间隙与此基板部分表面,及(C)移除此等纳米球层,形成一具有复数个微孔洞的层状结构。 The method comprises (A) providing a substrate having a plurality of layers on the surface layer of the nanosphere, (B) forming at least a portion of the surface of this silicon layer and the substrate, and (C) layer to remove such nanospheres nanospheres gap layer, forming a plurality of micro-layered structure having a hole. 本太阳电池包括一基板、一位于此基板的表面并具有复数个微孔洞的层状结构、一位于此层状结构的表面透明保护层、至少一电连接于此层状结构的前接点及至少一电连接于此基板的背接点。 This solar cell includes a substrate, a surface of this substrate having a layered structure and a plurality of micro-holes, the surface of the transparent protective layer is a layered structure thereto, at least one electrical connection thereto and the front contacts a layered structure at least one electrical connection thereto back contact substrate.

Description

太阳电池层状结构的制法、太阳电池电极及太阳电池技术领域本发明是关于一种太阳电池的层状结构的制造方法、太阳电池电极及太阳电池,尤指一种可形成一具有复数个次微米级空洞的层状结构且可提升太阳电池的光电转换效率的制造方法。 Method layered structure of the solar cell, solar cell electrode and a solar cell Technical Field The present invention relates to a method for producing a layered structure of a solar cell, solar cell electrode and a solar battery, particularly, to a form having a plurality of sub-micron thin lamellar structure and method of manufacturing the photoelectric conversion efficiency of the solar cell can be improved. 背景技术由于目前人类主要依赖的各种能源来源,如铀、天然气与石油等,在未来数十年内皆会使用殆尽,科学家无不投入大量心力与金钱在开发替代能源的应用上,如太阳能、风力、波力及地热,且都获致不错的成果。 BACKGROUND due to the current human rely mainly on a variety of energy sources, such as uranium, natural gas and oil, etc., in the coming decades will use all exhausted, all the scientists put a lot of effort and money on application development of alternative energy sources, such as solar, wind, wave and geothermal, and good results are attainable. 但是,风力、波力及地热的运用皆具有其地域限制性,必须在某些环境才可以使用,如火山区或海岸边,且其所使用的设备庞大,如风车及深海海水的取水管线。 However, wind power, wave power and geothermal use of all with its geographical restriction must only be used in certain circumstances, fiery mountains or along the coast, and large equipment they use, such as windmills and deep-sea water pipeline. 因此,科举家一致看好太阳能的应用并投入大量心力发展相关的转换装置,即太阳电池。 Therefore, the imperial family looking on the application of solar energy and a lot of effort put into the development of related conversion devices, namely solar cells. 目前世界上各个研究单位利用各种材料并利用各种工艺来制做太阳电池,而所得到的太阳电池的光电转换效率并不尽相同。 The world's various research units using a variety of materials and processes making use of a variety of solar cells, and the resulting solar cell photoelectric conversion efficiency is not entirely the same. 此外,太阳电池的材料可区分为单晶硅、多晶硅、非晶硅;三五族,包括砷化镓、磷化铟、 磷化镓铟:二六族,包括碲化镉、硒化铟铜等。 Furthermore, the material can be divided into single crystal silicon solar cells, polycrystalline silicon, amorphous silicon; III-V, including gallium arsenide, indium phosphide, gallium indium phosphide: twenty-six Group, comprises cadmium telluride, copper indium diselenide Wait. 而最高的光电转换效率分别为:单晶硅24.7%、多晶硅19.8%、非晶硅14.5%、砷化录25.7%、硒化镓铟18.8%。 The highest photoelectric conversion efficiency were: 24.7% monocrystalline silicon, polycrystalline silicon, 19.8%, 14.5% Si, 25.7% recorded arsenide, indium gallium selenide 18.8%. 一般而言,实验室阶段的太阳电池的光电转换效率已可达30%以上,但是市面上所出售的量产阶段的太阳能电池,其光电转换效率一般低于20。 Generally, the laboratory stage solar cell has a photoelectric conversion efficiency of up to 30%, sold in the market but the volume production of solar cells, its photoelectric conversion efficiency is generally lower than 20. ^,仍有进步的空间。 ^, There is still room for improvement. 而在成本及光电转换效率的双重考量下, 目前以结晶硅的应用较多(包括单晶硅及多晶硅),但在一些较低阶的应用上,如太阳能计算机或太阳能手表,则使用光电转换效率较低但价格较便宜的非晶硅做为太阳电池的材料。 In the dual cost considerations and the photoelectric conversion efficiency, the application of more current crystalline silicon (including polycrystalline silicon and monocrystalline silicon), but in some applications lower order, such as solar or solar watch computer, using a photoelectric conversion material solar cells is less efficient but cheaper as amorphous silicon. 此外,由于太阳电池的整体价格太高,且硅晶片成本占太阳电池的总成本一半以上。 Further, since the overall price of the solar cell is too high, and the silicon wafer cost accounts for more than half of the total cost of the solar cell. 因此,科学家无不竭尽所能地想提高太阳电池的光电转换效率并寻求有效降低成本的工艺,以提高太阳电池的实用性。 So scientists want to do everything without inexhaustible improve the photoelectric conversion efficiency of solar cells and seek to reduce the cost of the process to improve the practicality of solar cells. 目前,科学家提高太阳电池的光电转换效率的方法是提供光吸收的面积(如利用硅纳米线做为与入射光子反应的材料)或增加入射光子的数量(如设置抗反射层)。 Currently, scientists method of improving the photoelectric conversion efficiency of solar cells to provide an area of ​​light absorption (e.g. silicon nanowires as a material reactive with the incident photons) or increasing the number of incident photons (e.g., anti-reflection coating). 但是,硅纳米线的工艺繁杂,且需要使用金属触媒以促进硅纳米线的生长。 However, silicon nanowires complicated process, and requires the use of a metal catalyst to promote the growth of silicon nanowires. 这些金属触媒不仅额外增加成本,且对于硅纳米线而言,这些金属触媒为不纯物且会阻碍电子于硅纳米线中的传输,影响太阳电池的光电转换效率。 The only additional cost metal catalyst, and for the silicon nanowire, such as a metal catalyst and impurities hinder the transport of electrons in the silicon nanowire, the influence of the photoelectric conversion efficiency of solar cells. 此外,设置抗反射层必须利用复杂的光罩及蚀刻工艺将硅晶片的表面蚀刻成三角锥状,且利用蒸镀方式于三角锥状表面涂布抗反射层。 Further, the antireflective layer must use complex and mask etching process of etching the surface of the silicon wafer into a triangular pyramid shape, and a triangular pyramid shape by vapor deposition on the surface of the coating embodiment antireflection layer. 而这些工艺都会增加太阳电池的价格且降低其生产良率,不利于大量生产以增加其市场占有率。 These processes will increase the price of solar cells and reduce the production yield is not conducive to mass production in order to increase its market share. 因此,业界亟需一种具有较高光电转换效率的太阳电池及其制造方法,以大幅降低太阳电池的价格并替代更多原本使用非再生能源的应用场合,节省非再生能源的消耗。 Therefore, a need for an industry with a solar cell and method for manufacturing high photoelectric conversion efficiency, in order to significantly reduce the price of solar cells and more original alternative to the use of non-renewable energy applications, saving non-renewable energy consumption. 发明内容本发明的目的在于提供一种太阳电池层状结构的制造方法、太阳电池电极及太阳电池。 Object of the present invention to provide a method of manufacturing a layered structure of a solar cell, solar cell electrode and a solar cell. 为实现上述目的,本发明提供的太阳电池形成具有复数个微孔洞的层状结构的方法,包括:(A) 提供一具有复数层纳米球层于其上表面的基板,其中该些纳米球层由复数个纳米球堆叠而成;(B) 形成至少一硅层于该些纳米球层间隙与该基板部分上表面;以及(C) 移除该些纳米球,形成一具有复数个微孔洞的层状结构于该基板的上表面。 To achieve the above object, the present invention provides a method of forming a solar cell having a plurality of microvoids layered structure, comprising: (A) providing a plurality of layers having a layer thereon nanosphere surface of the substrate, wherein the plurality of nanospheres a stack of layers formed by a plurality of nanospheres; (B) is formed on the substrate surface with at least a portion of the silicon layer on the gap layer, these nanospheres; and (C) removing the plurality of nanospheres, having a plurality of micropores is formed layered structure on the surface of the hole in the substrate. 所述的方法,其中步骤(A)的形成该些纳米球层于该基板上表面的方法,包括:(Al)提供该基板及一位于该容器的胶体溶液,且该胶体溶液具有该些纳米球及一介面活性剂; '(A2)放置该基板于该容器中,且该胶体溶液覆盖至少部分该基板上表面;以及(A3)加入一具挥发性的溶液于该容器中,移除该介面活性剂并于该基板上表面形成该些纳米球层。 The method, wherein a surface of the plurality of nanospheres layer on the substrate, comprising the step of forming (A) is: (Al) providing the substrate a colloidal solution and the container is located, and the colloidal solution having the plurality of nano and a ball interface active agent; '(A2) the substrate is placed in the container and covering at least a portion of the colloidal solution on the substrate surface; and (A3) was added a volatile solution in the container, removing the interface and the active agent is formed on the substrate surface of the plurality of layers nanospheres. 所述的方法,其中该方法于步骤(B)后还包括一步骤(B1),将该基板及该硅层退火处理。 The method of claim, wherein the method after step (B) further comprises a step (Bl), the substrate and the silicon layer is annealed. 所述的方法,其中该基板的材质为单晶硅、多晶硅、非晶硅、砷化镓、 磷化铟、磷化镓铟或硒化铟铜。 The method of claim, wherein the substrate material is single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, indium phosphide, gallium indium phosphide or copper indium diselenide. 所述的方法,其中该些纳米球的材质为氧化硅。 The method of claim, wherein the plurality of nanospheres made of silicon oxide. 所述的方法,其中该硅层是利用有机金属化学气相淀积法形成于该些纳米球层间隙与该基板部分上表面。 The method of claim, wherein the silicon layer is formed on the plurality of nanosphere gap layer on the substrate portion of the surface using an organic metal chemical vapor deposition. 所述的方法,其中该硅层为单晶硅。 The method of claim, wherein the silicon layer is monocrystalline silicon. 所述的方法,其中该些纳米球是利用一氢气酸溶液移除。 The method of claim, wherein the plurality of nanospheres using an acid solution to remove the hydrogen. 所述的方法,其中该方法于步骤(C)后还包括一步骤(D),形成至少一薄膜层于该层状结构表面。 The method of claim, wherein the method after step (C) further comprises a step (D), a thin film layer formed on at least the surface of the layered structure. 所述的方法,其中该薄膜层是以蒸镀法形成于该层状结构表面。 The method of claim, wherein the film layer is formed on the deposition surface of the layered structure. 所述的方法,其中该基板为p型硅基板且该薄膜层的材质为磷。 The method of claim, wherein the substrate is a p-type silicon substrate material and the film layer is phosphorus. 所述的方法,其中该基板为N型硅基板且该薄膜层的材质为镁。 The method of claim, wherein the substrate is a material of N-type silicon substrate and the thin film layer is magnesium. 所述的方法,其中该方法于步骤(D)后还包括一步骤(E),将该基板、 该硅层及该薄膜层退火处理。 The method of claim, wherein the method after step (D) further comprises a step (E), the substrate, the silicon layer, and annealing the film layer. 本发明提供的太阳电池的电极,包括:一具有一上表面的基板;以及一层状结构,该层状结构位于该上表面并具有复数个微孔洞。 The electrode of the present invention provides a solar cell, comprising: a substrate having an upper surface; and a layered structure, the layered structure is located on the surface and having a plurality of microvoids. 所述的电极,其中该基板的材质为单晶硅、多晶硅、非晶硅、砷化镓、 磷化铟、磷化镓铟或硒化铟铜。 The electrode material of which the substrate is single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, indium phosphide, gallium indium phosphide or copper indium diselenide. 所述的电极,其中该层状结构的材质为单晶硅。 The electrode, wherein the material of the single crystal silicon layer structure. 所述的电极,其中该基板为P型硅基板且该层状结构的材质为砷化镓。 The electrode, wherein the substrate is a P-type silicon substrate material and the gallium arsenide layered structure. 所述的电极,其中该基板为N型硅基板且该层状结构的材质为硒化镉。 The electrode, wherein the substrate is a material of N-type silicon substrate and the layered structure is cadmium selenide. 本发明提供的太阳电池,配合一外部回路,包括: 一基板;一透明保护层,位于该层状结构表面;至少一前接点,电连接于该层状结构;以及至少一背接点,电连接于该基板;其中,该外合回路为电连接于该前接点及该背接点。 The present invention provides a solar cell, with an outer loop, comprising: a substrate; a transparent protective layer, the layered structure located surface; at least one of the front contacts, electrically connected to the layered structure; and at least one back contact, electrically connected on the substrate; wherein the external circuit electrically connected together to the front contact and the back contact. 所述的太阳电池,其中该太阳电池还包括一夹置于该基板及该背接点之间的底保护层。 The solar cell, wherein the solar cell further comprises a protective layer interposed between the bottom substrate and the back contact. . 所述的太阳电池,其中该层状结构的材质为单晶硅。 The solar cell, wherein the material of the single crystal silicon layer structure. 所述的太阳电池,其中该基板为P型硅基板且该层状结构的材质为砷化镓。 The solar cell, wherein the substrate is a P-type silicon substrate material and the gallium arsenide layered structure. 所述的太阳电池,其中该基板为N型硅基板且该层状结构的材质为硒化镉。 The solar cell, wherein the substrate is a material of N-type silicon substrate and the layered structure is cadmium selenide. 由此可知,由于本发明的太阳电池包括一具有复数个微孔洞的层状结构,使得本发明的太阳电池可与入射光线的光子产生反应的表面积大幅增加,大幅提升本发明的太阳电池的光电转换效率。 It can be seen, since the solar cell according to the present invention comprises a plurality of micro-holes having a layered structure, so that the solar cell of the present invention may react with photons of the incident light surface area increased significantly, significantly enhance solar cell of the present invention photoelectric conversion efficiency. 此外,由于本发明的太阳电池的光电转换效率较原本公知的太阳电池为高,且并不需要设置一工艺复杂的抗反射层(ARC)即可提高入射光进入太阳电池的比率。 Further, since the solar cell of the present invention, photoelectric conversion efficiency of the solar cell than the original high-known and does not need to set up a complex process antireflective layer (ARC) to increase the ratio of the incident light into the solar cell. 所以,本发明的太阳电池可利用较简单的工艺生产,不仅降低生产成本及价格,更可大量生产,大幅提升太阳电池于能源市场的占有率,减少人类社会对于石化能源的依赖。 Therefore, the solar cell of the invention may utilize a simpler production process, not only reduces the cost of production and price, but also mass production, significantly increasing the share of solar energy in the market, reduce human dependence on fossil fuels society. 本发明的形成具有复数个微孔洞的层状结构的方法,其中位于基板上表面的纳米球可由任何材质构成,较佳为氧化硅(SiOx)、陶瓷、取甲基丙烯酸甲酯(PMMA)、氧化钛(TiOx)或聚苯乙烯(PS)。 The method of the present invention is formed with a plurality of micro holes of a layered structure, wherein the nanospheres may be located on any surface of the substrate material composition, preferably silicon oxide (the SiOx), a ceramic, taken methyl methacrylate (PMMA) , titanium oxide (the TiOx) or polystyrene (PS). 本发明的形成具有复数个微孔洞的层状结构的方法可于步骤(B)后还包括一步骤(B1),将此基板及此硅层退火处理。 After forming method of the present invention has a layered structure of a plurality of micro-holes may be in step (B) further comprises a step (B1), this substrate and annealing the silicon layer. 而此退火处理时的温度,较佳介于70(TC至900°C。本发明的形成具有复数个微孔洞的层状结构的方法所使用的基板可由任何材质构成,较佳为P型硅基板或N型硅基板。本发明的形成具有复数个微孔洞的层状结构的方法包括运用任何适当方法将硅层形成于此等纳米球层间隙与此基板部分上表面,较佳为有机金属化学气相淀积法或溅镀法。 本发明的形成具有复数个微孔洞的层状结构的方法所形成的硅层可由任何晶格种类的硅构成,较佳为单晶硅、多晶硅或非晶硅。本发明的形成具有复数个微孔洞的层状结构的方法可运用任何种类的溶液将复数个纳米球移除,较佳为氢氟酸、甲酸、丁酮或甲苯。本发明的形成具有复数个微孔洞的层状结构的方法可于步骤(C)后还包括一步骤(D),形成至少一薄膜层于此层状结构的表面,而形成此至少一薄膜层的方法较佳为蒸镀 When the temperature of annealing treatment, preferably, from 70 (TC to 900 ° C. According to the present invention formed a plurality of substrates having a layered structure of microvoids method to be used may be comprised of any material, preferably a P-type silicon N-type silicon substrate or a substrate formed according to the present invention is a method having a plurality of microvoids layered structure using any suitable method including a silicon layer formed thereto nanosphere like gap layer on this part of the substrate surface, preferably organic metal chemical vapor deposition or sputtering. the formation of the present invention having a plurality of microvoids method of the layered structure of the silicon layer may be formed of any kind of lattice silicon, preferably monocrystalline silicon, polycrystalline silicon, or amorphous silicon is formed according to the present invention having a plurality of microvoids method of a layered structure of any kind of solution may be the use of a plurality of nanospheres removed, preferably hydrofluoric acid, formic acid, methyl ethyl ketone, or toluene. the present invention the method of forming a plurality of microvoids after the layered structure may in step (C) further comprises a step (D), the surface of this layer structure is formed at least one thin film layer to form the at least one film layer The method is preferably deposited 溅镀。当本发明的形成具有复数个微孔洞的层状结构的方法所使用的基板为P型硅基板时,此薄膜层的材质较佳为硼、镓、铍或镁。当本发明的形成 Sputtering. When the present invention is formed of a substrate having a plurality of microvoids method of a layered structure used is a P-type silicon substrate, a thin film layer of this material is preferably boron, gallium, beryllium or magnesium. When the present invention Formation

具有复数个微孔洞的层状结构的方法所使用的基板为N型硅基板时,此薄膜层的材质较佳为磷、砷、硫或氧。 The method of a substrate having a plurality of microvoids layered structure used is an N-type silicon substrate, the thin film material of this layer is preferably phosphorus, arsenic, sulfur or oxygen. 本发明的形成具有复数个微孔洞的层状结构的方法可于步骤(D)后还包括一步骤(E),将此基板、此硅层及此薄膜层退火处理。 After forming method of the present invention has a layered structure of a plurality of micro-holes may be in step (D) further comprises a step (E), this substrate, the silicon layer, and annealing this film layer. 而此退火处理时的温度,较佳介于70(TC至90(rC。 When the temperature of annealing treatment, preferably, from 70 (TC to 90 (rC.

本发明的太阳电池可还包括一夹置于基板及背接点之间的底保护层。 A solar cell of the present invention may further comprise a protective layer interposed between the bottom substrate and the back contact. 本发明的太阳电池电极的基板可由任何材质构成,较佳为P型硅基板或N 型硅基板。 A substrate for solar cell electrodes of the present invention may be composed of any material, preferably a P-type silicon substrate or an N-type silicon substrate. 本发明的太阳电池电极的层状结构可由任何晶格种类的硅构成,较佳为单晶硅、多晶硅或非晶硅。 Layered structure of the solar cell electrode of the present invention may be any kind of a lattice of silicon, preferably monocrystalline, polycrystalline or amorphous silicon. 当本发明的太阳电池电极的基板为P型硅基板时,此层状结构的材质较佳为N型材料,其为混入VA或VIA 元素。 When the substrate is a solar cell electrode of the present invention is a P-type silicon substrate, the material of this layered structure is preferably N-type material, which is mixed with VA or VIA element. 当本发明的太阳电池电极的基板为N型硅基板时,此层状结构的材质较佳为P型材料,其为混入IIA或IIIA元素。 When the substrate is a solar cell electrode of the present invention is an N-type silicon substrate, the material of this layered structure is preferably P-type material, which is mixed IIA or IIIA elements. 本发明的太阳电池的层状结构可具有任何尺寸的微孔洞,其平均直径较佳介于150nm至450 nm。 The layered structure of the solar cell of the present invention may have micro pores of any size, preferably an average diameter of between 150nm to 450 nm.

本发明的太阳电池的层状结构可由任何晶格种类的硅构成,较佳为单晶硅、多晶硅或非晶硅。 The layered structure of the solar cell of the present invention can be any kind of a lattice of silicon, preferably monocrystalline, polycrystalline or amorphous silicon. 当本发明的太阳电池的基板为P型硅基板时,此层状结构的材质较佳为N型材料,其为混入VA或VIA元素。 When a solar cell substrate of the present invention is a P-type silicon substrate, the material of this layered structure is preferably N-type material, which is mixed with VA or VIA element. 本发明的太阳电池的基板为N型硅基板时,此层状结构的材质较佳为P型材料,其为混入IIA或IIIA元素。 A solar cell substrate of the present invention is an N-type silicon substrate, the material of this layered structure is preferably P-type material, which is mixed IIA or IIIA elements.

附图说明 BRIEF DESCRIPTION

图la、图lb为形成具有复数层纳米球层的基板的方法示意图。 FIG la, lb FIG method for forming a schematic view of a substrate having a plurality of layers nanosphere layer.

图2为本发明一较佳实施例的形成具有复数个微孔洞的层状结构的方 Example 2 a square form having a layered structure of a plurality of microvoids preferred embodiment of the present invention.

法示意图。 Schematic diagram of law.

图3为本发明另一较佳实施例的太阳电池的电极示意图。 FIG 3 is a schematic of another preferred embodiment of the electrode of the solar cell of the present invention. 图4为本发明又一较佳实施例的太阳电池的示意图。 FIG 4 is a schematic view of still another preferred embodiment of a solar cell of the present invention. 具体实施方式 detailed description

由于本发明一较佳实施例形成具有复数个微孔洞层状结构的方法必需使用到一具有复数层纳米球层于其表面的基板,所以先叙述形成此种基板的步骤则如下: Since the embodiment of the present invention forming a preferred embodiment of a method having a plurality of microvoids necessary to use a layered structure to a substrate surface having thereon a plurality of layers nanosphere layer, describes the first step of forming such a substrate is as follows:

请参阅图l,首先,提供一P型硅基板11及一胶体溶液12,此胶体溶液12具有复数个纳米球(图中未示)及一介面活性剂。 Referring to FIG. L, first, a P-type silicon substrate 11 and a colloidal solution 12, the solution 12 has a plurality of colloidal nanospheres (not shown) and an interface active agent. 接著,将P型硅基板11放置于胶体溶液12的容器13中,使P型硅基板11浸入胶体溶液12 中。 Next, the P-type silicon substrate 11 is placed in the container 12 of the colloid solution 13, the P-type silicon substrate 11 is immersed in a colloidal solution 12. 待静置数分钟以后,复数个纳米球14逐渐堆积于P型硅基板11的表面并自动堆叠成复数层纳米球层。 After standing a few minutes to be, a plurality of balls 14 nanometers gradually deposited on the P-type silicon substrate 11 and the surface of a plurality of layers stacked automatically nanosphere layer. 这些纳米球的材质为氧化硅(SiOx),且其平均直径介于150nm至450nm之间。 These nanospheres made of silicon oxide (SiOx), and an average diameter of between 150nm to 450nm. 但在不同的应用场合中,亦可以使用聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)或氧化钛(TiOx)材质的纳米球,且其尺寸并不仅限于前述的范围,可依照实际需要改变其尺寸。 However, in various applications, it may also be used polymethyl methacrylate (PMMA), polystyrene (PS) or titanium oxide (the TiOx) nanosphere material, and the size is not limited to the aforementioned range, in accordance with actual needs to change its size.

随后,将具有挥发性的丙酮溶液15例入容器13中,将前述胶体溶液12挥发掉。 Subsequently, the volatile acetone with 15 cases into the container 13, the aforementioned colloid solution 12 evaporates. 待胶体溶液12被挥发干净后,再将P型硅基板11从容器13 中取出,便得到一具有复数层纳米球层于其表面的P型硅基板11。 Colloid solution 12 is to be clean and the volatiles removed from the container 13 and then the P-type silicon substrate 11, they will have a plurality of layers having a layer thereon nanosphere surface of the P-type silicon substrate 11.

再如图2所示,本发明一较佳实施例的形成具有复数个微孔洞的层状结构的方法再利用有机金属化学气相淀积法(MOCVD),同时于前述的复数层纳米球层的间隙及P型硅基板11的部分表面形成一硅层21,且将具有硅层21的P型硅基板11以70(TC至卯(TC进行退火处理,以使构成硅层21单晶硅的晶粒相位排列整齐。当完成退火步骤后,将P型硅基板ll 及位于其上的硅层21浸入一氢氟酸溶液(图中未示)中,移除位于硅层21 中的纳米球14而形成复数个位于硅层21中的微孔洞22。需注意的是,若使用不同材质的纳米球,则移除纳米球所需的溶液并不相同,即若纳米球的材质为聚甲基丙烯酸甲酯(PMMA),则使用的溶液为甲酸(formicacid); 若纳米球的材质为聚苯乙烯(PS),则使用的溶液为丁酮或甲苯。 Method 2 again, the present invention is formed in a preferred embodiment of a layered structure having a plurality of microvoids reuse metal organic chemical vapor deposition (MOCVD), while a plurality of layers in the layer nanosphere and a gap portion of the surface of the P-type silicon substrate 11 is formed a silicon layer 21, and the P-type silicon layer 21 of the silicon substrate 11 to 70 (TC to d (TC is annealed, so that the silicon layer constituting the silicon single crystal 21 neat phase grain. Upon completion of the annealing step, the P-type silicon substrate ll and thereon a silicon layer 21 is immersed in a hydrofluoric acid solution (not shown), the removal of the silicon layer 21 located nano a plurality of balls 14 are formed in the silicon layer 21 is located microvoids 22. Note that, by using different materials nanospheres, nano required to remove the ball was not the same, i.e., when the material for the nanospheres polymethyl methacrylate (PMMA), the acid solution used (formicacid); if nanospheres made of polystyrene (PS), the solution used is toluene or butanone.

当形成复数个微孔洞22于硅层21中后,再利用蒸镀的方式在硅层21 上表面形成一层镓薄膜23,且利用退火处理的方式,将镓薄膜23的组成成份扩散进入硅层21中,使得硅层21转变为具有复数个微孔洞的N型硅层。 When forming a plurality of micro-holes 22 in the silicon layer 21, and then by the deposition of Embodiment 23 is formed on the surface of the silicon layer 21 of gallium film layer, and annealing treatment using the embodiment, the constituent diffusion of gallium into the film 23 silicon layer 21, so that the silicon layer 21 into a plurality of micro-holes having an N-type silicon layer.

图3是本发明另一较佳实施例的太阳电池的电极示意图,此电极是利用前述方法制造。 Figure 3 is a schematic view of a solar cell electrode according to another preferred embodiment, the electrode manufactured by the above method. 其中,基板31为可透光的氧化铟锡玻璃,而位于基板 Wherein the substrate 31 is made of a transparent indium tin oxide glass, and of the substrate

31表面的层状结构32具有复数个平均直径介于150nm至450nm之间的微孔洞321。 Surface 32 of the layered structure 31 having a plurality of microvoids average diameter of between 321 to 150nm between 450nm. 但除此以外,基板31的材质亦可为不透光的单晶硅。 But the material except the substrate 31 is a monocrystalline silicon may also be opaque. 况且, 当基板31的材质为P型硅基板时,层状结构32的材质为砷化镓,而当基板31的材质为N型硅时,层状结构32的材质为硒化镉。 Moreover, when the material of the substrate 31 is a P-type silicon substrate 32 of the layered structure made of GaAs, and when the material of the substrate 31 is N-type silicon, layered structure 32 is made of cadmium selenide.

图4是本发明又一较佳实施例的太阳电池的示意图,太阳电池40配合一外部回路(图中未示),将光能转换为电能并输出至另一装置(图中未示)。 FIG 4 is a schematic view of a solar cell of the present invention is still further preferred embodiment, the solar cell 40 with an external circuit (not shown), and light energy into electrical energy output to another device (not shown). 太阳电池40除了具有与图3所示电极具有相同功能的部分以外(P型硅基板41、由N型单晶硅构成的层状结构42及微孔洞421),还具有位于层状结构42上表面的透明保护层43、两前电极44、位于P型硅基板41 下表面的底保护层45及背电极46 。 In addition to the solar cell 40 has a portion having the same function than the electrode shown in FIG. 3 (P type silicon substrate 41, a layered structure consisting of an N-type silicon single crystal 42 and the micro-holes 421), a layered structure 42 further has on the surface of transparent protective layer 43, 44, the two front electrode plate 41 is located in the P-type silicon substrate 45 and the protective layer surface of the back electrode 46. 其中,透明保护层43的材质为玻璃, 底保护层45的材质为二氧化硅,而前电极44及背电极46的材质均为银且分别电连接于层状结构42及P型硅基板41 。 Wherein the material of the transparent protective layer 43 is made of glass, a bottom protective layer 45 made of silicon dioxide, the material of the front electrode 44 and back electrode 46 are electrically connected to the silver and the layered structure 42 and the P-type silicon substrate 41 .

在实际运转时,从外界入射光线的光子经由透明保护层43进入太阳电池40的内部。 In actual operation, the photons from the outside of the incident light into the interior of the solar cell 40 via the transparent protective layer 43. 光子在太阳电池40的层状结构42及P型硅基板41之间来回碰撞,使得层状结构42及P型硅基板41同时产生复数个电子及复数个电穴,即均形成复数个电子-电穴对。 Solar photons in the layered structure 42 and 40 of the P-type silicon substrate 41 back and forth between the collision, so that the layered structure 42 and the P-type silicon substrate 41 simultaneously generating a plurality of electrons and a plurality of power points, i.e. are forming a plurality of electron - electric hole pairs. 此时,那些位于由N型单晶硅构成的层状结构42的电穴朝向P型硅基板41移动,而那些位于P型硅基板41的电子则朝向由N型单晶硅构成的层状结构42移动。 In this case, a layered structure that is located in the N-type silicon single crystal made of electrically pockets 42 move toward the P-type silicon substrate 41, and the electronic those in the P-type silicon substrate 41 is made of a layer toward the N-type silicon single crystal moving structure 42. 这些移动的电子及电穴分别通过前电极44及背电极46进入一外部回路中(图中未示),形成一电流。 These moving electrons and hole 44 respectively the front electrode and the back electrode 46 into an external circuit (not shown) to form a current. 此时,太阳电池40便将入射光线的光子所携带的能量转换为电能,完成光电转换的程序。 In this case, the solar cell 40 put the photons incident light energy into electrical energy carried, to complete the process of photoelectric conversion.

上述实施例仅为了方便说明而举例而己,本发明所主张的权利范围应以申请专利范围所述为准,而非仅限于上述实施例。 The above-described embodiments merely for convenience of illustration and example hexyl, scope of the present invention as claimed should patentable scope of the subject application, not limited to the above embodiments.

Claims (23)

1. 一种形成具有复数个微孔洞的层状结构的方法,包括: (A)提供一具有复数层纳米球层于其上表面的基板,其中该些纳米球层由复数个纳米球堆叠而成; (B)形成至少一硅层于该些纳米球层间隙与该基板部分上表面;以及(C)移除该些纳米球,形成一具有复数个微孔洞的层状结构于该基板的上表面。 1. A method of a layered structure having a plurality of microvoids formed, comprising: (A) providing a plurality of layers having a layer thereon nanosphere surface of the substrate, wherein the plurality of nano-layer stack of a plurality of ball nanospheres made; (B) forming at least a silicon layer on the surface of these nano-sphere gap layer and the upper portion of the substrate; and (C) removing the plurality of nanospheres, a layered structure having a plurality of microvoids in the upper surface of the substrate.
2. 如权利要求l所述的方法,其特征在于,其中步骤(A)的形成该些纳米球层于该基板上表面的方法,包括:(Al)提供该基板及一位于该容器的胶体溶液,且该胶体溶液具有该些纳米球及一介面活性剂;(A2)放置该基板于该容器中,且该胶体溶液覆盖至少部分该基板上表面;以及(A3)加入一具挥发性的溶液于该容器中,移除该介面活性剂并于该基板上表面形成该些纳米球层。 2. The method according to claim l, characterized in that, wherein a surface of the plurality of nanospheres layer on the substrate is formed in step (A), comprising: (Al) providing the substrate of the vessel and located in a colloid solution and the colloidal solution having the plurality of balls and a nano-interface active agent; (A2) the substrate is placed in the container and covering at least a portion of the colloidal solution on the substrate surface; and (A3) was added a volatile the solution in the container, removing the interface surface active agent and the plurality of nanospheres layer on the substrate.
3. 如权利要求l所述的方法,其特征在于,其中该方法于步骤(B)后还包括一步骤(B1),将该基板及该硅层退火处理。 L The method according to claim 2, characterized in that, in the method wherein after step (B) further comprises a step (Bl), the substrate and the silicon layer is annealed.
4. 如权利要求1所述的方法,其特征在于,其中该基板的材质为单晶硅、多晶硅、非晶硅、砷化镓、磷化铟、磷化镓铟或硒化铟铜。 4. The method according to claim 1, characterized in that the material of which the substrate is single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, indium phosphide, gallium indium phosphide or copper indium diselenide.
5. 如权利要求1所述的方法,其特征在于,其中该些纳米球的材质为氧化硅。 5. The method according to claim 1, wherein, wherein the plurality of nanospheres made of silicon oxide.
6. 如权利要求1所述的方法,其特征在于,其中该硅层是利用有机金属化学气相淀积法形成于该些纳米球层间隙与该基板部分上表面。 6. The method according to claim 1, wherein, wherein the silicon layer is formed using metal organic chemical vapor deposition is formed on the plurality of nanosphere gap layer on the substrate surface portion.
7. 如权利要求l所述的方法,其特征在于,其中该硅层为单晶硅。 7. The method according to claim l, wherein, wherein the silicon layer is monocrystalline silicon.
8. 如权利要求1所述的方法,其特征在于,其中该些纳米球是利用一氢气酸溶液移除。 8. The method according to claim 1, wherein, wherein the plurality of nanospheres using an acid solution to remove the hydrogen.
9. 如权利要求l所述的方法,其特征在于,其中该方法于步骤(C)后还包括一步骤(D),形成至少一薄膜层于该层状结构表面。 L The method according to claim 9, characterized in that, wherein the method after step (C) further comprises a step (D), a thin film layer formed on at least the surface of the layered structure.
10. 如权利要求9所述的方法,其特征在于,其中该薄膜层是以蒸镀法形成于该层状结构表面。 10. The method according to claim 9, wherein, wherein the film layer of the layered structure is formed on the deposition surface.
11. 如权利要求9所述的方法,其特征在于,其中该基板为P型硅基板且该薄膜层的材质为磷。 11. The method according to claim 9, wherein, wherein the substrate is a P-type silicon substrate and a material of the thin film layer is phosphorus.
12. 如权利要求9所述的方法,其特征在于,其中该基板为N型硅基板且该薄膜层的材质为镁。 12. The method according to claim 9, wherein, wherein the substrate is a material of N-type silicon substrate and the thin film layer is magnesium.
13. 如权利要求9所述的方法,其特征在于,其中该方法于步骤(D) 后还包括一步骤(E),将该基板、该硅层及该薄膜层退火处理。 13. The method according to claim 9, characterized in that, the method wherein after step (D) further comprises a step (E), the substrate, the silicon layer, and annealing the film layer.
14. 一种太阳电池的电极,包括: 一具有一上表面的基板;以及一层状结构,该层状结构位于该上表面并具有复数个微孔洞。 14. A solar cell electrode, comprising: a substrate having an upper surface; and a layered structure, the layered structure is located on the surface and having a plurality of microvoids.
15. 如权利要求14所述的电极,其特征在于,其中该基板的材质为单晶硅、多晶硅、非晶硅、砷化镓、磷化铟、磷化镓铟或硒化铟铜。 15. The electrode according to claim 14, characterized in that the material of which the substrate is single crystal silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, indium phosphide, gallium indium phosphide or copper indium diselenide.
16. 如权利要求14所述的电极,其特征在于,其中该层状结构的材质为单晶硅。 16. The electrode according to claim 14, wherein, wherein the material of the single crystal silicon layer structure.
17. 如权利要求14所述的电极,其特征在于,其中该基板为P型硅基板且该层状结构的材质为砷化镓。 17. The electrode according to claim 14, wherein, wherein the substrate is a P-type silicon substrate material and the gallium arsenide layered structure.
18. 如权利要求14所述的电极,其特征在于,其中该基板为N型硅基板且该层状结构的材质为硒化镉。 18. The electrode according to claim 14, wherein, wherein the substrate is a material of N-type silicon substrate and the layered structure is cadmium selenide.
19. 一种太阳电池,配合一外部回路,包括: 一基板;一层状结构,位于该基板表面并具有复数个微孔洞; 一透明保护层,位于该层状结构表面; 至少一前接点,电连接于该层状结构;以及至少一背接点,电连接于该基板; 其中,该外合回路为电连接于该前接点及该背接点。 19. A solar cell, with an outer loop, comprising: a substrate; a layered structure, located on the substrate surface and having a plurality of microvoids; a transparent protective layer, the layered structure located surface; at least one point before , is electrically connected to the layered structure; and at least one back contact, electrically connected to the substrate; wherein the external circuit electrically connected together to the front contact and the back contact.
20. 如权利要求19所述的太阳电池,其特征在于,其中该太阳电池还包括一夹置于该基板及该背接点之间的底保护层。 20. The solar cell according to claim 19, wherein, wherein the solar cell further comprises a protective layer interposed between the bottom substrate and the back contact.
21. 如权利要求19所述的太阳电池,其特征在于,其中该层状结构的材质为单晶硅。 21. The solar cell according to claim 19, wherein, wherein the material of the single crystal silicon layer structure.
22. 如权利要求19所述的太阳电池,其特征在于,其中该基板为P型硅基板且该层状结构的材质为砷化镓。 22. The solar cell according to claim 19, wherein, wherein the substrate is a P-type silicon substrate material and the gallium arsenide layered structure.
23.如权利要求19所述的太阳电池,其特征在于,其中该基板为N 型硅基板且该层状结构的材质为硒化镉。 23. The solar cell according to claim 19, wherein, wherein the substrate is a material of N-type silicon substrate and the layered structure is cadmium selenide.
CN 200510004653 2005-01-21 2005-01-21 Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery CN100424898C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510004653 CN100424898C (en) 2005-01-21 2005-01-21 Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510004653 CN100424898C (en) 2005-01-21 2005-01-21 Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery

Publications (2)

Publication Number Publication Date
CN1808727A true CN1808727A (en) 2006-07-26
CN100424898C true CN100424898C (en) 2008-10-08

Family

ID=36840519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510004653 CN100424898C (en) 2005-01-21 2005-01-21 Manufacturing method of laminar structure of solar battery, electrodes of solar battery, and solar battery

Country Status (1)

Country Link
CN (1) CN100424898C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687918B1 (en) 2004-05-13 2005-08-24 日産ディーゼル工業株式会社 Structure of the reducing agent container
CN101399297B (en) 2008-10-24 2010-09-22 无锡尚德太阳能电力有限公司 Gallium doped single crystal silicon solar cell and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115734A (en) 2002-09-27 2004-04-15 Nitto Denko Corp Particle-dispersed resin sheet, substrate for image displaying device and image displaying device
WO2005006393A2 (en) 2003-05-27 2005-01-20 Triton Systems, Inc. Pinhold porosity free insulating films on flexible metallic substrates for thin film applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115734A (en) 2002-09-27 2004-04-15 Nitto Denko Corp Particle-dispersed resin sheet, substrate for image displaying device and image displaying device
WO2005006393A2 (en) 2003-05-27 2005-01-20 Triton Systems, Inc. Pinhold porosity free insulating films on flexible metallic substrates for thin film applications

Also Published As

Publication number Publication date Type
CN1808727A (en) 2006-07-26 application

Similar Documents

Publication Publication Date Title
Green Crystalline and thin-film silicon solar cells: state of the art and future potential
Grätzel Dye-sensitized solid-state heterojunction solar cells
Guo et al. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications
Polman et al. Photovoltaic materials: Present efficiencies and future challenges
Mailoa et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
US20080169019A1 (en) Nanowall Solar Cells and Optoelectronic Devices
Zhu et al. Nanostructured photon management for high performance solar cells
Grätzel Photovoltaic and photoelectrochemical conversion of solar energy
US5792280A (en) Method for fabricating silicon cells
Asim et al. A review on the role of materials science in solar cells
Zhao et al. High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates
Bailie et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS
Bergmann et al. Advances in monocrystalline Si thin film solar cells by layer transfer
Wang et al. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family
Song et al. Silicon nanowires for photovoltaic applications: The progress and challenge
Liu et al. Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high‐efficiency solar cells
Guha et al. High efficiency multi-junction thin film silicon cells incorporating nanocrystalline silicon
Misra et al. High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires
JPH0536997A (en) Photovoltaic device
CN101840942A (en) Thin-film solar cell and manufacturing method thereof
CN101232058A (en) Translucent type thin-film solar cell module and manufacturing method thereof
CN101527175A (en) PIN type nuclear battery and preparation method thereof
CN102064237A (en) Double-layer passivating method for crystalline silicon solar battery
Lin et al. Flexible photovoltaic technologies
WO2007040594A2 (en) Three dimensional multi-junction photovoltaic device

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
ASS Succession or assignment of patent right

Owner name: HECHUN SCIENCE CO., LTD.

Free format text: FORMER OWNER: LI CHONGHUA

Effective date: 20090717

CF01