CN100421979C - Power coupler for mixed power automobile - Google Patents

Power coupler for mixed power automobile Download PDF

Info

Publication number
CN100421979C
CN100421979C CN 200710055306 CN200710055306A CN100421979C CN 100421979 C CN100421979 C CN 100421979C CN 200710055306 CN200710055306 CN 200710055306 CN 200710055306 A CN200710055306 A CN 200710055306A CN 100421979 C CN100421979 C CN 100421979C
Authority
CN
China
Prior art keywords
engine
motor
controller
vehicle
generator
Prior art date
Application number
CN 200710055306
Other languages
Chinese (zh)
Other versions
CN101020410A (en
Inventor
于永涛
于远彬
宋大凤
曾小华
朱庆林
王伟华
王庆年
王鹏宇
靳立强
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Priority to CN 200710055306 priority Critical patent/CN100421979C/en
Publication of CN101020410A publication Critical patent/CN101020410A/en
Application granted granted Critical
Publication of CN100421979C publication Critical patent/CN100421979C/en

Links

Abstract

本发明公开了一种混合动力汽车用的动力耦合装置,该装置是采用传统的差速器,其左半轴齿轮(1)与右半轴齿轮(2)分别连接发电机(7)与电动机(8),主减速器的主动齿轮(6)固定在发动机(9)的输出轴上,主减速器的从动齿轮(3)与主减速器的主动齿轮(6)啮合连接,且通过十字轴(5)带动行星齿轮(4),电动机(8)连接驱动桥(11),驱动车轮(12)行驶。 The present invention discloses a power coupling device for a hybrid automobile, the device is manufactured using a conventional differential, the left side gear (1) and the right side gears (2) are connected to the generator (7) and the motor (8), the final drive pinion gear (6) fixed to the output shaft of the engine (9), the primary driven gear reducer (3) and the main drive gear reducer (6) and thereby connected, through the cross and the shaft (5) driven by the planetary gear (4), a motor (8) connected to drive axle (11), a drive wheel (12) driving. 在发动机(9)与汽车底盘上分别安装有控制动力源的开关、转速和转矩的发动机控制器(17)与发电机控制器(14)、电动机控制器(13),这些控制器均由整车控制器(16)统一协调与控制。 On the engine (9) are attached to the car chassis switches, speed and torque control of the engine controller has a power source (17) and the generator controller (14), the motor controller (13), by which the controller vehicle control Unit (16) unified coordination and control. 本发明简化了试制,消除了变速器、离合器等机构,可实现无级自动变速。 The present invention simplifies the trial, the elimination of the transmission, a clutch mechanism and the like, can realize stepless automatic transmission.

Description

混合动力汽车用的动力耦合装置技术领域本发明涉及混合动力汽车驱动系统中实现对动力源之间的动力分配与控制的一种装置, 更具体地说是涉及一种混合动力汽车用的动力耦合装置。 The hybrid vehicle drive system for a power coupling device for hybrid cars Technical Field The present invention relates to achieve with an apparatus for controlling the power distribution between a power source, and more particularly relates to a power coupling for a hybrid automobile device. 背景技术节能与环保是21世纪汽车发展的两大主题,电动汽车是传统燃油内燃机汽车的理想替代品,但受蓄电池能量的限制以及燃料电池高成本的约束,混合动力汽车可视为一种综合解决上述问题的可行方案。 BACKGROUND saving and environmental protection are two major themes of the 21st century vehicle development of electric vehicles is the traditional internal combustion engine vehicle fuel ideal alternative, but the constraints and the high cost of fuel cell energy by battery, hybrid cars can be seen as an integrated possible solution to the above problems. 混合动力汽车是由两种或两种以上动力源提供动力,当前比较普遍的方案是采用发动机与电动机、发电机进行组合。 Hybrid vehicle is powered by a power source or of two or more, currently more common solution is to use an engine and a motor generator combination. 如何实现混合动力汽车发动机与电动机、 发电机之间的动力分配,是发展混合动力汽车必须解决的关键问题之一。 How to implement a hybrid car engine and electric motor, the power distribution between the generator, is one of the key development of hybrid vehicles must be addressed. 混合动力汽车有多种动力源,如储能元件和发动机,因此,其驱动方式也比较多样。 Hybrid vehicle has a variety of power sources, such as the engine and the energy storage element, and therefore, the driving mode is relatively diverse. 根据动力源的结合方式不同可以分为串联混合动力汽车(SHV)、并联混合动力汽车(PHV)和串并联混合动力汽车(SPHV)。 Depending on the binding mode of the power source can be divided into series hybrid vehicle (SHV), a parallel hybrid electric vehicle (the PHV) and a series-parallel hybrid electric vehicle (SPHV). 并联混合动力汽车(PHV)的发动机和驱动轮有机械连接,但是在发动机和驱动轮之间加入发电机与电动机。 PHEV (the PHV) engine and drive wheels of a mechanical connection, but the addition of the generator and the motor between engine and drive wheels. 发电机与电动机既可发电又可电动。 Generators and motors can generate electricity but also electric. 在PHV中,发动机输出驱动汽车的大部分动力,当所要求的转矩变化很快时,发电机与电动机作为发动机的辅助动力源,例如,加速和减速。 In the PHV, most engine power output drive vehicle, when the torque requirement changes rapidly, the motor generator and the engine as an auxiliary power source, e.g., acceleration and deceleration. 由于发动机的机械能可直接输出到汽车驱动桥,中间没有能量的转换,系统效率较高,燃油消耗也较少。 Due to the mechanical energy of the engine can be directly output to the driving axle, without the intermediate energy conversion, higher system efficiency and less fuel consumption. 串联混合动力汽车(SHV)则拥有第二动力源(可以是发动机驱动的发电机、把太阳能转化为电能的太阳能电池、把氣化物组成系统的化学能直接转化成电能的燃料电池)。 A series hybrid vehicle (SHV) owns a second power source (which may be engine-driven generator, solar energy into electric energy of a solar cell, the composition of the chemical vapor system is directly converted into electrical energy in a fuel cell). 其驱动电动机与純电动汽车(PEV) —样,由于SHV的发动机与驱动轮之间没有直接的机械连接,比较易于对该动力源进行最佳控制,结果使发动机可稳定于高效区或低排放区附近工作。 Driving motor and pure electric vehicles (PEV) - like, since there is no direct mechanical connection between the engine and drive wheels SHV, relatively easy optimum control of the power source, the engine can result in a stable and efficient low emission zone or working around the area. 因此,SHV的排放要优于传统车辆与PHV,并且相对于PEV来说,其从外部充电的频率也进一步减少。 Thus, SHV emissions and the PHV better than a conventional vehicle, with respect for the PEV and that charging from an external frequency further reduced. 串并联式混合动力汽车(SPHV)可进一步分为:根据控制需求切换到并联式或串联式的开关式SPHV和连续型SPHV,这两种方式均接合了串联与并联式方案的优点,因此,具有最佳的综合性能。 A series-parallel hybrid electric vehicle (SPHV) can be further divided into: to switch to the parallel or series type and a continuous type switching SPHV SPHV of the control requirements, either way the advantage of joining in series with the parallel scheme, therefore, It has the best overall performance. 用于串并联式的动力耦合装置目前较多采用的是复杂行星齿轮机构,或者有的还需要加装变速器,离合器等装置,使整个传动系结构不紧凑。 Power coupling means for serial-parallel type currently used is more complex planetary gear mechanism, or the need to install any further transmissions, clutches and other devices, so that the whole structure is not compact drive train. 这些机构一般都需要较大的改装或重新设计,对生产的工艺性要求较高,试制加工周期较长;另外对行星齿轮机构的控制也相对比较复杂,不易于工程实现。 These agencies generally require a large modification or redesign of high production technology requirements, long processing cycle trial; Further control of the planetary gear mechanism is relatively complex and difficult to achieve in engineering. 发明内容本发明所要解决的技术问题是克服现有技术中存在的问题,提供一种利用传统的汽车用差速器作为混合动力汽车的动力耦合装置。 SUMMARY OF THE INVENTION The technical problem to be solved is to overcome the problems in the prior art, there is provided a power coupling device for use with a conventional automotive differential as a hybrid vehicle. 为解决上述技术问题,本发明采用如下技术方案予以实现。 To solve the above problems, the present invention adopts the following technical solution be implemented. 所述的动力耦合装置是采用传统的差速器,该差速器的左半轴齿轮与右半轴齿轮分别通过左、右半轴连接发电机与电动机,主减速器的主动齿轮固定连接在发动机的输出轴上,主减速器的主动齿轮与主减速器的从动齿轮在两者旋转轴线共面且互相垂直的状态中相啮合.主减速器的从动齿轮与左半轴齿轮是同一旋转轴线,主减速器的从动齿轮通过十字轴带动与左半轴齿轮和右半轴齿轮相啮合的行星齿轮绕左半轴齿轮和右半轴齿轮的轴线旋转,电动机的输出轴通过传动轴连接驱动桥,驱动车轮行驶。 Said power coupling means is a conventional differential, the differential side gear and left and right side gears respectively through the left and right axle connecting the generator and the motor, the main drive gear reducer fixedly connected to engages the output shaft of the engine, the main drive gear reducer driven gear reducer coplanar with the main rotational axis of the two mutually perpendicular state and main reducer driven gear with the left side gear is the same the axis of rotation of the output shaft of the planetary gear axis of rotation of the main gear reducer driven by a cross shaft driven by the right and left side gears and side gears of the side gears about the left and right side gears, by a motor shaft drive axle connected to drive wheels travel. 发动机、发电机与电动机分别安装在汽车的底盘上。 The engine, the generator and the motor are mounted on the chassis of the vehicle. 动器:在发动机上安装有控制发动机的开关、负荷转矩与转速的发动机控制器,在汽车的底盘上安装有控制发电机与电动机的开关、转速与负荷转矩的发电机控制器和电动机控制器: 发动机与发动机控制器用信号线连接,发电机、发电机控制器、安装在汽车底盘上的蓄电池、 电动机控制器和电动机依次用电缆线连接;在车上安装有统一协调与控制发动机控制器、发电机控制器和电动机控制器的整车控制器,整车控制器分别和发动机控制器、发电机控制器和电动机控制器用信号线连接。 Actuator: the engine is mounted on a switch for controlling an engine, the engine speed and load torque controller controls the generator and the motor is mounted on the chassis of the vehicle switch, speed and load torque of the motor and the generator controller the controller: engine and engine controller with a signal line connected to the generator, the generator controller, a battery mounted on an automobile chassis, motor controllers and electrical cable connections are sequentially; harmonization in the vehicle mounted with the engine control , a generator controller of the vehicle controller and the motor controller, the vehicle controller and the engine controller, respectively, the generator controller and a signal line connected to the motor controller. 在汽车的底盘上安装有控制发动机开启的起动机。 Cars on the chassis for controlling the engine mounted starter opening. 在整车控制器上装有自编的统一协调与控制发动机控制器、发电机控制器和电动机控制器的计算机程序装置,在整车控制器的控制下.作为混合动力汽车动力耦合装置的传统差速器使得发动机、 发电机与电动机实现了如下的工作流程:1. 整车控制器查取上一时间步循环车速;2. 整车控制器查取当前时间步循环车速;3. 整车控制器接收当前驱动系统各总成状态信号;4. 整车控制器根据当前循环车速和当前加速度计算路载转矩(或功率)需求和转速需求;5. 根据路载转速需求计算电动机的转速;6. 根据路载功率需求与蓄电池电量状态,计算发动机最佳工作点转速.转矩,整车控制器向发动机控制器输出状态指令:7. 根据差速器转速、转矩关系式:T (公式I) '"2<formula>formula see original document page 5</formula>式中:w,w,,.w,„------分别为发动机转速、发电机转速和电 Harmonization and control of the engine controller, computer program means and the motor controller of the generator controller in a vehicle equipped with self controller, the controller of the vehicle under control. As a conventional HEV differential coupling device such that the engine speed detector, the generator and the motor to achieve the following workflow: a vehicle controller on taking a check time step loop speed; 2 vehicle controller takes the current time step loop check vehicle speed; 3 vehicle control. each cartridge receiving a status signal current driving system; 4. vehicle control overload torque (or power) and speed requirements according to the current demand and current vehicle acceleration calculation cycle path; 5. the road-load rotation speed of the motor rotational speed computing needs; the road load power demand and the state of charge of the battery, calculates an engine torque rotational speed optimum operating point, the vehicle controller to controller commands the engine output state: 7 differential speed, torque relationship: T ( formula I) ' "2 <formula> formula see original document page 5 </ formula> where: w, w ,, w,." ------ engine speed, respectively, and the electric generator speed 机转速;7;. 7:, 7:,.7;——分别为发动机输出转矩、发电机发电转矩、电动机电动转矩以及负栽转矩:由于发动机(9)最佳工作点转速、转矩由第6步计算确定,可计算发电机的转速与转矩,整车控制器向发电机控制器输出状态指令:8. 根据路栽转矩要求及上述公式I计算电动机转矩,并接合步驟5确定的电动机转速, 整车控制器向电动机控制器输出状态指令;9. 判断循环是否结束,若循环未结束,则重复上述步骤。 Rotation speed; ;. 7 7 7 :,: 7; - respectively, the engine output torque, torque generators, electric motor torque and a negative torque plant: Since the optimum operation of the engine (9) speed point , is determined by the torque calculation step 6, the generator speed and torque can be calculated, the vehicle generator controller output state to the controller commands: passage 8 and planted torque demand motor torque calculating the above formula I, and the bonding step 5 determines the motor speed, the vehicle controller instructs the output state of the motor to the controller; 9 determines whether the end of the cycle, if the cycle is not ended, the above steps are repeated. 本发明的有益效果是:1. 利用传统差速器作为混合动力汽车用的动力耦合装置,实现混合动力汽车连续型串并联驱动形式。 Advantageous effects of the invention are: the use of a conventional power coupling device as a differential hybrid vehicles realize continuous series-parallel hybrid vehicle drive type. 本发明根据传统汽车用对称式差速器的转速差速,转矩平均分配的原理,使其输入轴连接发动机,两输出轴分别连接电动机与发电机,使发动机动力输出的一半的转矩输出给发电机发电,另一半转矩驱动车轮,实现混合动力汽车的连续型串并联驱动形式。 According to the present invention with a conventional automotive differential rotational speed differential symmetrical, evenly distributed torque principles, its input shaft connected to an engine, two output shafts are connected to the motor and a generator, the power output of the engine torque output half a generator, torque of the drive wheels and the other half, continuous drive in the form of series and parallel type hybrid vehicle. 因此,该差速器可用作混合动力汽车的动力耦合装置,从而大大简化了混合动力汽车动力耦合装置的全新设计与试制,节省时间,节约开销。 Thus, the power coupling device can be used as a differential hybrid vehicle, which greatly simplifies the design and the new trial HEV coupling device, saving time and cost savings. 2. 利用该混合动力汽车用的动力耦合装置可实现电动无级变速器(ECVT)功能,并可削除变速器,使整个系统得到简化。 2. The hybrid automobile using a power coupling device can achieve electric variable transmission (ECVT) function, the transmission and deleted, so that the whole system is simplified. 该装置利用差速器转速、转矩传递与分配关系,通过调节发电机的转速、转矩可使发动机工作在最佳效率点,彻底解决了传统发动机由于与车轮的才A^连接造成的工作点效率低下的问题,从而实现ECVT功能。 The device uses a differential speed, torque transferring and distribution, by adjusting the speed of the generator, the torque of the engine can work in the best efficiency point, to solve the conventional engines due to the work ^ was connected to the wheel caused by A the low point of efficiency, in order to achieve ECVT function. 并且可利用高转矩特性的电动机实现传统变速器的增加转矩功能,这样可消除变速器等机构。 And the motor may be utilized to achieve a high torque characteristic of the torque increase function of a conventional transmission, so that the transmission can be eliminated and other means. 3. 利用该混合动力汽车用的动力耦合装置通过合理控制发电机输出功率,可实现行车过程中实时调节电池SOC (电量状态)的功能。 3. The power coupling device using the hybrid car by sensible controlling generator output power can be realized in real time during the driving condition the battery SOC (state of charge) function. 4. 参阅图6,图6所示的是混合动力汽车用的动力辆合装置的另一种技术方案的衍生装置,即在图1所示混合动力汽车用的动力耦合装置中电动机左側的输入轴上由右至左依次安装有电控离合器与电控制动器。 4. Refer to FIG. 6, is derived in accordance with another aspect of the engagement means of the power units with the hybrid vehicle shown in FIG. 6, i.e. the left side in FIG. 1 enter a power coupling device of a hybrid vehicle using the motor axis from right to left is attached to electronically controlled clutch with electrically controlled brake. 当发动机停止工作,分离离合器,通过电动机即可驱动整车, 可实现纯电动行驶的功能,纯电动行驶可更大程度节省燃油消耗,可进一步提高整车的效率。 When the engine is stopped, the disconnect clutch, the vehicle can be driven by a motor, may be implemented purely electric driving functions, a greater extent with electric save fuel consumption, can further improve the efficiency of the vehicle. 这种混合动力汽车用的动力耦合装置还可实现串联式驱动,即当电池SOC丰文低,电控离合器分离,电控制动器接合,发动机仅对发电机进行充电,使电池SOC能快速维持到合理范围, 这样能减小电池深度放电,提高电池的使用寿命。 Such a power coupling device of a hybrid vehicle may also be implemented with a tandem drive, i.e. when the battery SOC is low Fon, electronically controlled clutch is disengaged electrically controlled brake is engaged, the engine power generator for charging only the battery SOC can be maintained to quickly a reasonable range, so that the depth of discharge of the battery can be reduced to improve battery life. 附图说明图1是采用传统差速器作为混合动力汽车用的动力耦合装置的结枸示意图; 图2是采用传统差速器作为混合动力汽车用的动力耦合装置的工作流程图; 图3是给出了采用传统差速器作为混合动力汽车用的动力耦合装置各轴转速在一个典型行驶模式中的周期变化规律曲线;图4是给出了采用传统差速器作为混合动力汽车用的动力耦合装置各轴所联接的动力源(:发电机、电动机、发动机)输出的转矩变化规律曲线;图5是给出了采用传统差速器作为混合动力汽车用的动力耦合装置各轴转速在一个典型行驶^f莫式中关系对比曲线;图6是给出了采用传统差速器作为混合动力汽车用的动力耦合装置的可实现純电动行驶功能的另一种技术方案的衍生装置的结构示意图;图7是给出了图6所示的采用传统差速器作为混合动力汽车用的动力耦合装置的衍生装置用于 BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view of conventional differential citrate junction power coupling device as hybrid vehicles; FIG. 2 is a flowchart of a power coupling device as hybrid vehicles using traditional differentials; FIG. 3 is power coupling means for each given shaft speed variation in a typical drive mode cycle curve as a conventional differential hybrid automobile; FIG. 4 shows a conventional differential power a hybrid automobile each axis coupling means coupled to a power source (: a generator, a motor, engine) output torque variation curve; FIG. 5 shows a conventional power coupling device as differential hybrid vehicles each shaft speed structure of FIG 6 is derived apparatus shows a conventional power coupling device using the differential hybrid automobile as another aspect may be implemented purely electric driving functions; ^ with a typical contrast curve f wherein Mo schematic; FIG. 7 shows the derived apparatus is a power coupling device as a conventional differential hybrid vehicles shown in FIG. 6 for 合动力驱动的工作流程图图8是给出了采用传统差速器作为混合动力汽车用的动力耦合装置的衍生装置各轴转速在另一个典型行驶模式中的周期变化规律曲线;图9是给出了采用传统差速器作为混合动力汽车用的动力耦合装置的衍生装置各轴所联接的动力源(发电机、电动机、发动机)输出的转矩变化规律曲线;图中:1.左半轴齿轮,2.右半轴齿轮,3.主减速器的从动齿轮,4.行星齿轮,5.十字轴,6. 主减速器的主动齿轮,7.发电机,8.电动机,9.发动机,10.蓄电池,ll.驱动桥,12.车轮,13. 电动机控制器,14.发电机控制器,15.起动机,16.整车控制器(BCU), 17.发动机控制器, 18.电动机转速(曲线),19.发动机转速(曲线),20.发电机转速(曲线),21.电动机工作转矩(曲线),22.发动机工作转矩(曲线),23.发电机工作转矩(曲线),24.发电机转速与电动 Bonding a flowchart of FIG. 8 is powered respective given variation of the power shaft rotational coupling means are derived using conventional differential apparatus a hybrid automobile travel mode period in another exemplary curve; FIG. 9 is a a power source (generator, a motor, engine) torque variation curve of the output device of the derived power coupling device as a conventional differential hybrid automobile of each axis of the coupling; FIG: 1 left axle shaft gear 2 the right side gears 3 primary driven gear reducer, four planetary gear, 5. cross shaft, 6. main drive gear reducer, 7 generator 8 electric motor 9 engine , 10 battery, LL. transaxle, 12 wheels, 13 The motor controller 14. generator controller, 15. starter, 16. The vehicle controller (BCU), 17. engine controller 18. motor rotation speed (curve), 19. engine speed (curve), 20. generator speed (curve), 21 a motor torque (curve), 22. engine torque (curve), 23 a generator torque (curve), 24 and the electric generator speed 转速之和(曲线),25.发动机转速的两倍(曲线),26.电控制动器,27.电控离合器。 And rotation speed (curve), 25 times the engine rotation speed (curve), 26. An electrically controlled brake, 27 is electrically controlled clutch. 具体实施方式下面结合附图对本发明作进一步的详细描述:参阅图1,所述的混合动力汽车用的动力耦合装置是采用传统的差速器,在混合动力汽车驱动系统中实现对动力源(发电机7、电动机8、发动机9)之间的动力分配与工作。 DETAILED DESCRIPTION OF THE DRAWINGS The present invention will be further described in detail: Referring to Figure 1, a power coupling device of the hybrid vehicle with a conventional differential is employed to realize the power source in the hybrid vehicle drive system ( generator 7, the motor 8, the power distribution between the engine and the work 9). 该差速器的左半轴齿轮1与右半轴齿轮2分别通过左、右半轴连接发电机7与电动机8,主减速器的主动齿轮6固定连接在发动机9的输出轴上,主减速器的主动齿轮6与主减速器的从动齿轮3在两者旋转轴线共面且互相垂直的状态中相啮合,主减速器的从动齿轮3与左半轴齿轮1是同一旋转轴线,左半轴齿轮1的旋转轴线与右半轴齿轮2的旋转轴线共线,主减速器的从动齿轮3通过十字轴5带动与左半轴齿轮1和右半轴齿轮2相啮合的行星齿轮4绕左半轴齿轮1和右半轴齿轮2的旋转轴线旋转,电动机8的输出轴通过传动轴连接驱动桥11,从而驱动车轮12行驶。 The left side gear differential side gear 1 2 and the right respectively the left and right axle shafts connected to the motor generator 7 and 8, the final drive pinion gear 6 is fixedly connected to the output shaft of the engine 9, the main reduction 6 is a drive gear with the driven gear 3 is engaged with the final drive state in both rotational axis coplanar and perpendicular to each other, the main driven gear reducer 3 with the left side gear 1 is the same axis of rotation, the left 1 the axis of rotation of the right side gear axis of rotation collinear with the side gears 2, final drive gear 3 is driven by the cross shaft 5 and the left side gear drive 1 and the right side gear of the planetary gear 4 meshing 2 1 about the left side gear and the rotation axis of the rotation of the right side gear 2, an output shaft connected to the motor 8 via the driving axle shaft 11, thereby driving the driving wheel 12. 发动机9、发电机7与电动机8分别安装在汽车的底盘上。 9 engine, the generator 7 and motor 8 are mounted on the chassis of the vehicle. 在发动机9上安装有控制发动机9的开关、负荷转矩与转速的发动机控制器17,在汽车的底盘上安装有控制发电机7与电动机8的开关、转速与负荷转矩的发电机控制器14和电动机控制器13;发动机9与发动机控制器17用信号线连接,发电机7、发电机控制器14、 安装在汽车底盘上的蓄电池10、电动机控制器13和电动机8依次用电缆线连接;另外在车上还安装有统一协调与控制发动机控制器17、发电机控制器14和电动机控制器13的整车控制器(ECUM6,整车控制器16接受钥匙开关信号,加速踏板、制动踏板及挡位、车速,SOC 等整车信号综合控制发动才几控制器17,发电机控制器14及电动才几控制器13,进而决定三大动力源之间的工作状态,使满足整车路栽功率要求的同时,保持电池SOC平衡并維持系统在高效区工作。整车控制器16分别和发动才几控制器17、发电^/L控制器14和电 9 mounted on the engine and the generator controller 7 switches, speed and load torque of the motor 8 controls the engine switch, the engine load torque and speed 17 of the controller 9, on the chassis of the car is mounted with a control generator 14 and the motor controller 13; an engine with the engine controller 9 is connected by a signal line 17, the generator 7, the generator controller 14, mounted on the chassis of the vehicle battery 10, the motor controller 13 and electric motor 8 are sequentially connected to cable ; additionally also mounted in the vehicle and harmonized control of the engine controller 17, generator controller 14 and motor controller vehicle controller (ECUM6, the vehicle controller 13 receiving the key switch signal 16, accelerator pedal, a brake pedal and gear, the vehicle speed, the SOC signal and other vehicle integrated control only a few engine controller 17, generator controller 14 and motor controller 13 only a few, thereby determining the operating state between the three power source, so that meet OEM Road plant power requirements while maintaining the battery SOC balancing and maintaining the system working in the high zone and vehicle controller 16 are only a few engine controller 17, the power generation ^ / L, and the controller 14 is electrically 才几控制器13 用信号线连接。在汽车的底盘上安装有控制发动机开启的起动机15。参阅图2,在整车控制器16上装有自编的统一协调与控制发动机控制器17、发电机控制器14和电动机控制器13 的计算机程序装置,在整车控制器16的控制下,作为混合动力汽车动力耦合装置的传统差速器使得发动机、发电机与电动机实现了如下的工作流程:1. 整车控制器16查取上一时间步循环车速;2. 整车控制器16奎取当前时间步循环车速;3. 整车控制器16接收当前驱动系统各总成状态信号;4. 整车控制器16根据当前循环车速和当前加速度计算路栽转矩(或功率)需求和转速需求;5. 根据路栽转速需求计算电动机的转速;6. 根据路栽功率需求与蓄电池10电量状态等总成状态信号,计算发动机9最佳工作点转速、转矩,整车控制器16向发动机控制器17输出状态指令;7. 根据差速器 The controller 13 is connected with only a few signal lines on the chassis for controlling the engine mounted on an automobile starter opening 15. Referring to Figure 2, in the vehicle equipped with the controller 16 being coordinated with self control of the engine controller 17, generator computer program means controller 14 and the motor controller 13, under control of the controller 16 of the vehicle, as a conventional differential HEV coupling device such that the engine, the generator and the motor to achieve the following workflow: 1. the vehicle control unit 16 to take the search time step loop speed; 2. Kui vehicle controller 16 takes the current time step loop speed; 3 vehicle drive system controller 16 receives the current signal status of each assembly; 4. vehicle controller 16 planted torque (or power) and speed requirements according to the current demand and current vehicle acceleration calculation cycle path;. 5 calculates the motor speed based on road speed requirements planted; 6. the passage plant power demand and state of charge of the battery 10 other cartridge status signal, calculating an engine speed of optimum operating point 9, the torque, the vehicle controller 16 outputs an instruction to the status of the engine controller 17;. 7 differential 转速、转矩关系式:7;丄(公式i) r7; 一乙=丄m 2式中:化,c^,fflu——分别为发动机转速、发电机转速和电动机转速;;,?;,乙,^——分别为发动机输出转矩、发电机发电转矩、电动机电动转矩以及负栽转矩;由于发动机(9)最佳工作点转速、转矩由第6步计算确定,可计算发电机7的转速与转矩,整车控制器16向发电机控制器14输出状态指令;8. 根据路栽转矩要求及上述公式I计算电动机转矩,并接合步骤5确定的电动机转速, 整车控制器16向电动4凡控制器13输出状态指令;9. 判断循环是否结束,若循环未结束,则重复上述步骤。 Speed, torque relationship: 7; Shang (formula i) r7; Shang monoethyl = m 2 where: Chemical, c ^, fflu-- each engine speed, the rotational speed of the generator and the motor speed ;;,;,? b, ^ - respectively, the engine output torque, torque generators, electric motor torque and a negative torque plant; the engine (9) the rotational speed of the optimum operating point, by a torque calculation step 6 determines, calculated speed and torque of the generator 7, the controller 16 commands the vehicle to the controller 14 outputs the status of the generator;. planted passage 8 and the above formula I in claim torque calculating motor torque, motor rotation speed and the engagement of the step 5 is determined, vehicle controller 16 outputs an instruction to the state of the motor 13 where the controller 4; 9 determines whether the end of the cycle, if the cycle is not ended, the above steps are repeated. 参阅图6,它是图1所示的混合动力汽车用的动力耦合装置的一种衍生装置,即在图1 所示的混合动力汽车用的动力耦合装置的基础上,在电动机8左側的输入轴上由右至左依次加装电控离合器27与电控制动器26,当电控制动器26分离,离合器27接合时,该混合动力汽车用的动力耦合装置和上述差速器装置完全相同。 Referring to Figure 6, which is a derivative of the power coupling device means a hybrid vehicle shown in Figure 1 with, i.e. on the basis of the power coupling device of the hybrid automobile as shown in FIG. 1 on the left side of the motor 8 is input the installation of the shaft from right to left and the electrically operated clutch 27 is electrically controlled brake 26, when separated electrically controlled brake 26, clutch 27 is engaged, the hybrid vehicle with a power coupling device and said differential gear device is identical. 但通过对制动器26的接合,离合器27分离控制时,而且,当发动机关闭时,利用蓄电池10内的电能,仅用电动机8驱动整车, 实现纯电动行驶;由于純电动行驶会使蓄电池10的SOC下降较低,当蓄电池10的SOC较低时,发动机9可参与工作,对发电机7进行充电,蓄电池IO的S0C即可维持在合理范围内, 保持蓄电池10的SOC平衡并维持系统在高效区工作。 However, by engaging the brake 26, 27 when the clutch release control, and, when the engine is off, the use of electrical energy in the battery 10, the motor 8 is driven with only the vehicle, achieved purely electric driving; as purely electric driving battery 10 will SOC drops low, when the SOC of the battery 10 is low, the engine 9 may be involved in the work, the generator 7 is charged, the battery can be maintained in the IO S0C within reasonable limits, to maintain balance SOC of the battery 10 and to maintain the system efficiency district work. 参阅图7,在整车控制器16的控制下, 该衍生装置的动力耦合装置使得发动机9、发电机7与电动才几8实现了如下的工作流程:1. 整车控制器16查取上一时间步循环车速;2. 整车控制器16查取当前时间步循环车速;3. 整车控制器16接收当前驱动系统各总成状态信号;4. 整车控制器16根据当前循环车速和当前加速度计算路栽转矩(或功率)需求和转速需求;5. 整车控制器16根据车速、路栽功率需求及总成状态信号判断是否纯电动行驶;6. 若纯电动,则分离离合器27,并关闭发动机9、发电机7,向电动才錄制器13输出状态指令;7. 若不是纯电动,计算发动机9最佳工作点转速、转矩,整车控制器16向发动机电控器]7输出状态指令;8. 根据整车转速,计算电动机9转速,并利用差速器转速、转矩关系式I计算发电机7 的转速与转矩,整车控制器16向发电机控制器输14出状态 Referring to Figure 7, under the control of the controller 16 of the vehicle, the power coupling device such that the device is derived from the engine 9, the electric generator 7 and 8 only a few achieve the following workflow: a vehicle controller 16 to take on the investigation a vehicle speed cycle time step;. 2 takes the vehicle controller 16 to check the current time step loop speed; 3 vehicle drive system controller 16 receives the current signal status of each assembly; 4 vehicle controller 16 and the vehicle speed according to the current cycle calculating the current acceleration passage planted torque (or power) and speed requirements demand;. 516 vehicle controller signal determining vehicle speed, power demand and assembly plant road status is purely electric driving; 6 if electric, the separating clutch 27, and 9 turn off the engine, the generator 7, before recording the output state 13 to the electric instruction; 7 if it is electric, the optimum operating point 9 calculates the engine speed, the torque, the vehicle controller to the engine controller 16 is electrically ] output state instruction 7;. 8 according to the vehicle speed, the rotational speed of the motor 9 is calculated, and using a differential speed, torque relationship I calculated speed and torque generator 7, the vehicle controller 16 to the generator controller output state 14 指令;9. 根据整车转速,计算电动机8转速与转矩,整车控制器16向电动机控制器13输出状态指令;10. 判断循环是否结束,若循环未结束,则重复上述步骤。 Instructions;. 9 according to the vehicle speed, the rotational speed and the torque of the motor 8 is calculated, the vehicle controller 16 to the motor controller 13 outputs a state instruction; 10 determines whether the end of the cycle, if the cycle is not ended, the above steps are repeated. 本发明的工作原理是:参阅图1,发动机9作为混合动力汽车的主要动力源,当汽车行驶时,发动机9带动主减速器的主动齿轮6转动,主减速器的主动齿轮6带动主减速器的从动齿轮3转动,主减速器的从动齿轮3通过十字轴5、行星齿轮4、左半轴齿轮l、右半轴齿轮2和左右半轴带动发电机7与电动机8转动。 Working principle of the invention is: 1, an engine 9 as a hybrid vehicle main power source refer to FIG, when cars, rotation of the main reduction gear 6 driven by the engine of the drive gear 9, a final drive gear 6 drives the driving of the main reducer the rotation of the driven gear 3, driven gear reducer 3 through the main cross shaft 5, the planetary gear 4, the side gears left L, left and right side gears 2 and the axle drive generator 7 and the motor 8 is rotated. 汽车行駛时要求的动力主要由发动机9输出,发动机9输出的动力通过差速器分两部分输入到差速器的两个输出端,其中一部分动力通过与差速器左端相连接的发电机7发电,向蓄电池10进行充电;另一部分动力则通过电动机8转子和传动轴输出到驱动桥11,进而驱动车轮行^_。 Automotive power required during running of the engine mainly by the output 9, the power output from the engine 9 through the two parts of the differential input to differential output terminals of the two, wherein a portion of the left end of the power by the generator connected to the differential 7 power generation, charging to the battery 10; the other part of the power output by the motor 8 and the rotor shaft to the drive axle 11, which in turn drives the wheels rows _ ^. 当发动机9的这部分动力不能满足驱动需求(如急加速情况),则通过整车控制器(ECU) 16控制电动机8电动,以补充不足的动力来满足驱动需求, 此时,发电机7存贮在蓄电池10内的电能通过电动机8的电动状态输出,即实现发动机9 与电动机8的联合驱动。 When this part of the power of the engine 9 can not meet the needs of a drive (e.g., sudden acceleration), the vehicle is controlled by a controller (ECU) 16 8 electric motor to supplement the driving force is insufficient to meet the needs of this time, the generator 7 deposit state by the electric motor 8 in the storage battery 10 output energy, i.e., for joint drive motor 9 and the motor 8. 当制动减速时,电动机8也可充当发电功能,把整车的动能转换为电能存贮到蓄电池10里。 When the braking deceleration, the motor 8 may also serve as power generation function, to convert kinetic energy of the vehicle into electrical energy stored in the battery 10. 而当要求的功率比较小(如小负荷匀速行驶)时,发动机9同样被整车控制器(ECU) 16调节在小功率曲线上寻找其最佳效率点工作。 When the required power is relatively small (e.g., small load constant speed), the engine 16 is likewise adjusted 9 vehicle controller (ECU) to find its best efficiency point on a small working power curve. 该动力耦合装置所连接的三个动力源(发动机9,发电机7与电动机8)在汽车行驶过程中均参与工作,并且发动机9的动力输出均通过整车控制器(ECU) 16控制,使其保持工作在不同级别大小的功率曲线上的最佳效率点。 Three power sources (the engine 9, the motor generator 7 and 8) of the power coupling device is connected to both the vehicle was involved in the work, and the power output of the engine 9 are controlled by the vehicle controller (ECU) 16, so that holds work best efficiency point on a power curve of a different size class. 参阅图6,该衍生装置是为了满足整车以小负荷匀速行驶(所要求的驱动功率很小),并且蓄电池10所存贮的电能量比较充足时而设计的,整车控制器16控制电控离合器2 7分离, 电控制动器26接合,同时控制发动机9与发电机7关闭,由蓄电池10所存贮的电能来驱动电动机8转动,进而达到汽车純电动行驶,整车控制器16可控制电动机8输出整丰所需求的动力需求。 Referring to Figure 6, the apparatus is derived to meet the vehicle constant speed with a small load (required driving power is small), and the battery 10, the electric energy stored sometimes more adequate design, the controller 16 controls the electric vehicle separating the clutch 27, engaging electrically controlled brake 26, while controlling the engine generator 7 and 9 closed, is rotated by the electric energy stored in battery 10 drives the motor 8, and then to pure electric automobiles traveling, the controller 16 may control the motor vehicle 8 Feng entire output of the power demand needs. 而在其它情况下,整车控制器16控制电控制动器26分离,电控离合器27接合,其工作原理与上述讨论完全相同。 While in other cases, the controller 16 controls the vehicle separation electrically controlled brake 26, the electronic control clutch 27 engaged, it works exactly the same as discussed above. 图6所示的技术方案能够实现纯电动行驶的功能,具有更佳的整车性能。 FIG aspect shown in Figure 6 can be achieved purely electric driving features, having better vehicle performance. 试验分析:参阅图3、图4和图5,图3和图4中所示的是采用传统差速器作为混合动力汽车动力耦合装置进行的一整个试验过程中各动力源的转速、转矩变化规律的试验数据曲线。 Experimental Analysis: refer to FIG. 3, FIG. 4 and FIG. 5, is a rotation speed of each of the power source throughout the experiment carried out as conventional differential HEV coupling device shown in FIG. 3 and FIG. 4, the torque test data variation curve. 在该试验过程中,包括前半部分的低速段加速、均速、减速过程,以及后半部分的高速段加速、均速与减速过程。 In this test, comprising a first half of the low speed acceleration, constant velocity, deceleration, and high-speed the latter half section of the acceleration, constant velocity and deceleration. 不管在那个部分,电动机转速18跟随车速的变化规律,并且发动机均参与工作,发动机转速19与发动机工作转矩22均被整车控制器16调节到最佳效率点工作。 Regardless of the variation of the portion 18 to follow the speed of the motor vehicle, and are involved in the work of the engine, engine speed and engine torque 19 22 vehicle controller 16 are adjusted to the optimum efficiency point of work. 从转速变化规律曲线(参阅图3)来看,发动枳薪速19在低速段的加速、匀速和减速过程,以及高速段的大部分加速过程,匀速过程和减速过程,均被控制在最佳的穗定转速点工作,即与车速变化隔离,而通过对发电机转速20进行控制,使电动机转速18跟随车速变化,而在高速段的加速过程后半部分,由于要求的负栽功率增大,整车控制器16调节发动机的最佳效率点向更大功率处提高,即发动^L转速19相应增加以适应路栽功率的要求。 From the variation of the rotational speed curve (see FIG. 3) of view, the engine 19 speed orange pay the low speed acceleration, constant velocity and deceleration, and most acceleration, constant speed and deceleration during high range, are controlled in an optimal work rotational speed set point of the ear, i.e., isolated from the vehicle speed change, the rotational speed is controlled by the generator 20, the rotational speed of the motor 18 to follow the vehicle speed change, and in the second half of the high range acceleration, since the negative power requirements of the plant is increased 16 best efficiency point adjustment vehicle engine controller to increase at a greater power, i.e. the rotational speed of the engine 19 ^ L increased accordingly to adapt to the passage of the power plant. 由于发动沐几转速19被控制在最佳效率点工作,其转速与车速隔离,即自动实现了类似传统无级变速功能,使发动枳*穗定工作于最佳效率点,油耗与排放可显著降低,另外,从各动力源转矩变化规律曲线来看(参阅图4),在加速过程(无论是低速段,还是高速段),发动机工作转矩22 逐渐增加(其转速被调节到稳定点)以适应路栽功率要求,此时,由于发动机工作转矩22 输出的一部分动力给发电机7充电,如发电机工作转矩23曲线所示,当发动机工作转矩22 满足不了要求的路栽功率要求时,此时,由电动机输出电动机工作转矩21来补充。 Since several Mu engine rotational speed is controlled to the optimum efficiency point 19 in the work, its speed and the vehicle speed isolation, i.e., to achieve a similar conventional automatic CVT function, so that the engine operates in a given orange ear * best efficiency point, fuel consumption and emissions can be significantly reduce, Further, from each of the power source variation of the torque curve of view (see FIG. 4), the acceleration (either low speed or high-speed range), engine torque 22 gradually increases (which speed is adjusted to the stable point ) to accommodate passage plant power requirements, this time, since the engine torque to a part of the power output from the generator 22 charge 7, as torque generator operating curve 23, when the engine torque path 22 can not meet the requirements of the plant when power requirements, at this time, the motor torque output by the electric motor 21 to supplement. 在制动减速过程,电动机8还可以充当发电功能,对整车动能进行制动能量回收。 In the braking deceleration, the motor 8 may also serve as a power generation function, the kinetic energy of the vehicle braking energy recovery. 参阅图5,图5所示的是釆用传统差速器作为混合动力汽车动力耦合装置进行的上述整个试验过程中各轴转速关系对比曲线。 Referring to Figure 5, Figure 5 is a graph comparing the above-mentioned respective axes preclude the speed relationship throughout the experiment carried out with a conventional differential HEV coupling device. 在整个过程,传统差速器耦合装置的三端转速满足以下关系,发动机转速的两倍25正好是发电机转速与电动机转速之和24。 Throughout the process, the conventional three-terminal device coupled to the differential speed satisfies the relationship, the rotational speed of the engine 25 is exactly twice the speed of the motor generator 24 and the rotation speed. 正是传统差速器的这一关系,使得电动机转速18跟随车速变化,而发动机9被控制在最佳转速点工作,均通过发电机7的转速来调节。 It is this relationship between the traditional differential, such that the rotational speed of the motor 18 to follow the vehicle speed change, and the engine 9 is controlled at the optimum working point of the rotational speed, are adjusted by the speed of the generator 7. 衍生装置试验分析:参阅图8和图9,图8和图9所示的是采用该衍生装置作为混合动力汽车动力耦合装置进行的另一试验过程中各动力源的转速、转矩变化规律试验数据曲线。 Experimental Analysis derived apparatus: Referring to FIG. 8 and FIG. 9, FIGS. 8 and 9 is the use of a power source rotation speed of each of the other test procedures derived apparatus as HEV coupling apparatus, variation in the torque test shown data curve. 在该试验过程中,同样包括前半部分的低速段加速、均速、减速过程,以及后半部分的高速段加速、均速与减速过程。 In this test, the same low-speed section including a first half of the acceleration, constant velocity, deceleration, and high-speed the latter half section of the acceleration, constant velocity and deceleration. 在低速段的加速过程,当加速到一定车速之前,整车控制器16首先判断为纯电动行驶,控制电控离合器27分离,电控制动器26接合,同时关闭发动机9与发电机7 (此时SOC 较高);当加速到一定车速以后,整车控制器16要求发动机9参与工作,此时,电控制动器26分离,电控离合器27接合,发动机转速19与发电机转速20随之增加;而在后半部分的高速段内,发动机9始终工作。 During the acceleration of the low speed, accelerated to a certain speed as before, the controller 16 first determines that the vehicle electric drive, the control clutch 27 is separated electrically controlled engagement An electrically controlled brake 26, while closing the engine generator 7 and 9 (in this case higher SOC); and when accelerated to a certain speed after the vehicle engine controller 9 participation in claim 16, at this time, electric brake 26 separate, electronically controlled clutch 27 is engaged, the rotational speed of the engine 19 and the generator 20 increases the rotational speed; and in the second half of the high-speed section, the engine is always working 9. 这种控制方式由于多增加了纯电动行驶功能,更能使整车油耗与排放显著降低。 This control increases due to multipath purely electric driving functions, it enables significantly reduce vehicle fuel consumption and emissions. 另外从图9的曲线还可看出,当发动机9工作,发动机工作转矩22输出与发电机工作转矩23满足如下关系: 一半的发动机工作转矩22输出给发电机7发电,另一半转矩输出给电动机8端,驱动整车行驶。 It may also be seen from the graph of FIG. 9, 9 when the engine is working, engine torque and a generator 22 outputs torque 23 satisfies the following relationship: half of the engine 22 outputs torque to the power generator 7, the other half turn 8 to the end of the motor output torque, the vehicle travel drive. 这也是利用传统差速器动力传递特性来进行自动分配的,若发动机9一半转矩能满足驱动系统的转矩要求,电动机8不参与工作,发电机7发电,在蓄电池10里储存电能;若不能满足驱动对转矩的要求,电动机8参与驱动,释放发电机7存贮在蓄电池10内的电能,联合驱动整车加速。 This is a differential power transfer characteristics using conventional for automatic allocation, if half of the engine 9 can meet the torque request torque drive system, the motor 8 is not involved in the work, power generator 7, the electric energy stored in the battery 10; if We can not meet the required drive torque of the motor 8 drives participation, the generator 7 to release stored electrical energy within the battery 10, the joint drive vehicle acceleration. 当发生制动时,电动机8还具有发电功能,回收制动能量。 When braking occurs, the motor 8 also has a power generation function to recover braking energy. 这种驱动特性实现了典型混合动力汽车的串并模式。 Such driving characteristics of the hybrid vehicle to achieve a typical serial to parallel mode. 通过合理的控制策略,发电机7把发动机9 一半的动力输出转换为电能存贮起来,加之制动过程通过电动机8回收的再生制动能量,两部分的能量可提供为下个加速过程电动机8参与电动的能量,即可实现蓄电池10的S0C的平衡。 Reasonable control strategy, the engine generator 7 9 half power output into electrical energy stored up, together with braking by the regenerative braking energy recovery motor 8, the two parts can provide energy for the next motor acceleration 8 electric energy involved, it can achieve balance S0C battery 10. 通过上述分析表明,用差速器作为混合动力汽车的动力耦合装置可实现混合动力汽车的纯电动,发动机9工作并充电,发动机9与电动机8联合驱动、制动能量回收等典型混合动力汽车驱动模式。 Through the above analysis shows, as a pure electric power by the differential coupling device of the hybrid vehicle can implement a hybrid vehicle, the engine and the charging work 9, 8 and 9 typical hybrid engine combined drive, braking energy recovery such as a motor vehicle drive power mode. 且通过调节发电机7转速,使电动机8随着车速的同时,可维持发动机9 工作于最佳转速、转矩点,从而大大改善整车的经济性能。 And by adjusting the speed of the generator 7, the motor 8 at the same time as the vehicle speed, the engine 9 may be maintained at the optimum working speed, torque point, thereby significantly improving the economic performance of the vehicle.

Claims (1)

1. 一种混合动力汽车用的动力耦合装置,其特征在于,所述的动力耦合装置是采用传统的差速器,该差速器的左半轴齿轮(1)与右半轴齿轮(2)分别通过左、右半轴连接发电机(7)与电动机(8),主减速器的主动齿轮(6)固定连接在发动机(9)的输出轴上,主减速器的主动齿轮(6)与主减速器的从动齿轮(3)在两者旋转轴线共面且互相垂直的状态中相啮合,主减速器的从动齿轮(3)与左半轴齿轮(1)是同一旋转轴线,主减速器的从动齿轮(3)通过十字轴(5)带动与左半轴齿轮(1)和右半轴齿轮(2)相啮合的行星齿轮(4)绕左半轴齿轮(1)和右半轴齿轮(2)的轴线旋转,电动机(8)的输出轴通过传动轴连接驱动桥(11),驱动车轮(12)行驶;发动机(9)、发电机(7)与电动机(8)分别安装在汽车的底盘上。 1. A power coupling device of a hybrid car, wherein said power coupling means is a conventional differential, a left side gear of the differential (1) and the right side gear (2 ) respectively through left and right axle connecting the generator (7) and the motor (8), the main drive gear reducer (6) is fixedly connected to the drive gear of the engine (9) of the output shaft, the final drive (6) and the main driven gear reducer (3) in a coplanar axis of rotation perpendicular to each other and both the engaged state, the main driven gear reducer (3) with the left side gear (1) is the same rotation axis, primary driven gear reducer (3) (5) with the left side gear drive (1) and a right side gear (2) by the cross shaft of the planetary gears meshes (4) about the left side gear (1) and the axis of rotation of the right side gear (2), the output shaft of the motor (8) is connected via a drive axle shaft (11), drive wheels (12) drive; an engine (9), the generator (7) and the motor (8) They are mounted on the chassis of the car.
CN 200710055306 2007-02-02 2007-02-02 Power coupler for mixed power automobile CN100421979C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710055306 CN100421979C (en) 2007-02-02 2007-02-02 Power coupler for mixed power automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710055306 CN100421979C (en) 2007-02-02 2007-02-02 Power coupler for mixed power automobile

Publications (2)

Publication Number Publication Date
CN101020410A CN101020410A (en) 2007-08-22
CN100421979C true CN100421979C (en) 2008-10-01

Family

ID=38708318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710055306 CN100421979C (en) 2007-02-02 2007-02-02 Power coupler for mixed power automobile

Country Status (1)

Country Link
CN (1) CN100421979C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818799A (en) * 2010-03-18 2010-09-01 吉林大学 Differential serving as power coupling device of combined hybrid vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055883A1 (en) * 2007-12-20 2009-06-25 Forschungsgesellschaft für Zahnräder und Getriebe mbH Transmission device with at least two output shafts
CN101934720B (en) * 2009-06-30 2014-05-28 比亚迪股份有限公司 Hybrid power driving system and driving method thereof
CN101886696B (en) * 2010-07-01 2012-12-26 吉林大学 Differential and integral type differential power coupling device
CN102050001B (en) * 2010-12-30 2013-03-20 上海交通大学 Four-die stepless speed change series-parallel hybrid power driving system
CN102166947B (en) * 2011-03-10 2013-05-01 上海交通大学 Multimode stepless speed-changing hybrid driving system
CN102166945A (en) * 2011-03-31 2011-08-31 中南大学 Power coupling box for fuel-electric hybrid power system
CN102868252B (en) * 2011-07-08 2015-07-22 王明军 Range-extended motor
CN102442189B (en) * 2011-12-26 2015-04-29 北京理工华创电动车技术有限公司 Double-motor coupling driving system
CN103174814A (en) * 2011-12-26 2013-06-26 高则行 Transmission system
CN102582440B (en) * 2012-04-05 2014-09-24 湖南南车时代电动汽车股份有限公司 Instrument interface for hybrid vehicle and display method for instrument interface
KR101491252B1 (en) * 2013-05-22 2015-02-11 현대자동차주식회사 Drive apparatus for plug-in hybrid vehicle and the method thereof
DE102013009081B4 (en) * 2013-05-29 2018-09-13 Audi Ag Center differential gear arrangement for a drive device of a motor vehicle
CN103395358B (en) * 2013-08-21 2018-11-13 上海中科深江电动车辆有限公司 A kind of dynamic coupling device of hybrid vehicle
CN103465765B (en) * 2013-09-24 2016-04-13 湖南大学 The Control method for power transmission of hybrid vehicle
CN104085301A (en) * 2014-06-25 2014-10-08 赵会芳 Rear axle for fuel-electric hybrid vehicle
CN105256855B (en) * 2015-09-10 2017-12-22 北京科技大学 A kind of hybrid power engineering machinery multi input multi-load modular platform system
CN106394224A (en) * 2016-06-01 2017-02-15 中国第汽车股份有限公司 Dual power input differential coupled continuously variable transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167052A (en) 1996-05-30 1997-12-10 杨泰和 Distribution type differential mixed composite driving system
GB2335404A (en) 1998-03-21 1999-09-22 Trevor Lee Proudler Hybrid power plants for e.g. motor vehicles
US6416437B2 (en) 1999-12-28 2002-07-09 Hyundai Motor Company Transmission for hybrid electric vehicle
CN2640812Y (en) 2003-09-05 2004-09-15 华南理工大学 Dynamo-engine hybrid power driving gear for automobile
CN201002506Y (en) 2007-02-02 2008-01-09 吉林大学 Power coupling device for hybrid power automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167052A (en) 1996-05-30 1997-12-10 杨泰和 Distribution type differential mixed composite driving system
GB2335404A (en) 1998-03-21 1999-09-22 Trevor Lee Proudler Hybrid power plants for e.g. motor vehicles
US6416437B2 (en) 1999-12-28 2002-07-09 Hyundai Motor Company Transmission for hybrid electric vehicle
CN2640812Y (en) 2003-09-05 2004-09-15 华南理工大学 Dynamo-engine hybrid power driving gear for automobile
CN201002506Y (en) 2007-02-02 2008-01-09 吉林大学 Power coupling device for hybrid power automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818799A (en) * 2010-03-18 2010-09-01 吉林大学 Differential serving as power coupling device of combined hybrid vehicle

Also Published As

Publication number Publication date
CN101020410A (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US20160347164A1 (en) Powertrain configurations for two-motor, two-clutch hybrid electric vehicles
CN101898557B (en) Control method of electric four-wheel drive hybrid vehicle
CN102673372B (en) Power assembly system of ISG (integrated starter and generator) type parallel hybrid electric vehicle and control method
US8701808B2 (en) Series/parallel dual motor multi-clutch hybrid driving unit for vehicle
CN102107604B (en) Hybrid driving system for automobile and gear operating method thereof
CN1311999C (en) Parallel connection mixed power driving system and its driving method
US8122983B2 (en) Power output apparatus, hybrid vehicle with the same, and method for controlling power output apparatus
JP4355444B2 (en) Power transmission device for hybrid electric vehicles
US7938208B2 (en) Power output apparatus and hybrid vehicle
CN102259584B (en) Hybrid power driven system and vehicle comprising same
WO2015113413A1 (en) Vehicle and drive control method for the same
EP2508378B1 (en) Hybrid electric drive unit, hybrid drive system and control method thereof
US8602144B2 (en) Direct electrical connection for multi-motor hybrid drive system
CN101112869B (en) Automobile energy source regenerative braking system and the control method thereof
US9475482B2 (en) Plug-in hybrid electric vehicle
CN103978880B (en) Arrangements of power system for the double clutch hybrid electric vehicles of bi-motor
JP2016064823A (en) System and method for controlling direct electrical connection and coupling in vehicle drive system
US20120116629A1 (en) Engine starting control device for hybrid vehicle
US8091661B2 (en) Power output apparatus and hybrid vehicle
CN100406289C (en) Series-parallel mixed power system
KR20120085733A (en) Power system of hybrid electric vehicle
CN101244687B (en) Series-parallel type hybrid power-driven system and drive method
CN102310755B (en) Power coupling device and control device thereof, and hybrid power system
CN102555769B (en) Serial-parallel combined type double-motor hybrid power drive assembly with multiple operating modes
CN2936821Y (en) Mixed power drive system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right