CN100399798C - Apparatus and method for improving image quality in image sensor - Google Patents

Apparatus and method for improving image quality in image sensor Download PDF

Info

Publication number
CN100399798C
CN100399798C CN 200510080038 CN200510080038A CN100399798C CN 100399798 C CN100399798 C CN 100399798C CN 200510080038 CN200510080038 CN 200510080038 CN 200510080038 A CN200510080038 A CN 200510080038A CN 100399798 C CN100399798 C CN 100399798C
Authority
CN
China
Prior art keywords
image signal
image
black level
section
Prior art date
Application number
CN 200510080038
Other languages
Chinese (zh)
Other versions
CN1717006A (en
Inventor
宋奎翼
张秀旭
权成根
李健一
金银洙
韩缵豪
Original Assignee
三星电子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR10-2004-0049656 priority Critical
Priority to KR20040049656A priority patent/KR100617781B1/en
Application filed by 三星电子株式会社 filed Critical 三星电子株式会社
Publication of CN1717006A publication Critical patent/CN1717006A/en
Application granted granted Critical
Publication of CN100399798C publication Critical patent/CN100399798C/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/04Picture signal generators
    • H04N9/045Picture signal generators using solid-state devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/235Circuitry or methods for compensating for variation in the brightness of the object, e.g. based on electric image signals provided by an electronic image sensor
    • H04N5/243Circuitry or methods for compensating for variation in the brightness of the object, e.g. based on electric image signals provided by an electronic image sensor by influencing the picture signal, e.g. signal amplitude gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/351Control of the SSIS depending on the scene, e.g. brightness or motion in the scene
    • H04N5/355Control of the dynamic range
    • H04N5/35509Control of the dynamic range involving a non-linear response
    • H04N5/35527Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/357Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N5/361Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/73Circuits for processing colour signals colour balance circuits, e.g. white balance circuits, colour temperature control
    • H04N9/735Circuits for processing colour signals colour balance circuits, e.g. white balance circuits, colour temperature control for picture signal generators

Abstract

一种在图像传感器中用于提高图像质量的设备和方法,其中,拍摄的图像的黑电平被校准,并且通过对其中黑电平被校准的图像信号的拐点校正而在亮度的允许范围内扩展图像信号的亮度。 An apparatus and method for improving image quality in the image sensor, wherein the black level of the image captured is calibrated, and by a knee correction in which the black level of the image signal is calibrated in luminance allowable range extended luminance image signal. 在对图像信号的伽玛校正之前可实现用于恢复坏点像素的内插。 Before gamma correction on the image signal can be implemented for recovery dead pixels interpolated pixel.

Description

用于在图像传感器中改善图像质量的设备和方法本申请要求于2004年6月29日提交到韩国知识产^U;的名为"Apparatus and Method for Improving Image Quality in Image Sensor"的第2004 - 49656号韩国专利申请的优先权,该申请公开于此以资参考。 Apparatus and method for improving image quality in an image sensor This application claims the June 29, 2004 submitted to the Korean Intellectual Property ^ U; entitled "Apparatus and Method for Improving Image Quality in Image Sensor" first 2004-- priority of Korean Patent application No. 49,656, which discloses herein by reference. 技术领域本发明涉及一种图像传感器,更具体地说,涉及一种用于改善拍摄的图像的质量的设备和方法。 Technical Field The present invention relates to an image sensor and, more particularly, relates to apparatus and method for improving the quality of a captured image is provided. 背景技术近来,由于成像设备的快速发展,图像传感器越来越多地被开发。 Recently, due to the rapid development of imaging devices, image sensors have been developed more and more. 这里, 术语"图像传感器"是指当使用对光敏感的半导体拍摄图像时使用的装置的通用术语。 Here, the term "image sensor" refers to devices use the generic term used for a semiconductor light-sensitive photographic image. 通常,自然界的部分目标物体具有不同的亮度和不同的波长。 Typically, portions of the target object has a different nature and different luminance of wavelengths. 因此,图像传感器将依靠通过镜头获得的光的亮度、波长等获得的光能(光子) 转换成为电信号(电子)。 Accordingly, the image sensor will depend on the lens obtained by the brightness of light, wavelength, light energy is obtained (photons) into electrical signals (electrons). 图像传感器典型地包括电荷耦合器件("CCD")图像传感器和互补金属氧化物半导体("CMOS")图像传感器。 The image sensor typically includes a charge coupled device ( "CCD") image sensor and a complementary metal oxide semiconductor ( "CMOS") image sensor. 这两种图像传感器包括:用于才艮据来自入射到图像传感器的光的光强生成电荷的光电检测器、以及用于将电荷释放到外部装置的电路。 Both the image sensor comprising: a Gen only incident light intensity data from the photodetector charges generated light image sensor, and a charge releasing circuit to an external device. 虽然上述两种传感器可通过相同的过程依靠光电检测器生成电荷,但在生成电荷之后,对电荷的处理是不同的。 Although both the sensor may generate a charge by the same procedure relies on the photodetector, but after a charge generation, charge processing is different. 在CCD图像传感器中,转移电荷的元件称为"CCD"。 In the CCD image sensor, the charge transfer device called "CCD." CCD图像传感器已被主要用于数码相机或用于长时间的视频相机。 CCD image sensor has been mainly used in digital cameras or video cameras for a long time. CMOS图像传感器在CCD的位置通过使用CMOS晶体管的开关处理电荷。 Position of the CCD image sensor in CMOS process using charge by a CMOS transistor switch. 由于CMOS图像传感器具有用于每一光电检测器的开关,所以CMOS 传感器可直接处理电荷而不考虑位置。 Since the CMOS image sensor has a switch for each photodetector, the CMOS sensor can be directly processed without regard to the charge position. 因此,与CCD图像传感器相比,CMOS 图像传感器执行较快的读取并消耗较低的功率。 Therefore, compared with a CCD image sensor, CMOS image sensors perform faster read and consume less power. 此外,CMOS图像传感器与计算机芯片的制作过程相似。 Further, the CMOS image sensor manufacturing process is similar to the computer chip. 因此,在CMOS图像传感器中,图像传感器电路和图像处理电路可被安排在一起。 Thus, in the CMOS image sensor, the image sensor circuit, and an image processing circuit may be arranged together. 这样的CMOS图像传感器已主要被便携式电话和小型数码相机采用。 Such a CMOS image sensor has been adopted mainly in cellular phones and compact digital cameras. 近来,由于CMOS图像传感器被高质量数码相机采用,所以CMOS图像传感器作为CCD图像传感器的挑战者一直在增长。 Recently, the CMOS image sensor is the use of high-quality digital camera, CMOS image sensor so as challenger CCD image sensor has been growing. 同时,CMOS图〗象传感器通过使用至少一个晶体管和至少一个光电二极管以象素单元为微单元(cell)来拍摄图像。 Meanwhile, CMOS image sensor of FIG〗 using at least one transistor and at least one photodiode in pixel units microcell (cell) to capture images. 换句话说,CMOS图像传感器是依靠内部晶体管放大由于水平排列的光电二极管的光/电转换而生成的电荷并通过开关电路以一个像素读出图像的图像俘获装置。 In other words, CMOS image sensors is a charge on internal transistor amplifier because the optical / electrical conversion of the photodiode array to generate a horizontal and in a pixel readout image by image capture device switching circuit. 这样,由于CMOS图像传感器对每一像素执行放大功能,所以CMOS图像传感器可获得高灵敏度和高SNR。 Thus, since the CMOS image sensor performs amplification function for each pixel, so that the CMOS image sensor can be obtained with high sensitivity and SNR. 此外,CMOS图像传感器具有随机访问功能,从而COMS传感器可通过选择一水平信号行和一垂直信号行来读取预定的像素。 In addition, CMOS image sensors having a random access function, so COMS sensor may be read by selecting a predetermined pixel signal horizontal line and a vertical signal line. 此外,由于CMOS图像传感器基于标准CMOS处理技术,所以可实现小型芯片、轻型相机、以及在芯片上包括外围驱动电路,并可实现较低的功耗。 Furthermore, since the CMOS image sensor based on standard CMOS process technology, the chip can be downsized, lightweight camera, and includes on-chip peripheral driver circuits, and to achieve lower power consumption. 此外,在CMOS图像传感器中,因为电流与信号电荷成比例被放大,所以图像可在弱亮度下被拍摄。 Further, in the CMOS image sensor, since the current is proportional to the charge signal is amplified, so the image can be photographed at low luminance. 然而,采用CMOS图像传感器的数码相机由于下述原因无法提供最好的图像质量。 However, the use of CMOS image sensors of digital cameras for the following reasons can not provide the best image quality. 首先,由于用于CMOS传感器的像素阵列部分的部件对于温度的变化敏感,所以暗电流依赖于变化的温度而产生。 First, since the pixel array section member for the CMOS sensor is sensitive to changes in temperature, change in dark current dependent on the temperature generated. 暗电流成为不期望的黑电平被包括在图像中的一个原因。 Dark current becomes a cause undesirable black level is included in the image. 其次,在采用CMOS图像传感器的数码相机中,当如具有高光强的荧光的目标物体被拍摄时,由于图像信号的饱和而出现重影图像。 Next, the digital camera with a CMOS image sensor, when the target object such as a fluorescent light having a high intensity is captured, due to the saturation of the image signal and ghost images appear. 再者,如果对通过伽玛校正处理的图像实现内插,对应于通过内插恢复的坏点像素,不能获得用于伽玛校正的最优值。 Further, if the image is achieved by interpolation of the gamma correction processing, corresponding to the dead pixel by pixel interpolation resuming, the optimal value can not be obtained for gamma correction. 发明内容因此,本发明的实施例解决发生在现有技术中的上述问题,并且本发明的示例性实施例的目的在于提供一种可改善相机的图像质量的设备和方法。 SUMMARY OF THE INVENTION Accordingly, embodiments of the present invention to solve the above problems occurring in the prior art, and the object of an exemplary embodiment of the present invention provides an apparatus and method for improving the image quality of the camera. 本发明的示例性实施例的另一目的在于提供一种可最小化对比度以白电平饱和的现象的设备和方法。 Another object of the exemplary embodiments of the present invention to provide a contrast to the white level saturation phenomena apparatus and method is minimized. 本发明的示例性实施例的另一目的在于提供一种可调节膝光时间以防止饱和区域的产生以及通过图像信号增益补偿曝光时间的设备和方法。 Another object is to exemplary embodiments of the present invention provides an adjustable knee-out time to prevent saturation region, and an exposure apparatus and method for an image signal by the time gain compensation. 本发明的示例性实施例的另一目的在于提供一种可通过延迟图像信号在此时饱和的时间点来最小化重影图像的发生的图像处理设备和相应方法。 Another object is to exemplary embodiments of the present invention to provide an image signal by delaying saturation at this point in time to minimize the occurrence of an image processing apparatus and a ghost image of the corresponding method. 本发明的示例性实施例的另一目的在于提供一种可对坏点像素在其中被恢复的图像执行伽玛校正的图像传感器和方法。 Another object of exemplary embodiments of the present invention to provide an image sensor and a method of dead pixels in a pixel image wherein performs gamma correction is resumed. 本发明的示例性实施例的另一目的在于提供一种可使用用于用于拐点校正(knee correction)的白4交正(white correction)的增益值的图4象处理i殳备和方法。 Another object of the exemplary embodiments of the present invention may be used to provide an image processing apparatus and method of FIG Shu i for a knee correction (knee correction) 4 cross-white positive (white correction) gain value of 4. 本发明的示例性实施例的另一目的在于提供一种依靠在拍摄时从包括在像素阵列部分中的像素中光不入射在其上的像素测量黑电平值的设备和方法。 Another object of an exemplary embodiment of the present invention provides a relying upon photographing apparatus and method comprises the black level value of the pixel measured light is not incident on pixel in the pixel array portion in. 本发明的示例性实施例的另一目的在于提供一种可对模拟图像信号执行黑电平校准和拐点校正的图像处理设备和方法。 Another object of the exemplary embodiments of the present invention to provide an image processing apparatus and method for performing black level calibration, and knee correction on an analog image signal. 本发明的示例性实施例的另一目的在于提供一种可对数字图像信号执行黑电平校准和拐点校正的图像处理设备和方法。 Another object of the exemplary embodiments of the present invention to provide an image processing apparatus and method for performing black level calibration, and knee correction on the digital image signal. 本发明的示例性实施例的另一目的在于提供一种可通过根据图像信号的亮度提供不同的增益值执行拐点校正的图像处理设备和方法。 Another object of exemplary embodiments of the present invention to provide an image processing apparatus and method for performing knee correction by providing different gain values ​​according to the luminance of the image signal. 本发明的示例性实施例的另一目的在于提供一种可补偿由于噪声产生的暗电流的图像处理设备和方法。 Another object of the exemplary embodiments of the present invention to provide an image processing apparatus and method for compensating a dark current due to the noise generated. 为了实现上述目的,本发明的示例性实施例提供一种用于在数码相机中改善图像质量的图像处理方法,该数码相机通过使用预定啄光时间拍摄目标物体,将通过拍摄应用的光信号转换成图像信号,并输出图像信号,该图像处理方法包括以下步骤:测量由暗电流导致的黑电平值,并通过使用测量的黑电平值校准图像信号的黑电平;将原色信号划分为预定的区段,并对这些区段提供不同的增益值,从而通过使用提供给包括具有校准的黑电平的原色信号的区段的增益值来对图像信号执行拐点校正;接收通过拐点校正处理的图像信号,并通过内插恢复包括在图像信号中的坏点像素;对坏点像素在其中被恢复的图像信号执行伽玛校正,在通过伽玛校正处理的图像信号中将亮度分量和色度分量分开,并输出亮度分量和色度分量;接收亮度分量并输出黑电平校准 To achieve the above object, an exemplary embodiment of the present invention provides an image processing method for improving image quality in a digital camera, the digital camera of the target object by using a predetermined time pecking light, capturing the optical signal conversion applications into an image signal, and outputs an image signal, the image processing method comprising the steps of: the black level values ​​measured by the dark current caused by using the measured black level values ​​of the calibration image signal is a black level; primary color signal into a predetermined sections, and these sections provide different gain values, to thereby provide a knee correction is performed on the image signal having a signal gain value comprises a primary color of black level calibration by using the segment; receiving knee correction processing image signal, and the interpolation resuming dead pixels comprises a pixel in the image signal by the; dead pixels of the pixel in which the image signal is restored performs gamma correction in the gamma correction processing by the image signal components of the luminance and color separated chrominance component, and outputs the luminance and chrominance components; receiving the luminance component output and black level calibration 拐点校正所需的曝光时间;以及接收色度分量并输出用于拐点校正的增益值,其中,当至少一个预定的参考亮度^皮采用作为拐点时,区段是通过拐点区分的输入的亮度范围,并随着区段接近白饱和时间点而具有相对小的增益值。 Correcting the exposure time required for inflection point; and receiving a chrominance component and outputs a knee correction gain value, wherein, when at least a predetermined reference luminance transdermal ^ employed as the inflection point, the inflection point segments are distinguished by the input luminance range , and with the section near the white saturation point of time having a relatively small gain value. 根据本发明的另一示例性实施例,提供一种用于在数码相机中改善图像质量的图像处理设备,该数码相机通过使用预定曝光时间拍摄目标物体,将通过拍摄应用的光信号转换成图像信号,并输出图像信号,该图像处理设备包括:图像信号校准部分,用于通过使用由暗电流导致的黑电平值校准图像信号的黑电平,并对区分原色信号的区段提供不同的增益值,从而通过使用提供给包括具有校准的黑电平的原色信号的区段的增益值来对图像信号执行拐点校正;内插和像素校正部分,用于接收通过拐点校正的图像信号,并通过内插恢复包括在图像信号中的坏点像素;伽玛校正部分,用于对坏点像素在其中被恢复的图像信号执行伽玛校正;色彩空间变换部分,用于在通过伽玛校正处理的图像信号中将亮度分量和色度分量分开,并输出亮度分量和色度分量;曝 According to another exemplary embodiment of the present invention, an image processing apparatus for improving image quality in a digital camera is provided for the digital camera of the target object by using a predetermined exposure time, the optical signal is converted into an image capturing application signal, and outputs an image signal, the image processing apparatus comprising: an image signal calibration section for supplying the black level by using different black level values ​​of the calibration image signals caused by dark current, and primary color signal distinguishing section gain value, thereby providing a primary color signals to the gain value comprises a black level having a calibrated section of the knee correction is performed by using the image signal; interpolating and correcting the pixel portion, for receiving the image signal of knee correction, and dead pixels by interpolating a pixel in an image comprising a recovery signal; gamma correction section for dead pixels in which the pixel image signal is restored performs gamma correction; color space conversion section for gamma correction processing by in the image signal luminance and chrominance components separately, and outputs the luminance and chrominance components; exposure 调节部分,用于接收亮度分量,并输出黑电平校准和拐点校正所需的曝光时间;以及白平衡校准部分,用于接收色度分量,并输出用于拐点校正的增益值,其中,当至少一个预定的参考亮度^C釆用作为拐点时,区段是通过拐点区分的输入的亮度范围,并随着区段接近白饱和时间点而具有相对小的增益值。 Adjusting section for receiving the luminance component output and black level calibration exposure time and a knee correction required; and white balance adjustment section, for receiving a chrominance component, and outputs a knee correction gain value, wherein, when the at least one predetermined reference luminance ^ C preclude the use as the inflection point, the input luminance range segments are distinguished by an inflection point, and with the section near the white saturation point of time having a relatively small gain value. 附图说明通过下面结合附图进行的详细描述,本发明示例性实施例的的上述和/或其他目的、特征和优点将会变得更加清楚,其中: 图1示出传统的图像处理过程;图2是示出根据本发明的实施例的图像处理设备的结构的框图;图3至图5是示出根据本发明的实施例的图像信号校准的例子的框图;图6是示出根据本发明的实施例的在输入图傳?f言号和根据曝光时间的亮度之间的关系的图;图7是示出根据本发明的实施例的在曝光时间和斜率之间的关系的图;图8是示出根据本发明的实施例的用于测量黑电平的方法;图9是示出根据本发明的实施例的通过黑电平校准图像数据的的输入亮度和输出亮度之间的关系的图;图IO是示出根据本发明的示例性实施例通过提出的拐点校正的R、 G、和B信号的输入(光强)和输出(IRE;无线电工程师学会)之间的关系的曲线图;图 BRIEF DESCRIPTION OF DRAWINGS The following above and / or other objects, features and advantages of the exemplary embodiments of the present invention will become more apparent, wherein: Figure 1 illustrates a conventional image processing; FIG 2 is a block diagram of an image processing apparatus according to an embodiment of the present invention; FIG. 3 to FIG. 5 is a block diagram showing an example of an image calibrating an embodiment of the present invention is shown; FIG. 6 is a diagram illustrating the present invention enter transmission of the embodiment according to FIG f statement number and the relationship between the brightness of the exposure time;? 7 is a diagram showing an embodiment of a relationship between the present invention and the slope of the exposure time; FIG 8 is a method for measuring the black level is shown according to an embodiment of the present invention; FIG. 9 is a diagram illustrating between input luminance and output luminance according to an embodiment of the present invention by a black level calibration image data FIG relationship; FIG IO is a diagram illustrating an exemplary embodiment of the present invention made by the knee correction of R, G, and B and input signal (light intensity) and the output (IRE; Institute of radio engineers) the relationship between the graph; FIG. ll是用于解释传统的伽玛校正的概念的图;图12是示出根据本发明的实施例的将通过伽玛校正获得的图像信号的伽玛曲线的图;图13是示出根据本发明的实施例的伽玛校正的例子的图;以及图14是示出根据本发明的实施例的用于执行拐点校正的控制过程的流程图。 ll are diagrams for explaining a conventional gamma correction concept; FIG. 12 is a diagram illustrating the gamma curve in FIG gamma correction to the image signal obtained in accordance with an embodiment of the present invention; FIG. 13 is a diagram illustrating the present gamma correction example of an embodiment of the invention; and FIG. 14 is a flowchart illustrating control performed knee correction process according to an embodiment of the present invention. 在所有的附图中,相同的标号将被理解为描述相同的部件、特征和结构。 Throughout the drawings, like reference numerals will be understood to describe the same elements, features and structures. 具体实施方式以下,将参照附图来详细说明本发明的示例性实施例。 DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention are described in detail with reference to the accompanying drawings. 在以下的对本发明示例性实施例的描述中,为了清楚起见,包含在其中的已知功能和配置的详细描述将^t省略。 In the following description of exemplary embodiments of the present invention, for clarity, the detailed description contained therein known functions and configurations will be omitted ^ t. 在接下来的描述中,不期望的图像数据被移除或恢复以改善图像质量, 并且传统的图像处理序列被改变。 In the following description, the undesired image data are removed or restored to improve image quality, and the conventional image processing sequence is altered. 换句话说,根据本发明的一方面,通过使用膝光时间,图像数据的黑电平被强制地校准,通过调节彩色信号增益(G 增益、R增益、或B增益),黑电平被校正。 In other words, according to an aspect of the present invention, by using an optical time knee, the black level of the image data is forcibly calibrated color signal by adjusting the gain (G gains, R gain, B gain, or), the black level is corrected . 其中,黑电平由暗电流生成。 Wherein the black level generated by a dark current. 由于在用于CMOS图像传感器采用的光电二极管中的入射光,暗电流可主要由温度的升高引起。 Since a photodiode of the CMOS image sensor employed in the incident light, dark current can be caused mainly by the increase in temperature. 因此,黑电平可基于完整地屏蔽光的光电二极管的的暗电流而纟皮测量。 Thus, the black level may be based on a dark current of the photodiode complete shielding of light on measurement of the Si. 此外,根椐本发明的一方面,可作为图像信号被输入的图像亮度被划分为预定的区段。 Also, noted in one aspect of the invention, may be divided into segments of a predetermined image as a luminance image signal is input. 区段对于图像信号有不同的增益,从而具有相对宽范围亮度的图像可被实现。 Segment the image signal with a different gain, so as to have a relatively wide range of brightness of the image can be implemented. 这里,在饱和点附近的区段中的增益值被给定为相对小的值。 Here, the gain value near the saturation point in the zone is given a relatively small value. 而且,根据本发明的一方面,主要地实现用于图像信号的内插,接下来, 对具有通过内插恢复的坏点像素的图像信号实现伽玛校正。 Further, according to an aspect of the present invention is primarily implemented for interpolating an image signal, then, to achieve gamma correction on the image signal has recovered dead pixels by interpolation pixel. 如果用于伽玛校正的校正像素值从正常像素中发现,并且接下来,如果坏点像素通过使用校正像素值被恢复,则在显示图像信号的过程中,可能防止伽玛校正的误差的发生。 If the corrected pixel value from the gamma correction found in normal pixel, and subsequently, if the pixel is restored by using dead pixel correction pixel value, in the display process of the image signal, an error may prevent the gamma correction . 在下文中,将参照附图详细描述才艮据本发明的示例性实施例的搮作。 Hereinafter, it will be described with reference to the drawings in detail, according to Li Gen exemplary embodiment of the present invention will be. 图1示出传统的图像处理过程。 FIG 1 illustrates a conventional image processing. 假定在图1的图像处理过程中釆用CMOS图像传感器。 Bian assumed during image processing of FIG. 1 with the CMOS image sensor. 然而,本领域技术人员应该理解,用于图像处理过程的其它图像处理装置可被采用。 However, those skilled in the art will appreciate, other image processing apparatus for image processing procedure may be employed. 参照图1,光学部分110通过镜头拍摄目标物体,并输出通过拍摄获得的光能量(光子)。 Referring to FIG. 1, the optical section 110 photographs a target object through a lens, and the output light energy (photons) obtained by shooting. 像素阵列部分112包括几万到几十万像素。 The pixel array section 112 includes tens of thousands to hundreds of thousands of pixels. 像素阵列部分112 将通过光学部分110的镜头入射的光转换成为作为模拟信号的电信号,并输出该电信号。 The pixel array section 112 through the lens converting light incident on the optical portion 110 into an electrical signal as an analog signal, and outputs the electric signal. 其中,像素阵列112依靠从图像处理部分114中提供的定时信号和传感器控制信号採作。 Wherein the pixel array 112 and a sensor means of a timing signal supplied from the image processing section 114 the control signal for mining. 其中,可依靠定时信号控制用于光的接收的时间。 Wherein the control time can depend on the timing signal for the received light. 用于光的接收的时间极大影响随后将被显示的图像的色调和亮度。 Greatly affect the time for receiving light would then be displayed hue and brightness of the image. 此外,根据本发明的一个实施例,定时信号被用于黑电平校正和拐点校正。 Further, according to one embodiment of the present invention, the timing signal is used to black level correction and knee correction. 图像处理单元114依靠像素阵列部分112的电信号处理包括红(R)、绿(G)、蓝(B)的色彩的图像。 The image processing unit 114 depend on the pixel array an electrical signal processing section 112 comprises a red (R), green (G), blue (B) color images. 其后,通过图像处理获得的处理的图像被输出。 Thereafter, the image processing obtained by the image processing is outputted. 图像处理部分114生成用于校正输出图像信号的定时信号和传感器控制信号,从而将这些信号提供给^f象素阵列部分112。 Timing signal and the sensor image processing section 114 generates an output image signal for correcting the control signal, so that these signals supplied to the pixel array section 112 ^ f. 从图像处理部分114输出的图像通过显示部分116被显示,或在存储部分118中被存储。 The image processing section 114 from the image output by the display portion 116 is displayed, or is stored in the storage section 118. 显示部分116包括各种显示窗口(CRT、 LCD等)和用于处理图像的结构,并且通过显示窗口显示图像。 The display section 116 includes various display window (CRT, LCD, etc.) and structures for processing images, and displays an image through the display window. 存储在存储部分118中的图像随后可被不同地应用。 Images stored in the storage portion 118 may then be applied differently. 同时,虽然图l中未示出,但从图像处理部分114 输出的图像或存储在存储部分118中的图像可通过打印机打印。 Meanwhile, although not shown in Figure l, but the image processing section 114 or the storage image output from the image can be printed by the printer 118 in the storage section. 图2是示出根据本发明示例性实施例的图像处理部分114的结构的框图。 FIG 2 is a block diagram illustrating a configuration of an image processing according to an exemplary embodiment of the present invention, portion 114. 在参照图2对示例性实施例进行的描述中,根据该示例性实施例的一些组件的细节描述被省略。 In the exemplary embodiment described with reference to FIG Example 2 performed in accordance with the exemplary details of some components of the embodiments described embodiment is omitted. 图像信号校准部分210从像素阵列部分接收图像信号并且接收用于校准图像信号的控制信号。 The image signal calibration section 210 of the pixel array section receives an image signal and receiving a control signal from the calibration image signal. 控制信号包括R信号和B信号的增益值。 The control signal comprises a gain value of the R and B signals. 虽然R信号和B信号的增益值可手工地校准,但根据本发明的示例性实施例,假定增益值自动校准。 While the gain can be manually calibrated R and B signals, but according to an exemplary embodiment of the present invention, the gain value assumed automatic calibration. R信号和B信号的增益值被用于拐点校正和白校正。 R gain value and B signals are used to correct a knee correction and white. 图像信号校准部分210依靠控制信号执行白校正、黑电平校正、以及拐点校正。 The image signal calibration section 210 performs control signals depend on the white correction, black level correction, and knee correction. 白校正从图像信号中校准R信号和B信号的增益,从而使具有所需白色的图像信号能被输出。 White correction gain calibration signal from the image signals R and B signals, so that the image signal can be output with the desired white. 通常,除了R信号和B信号之外,G信号的增益值是固定的。 Typically, in addition to the R and B signals, the signal gain value G is fixed. 因此,为了实现白校正,对应于G信号的固定增益值,R信号和B 信号的增益值可^皮校准。 Thus, to achieve the white correction gain value fixed gain value corresponding to the signal G, R and B signals may be calibrated ^ skin. 通常,当R、 G和B信号之间的比例具有统一值时, 获得白色。 Generally, when the ratio between the R, G and B signals have a uniform value, a white. 黑电平校准校准由暗电流生成的图像信号的黑电平,从而能实现期望的黑色。 Black level calibration BLC generated by a dark current of the image signal, thereby achieving a desired black. 如果图像信号的黑电平被校准,则不可获得在预定的区段中的输出的图像信号。 If the black level of the image signal is calibrated, the image signal output in the predetermined section is not available. 因此,反映该现象的黑电平必须被实现。 Therefore, the black level to reflect this phenomenon must be implemented. 拐点校正防止当如闪光的目标物体被拍摄时作为由于图像信号的饱和而非正常地显示的图像的重影图像的发生。 When knee correction is to prevent a target object such as a flash image is captured as an image signal due to saturation of not normally displayed ghost image. 为此,拐点校正允许表示输入图像信号和输出图像信号之间的关系的曲线的斜率关于特定的拐点改变。 To this end, a knee correction allows the slope of the curve showing the relationship of the input image between an image signal and an output signal changes on specific inflection. 换句话说,拐点校正允许从曲线的开始点到在图像开始将要饱和的时间点之前的预定的拐点形成的第一斜率不同于从拐点到具有最大允许的强度的输入图像信号形成的第二斜率。 In other words, allowing the knee correction curve from the start point to the image at the beginning of the inflection point to be a predetermined point of time before saturation of the first form is different from the second slope from the inflection point to the slope formed by the input image signal having the maximum intensity allowed . 其中,第二斜率必须比第一斜率相对平緩。 Wherein the second slope gentler than the first slope must be relatively. 此外,还可以有多拐点。 In addition, it is also how the inflection point. 如果是多拐点,则曲线可以以对应于多拐点的不同的斜率而形成。 If multiple inflection point, the curve may be different gradients corresponding to a plurality of inflection points is formed. 因此,当拐点校正被实现时,可被表达的预定的输出图像信号在传统的饱和区域中关于输入图像信号可M现。 Thus, when the knee correction is implemented, a predetermined output image signal may be expressed in a conventional saturation region in the input image signal of M is now available. 下文中,用于白校正、黑电平校准、以及拐点校正的详细搮作将被描述。 Hereinafter, detailed Li as a white correction and black level calibration, and knee correction will be described. 从图像信号校准单元210中输出的图像信号被提供到内插和像素校正部分212。 The calibration image signals outputted from the unit 210 is supplied to the interpolation section 212 and the pixel correction. 其中,内插和像素校正部分212执行用于图像信号的坏点像素的内插。 Wherein a pixel interpolation and dead pixel correction section 212 performs pixel interpolation for the image signal. 此外,内插和像素校正部分212校正图像信号的像素。 Further, the pixel interpolation and the pixel correcting part 212 corrects the image signal. 坏点像素指示从形成图像的像素中损失的像素。 Dead pixels from the pixel indicates a pixel lost in forming an image pixel. 其中,通过内插,坏点像素的信息可从关于邻近的像素的信息中推演得出。 Wherein, by interpolation, the pixel information of dead pixels may be deduced from information about the adjacent pixels. 用于内插的算法大体上分为非自适应算法和自适应算法。 Algorithms for interpolation algorithms largely divided into non-adaptive and adaptive algorithm. 非自适应算法以固定模式执行用于所有像素的内插。 Non-adaptive algorithm performs fixed pattern for all the interpolation pixels. 这些非自适应算法可容易地执行并且具有少量的计算。 These non-adaptive algorithms may be performed easily and with a small amount of calculation. 自适应算法被用于通过使用多数有效的邻近像素的特征对损失的像素值的估计。 Adaptive algorithm is used to estimate characteristics by using the most effective neighboring pixel values ​​of loss. 虽然自适应算法需要更多的计算,但与非自适应算法相比,自适应算法使较好的图像的获得成为可能。 Although the adaptive algorithm requires more computation, but compared with non-adaptive algorithm, the adaptive algorithm to obtain a better image possible. 同时,非自适应算法包括最近邻域复制、双线性内插、中值内插、以及分级内插。 Meanwhile, non-adaptive algorithms include nearest neighbor replication, bilinear interpolation, median interpolation, and the interpolation classification. 自适应算法包括基于模式匹配的内插算法、使用基于阈值的可变数量的斜率的内插、以及边缘敏感内插。 Adaptive interpolation algorithm comprises pattern matching algorithm based on the use of a variable slope of a threshold number of interpolation, and the interpolation edge-sensitive. 本发明的示例性实施例不考虑内插算法的类型而被实现。 Exemplary embodiments of the present invention irrespective of the type of interpolation algorithm is implemented. 来自内插和像素校正部分212的图像信号被提供给色彩校正部分214。 And the image signal from the interpolated pixel correction section 212 is supplied to the color correction section 214. 色彩校正部分214通过校正图像信号将图像信号转变成为标准图像信号。 Color correction portion 214 will become a standard image signal into an image signal by correcting the image signal. 换句话说,色彩校正部分214将输入的R信号、输入的G信号、以及输入的B 信号校正为标准sR信号、标准sG信号、以及标准sB信号。 In other words, R color correction signal input section 214, G signal input and the input B signal correction signal sR standard, the standard signal sG, and a standard signal sB. 在下面的等式l中,给出了用于色彩校正的一般方案。 L in the following equation, gives a general scheme for color correction. 等式l其中,M^c表示用于发现与标准矩阵的传递特性相同的非标准相机的传递特性的标准相机的传递特性矩阵,M^表示非标准相机的逆传递特性矩阵。 L Equation where, M ^ c represents the transfer characteristic of the transfer characteristic of the same standard camera transfer characteristic matrix for finding the standard non-standard camera matrix, M ^ denotes an inverse matrix of a transfer characteristic of a non-standard camera. 其中,作如下假定:2.4611 —0.2058 -0.2775 -0.3131 2.5163 0.3323 -0.2260 1.3322 1.3322M細=通过等式l, M^被获得为矩阵0.4124 0.3576 0.18050.2126 0.7151 0.07210.0193 0.1192 0.9505 0.8622 l細3 0.2448 0.2831 1.8538 0.2748 —0.2045 1.5884 1.3005标准图像信号被提供给伽玛校正部分216。 Wherein, assuming as follows: 2.4611 -0.2058 -0.2775 -0.3131 2.5163 0.3323 -0.2260 1.3322 1.3322M fine by the equation = l, M ^ is obtained as a matrix 0.4124 0.3576 0.18050.2126 0.7151 0.07210.0193 0.1192 0.9505 0.8622 l 0.2448 0.2831 3 fine 1.8538 0.2748 -0.2045 1.5884 1.3005 standard image signal is supplied to the gamma correction section 216. 通常,"伽玛"是表示对比度状态的标尺。 Typically, "Gamma" is a state of the contrast scale. "伽玛"表示特性曲线的斜率,即密度的变化/照射剂量的变化。 "Gamma" represents the slope of the characteristic curve, i.e., change in density variation / irradiation dose. 在如CRT等的显示装置中,在图像信号的输入电压和电子束电流之间的关系是线性的。 In the display device such as a CRT or the like, the relationship between the input voltage and the electron beam current image signal is linear. 因此,伽玛校正部分216以如最终图像信号可具有线性这样的方式基于显示装置的非线性特性对标准图像信号执行伽玛校正。 Thus, the gamma correction section 216 as a final image signal may have a nonlinear characteristic linear manner on the apparatus performs gamma correction standard image signal based on the display. 换句话说,伽玛校正部分216校正显示装置的非线性特性。 In other words, the gamma correction part 216 corrects the nonlinear characteristics of the display device. 这允许标准图像信号具有使显示装置的非线性的校正成为可能的非线性曲线。 This allows a standard image signal having a non-linear correction of the display device becomes possible non-linear curve. 图ll示出校正的例子。 Ll illustrates an example of FIG corrected. 在图11中,标号1120是示出显示装置的非线性特性的曲线,标号1110是用于将被最终获得的图像信号的直线。 In Figure 11, reference numeral 1120 is a diagram showing a nonlinear characteristic curve of the device, reference numeral 1110 is an image signal to be a straight line finally obtained. 此外,标号IIOO是示出被伽玛校正的图像信号的非线性特性以补偿标号1120的曲线的曲线。 Further, reference numeral IIOO nonlinear characteristic showing an image signal to compensate for gamma correction curve 1120 reference curve. 结果,伽玛校正部分216以图像信号具有标号1100的曲线这样的方式来校正图像信号。 As a result, the gamma correction section 216 to image signals having a reference numeral 1100 in such a manner to curve corrected image signal. 伽玛校正的图像信号(W, W,以及W )被提供给色彩空间变换部分218。 Gamma corrected image signal (W, W, and W) are supplied to the color space conversion section 218. 色彩空间变换部分218变换伽玛校正的图像信号的像素,以,出根据秒数所需的帧的数量。 Color space conversion section 218 is converted image signal gamma-corrected pixel to, the number of frames in accordance with the desired number of seconds. 色彩空间转换部分输出亮度分量(Y)和色度分量(Cb和Cr )。 Color space conversion section outputs a luminance component (Y) and chrominance components (Cb and Cr). Y信号对应于输出的图像信号的亮度分量,Cb信号和Cr信号对应于输出的图像信号的色度分量。 Y luminance component of the image signal corresponding to the signal output, Cb signal and Cr signal corresponding to the chrominance component of the image signal is output. 因此,Cb信号和Cr信号被提供给自动白平衡校准部分220, Y信号被提供给自动膝光校准部分222。 Thus, Cb signals and Cr signals are supplied to the automatic white balance adjustment section 220, Y signal is supplied to the automatic light adjustment part 222 the knee. 曝光校准部分222通过使用Y信号检测通过镜头输入的光的强度,并基于光的强度调节用于控制光圈的开启状态的曝光时间。 Exposure calibration section 222 by using the intensity of light detected by the Y signal input lens, and adjusting the intensity of light based on the state of the control for opening the aperture of the exposure time. 例如,当由于弱的光强度导致整个输出的图像是暗的时,曝光校准部分222增加曝光时间。 For example, when the cause due to the weak light intensity of the entire output image is dark, the exposure calibration section 222 increases the exposure time. 反之, 当由于强的光强度输出重影图像时,曝光校准部分222减少曝光时间。 Conversely, when the light intensity due to the strong ghost image output, the exposure calibration section 222 to reduce the exposure time. 同时,当瀑光时间被调节时,作为黑电平的生成的原因的暗电流必须被考虑。 Meanwhile, when the light waterfall time is adjusted, as a cause of the black level generated by the dark current it must be taken into account. 这是根据在本发明中建议的黑电平校准的结果。 This is the result of black level calibration suggested in the present invention. 瀑光时间可被划分为预定的等级(通常是八个等级(1/50s到1/lOOOOs)或十五个等级)。 Waterfall-out time may be divided into a predetermined level (typically eight levels (1 / 50s to 1 / lOOOOs) or fifteen levels). 普遍地,当信号被处理时,暗的图像容易地被补偿,但重影图像很难被补偿。 Generally, when the signal is processed, a dark image is easily compensated, but the ghost image is difficult to be compensated. 因此,根据本发明的示例性实施例,膝光校准部分222接收全部暗图像的图像信号,并手动地减少啄光时间以补偿暗图像。 Thus, according to an exemplary embodiment of the present invention, an image signal received optical calibration knee all dark image portion 222, and a manual reducing pecking-out time to compensate for dark image. 其中,将被手动地减少的咏光时间的量可由由暗电流生成的黑电平确定。 Wherein the amount is manually reduced by the time chant optical black level generated by a dark current determination. 膝光时间被榆入到定时生成和传感器控制部分224。 Knee-out time is elm timing generator and a sensor into the control section 224. 定时生成和传感器控制部分224接收主时钟和膝光时间。 And a sensor control timing generation portion 224 receives the master clock time and knees light. 因此,定时生成和传感器控制部分224 依靠曝光时间和主时钟生成定时信号和传感器控制信号。 Thus, the timing control section 224 and a sensor to generate a timing clock signal and a control signal when the sensor relies on the exposure time and the master. 例如,图6示出根据咏光时间的调节而改变的根据输入的图像信号和以12个级别表示的亮度之间的关系的拐点曲线。 For example, FIG. 6 shows a curve for adjusting the inflection point of time chant light that varies the relationship between the input image signal and the luminance levels indicated at 12 in accordance with. 该图示出根据双倍增加的膝光时间的变化。 The figure shows a change of light according to a double increase in knee time. 如图6所示,随着膝光时间增加,拐点曲线的斜率变得越来越大。 6, as the knee-out time, the slope of the curve inflection point becomes larger. 其中,拐点曲线的斜率越大,使输出的图像饱和的亮度的值越小。 Wherein, the greater the slope of the curve inflection point, image saturation value of the output luminance is smaller. 图7是示出啄光时间的斜率的示例性关系的图。 7 is a diagram illustrating an optical time slope pecking an exemplary relationship of FIG. 如图7所示,随着膝光时间增加,斜率增加。 As shown in FIG 7, as the knee-out time, the slope increases. 在下面的等式2中示出了咏光时间和斜率之间的关系。 In the following Equation 2 shows the relationship between time and light Wing slope. 等式2其中,'Gradient of AutoExp.Time,表示自动地调节的瀑光时间变化率, 'Gradient of DefaultExp.Time,表示基本地设置的膝光时间变化率。 Equation 2 wherein, 'Gradient of AutoExp.Time, waterfall represents time rate of change automatically adjusting the light,' Gradient of DefaultExp.Time, time rate of change of light represents substantially knee arranged. 自动白平衡校准部分220依靠Cb信号和Cr信号校准用于图像信号的白平衡的增益值。 Automatic white balance adjustment section 220 Cb signal and Cr signal depend on the gain of the white balance calibration of the image signal. 其中,增益值包括用于校正R信号的R增益值和用于校正B信号的B增益值。 Wherein the gain value comprises a correction signal R R gain value and B B signal for correcting the gain value. G信号的增益值被固定为预定的值。 Signal gain value G is fixed to a predetermined value. 当描述拐点校正时,将详细描述用于固定G信号的增益值的方案。 When knee correction is described, the program will be described for the G signal gain value is fixed in detail. 同时,当光的强度未仅以膝光时间而充分调整是,考虑环境的色温调整增益值。 Meanwhile, when the light intensity is not sufficiently adjusted only light knee time, environmental considerations color temperature adjustment gain value. 此外,4艮据本发明的示例性实施例,考虑到拐点校正,增益值必须被调节。 Further, according to an exemplary 4 Gen embodiment of the present invention, considering the knee correction, gain values ​​must be adjusted. 图3到图5是示出根据本发明示例性实施例的图像信号校准部分210的例子的框图。 3 to FIG. 5 is a block diagram showing an example of the image signal calibration exemplary embodiment of the present invention, the portion 210. 图3是示出用于执行黑电平校准、拐点校正、以及用于数字图像信号的白校正的图像信号校准部分210的例子的框图。 3 is a diagram illustrating an example for performing a black level adjustment, knee correction, and the corrected image signal of the white calibration section 210 for the digital image signal of a block diagram. 图4是示出用于执行用于模拟图像信号的黑电平校准、拐点校正、以及白校正的图像信号校准部分210的例子的框图。 FIG 4 is a diagram illustrating for performing black level calibration for the analog image signal, knee correction, and a block diagram showing an example of a white correcting portion 210 of the image signal calibration. 图5是示出用于执行用于模拟图像信号的黑电平校准、拐点校正以及用于数字图像信号的白校正的图像信号校准部分210的例子的框图。 FIG 5 is a block diagram illustrating an example of an image signal calibration section 210 for performing a black level calibration for the analog image signal, and a knee correction for correcting the white of the digital image signal. 参照图3,从像素阵列部分提供的R、 G、和B模拟信号被输入到模拟/ 数字转换部分(A/D转换器)312。 Referring to FIG 3, supplied from the pixel array section R, G, and B analog signals are input to the analog / digital conversion section (A / D converter) 312. A/D转换器312将R、 G、和B模拟信号转换成为数字信号。 A / D converter 312 to R, G, and B analog signal into a digital signal. 来自A/D转换器312的数字信号包括例如12比特。 Digital signal from the A / D converter 312 comprises, for example, 12 bits. R、 G、和B数字信号被输入到黑电平校准部分314。 R, G, and B digital signals are input to a black level calibration section 314. 黑电平校准部分314接收对应于黑电平校准值的偏移,从而对R、 G、和B数字信号执行黑电平校准。 Black level calibration section 314 receives the offset corresponds to a black level calibration values ​​thus R, G, B digital signal and performs black level calibration. 其中,黑电平可通过在从R、 G、和B信号中手动地减去偏移之后使用咏光时间的补偿,或通过通用的公式而被校准。 Wherein the black level can be compensated by using an optical time chant manually after subtracting the offset from the R, G, and B signals, or is calibrated by the general formula. 此外,用于R、 G、和B信号的黑电平可依靠预定的校准表校准。 Moreover, the black level for the R, G, and B signals may rely on a predetermined calibration table calibration. 同时,通过使用先前测量的黑电平决定偏移。 Meanwhile, the black level offset is determined using the previously measured. 黑电平可依靠在光在其中未通过镜头入射的屏蔽状态下的输出的图像信号被测量。 Black level may depend on the shield in a state in which light is not incident through the lens of the output image signal is measured. 下文中,将详细描述用于黑电平的测量的例子。 Hereinafter, an example for measuring the black level will be described in detail. 具有校准的黑电平的R、 G、和B信号输入到包括在白校正部分316中的多个放大器中的对应的放大器。 R has the black level calibration, G, and B signals input to amplifier comprises a plurality of white correction section 316 corresponding to the amplifier. 白校正部分316在以白物体可被以准确的白色表示这样的方式给定的光照下校准R、 G和B信号的电平。 The white level calibration correction section 316 R, G and B signals in the white object can be represented in such a manner given accurate white light. 这被称为白平衡校正。 This is called white balance correction. 用于目标物体的色温可通过白平衡校正而被准确地实现。 The color temperature of a target object may be achieved by accurate white balance correction. 因此,白校正部分316包括用于校准R、 G、和B信号的电平的放大器。 Accordingly, the white level correction section 316 comprises a calibration for R, G, and B signals of the amplifier. 放大器通过将R、 G、和B信号分别乘以增益值(G增益、R增益、以及B增益)来执行白平衡校正。 Amplifier by R, G, and B signals by the gain values ​​(G gains, R gain and B gain) to perform white balance correction. 因此,增益值被分别提供给放大器。 Thus, the gain value is supplied to the amplifier. 换句话说,G增益被提供给G信号被输入到其的放大器,B增益被提供给B信号被输入到其的放大器,R增益被提供给R信号被输入到其的放大器。 In other words, G is the gain G supplied to the signal amplifier to which is input, B is supplied to the B signal gain input amplifier to which, R is supplied to the gain of R signal is input to the amplifier thereto. G增益具有固定的值,对应于固定的G增益,B和R增益被校准。 G gain has a fixed value, corresponding to a fixed gain G, B and R gain is calibrated. 其中,B和R增益由上述的白平衡校准部分决定。 Wherein, B and R determined by the white balance gain calibration section. 放大器通过校准R、 G和B信号的强度执行白校正和拐点校正。 Amplifier performs knee correction by the white correction and calibration intensity R, G and B signals. 用于确定B和R增益的详细方案以及根据拐点校正的详细操作将随后描述。 Detailed protocols for determining a gain of R and B will be described later and detailed operation of the knee correction. 如上所述,根据图3的结构的信号校准部分执行黑电平校准和拐点校正、 以及对数字图像信号执行白校正。 As described above, according to the calibration signal a partial structure of FIG. 3 performs black level calibration and knee correction, the digital image signal and performing white correction. 这可通过传统的结构的最小改变来实现。 This may be achieved by minimal change to a conventional structure. 然而,因为黑电平校准和拐点校正对数字图像信号被实现,所以该结构关于校正具有限制。 However, because the black level calibration, and a knee correction is implemented on the digital image signals, this structure has a limitation on the correction. 参照图4,从像素阵列部分提供的R、 G、和B模拟信号被输入到黑电平校准部分412。 Referring to FIG. 4, supplied from the pixel array section R, G, and B analog signals are input to a black level calibration section 412. 黑电平校准部分412接收对应于黑电平校准值的偏移,从而对R、 G、和B模拟信号执行黑电平校准。 Black level calibration offset corresponding to the received BLC value portion 412, so as to perform black level calibration of the R, G, and B analog signals. 黑电平校准可如上所述被实现。 Black level calibration can be implemented as described above. 具有校准的黑电平的R、 G、和B信号被输入到拐点/白校正部分414。 Having a black level calibration of R, G, and B signals are inputted to the knee / white correction section 414. 预定的增益值作为控制信号被提供给拐点/白校正部分414。 Predetermined gain value is provided to a knee / white correction section 414 as a control signal. 换句话说,用于拐点校正和白校正的R增益值、G增益值、以及B增益值被提供。 In other words, R gain values ​​for the white correction and knee correction, G gain and B gain values ​​are provided. G增益值具有固定的预定的值,对应于固定的G增益,B增益值和R增益值被调节。 G gain value has a predetermined fixed value, corresponding to a fixed gain G, B R gain value and the gain value is adjusted. B增益值和R增益值被从白平衡校准部分提供。 R gain value and B gain value is supplied from the white balance adjustment section. 白校正和拐点校正通过调节R、 G、和B信号的强度实现。 White correction and knee correction by adjusting R, the intensity G, and B signals to achieve. 通过拐点校正和白校正校正的R、G、和B信号被输入到A/D转换器416。 Correction by the white correction and knee correction of R, G, and B signals are inputted to the A / D converter 416. A/D转换器416将模拟R、 G、和B信号转换成数字信号。 A / D converter 416 converts the analog R, G, and B signals converted into digital signals. 如上所述,根据图4的结构的图像信号校正部分对模拟图像信号执行黑电平校正、拐点校正以及白校正。 As described above, performs black level correction, white correction, and knee correction on an analog image signal from the image signal correcting section 4 of the configuration of FIG. 因为黑电平校准和拐点校正对模拟图像信号被实现,所以该结构对校正没有限制。 Because the black level calibration, and a knee correction is implemented on an analog image signal, so that the structure does not limit the correction. 参照图5,从像素阵列部分提供的R、 G、和B模拟信号被输入黑电平校准部分512。 Referring to FIG. 5, supplied from the pixel array section R, G, and B analog signals are input portion 512 BLC. 黑电平校准部分512接收对应于黑电平校准值的偏移,从而对R、 G、和B模拟信号执行黑电平校准。 Black level calibration section 512 receives the offset corresponds to a black level calibration value, thereby performing the calibration of the black level R, G, and B analog signals. 黑电平校准可如上所述被实现。 Black level calibration can be implemented as described above. 具有校准的黑电平的R、 G、和B信号被输入到拐点校正部分514。 Having a black level calibration of R, G, and B signals are inputted to the knee correction section 514. 预定的增益值作为控制信号被提供给拐点校正部分514。 Predetermined gain value is provided to the knee correcting section 514 as a control signal. 换句话说,用于拐点校正的R增益值、G增益值、以及B增益值被提供。 In other words, R knee correction value for the gain, G and gain value and B gain value is provided. G增益值具有固定的预定的值,对应于固定的G增益,B增益值和R增益值被^^准。 G gain value has a predetermined fixed value, corresponding to a fixed gain G, B gain value and the gain value is R ^^ registration. B增益值和R增益值从白平衡校准部分被提供。 R gain value and B gain value is supplied from the white balance adjustment section. 白校正通过用于R、 G、和B信号的量值的校准被实现。 Is corrected by a white R, calibration values ​​G, and B signals is achieved. 通过拐点校正的校正的R、 G、和B信号被输入到A/D转换器516。 Knee correction by the corrected R, G, and B signals are inputted to the A / D converter 516. A/D 转换器516将模拟R、 G、和B信号转换成数字信号。 A / D converter 516 converts the analog R, G, and B signals converted into digital signals. 转换的R、 G、和B信号被输入到包括在白校正部分518中的多个放大器中的对应的放大器。 Conversion of R, G, and B signals are input to the amplifier comprises a plurality of white correction section 518 corresponding to the amplifier. 因此,预定的增益值分别被提供给放大器。 Accordingly, a predetermined gain values ​​are supplied to the amplifier. 换句话说, G增益值被提供给G信号被输入到其的放大器,B增益被提供给B信号被输入到其的放大器,R增益被提供给R信号被输入到其的放大器。 In other words, G gain value G is supplied to the signal amplifier to which is input, B is supplied to the B signal gain input amplifier to which, R is supplied to the gain of R signal is input to the amplifier thereto. G增益值具有固定的值,对应于固定的G增益值,B和R增益值被校准。 G gain value having a fixed value, corresponding to a fixed gain value G, B and R gain values ​​are calibrated. B和R增益值由上述的白平衡才交准部分确定。 R and B gain values ​​by the registration section of the white balance was determined post. 放大器通过调节R、 G和B信号的强度执行白校正。 White amplifier performs correction by adjusting the intensity of R, G and B signals. 如上所述,根据图5的结构的困像信号校准郜分对模拟图像信号执行黑电平校正和拐点校正,所以该结构对于校正没有限制。 As described above, this structure is not so limited image signal corrected according to the calibration trapped Gao partial configuration of FIG. 5 performs black level correction and a knee correction on the analog image signal. 此外,对数字信号进行白校正可以以与在传统结构中相同的方法来实现,从而传统结构可被尽可能多地保持。 Further, the digital signal can be corrected with the same white in the conventional structure and methods to achieve, so that the conventional structure can be maintained as much as possible. 以下,将参考上面提到的结构来描述根据本发明的示例性实施例的功能。 Hereinafter, the above-mentioned structure will be described with reference to functions in accordance with an exemplary embodiment of the present invention. 特别地,将详细描述黑电平校准、拐点校正、以及伽玛校正的例子。 In particular, the black level calibration, knee correction, gamma correction, and an example will be described in detail. l.黑电平校准本发明的示例性实施例提出一种用于测量CMOS图像传感器的黑电平值,其后,依靠测量的黑电平值对图像数据校正黑电平的方法。 l. exemplary embodiment of black level calibration according to the present invention provide black level value for measuring a CMOS image sensor, and thereafter, the black level methods rely on the measurement value of the black level correction on the image data. 这里,黑电平由暗电流产生。 Here, the black level generated by the dark current. 因此,黑电平可基于在完全光屏蔽环境下的光电二极管的暗电流被测量。 Thus, the black level may be based on the dark current of the photodiode in a completely light-shielded environment is measured. 同时,利用测量的黑电平值的黑电平^f交正可在方框314、 412、 和512中完成。 Simultaneously, the black level value of the black level measured post n ^ f can be completed in block 314, 412, and 512. 图3的方框314在数字域中执行黑电平校正,并且图4的方框412和图5的方框512在模拟域中执行黑电平校正。 Block 314 of FIG. 3 performs black level correction in a digital domain, and FIG. 4 is a block 412 and block 512 of FIG. 5 black level correction is performed in the analog domain. 结构中的偏移量对应于通过使用用于黑电平校正而测量的黑电平值计算的校正值。 The offset structure corresponding to the black level correction value calculated by using a black level correction of the measured value. 以下,将参考附图详细描述测量黑电平以及通过测量的黑电平校准黑电平的操作。 Hereinafter, with reference to the detailed description and by measuring the black level black level a black level calibration measurement operation. 图8示出4艮据本发明的示例性实施例的测量黑电平的方法。 FIG 8 illustrates a method of measuring the black level 4 data Gen exemplary embodiment of the present invention. 如图8所示, 接收光的柱面镜头镜筒820被附在像素层810的上部。 As shown, the cylindrical lens barrel 820 is attached to the light receiving pixel layer 810 of the upper 8. 这里,当像素层810 被以正方形类型形成时,镜头镜筒被以圆柱形类型形成。 Here, when the pixel layer 810 is formed in a square type, a lens barrel is formed in a cylindrical type. 因此,光不易照射到其上的像素830-a、 830-b、 830-c、以及830-d出现在像素层810的顶角端上。 Thus, light is irradiated thereon is not easy to pixel 830-a, 830-b, 830-c, 830-d and appear on the pixel layer 810 of the apex end. 光不易照射到其上,即,光在其上被屏蔽的像素830-a、 830-b、 830-c、 以及830-d可被用作测量黑电平值的区域。 Difficult to light irradiated thereon, i.e., light which is shielded pixel 830-a, 830-b, 830-c, 830-d and may be used as the black area measured level value. 因此,根据本发明,从光屏蔽像素830-a、 830-b、 830-c、以及830-d输出的图像数据的黑电平值可被当作测量的黑电平值。 Thus, according to the present invention, the light shielding pixel 830-a, 830-b, 830-c, and a black level value of the 830-d output from the image data may be used as the black level value measured. 换言之,通过使用从光屏蔽像素830-a、 830-b、 830-c、以及830-d得到的红、绿、和蓝的输入亮度的平均值可得到希望的黑电平值。 In other words, the light shielding pixel 830-a, 830-b, 830-c, 830-d and the resulting red, green, and blue of the input luminance average value obtained by using a desired black level value. 如果黑电平值被测量,则该测量的黑电平值被从自像素层810输出的图像数据的输入亮度值中减去。 If the black level value is measured, the measured value of the black level is subtracted from the input luminance value of the image pixel data from the output layer 810. 同时,如果测量的黑电平值被通常从包括于整个图像数据中的红、绿、和蓝的输入亮度值中减去,则整个图像的亮度变黑。 Meanwhile, if the measured value of the black level is generally included in the entire image data in the red, green, and blue values ​​by subtracting the input luminance, the luminance of the entire image is black. 因此,通过使用下面的等式3校正用于整个图像数据的输入亮度值(Mmg[y][x])的黑电平。 Thus, by using the following equation 3 for correcting the black level of the input luminance value of the entire image data (Mmg [y] [x]) of. 等式3<formula>formula see original document page 17</formula>这里,"Mmg[y】[x]"表示图像数据的输入亮度值,"Oirtlmg[y][x]"表示图像数据的输出亮度值,"Low"表示测量的黑电平值。 Equation 3 <formula> formula see original document page 17 </ formula> herein, "Mmg [y] [x]" represents the input luminance value of image data, "Oirtlmg [y] [x]" represents an output luminance image data value, "Low" represents a value measured black level. 假设等式3中图像数据的最大输出亮度值是255。 Equation 3 assuming the maximum output luminance image data value is 255. 例如,假设黑电平值是50并且最大输出亮度值是255,则具有校正的黑电平的图像数据可在0到255之间的亮度值范围内被线性表示。 For example, assume that the black level is 50 and the maximum value of output luminance values ​​is image data 255, includes a black level correction may be represented in a linear range of intensity values ​​between 0 and 255. 换言之,具有0到50之间的输入亮度值的图像数据被校正为具有输出亮度值0的图像数据。 In other words, the input image data having a luminance value between 0 and 50 is corrected to a luminance output image data having a value of 0. 同时,具有51到255之间的输入亮度值的图像数据被校正为具有依据等式3得到的输出亮度值的图像数据。 Meanwhile, the input image data having a luminance value between 51 to 255 is corrected to a luminance output value obtained based on Equation 3 with image data. 这可解决由于色对比度的改进和黑电平校正导致整个图像为黑的问题。 This is solved because the color contrast and black level correction improved results in the problem of the entire image is black. 图9是显示根据上面提出的黑电平校准的图像数据的输入亮度和输出亮度之间的示例性关系的曲线图。 FIG 9 is a graph showing an exemplary relationship between input luminance and output luminance according to the image data set forth above black level calibration. 标号930示出展示当黑电平未被校正时输入亮度(Vi)和输出亮度(V。) 之间的关系的第一条线。 Reference numeral 930 shows a display line when the first relationship between the input luminance (Vi) and the output luminance (V.) when the black level is not corrected.通过第一条线,与理想黑色的输入亮度对应的预定黑电平960的输出亮度被得到。同时,在输入亮度轴的预定间隔(标号920) 中,总是得到恒定黑电平值960的输出亮度。如果恒定黑电平值960被同样地从与所有输入亮度值对应的输出亮度值中减去以校正黑电平960,则可得到以标号940示出的第二条线。然而,如果黑电平已如上所述械4交正,则如以标号910所示,对应于预定间隔(Vmax-Vt) 的输出亮度无法实现。标号950示出当黑电平校正被充分实现以实现与预定间隔910对应的输出亮度时其可被得到的第三条线。如在第三条线950中所示,对于预定级别920的输入亮度,对应于理想黑色的榆出亮度被输出,并且对于超过预定级别920的所有输入亮度0到Vm^之间的所有输出亮度可被实现。第三条线可通过上面定义的等式3被得到。如上所迷,仅是用于对整个图像数据校正黑电平的方案被描述。然而, 本领域技术人员知晓,本发明的示例性实施例可以以这样的方式来实现:包括于图像数据中的关于红、绿、和蓝的黑电平值被分别找到,其后,通过利用该黑电平值实现对予该红、绿、和蓝的黑电平校正。此外,通过使用膝光时间而无需等式3,第二条线940可被改变为第三条线950。为此,曝光时间可4皮增加。根据曝光时间对输入亮度的输出亮度的改变已经被描述。假设上面提到的黑电平校正是在数字域被实现的。因此,当对于所有输入亮度,测量的黑电平值被减去时,会存在未被表示的输出亮度。如果黑电平校正是在模拟域中被实现的,则对于所有输入亮度,测量的黑电平可被均匀地减去。这是因为对于模拟域中的所有输入亮度,即使测量的黑电平被同样地减去,所有输出亮度也可被实现。 2.拐点校正在本发明的示例性实施例中,输入图像在其中可被表示的区域可通过延迟一时间点而扩展,在该时间点上,由于输出图像的饱和度出现重影。为此, 至少一个拐点被得到,并且拐点曲线的斜率根据拐点而改变。这里,拐点之后的拐点曲线(kneecurve)的斜率与拐点之前的拐点曲线的斜率相比必须相对地小。为了使输出图像在拐点之后慢饱和,这是必要的。当有多个拐点时, 拐点曲线可以多种斜率变化。拐点的位置可根据目标对象的亮度自动变化。此外,可通过使用图像信号的增益值调整根据由拐点形成的间隔的斜率。根据本发明的示例性实施例的拐点校正在图3、 4、和5中的方框316、 414、和514中被实现。图3中的方框316在数字域中执行拐点校正,并且图4和5中的方框414和514在模拟域中执行拐点校正。在该结构中的控制信号与被计算用于拐点校正的图像信号的增益值对应。同时,在数字域中的拐点校正必须区别于在模拟域中的拐点校正。这是因为在数字域中的信号处理是受限制的。以下,将通过区别数字域和模拟域来描述拐点校正。以下,将参考附图详细描迷拐点校正的操作。图IO是示出根据本发明的示例性实施例通过提出的拐点校正的R、 G、 和B信号的输入(光强)和输出(IRE;无线电工程师学会)之间的关系的曲线图。在图10中,两个拐点被用于R信号、G信号和B信号的每一个。换言之,G曲线1000具有两个标记为a和fl'的拐点,R曲线1010具有两个标记为6和6'的拐点,并且B曲线1020具有两个标记为c和c'的拐点。这里, 对于所有R信号、G信号、和B信号,拐点校正4皮相等地实现。因此,下面将关于G曲线描述拐点校正。同时,在图IO中,0 IRE和120 IRE之间的输出图傳?(言号可被得到。通常,当最高电压电平和最低电压电平被以预定的单位划分时,该单位被称为"IRE"。例如,如果最高电压电平和最低点被归一化为'1,电压,则该1IRE 对应于0.00714V。同时,考虑到上述的黑电平校准,在预定区域1030中R 信号、G信号、和B信号的输入(光强)可与具有理想黑色的黑电平的输出图像信号相匹配。此外,未依照根据本发明被提出的拐点校正的R、 G、和B 曲线被标记为虚线,从而R、 G、和B曲线可被区别于已依照拐点校正的R、 G、和B曲线。参照图10,在G曲线中,第一拐点a匹配于90IRE的输出,并且第二拐点"'匹配于110 IRE的输出。用于G曲线的起始点和第一拐点"之间的第一间隔的第一斜率依据起始点和第一拐点a而被确定。用于第一拐点。和第二拐点a'之间的第二间隔的第二斜率依据起始点 第一拐点a和第二拐点a'而被确定。用于第二拐点。'和饱和点之间的第三间隔的第三斜率依据第二拐点。' 和饱和点而#>确定。确定的斜率的量级以第一斜率、第二斜率、和第三斜率的顺序被确定。 换言之,第一斜率具有最大值,第二斜率具有中间值,并且第三斜率具有最小值。因此,输出图像信号对输入图像信号的改变率在第一间隔中最大,并且输出图像信号对输入图像信号的改变率在第三间隔中最小。可以理解,通过如上所述向间隔提供多种斜率,根据本发明的曲线图可具有不同于传统曲线图的预定增益。图IO的标号1030表示通过拐点校正得到的拐点增益。在传统技术中,与拐点增益对应的输入图像信号区域是饱和区域,并且在饱和区域中的图像不能被表示。参照图10描述的拐点校正可被使用于模拟域中。换言之,没有对于图10中的输入图像信号 限制。然而,如果拐点校正在数字域中被实现,则对输入图像信号有限制。详细说来,由于在数字域中饱和点被预定,所以当拐点校正在数字域中被实现时不可能移动预定的饱和点。因此,不同于参照图IO描述的拐点校正,拐点曲线的斜率不能被精确校准。然而,仅有斜率的调整是受限的,根据在本发明中提出的拐点校正的效果可被充分地得到。在本发明的示例性实施例中提出的拐点校正的搮作中,全部增益和膝光时间通过自动曝光调整被确定并存储。其后,根椐存储的全部增益、存储的曝光时间、和自动白平衡获得图像信号。然后,获得的图像信号的最大R、 G、 和B信号(Rmax、 Gmax、和B鹏)被得到。然后,通过调整曝光时间,最大信号(Rmax、 Gmax、和Bmax )被归一化为预定的榆出值。这里,预定榆出值是能被作为图像信号输出的最大值。例如,如果预定输出值以12比特数字值被实现,预定输出值是则4095。此外,值4095与IOOIRE相对应。当预定最大值是4095时,对R、 G、和B信号的归一化通过下面的等式4被实现。等式4 o' 4095 P广,4095广C鹏具有校正的黑电平的R、 G、和B信号在如上所述的使用全部增益和曝光时间作为基本值的条件下被归一化为预定值。归一化的R、 G、和B信号具有线性曲线。如果对于R信号、G信号、和B信号的每一个,归一化已经被实现,则在预定的拐点,对于归一化的R、 G、和B信号,拐点校正被实现。这对应于用于基于如上所述的拐点将具有单一斜率的曲线改变为具有多种斜率的曲线的操作。如上所述,通过调整R、 G、和B信号的每一个的增益值,根据基于拐点的间隔,多种斜率可被给出。 R信号、G信号、和B信号的每一个的斜率可被定义为等式5。等式5w - g側x2 ^ 0jc406 0x40fl 0x40如果G信号的斜率mG通过等式5被确定,则可通过使用斜率niG计算用于G信号的拐点。此后,基于G信号,用于R信号和B信号的输出数据被计算以校准白平衡。用于R信号和B信号的输出数据根据等式6被计算。等式6图14是示出根据本发明的示例性实施例的用于执行拐点控制的控制过程的流程图。图14示出考虑膝光时间的控制过程的例子。在步骤1410中,自动白平衡功能和自动曝光调整功能被执行。这意味着自动白平衡功能和自动曝光调整功能的使用通常被用于图像处理装置中。在步骤1412中,在自动白平衡功能和自动曝光调整功能在其中被执行的状态中,R增益、G增益、B增益和咏光时间被读取。这里,G增益包括G1增益和G2增益。此后,在步骤1416中,自动白平衡功能和自动膝光调整功能被停止。这意味着在图像处理装置中通常使用的自动白平衡功能和自动曝光调整功能未被使用。在步骤1418中,R增益、G增益、B增益、和咏光时间被校准为预定值。用于R增益、G增益、和B增益的预定值可为0x40(默认值,增益1), 用于曝光时间的预定值可对应于50%。在步骤1420中,根据预定的R、 G、 和B增益以及曝光时间获得图像。在步骤1422中,基于G信号,关于R信号、G信号、和B信号的拐点曲线被分别得到。根据上面提出的等式5,拐点曲线的斜率被计算。如果斜率计算已被完成,则步骤1424被执行以通过使用来自在G拐点曲线中计算出的斜率中的斜率mcj计算与预定参考点(卯IRE )对应的输入数据(拐点)。详细说来,与拐点对应的输入数据值在G拐点曲线中被计算。然后,在步骤1426中,为了校准白平衡,基于G增益,考虑R增益和B增益来计算与输入数据值对应的输出数据值。通过上面提出的等式6可得到输出数据值。上面提到的拐点校正涉及使用拐点曲线的方案。同时,作为另一个用于实现拐点校正的例子,查找表可被用到。这里,用于将允许的输入数据的范围内的输入图像信号与对应的输出图像信号映射的查找表被预先创建。这里, 由于输入图像信号和输出数据之间的关系随曝光时间而改变,所以优选的是根据曝光时间创建查找表。因此,当拐点校正被实现时,将被使用的查找表相应子曝光时间而被确定。查找表的确定与将被使用的拐点曲线的确定相对应。通过确定的查找表得到与输入图像信号相映射的输出图像信号,由此实现拐点校正。 3.伽玛才交正根据本发明的示例性实施例,内插之后通过伽玛校正来处理图像数据。详细说来,通过内插,来自包括于图像数据中的像素中的坏点像素(dead pixel) 被恢复,其后,恢复的图像数据通过伽玛校正而被处理,从而优良图像质量的图像数据可被得到。然而,为了对通过内插被恢复的图像数据执行伽玛校正,增加存储器的大小是必要的。然而,关于由于存储器导致的空间扩展问题可因为芯片集成技术而被解决。通常,需要使用数字操作的伽玛校正以提高图像质量。这原因是基于图像传感器中的显示装置(如,CTR等)的特性。为了消除屏中失真的伽玛信号,必须输入反转对称于失真的伽玛信号的输出的伽玛值,从而伽玛信号的线性可被恢复。这^C称作"伽玛校正"。图ll是用于解释伽玛校正的概念的示图。在图11中,标号1120示出失真的伽玛信号。标号UOO示出为了恢复失真的伽玛信号的线性用于伽玛值的曲线。标号1110示出通过使用曲线1100的伽玛值恢复失真的伽玛信号1120 的线性而得到的伽玛值的直线。因此,在图《象传感器中,输出至显示装置的最终图像信号必须具有图11 中标号1100的特性。换言之,图像传感器必须对输入图像信号执行伽玛校正, 从而与曲线IIOO对应的图像信号被输出。因此,伽玛校正的性能取决于输入图像信号和输出图像信号之间的关系与曲线1100的类似程度。为此,根据本发明的示例性实施例,提出一种用于对坏点像素进行前述内插,其后,对通过内插处理后的图像信号执行伽玛校正的方法。此时,假设输入亮度值是4和12。首先,将描述在传统的方案中,于伽玛校正之后执行内插的情况。通过等式7示出传统的伽玛校正的例子。等式7(4/255)".2〜255=27 (12/255)A2.2-Ix255=63如等式7中所示,如果输入亮度值是4,则通过伽玛校正得到的输出亮度值是27,并且如果输入亮度值是12,则通过伽玛校正得到的输出亮度值是63。因此,如果通过对27和63两者内插而得到的输入亮度值是8,则输出亮度值通过等式8被得到。 等式8(27 + 63)/2 = 45因此,通过传统的方案,对应于输入亮度值8,最终能得到的输出亮度值变为45。下面,根据本发明的示例性实施例,将描述内插之后执行伽玛校正的情况。对于输入亮度值4和12而实现的内插可被表示为等式9。等式9(4 + 12)/2 = 8对通过内插得到的输入亮度值8的伽玛校正通过等式10来实现。 等式IO(8/255)".2、255-53如等式10中所示,当输入亮度值是8时,通过伽玛校正得到的输出亮度值是53。因此,当关于输入亮度值8将通过传统方案得到的输出亮度值与根据本发明的示例性实施例的输出亮度值比较时,根据本发明的示例性实施例的输出亮度值被提高了6.2亮度值。以下,才艮据本发明的示例性实施例,将参照附图描述内插和伽玛校正。图12是示出才艮据本发明的示例性实施例的将被得到的伽玛曲线的示图。标号1200指示理想伽玛曲线,标号1210指示根据伽玛校正的实际伽玛曲线。这里,可理解以标号1200和1210示出的伽玛曲线并不完全彼此匹配。这是因为实际伽玛曲线不能够通过与所有输入图像信号对应的输出图像信号而被得到。换言之,这是因为实际伽玛曲线可通过釆样输入图像信号,其后通过使用经采样处理的输入图像信号和与输入图像信号对应的输出图像信号而被得到。图13是示出通过放大图12的标号1220的区域得到的伽玛曲线的示图。通过图13,实际伽玛曲线和理想伽玛曲线之间的差别被更详细地示出。在图13中,像素值(Vinb),其为两点的像素值(Vina,Vinc)的中间值,通过内插过程被内插,其后,对内插的像素值(vinb)实现伽玛校正。参照图13,内插和像素校正部分212根据预定输入两点的像素值(Vina,Vin_c)内插中间像素值(Vin_b)。如上所述,对于本领域技术人员,用于通过使用两像素值而得到中间像素值的内插是众所周知的。例如,通过两预定点的像素值(Vin—a,Vin—c)的平均值可得到中间像素值(Vin—b)。此后,两预定点的像素值(Vin—a,Vin—c)和通过内插得到的像素值(Vin—b) 在彩色校正过程之后被发送到伽玛校正部分216。在预定的伽玛曲线上,伽玛校正部分216得到与点"映射的关于像素值(Vina)的输出(V。uta)、和与点c映射的关于像素值(Vinc)的输出(V。utc)。同时,关于通过内插得到的像素(Vinb),可得到与点6映射的输出(V。ut—b)。换言之,可以理解,与通过内插得到的输入值相对应,存在于伽玛曲线1210上的值被输出。然而,当伽玛校正被按照传统方案先进行时,关于与像素值(Vina)对应的输出值,发生图12中示出的误差。换言之,当关于两预定点的像素值(Vin—a,Vinc)实现伽玛校正时,像素值(V。uta,V。ut—J作为输出值被得到。此后,通过使用输出值(V。uta,V。ut—c)实现内插,从而得到与点6映射的关于像素值(Vin—b)的输出值(V。utb,)。此时,在与点6映射的输出值(V。utb)和输出值(V。utb,)之间发生误差。因此,在使用伽玛曲线的伽玛校正中,可注意到 插之后伽玛校正比伽玛校正之后内插更理想。如上所述,本发明的示例性实施例提出黑电平校正、拐点校正、和伽玛校正以提高图像质量。因此,可得到下面的效果。首先,通过使用光不易照射到其上的由于图像传感器的结构而出现的区域来测量黑电平,并且测量的黑电平被反映到输入图像信号,从而使希望的黑电平图像能够实现。其次,通过拐点校正减少重影出现的饱和区域,从而使具有相对提高的图像质量的图像能够实现。第三,对通过内插处理的图像信号实现伽玛校正以减少由传统的伽玛校正引起的误差,从而使具有提高的图像质量的图像能够实现。虽然已参照发明的确定的示例性实施例示出并描述了发明,但是本领域技术人员应理解在不脱离发明的精神和范围的情况下,可做多种形式和细节上的修改。因此,发明的范围不应受限于示例性实施例,但是由所附的权利要求及其等同物所限定。

Claims (15)

1. 一种用于数码相机的图像处理方法,该数码相机通过使用预定的曝光时间拍摄目标物体、将光信号转换成为图像信号、并且输出图像信号,该图像处理方法包括: 测量由暗电流导致的黑电平值,并且参照测量的黑电平值校准图像信号的黑电平; 将原色信号划分为区段,并且提供不同的增益值给区段,从而参照提供给至少一个包括具有校准的黑电平的原色信号的区段的增益值对图像信号执行拐点校正; 接收通过拐点校正处理的图像信号,并通过内插恢复在图像信号中的坏点像素; 对坏点像素在其中被恢复的图像信号执行伽玛校正; 在通过伽玛校正处理的图像信号中将亮度分量和色度分量分开,并输出该亮度分量和色度分量; 接收亮度分量,并输出用于黑电平校准和拐点校正的曝光时间;以及接收色度分量并输出用于拐点校正的增益值, 其中, An image processing method for a digital camera, a digital camera of the target object by using a predetermined exposure time, the optical signal is converted into an image signal, and outputs an image signal, the image processing method comprising: measuring a dark current caused by the black level value of the black level and the black level value of the calibration image signal of the reference measurement; the primary color signals divided into segments, and to provide different gain values ​​section, thereby to at least one reference comprises a calibrated the gain value of the primary color signals section black level performing knee correction on the image signal; receives the image signal processed by knee correction, and restored by interpolation dead pixels in the image signal of the pixel; dead pixels of the pixel is restored therein performing gamma correction of the image signal; the luminance and chrominance components in the image signal separately gamma correction processing, and outputs the luminance and chrominance components; receiving a luminance component and outputs a black level calibration, and knee correction exposure time; and receiving a chrominance component and outputs a knee correction gain value, wherein 当至少一个预定的参考亮度被采用作为拐点时,区段包括通过拐点区分的亮度范围,并随着区段接近白饱和时间点而具有相对小的增益值。 When at least a predetermined reference luminance is employed as the inflection point, the inflection point by distinguishing section comprising luminance range, and a white saturation point as close to the time zone having a relatively small gain value.
2、 如权利要求1所述的图像处理方法,还包括参照增益值对图像信号执行白校正。 2, the image processing method as claimed in claim 1, further comprising performing the white reference correction gain for the image signal.
3、 如权利要求1所述的图像处理方法,其中,测量黑电平值的步骤包括: 当拍摄目标物体时,参考从光未入射到其上的至少一个像素提供的图像信号。 3, the image processing method as claimed in claim 1, wherein the step of measuring the black level value comprises: when photographing the target object, the reference light is not incident thereon from the image signals provided by the at least one pixel on.
4、 如权利要求1所述的图像处理方法,其中,当输出的图像信号的最大亮度级别是255时,黑电平校正包括执行计算:<formula>formula see original document page 2</formula>其中,Inlmg[y][x]表示图像信号的输入亮度值,Outlmg[y] [x]表示图像信号的输出亮度值,Low表示测量的黑电平值。 4, the image processing method as claimed in claim 1, wherein, when the maximum luminance level of the image signal output 255, the black level correction includes performing calculation: <formula> formula see original document page 2 </ formula> where , Inlmg [y] [x] represents the input luminance value of the image signal, Outlmg [y] [x] represents an output luminance value of the image signal, Low denotes the measured value of the black level.
5、 如权利要求1所述的图像处理方法,还包括在伽玛校正之前执行用于将包括恢复的坏点像素的图像信号校正为标准图像信号的彩色校正。 5, the image processing method as claimed in claim 1, further comprising, before performing gamma correction for the image signal correction dead pixels comprising pixel color calibration standard is restored image signal.
6、 如权利要求1所述的图像处理方法,其中,对模拟图4^f言号执行黑电平校准和拐点校正。 6, the image processing method as claimed in claim 1, wherein performing black level correction of knee alignment and analog FIG 4 ^ f statement number.
7、 一种用于数码相机的图像处理设备,该数码相机通过使用预定的曝光时间拍摄目标物体、将通过拍摄应用的光信号转换成为图像信音、并且输出图像信号,该图像处理设备包括:图像信号校准部分,用于参照由暗电流导致的黑电平值才兔准图像信号的黑电平,并且提供不同的增益值到区分原色信号的区段,从而参照提供到至少一个包括具有校准的黑电平的原色信号的区段的增益值对^^f言号执行拐点校正;内插和像素校正部分,用于接收通过拐点校正处理的图像^言号,并通过内插恢复包括在图^象信号中妁坏点像素;伽玛校正部分,用于对坏点像素在其中被恢复的图像信号执行伽玛校正; 色彩空间变换部分,用于在通过伽玛校正处理的图傳?f言号'中将亮度分量和色度分量分开,并输出亮度分量和色度分量;曝光调节部分,用于接收亮度分量,并 7. A digital camera for the image processing apparatus, the digital camera of a target object by using a predetermined exposure time, converting the optical signal will be captured by the application of sound image signals, and outputs an image signal, the image processing apparatus comprising: the image signal calibration section for registering the images before rabbit black level reference signal value caused by the dark current of the black level and gain values ​​to provide a different primary color signals distinguishing section, so that reference is provided to include at least one calibration the gain value of the segment of primary color signals for a black level made No. performing knee correction ^^ f; and the interpolated pixel correction section for receiving the image correction processing by the knee ^ Introduction number and by interpolating the recovery comprises FIG matchmaker ^ dead pixels in the pixel image signal; gamma correction section for dead pixels in the pixel image signal is restored where gamma correction is performed; color space conversion section for gamma correction processing by the image transmission? f statement number 'in the separated luminance and chrominance components, and outputting the luminance and chrominance components; exposure adjusting section for receiving the luminance component, and 出用于黑电平校准和拐点校正的曝光时间;以及白平衡校准部分,用于接收色度分量,并输出用于拐点4交正的增益值, 其中,当至少一个预定的参考亮度被采用为拐点时,区段包括通过拐点区分的亮度范围,并随着区段接近白饱和时间点而具有相对小的增益值。 A black level for calibration and knee correction of the exposure time; and a white balance adjustment section, for receiving a chrominance component, and outputs a positive inflection point cross gain value 4, wherein, when at least a predetermined reference luminance is employed It is the inflection point, the inflection point by distinguishing section comprising luminance range, and a white saturation point as close to the time zone having a relatively small gain value.
8、 如权利要求7所迷的图像处理设备,其中,测量黑电平植包括:当拍摄目标物体时,参考包括从光未入射到其上的至少一个像素的图像信号。 8, the image processing apparatus as claimed in fans in claim 7, wherein the plant comprises measuring the black level: when photographing the target object, including the reference light is not incident from the at least one pixel of the image signal thereon.
9、 如权利要求8所述的图像处理设备,其中,关于图像,号的白校正包括参考增益值。 9. The image processing apparatus according to claim 8, wherein, on the white image, includes a number of reference correction gain value.
10、 如权利要求9所述的图像处理设备,其中,图像信,校正部分包括: 模拟/数字转换器,用于将模拟信号转换成数字信号;,黑电平校准部分,用于参考测量的黑电平值校准数字图像倌号的黑电平; 以及拐点/白校准部分,用于从区段中确认包括具有校准的黑电平的图像信号的亮度的区段,并且参考提供给确认的区段的增益值放大图像狺号。 10, the image processing apparatus as claimed in claim 9, wherein the image signal correction section includes: an analog / digital converter for converting an analog signal into a digital signal;, BLC portion for reference measurement a digital black level value of the calibration image number groom black level; and inflection / white calibration section, for confirming an image comprising black level signal having a calibrated luminance section from a section, and provided with reference to the confirmation gain section enlarged image snarling number.
11、 如权利要求9所述的图像处理设备,其中,图像信号校准部分包括: 黑电平校准部分,用于参考测量的黑电平值校准图像信号的黑电平;拐点/白校准部分,用于从区段中确认包括具有校准的黑电平的图像信号的亮度的区段,并且参考提供给确认的区段的增益值放大图像信号;以及模拟/数字转换器,用于将通过拐点/白校准处理的模拟图像信号转换成数字图像信号。 11, the image processing apparatus as claimed in claim 9, wherein the image signal calibration section comprises: BLC portion for the black level values ​​of the calibration image black level signal reference measurement; inflection / white calibration portion, for confirming the brightness of the black level comprises an image signal having a calibrated section from the section, and the reference gain value provided to confirm an image signal amplifying section; and an analog / digital converter for converting an inflection point by analog image signal / the white calibration process into a digital image signal.
12、 如权利要求9所述的图像处理设备,其中,图像信号校准部分包括: 黑电平校准部分,用于参考测量的黑电平值校准图像信号的黑电平; 拐点/白校准部分,用于从区段中确认包括具有校准的黑电平的图像信号的亮度的区域,并且参考提供给确认的区段的增益值放大图像信号;模拟/数字转换器,用于将通过拐点/白校准处理的模拟图像信号转换成数字图像信号;以及白校准部分,用于参考增益值对数字图像信号执行白校准。 12. The image processing apparatus as claimed in claim 9, wherein the image signal calibration section comprises: BLC portion for the black level values ​​of the calibration image black level signal reference measurement; inflection / white calibration portion, for acknowledgment from section comprising luminance region having a calibrated black level of the image signal, and the reference gain value provided to confirm an image signal amplifying section; an analog / digital converter, via an inflection point for / white calibration process analog image signal into a digital image signal; and a white calibration section for performing a white reference value of the gain calibration of the digital image signal.
13、 如权利要求7所述的图像处理设备,其中,测量黑电平值的步骤包括在目标对象的拍摄中参考来自光未照射到其上的至少一个像素的图像信号。 13. The image processing apparatus as claimed in claim 7, wherein the step of measuring the black level reference value comprises the target object in the captured light is not irradiated to the at least one pixel of the image signal thereon from.
14、 如权利要求7所述的图像处理设备,其中,当图像信号的输出最大亮度等级是255时,黑电平校准包括执行计算:0幽g[y〗[x] ,g【y〗ML鼎x255 255-Low其中,Inlmg[y][x]表示图像信号的输入亮度值,Outlmg[y][x]表示图像信号的输出亮度值,Low表示测量的黑电平值。 14. The image processing apparatus as claimed in claim 7, wherein, when the maximum luminance level output image signal 255, the black level calibration comprises performing calculation: 0 quiet G [y〗 [x], g [y ML〗 Ding x255 255-Low wherein, Inlmg [y] [x] represents the input luminance value of the image signal, Outlmg [y] [x] represents an output luminance value of the image signal, Low denotes the measured value of the black level.
15、 如权利要求7所述的图像处理设备,还包括:彩色校正部分,用于像素的图;信号校正;标准图像信号。 Signal correction;; standard color image signal correcting section, the pixel in FIG: 15, the image processing apparatus as claimed in claim 7, further comprising. 、、 N ,, N
CN 200510080038 2004-06-29 2005-06-28 Apparatus and method for improving image quality in image sensor CN100399798C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2004-0049656 2004-06-29
KR20040049656A KR100617781B1 (en) 2004-06-29 2004-06-29 Apparatus and method for improving image quality in a image sensor

Publications (2)

Publication Number Publication Date
CN1717006A CN1717006A (en) 2006-01-04
CN100399798C true CN100399798C (en) 2008-07-02

Family

ID=35505240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510080038 CN100399798C (en) 2004-06-29 2005-06-28 Apparatus and method for improving image quality in image sensor

Country Status (3)

Country Link
US (1) US7639292B2 (en)
KR (1) KR100617781B1 (en)
CN (1) CN100399798C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588505B (en) 2008-05-21 2011-05-11 英华达(南京)科技有限公司 Method for correcting dead pixel on digital camera device and digital camera device with dead pixel automatic-correction function

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192130A1 (en) * 2000-03-28 2008-08-14 Mtekvision Co., Ltd. Method And Apparatus For Compensating Black Level By Dark Current Of Image Sensor
AT473062T (en) 2004-07-23 2010-07-15 Halton Group Ltd Oy Improvements for control of exhaust systems
WO2006098374A1 (en) * 2005-03-15 2006-09-21 Omron Corporation Image pickup device, signal processing device and signal processing method
US20070242153A1 (en) * 2006-04-12 2007-10-18 Bei Tang Method and system for improving image region of interest contrast for object recognition
JP4616794B2 (en) * 2006-05-18 2011-01-19 富士フイルム株式会社 Image data noise reduction apparatus and control method therefor
KR100696165B1 (en) * 2006-08-28 2007-03-20 엠텍비젼 주식회사 Image brightness compensating apparatus and method, recorded medium recorded the program performing it
US9137466B2 (en) * 2006-08-30 2015-09-15 Micron Technology, Inc. Image sensor defect identification using optical flare
US20080055434A1 (en) 2006-08-31 2008-03-06 Micron Technology, Inc. Image sensor defect identification using blurring techniques
KR100878305B1 (en) * 2006-10-20 2009-01-14 삼성전자주식회사 Low noise cmos image sensor with low power consumption
WO2008061567A1 (en) * 2006-11-24 2008-05-29 Robert Bosch Gmbh Process, apparatus and computer program for enhancing detail visibility in an input image
JP4428389B2 (en) * 2007-01-25 2010-03-10 船井電機株式会社 Information output unit and electronic device
US20080239111A1 (en) * 2007-03-26 2008-10-02 Micron Technology, Inc. Method and appratus for dark current compensation of imaging sensors
JP4992507B2 (en) 2007-03-28 2012-08-08 ソニー株式会社 Imaging apparatus, video signal processing apparatus, and video signal processing method
CN100562063C (en) 2007-05-22 2009-11-18 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Image signal correcting method
US7733391B2 (en) * 2007-05-29 2010-06-08 Nokia Corporation Method and system for black-level correction on digital image data
CN101119502B (en) 2007-08-22 2010-06-16 北京中星微电子有限公司 Image processing device and image processing method
CN101500171A (en) 2008-01-28 2009-08-05 鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司 Video processing apparatus and method
WO2009102174A1 (en) * 2008-02-15 2009-08-20 Semisolution Co., Ltd. Method for performing digital processing on an image signal output from ccd image sensors
KR100900678B1 (en) * 2008-02-15 2009-06-01 한양대학교 산학협력단 Image quality enhancement method using dynamic range segmentation
US20090251572A1 (en) * 2008-04-02 2009-10-08 Chi-Shao Lin Efficient wide-range and high-resolution black level and offset calibration system
JP4743243B2 (en) 2008-09-08 2011-08-10 ソニー株式会社 Imaging apparatus, black level adjusting method and program
JP5195395B2 (en) * 2008-12-19 2013-05-08 株式会社リコー Image processing apparatus, image processing method, image processing program, and recording medium
KR101470019B1 (en) * 2008-12-26 2014-12-05 엘지이노텍 주식회사 Method for detecting and correcting bad pixels in image sensor
CN102342089A (en) * 2009-03-02 2012-02-01 弗莱克斯电子有限责任公司 Calibration techniques for camera modules
JP5326793B2 (en) * 2009-05-14 2013-10-30 ソニー株式会社 Vein imaging device, vein image interpolation method and program
CN101909144B (en) 2009-06-08 2012-06-27 华晶科技股份有限公司 Image data correction method
CN102469243B (en) * 2010-11-04 2014-12-17 卡西欧计算机株式会社 Image capturing apparatus capable of adjusting white balance
CN102426698A (en) * 2011-11-04 2012-04-25 中国航空工业集团公司洛阳电光设备研究所 Method for enhancing infrared image
WO2013168505A1 (en) * 2012-05-10 2013-11-14 富士フイルム株式会社 Imaging device and signal correction method
SG10201703538UA (en) * 2012-10-17 2017-06-29 Bio-Rad Laboratories Inc Image capture for large analyte arrays
WO2014141561A1 (en) * 2013-03-13 2014-09-18 富士フイルム株式会社 Imaging device, signal processing method, and signal processing program
CN103428522B (en) * 2013-08-07 2017-04-19 北京汉邦高科数字技术股份有限公司 Method for improving image quality at low illumination level of web camera
KR20150109063A (en) * 2014-03-19 2015-10-01 삼성전자주식회사 electronic device for processing image and method thereof
US9734703B1 (en) 2016-06-23 2017-08-15 Nxp B.V. Sensor apparatuses and methods
CN106506905B (en) * 2016-10-20 2019-07-16 湖南国科微电子股份有限公司 Camera lens shadow correction method
CN107613192A (en) * 2017-08-09 2018-01-19 深圳市巨龙创视科技有限公司 A kind of Digital Image Processing algorithm based on video camera module
CN107592472B (en) * 2017-10-20 2019-12-20 思特威(上海)电子科技有限公司 Imaging correction method of multi-exposure image sensor
DE102017219276A1 (en) * 2017-10-26 2019-05-02 Continental Automotive Gmbh Exposure control for a camera with non-linear characteristic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357279A (en) 1990-03-26 1994-10-18 Sony Corporation Automatic knee control circuit
US5768442A (en) 1994-10-11 1998-06-16 Samsung Electronics Co., Ltd. Digital signal conversion method and apparatus for converting photoelectrically converted video signals
CN2299425Y (en) 1996-03-06 1998-12-02 敦南科技股份有限公司 High performance contact imaging sensor
WO2003105467A1 (en) 2002-06-10 2003-12-18 ソニー株式会社 Digital still camera apparatus, video camera apparatus, and information terminal apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049395B2 (en) * 1978-01-13 1985-11-01 Hitachi Denshi Kk
US5270802A (en) * 1989-04-14 1993-12-14 Hitachi, Ltd. White balance adjusting device for video camera
DE69116905T2 (en) * 1990-03-13 1996-06-13 Sony Corp Shading effect correction device
US5221963A (en) * 1990-03-31 1993-06-22 Minolta Camera Kabushiki Kaisha Video camera having a video signal processing apparatus
US6720999B1 (en) * 1999-03-31 2004-04-13 Cirrus Logic, Inc. CCD imager analog processor systems and methods
US7102669B2 (en) * 2002-04-02 2006-09-05 Freescale Semiconductor, Inc. Digital color image pre-processing
US7508421B2 (en) * 2002-06-24 2009-03-24 Fujifilm Corporation Image pickup apparatus and image processing method
JP4298253B2 (en) * 2002-10-01 2009-07-15 キヤノン株式会社 Image processing method and apparatus, and imaging apparatus
US7236190B2 (en) * 2002-10-31 2007-06-26 Freescale Semiconductor, Inc. Digital image processing using white balance and gamma correction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357279A (en) 1990-03-26 1994-10-18 Sony Corporation Automatic knee control circuit
US5768442A (en) 1994-10-11 1998-06-16 Samsung Electronics Co., Ltd. Digital signal conversion method and apparatus for converting photoelectrically converted video signals
CN2299425Y (en) 1996-03-06 1998-12-02 敦南科技股份有限公司 High performance contact imaging sensor
WO2003105467A1 (en) 2002-06-10 2003-12-18 ソニー株式会社 Digital still camera apparatus, video camera apparatus, and information terminal apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
数字照相机中的白平横和彩色校正. 施远征.电视技术,第2001年卷第7期. 2001

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588505B (en) 2008-05-21 2011-05-11 英华达(南京)科技有限公司 Method for correcting dead pixel on digital camera device and digital camera device with dead pixel automatic-correction function

Also Published As

Publication number Publication date
US20050285952A1 (en) 2005-12-29
KR20060000715A (en) 2006-01-06
KR100617781B1 (en) 2006-08-28
US7639292B2 (en) 2009-12-29
CN1717006A (en) 2006-01-04

Similar Documents

Publication Publication Date Title
US7911507B2 (en) Solid-state image pickup device in which the saturated signal quantity of a W pixel is controlled
JP4293174B2 (en) Imaging apparatus and image processing apparatus
KR100415681B1 (en) Improved dark frame subtraction
US7102669B2 (en) Digital color image pre-processing
JP4004943B2 (en) Image composition method and imaging apparatus
US7460728B2 (en) Image processing apparatus and method, recording medium, and program
US7508975B2 (en) Image sensor
KR101464750B1 (en) Solid-state imaging device, signal processing device and signal processing method for solid-state imaging device, and imaging apparatus
JPWO2002056604A1 (en) Image processing device
JP4497759B2 (en) Image processing apparatus and processing method thereof
US7050098B2 (en) Signal processing apparatus and method, and image sensing apparatus having a plurality of image sensing regions per image frame
JP4487640B2 (en) Imaging device
US8014626B2 (en) Image processing device, image processing method, and program
US8547451B2 (en) Apparatus and method for obtaining high dynamic range image
US5543837A (en) Dual-type imaging device having multiple light sensitive elements
JP4210021B2 (en) Image signal processing apparatus and image signal processing method
US8130292B2 (en) Scene illumination adaptive lens shading correction for imaging devices
EP3404909B1 (en) Efficient dark current subtraction in an image sensor
CN1265621C (en) Defect pixel correction of solid state image sensor and information forming method and imaging device
JP4773179B2 (en) Imaging device
US8179445B2 (en) Providing improved high resolution image
JP3788393B2 (en) Digital still camera device, video camera device and information terminal device
JP4051674B2 (en) Imaging device
US7602438B2 (en) Method and apparatus for capturing high quality long exposure images with a digital camera
WO2009064537A1 (en) Method and system for noise management for spatial processing in digital image/video capture systems

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted