CN100403618C - Transient state stabilizing analysis and control method for power system - Google Patents

Transient state stabilizing analysis and control method for power system Download PDF

Info

Publication number
CN100403618C
CN100403618C CN 200610014785 CN200610014785A CN100403618C CN 100403618 C CN100403618 C CN 100403618C CN 200610014785 CN200610014785 CN 200610014785 CN 200610014785 A CN200610014785 A CN 200610014785A CN 100403618 C CN100403618 C CN 100403618C
Authority
CN
China
Prior art keywords
system
fault
power
step
transient
Prior art date
Application number
CN 200610014785
Other languages
Chinese (zh)
Other versions
CN1901317A (en
Inventor
房大中
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to CN 200610014785 priority Critical patent/CN100403618C/en
Publication of CN1901317A publication Critical patent/CN1901317A/en
Application granted granted Critical
Publication of CN100403618C publication Critical patent/CN100403618C/en

Links

Abstract

一种投影暂态能量函数(PEF)的电力系统暂态稳定分析与控制方法。 A projector Power System Transient transient energy function (PEF) a stability analysis and control. 包括计算故障的PEF能量裕度,通过裕度插值或裕度灵敏度计算技术,获得系统运行/控制参数值(故障的切除时间、系统暂态稳定约束下的发电量)的暂态稳定临界值。 PEF including energy margin calculation failure, or by interpolation margin sensitivity margin calculation technique to obtain system operating / control parameter value (fault clearing time, power generation systems under transient stability constraints) transient stability threshold. 针对电力系统运行中考虑的每个输电断面,分析断面传输功率极限和确定预防控制方案。 Each section for the power transmission system considered running, cross-sectional analysis of transmit power limit and determine prevention and control program. 本发明的特点是使用一种新的暂态能量函数——投影暂态能量函数PEF。 Feature of the present invention is the use of a new transient energy function - projection transient energy function PEF. PEF的最小动能曲线具有良好的两段化线性特性且与故障临界机群无关,因此本发明避免了电力系统稳定分析中的临界机群的鉴别问题,克服了系统稳定轨迹回摆时刻最小动能不为零所造成的分析误差,具有实施简便、效率高的优点,适于进行电力系统在线安全分析。 PEF minimum kinetic curve having a good linearity and is independent of the two fault critical cluster, the present invention thus avoids the problem of identification of critical cluster power system stability analysis, the system overcomes the stability minimum kinetic locus swing-back time is not zero analysis of the error caused by having a simple embodiment, the advantages of high efficiency, suitable for online power system security analysis.

Description

电力系鄉态稳定分析雜制雄【^*领域1本发明属于电力系统暂态稳定性分析与预it^制技术领域。 Rural power system transient stability analysis system heteroaryl male * [^ FIELD invention is in a power system transient stability analysis system with pre ^ Field IT. 【背景技术】:电力系统中可能发生各种故障。 BACKGROUND: a variety of power system failure may occur. 故障发生前,系统处于稳态运行,故障发生后,各发电机转子之间的角度距离开始增大,在故障发生后一段时间内,电力系统的继电保护设M对故障进行清除操作,故障也可能自动消失。 Before a failure occurs, the system is in steady state operation, after a failure, the angle distance between the generator rotor begins to increase, after a failure period of time, the power system protection M provided the fault clearing operation failure it may disappear. 故障消除后电力系统中发电机转子之间的角度距离可能被拉衞艮大,并导致系统出现不正常的运行状态,我们称这种情况为系统失去暂态稳定;故障消除后电力系统也可能保持暂态稳定正常运行。 After the failure to eliminate the power system angular distance between the generator rotor may be pulled Gen Wei large, and cause the system to abnormal operating state, we call this condition the system lost transient stability; elimination of the fault power system may also be to maintain the normal operation of transient stability. 电力系统运行人员在运行方式和调度方案制订过程中, 一般要对系统中所有可能发生的故障进,ffl想分析,找出其中兽隨成系统失稳的故障,并采取预防性的控制措施,对电力系鄉行调控,使控制后的系统在发生这些故障情况下不会失去稳定。 Power system operators in operation mode and scheduling program development process, generally the fault of the system into all possible, ffl want to analyze, to find out where the beast with instability into the system failure and take preventive control measures, Township line regulation of the power system, control of the system after a failure occurs in these does not lose stability. 由于电力系统难以进行实际的故障试验,因此暂态稳定性分析主要«在计算*0±对发生故障的系«行数僮仿真来实现,仿真结果是电力系统中各种元件的状态在某个时间段内(故障发生时刻^到故障消除后的某时刻。)许多时间点上的动奮变化数值。 Since the power system is difficult to perform the actual fault test, transient stability analysis therefore mainly «* 0 ± calculating the number of children to be achieved Simulation System« line failure, the simulation result is the state of the power system of the various elements in a Fen dynamic period variation values ​​on many points in time (failure time ^ to a certain time after the fault is cleared.). 电力系统中存在若干输电断面,每,电断面都由某,电通道组成,涉及若干送端和若干受端调控发电机,^m电通ittr送的有功功率的代数和就是皿电断面的传输功率。 In the presence of a plurality of power system transmission section, each, by a power section, consisting of electrical pathways, involving a number of sending end and the receiving end regulated several generators, ^ is the algebraic sum of the active power transmission pan section of the electrical power through m send ittr power. 在电力调度运行中,运行人员十分关心每预电断面上的4输功率极限,该极限是指发生相关故障情况下,能使系统稳定的最大ft^功率值。 In the electric power dispatching operation, the operator is concerned about 4 output power limit on each of the pre power section, which means that the associated limit fault occurs, system stability can ft ^ maximum power value. 这些传输功斜及限在系统运行中具有重要的参考价值。 The transmission power ramp and limit an important reference value in the operation of the system. 系^ii行中,运行人员通过调度指令调整输电断面送端发电机和受端发电机的发电量,使得断面的传输功率不高于m电极限。 ^ Ii line system, operator by adjusting a scheduling instruction transmission section sending and receiving end power generation amount of the generator of the generator, so that the cross section of the transmission power is not higher than the limit power m. 暂态能量函数(7EF)是一种电力系统暂态稳定性分析与控制的数学工具。 Transient energy function (7EF) is a mathematical tool for stability analysis and control of an electric power system transient. 目前电力系统暂态稳定性分析应用较广的方法是时域仿真法和混合法。 Current power system transient stability analysis method is used widely and mixing time domain simulation. «仿真法单纯基于仿真计算,缺乏稳定性指标指导,因此分析效«低。 << simulation simulation method based solely on the lack of stability index guidance, so the analysis efficiency << low. 混合法结合系统ftt仿真应用能量函数方法计算系统的稳定裕度。 Method for the computation of the stability margin in conjunction with simulation application system ftt energy function method. 混合法中计算稳定裕度的方、?^&括花F 方法和扩展的等面积法(五^4C)。 Party mixing stability margin calculation,? ^ F & flowers comprises a method and the like extended area method (e ^ 4C). 混合法继承了仿真法可对复杂模型描述的电力系统进行稳定性分析的优点,通过裕度及裕度灵itS方法计算系统的稳定极限。 Mixing inherits the advantages of the simulation method may be performed on power system stability analysis of the model complex described, the system is calculated by the stability limit margin and margin spirit itS method. 然而上述两种混合算法在进行稳定性分析前都需要首先鉴另做障的临界发电机群,即鉴别出那些转子角度在故障后逐渐加大并与其它发电机转子角度逐渐分离的发电机群。 However, all need to do another discriminator generator failure critical population before the two hybrid algorithm stability analysis is performed, i.e., the group that identified the generator rotor angle is gradually increased after a failure and gradually separated from the other of the generator rotor angle. 繊临界发电l鹏鉴别的暂态稳定性分析和控制方法存在如下问题-1 、对稳定故障临界机群的在线鉴别尚未得到很好解决;2、 临界不稳定和深度不稳定故障表现出的失稳领先发电机l^主往不同;3、 安全控制中由于发电机有功出力的调整可會隨成失稳领先发电机群的变化, 这种变化反过来又影响裕度计算结果的有效性。 The presence of transient stability analysis and control method of Xian Peng identified critical power problem that l -1 online authentication failure threshold cluster stability has not been solved; 2, the critical depth of instability and buckling instability exhibited failure leading to different main generator l ^; 3, the security control since the generator may be active power output adjustment will change with instability leading to the generator of the group, in turn, affect the validity of this change margin calculation results. 【发明内容】:本发明的目的是解决电力系统运行调度中因故障造成系统失稳的问题,提供一种电力系统暂态稳定分析与控制方法。 [] SUMMARY OF THE INVENTION: The purpose of the present invention is to solve the problems in the power system dispatching system instability due to a fault, there is provided a power system transient stability analysis and control. 本发明构造出不依赖于临界发电机群的新型暂态能量函数,使暂态稳定性分析与预防控制方^^鹏了临界发电机群的鉴别以及由临界发电机群造成的一系列问题。 The present invention is not dependent on the configuration of a generator critical transient energy function of the new group so that transient stability analysis and the prevention and control Peng ^^ party identification group and a series of critical generator problems caused by the threshold generator group. 本发明掛共的电力系统暂态稳定分析与控制方法,包括以下步骤: 第1步:从能量管麟棘集电力系统运行中的基本参数数据,形成电力系统仿真软件的输入文件;第2步:针对由电力调度运行人员给定的可能发皿对系统稳定'„重危害盼'预想故障集"中的旨故障,对电力系统暂态行为进行数值仿真,将故障分类为:无危害故障、有潜在危害故障和有危害故障;第3步:对于分类得出的有危害故障,利用投影暂态能量函数户^F的能量裕度进行插值,即由能量裕度曲线的两个已知点预估其它未知点,或者将灵鹏仿真技术与插值技术结合,求出故障的临界切除时间ccr,艮P能4M统保持稳定的最大故障切除时间;臓的投影暂态能量函数尸^由投影动能尸虹和投影势能尸尸W賊: 投影动能PM和投影势能尸/W分别表示为如下标量形式:2 0其中^表示故障切除时间,"0和叫分别 The present invention is co-linked to a power system transient stability analysis and control method, comprising the steps of: Step 1: The basic parameters of the energy tube Lin ratchet data collection from the operation of the power system, the input file is formed of the power system simulation software; Step 2 : by the power dispatching personnel for a given dish may be made to the system stability ', "the hope harm' contingency set" aims failure of the power system transient behavior of numerical simulation, the fault is classified as: non-hazardous failures, potentially hazardous faults and failures have hazards; step 3: for the classification results of the failure hazards, the use of the energy margin for transient energy function for the projection of two known families ^ F point interpolation, i.e. the energy margin curve estimated other unknown point, or in conjunction with simulation Peng spirit and interpolation technique to determine the critical clearing time fault CCR, Gen P can maintain a stable system 4M maximum fault clearing time; Zang dead projection transient energy function by the projection of ^ and a projection rainbow kinetic potential dead dead dead thief W: the projection and the projection kinetic potential dead PM / W respectively scalar form as follows: where ^ represents the 20 fault clearing time, "and called respectively 0 S^变换后的系鄉EI自和系,度,〜表示系统角半径;投影变换是用^对时间的一阶导数和二阶导数计算^和叫的方法;若不考虑系统阻尼,沿故障后轨迹P£F ^f不变;沿电力系统故障后轨3t,动能尸XE总要通iit低极小点,称作为最小投影动能,表示为/^E^;第4步:针对电力网络中的旨输电断面的相关最严重的故障,由运行人员确定其送端可调发电机集合和受端可调发电机集合;第5步:针对电力网络中的^m电断面及其最严重故障,采用基于第三步中的投影暂态能量函数的方法,确定出断面^ll功率极限,即满^^统暂态稳定要求的断面传输功率的最大值;对于存在有危害故障的断面,采用基于投影暂态能量函数的灵« 仿真技术与插值技术结合,算出可调的发电机的有功发电量临界值,即满足系统暂态稳定要求的发电机发电量最大值,然后计算发电机发电«整方案, S ^ converted based rural EI self and system, of, ~ a system corner radius; projection transformation is calculated using the ^ first order time derivative and the second derivative ^ and a method called; if not consider the system damping, along the fault after the trajectory P £ F ^ f unchanged; power system fault along the rear rail 3t, total kinetic energy to pass iit dead XE low minimum point, referred to as a minimum projection kinetic energy, expressed as / ^ E ^; step 4: for the power network the most serious failures related purpose of the transmission section, which is determined by the operator and transmission side by side adjustable adjustable generator set generator set; step 5: ^ m for the electric power network and its cross-sectional worst failure, a projection method based on transient energy function in the third step, the determined section ^ ll power limits, i.e. the maximum transmission power section ^^ full system transient stability requirements; for the presence of a cross-sectional harm, based spirit «simulation projection and interpolation techniques TEF binding, active power generation amount calculating adjustable threshold generator, i.e. to meet the maximum power generation amount of the generator system transient stability requirements, and then calculates generators << whole program, 预防控制方案, 该方案能使系统在故障发生后保持稳定。 在第2步中,故障分类的策略如下: 第2.1步:对待选故障集中每一故障进行故障仿真,仿真中故障在^+"时刻切除,得到故障后$爐7;/;其中AM).02〜0.04秒,为一微小时间增量,^为系统微^SM 定的实际故障切除时间,根据仿真结果判定系统是否暂态稳定:即系统中任意两台发电机转子之间的最大相对角度不能保持在一定范围内大小变化即摇摆,则判定系统失去暂态稳定,并称故障后轨迹是不稳定的;第2.2步:根据稳定性分析策略,若f爐rw是稳定的,该故障归类为无危害故障, 结束该故障分析;^f九迹rw是不稳定的,则计算并保存其故障切除时刻的投影动能&)以及该故障沿故障后$«最小投影动能尸^£„^;/+第2.3步:对于非无危害故障,以实际故障切除时间&进行第二次故障仿真,得到故障后« &,计算并保 Prevention and control program, which enables the system to remain stable after a failure occurs in step 2, fault classification strategy is as follows: Step 2.1: concentration of each treatment selected from the fault fault fault simulation, a fault simulation ^ + " removal time, the failure to obtain $ 7 furnace; /; wherein AM) .02~0.04 seconds to a minute time increment, the system micro ^ ^ SM given real fault clearing time, it is determined whether the system transient stability simulation results : system i.e. a maximum relative angle between any two generator rotor size variations can not be maintained within a certain range swing i.e., it is determined that the system loses transient stability, and said after fault trajectory is unstable; step 2.2: the stability analysis strategy, if f oven rw is stable, the fault is classified as non-hazardous fault, the end of the fault analysis; ^ f nine tracks rw is unstable, is calculated and stored kinetic energy that projected fault clearing time &) fault and fault trailing $ «minimum kinetic projection dead ^ £" ^; / + step 2.3: for the non fault no harm to the actual fault clearing time & a second fault simulation, a fault «&, and calculates insurance 其故障切除时刻的投影动能i^E^)以及故障后,最小投影动能P^她fo);若轨迹7;2是稳定的,贝U将该故障归类为有潜在危害故障;若车爐7;2是不稳定的,将该故障归类为有危害故障。 Projection fault clearing time of the kinetic energy which i ^ E ^) and after the fault, the minimum projection her kinetic energy P ^ FO); If the locus 7; 2 is stable, the shell U is classified as potentially hazardous fault failure; if car furnace 7; 2 is unstable, the fault is classified as hazardous fault. 在第3步、第5步中使用的投影暂态能量函数P£F的计算包括如下步骤: 第3.1步:进行电力系统暂态稳定数值仿真,得到故障后电力系鄉有发电机的角加速度、角速度和角度的离散值;第3,2步:基于前一操作中得到的角加驢、角速度和角度,计算所有发电机转子相对于系统惯性中心运动的角加速度、角速度和角度;第3.3步:计算系统角判5,记作为r"角判5縣统中所有发电机转子相对于系统惯性中心运动的角度的平方和的平方根,即系统中所有发电机转子相对于系统惯性中心运动的角度的欧几里德范数;第3.4步:利用变量n, "a和^构造电力系统投影暂态能量函数户^F, PEF由动能和势能两部分组成,动能PXE等于标量"^平方的一半,PA^随角半径n对时间的一阶导数变化而变化;/^F势能/^五等于标量"。 In step 3, the projection calculating P £ F transient energy function used in the fifth step includes the following steps: Step 3.1: numerical simulation of power system transient stability, power lines after a fault to obtain the angular acceleration of the generator Township , angular velocity and angular discrete values; step 3,2: angular acceleration based on donkeys, the angular velocity and the angle obtained in the previous operation, the generator rotor is calculated with respect to all the angular movement of the center of inertia of the system, the angular velocity and an angle; 3.3 step: 5 sentence computing system angle, referred to as r "All the generator rotor angle determination system 5 County inertial relative angular movement of the center of the square root of the sum of squares, i.e., all of the system with respect to the generator rotor inertial motion of the center Euclidean norm angle; step 3.4: use of the variable n, "a ^ and a projection system configured power transient energy function for households ^ F, PEF of two parts consisting of kinetic and potential energy, kinetic energy is equal to the scalar PXE" ^ square half, PA ^ n varies with the angle of the radius of the first order time derivative of the variation; / ^ F. potential / ^ scalar equal to five. " 对角^g增量即^r。 I.e. increment diagonal ^ g ^ r. 作定积分的负值;定积分的起点是故障后电力系繊始时亥啲角判5,定积分的终点是柳章后某时亥啲角判5,尸尸五随角^gr。 As a definite negative integral; the starting point is the definite integral of the power lines Xian Hai began after the failure GOD angle sentence 5, the end is a definite integral when GOD angle Hai Liu sentenced to 5 after chapter, with five dead corpse angle ^ gr. 变化而变化。 Changes. 在第3步、第5步中使用的投影暂态能量函数具有如下特点: 第4.1步:沿故障后轨迹,户/GE与PiW的代数和等于常量,即故障后系统PEF满足守恒性;第4.2步:最小投影动能尸/a:^对系统运行/控制参数的关系曲线具有如下特点:当故障未能引起系统失去暂态稳定时,尸i^^K);当故障弓胞系统失去暂态稳定时,PXE一〉仏不稳定故障户XE^随系统运行/控制参数变化的曲线是一段与横轴即系统运行/控制参»标轴相交的光滑曲线,其与横轴的交点、即PXE^=0的点的横坐标恰好是系统运行/控制参数的临界值,当参数大于该临界值时,系统会失稳,当参数小于该临界值时,系统不会失稳,系统运行/控制参数临界值的求取将利用,特点进行。 In step 3, the projection transient energy function used in step 5 has the following characteristics: Step 4.1: in the post-fault trajectory, household / GE PiW the algebraic sum equal to the constant, i.e. failure of the system after the PEF satisfy conservation; first step 4.2: minimum kinetic projection dead / a: ^ operating system / control curve parameter has the following characteristics: when the failure can not be lost due to system transient stability, P i ^^ K); cellular system when a fault bow temporarily lost when steady state, the PXE a> Fo user XE ^ unstable fault with operating system / control parameter variation curve and a horizontal axis i.e. a period of system operation / control of a smooth curve parameters »standard axes intersect, the intersection with the horizontal axis, i.e., PXE ^ = 0 abscissa point happens to be operating system / control parameter threshold value, when the parameter is greater than the threshold value, the system instability, when the parameter is smaller than the threshold value, the system is not unstable, the system / obtaining the critical value of the control parameter will use characteristics. 在第3步中计算故障临界切除时间和第5步中发电机有功发电量临界值的计算中采用的插值技术如下:{顿字母"标故障切除时间或断面4彌功率,會譴裕度五M与。的近f戯性关系式如下:<formula>formula see original document page 8</formula>其中,^表示某一故障的切除时间或断面ft^r功率,^^该故障的另一切除时间或断面^if功率;五M(^)和五M"》分别表示在"Q和A两种参数情况下,系统发生该故障的能量裕度;令£Ai^*)=(?代入该线性关系式中,求得a的临界值的近似值当"大于临界值时,系统发生故障后会失稳; 当a小于临界值时,系统发生故障后不会失稳;为了使^接近于临界值的准确值,用"/代替"。;用"*代替^,重复由"c和"7计算"*的过程,直至I "t A i小于一个给定的容差e为止,算出的W取作临界值的输出值;能量裕度£M的计算方法如下:对有潜在危害故障rw和&的旨糧裕度按下 Calculating interpolation technique employed in calculating the fault clearing time critical and 5 active threshold power generation amount of the generator in step 3 as follows: {Dayton letter "standard fault clearing time or power section 4 Mi, will be contingent margin five . M f and play relationship near the formula: <formula> formula see original document page 8 </ formula> where ^ denotes the fault clearing time is a sectional ft ^ r power or other failure of the cutting ^^ time or section ^ if power; five M (^) and V M ' "respectively represent" lower Q and a are two types of parameters, the system energy margin that failure has occurred;? so £ Ai ^ *) = (substituting the linear relationship, the determined threshold value when the approximation of a "is greater than a threshold, the system failure will be unstable; when a is smaller than the critical value, the system does not malfunction after instability; ^ in order to make close to the critical exact value, with "/ place";. with "* instead of ^ repeat the" c and "7 calculates" * process until I "t a i far less than a given tolerance E, the calculated W It is taken as an output value of the critical value; energy margin calculation follows £ M: margin for the purpose of potentially harmful food and fault rw & pressed 式估算, 卿c汁,尸k^十,c/>=[ 尸卿,十腦,魔』c/)其中4iy五表示系统投影势能尸/w从"系统状态到^ f系统状态的增量,方括号内的魏式为在^时亥彻除故障后系统吸收有效动能的能力;式中:裕度^%/+") 表示系统在故障后失去稳定的能量交换中还剩余多少额外的投影动能;裕度五M^) 表示在故障后未失去稳定的育譴交换中系统还能吸收多少额外的投影动能;对有危害故障,:Tw和7^的稳定裕度按下式估算: 層fe十棒-歷加>^+M)卿c一-尸U,)。在第3步和第5步中,采用灵«仿真技术计算故障临界切除时间和发电机有功发电量临界值的方法具有如下特点:假设"表示故障切除时间或发电机有功发电量,④表示某一故障的切除时间或发电机的有功发电量,"尸4 a表示该故障的另一切除时间^电机有功发电量;通过该故障^④情况下的系统车爐仿赫ltt灵鹏仿真,计算出"="0情况下的 Be estimated, Qing c juice, ten dead k ^, c /> = [corpse Qing, ten brain, magic "c /) where 4iy five potential dead w represents the projection system increments / from the" system state to system state ^ f Wei formula in square brackets as ^ when Hai thoroughly removing capability after failure of the system effectively absorbed kinetic energy; wherein: margin ^% / + ") indicates that the system after a failure destabilization energy exchange there remains much extra projection kinetic energy; margin five M ^) said after the fault has not lost a stable exchange system of educating contingent how much additional projection can absorb kinetic energy; for hazardous fault,: Tw and 7 ^ stability margin estimated by the following formula: fe ten layers rod - Bollinger> ^ + M) State c a - the U-corpse,) in step 3 and step 5, using the spirit «fault simulation calculation and critical clearing time the active power generation amount of the generator threshold. the method has the following characteristics: if "represents the fault clearing time or generator active power generation amount, the power generation amount of active ④ indicates a fault clearing time or a generator," 4 a shows another dead time of the removal of the motor active power failure ^ amount; ^ by the system failure in the vehicle ④ furnace where He ltt Ling Peng imitation simulation, calculates the "=" in the case where 0 统投影暂态动能曲线/^£(0|„。以及对应的系统轨迹灵敏度信息尸^E。。(0 ,尸/^^G)表示车tt尸K^)L对参数^的轨迹灵敏度;利用,信息预测出故障切除时间为",情况下的系统,暂态动能曲线尸XE(Ola,;从i^^)l。。和i^^)L中提取出系统最小Sf》动能,P^^,"L和尸^^,。 Projection system transient kinetic curve / ^ £ (. 0 | "trajectory sensitivities and corresponding system information dead ^ E .. (0, dead / ^^ G) ​​represents a dead vehicle tt K ^) L ^ sensitivity parameters of the trajectory; use information predict the fault clearing time ", the system in the case of transient kinetic curve dead XE extracted minimum system Sf (Ola ,; from i ^^) l .. and i ^^) L of" kinetic energy, P ^^, "L and corpse ^^ ,. L ,而后可按照权利要求1第3步和第5步所述的插值技术计算故障临;切除时间或a发电机有功发电量临界值。 L, then the fault may be calculated according to claim 1 of the provisional Steps 3 and 5 of the interpolation technique; clearing time or a threshold amount of the active power generator. 第5步中的暂态稳定约束下断面fttl功對及限计算和预防控制方案具有如下特点:第5.1步:针对电力系统运行中考虑的^Nt电断面及其最严重有危害故障,先对一给定发电量瞎况下进行故障分析,算出系统投影暂态能量函数的最小动能以及最小动能灵敏度,禾,战计算结果预测出发电量改变后的最小动能,M^t两1^1小动能的插值计算,算出可调领先发电机的发电量临界值;第5.2步:以可调领先发电机的发电量临界值为指导,按照发电机的令跌7游对发电机依次进fiH周整;第5.3步:增加或M^断面一侧发电机有功出力时,另^1拨电禾赃按相反方向进行调整。 Step 5 Transient Stability Constraints under section fttl work has the following characteristics and limits are calculated on the prevention and control plan: Step 5.1: ^ Nt electrical power for the operation of the system section considered in its most serious hazardous fault, the first of a given amount of power failure analysis under blind conditions, the kinetic energy of the minimum projection system transient energy function and the minimum sensitivity of the kinetic energy, Wo, war minimum kinetic calculation result calculated by the predicted electricity changes after starting, M ^ t ^ 1 1 two small kinetic energy the interpolation calculation, the calculated power generation amount leading adjustable threshold generator; step 5.2: the generation amount of the generator is a critical variable leading guidance generator sequentially travel down into 7 fiH entire periphery of the generator according to the order ; step 5.3: M ^ increases or a section of the active side of the generator output, the other ^ 1 CALL Wo stolen adjusted in the opposite direction. 本发明的优点和积极效果:本发明提出基于,暂态|«函数(尸EF)的系统暂态稳定分析和控制方法(简称PW方法)。 The advantages and positive effects of the invention: The present invention proposes based transient | «function (P EF) and the control system transient stability analysis method (Method abbreviated PW). 该方法的优点是:1、 稳定裕度计算不涉及临界机群,规避了因鉴别临界机群而誠的一系列问题, 提高了电力系统安全分析的效率和可靠性。 The advantages of this method are: 1, stability margin calculation does not involve the critical cluster, to avoid due to a series of questions to identify the critical cluster and honest, and improve the efficiency and reliability of the power system security analysis. 2、 i^E^对故障切除时间和发电机组有功输出变化的曲线具有分段线性的特点。 2, i ^ E ^ fault clearing time for the active power and generator output curve having a piecewise linear characteristics. 对于不稳定故障,系统运行/控制参数的临界值就是的尸XE^为零的一段和线性的一段的交点。 Unstable failure, the system operation / control section of the critical parameter is the value at the intersection of the dead period and zero XE ^ linear. 这大大方便了系^行/控制参数临界值的求取。 This greatly facilitates the system ^ row / control strike a threshold parameter. 3、 P五F方法在电力系统暂态稳定分析中,不必考虑系统动能中不贡献于系统失稳部分的大小,避免了相关计算,提高了分析效率。 3, P five F method in power system transient stability analysis, the kinetic energy of the system regardless of size does not contribute to instability part of the system, avoiding the related calculations, to improve the efficiency of the analysis. 4、 i^F方法可以结合flJi灵敏度分析,进行故障的暂态稳定临界切除时间计算、 发电机的暂态稳定发电量临界值计算。 4, i ^ F flJi sensitivity analysis methods can be combined, transient stability critical fault clearing time is calculated, the transient stability of the generator power generation threshold value calculation. 5、 在所有的分析与控制计算中,都采用了一种新的暂态會糧函数~~19d^^^ 能量函数(P£F)。 5, all the control calculations and analysis, have adopted a new transient will be a function of grain ~~ 19d ^^^ energy function (P £ F). 禾拥投影暂态能量函数的最小投影动能曲线的良好线性特性« 行分析与控制计算。 Wo hold good linearity TEF projection projected minimum kinetic curve «row control calculation and analysis. 6、 在系统稳定约束下的参数临界值计算中,采用插值技賴U灵icg仿真技术。 6, the parameter threshold value calculation in system stability constraints, the use of interpolation techniques rely U spirit icg simulation. 插值技斜,不同电力系统运行/控制参数(故障切除时间、皿电机发电量、或输电断面上的传输功率)下的投影暂态能量裕度(Energy Maigin),算出投影暂态能量裕度对电力系统运行/控制参数的关系曲线的斜率,利用斜率估算出电力系统运行/控制参数临界值,通过多次迭代计算,使f古算值接近于准确值。 Oblique interpolation techniques, different power system / control parameters (fault clearing time, pan motor power generation amount, or a transmission power on the transmission section) projection transient energy margin (Energy Maigin) under the calculated projection of the transient energy margin power system / control slope curve parameters, estimated using the slope of the power system operation / control parameter threshold value, iteratively calculating a plurality of times, so that accurate values ​​close to f in ancient value. 灵自仿真技术沿故障后系统轨迹计算出电力系统变量对故障切除时间和发电机发电量的灵敏度。 Since fault simulation Ling along the trajectory calculated by the system power system fault clearing time for the variable sensitivity of the generator and the power generation amount. 利用以上轨迹灵敏度,得到投影暂态能量函数最小动能(PXE油)对电力系统运行/控制参数的灵敏度,最后估算出电力系统运行/控制参数临界值。 With the above trajectory sensitivities, transient energy function to obtain a minimum kinetic projection (PXE oil) power system operation / control sensitivity parameters, and then estimate the power system operation / control parameter threshold value. 【附图说明】:图1是相对于系统惯性中心的角度向量04和角速度向量6的正交,示意图;图2是10机39节点新英格兰试验电力系统最小二次投影动會树控制参数(故障切除时间和发电机出力)变化的曲线;(a),英格兰系统21-22线路f^三相故P章后系统/^En^对^曲线;(b)艮新英格兰系统1W7线路首端三相故障后系统户AE她对fd曲线;(c)魏英格兰系统1W7线路"t^三相故障后系统户A2^对7 号发电机有功出力曲线;(d)魏英格兰系统28-29线路首端三相故障后系统户AE^对9号发电机有功出力曲线;图3是多维电力系统角度空间故障分类的策略示意图,(a)和(b)分别对应有潜在危害故P對口有危害故障;图4是由投影能量裕度插值计算示意图;图5 (a) (b) (c) ^Hltt青况下断面^t及P^i值计算示意图; 图6是10发电IW英格兰微系统接线图。【具條«式】:本发明方法中涉及的投影暂态倉遣函 BRIEF DESCRIPTION OF DRAWINGS: FIG. 1 is an angle with respect to the center of inertia of the system 04 and the angular velocity vector perpendicular to the vector 6 a schematic diagram; FIG. 2 is a 39-bus power system of New England Test least squares projection will move control parameter tree ( and generator output fault clearing time) curve of; (a), F ^ England line 21-22 three-phase system so that the system Cap P / ^ En ^ of ^ curves; headend (b) new England system Gen line 1W7 after the three-phase fault on the system user AE her curve fd; (c) 1W7 system Wei England line "after t ^ A2 ^ three-phase fault on the system users active output curve generator 7; (d) 28-29 line system Wei England three-phase post-fault system head end user AE ^ active output curve of the generator 9; FIG. 3 is a schematic view of the policy multidimensional space power system fault classification angle, (a) and (b) respectively are potentially hazardous and therefore hazardous counterpart P fault; FIG. 4 is calculated from the projected energy margin interpolation schematic; calculating schematic sectional ^ t and P ^ i values ​​in FIG. 5 (a) (b) (c) ^ Hltt green case; FIG. 6 is 10 power IW England Microsystems [FIG connection with Article «formula]: transient cartridge projection method of the invention relates to the removal function 数(P£F)和灵,仿真技术的内容如下投影暂态能量函数(M尸)由其动能部分(ME)和势能部分(尸/W)组成。<formula>formula see original document page 11</formula> (1),影暂态倉,量函数动能部分(尸/E)和,暂态能量函数势會織分("五)可分别表示为如下标量形式:<formula>formula see original document page 11</formula>(2) 2 0<formula>formula see original document page 11</formula> (3)式(2)中^表示故障切除时刻。 Number (P £ F) and flexibility, the content of the following simulation projection transient energy function (M dead) part by the kinetic energy (ME) and a potential portion (P / W) composition. <Formula> formula see original document page 11 < / formula> (1), transient film cartridge, the amount of kinetic energy function part (P / E) and, transient energy function knits potential points ( "e) can be represented as a scalar form as follows: <formula> formula see original document page 11 </ formula> (2) 2 0 <formula> formula see original document page 11 </ formula> (3) formula (2) indicates a failure in cutting time ^. 容易MEi^F满足守恒性,即若不考虑系统阻尼, 沿故障后«尸£^保持不变,其值等于故障切除后时刻的/^E,即:户尸£ + /^ =会(》02(" (4)户XE和皆为时间的函数。式(2)《3)中,"0,叫和。分别表示,«后的系鄉^速度、系M度和系统角度判L具体计算公式如下:对于一个"机电力系统,其系统角判5^定义如下:令《和《表示^对时间f的一阶和二阶导数,作如下定义:<formula>formula see original document page 11</formula>(6)<formula>formula see original document page 12</formula>《=[《械)、-(t械W]"2 =[(£械)、-(t械)"^]/呍<formula>formula see original document page 12</formula>其中(8)式为(7)式结果的推导过程。向量6的正交,如图1 •, (》0,在角度向量方向上的分量,%表示在与角速度向«—垂直方向上的分量;(7)式中的"0等于系统角加速度向量在角度向量上的»加上%-平方除以角半径。 a0、 c^和。皆为 Easy to satisfy conservation MEi ^ F, i.e., without considering the system damping, after a fault along the «dead £ ^ unchanged, which is equal to the time after the removal of the fault / ^ E, namely: households dead £ + / ^ = Council (" 02 ( "(4) users are all a function of time and XE. formula 2) (" 3), "0, and call respectively represent, the rural-based« ^ velocity, angular-based systems and the determination of the M particular L is calculated as follows: for a "machine power system, the system angle determination 5 ^ are defined as follows: order" and "expressed ^ for first and second order time derivative of f, defined as follows: <formula> formula see original document page 11 </ formula> (6) <formula> formula see original document page 12 </ formula> "= [" firearms), - (t armed W] "2 = [(£ mechanical), - (t mechanical)" ^] / Yun <formula> derivation formula see original document page 12 </ formula> where (8) of the formula (7) wherein the results of orthogonal vectors. 6, FIG. 1 •, (0, the vector direction angle "in component, expressed in% of the angular velocity to -; plus% «components in the vertical direction (7) in the" system 0 equal angular acceleration vector on the vector angle »- squared divided by the corner radius a0, c ^. and. are all 间的函数。式(5) - (8)中,《、(^和《的含义如下描述: 对于一个"机电力系统,其传统的发电机^?运动方程为:. , ,.=1,2,...," (9)式(9)中符号M,(单位为秒平方除以弧度,表示作?/rad)表示发电机的惯性时间常数;5,(单位为弧度,表示作rad)和o),.(单位为,除以秒,标作/W/s) 分别表示发电机转子相对于同步转轴的角度和角鹏;〜表示同步转角速;4 (单位为标幺值,表示作pw)和《,(单位为标幺值,表示作/x".)表示发电机的输入机械功率和输出电磁功率。令M, = t M,,则系统惯性中心角和角鹏可表示为: 如式(11)戶际,定义发电柳对于惯性中心的角舰角職为:<formula>formula see original document page 12</formula>于是可得至盹力系统相对于系统惯性中心的转雅动方程如下:<formula>formula see original document page 12</formula>(12)其中A是发电机转子相对于系统惯性中心运动的加鹏。 Inter function of formula (5) - (8) ", (^ and" meanings described as follows: For a "machine power system that conventional generators ^ equations of motion:,, = 1,?. 2, ..., "(9) (9) M symbols, (in seconds squared divided radians, expressed as the / rad?) represents the inertia time constant of the generator; 5, (in radians, expressed as the . rad) and O), (in, divided by the second, labeled as / W / s) respectively with respect to the generator rotor angle and the angular timing shaft Peng; ~ represents a rotation angle synchronous speed; (4 units p.u. , expressed as the pw) and "(pu units, expressed as the / x".) represents the mechanical input power and the output power of the generator electromagnetic Let M, = t M ,, the inertial system and a central angle of angle Peng can be expressed as: the formula (11) interhousehold defined power Liu to the center of inertia angle of the ship angle post is: <formula> formula see original document page 12 </ formula> may then be available to the doze power system relative to the system center of inertia Ya equation in turn as follows: <formula> formula see original document page 12 </ formula> (12) where a is the generator rotor motion with respect to the center of inertia of the system plus Peng. 辦别注意的是,式(12)与传统的发电机转子运动方程不同,惯性时间常数M,被移到了方程式的右边,这种变换相当于将各发电机的转动惯量归一化为1.0。 Note that do not, of formula (12) with a conventional motion equation of different generator rotor, inertia time constant M, was moved to the right side of the equation, this transformation corresponds to the moment of inertia of each generator is normalized to 1.0. A、 A和fl, (/=/,2,...,")皆为时间的函数,具体分析中,时间起点为故障发生时刻,时间终点是故障消除后的一^定时间点,比如故障消除后的若干秒。 为了获取圮、^和",需要的«是:电力系统参数Mi和数值仿真得到的故障发生后发电贩行,5,和w,. (/=7, 2,…,")。从故障发生到故障消除后的一段时间内,5,和w,是动M化的,在分析中,我们要对"预想故障集"中的針故障进行暂态稳定数值仿真,记录下从故障发生到故障消除后的一段时间内,所有发电机的角度5,和速度w,.的动,值。 获取发电机参数A/,.和故障发生后的数据5,和q后,由式(10)和(11)算出所有发电丰細对于惯性中心的角度《、角鹏^和角力口ilSa,. (/—,2,…,")。 A, A and fl, (/ = /, 2, ..., ") are all a function of time, specific analysis, the time to failure starting time, end time ^ is a given point in time after the elimination of the fault, such as several seconds after the elimination of the fault in order to obtain destroyed, and ^ "needed« is: after the parameters Mi and numerical simulation of the power system fault obtained generation stall line 5, and w ,. (/ = 7, 2, ... ") from the fault to some time after fault clearing, 5, and w, is the moving of M, in the analysis, we want to" pin failure contingency set "in the numerical simulation of transient stability, after moving from a failure occurs in a recording period after the fault is eliminated, the angles of all the generator 5, and the speed w ,., values ​​acquired data generator parameters a / ,. failure and 5, and q and (11) is calculated by the formula (10) all generation abundance fine angle the center of inertia ", and wrestling opening angle ^ Peng ilSa ,. (/ -, 2, ...,"). 通过理论分析和仿真研究可以发现,沿电力系统故障后»投影动能(尸KE)总要通过其最低极小点,以下称之为最小,动能,表示为尸XE^。 Can be found through theoretical analysis and simulation along the power system fault »kinetic projection (P KE) by which always the lowest minimum point, hereinafter referred to as a minimum, kinetic energy, expressed as dead XE ^. 由于故障后系统的户XE^包含系统稳定性的重要信息,本发明从户XE^入,究暂态稳定分析与控制算法。 Since the post-fault system user XE ^ contains important information stability of the system, the present invention is from the family ^ XE, transient stability analysis and study the control algorithm. 附图2针对10机39节点新英格兰试验电力系统分别描绘了尸战^Xt^針刀除时间和发电机组有功输出变化的曲线。 Figure 2 for the 39-bus power system of New England Test depicts war dead ^ Xt ^ knife Generator Active versus time divided by the output change. 曲线可分为两段,当系统暂态稳定时, MEw,„=0;即对稳定故障,/^E^对故障切除时间(或对发电机有功发电量)变化曲线和故障切除时间(或发电机有功发电量)轴重合;当故障切除时间大于等于临界切除时间(或发电inia有功输出大于等于临界有功输出时),PXE^曲线是一段与横轴(即故障切除时间和发电机有功出力)相交的光滑曲线,其(P/CE^《的点) 交点对应的故障切除时间(或发电机有功出力值)恰好为故障临界切除时间(或发电机临贿功出力)。以上特性简称为"一段为零, 一段超戯性"特性。 电力系统运行调度中,运行调度人员所关心的系统运行/控制参数的临界值就是使/>^£油=0的系统运行/控制参数的临界值。当参数大于该临界值时,系统会失稳,当参数小于该临界值时,系统不会失稳。由于Pi^一曲线具有"一段为零, 一段超麟性"的特性,系 Curve can be divided into two sections, when the system transient stability, MEw, "= 0; i.e., the stability of the fault, / ^ E ^ fault clearing time (power generation amount of the generator or active) and the fault clearing time curve (or active power generation amount of the generator) coincident with the axis; when the fault clearing time is equal to the critical clearing time is greater than (or greater than the output of active power inia active output equal to the threshold), PXE ^ was a curve and a horizontal axis (i.e., fault clearing time and output generator active ) intersecting a smooth curve, which (P / CE ^ "point) corresponding to an intersection fault clearing time (or the output value generator active) failure happens to CCT (Pro bribe or generator power output). the above characteristic referred to as "period of zero, over a period of play" feature. scheduling of the power system, the runtime system dispatchers interest / controlling the threshold value of the parameter is to make /> ^ £ 0 = system oil / control parameter threshold value when the parameter is greater than the threshold value, the system instability, when the parameter is smaller than the threshold value, the system will not be unstable due to a curve having a Pi ^ "zero period, some of the ultra-lin" feature, based 运行/控制参数的临界值就^i^两段曲线的交点。±^特性大大方便了系统运行/控制参数临界值的求取。由于稳定的一段与横轴重合,因此在电力系统暂态稳定分析中,如果采用P虹计算稳定裕度,贝杯必考虑系统7EF动能中不贡献于系统失稳动會總分的大小,同时也避免了临界机群的鉴另啲问题。——结合1»灵«仿真的裕度灵«技术:电力系统的动态$»灵«方程故障切除时刻以后的电力系统动,学模型由式(B)所示微分,方程表示。<formula>formula see original document page 13</formula> (13)式中a:("维)和j (m维)分别表示系统状M量ri量和fm变量向量;4U和y(G) 对应故P章切除时亥啲系统状态。 Run / controlling the threshold value of the parameter to an intersection of two curves ^ i ^. ± ^ characteristic greatly facilitate system operation / control parameter threshold value is obtained. Since the stable period coincides with a horizontal axis, thus stabilizing the power system transient analysis, if P Hong stability margin calculation, shellfish cup will consider the system 7EF kinetic energy does not contribute to the instability of the size of the system will be out of action, while avoiding the critical cluster of Kam another problem .-- GOD combine 1 >> Ling «simulation margin spirit« art: after dynamic $ »spirit fault« equation ablation time power system dynamic power system, learning model (B), differentiating equation represented by the formula <formula> formula see original document page. 13 </ formula> (13) where a :( "dimension) and j (m-dimensional) m respectively represent the amount of system status variables ri vector quantity and fm; 4U and y (G) so that the corresponding P Cap excision system Hai GOD status. 式(13)也被称为电力系统车爐系统。 Of formula (13) is also referred to as the vehicle power system furnace system. 轨迹灵敏度研究的是某个系统参数或控制参数a的微小变化对系统轨迹变化的影响。 Trajectory sensitivity study of the impact of small changes in a system parameter or parameters of a control system tracks the changes. 式(12)两边都对a求导,可得系统对a的轨迹灵mS方程(其中,=#,<formula>formula see original document page 14</formula>式中&(0和^(0表示系统状奮变量义和代数变量,对系统,a的灵敏度,其物理意义表示a微小变舰系统fl^变化的影响。车诚灵鹏仿真指的就是求解式(14),解出随时间变化的状#变量和4微«对《的灵敏度x力)和少a(0。结合车«灵,仿真灵«技术可以计算系统运行/控制参数(以下用字母ct表^ii些参数)的临界值。这些系统运行腔制#^包括故障切除时间和发电机的有功禾,灵敏仿»插值方法计算系乡艇行腔制参数的具体计算步骤如下:步骤U在参数(x^ao的情况下进行一次暂态稳定仿真数值仿真的每一时步中, 由式(5)-(6)算出^W ;使用式(2)计算得到故障后系统投影动能曲线/^E(f)la 。伴随着暂态稳定仿真,进行系统车«灵敏度仿真,由系^UlE灵i[jS仿真获得和^<formula>formula see origi Formula (12) on both sides of a derivative, 14 </ formula> you can obtain the system a trajectory spirit mS equation (where, = #, <formula> formula see original document page in & (0 and ^ (0 systems like Fen variables justice and algebraic variables of the system, a sensitivity, physical meaning shows the effect of a small change ship systems fl ^ change. car Cheng Ling Peng simulation refers to changes over time is to solve the formula (14), solved the shaped #Variable and 4 micro «sensitivity x force"), and at least a (0. binding car «spirit simulation spirit« technology computing system operating / control parameters (hereinafter, the letter ct table ^ ii these parameters) critical the value of these systems run cavities made # ^ including active Wo fault clearing time and the generator, the sensitivity imitation »interpolation calculation based rural boat calculation steps row of cavities system parameters is as follows: step U in the case of the parameter (x ^ ao of a transient numerical simulation each time step of the simulation stabilized by the formula (5) - (6) calculates ^ W; formula (2) calculated by the projection system kinetic curve / ^ E (f) la accompanied by temporary fault. steady-state simulation, the vehicle system «sensitivity simulation, a spirit-based ^ UlE i [jS obtained by simulation and ^ <formula> formula see origi nal document page 14</formula>由式(15) - (16)在数值仿真的每一时步中计算出A,a(/)<formula>formula see original document page 14</formula>由(17)式算出不稳定轨迹尸虹皿P章切除时间的轨迹灵«0由W)(17)步骤2): M式(18),在参数a-〜的P虹曲线(P^E(f)L )估算得到,,a0为a尸ao+da (zJa为微小增量)的故障后系统动能曲线尸i^(《。=尸卿)|Aa (18)\々a! 、 7la0 a \ /|ao步骤3 ):从尸/CE(OL,和尸/^(Ola。中提取出不稳定flM小动能户i^,丄,和尸M自L,按微將原理,最小动能曲线在《=««点处的斜率(即最小动能灵鹏) 可由(19)式计算:A:(a)-尸线a!户腿(19)按(20)式算出故障的临界参数估算值《*:A:(a)(20)步骤4):若II <£ (e为指定的计,差)取W^ao+e;步骤5):计算aa"1青况下的會護裕度五JWa";如果£^^«*><0,取ao-a118,重,用,步骤l)至步骤4)计算";否则结束计算,算出的《*即临,制#1[的计,出值。下面结合一个实例来 nal document page 14 </ formula> by the formula (15) - (16) calculated by A at each time step numerical simulation of, a (/) <formula> formula see original document page 14 </ formula> from (17) calculated trajectory unstable dead formula P Zhang Hong dish clearing time trajectory spirit «0 by the W (17) step) 2): M (18), the parameter P rainbow curve of a-~ (P ^ E (f) L ) is estimated from a corpse ,, a0 fault ao + da (zJa a minute increments) the kinetic energy of the system curve dead i ^ ( "= dead State) |. Aa (18) \ 々a, 7la0 a \ /! | ao step 3): extracting from dead / CE (OL, and dead / ^ (Ola out small kinetic instability flM family i ^, Shang, and from the dead M L, according to the principle of micro minimum kinetic curve "=. «slope« at a point (i.e., the minimum kinetic spirit Peng) by (19) is calculated as: a:! (a) - dead line a user leg (19) by (20) the calculated fault critical parameter estimates "*: a: (a) (20) step 4): If II <£ (e specified count, differential) takes W ^ ao + e; step 5): calculated protection margin will be at aa "1 green status five JWa "; if £ ^^« *> <0, take ao-a118, heavy, with step l) to step 4) calculating "; otherwise the end of the calculation, the calculated" * Pro i.e., Ltd. # 1 [meter, the values ​​below with reference to an example 绍本发明的«步骤。本实例在10tt39节点新^ll兰试验系^Ltit行。 «Step Shao present invention. In the present example the new test system 10tt39 blue ^ ll ^ Ltit node lines. 该系统包括12台舰器,34条线路,代表美国新鄉兰州的一个3^:F 电力系统。 The system 12 includes a station ship, a line 34, representing a 3 U.S. xinxiang Lanzhou ^: F power system. 该系统的接线图如图6ff^。 Wiring of the system is shown in FIG. 6ff ^. 步骤l:获取电力系统«和与预想故障集从能量管理系统采集电力系统获得某一时刻的发电«和负荷数据,结合电网参数,形成电力系统仿真软件(比如美国BPA暂稳仿真软件)的输入文件。 Step l: acquiring power system «contingency and an energy management system from the current collection system obtains power generation« a certain time and the load data, in conjunction with the grid parameters, forming power system simulation software (such as transient stability simulation software U.S. BPA) input file. 由电力运行调度人员帝U订电力系统中可能发生的"预想故障集"。 By the power running dispatchers Emperor U Order 'contingency set "power system may occur. 新英格兰離系统中,"预想故障集"由所有线路三相短路故障组成,M33个故障。 System from New England, "contingency set" of all three-phase short circuit fault composition, M33 fault. 步敷:故障分类计算对于新英格兰微系统,设定其继电做设备的故^t刀除时间为0.13s,计算参数A?=0.02秒。 Step apply: calculated for fault classification New England Microsystems, which is set so that the relay devices do ^ t time 0.13S knife addition, calculation parameters A = 0.02 second?. 舰图3和图4故障分类的策略进行故障扫描,故障分类结果如表1 所;表中"A(AB)"的具体含义是:A号職发生三相繊故障,0.13秒后JM:切除线路AB来清除故障。 3 and FIG. 4 fault classification FIG ship fault scan strategy, fault classification results shown in Table 1; Table specific meaning "A (AB)" that is: A number of level-phase Xian fault occurs, after 0.13 seconds JM: removal AB line to clear the fault. 共有4个有危害故障,12个有潜在危害故障,n^危害故障。 There are four hazardous faults, 12 potentially harmful failure, n ^ fault hazards. 表l新英格兰«^统的预想柳**&鹏分鄉况•<table>table see original document page 15</column></row> <table> New England Table l «^ ** & Liu system envisioned conditions and Township Peng • <table> table see original document page 15 </ column> </ row> <table>

步骤3:计算有危害故障(不稳定故障)的临界切除时间对于得出的有危害(不稳定)故障,采用基于投影能量函数(P£F)的方法计算其临界切除时间。 Step 3: Calculation of hazardous fault (fault instability) is derived for CCT hazardous (unstable) failure, which is calculated using the method of the projection CCT energy function (P £ F) based. 具体方法有两沐一种是利用多个P£F會^1:裕度进行插值计算;另一种是利用P£F能量裕度灵icjg技术进t亍i十算。 Two specific methods is the use of a plurality of Mu P £ F ^ 1 will be: interpolate margin; the other is the use of energy margin P £ F technical spirit icjg right foot into t i + operator. 3.1由五M计算故障临界切除时间对于新英格兰«系统的4个有危害故障,恥e尸0.13s和^+AO.15s,容差定为0.001,可以由图4际插值算法算出其故障临界切除时间。 3.1 M was calculated from the five fault clearing time for the critical New England «4 hazardous system failure, and shame 0.13s corpse e ^ + AO.15s, tolerance as 0.001, which can be calculated by the inter-critical failure interpolation algorithm 4 clearing time. 敦给出了有危害故瞎临界切除时间的经"i^l值计算信息o彭第6行重复仿真计第,界切除时间结彩旨的是寸OT仿真软件进行多次仿真i^得出的故障临界切除时间范围,用以比^PEF裕度插值算法m4行结果的准确性(例如O. 12~0.125表示该故P韌.120秒切除是稳定的0.125 秒切除是不稳定的)。表2有危害故障临界切除时间^titS信息计算项目. 21(21-22) 29(28-29) 2,29) 16(1647)EMfo) 德1161 ■0.613189 ■0.531302 4.93,EM(W) -3.487658 -2.461705 -2.013345 -9.535692插值计算临界切除时间结果CCT'(秒) 0.1217 0.1233 0.1281 0.1219EM(CCT、 0.000354 0.000425 0.000687 ■0.000495重复仿真计算临界切除时间结果(秒) 0.12~0.125 0.12~0.125 0.125~0.13 0.12~0.1253.2应用不稳定IW户AS对故障切除时间的轨迹灵«计算故障临界切除时间应用不稳定轨迹P^E对故障切除时间的執迹灵iCS计算故障临界切除时间的步骤如前面戶脱的步骤l)-步骤5)所示,其中仿 London hazards it gives CCT blind via "i ^ l o value calculating information PENG line simulation repeat count of 6, festooned purpose boundary clearing time is several inches OT simulation software simulation derived i ^ fault critical clearing time for the accuracy of the result of the line interpolation algorithm m4 ^ PEF margin ratio (e.g. O. 12 ~ 0.125 P indicates that it is stable and tough cut of .120 seconds 0.125 seconds resection is unstable). tABLE 2 critical fault clearing time ^ titS hazard information computing projects 21 (21-22) 29 (28-29) 2,29) 16 (1647) EMfo) Germany 1161 ■ 0.613189 ■ 0.531302 4.93, EM (W) -3.487658. - 2.461705 -2.013345 -9.535692 interpolation calculation result CCT CCT '(sec) 0.1217 0.1233 0.1281 0.1219EM (CCT, 0.000354 0.000425 0.000687 ■ 0.000495 CCT repeated simulation results (seconds) 0.12 0.12 0.125 ~ 0.125 ~ 0.125 ~ 0.12 ~ 0.13 0.1253.2 Unsteady IW user aS fault clearing time of the spirit of the locus «calculation step fault clearing time critical application unstable trajectory P ^ E is calculated for the fault clearing time critical trace execution spirit iCS fault clearing time of removal of the door as previously step l) - step 5), in which imitation 真的故障是预想故障集中的故障,参数"取故障切除时间^表3第4行计算结果是经一次灵«计算故障临界切除时间的计算输出值。 Failure is really a failure envisioned centralized fault, the parameter "fault clearing time taken ^ Table 3, line 4 through a calculation result spirit« calculation output value of the fault clearing time critical. 表3第6行重复仿真计算临界切除时间结果的含义与表2的第6 行相同,用以比较灵驗算法的精度。 Line 6 in Table 3 was repeated simulation results of the CCT meaning the same as the second row of Table 62, the comparative efficacious for precision algorithms. 表3 ^ ,危害A^章临界切除时间灵iC^ 醮计算信息 <table>table see original document page 16</column></row> <table>步骤4:断面信息。 Table 3 ^, A ^ hazards Cap CCT spirit iC ^ dipped calculation information <table> table see original document page 16 </ column> </ row> <table> Step 4: Section information. 针对图6新英格兰i,系统指定的两个断面,皿故障扫描结果确定的断面信息如表4所示,其中送端发电机为相关有危害故障领先发电机集合中的可调发电机; 受端发电机为平衡送端发电变化指定的补偿发电机。 For New England i FIG 6, two systems specified section, section information pan scan result of the determination of failure as shown in Table 4, wherein the sending of the generator is an adjustable generator related hazards leading fault in the generator set; by to balance the sending end of the generator power generator changes the specified compensation. 表4新英格兰微系统断面信息 <table>table see original document page 16</column></row> <table>断面2 7 2,3,8,10 15-16; 1647 22(22-21); 16(1647) 21(21-22)步骤5:确定出断面^fl功對及限和预,制方案由所WW危害(不稳定)故P章对应的系^行腔制参数临界值,针对电力系统运行中考虑的^m电断面,确定出断面^ir功率极限和预,制方案。 Table 4 New England sectional Microsystem information <table> table see original document page 16 </ column> </ row> <table> 15-16 2,3,8,10 section 27; 164,722 (22-21); 16 (1647) 21 (21-22) step 5: ^ ^ determined threshold parameter row of cavities made on the cross section and the power limit fl and pre-prepared solutions of the hazard WW (labile) so that the corresponding P-based chapter, for the power ^ m electrical system operation section considered, the cross section is determined and pre-^ ir power limits, system programs. aa发电机发电«整使电力系统,生这些失稳故障的情况下能安^ii行,不失去稳定。 aa generators «integral of the power system, the case where the raw Unstability line can lead a ^ ii, without losing stability. ^m电断面的f^功率极限和预M制方,定方式如步骤501-步骤509所示:步骤50h进行初始化。 ^ F ^ M power limit and the pre-prepared side, cross section electrically m given mode in step 501 as shown in step 509: Step 50h initialized. 对旨断面,确定其,重的故障、送端可调发电机集合、送端可调负荷和受端可调发电机集合。 Purpose of the section, to determine the weight of failure, the sending end adjustable generator set, the sending end and the receiving end adjustable adjustable load generator set. 表4包括实例中要求的战内容。 Table 4 includes instances war required. 步骤502:令bl,令』=1。 Step 502: Let bl, order "= 1. 步骤503:计算故障F^情况下,第k个断面的可调领先发电f^合Q^中的第j台发电机的发电量临界值/^7,确定该发电机的实际调整目标值C (确定方法为:如果《^超出该发电机的发电量上限或下限,则将实际调整目标值设定为发电量上限或下限,否则,取《,,作为实15彌整目标值)。 Step 503: the threshold power generation / F. ^ Calculate the fault case, the k-th section of the adjustable power lead bonding F ^ Q ^ the j ^ the generator 7, the actual adjustment of the generator determines the target value C (method of determination: If "^ generation amount exceeds the upper or lower limit of the generator, it will adjust the actual power generation amount target value is set upper or lower limit, otherwise, takes" ,, 15 Mi whole as a real target). 步骤503中,求取暂态稳定约束下某故障对应的某可调m发电机有功发电量临界值的步骤如前面所述的步骤1)-步骤4)所示,其中,仿真的故障是断面的, 重故障,参数"取发电机有功输出/^,计算的结果是可调«发电机有功发电量临界值的准确值,当发电机有功发电量低于此临界值时,系统在发生断面的最严重故障后能保持暂态稳定,当发电机有功发电量高于此临界值时,系统在发生断面的最严重故障后将失去暂态稳定。步骤504:如果G^中的第j台发电机;iii端发电机,则将Q^中的第j台发电机的发电量增大/^.,-同时将第k个断面的受端可调发电机发电量减少C,-C。如果Q^中的第j台发电机是受端发电机,贝i將G滋中的第j台发电机的发电量增大《^-C同时将第k个断面的送端可调发电机发电量减少—,。'附& / *力jt 乂u步骤505:在故障F^情况下,以执行第505步后的系«电量和负# In step 503, the step of obtaining a tunable m transient stability of active power generation amount of the generator at a certain threshold value corresponding to the failure constraint as previously described Step 1) - Step 4), wherein the fault simulation is a sectional , the major failure, the parameter "take output generator active / ^, accurate result of the calculation is adjustable threshold value of the active power generation amount« a generator, the power generation amount of the generator when the active is lower than this threshold, the system in the event of a cross-sectional the most serious fault of transient stability can be maintained, when the active power generation amount of the generator is higher than this critical value, the system loses the most severe transient stability after failure of a cross-sectional step 504: If G ^ j in the first stage generator; III of the generator, then Q ^ j-th output in the set of generators is increased while /^.,- receiving end section of the k-th reduction adjustable generators C, -C. If the j Q ^ generator is subject of the generator, the power generation amount G beta i in the j-th Zi generator increases "^ -C sending end while the k-th section of the adjustable generator reducing the amount of power - ,. '& attachment / * u qe force jt step 505: in the case where a fault F ^, to perform step 505 after the line «# negative charge and «整结果为计算初始^#,进行故障数值仿真,判断系统是否失稳。步骤506:如果系统稳定,记录下第k个断面的送端可调发电机、受端可调发电丰/l^受端可调负荷的调整量,记录下调觀的断面微功率,转到第507步;步骤507:令tk+l。步骤508:如果loNc:,结束控制;否则,回到第503步。将第506步中得到的最终的第k个断面的送端可调发电机、受端可调发电tt^受端可调负荷的调整量作为第k个断面有危害故障集合中所有故障的m控制方案。因为故障Fm是第k个断面有危害故障集合中的,重故障,所以如果系统在故障F^情况下能保持稳定,则在有危害故障集合中其它故障发生后也能保持稳定。 第506步中得到的最终的断面传输功率就是输电断面上的#11功率极限。5.1应用尸五滩度插值法计算领先发电机有功发电极限表5所示为由PEF裕SEMi+算7号发电机称号发电机发电极限的结果。 «Calculation result of the initial whole ^ #, numerical simulation of the fault, the system determines whether the instability Step 506: If the system is stable, the k-th recording Dir sending end section of the adjustable power generator, power generation by the end of the adjustable Feng / l ^ by the end of the adjustable load amount of the adjustment, the recording section micropower concept down, go to step 507; step 507: make tk + l step 508: If loNc :, end control; otherwise, return to step 503 to the final end of the k-th transmission section 506 obtained in step adjustable power generator, power generation by the end of the adjustable end tt ^ adjustable by adjusting the load as the amount of the k-th set of fault hazard section controls all the m failures solution because failure Fm is the k-th section faulty collection hazards for heavy failure, if the system under fault F ^ situation remains stable, then the fault set harm other failure occurs after can be maintained stable. the first the final cross section of the transmission power is obtained in step 506 calculates the transmission section # 11 .5.1 power limit application of interpolation Beach dead five leading generator active power limit as shown in table 5 by the operator SEMi + margin PEF generator title 7 generators result limit. 如表4所示,计算9号发电机发电极限的,重故障匙9(29-28);计算7号发电机发电极限的最严重故障歡l(21-22);对不同的发电量见彭第2行和^4行^发电量计算S^重故障的pef裕度,计算结果如彭節行和第5行所示。由節^^插值法计算出m发电机有功发电量临界值如表5第6行所示,表5第7行是该发电临界«应严重故障的PEF裕度。表5第8行是重复仿真计算令跣发电机发电量结果(指的是《柳仿真软件进行多次仿真试算得出的最严重故障对应的领先发电職电量临界值的范围,用以比敬EM裕度插值算法结果的准确性(例如582.0"585.0丽表示,重故障发生时,故障切除时间保f執.B秒不变时,该令跌发电Hm电量为582.0MW系统是稳定的, 585.0MW系统是不稳定的)。 As shown in Table 4, No. 9 calculates the power generation limit, serious failure key 9 (29-28); 7 calculates the power generation limit of the most serious fault Huan l (21-22); see different power generation amount Peng row 2 and row 4 ^ ^ S ^ pef generation amount calculating margin serious failure, calculation results calculated by the interpolation section ^^ m threshold generator active power generation section by Peng and row line 5 as shown in table 6 at line 5, table 5, line 7 that the critical power «PEF margin should catastrophic failure. tABLE 5 line 8 is repeated simulation results of the amount of the power generation Municipal order (referred to as" simulation software Liu spreadsheet simulation many times the most serious post-leading power consumption critical value corresponding to the failure of the range drawn to the accuracy of results than interpolation algorithm King EM margin (eg 582.0 "585.0 Li said, when heavy fault, fault clearing time when Paul f Executive .B seconds unchanged, so the fall is 582.0MW power generation Hm system is stable, 585.0MW system is unstable). 表5用尸£傳度插值法计算《发电机有功发極愤信息<table>table see original document page 18</column></row> <table>5.2应用PEF车爐灵驗技术计算领先发电机有功发电极限表6所示为由PEF最小动能灵IW技术计算7号发电机和9号发电机发电极限的结果。 Table 5 calculated by the interpolation of the dead mass £ "anger generator active electrode send information <table> table see original document page 18 </ column> </ row> <table> 5.2 PEF application computing technology leading car heaters efficacious generator active power limit results shown in table 6 by PEF technical computing minimum kinetic spirit IW generator 7 and 9 generators limits. 如表4所示,计算9号发电机发电极限的最严重故障匙9(29-28);计算7号发电机发电极限的最严重故障慰l(21-22);对不同的发电量见表6第2行和斜行所示发电量计算最严重故障的PEF最小动肖^Wi^一,计算结果如表6第3行和第5行所示。 As shown in Table 4, No. 9 calculates the power generation limit of the most serious fault spoon 9 (29-28); 7 calculates the power generation limit of the most serious fault comfort l (21-22); see different power generation amount table 6 and the oblique line shown in FIG. 2 generation amount calculated minimum PEF most serious failure ^ Wi ^ a movable Shaw, calculation results shown in table 6 and shown in row 3, line 5. 由公式(19M20滩值公式计算出领先发电机有功发电量临界值如翁第6^所示,表6第7行是该发电临界值对应严重故障的PEF裕度。表6第8行是重复仿真计算领先发电机发电量结果,其含义与表5对应内容相同。表6用PEF轨迹灵icg技术计算领先发电机有功发电量计算信息<table>table see original document page 18</column></row> <table>5.3断面输电极限计算例对于新英格兰试验系统的实例,只对断面送端和受端发电«行调整。表7给出了按照,流程计算两断面传输功率极限的发电调整结果。表8给出了调整后的断面,功率(即f^r功率极限)和调整后有危害故障的临界切除时间。可以看出,调整后断面严重故障集中每个故障的临界切除时间都大于继电保护设备的故障切除时间(X13秒,也就是说,调整发电量以后,即使系统中发生这些故障,系统也能##暂态稳定o表7新英格兰微系统暂态〗 隐 By the formula (19M20 Beach value formula to calculate the amount of active power threshold shown as the leading generator Weng ^ 6, Table 6, line 7 that the power threshold value corresponding to the critical failure PEF margin Table 6, line 8 is repeated simulation results leading electricity generator, meaning the same as the contents corresponding to table 5 table 6 calculates information <table> table see original document page 18 </ column> locus with PEF spirit icg leading technical computing the amount of active power generator </ row> <table> 5.3 power transfer calculated for the example embodiment new England test system, only the transmitting end and the receiving end section generation «rows adjusted in accordance with table 7 shows the flow limit of the transmission power calculating section two generating an adjustment result table 8 shows the cross section of the adjusted power (i.e., power limit f ^ r) and hazardous faults adjusted CCT can be seen that, after a serious failure focus adjustment section CCT each fault greater than fault clearing time relay device (X13 seconds, that is, after adjusting the amount of power, even if those problems, the system ## can also occur in the system transient stability o table 7 new England Microsystem implicit transient〗 安全发極十算结果 <table>table see original document page 19</column></row> <table>表8调整后的断面^ir功斜及限和有危害故障的临界切除时间<table>table see original document page 19</column></row> <table>输电断面上的《^r功率极P艮也可以通a^i值计算得到。图5给出了三种情况断面传输极P艮插值计算示意图。图5中,P标输电断面上的4纖功率,EM表示发生断面最严重故障情况下,系统的投影暂态會糧裕度。传输功«限的|§{|计算中至少需要两次断面最严重故障后仿M晒次,暂态^S裕度计算,每次的发电敦负荷量情况不同。p,和P2分别是两种不同的发电獻负荷Sii况下的输电断面,功率。P3是插值计算得到的输电断面^lr功斜及限的估计值。图5中的三种情况分别是:1、在P,和P2对应的发电獻负荷量瞎况下,系统发生断面,重故P章后都失去稳定;2、在P,对应的发电S/负荷量瞎况下,系统发生断 Safety hair pole ten calculation result <table> table see original document page 19 </ column> </ row> <table> section table 8 after the adjustment ^ ir power ramp and limit and hazardous fault critical clearing time <table> table see original document page 19 </ column> </ row> <table> "^ r P Gen power pole may pass on the transmission section a ^ i value is calculated. FIG. 5 shows the cross section of the three cases the transmission electrode P gen interpolation calculation schematic in FIG. 5, the optical power P 4 standard transmission section, the EM represents the most serious fault occurs in cross section, the projection will be transient grain transmit power margin of the system «limit |.. § {| least calculation after most serious failure requires two cross-sectional views imitation M sun, transient margin calculation ^ S, each generating a different load cases .p London, and P2 are at two different transmission section of the power generation offered load conditions Sii power .P3 interpolation calculation is obtained ^ lr power transmission section and the ramp limit value of the estimated three cases of FIG. 5, respectively: 1, P, of the offered load P2 corresponding power blind conditions, phylogenetic section, so that all the weight loss of stability after Zhang P; 2, at P, the corresponding power S / blind load conditions, phylogenetic off ;S^重故P章后失去稳定,在P2对应的发电獻负荷量瞎况下,系统发生断面最严重故障后能,稳定;3、在P,和P2对应的发电獻负荷量瞎况下,系纟拨生断面最严重故P章后都能保持稳定。 ; S ^ weight so destabilized after P Zhang, at P2 the corresponding power offered load blind conditions, the system occurred after the section of the most serious fault energy, stability; 3, P, and P2 corresponding offer load power blind conditions under after dialing the Department of Health Si P Chapter worst it can maintain stable cross-section.

Claims (7)

1. 一种电力系统暂态稳定分析与控制方法,其特征是该方法包括以下步骤: 第1步:从能量管理系统采集电力系统运行中的基本参数数据,形成电力系统仿真软件的输入文件; 第2步:针对由电力调度运行人员给定的可能发生且对系统稳定性造成严重危害的“预想故障集”中的每个故障,对电力系统暂态行为进行数值仿真,将故障分类为:无危害故障、有潜在危害故障和有危害故障; 第3步:对于分类得出的有危害故障,利用投影暂态能量函数PEF的能量裕度进行插值,即由能量裕度曲线的两个已知点预估其它未知点,或者将灵敏度仿真技术与插值技术结合,求出故障的临界切除时间CCT,即能使系统保持稳定的最大故障切除时间;所述的投影暂态能量函数PEF由投影动能PKE和投影势能PPE组成: PEF=PKE+PPE 投影动能PKE和投影势能PPE分别表示为如下标量形式 1. A power system transient stability analysis and control, characterized in that the method comprises the following steps: Step 1: The basic parameters of the data acquisition system operation of power from the energy management system, the input file is formed of the power system simulation software; step 2: for electricity generated by a given dispatching personnel and may cause serious harm to the stability of the system "contingency collection" each failure of the power system transient behavior of numerical simulation, the fault is classified as: no harm, potentially harmful and hazardous fault failure; step 3: classification results are for two harm, interpolating, i.e. by the energy curve by the projection margin transient energy function PEF energy margin has other known point estimates unknown point, or in combination with the interpolation sensitivity simulation, determined the fault clearing time critical the CCT, i.e., make the system stable maximum fault clearing time; transient energy function of the projection by the projection PEF PKE kinetic and potential energy projection PPE composition: PEF = PKE + PPE kinetic PKE projection and the projection, respectively PPE potential scalar form as follows
2、 如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是-在第2步中,故障分类的策略如下: 第2.1步:对待选故障集中每一故障进行故障仿真,仿真中故障在~+ 时刻切除,得到故障后轨迹rw;其中A产0.02〜0.04秒,为一微小时间增量,fc/ 为系统保护装置整定的实际故障切除时间,根据仿真结果判定系统是否暂态稳定:即系统中任意两台发电机转子之间的最大相对角度不能保持在一定范围内大小变化即摇摆,则判定系统失去暂态稳定,并称故障后轨迹是不稳定的;第2,2步:根据稳定性分析策略,若轨迹rw是稳定的,该故障归类为无危害故障,结束该故障分析;若轨迹2^是不稳定的,则计算并保存其故障切除时刻的投影动能户XE(^+^U)以及该故障沿故障后轨迹最小投影动能第2.3步:对于非无危害故障,以实际故障切除时间fd进行第二次故障仿真, 得 2, as claimed in stability analysis and control, wherein the power transient in claim l - in step 2, the fault classification strategy is as follows: Step 2.1: concentration of each treatment selected from the fault fault fault simulation, fault simulation time + removal, the resulting fault trajectory RW; wherein a production 0.02~0.04 seconds to a minute time increment, fc / clearing time setting protection means for the system of the actual fault, the system determines whether the temporary simulation results steady-state: i.e. a maximum relative angle between any two systems can not maintain generator rotor size variations i.e. swing within a certain range, it is determined that the loss of the system transient stability, and said after fault trajectory is unstable; 2, step 2: according to stability analysis strategy, if the track rw is stable, the fault is classified as non-hazardous fault, the end of the fault analysis; ^ 2 if the trajectory is unstable, is calculated and stored fault clearing time of its kinetic energy projection household XE (^ + ^ U) and after the fault in the fault trajectory projection minimum kinetic step 2.3: for non-hazardous non-fault, the actual fault clearing time for the second fault simulation fd to give 到故障后轨迹r,2,计算并保存其故障切除时刻的投影动能尸XE(&)以及故障后轨迹最小投影动能尸XE^(^);若轨迹7;2是稳定的,则将该故障归类为有潜在危害故障;若轨迹7;2是不稳定的,将该故障归类为有危害故障。 To R & lt fault trajectory, 2, calculates and saves its fault clearing time kinetic projection dead XE (&) and a rear projection fault trajectory minimum kinetic dead XE ^ (^); If the locus 7; 2 is stabilized, then the fault classified as potentially hazardous fault; if the trajectory 7; 2 is unstable, the fault is classified as hazardous fault.
3、 如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是-在第3步、第5步中使用的投影暂态能量函数PEF的计算包括如下步骤: 第3.1步:进行电力系统暂态稳定数值仿真,得到故障后电力系统所有发电机的角加速度、角速度和角度的离散值;第3,2步:基于前一操作中得到的角加速度、角速度和角度,计算所有发电机转子相对于系统惯性中心运动的角加速度、角速度和角度;第3.3步:计算系统角半径,记作为n:角半径是系统中所有发电机转子相对于系统惯性中心运动的角度的平方和的平方根,即系统中所有发电机转子相对于系统惯性中心运动的角度的欧几里德范数;第3.4步:利用变量^, c^和a。 3, as set forth in claim l power system transient stability analysis and control, characterized in that - in step 3, the projection calculating the transient energy function PEF step 5 include the following steps: Step 3.1: Numerical simulation of power system transient stability, discrete values ​​obtained after the angular acceleration of all the generator power system fault, the angular velocity and angle; step 3,2: based on the angular acceleration, angular velocity and the angle obtained in the previous operation, all calculated generator rotor relative angular movement of the center of inertia of the system, the angular velocity and angle; step 3.3: corner radius computing system, referred to as n: is the system for all corner radius generator rotor angle with respect to the center of inertia of the system and movement of the square square root, i.e., all the generator rotor angle with respect to the Euclidean norm of the motion of the center of inertia of the system the system; step 3.4: use of variable ^, c ^ and a. 构造电力系统投影暂态能量函数尸五F,i^F由动能和势能两部分组成,Z^F动能/^E等于标量"0平方的一半,户XE随角半径h对时间的一阶导数变化而变化;尸£尸势能尸尸£等于标量^对角半径增量即An作定积分的负值;定积分的起点是故障后电力系统起始时刻的角半径,定积分的终点是故障后某时刻的角半径,Pi^随角半径^变化而变化。 Configuration of the power system of the projector transient energy function for the dead five F, i ^ F by the kinetic and potential energy of two parts, Z ^ F momentum / ^ E is equal to the scalar "half of the 0 square of the household XE with corner radii number of times the first derivative h change change; potential dead dead dead dead £ £ ^ scalar equal to the radius of diagonal An incremental i.e. negative for the definite integral; definite integral is the starting point of the corner radius starting time power system fault, the fault is definite integral end corner radius after a certain time, Pi ^ ^ with corner radius changes.
4、 如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是-在第3步、第5步中使用的投影暂态能量函数具有如下特点:第4.1步:沿故障后轨迹,PXE与P尸五的代数和等于常量,即故障后系统/^F满足守恒性;第4.2步:最小投影动能PXE^对系统运行/控制参数的关系曲线具有如下特点:当故障未能引起系统失去暂态稳定时,/^£^=0;当故障引起系统失去暂态稳定时,P^^〉"不稳定故障PXfi油随系统运行/控制参数变化的曲线是一段与横轴即系统运行/控制参数坐标轴相交的光滑曲线,其与横轴的交点、即/>/^„„„=0的点的横坐标恰好是系统运行/控制参数的临界值,当参数大于该临界值时,系统会失稳,当参数小于该临界值时,系统不会失稳, 系统运行/控制参数临界值的求取将利用上述特点进行。 Step 4.1:: after failure in the step 3, the projection transient energy function used in step 5 with the following features - as claimed in stability analysis and control, wherein the power transient in claim l locus, with the PXE dead five P algebraic sum equal to the constant, i.e., the faulty system / ^ F satisfies conservation; step 4.2: minimum kinetic PXE ^ projection system operation / control curve parameter has the following characteristics: when the failure can not be when causing the system to lose transient stability, / ^ £ ^ = 0; when a fault causes the system to lose transient stability, P ^^> "unstable system operation fault PXfi with oil / parameter change control curve is defined by a horizontal axis i.e. system operation / control parameters smooth curve intersects the axis, an intersection with the abscissa, i.e., /> / ^ "" "= 0 points exactly abscissa system operation / control parameter threshold value, when the parameter is greater than the critical value, the system instability, when the parameter is smaller than the threshold value, the system is not unstable, the system operation / control threshold parameter is obtained by using the above-described characteristics.
5、如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是: 在第3步中计算故障临界切除时间和第5步中发电机有功发电量临界值的计算中采用的插值技术如下-使用字母a表示故障切除时间或断面传输功率,能量裕度五M与a的近似线性关系式如下:<formula>formula see original document page 4</formula>其中,w表示某一故障的切除时间或断面传输功率,A表示该故障的另一切除时间或断面传输功率;5A/(^)和EA/(^)分别表示在^和^两种参数情况下,系统发生该故障的能量裕度;令5M(^"0代入该线性关系式中,求得"的临界值的近似值0*; 当"大于临界值时,系统发生故障后会失稳; 当a小于临界值时,系统发生故障后不会失稳;为了使^接近于临界值的准确值,用"/代替"w用^代替"/,重复由W 和"/计算"*的过程,直至I a I小于一个给定的容差e为止,算出的W取作临界值的输出 Calculated in step 3 and fault critical clearing time is calculated in step 5 active threshold power generation amount of the generator used: 5, as claimed in stability analysis and control, wherein the power transient in claim l interpolation techniques are as follows - the letters a represents a section fault clearing time or the transmission power, energy margin and approximately five M a linear relationship as follows: <formula> formula see original document page 4 </ formula> where, W represents a fault clearing time or power transmission section, a represents a clearing time or another section of the transmission power failure; 5A / (^) and EA / (^), respectively, ^ and ^ indicates the case where two types of parameters, the system failure occurs energy margin; order 5M (^ "0 is substituted into the linear relationship, seek" approximation threshold * 0; when "is greater than a threshold, the system failure will be unstable; when a is smaller than the threshold value, the system does not malfunction after the instability; ^ in order to close the exact value of the threshold, with the "/ place" w ^ replaced with "/ W and a repetition" / calculation "* process until less than a I a I given output until the tolerance e, the calculated threshold value is taken as W 值; 能量裕度£似的计算方法如下:对有潜在危害故障rw和r,2的能量裕度按下式估算,其中47^£表示系统投影势能/>/,£从4/系统状态到^+ 4/系统状态的增量,方括号内的表达式为在&时刻切除故障后系统吸收有效动能的能力;式中:裕度£M(^+ /U)表示系统在故障后失去稳定的能量交换中还剩余多少额外的投影动能;裕度五M(^)表示在故障后未失去稳定的能量交换中系统还能吸收多少额外的投影动能;对有危害故障,和的稳定裕度按下式估算:<formula>formula see original document page 5</formula> Value; £ similar energy margin is calculated as follows: failure of potentially harmful and rw r, energy margin estimated by pressing 2, wherein the projection system 47 ^ £ represents the potential /> /, £ 4 from / to the system state ^ 4 + delta / system state of the expression in square brackets after the system fault clearance time & ability to absorb the kinetic energy effectively; wherein: margin £ M (^ + / U) after a system failure destabilize the remaining energy exchange also projected how much extra kinetic energy; margin five M (^) said after the fault has not lost a stable energy exchange in the system how much additional projection can absorb kinetic energy; on failure, and endanger the stability margin estimating the following equation: <formula> formula see original document page 5 </ formula>
6、 如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是: 在第3步和第5步中,采用灵敏度仿真技术计算故障临界切除时间和发电机有功发电量临界值的方法具有如下特点:假设"表示故障切除时间或发电机有功发电量,w表示某一故障的切除时间或发电机的有功发电量,4"表示该故障的另一切除时间或发电机有功发电量;通过该故障a:"e情况下的系统轨迹仿真和轨迹灵敏度仿真,计算出"=a。 In step 3 and step 5, using the calculated sensitivity of fault simulation CCT active power generation amount and the threshold value generator: 6 as claimed in stability analysis and control, wherein the power transient in claim l the method has the following characteristics: if "represents the fault clearing time or generator active power generation amount, the power generation amount W represents active fault clearing time or a generator, 4" indicates that the fault clearing time or another electricity generator active amount; the fault by a: "e system where the trajectory simulation and emulation trajectory sensitivity, the calculated" = a. 情况下的系统投影暂态动能曲线尸/^:(Ola。以及对应的系统轨迹灵敏度信息P/0?a。(0, P^:a。W表示轨迹户^(Ola。对参数W的轨迹灵敏度;利用上述信息预测出故障切除时间为情况下的系统投影暂态动能曲线PX£(f)|al;从i^五(Ola。和尸^WL中提取出系统最小投影动能,户i^^丄。和尸^w」:,而后可按^权利要求ia第3步和第5步所述的插值技术计算^障临界切fe时间或发电机有功发电量临界值。 The system of transient kinetic curve projection in the case of dead / ^ :( Ola trajectory sensitivities and corresponding system information P / 0 a (0, P ^:?. A.W user indicates track ^ (Ola trajectory parameter W. sensitivity; using the information predicted projection system fault clearing time for the transient kinetic curves PX £ (f) in the case of | al; ^ five (Ola dead ^ WL and extracted kinetic energy from the projection system minimum i, household i ^. Shang ^. ^ W and dead ":, ^ IA can then steps 3 and 5 of the interpolation calculating step of claim ^ fe critical shear failure time or the amount of active power threshold generator.
7、 如权利要求l所述的电力系统暂态稳定分析与控制方法,其特征是:第5步中的暂态稳定约束下断面传输功率极限计算和预防控制方案具有如下特点:第5. 1步:针对电力系统运行中考虑的每个输电断面及其最严重有危害故障, 先对一给定发电量情况下进行故障分析,算出系统投影暂态能量函数的最小动能以及最小动能灵敏度,利用上述计算结果预测出发电量改变后的最小动能,通过对两个最小动能的插值计算,算出可调领先发电机的发电量临界值; 第5.2步:以可调领先发电机的发电量临界值为指导,按照发电机的领先次序对发电机依次进行调整;第5.3步:增加或减少断面一侧发电机有功出力时,另一侧发电机应按相反方向进行调整。 A transmission power limit calculating section prevention and control scheme in step 5 Transient Stability Constraints has the following characteristics:: 7, as claimed in stability analysis and control, wherein the power transient in claim l of 5.1 step: each section for the power transmission system to run their most serious consideration of hazardous failures, the first of the next generation for a given amount of cases for failure analysis, to calculate the minimum kinetic energy and kinetic energy minimum sensitivity projection system transient energy function, use the results predicted departure above the minimum amount of kinetic energy changed by the kinetic energy of the two minimum interpolation calculation, the calculated power generation amount leading adjustable threshold generator; step 5.2: leading generator in the power generation amount threshold value is adjustable guidance, according to the leader sequence generator sequentially adjusting the generator; step 5.3: increasing or decreasing the output generator active side of a section of the other side of the generator should be adjusted opposite directions.
CN 200610014785 2006-07-17 2006-07-17 Transient state stabilizing analysis and control method for power system CN100403618C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610014785 CN100403618C (en) 2006-07-17 2006-07-17 Transient state stabilizing analysis and control method for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610014785 CN100403618C (en) 2006-07-17 2006-07-17 Transient state stabilizing analysis and control method for power system

Publications (2)

Publication Number Publication Date
CN1901317A CN1901317A (en) 2007-01-24
CN100403618C true CN100403618C (en) 2008-07-16

Family

ID=37657102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610014785 CN100403618C (en) 2006-07-17 2006-07-17 Transient state stabilizing analysis and control method for power system

Country Status (1)

Country Link
CN (1) CN100403618C (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0712749D0 (en) 2007-07-02 2007-08-08 Areva T & D Uk Ltd Method of determining voltage stability margin for load shedding within an electrical power system
CN100590947C (en) 2007-11-08 2010-02-17 国网南京自动化研究院;江苏省电力公司 Large electric network on-line preventing control method based on static state and transient safety steady mode
CN101232183B (en) 2008-01-24 2010-06-02 清华大学 Method for evaluating limit transmitted power applied in electric network on-line scheduling decision
CN101699448B (en) 2009-10-26 2011-06-29 清华大学 Transient stability distributed simulation method of electric power system
CN101969199B (en) * 2010-08-26 2013-02-06 天津大学 Fault loss estimation method for risk assessment of transient power angle stability
CN102035203B (en) * 2010-10-20 2014-03-12 中国电力科学研究院 Fast calculation method of tie-line transient state stable limiting transmission power
CN101969202B (en) * 2010-11-23 2012-10-17 国网电力科学研究院 Method for recognizing transmission section power limit interval of power system transient stability
CN102064548B (en) * 2010-12-17 2014-03-12 中国电力科学研究院 Transient frequency deviation considered method for optimizing rotation reserve of once frequency modulation
CN102157932B (en) * 2011-02-16 2013-02-06 广西大学 Method for realizing transient stability domain visualization of power system
CN102570422B (en) * 2012-01-05 2014-03-12 东北电力大学 Method for calculating critical clearing time of power system according to actual measurement track
CN102609576B (en) * 2012-01-19 2013-12-04 浙江大学 Power system transient stability simulating method based on estimation-correction numerical integration
CN102723710B (en) * 2012-04-27 2014-06-04 东北电网有限公司 Critical cluster identifying method for transient stability analysis of power system
CN102761125B (en) * 2012-06-27 2014-12-10 西安交通大学 Closed-loop system capable of identifying transient stability of power system in real time and performing based on response and control method
CN102723712B (en) * 2012-06-28 2014-09-17 天津大学 Method for improving transient stability analysis efficiency of electric power system
CN103166219B (en) * 2013-01-30 2014-12-31 中国电力科学研究院 Power grid on-line decision-stabilizing control system and control method based on super real-time emulation
CN103178518B (en) * 2013-03-01 2014-08-13 东北电力大学 Process for evaluating transient stability of electric power system according to trace and trace sensitivity
CN103473478B (en) * 2013-09-30 2017-03-01 电子科技大学 Power Network Transient Stability appraisal procedure based on energy function
CN104505846B (en) * 2014-12-26 2016-06-29 西安交通大学 Simple power system closed loop control method based on response message
CN104505827B (en) * 2014-12-26 2016-08-24 西安交通大学 Complicated electric power system closed loop control method based on response message
CN105162113B (en) * 2015-08-26 2017-07-28 天津大学 A kind of micro-capacitance sensor based on sensitivity analysis and the interactive method of cost accounting of power distribution network
CN107196310A (en) * 2016-03-15 2017-09-22 中国电力科学研究院 The active distribution network Multiple Time Scales optimization method of consideration source net lotus coordination and interaction
CN106294993B (en) * 2016-08-09 2019-10-18 南京理工大学 A kind of transient energy function analysis method considering inverter current saturation
CN106709147A (en) * 2016-11-25 2017-05-24 广西电网有限责任公司电力科学研究院 BPA-based method for automatically solving limit clearing time of short circuit faults in batches
CN106849069B (en) * 2017-03-13 2019-06-14 东北电力大学 A kind of transient stability evaluation in power system method based on Pin-SVM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638297A (en) 1994-07-15 1997-06-10 British Columbia Hydro And Power Authority Method of on-line transient stability assessment of electrical power systems
CN1120556C (en) 1995-02-25 2003-09-03 国电自动化研究院 In-line monitoring and prevention control method with stable transient for power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638297A (en) 1994-07-15 1997-06-10 British Columbia Hydro And Power Authority Method of on-line transient stability assessment of electrical power systems
CN1120556C (en) 1995-02-25 2003-09-03 国电自动化研究院 In-line monitoring and prevention control method with stable transient for power system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
应用轨迹灵敏度计算临界切除时间新方法研究. 房大中,秦益飞.中国电机工程学报,第25卷第14期. 2005

Also Published As

Publication number Publication date
CN1901317A (en) 2007-01-24

Similar Documents

Publication Publication Date Title
Boškovic et al. Multiple-model adaptive flight control scheme for accommodation of actuator failures
Leroy Structure of perpendicular shocks in collisionless plasma
Wai et al. Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique
Feng et al. Identification of voltage collapse through direct equilibrium tracing
Kalcon et al. Small-signal stability analysis of multi-terminal VSC-based DC transmission systems
Hayakawat et al. Formation Control of Multi-Agent Systems with Sampled Information--Relationship Between Information Exchange Structure and Control Performance--
CN101499766B (en) Power generation stabilization control systems and methods
Koch et al. Consideration of wind farm wake effect in power system dynamic simulation
CN100451881C (en) Double generator redundancy control system
Yikang et al. Modeling and control of wind-turbine used DFIG under network fault conditions
Chiasson et al. Nonlinear control of a shunt DC motor
Rigatos Intelligent renewable energy systems: modelling and control
Griffo et al. Large signal stability analysis of'more electric'aircraft power systems with constant power loads
Gabrijel et al. Direct methods for transient stability assessment in power systems comprising controllable series devices
Liu et al. Takagi–Sugeno fuzzy model based fault estimation and signal compensation with application to wind turbines
WO2003055711A1 (en) Hybrid vehicle drive control apparatus, hybrid vehicle drive control method, and program thereof
Valdivia et al. Behavioral modeling of a switched reluctance generator for aircraft power systems
Sakagami et al. Rayleigh–Taylor instability on the pusher–fuel contact surface of stagnating targets
CN103311940B (en) Integrated control method for micro-grid load and energy accumulation
CN101425686A (en) Electrical power system on-line safety and stability evaluation forecast failure collection adaptive selection method
CN101719182A (en) Parallel partition electromagnetic transient digital simulation method of AC and DC power system
KR100494919B1 (en) Motor control method and system for parallel hybrid electric vehicle
Pischinger et al. Analysis of dynamic requirements for fuel cell systems for vehicle applications
CN100451311C (en) Combustion controlling device and controlling method for mini combustion turbine
CN101701996A (en) Method and device for determining commutation failure of high voltage direct current system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right