CN100395857C - Method for preparing carbon nanotube on glass substrates - Google Patents

Method for preparing carbon nanotube on glass substrates Download PDF

Info

Publication number
CN100395857C
CN100395857C CN 200410000726 CN200410000726A CN100395857C CN 100395857 C CN100395857 C CN 100395857C CN 200410000726 CN200410000726 CN 200410000726 CN 200410000726 A CN200410000726 A CN 200410000726A CN 100395857 C CN100395857 C CN 100395857C
Authority
CN
China
Prior art keywords
glass substrate
carbon nanotubes
depositing
film
fluoride
Prior art date
Application number
CN 200410000726
Other languages
Chinese (zh)
Other versions
CN1558441A (en
Inventor
任延来
丹 朱
李德杰
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CN 200410000726 priority Critical patent/CN100395857C/en
Publication of CN1558441A publication Critical patent/CN1558441A/en
Application granted granted Critical
Publication of CN100395857C publication Critical patent/CN100395857C/en

Links

Abstract

一种在玻璃衬底上制备碳纳米管的方法,属于碳纳米管生长技术领域,特别涉及碳纳米管场发射阴极的制备。 A method for preparing carbon nanotubes on a glass substrate, belonging to the technical field growing carbon nanotubes, carbon nanotube field emission cathode prepared particularly relates. 本发明以玻璃作衬底,先在玻璃衬底上沉积一层II主族金属或稀土金属的氟化物薄膜,再在其上沉积铁、钴、镍、钯或这些材料组成的合金薄膜作为催化剂,然后用常规生长技术在其上生长碳纳米管;或先在玻璃衬底上沉积一层铁、钴、镍、钯或这些材料的合金薄膜作为催化剂,再在其上沉积一层II主族金属或稀土金属的氟化物薄膜,然后在其上生长碳纳米管,所述生长碳纳米管时的衬底温度为400~650℃。 In the present invention as a glass substrate, depositing a first layer of II metal or rare earth metal fluoride thin film on a glass substrate, and then depositing the alloy film on iron, cobalt, nickel, palladium or combinations of these materials as the catalyst and then by conventional techniques in growing carbon nanotubes grown thereon; or first depositing a layer on a glass substrate of iron, cobalt, nickel, palladium, or an alloy film of these materials as a catalyst, and then depositing thereon a layer of a group II or rare earth metal fluoride thin film, and then the carbon nanotubes grown thereon, the substrate temperature during the growth of the carbon nanotubes 400 ~ 650 ℃. 本方法成功地解决了在低温条件下碳纳米管生长问题,可以实现在大面积衬底上且大批量生产,由于以玻璃为衬底,可明显降低生产成本。 This method successfully solved the carbon nanotube growth under low temperature conditions in question, it may be implemented on a large area substrate, and mass production, since the glass substrate, can significantly reduce production costs.

Description

一种在玻璃衬底上制备碳纳米管的方法 A method for preparing carbon nanotubes on glass substrates

技术领域 FIELD

本发明属于碳纳米管生长技术领域,特别涉及碳纳米管场发射阴极的制备。 The present invention belongs to the technical field grown carbon nanotubes, carbon nanotube field emission cathode prepared particularly relates. 技术背景 technical background

碳纳米管的一个重要应用是制作场发射阴极,这种阴极可以用在多种霈要电子流的器件和装置中,如真空微波管、电子加速器、放电管和平板显示器件中,其中平板显示被认为是最有前途的方向。 One important application is the production of carbon nanotubes field emission cathode, such a cathode may be used in various devices and apparatus to Pei electron stream, such as vacuum microwave tube, electron accelerators, the discharge tube and a flat panel display device, wherein the flat panel display It is considered the most promising direction. 目前制作碳纳米管场发射阴极的方法大致分为两种, 一种是在衬底上先沉积一层铁、钴或镍等薄膜作为催化剂,然后直接生长碳纳米管,并且可以形成和铁、钴,镍薄膜相同的图形。 Carbon nanotube field emission cathode current production method is generally divided into two types, one is on the substrate before deposition layer of iron, cobalt or nickel thin film as a catalyst, and then directly growing carbon nanotubes, and may be formed and iron, cobalt, like nickel thin film pattern. 另一种方法是将制成的碳纳米管粉体用印刷、电镀等方法在衬底上制作出需要的图形。 Another method is powder made of carbon nanotubes printing, plating or the like to produce the desired pattern on the substrate. 两种方法各有优缺点,都被较为广泛地采用。 Both methods have advantages and disadvantages, have been widely employed.

在直接生长方式中, 一般需要衬底温度达到摄氏700度,故多用硅作为衬底,这严重地限制了其实际应用。 Growth in the direct mode, generally requires the substrate temperature to 700 degrees Celsius, so much as a silicon substrate, which severely limits its practical application. M然也有用玻璃作衬底,在600度以下直接生长碳纳米管的报道,但生长出的质量往往较差,发射电流的大小和发射的均匀性等都不十分理想。 Then M is also useful as a glass substrate, the direct growth of carbon nanotubes 600 degrees of coverage, but the growth of the often poor quality, the size and uniformity of the emission current emitted and the like are not very desirable. 已有技术中,所用的衬底结构如图1所示,其中11为介质衬底, 一般为硅材料。 Prior art, the substrate structure shown in Figure 1 as used, wherein the dielectric substrate 11, typically silicon. 12为铁、钴、镍等催化剂薄膜。 12 iron, cobalt, nickel and the like catalyst thin film.

发明内容 SUMMARY

本发明的目的是提供一种在玻璃衬底上低温沉积生长碳纳米管的方法,生长出的碳纳米管质量可以达到用硅作衬底并在700度以上生长出的碳纳米管水平。 Object of the present invention is to provide a method for low temperature deposition on a glass substrate, growth of carbon nanotubes, carbon nanotubes grown carbon nanotubes can reach the level of quality of silicon as the substrate and grown at 700 degrees. 从而为碳纳米管的实际 Thus the actual carbon nanotubes

应用开辟一条可行的路线。 Application development a feasible route.

本发明的技术方案如下: Aspect of the present invention is as follows:

一种在玻璃衬底上制备碳纳米管方法,其特征在于该方法按如下步骤进行:先在玻璃衬底上沉积一层II主族金属钙、镁、锶、钡的氟化物或稀土金属的氟化物薄膜,再在其上沉积铁、钴、镍、钯或这些材料组成的合金薄膜作为催化剂,然后用常规生长技术在其上生长碳纳米管;或先在玻璃衬底上沉积一层铁、钴、镍、钯或这些材料的合金薄膜作为催化剂,再 A process for preparing a carbon nanotube method on a glass substrate, wherein the method proceeds as follows: first layer deposited on a glass substrate II metal calcium, magnesium, strontium, barium or rare earth fluoride fluoride film, and then the alloy thin film is deposited thereon iron, cobalt, nickel, palladium or combinations of these materials as a catalyst, and then carbon nanotubes are grown by a conventional growth techniques thereon; or first depositing a layer of iron on a glass substrate , cobalt, nickel, palladium, or an alloy film of these materials as a catalyst, then

在其上沉积一层II主族金属钙、镁、锶、钡或稀土金属的氟化物薄膜,然后在其上生长碳纳 Depositing thereon a layer of a group II metal, calcium, magnesium, strontium, barium or a rare earth metal fluoride thin film, which is then grown on the carbon nano

米管,所述生长碳纳米管时的衬底温度为400〜650'C。 Nanotubes, the substrate temperature during the growth of the carbon nanotube 400~650'C.

在本发明所述的方法中,当采用先沉积氟化物薄膜后沉积催化剂薄膜时,其氟化物薄膜厚度在10纳米到1微米的范围内,催化剂薄膜厚度在5纳米到100纳米的范围内。 In the method according to the present invention, when a thin film is deposited after the first deposition of the catalyst a fluoride film having a film thickness of the fluoride in the range of 10 nm to 1 m, the film thickness of the catalyst in the range of 5 nanometers to 100 nanometers. 若先沉积催化剂薄膜,后沉积氟化物薄膜时,其氟化物薄膜厚度在1纳米到20纳米的范围内,催化剂薄膜厚度在5纳米到1微米的范围内。 If the first catalyst deposited film, a fluoride film after deposition, which is a fluoride film thickness in the range of 1 nm to 20 nm, the film thickness of the catalyst in the range of 5 nm to 1 micron.

本发明与现有技术相比,具有以下优点及突出性进步:本方法成功地解决了长期以来困 Compared with the prior art the present invention has the advantage of projecting and Progress: This method successfully to solve the long trapped

扰技术界的低温碳纳米管生长问题,由于以普通的玻璃作衬底,(可在低于普通玻璃的软化点的温度下生长性能良好的碳纳米管),可以解决在大面积衬底上生长碳纳米管且连续化大生产的问题,从而可有效降低生产成本。 Low carbon nanotube growth technology sector interference problem, since ordinary glass as the substrate, (good growth performance may be lower than the softening point temperature of carbon nanotubes ordinary glass), it can be resolved on a large area substrate and continuously growing the carbon nanotubes of the large-scale production problems, which can effectively reduce the production cost. 附图说明 BRIEF DESCRIPTION

图1为现有技术中以硅作衬底的带有铁、钴或镍薄膜的衬底结构图。 FIG 1 is a configuration diagram of a substrate with iron, cobalt or nickel thin film of the prior art for silicon substrate.

图2为本发明的以玻璃作衬底带有氟化物薄膜的衬底结构图。 FIG 2 of the present invention to a glass substrate as the substrate having a fluoride thin film structure of FIG. 图3为本发明的另一种衬底结构图。 Another substrate structure FIG. 3 of the present invention. 具体实施方式 Detailed ways

本发明的核心是控制用于碳纳米管生长的催化剂金属薄膜的表面状态。 The core of the present invention is to control the surface state of the catalyst for carbon nanotube growth of the metal thin film. 即先在玻璃衬底上沉积一层II主族金属钙、镁、锶、钡的氟化物或稀土金属的氟化物薄膜,其氟化物薄膜的厚度一般为10纳米到1微米的范围内,再在其上沉积铁、钴、镍、钯或这些材料组成的合金薄膜作为催化剂,催化剂薄膜的厚度一般为5纳米到100纳米;然后用常规生长技术在其上生长碳纳米管。 That is, first depositing a layer of a group II metal, calcium, magnesium, strontium, barium fluoride or rare earth metal fluoride thin film on a glass substrate, the thickness of the fluoride thin film which is generally in the range of 10 nm to 1 micron, and then in the alloy thin film is deposited thereon iron, cobalt, nickel, palladium or combinations of these materials as the catalyst, the film thickness of the catalyst is generally 5 nm to 100 nm; and then by conventional techniques growing carbon nanotubes grown thereon. 如图2所示,其中21为衬底,以玻璃为衬底。 2, wherein the substrate 21 to glass substrate. 22为氟化物薄膜,23为铁、 钴、镍、鈀等催化剂薄膜。 Fluoride film 22, 23 iron, cobalt, nickel, palladium catalyst such as a thin film. 氟化钙、氟化锶、氟化镁、氟化钡或氟化稀土等的薄膜表面非常粗糙,存在横向尺寸为数纳米到数十纳米的起伏。 Film surface calcium fluoride, strontium fluoride, magnesium fluoride, barium fluoride or rare earth fluoride is very rough, the transverse dimension of the presence of several nanometers to several tens of nanometers undulations. 这种起伏使得沉积在其上的催化剂金属薄膜呈非连续状态,非常有利于碳纳米管的生长,可以大大降低生长时的衬底温度。 This fluctuation makes the deposition of the catalyst on which the metal thin film in a non-continuous state, is conducive to the growth of carbon nanotubes, can greatly reduce the substrate temperature during the growth. 当衬底温度下降到低于普通玻璃软化点的温度(大约550度)时仍能正常生长。 When the substrate temperature decreases to a temperature below the softening point of common glass (approximately 550 degrees) can still grow normally.

本发明另一种方法是先在玻璃衬底上沉积一层铁、钴、镍、钯或这些材料的合金薄膜作为催化剂,催化剂薄膜的厚度一般为5纳米到1微米;再在其上沉积一层II主族金属钙、镁、 锶、钡或稀土金属的氟化物薄膜,氟化物薄膜的厚度一般为1纳米到20纳米之间;然后用常规生长技术在其上生长碳纳米管,如图3所示。 Another method of the present invention is to deposit a layer of iron, cobalt, nickel, palladium, or an alloy film of these materials as a catalyst on a glass substrate, the film thickness of the catalyst is generally 5 nm to 1 micron; a redeposited thereon layer II metal calcium, magnesium, strontium, barium or a rare earth metal fluoride thin film, the thickness of the fluoride thin film is generally between 1 nanometer to 20 nanometers; and then the carbon nanotubes grown by a conventional growth techniques in which, as shown in 3 shown in FIG. 该方法中,催化剂薄膜在氟化物薄膜之下,其中31为玻璃衬底,32为催化剂薄膜,33为氟化物薄膜。 In this method, a catalyst film under the fluoride thin film, wherein a glass substrate 31, a film 32 as the catalyst, a thin film 33 is fluoride. 利用氟化物薄膜的非连续状态,其上存在许多纳米级微孔,这些微孔将部分催化剂表面裸露出来,碳纳米管将很容易从这些微孔中生长,从而大大降低了生长温度。 Using non-continuous state fluoride thin film, there are many nanoscale pores thereon, the exposed portions of the micropores of the catalyst out of the surface, the carbon nanotubes are easy to grow from these micropores, thereby greatly reducing the growth temperature.

本发明中所述的利用常规生长技术生长碳纳米管的方法包括热分解碳氢化合物化学气相沉积、裂解碳氢化合物、磁控溅射石墨沉积、离子束溅射石墨沉积、电子束蒸发石墨沉积、 激光消融法沉积石墨沉积、微波等离子体回旋共振化学气相沉积、直流磁控等离子体化学气相沉积和射频等离子体化学气相沉积等。 In the present invention using conventional methods for growing carbon nanotubes growth technique comprises chemical vapor deposition of hydrocarbon thermal decomposition, cracking hydrocarbons, graphite deposited by magnetron sputtering, ion beam sputtering of graphite deposition, electron beam evaporation deposition of graphite , a laser ablation deposition deposited graphite, cyclotron resonance microwave plasma chemical vapor deposition, plasma chemical vapor deposition, DC magnetron, and RF plasma chemical vapor deposition.

实施例1 Example 1

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层厚度为IOO纳米的氟化钙薄膜,再沉积一层约IO纳米的镍薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited by electron beam evaporation to a thickness of method IOO nm film of calcium fluoride, and then depositing a nickel thin film of about IO nm, in a vacuum system is prepared by thermal decomposition of a chemical vapor deposition method carbon nanotubes. 气体用乙炔,压强为IOO帕左右,衬底温度400度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, pressure of about IOO Pa, a substrate temperature of 400 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例2 Example 2

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层厚度为50纳米的氟化钕薄膜,再沉积一层约20纳米的镍薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited by electron beam evaporation to a thickness of 50 nm as the method of neodymium fluoride film, a layer of nickel then deposition of a thin film about 20 nanometers, in a vacuum system, thermal decomposition CVD Preparation carbon nanotubes. 气体用乙炔,压强为IOO帕左右,衬底温度500度,得到质量良好的碳纳米管,衬底玻璃没有任何软 Acetylene gas, pressure of about IOO Pa, a substrate temperature of 500 degrees, to obtain carbon nanotubes of good quality, without any soft glass substrate

化迹象。 Of signs.

实施例3 Example 3

衬底用高软化点玻璃,其上用电子束蒸发方法沉积一层厚度为500纳米的氟化镁薄膜, 再沉积一层约100纳米的铁薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 With a high softening point glass substrate, on which is deposited by electron beam evaporation to a thickness of 500 nm Method magnesium fluoride film, and then depositing a layer of about 100 nanometers iron thin film in a vacuum system, thermal decomposition chemical vapor deposition preparation of carbon nanotubes. 气体用乙炔,压强为200帕左右,衬底温度650度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 200 Pa, a substrate temperature of 650 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例4 Example 4

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层厚度为50纳米的氟化镝薄膜,再沉积一层约20纳米的钴薄膜,在真空系统中用微波等离子体回旋共振化学气相沉积制备碳纳米管。 Ordinary window glass substrate, on which is deposited by electron beam evaporation to a thickness of 50 nm as the method of dysprosium fluoride film and then depositing a layer of cobalt film about 20 nanometers, cyclotron resonance microwave plasma chemical vapor in a vacuum system deposition of carbon nanotubes. 气体用甲烷,压强为3X10—2帕左右,衬底温度500度,得到质量良好的碳纳米管,衬底玻璃软化迹象。 Methane gas, a pressure of about 3X10-2 Pa, a substrate temperature of 500 degrees, to obtain good quality nanotubes, signs of softening the glass substrate.

实施例5 Example 5

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层厚度为50纳米的氣化锶薄膜,再沉积一层约IO纳米的镍薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited by electron beam evaporation to a thickness of 50 nm gasification method strontium film, and then depositing a nickel thin film of about IO nm, in a vacuum system, thermal decomposition CVD Preparation carbon nanotubes. 气体用乙炔,压强为100帕左右,衬底温度450度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 100 Pa, a substrate temperature of 450 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例6 Example 6

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层厚度为50纳米的氟化锶薄膜,再沉积一层约20纳米的铁、钴和镍合金薄膜(用可伐合金靶溅射),在真空系统中用离子束溅射石墨沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited by electron beam evaporation to a thickness of 50 nm strontium fluoride film and then depositing a layer of about 20 nanometers iron, cobalt and nickel alloy thin film (with a sputtering target Kovar ), in a vacuum system of the ion beam sputter graphite Carbon nanotubes deposition. 衬底温度550度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 A substrate temperature of 550 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例7 Example 7

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层500纳米的镍薄膜,再沉积一层约IO纳米的氟化钙薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of nickel thin film 500 nm by electron beam evaporation method, and then depositing a thin film of calcium fluoride about IO nm, in a vacuum system, thermal decomposition of chemical vapor deposition of carbon Preparation of Nano tube. 气体用乙炔, 压强为100帕左右,衬底温度500度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 100 Pa, a substrate temperature of 500 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例8 Example 8

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层1000纳米的铁薄膜,再沉积一层约20纳米的氟化钙簿膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of 1000 nm iron film was electron beam evaporation method, and then depositing a layer of about 20 nm thin film of calcium fluoride, in a vacuum system, thermal decomposition of the carbon chemical vapor deposition apparatus nanotube. 气体用乙炔, Acetylene gas,

压强为100帕左右,衬底温度500度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Pressure of about 100 Pa, a substrate temperature of 500 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例9 Example 9

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层IO纳米的镍薄膜,再沉积一层约IO纳米的氟化钕薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of nickel thin film IO nm by electron beam evaporation method, and then depositing a thin film of about neodymium fluoride IO nm, in a vacuum system, thermal decomposition CVD Preparation carbon nano tube. 气体用乙炔, 压强为100帕左右,衬底温度550度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 100 Pa, a substrate temperature of 550 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例10 Example 10

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层500纳米的镍薄膜,再沉积一层约IO纳米的氟化锶薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of nickel thin film 500 nm by electron beam evaporation method, and then depositing a thin film of strontium fluoride about IO nm, in a vacuum system, thermal decomposition of chemical vapor deposition of carbon Preparation of Nano tube. 气体用乙炔, 压强为100帕左右,衬底温度450度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 100 Pa, a substrate temperature of 450 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例11 Example 11

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层100纳米的鈀薄膜,再沉积一层约IO纳米的氟化钙薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of 100 nm Pd film by electron beam evaporation method, and then depositing a thin film of calcium fluoride about IO nm, in a vacuum system, thermal decomposition of chemical vapor deposition of carbon Preparation of Nano tube. 气体用乙炔, 压强为IOO帕左右,衬底温度550度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, pressure of about IOO Pa, a substrate temperature of 550 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例12 Example 12

衬底用普通窗玻璃,其上用电子束蒸发方法沉积一层IO纳米的铁、钴和镍合金薄膜(用可伐合金靶溅射),再沉积一层约1纳米的氟化钙薄膜,在真空系统中用热分解化学气相沉积法制备碳纳米管。 Ordinary window glass substrate, on which is deposited a layer of IO nm iron, cobalt and nickel alloy thin film by electron beam evaporation (sputtering target with Kovar), and then depositing a layer of about 1 nm film of calcium fluoride, in a vacuum system, thermal decomposition Carbon nanotubes chemical vapor deposition method. 气体用乙炔,压强为100帕左右,衬底温度500度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, at a pressure of about 100 Pa, a substrate temperature of 500 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

实施例13 Example 13

衬底用普通窗玻璃,先在其上用电子束蒸发方法沉积铬一铜一铬电极,其作用时增加导电性,再在其上沉积一层200纳米的镍膜,再沉积5纳米的氟化钙薄膜。 Ordinary window glass substrate, on which the first electron beam evaporation deposition of a copper-chromium with a chromium electrode, its effect to increase the conductivity, a layer of 200 nm nickel film again deposited thereon, and then depositing a 5 nm-fluoro calcium film. 在真空系统中用热丝辅助热分解化学气相沉积法制备碳纳米管。 In a vacuum system, thermal decomposition hot filament assisted chemical vapor deposition Carbon Nanotubes. 气体用乙炔,压强为IOO帕左右,衬底温度550 度,得到质量良好的碳纳米管,衬底玻璃没有任何软化迹象。 Acetylene gas, pressure of about IOO Pa, a substrate temperature of 550 degrees, to obtain carbon nanotubes of good quality, without any signs of softening the glass substrate.

Claims (3)

1.一种在玻璃衬底上制备碳纳米管方法,其特征在于该方法按如下步骤进行:先在玻璃衬底上沉积一层II主族金属钙、镁、锶、钡的氟化物或稀土金属的氟化物薄膜,再在其上沉积铁、钴、镍、钯或这些材料组成的合金薄膜作为催化剂,然后用常规生长技术在其上生长碳纳米管;或先在玻璃衬底上沉积一层铁、钴、镍、钯或这些材料的合金薄膜作为催化剂,再在其上沉积一层II主族金属钙、镁、锶、钡或稀土金属的氟化物薄膜,然后在其上生长碳纳米管,所述生长碳纳米管时的衬底温度为400~650℃;所述的常规生长技术包括热分解碳氢化合物化学气相沉积、裂解碳氢化合物、磁控溅射石墨沉积、离子束溅射石墨沉积、电子束蒸发石墨沉积、激光消融法沉积石墨沉积、微波等离子体回旋共振化学气相沉积、直流磁控等离子体化学气相沉积和射频等离子 1. A method for preparing a carbon nanotube on a glass substrate, wherein the method proceeds as follows: first depositing a layer of a group II metal, calcium, magnesium, strontium, barium or rare earth fluoride on a glass substrate a metal fluoride thin film, an alloy thin film thereon and then depositing iron, cobalt, nickel, palladium or combinations of these materials as a catalyst, and then carbon nanotubes are grown by a conventional growth techniques thereon; depositing a first or on a glass substrate layer of iron, cobalt, nickel, palladium, or an alloy film of these materials as a catalyst, and then depositing thereon a layer of a group II metal, calcium, magnesium, strontium, barium or a rare earth metal fluoride thin film, which is then grown on the carbon nano tube, the substrate temperature during the growth of the carbon nanotubes 400 ~ 650 ℃; of the conventional growth techniques include chemical vapor deposition, thermal decomposition of hydrocarbons, hydrocarbon cracking, graphite magnetron sputtering deposition, ion beam sputtering shot depositing graphite, graphite electron beam evaporation deposition, laser ablation method deposited graphite deposited cyclotron resonance microwave plasma chemical vapor deposition, plasma chemical vapor deposition, DC magnetron, and RF plasma 化学气相沉积技术。 Chemical vapor deposition techniques.
2. 根据权利要求1所述的在玻璃衬底上制备碳纳米管方法,其特征在于:当采用先沉积氟化物薄膜后沉积催化剂薄膜时,其氟化物薄膜厚度在10纳米到1微米的范围内,催化剂薄膜厚度在5纳米到100纳米的范围内。 The carbon nanotubes prepared on a glass substrate The method according to claim 1, wherein: when using the catalyst thin film is deposited after depositing the first fluoride film having a film thickness of 10 nanometers fluoride to 1 micrometers the catalyst film thickness in the range of 5 nm to 100 nm.
3. 根据权利要求1所述的在玻璃衬底上制备碳纳米管方法,其特征在于:当先沉积催化剂薄膜,后沉积氟化物薄膜时,其氟化物薄膜厚度在1纳米到20纳米的范围内,催化剂薄膜厚度在5纳米到1微米的范围内。 The carbon nanotubes prepared on a glass substrate The method according to claim 1, wherein: the head catalyst deposited film, when the film deposition of fluoride, the fluoride film thickness within the range of 1 nanometer to 20 nanometers the catalyst film thickness in the range of 5 nm to 1 micron.
CN 200410000726 2004-01-16 2004-01-16 Method for preparing carbon nanotube on glass substrates CN100395857C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410000726 CN100395857C (en) 2004-01-16 2004-01-16 Method for preparing carbon nanotube on glass substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410000726 CN100395857C (en) 2004-01-16 2004-01-16 Method for preparing carbon nanotube on glass substrates

Publications (2)

Publication Number Publication Date
CN1558441A CN1558441A (en) 2004-12-29
CN100395857C true CN100395857C (en) 2008-06-18

Family

ID=34350482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410000726 CN100395857C (en) 2004-01-16 2004-01-16 Method for preparing carbon nanotube on glass substrates

Country Status (1)

Country Link
CN (1) CN100395857C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452284C (en) 2006-07-07 2009-01-14 清华大学 Thin film transistor controlled thin film field emission display device
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
CN100560526C (en) 2007-02-01 2009-11-18 上海交通大学 Method of manufacturing carbon nano tube composite film on glass substrate surface
CN102333906B (en) 2009-02-27 2015-03-11 应用纳米结构方案公司 Low temperature CNT growth using gas-preheat method
US20100224129A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
WO2011017200A1 (en) 2009-08-03 2011-02-10 Lockheed Martin Corporation Incorporation of nanoparticles in composite fibers
AU2011302314A1 (en) 2010-09-14 2013-02-28 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
AU2011305809A1 (en) 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
CN103021763A (en) * 2012-12-27 2013-04-03 青岛艾德森能源科技有限公司 Method for preparing field-emission cathode material
CN103043648A (en) * 2012-12-27 2013-04-17 青岛艾德森能源科技有限公司 Preparation method for carbon nanotube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004028A1 (en) 1998-09-18 2002-01-10 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
US6346775B1 (en) 2000-02-07 2002-02-12 Samsung Sdi Co., Ltd. Secondary electron amplification structure employing carbon nanotube, and plasma display panel and back light using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004028A1 (en) 1998-09-18 2002-01-10 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
US6346775B1 (en) 2000-02-07 2002-02-12 Samsung Sdi Co., Ltd. Secondary electron amplification structure employing carbon nanotube, and plasma display panel and back light using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳纳米管的制备与应用. 吴德海,朱宏伟,张先锋,李延辉,韦进全,李雪松,郝东辉.清华大学学报(自然科学版),第43卷第5期. 2003

Also Published As

Publication number Publication date
CN1558441A (en) 2004-12-29

Similar Documents

Publication Publication Date Title
Sohn et al. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays
Meyyappan et al. Carbon nanotube growth by PECVD: a review
Bower et al. Plasma-induced alignment of carbon nanotubes
US9187332B2 (en) Graphene sheet, graphene base including the same, and method of preparing the graphene sheet
EP0838831B1 (en) Electron emissive film and method
US20040245904A1 (en) Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
JP3442033B2 (en) Cold synthesis method of carbon nanotubes using carbon source gas decomposing catalyst metal film
CN100473602C (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
CN1290763C (en) Process for preparing nano-carbon tubes
JP3363759B2 (en) Carbon nanotube device and manufacturing method thereof
JP4324078B2 (en) Substrate using a fiber containing fiber, a carbon containing carbon, electron emitting device, electron source using the electron-emitting device, a display panel using the electron source, and, the information display reproduction apparatus using the display panel, as well as, to a process for their production
EP1059266A2 (en) Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
CN101039873B (en) Carbon nanotube aggregate and process for producing the same
CN101312907B (en) Double-walled carbon nanotube,directional double-layer carbon nanotube bulk structure of the same, method for producing them
US6815067B2 (en) Carbonaceous complex structure and manufacturing method therefor
AU2001237064B2 (en) Diamond/carbon nanotube structures for efficient electron field emission
CN1286716C (en) Method for growing carbon nano tube
CN101010260B (en) Single-layer carbon nanotube and aligned single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
US7375366B2 (en) Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
US7081030B2 (en) Method for making a carbon nanotube-based field emission display
Park et al. Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD
Kingston et al. Fabrication of carbon nanotubes
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
EP1134304A2 (en) Method of vertically aligning carbon nanotubes on substrates using thermal chemical vapor deposition with dc bias
US7491269B2 (en) Method for catalytic growth of nanotubes or nanofibers comprising a NiSi alloy diffusion barrier

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C19 Lapse of patent right due to non-payment of the annual fee