CN100394548C - Method for preparing polycrystalline silicon layer and light shield - Google Patents

Method for preparing polycrystalline silicon layer and light shield Download PDF

Info

Publication number
CN100394548C
CN100394548C CN 200410097453 CN200410097453A CN100394548C CN 100394548 C CN100394548 C CN 100394548C CN 200410097453 CN200410097453 CN 200410097453 CN 200410097453 A CN200410097453 A CN 200410097453A CN 100394548 C CN100394548 C CN 100394548C
Authority
CN
China
Prior art keywords
region
amorphous silicon
light
surface
layer
Prior art date
Application number
CN 200410097453
Other languages
Chinese (zh)
Other versions
CN1614745A (en
Inventor
孙铭伟
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Priority to CN 200410097453 priority Critical patent/CN100394548C/en
Publication of CN1614745A publication Critical patent/CN1614745A/en
Application granted granted Critical
Publication of CN100394548C publication Critical patent/CN100394548C/en

Links

Abstract

本发明有关一种制造多晶硅层的方法。 It relates to a method of fabricating a polysilicon layer according to the present invention. 首先,提供一基板,并形成一非晶硅区于基板上,非晶硅层具有第一非晶硅区及第二非晶硅区。 First, a substrate and an amorphous silicon region is formed on the substrate, an amorphous silicon layer having a first region and a second amorphous silicon amorphous region. 接着,提供一光罩,光罩包括部分透光区及透光区,部分透光区及透光区分别对应于第二非晶硅区及第一非晶硅区。 Next, there is provided a photomask, the photomask comprising a light-transmitting region and the transparent portion region, the light-transmitting region and the transparent portions respectively corresponding to the second region and the first amorphous silicon region amorphous region. 然后,以激光光照射光罩,使得第一非晶硅区被全熔融且第二非晶硅区被预热,且被全熔融的第一非晶硅区是结晶成第一多晶硅层。 Then, a photomask is irradiated with a laser light, the amorphous silicon region such that the first and the second amorphous silicon is fully melted region is preheated is fully melted and the first amorphous silicon region is crystallized into a first polycrystalline silicon layer. 然后,移动光罩或基板,使得透光区对应于被预热的第二非晶硅区。 Then, moving the mask or the substrate, such that the light-transmissive region corresponding to the second amorphous silicon region is preheated. 接着,以激光光照射光罩,使得被预热的第二非晶硅区被全熔融,且被全熔融的第二非晶硅区是结晶成第二多晶硅层。 Subsequently, a photomask is irradiated with a laser light, such that the second amorphous silicon region is fully melted is preheated, and is fully molten second amorphous silicon region is crystallized into a second polycrystalline silicon layer.

Description

制造多晶硅层的方法及其光罩 The method of fabricating a polysilicon layer and the mask

技术领域 FIELD

本发明有关一种制造多晶硅层的方法,且特别是有关于一种利用光罩让激光光预热非晶硅层及全熔融被预热的非晶硅层的制造多晶硅层的方法及在该方法中所使用的光罩. The present invention relates to a method of fabricating a polysilicon layer, and in particular relates to a laser beam using a mask so that the warm up method of fabricating a polysilicon layer, the amorphous silicon layer and the amorphous silicon layer and the meltable preheated in the the method used in the photomask.

背景技术 Background technique

在科技发展日新月异的现今时代中,显示面板已被广泛地被运用在笔记本计算机、个人数字助理及移动电话等可携式电子装置上.其中,显示面板可以分为 In the technological advances of the modern era, the display panel has been widely used in notebook computers, personal digital assistants and mobile phones and other portable electronic devices. The display panel can be divided into

非多晶硅(amorphous si 1 icon, a-Si )薄膜晶体管(thin fiira transistor, TFT) 显示面板及低温多晶硅(low temperature polysilicon, LTPS ) TFT显示面板.LTPS TFT显示面板与a-Si TFT显示面板最大差异在于,LTPS TFT显示面板是以激光回火(Laser Annealing)法将a-Si层转变成多晶硅层,大幅地提升薄膜晶体管的电子迁移率(electronmobility ).因此,面板驱动电路及集成电路(integrated circuit, IC)即可被整合到LTPS TFT显示面板上,不需要额外的电路板设计, 有助于增加面板及电路设计的灵活度.所以,LTPS TFT显示面板将成为极具潜力的显示面板。 Non polysilicon (amorphous si 1 icon, a-Si) thin film transistor (thin fiira transistor, TFT) display panel and a low temperature polysilicon (low temperature polysilicon, LTPS) TFT display panel .LTPS TFT panel display panel and the maximum difference between a-Si TFT display wherein, LTPS TFT display panel is tempered laser (laser Annealing) method to convert a-Si layer into a polysilicon layer, greatly enhance the electron mobility of the thin film transistor (electronmobility). Thus, the panel drive circuit and an integrated circuit (integrated circuit , IC) can be integrated into the LTPS TFT display panel, no additional circuit board design, help to increase the flexibility of the panel and circuit design. so, LTPS TFT display panel will be the great potential of the display panel.

请参照图U图1A至1C,其是传统的制造侧向成长多晶硅层的方法的流程剖面图.首先,在图1A图中,提供一基板ll,并形成一非晶硅层12于基板11上。 Referring to FIGS. 1A to 1C U, which is a cross-sectional view of a conventional process for producing polycrystalline silicon layer lateral growth method. First, in FIG. 1A, a substrate ll, and an amorphous silicon layer 12 is formed on the substrate 11 on. 接着,提供一具有一不透光区15a及透光区15c的光罩15于非晶硅层12的上方, 并以一激光光16照射光罩15.接着,如图IB图所示,激光光16是穿透透光区15c 而全熔融部分的非晶硅层12,并形成熔融的非晶硅层12b及剩余的非晶硅层12a 于基板11上,由于剩余的非晶硅层12a及熔融的非晶硅层12b之间具有一温度梯度,即熔融的非晶硅层12b的温度髙于剩余的非晶硅层12a的温度,使得熔融的非晶硅层12b将以剩余的非晶硅层12a为晶种而沿着箭头20a及20b侧向长晶成 Next, there is provided a photomask having a light-transmissive opaque regions 15a and 15c of the region 15 above the amorphous silicon layer 12, and a laser beam 16 is irradiated to the mask 15. Next, as shown in FIG IB, a laser 16 is a transmissive light penetrating the whole region of amorphous silicon layer 15c and the molten portion 12, and forming an amorphous silicon layer 12b and the melted amorphous silicon layer 12a remaining on the substrate 11, because the remaining amorphous silicon layer 12a between the amorphous silicon layer having amorphous silicon layer 12b and a melting temperature gradient, i.e., temperature of the molten amorphous silicon layer 12b Gao temperature the remaining amorphous silicon layer 12a, 12b will be such that molten residual non- crystalline silicon layer 12a as a seed along the arrows 20a and 20b into the lateral crystal growth

多晶硅层13,如图IC图所示.借由激光光16通过具有不透光区15a及透光区15c 的光罩15,而全熔融部分的多晶硅层12,且让多晶硅层12侧向长晶的技术被称为连续側向结晶技术(sequence lateral solidification, SLS)或激光側向结晶技术(excimer laser annealed lateral crystallization, ELA-LC)。 Polysilicon layer 13, as shown in FIG IC through the mask having opaque regions 15a and 15c of the light-transmitting region 15, and the meltable portion of the polysilicon layer 12 and polysilicon layer 12 side so that the laser light 16 by means of long crystal technology is called sequential lateral crystallization technique (sequence lateral solidification, SLS) crystallization technique or laser side (excimer laser annealed lateral crystallization, ELA-LC). 在图1C 图中,多晶硅层13具有一晶格或晶界13b,且多晶硅层13是于对应至晶格或晶界13b的表面突起一缺陷13a,影响后续绝缘层与多晶硅层13之间的接合程度. In FIG. 1C, the polysilicon layer 13 having a grain boundary or lattice 13b, and the polysilicon layer 13 is formed to correspond to the surface of the grain boundaries or lattice 13b projecting a defect 13a, the subsequent impact between the insulating layer and the polysilicon layer 13 the degree of engagement.

为延伸側向长晶的距离,可借由延长激光脉冲持续周期(pulse during time) 或加热基板ll的方式延,融;^的时间.然而,传统中必须于制程设备上加装基板加热器,使整片基板ll受热,方可加热基板ll.为求足够温度梯度与激光光16 熔融非晶硅层12的最佳能量,采用基板11整体加热的方式势必提高最佳能量, 大大地缩短激光光光学组件的寿命与机台保养的周期.此外,以激光回火法所结晶而成的多晶硅层13,在晶格或晶界13b上存在许多缺陷13a.虽然,可用第二次激光光16照射或高温处理来修复缺陷13a,但此举会多增加制程步骤及制程成本。 Extending from lateral crystal growth can be extended by means of a laser pulse duration period (pulse during time) or heating the substrate ll manner casting, melt;. ^ Time, however, the conventional substrate heater must be installed on the process equipment , so that the entire heat receiving substrates ll, ll before heating the substrate. optimum melt the amorphous silicon layer 16 of light energy 12 evaluates a sufficient temperature gradient of the laser, by way of heating the entire substrate 11 is bound to increase the optimum energy, greatly reducing and life cycle maintenance machine of a laser beam optical components. Further, the polysilicon layer formed by laser annealing method of the crystal 13, there are many defects in grain boundaries or lattice 13b 13a. While the second laser beam can be used 16 high-temperature treatment or irradiation to repair defects 13a, but this will be a multi-step process and increases manufacturing cost. 另外,由于仅有部分的激光光16穿透透光区15c而融熔部分的非晶硅层12, 故另一部分的激光光16将被不透光区15a部分反射且部分吸收而转变为热,导致激光光16的被利用率不高。 Further, due to 12, 16 so that another portion of the laser light 15a will be partially reflective and partially opaque region 15c absorbent amorphous silicon layer only partially melted portion of the laser light penetrates the light-transmitting zone 16 into heat , laser light is led to the utilization of light 16 is not high.

发明内容 SUMMARY

有鉴于此,本发明的目的是提供一种制造多晶硅层的方法及在该方法中所使用的光軍.其以具有部分透光区的光罩预热非晶硅层的设计,可以缩短非晶硅到达熔点的时间,降低激光光的使用能量,且延长激光光光学组件寿命与机台保养的周期.此外,本发明可以延长激光融熔硅融熔时间,增加側向长晶距离及长晶制程范围.另外,本发明可以修补多晶硅层上的缺陷,且提高激光光的使用率. In view of this, object of the present invention is to provide a method of fabricating a polysilicon layer and a light forces in the method used. Photomask which is designed to preheat the amorphous silicon layer having a partially transmissive region can be shortened non the arrival time of the melting point of crystalline silicon, reduce the use of energy of the laser light, and to extend the lifetime of the laser light and the optical assembly machine maintenance cycle. Further, the present invention can extend the time the laser molten silicon melt, increasing the distance and the lateral crystal growth length crystallization process range. Further, the present invention can repair defects on the polysilicon layer, and improve the utilization of the laser light.

根据本发明的目的,提出一种制造多晶硅层的方法.首先,提供一基板。 The object of the present invention, a method of fabricating a polysilicon layer. First, a substrate is provided. 接着,形成一非晶硅区于基板上,非晶硅层至少具有一第一非晶硅区及一第二非晶硅区.然后,全熔融第一非晶硅区及预热第二非晶硅区,被全熔融的第一非晶硅区是结晶成一第一多晶硅层.接着,全熔融被预热的第二非晶硅区,使得被全熔融的第二非晶硅区结晶成一第二多晶硅层。 Next, an amorphous silicon region is formed on the substrate, an amorphous silicon layer having at least a first and a second amorphous silicon region amorphous region. Then, the whole amorphous silicon region and a first molten second non-preheat crystalline silicon region, is fully melted first amorphous silicon region is crystallized into a first polycrystalline silicon layer. Subsequently, the preheated second molten whole amorphous silicon region, is fully melted so that a second amorphous silicon region crystallized into a second polycrystalline silicon layer.

根据本发明的目的,提出一种光罩,用以供一激光光预热及熔融一基板上的一非晶硅层,非晶硅层具有一第一非晶硅区及一第二非晶硅区,光罩是与基板相对移动.光軍包括一光罩本体、 一第一部分透光区及透光区,第一部分透光区及透光区是形成于光革本体上.第一部分透光区用以于对应于第一非晶硅区的表面时供激光光部分穿透而预热第二非晶硅区。 The object of the present invention, to provide a mask for a laser beam for preheating and melting an amorphous silicon layer on a substrate, an amorphous silicon layer having a first and a second amorphous silicon region amorphous silicon region, the substrate is moved relative to the mask. army comprises a light mask body, a first portion of the light transmitting region and the transparent region, a first portion of light transmitting region and the transparent region is formed on the light leather body. the first lens portion laser light penetrates the portion for preheating of the second time zone for an amorphous silicon region corresponds to the surface of the first amorphous silicon region. 透光区是于第一部分透光区对应于第二非晶硅区的表面时对应于第一非晶硅区的表面,用以供激光光穿透而全熔融第一非晶硅区,使得被全熔融的第一非晶硅区结晶成一第一多晶硅层.当多一多晶硅层被形成且第二非晶硅区被预热后,光罩或基板是被移动,使得透光区对应于被预热的第二非晶硅区的表面。 Transmissive region corresponding to the amorphous region of the surface of the first part when the first surface of the second light-transmissive region corresponding to the amorphous region for penetration of the laser beam for melting the whole first amorphous silicon region, such that full melted crystallized into a first region of a first amorphous polysilicon layer. when a plurality of the second polysilicon layer is formed and the amorphous silicon region is preheated photomask or the substrate is moved, so that the light-transmissive region corresponding to the surface of the amorphous silicon of the second region is preheated. 激光光是穿透透光区而全熔融被预热的第二非晶硅区,且被全熔融的第二非晶硅区是结晶成一第二多晶硅层。 Laser light penetrates the light-transmitting region and the second amorphous region is molten wholly preheated, is fully melted and the second amorphous silicon region is crystallized into a second polycrystalline silicon layer.

为让本发明的上述目的、特点和优点能更明显易懂,下文特举一较佳实施例,并配合附图进行详细说明. In order to make the above objects, features and advantages of the present invention can be more fully understood by referring cite a preferred embodiment accompanied with figures are described in detail.

附困说明 Description attached trapped

图1A图1A至IC是传统的制造多晶硅层的方法的流程剖面图. 图2是依照本发明的实施例一的制造多晶硅层的方法的流程图, 图3A至3E是依照本发明的实施例一制造多晶硅层的方法的流程剖面图. 图4是依照本发明的实施例一的用以供激光光预热及熔融非晶硅层的光罩的俯视图. FIG 1A to IC 1A is a flow cross-sectional view of a conventional method for fabricating a polysilicon layer. FIG. 2 is a flowchart of a method of fabricating a polysilicon layer in an embodiment of the present invention is a 3A to 3E are according to an embodiment of the present invention the flow cross-sectional view illustrating a method of manufacturing a polycrystalline silicon layer. FIG. 4 is a plan view of a laser beam used for preheating and melting the amorphous silicon layer of the mask in accordance with embodiments of the present invention a.

图5是依照本发明的实施例二的用以供激光光预热及熔融非晶硅层的光罩的俯视图. FIG 5 is a plan view of the laser light used for preheating and melting the amorphous silicon layer of the mask in accordance with embodiments of the present invention II.

具体实施方式 Detailed ways

实施例一 Example a

请参照图2及图3A~3E,图2是依照本发明的实施例一的制造多晶硅层的方法的流程图,图3A至3E是依照本发明的实施例一制造多晶硅层的方法的流程剖面图。 Referring to the cross-sectional flow method FIGS. 2 and 3A ~ 3E, FIG. 2 is a flowchart of a method of fabricating a polysilicon layer embodiment of one embodiment of the present invention, FIGS 3A to 3E are in accordance with embodiments of the present invention for producing a polycrystalline silicon layer Fig. 首先,在步骤21中,提供一基板21,如图3A所示.接着,进入图2的步骤22中,形成一非晶硅层32于基板31上,非晶硅层32至少具有 First, in step 21, a substrate 21, shown in Figure 3A. Next, the step proceeds to FIG 22, an amorphous silicon layer 32 is formed on the substrate 31, an amorphous silicon layer having at least 32

一第一非晶硅区32a及一第二非晶硅区32b,如图3B所示.然后,进入步骤23 中,全熔融第一非晶硅区32a及预热第二非晶硅区32b,如图3C所示;被全熔融的第一非晶硅区32a是结晶成一第一多晶硅层33a,如图3D所示。 A first amorphous silicon region 32a and a second amorphous silicon region 32b, shown in Figure 3B. Then proceeds to step 23, the whole amorphous silicon region 32a and the first molten preheat second amorphous silicon region 32b , as shown in FIG. 3C; the first is fully melted amorphous silicon region 32a is crystallized into a first polycrystalline silicon layer 33a, shown in Figure 3D.

为了达到全熔融笫一非晶硅区32a及预热第二非晶硅区32b的目的,首先,提供一光罩35,光罩35是可移动于基板31及非晶硅区32的上方,或者是基板31及非晶硅区32是可移动于光軍35的下方,如图3D所示。 In order to achieve a full molten Zi amorphous silicon region 32a and the preheating of the second object of the amorphous region 32b, first, providing a reticle 35, the reticle 35 is movable over the substrate 31 and the amorphous silicon region 32, or the substrate 31 and the amorphous silicon region 32 is movable in the downward forces of light 35, shown in Figure 3D. 光罩35 具有一光罩本体35e、 一不透光区35a、 一第一部分透光区35b、透光区35c 及一第二部分透光区35d,该不透光区35a,第一部分透光区35b、透光区35c 及第二部分透光区35d是形成于光罩本体35e上,且透光区35c可连接第一部分透光区35b及第二部分透光区35d.此外,光軍本体35e可以是透明的石英基板,透光区35c例如是开口区或透明材质区,第二部分透光区35d的透光率可大于第一部分透光区35b的透光率.第一部分透光区35b包含一金属层、一半导体层、 一绝缘层或一有机层所组成的族群中任一种或任意组合而成的一复合层,第二部分透光区35d亦包含一金属层、 一半导体层、 一绝缘层或一有才几层所组成的族群中任一种或《壬意组合而成的一复合层.金属层例如是铬或钼,半导体层例如多晶硅,绝缘层例如是氣化硅、或氮化硅或氣氮化硅.此外,第一部分透光区35b Mask 35 having a mask body 35e, an opaque area 35a, a first portion of the light-transmissive region 35b, 35c and a second light-transmitting area part of the light-transmitting region 35d, the opaque region 35a, the first light-transmissive portion regions 35b, 35c and a second portion of the light-transmitting region transmissive region 35d is formed on the mask main body 35e, and 35c may be connected to the first transmissive area portion and the transmissive region 35b of the second light transmitting region section 35d. Further, light military body 35e may be transparent quartz substrate, the light-transmitting region 35c, for example, an open area or region of transparent material, the light transmittance of the second portion 35d of the light transmitting region may be greater than the light transmittance of light-transmissive region 35b of the first portion of the first light-transmissive portion region 35b comprises a metal layer, a semiconductor layer group, an insulating layer or an organic layer consisting of a composite layer according to any one or any combination of, the second portion of the light-transmitting region 35d also includes a metal layer, a semiconductor layer, an insulating layer or layers talented a group consisting of a composite layer according to any one or more "non combination intended metal layer, such as chromium or molybdenum, a semiconductor layer such as polysilicon, for example, a gas insulating layer , silicon nitride or silicon nitride or gas. Further, the first portion of the light-transmissive region 35b 第二部分透光区35d可以是任何可部分遮蔽或阻档光源的材料.当第一部分透光区35b及第二部分透光区35d皆为金属,如铬或钼时,在一定厚度范围内,如1~50毫微米(歸),透光率跟厚度有反比关系。 A second portion of the light-transmitting region 35d may be any part of the shield or barrier material source file. When the first portion and the second transmissive region 35b partially transparent region 35d are all metals, such as chromium or molybdenum in a thickness in the range of , 1 to 50 nm (normalized), with the thickness of the light transmittance have an inverse relationship. 在图3C中,透光区35c及第一部分透光区35b是对应于第一非晶硅区32a 的表面32c及第二非晶硅区32b的表面32d.也就是说,透光区35c及第一部分透光区35b是分别位于第一非晶硅区32a的表面32c及第二非晶硅区32b的表面32d的正上方,且透光区35c及第一部分透光区35b的面积必须对应于第一非晶硅区32a的表面32c及第二非晶硅区32b的表面32d的面积。 In Figure 3C, the light-transmitting part of the light-transmitting region 35c and the second region 35b corresponding to the first surface of the amorphous silicon region 32c 32a 32d and the second surface 32b of the amorphous silicon region. That is, the light-transmitting region and 35c the first partially transmissive region 35b is located directly above the surface of first amorphous silicon region 32c 32a and the second surface 32d of the amorphous region 32b, and the area of ​​the transmissive area portion 35c and the second light-transmitting area 35b must correspond amorphous silicon region 32c on the first surface 32a and a second area of ​​the surface 32d of the amorphous region 32b. 接着,以一激光光36照射光罩35,激光光36可以直接穿透透光区35c而照射到第一非晶硅区32a的表面32c.由于第一部分透光区35b会吸收及反射部分的激光光36,激光光36是部分穿透第一部分透光区35b而照射第二非晶硅区32b的表面32d.经过一段时间后,直接穿透透光区35c的激光光36将全熔融第一非晶硅区32a,但部分穿透第一部分透光区35b的激光光36只将第二非晶硅 Subsequently, a laser 36 is irradiated to the mask 35, the laser beam 36 can penetrate the light-transmitting region 35c directly irradiated onto the surface 32a of the first amorphous silicon region 32c. Since the first portion of the light transmission area and the reflection portion 35b absorbs the laser 36, the laser light penetrates the first portion 36 is partially transmissive region 35b irradiated surface 32d of the second region 32b of amorphous silicon. after a period of time, the light-transmitting region 35c directly through a laser beam 36 of a meltable a laser amorphous silicon region 32a, but the light-transmitting portion through the first portion region 35b of the second amorphous silicon light 36

区32b预热,并未熔融第二非晶硅区32b.当第一非晶硅区32a被全熔融,而第二非晶硅区32b被预热但未被熔融时,便停止激光光36的照射。 Preheating zone 32b, a second amorphous silicon is not melted region 32b. When the first region 32a is fully melted amorphous silicon, amorphous silicon and the second region 32b is pre-heated but not melted, the laser light 36 is stopped irradiation. 此时,被全熔融的第一非晶硅区32a是侧向长晶成一第一多晶硅层33a,但第一多晶硅层33a的表面33c因具有晶格或晶界的缺陷而显得不平整,笫二非晶硅区32b 吸收部分的激光光36的热量而保持在一已被预热的状态. At this time, the first amorphous silicon is fully melted region 32a is a lateral crystal growth into a first polysilicon layer 33a, but the surface 33c of the first polysilicon layer 33a has a defect due to a lattice or grain boundary and appears uneven, heat of the laser light portion 36 of the absorbent Zi two amorphous silicon region 32b has been held in a preheated state.

待第一多晶硅33a被形成且第二非晶硅区32b被预热后,进入图2的步骤24中,全熔融被预热的第二非晶硅区32b及熔融第一多晶硅层33a的表面33c,使得被全熔融的第二非晶硅区32b结晶威t一第二多晶硅层33b,且被熔融的第一多晶硅层33a的表面33c重新结晶,以修复晶格或晶界的缺陷而平整第一多晶硅层33a的表面33c.在步骤24中,首先,移动图3C的光罩35或基板31,例如定住光罩35不动,并沿着图3C的箭头37的方向移动基板31, 使得透光区35c及第二部分透光区35d对应于被预热的第二非晶硅区32b的表面32d及第一多晶硅层33a的表面33c,如图3D所示.也就是说,透光区35c 及第二部分透光区35d是分别位于被预热的第二非晶硅区32b的表面32d及第一多晶硅层33a的表面33c的正上方,且透光区35c及第二部分透光区35d的面积必须对应于第二非晶硅区32b的表面32d及第一多晶硅层33a的表面33c 的面 After the first polysilicon 33a is formed and the second amorphous silicon region 32b is preheated, enters step 24 in FIG. 2, second full preheated molten amorphous region 32b and the first molten polysilicon 33c the surface layer 33a, is fully melted so that the amorphous region 32b of the second crystalline K t a second polysilicon layer 33b, and the molten surface of the first polysilicon layer 33a 33c recrystallized to repair crystal lattice defects or crystal grain boundaries and the flat surfaces 33c of the first polysilicon layer 33a. in step 24, first, the mobile FIG. 3C photomask 35 or the substrate 31, the mask 35 is not fixed anchorage e.g., FIG. 3C and along direction of the arrow 37 moves the substrate 31, such that the second portion of the light-transmitting region and a light transmitting region 35c 35d corresponding to the second surface of the preheated amorphous silicon region 33c and 32d of the first surface 32b of the polysilicon layer 33a, shown in Figure 3D. That is, the light-transmitting region and a second portion of the light-transmitting region 35c 35d are respectively located in the second region the preheated amorphous silicon surfaces 32b and 32d of the first polysilicon layer 33a 33c immediately above, and the area of ​​the light-transmitting region and a second portion 35c must be light-transmissive region 35d corresponds to a second side surface of the amorphous silicon region 32d 32b and a surface 33c of the first polysilicon layer 33a .接着,以激光光36照射光罩35,激光光36穿透透光区35c而全熔融被预热的第二非晶硅区32b,且激光光36是部分穿透第二部分穿透区35d 而熔融第一多晶硅层33a的表面33c,并未半熔融或全熔融第一多晶硅层33a。 Next, the laser light 36 is irradiated to the mask 35, the laser light penetrates the light-transmitting region 36 and the meltable 35c preheated second amorphous silicon region 32b, and the laser light penetrating portion 36 is a second partial penetration region 35d melted surface of the first polysilicon layer 33a 33c, semi-molten or not melted the whole first polysilicon layer 33a. 此时,被全熔融的第二非晶硅区32b是结晶成第二多晶硅层33b,但第二多晶硅层33b的表面33d因具有晶格或晶界的缺陷而显得不平整,被熔融的第一多晶硅层33a的表面33c重新结晶而变得更平整. At this time, the second is fully melted amorphous silicon is crystallized into a second region 32b of the polysilicon layer 33b, but the surface 33b of the second polysilicon layer 33d has a defect due to the grain boundaries or lattice irregularities and appears, the molten surface of the first polysilicon layer 33a and 33c becomes smooth recrystallized.

待第二多晶硅层33b被形成后,进入图2的步骤25中,熔融第二多晶硅层33b的表面33d,使得被熔融的第二多晶硅层33b的表面33d重新结晶,以修复晶格或晶界的缺陷.在步驟25中,首先,移动图3D的光罩35或基板31, 例如定住光罩35不动,并沿着图3D的箭头37的方向移动基板31,使得第二部分透光区35d对应于第二多晶硅层33b的表面33d,如图3E所示„也就是说,第二部分透光区35d是位于第二多晶硅层33b的表面33d的正上方,且第二部分透光区35d对应于第二多晶硅层33b的表面33d的面积.接着,以激光 After the second polysilicon layer 33b is formed, proceeds to step 25 in FIG. 2, the melt surface 33d of the second polysilicon layer 33b, so that the molten surface 33b of the second polysilicon layer 33d recrystallized to repair lattice defects or grain boundaries. in step 25, first, the mobile FIG. 3D photomask 35 or the substrate 31, for example fixed anchorage reticle 35 and the substrate 31 move in the direction of arrow 37 of FIG. 3D, so that a second portion of the light-transmitting region 35d corresponds to the surface 33d of the second polysilicon layer 33b, as shown in FIG. 3E. "That is, the second portion of the light transmitting region 35d is located on the second surface 33b of the polysilicon layer 33d of immediately above, the light-transmitting region and the second portion 35d corresponding to the surface area of ​​the second polysilicon layer 33d and 33b Next, a laser

光36照射光軍35,激光光36是部分穿透第二部分穿透区35d而熔融第二多晶硅层33b的表面33d,并未半熔融或全熔融第二多晶硅层33b。 36 Jun light irradiation light 35, the laser light 36 is partially transparent region 35d of the second portion penetrating the melted surface 33d of the second polysilicon layer 33b, semi-molten or not melted the whole second polysilicon layer 33b. 此时,被熔融的第二多晶硅层33b的表面33d重新结晶而变得更平整.然后,移动图3E 的光軍35或基板31,例如定住光罩35不动,并沿着图3E的箭头37的方向移动基板31,使得光罩35远离基板31上的第一多晶硅层33a及第二多晶硅层33b,继续其它非晶硅区的预热及全熔融的步骤。 At this time, the molten surface of the second polysilicon layer 33b, 33d recrystallized becomes more smooth. Then, the mobile military FIG 3E light 35 or the substrate 31, the mask 35 is not fixed anchorage e.g., FIG. 3E and along direction of the arrow 37 moves the substrate 31, the mask 35 from the substrate such that the second polysilicon layer 33a and 33b on the first polysilicon layer 31, the preheating step continues to other amorphous region molten and full.

请参照图4,其是本发明的实施例一的用以供激光光预热及熔融非晶硅层的光罩的俯视图.在图,中,光罩35至少具有一不透光区35a、一第一部分透光区3Sb、透光区35c及一第二部分透光区35d,不透光区35a、第一部分透光区35b、透光区35c及第二部分透光区35d是皆形成于图3C ~ 3E的光罩本体35e上, Referring to FIG. 4, which is a plan view of a laser beam used for preheating and melting the amorphous silicon layer, a mask of the embodiment of the invention. In the FIG., The photomask 35 having at least one opaque region 35a, a first portion of the light-transmissive region 3Sb, transmissive area portion 35c and a second light transmitting region 35d, opaque region 35a, a first portion of the light-transmitting area 35b, 35c and a second portion of the light-transmitting region 35d is light-transmissive region are formed FIG. 35e on the mask body to 3C ~ 3E,

然而熟悉本技术的人员可以明了本实施例的技术并不局限在此,例如, 待第二多晶硅层33b被完成后,本实施例可以采用一只具有第二部分透光区35d 的光罩,使得激光光36透过此只具有第二部分透光区35d的光罩溶融第一多晶硅层33a的表面33c及第二多晶硅层33b的表面33d,使得被熔融的第一多晶硅层33a的表面33c及被熔融的第二多晶硅层33b的表面33d重新结晶而修复晶格或晶界的缺陷,第一多晶硅层33a的表面33c及第二多晶硅层33b的表面33d变得更平整.此外,本实施例的光罩是针对非晶硅层的分布面积而设计数个透光区及数个第一部分透光区,这些透光区及此些第一部分透光区,是交错排列连接成一行、 一列或一阵列.在相对移动光罩及基板时,即可以达到激光光预热非晶硅层及全熔融被预热的非晶硅层的目的,不仅缩短制程时间,更且大大地提升制程效率. However, techniques skilled in the art can understand the present embodiment is not limited to this, for example, until after the second polysilicon layer 33b is completed, the present embodiment may employ a light transmissive portion of the second region 35d having the cover, so that the laser light 36 only through this surface 33d having a second light transmitting region mask portion 35d soluble melt surface of the first polysilicon layer 33a of the second polysilicon layer 33b and 33c, so that the molten first and the molten surface of the surface of the polysilicon layer 33a 33b 33c 33d of the second polysilicon layer and the recrystallized grain boundaries or lattice defects repaired, the surface 33a of the first polysilicon layer and second polysilicon 33c 33b, 33d of the surface layer becomes more smooth. Further, the present embodiment is a mask for the amorphous silicon layer distribution area design several light-transmissive region and a plurality of first light transmitting region section, and the light-transmissive region of such a first portion of the light-transmitting region, is connected in a row are staggered, one or an array in the mask and the substrate relative movement, i.e., the laser beam can reach the amorphous silicon layer and the meltable preheat the amorphous silicon layer is preheated purposes, not only to shorten the processing time, more and greatly enhance the process efficiency.

实施例二 Second Embodiment

请参照图5,其是依照本发明的实施例二的用以供激光光预热及熔融非晶硅层的光罩的俯视图.在图5中,光罩55用以供一激光光预热及熔融一基板上的一非晶硅层,非晶硅层具有一第一非晶硅区及一第二非晶硅区,光罩55 是与基板相对移动.本实施例的形成非晶硅层于基板上,以及光軍相对于基板移动的技术已于实施例一揭示,在此不再赘述.光革55包括一光罩本体55b、 一不透光区55a、 一第一光罩图案56、 一第二光罩图案57及一第二部分透光 Referring to FIG. 5, which is used in accordance with embodiments of the present invention for two and a plan view of a reticle laser preheat the amorphous silicon layer is melted. In FIG. 5, the mask 55 is used for preheating a laser an amorphous silicon layer on a substrate and melting the amorphous silicon layer having a first region and a second amorphous silicon amorphous region, the reticle 55 is moved relative to the substrate. Example of the present embodiment is formed of amorphous silicon layer on a substrate, and the substrate is moved with respect to light military technology was disclosed first embodiment, not described herein again. 55 comprises a light leather mask body 55b, an opaque area 55a, a first mask pattern 56, a second mask pattern 57 and a second light-transmissive portion

区55d,不透光区55a是形成于光罩本体55b上.第一光罩图案56、第二光罩图案57及第二部分透光区55d是以相互隔开的方式形成于光罩本体55b上, 第二光革图案57是位于第一光軍图案56及第二部分透光区55d之间。 Region 55d, the light-transmitting region 55a is not formed on the mask body 55b. The first mask pattern 56, 55d are spaced apart a second embodiment of the mask pattern region 57 and the second light transmitting portion is formed on the mask body on 55b, the second light leather pattern 57 is located between the first 56 and the second pattern light forces partially transmissive region 55d. 其中, 光罩本体55b可以是透明的石英基板。 Wherein the mask body 55b may be a transparent quartz substrate.

第一光軍图案56具有数列相互隔开的第一图案56a,第二光罩图案57具有数列相互隔开且与第一图案56a平行的第二图案57a,此些第一图案56a是与第二困案57a交错排列.在本实施例中,第一图案56a及第二图案57a是以条状图案为例作说明. 一匕外,各第一图案56a具有一第一部分透光区56b及透光区56c,透光区56c是位于第一部分透光区56b及第二部分透光区55d之间。 The first pattern 56 having light forces a first pattern of spaced columns 56a, the second mask pattern 57 having a number of columns parallel to each other and spaced apart from the first pattern and second pattern 56a 57a, 56a is of such a first pattern and the second two trapped staggered pattern 57a. in this embodiment, the first pattern 56a and second pattern 57a ​​is exemplified as a stripe pattern. dagger an outer, each of the first pattern 56a having a first portion and a transmissive region 56b transmissive region 56c, 55d transmissive region 56c is located between the first portion and the second portion of the light-transmitting region transmissive region 56b. 各第二图案57a具有一第一部分透光区57b及透光区57c,透光区57c是位于第一部分透光区57b及第二部分透光区55d之间.此外,第一部分透光区56b 及57b的透光率是小于第二部分透光率55d的透光率。 Each of the second pattern portion 57a ​​having a first light transmitting region and the transparent region 57b 57c, 57c is disposed between the light-transmitting region of the first portion 55d and the second light-transmissive region 57b partially transmissive region. Further, a first portion of the light transmission area 56b 57b and the light transmittance is less than the second portion 55d of the light transmittance of the light transmittance.

当光罩由左往右移动于非晶硅层的上方时,第一光罩图案56用以预热及全熔融未被第二光革图案57所预热及全熔融的剩余非晶硅,达到全面非晶硅被预热及全熔融的目的. When the photomask move from left to right above the amorphous silicon layer, the first mask pattern 56 is not used for preheating and melting the whole second light leather pattern 57 preheat and melt the whole of the remaining amorphous silicon, achieve a comprehensive and all-purpose amorphous silicon melt is preheated.

首先,第一部分透光区56b及57b是对应于第二非晶硅区,用以供激光光部分穿透而预热第二非晶硅区.透光区56c及57c是于第一部分透光区56b 及57b对应于第二非晶硅区时对应于第一非晶硅区,用以供激光光穿透而全熔融第一非晶硅区,使得被全熔融的第一非晶硅区结晶成一第一多晶硅层。 First, the first portion 56b and a transmissive region 57b corresponding to the second amorphous silicon region, partial penetration laser used for preheating a second amorphous silicon region. Transmissive region 56c and 57c are transmissive to the first portion a first zone corresponding to the amorphous region 56b and 57b corresponding to the second region of amorphous silicon for the full penetration of the laser beam for melting the amorphous silicon region, such that the first amorphous silicon is fully melted region crystallized into a first polycrystalline silicon layer.

接着,当第一多晶硅层被形成且第二非晶硅区被预热后,光罩55或基板是被移动,使得透光区56c及57c和第二部分透光区55d分别对应于被预热的第二非晶硅区及第一多晶硅层.此时,激光光是穿透透光区56c及57c而全熔融被预热的第二非晶硅区,且被全熔融的第二非晶硅区是结晶成一第二多晶硅层。 Next, when the first polysilicon layer is formed and the second amorphous silicon region is preheated photomask 55 or the substrate is moved, so that the light-transmissive region and the second portion 56c and 57c respectively corresponding to the light transmitting region 55d the preheated second amorphous silicon region and the first polysilicon layer. At this time, the laser light penetrates the light-transmitting regions 56c and 57c and the second amorphous silicon region meltable preheated, and is fully melted a second amorphous silicon region is crystallized into a second polycrystalline silicon layer. 激光光是穿透第二部分透光区55d而熔融的第一多晶硅层的表面,使得被熔融的第一多晶硅层的表面重新结晶而修复晶格或晶界的缺陷,第一多晶硅层的表面变得更平整. Surface of the first polysilicon layer a second portion of laser light penetrates the light-transmitting region 55d melted, so that the surface of the first polysilicon layer is melted to re-crystallization repair the defect or grain boundary of the lattice, a first surface of the polysilicon layer becomes more smooth.

然后,当被熔融的第一多晶硅层的表面被重新结晶后,光罩55或基板是被移动,使得第二部分透光区55d对应于第二多晶硅层.激光光是部分穿透第二部分透光区55d而熔融第二多晶硅层的表面,使得熔融的第二多晶硅层的表 Then, when the molten surface of the first polysilicon layer is recrystallized, the photomask 55 or the substrate is moved, so that the second portion of the light-transmissive region corresponding to the second polysilicon layer 55d laser light through portions 55d melted surface of the second polysilicon layer through a second portion of the light-transmitting region, such that the molten second table polysilicon layer

面重新结晶而修复晶格或晶界的缺陷,第二多晶硅层的表面变得更平整。 Surface lattice defects repaired and re-crystallization or crystal grain boundaries, a surface of the second polysilicon layer becomes more smooth.

所以,第一图案56a用以供激光光预热及全熔融一部分的非晶硅层,使得被全熔融的此部分的非晶硅层结晶成一第一多晶硅层.第二图案57a用以供激光光预热及全熔融另一部分的非晶硅层,使得被全熔融的另此部分的非晶硅层结晶成一第二多晶硅层,第二部分透光区55d用以激光光部分穿透而熔融第一多晶硅层及第二多晶硅层的表面,使得被熔融的第一多晶硅层及第二多晶硅层的表面重新结晶.各第一部分透光区56b及57b包含一金属层、 一半导体层、 一绝缘层或一有*层所组成的族群.中任一种或任意组合而成的一复合层,第二部分透光区55d亦包含一金属层、 一半导体层、 一绝缘层或一有机层所组成的族群中任一种或任意组合而成的一复合层.金属层例如是铬或钼, 半导体层例如多晶硅,绝缘层例如是氧化硅、或氮化硅或氧氮化硅。 Therefore, the first pattern 56a is used for preheating and full laser molten portion of the amorphous silicon layer, an amorphous silicon layer such that the whole of this portion of the melted crystallized into a first polycrystalline silicon layer pattern 57a ​​to a second for laser preheat the amorphous silicon layer and another portion of meltable, is fully melted so that the amorphous silicon layer is crystallized into the other in this section a second polysilicon layer, the second portion of the light-transmitting region section 55d to the laser beam penetration of the molten surface of the first polysilicon layer and the second polysilicon layer, so that the surface of the first polysilicon layer is melted and the second polysilicon layer is recrystallized. each light-transmissive region 56b and the first portion 57b comprises a metal layer, a semiconductor layer, an insulating layer or with a group consisting of a layer *. any one or any combination of a composite layer, the second portion of the light transmitting region 55d also includes a metal layer, a semiconductor layer, an insulating layer or an organic layer, a group consisting of any one or any combination of a composite layer is a metal layer, such as chromium or molybdenum, semiconductor such as polysilicon layer, an insulating layer such as silicon oxide, or silicon nitride or silicon oxynitride. 此外, 各第一部分透光区56b及57b和第二部分透光区55d可以是任何可部分遮蔽或阻挡光源的材料.第二部分透光区55d的透光率是可大于各第一部分透光区56b 及各第一部分透光区57b的透光率,当各第一部分透光区56b、各第一部分透光区57b及第二部分透光区55d皆为铬或钼. Further, each of the first portion 56b and a transmissive region 57b and the second light transmitting region section 55d may be any material or light shielding part blocking the second portion 55d of the light transmittance of the light transmission area is larger than each of the first light-transmissive portion and each first portion region 56b transmissive region 57b of the light transmittance, when the transmissive region 56b of each first portion, the first portion of each of the light-transmissive region 57b and the second light transmitting region 55d are all part of chromium or molybdenum.

本发明上述实施例所揭示的制造多晶硅层的方法在该方法中所使用的光罩,其以具有部分透光区的光罩预热非晶硅层的设计,可以缩短非晶硅到达熔点的时间,降低激光光的使用能量,且延长激光光光学组件寿命与机台保养的周期.此外,本实施例可以延长激光融熔硅融熔时间,增加側向长晶距离及长晶制程范围。 The method of fabricating a polysilicon layer mask in the method used in the above-described embodiments of the invention disclosed, which is part of a photomask having a light-transmitting region of the amorphous silicon layer to preheat the design, the melting point reaches the amorphous silicon can be shortened time, reduced use of laser energy and prolong the life of the laser light and the optical assembly machine maintenance cycle. Further, the present embodiment can extend the time the laser molten silicon melt, and increases the lateral crystal growth from the crystal growth process margin. 另外,本实施例可以修补多晶硅层上的缺陷,且提高激光光的使用率. 综上所述,虽然本发明已以一较佳实施例揭示如上,然而其并非用以限定本发明,任何熟悉本技术的人员,在不脱离本发明的精神和范围内,当可作出各种的等效的变化与替换,因此本发明的保护范围当视后附的本申请权利要求范围所界定的为准。 Further, the present embodiment can repair defects on the polysilicon layer, and improve the utilization of the laser light. In summary, the present invention has been disclosed above, although the embodiment to a preferred embodiment, however, not intended to limit the present invention, anyone familiar with skilled in the art, without departing from the spirit and scope of the present invention, can make various changes and equivalent replacement, and the scope of the present invention when the application scope of the appended claim defined depending on requirements prevail .

Claims (13)

1.一种制造多晶硅层的方法,包括: 提供一基板; 形成一非晶硅层于该基板上,该非晶硅层至少具有一第一非晶硅区及一第二非晶硅区; 全熔融该第一非晶硅区及预热该第二非晶硅区,被全熔融的该第一非晶硅区结晶成一第一多晶硅层,提供一光罩,该光罩具有一第一、第二部分透光区及一透光区,该第一部分透光区及该透光区是分别对应于该第二非晶硅区的表面及该第一非晶硅区的表面;以及全熔融被预热的该第二非晶硅区,使得被全熔融的该第二非晶硅区结晶成一第二多晶硅层。 A method of fabricating a polysilicon layer, comprising: providing a substrate; forming an amorphous silicon layer on the substrate, the amorphous silicon layer having at least a first region and a second amorphous silicon amorphous region; melting the whole amorphous silicon region and a first preheating region of the second amorphous silicon is crystallized into a first polycrystalline silicon layer of the first amorphous silicon melting the whole area, providing a reticle, the reticle having a a first, a second portion of the light-transmitting area and a light-transmitting area, the first portion of the light-transmissive region and the light-transmissive surface regions respectively corresponding to the second surface of the amorphous silicon region and the first region of amorphous silicon; the whole region and the second amorphous silicon melt is preheated, is fully melted so that the second amorphous silicon region is crystallized into a second polycrystalline silicon layer.
2. 如权利要求1所述的方法,其特征在于该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:全熔融被预热的该第二非晶硅区及熔融该第一多晶硅层的表面,使得被全熔融的该第二非晶硅区结晶成该第二多晶硅层,且被熔融的该第一多晶硅层的表面重新结晶。 2. The method according to claim 1, characterized in that the second step of the whole region of amorphous silicon melting the preheated method further comprising: a second amorphous silicon of the whole region the preheated and molten melting the surface of the first polysilicon layer, it is fully melted so that the second amorphous silicon region is crystallized into the second polysilicon layer, and the molten surface of the first polysilicon layer is recrystallized.
3. 如权利要求2所述的方法,其特征在于该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:熔融该第二多晶硅层的表面,使得被熔融的该第二多晶硅层的表面重新结晶。 3. The method according to claim 2, characterized in that the second step of the whole region of amorphous silicon melting the preheated method further comprises: melting the surface of the second polysilicon layer, such that the molten the surface of the second polysilicon layer is recrystallized.
4. 如权利要求1所述的方法,其特征在于该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:熔融该第一多晶硅层的表面及该第二多晶硅层的表面,使得被熔融的该第一多晶硅层的表面及被熔融的该第二多晶硅层的表面重新结晶。 4. The method according to claim 1, characterized in that the second step of the whole region of amorphous silicon melting the preheated method further comprising: melting the surface of the first polysilicon layer and the second surface of the polysilicon layer, such that the molten surface of the first polysilicon layer and the surface of the molten second polysilicon layer is recrystallized.
5. 如权利要求1所述的方法,其特征在于该方法的该全熔融该第一非晶硅区及预热该第二非晶硅区的步骤还包括:以一激光光照射该光罩,该激光光是穿透该透光区而全熔融该第一非晶硅区,且被全熔融的该第一非晶硅区是结晶成该第一多晶硅层,该激光光是部分穿透该第一部分透光区而预热该第二非晶硅区。 5. The method according to claim 1, characterized in that the method of melting the whole amorphous silicon region and the first step of preheating the second amorphous silicon region further comprises: a laser light is irradiated to the reticle , the laser light penetrates the light-transmitting region and the whole of the first amorphous silicon melt region, it is fully melted and the first amorphous silicon region is crystallized into the first polycrystalline silicon layer, part of the laser light penetrate the first portion of the second light-transmissive region preheated amorphous silicon region.
6. 如权利要求5所述的方法,其特征在于该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:移动该光罩或该基板,使得该透光区对应于被预热的该第二非晶硅区的表面;以及以该激光光照射该光罩,该激光光是穿透该透光区而全熔融被预热的该第二非晶硅区,被全熔融的该第二非晶硅区是结晶成该第二多晶硅层。 6. The method according to claim 5, characterized in that the second step of the whole region of amorphous silicon melting the preheated method further comprising: moving the mask or the substrate, such that the transparent region corresponding to surface of the second region in the amorphous silicon preheated; amorphous silicon and the second region to the laser light irradiating the mask, the laser light penetrates the light-transmitting region and the meltable preheated, It is fully melted and the second amorphous silicon region is crystallized into the second polysilicon layer.
7. 如权利要求6所述的方法,其特征在于,该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:移动该光罩或该基板,使得该透光区及该第二部分透光区分别对应于被预热的该第二非晶硅区的表面及该第一多晶硅层的表面;以及以该激光光照射该光罩,该激光光是穿透该透光区而全熔融被预热的该第二非晶硅区,被全熔融的该第二非晶硅区是结晶成该第二多晶硅层,该激光光是部分穿透该第二部分透光区而熔融该第一多晶硅层的表面,被熔融的该第一多晶硅层的表面重新结晶。 7. The method according to claim 6, wherein the second step of the whole region of amorphous silicon melting the preheated method further comprising: moving the mask or the substrate, such that the light-transmissive region the light-transmissive region and a second portion corresponding respectively to the second surface of the amorphous silicon region is preheated and the surface of the first polysilicon layer; and the laser light is irradiated to the mask, the laser light through through the transparent region and the second region full of molten amorphous silicon preheated, the second is fully melted amorphous silicon region is crystallized into the second polysilicon layer, the laser light penetrates the portion a second portion of the light transmitting region and the first polysilicon layer melt surface, by the molten surface of the first polysilicon layer is recrystallized.
8. 如权利要求7所述的方法,其特征在于该方法的该全熔融被预热的该第二非晶硅区的步骤还包括:移动该光罩或该基板,使得该第二部分透光区对应于该第二多晶硅层的表面;以及以该激光光照射该光罩,该激光光是部分穿透该第二部分透光区而炫融该第二多晶硅层的表面,被熔融的该第二多晶硅层的表面是重新结晶。 8. The method according to claim 7, characterized in that the second step of the whole region of amorphous silicon melting the preheated method further comprising: moving the mask or the substrate, such that the second portion of the lens zone corresponding to the surface of the second polysilicon layer; and the laser light is irradiated to the mask, the portion of the laser light penetrates the light transmitting region and the second portion Hyun into the surface of the second polysilicon layer , the molten surface of the second polysilicon layer is recrystallized.
9. 一种光罩,用以供一激光光预热及熔融一基板上的一非晶硅层,该非晶硅层具有一第一非晶硅区及一第二非晶硅区,该光罩是与该基板相对移动, 该光罩包括:一光罩本体;一第一部分透光区,其形成于该光罩本体上,用以于对应于该第一非晶硅区的表面时供该激光光部分穿透而预热该第二非晶硅区;一第二部分透光区,其形成于该光罩本体上,是于该透光区对应于被预热的该第二非晶硅区的表面时对应于该第一多晶石圭层的表面,用以供该激光光部分穿透而熔融该第一多晶硅层的表面,使得被熔融的该第一多晶硅层的表面重新结晶;以及一透光区,其形成于该光罩本体上,是于该第一部分透光区对应于该第二非晶硅区的表面时对应于该第一非晶硅区的表面,用以供该激光光穿透而全熔融该第一非晶硅区,使得被全熔融的该第一非晶硅区结晶成 A mask for a laser beam for preheating and melting an amorphous silicon layer on a substrate, the amorphous silicon layer having a first region and a second region of amorphous silicon, the when a first portion of the light-transmissive region, which is formed on the mask body for amorphous silicon in the region corresponding to the first surface; a mask body: a mask is moved relative to the substrate, the mask comprising the laser light penetrating portion for preheating the second amorphous silicon region; a second portion of the light transmitting region, which is formed on the mask body, is in the region corresponding to the second light-transmissive preheated when the surface of an amorphous silicon region corresponds to the first surface of the multi-spar Kyu layer for laser light for the partial penetration of the melted surface of the first polysilicon layer, such that the first molten polycrystal re-crystallization of the surface silicon layer; and a light-transmitting region, which is formed on the mask main body, corresponding to the first amorphous silicon in the first portion when the light-transmissive region corresponding to the region of the surface of the second amorphous silicon surface area for the laser light for the full penetration of the first amorphous silicon melt region, is fully melted so that the amorphous silicon region is crystallized into a first 一第一多晶硅层;当该第一多晶硅层被形成且该第二非晶硅区被预热后,该光罩或该基板被移动,使得该透光区对应于被预热的该第二非晶硅区的表面,该激光光是穿透该透光区而全熔融被预热的该第二非晶硅区,且被全熔融的该第二非晶硅区是结晶成一第二多晶硅层。 A first polysilicon layer; when the first polysilicon layer is formed and the second amorphous silicon region is preheated, the photomask or the substrate is moved, so that the light-transmissive region corresponds to a pre- the second amorphous silicon amorphous silicon surface region of the second region, the laser light penetrates the light-transmitting region and the meltable preheated, it is fully melted and the second amorphous silicon region is crystallized into a second polysilicon layer.
10. 如权利要求9所述的光罩,其特征在于该第一部分透光区包含一金属层、 一半导体层、 一绝缘层或一有机层。 10. The photomask according to claim 9, wherein the first portion of the light-transmissive region comprises a metal layer, a semiconductor layer, an insulating layer or an organic layer.
11. 如权利要求10所述的光罩,其特征在于当被熔融的该第一多晶硅层的表面被重新结晶后,该光罩或该基板被移动,使得该第二部分透光区对应于该第二多晶硅层的表面,该激光光是部分穿透该第二部分透光区而熔融该第二多晶硅层的表面,使得熔融的该第二多晶硅层的表面重新结晶。 11. The photomask according to claim 10, wherein when the molten surface of the first polysilicon layer is recrystallized, the photomask or the substrate is moved, so that the second portion of the light-transmissive region corresponding to the surface of the second polysilicon layer, part of the laser light penetrates the light transmitting region and the second portion of the molten surface of the second polysilicon layer, the second polysilicon layer such that the surface of the molten re-crystallization.
12. 如权利要求11所述的光罩,其特征在于该第一部分透光区包含一金属层、 一半导体层、 一绝缘层或一有机层。 12. The photomask according to claim 11, wherein the first portion of the light-transmissive region comprises a metal layer, a semiconductor layer, an insulating layer or an organic layer.
13. 如权利要求11所述的光罩,其特征在于该第二部分透光区包含一金属层、 一半导体层、 一绝缘层或一有机层。 13. The photomask according to claim 11, wherein the second portion of the light-transmitting region comprises a metal layer, a semiconductor layer, an insulating layer or an organic layer.
CN 200410097453 2004-11-25 2004-11-25 Method for preparing polycrystalline silicon layer and light shield CN100394548C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410097453 CN100394548C (en) 2004-11-25 2004-11-25 Method for preparing polycrystalline silicon layer and light shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410097453 CN100394548C (en) 2004-11-25 2004-11-25 Method for preparing polycrystalline silicon layer and light shield

Publications (2)

Publication Number Publication Date
CN1614745A CN1614745A (en) 2005-05-11
CN100394548C true CN100394548C (en) 2008-06-11

Family

ID=34766603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410097453 CN100394548C (en) 2004-11-25 2004-11-25 Method for preparing polycrystalline silicon layer and light shield

Country Status (1)

Country Link
CN (1) CN100394548C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221902B (en) 2008-02-03 2010-11-24 友达光电股份有限公司 Mask used for continuous side direction crystal growing technology and laser crystallization method
CN100570824C (en) 2008-07-24 2009-12-16 友达光电股份有限公司 Mask and method for forming polycrystalline silicon layer using the same
CN105355544A (en) * 2015-11-24 2016-02-24 信利(惠州)智能显示有限公司 Preparation method of low temperature polysilicon thin film and thin film transistor, and thin film transistor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120739A (en) 1994-08-25 1996-04-17 夏普公司 Semiconductor device and method for fabricating the same
CN1162189A (en) 1996-02-23 1997-10-15 株式会社半导体能源研究所 Thin-film semiconductor and mfg. method thereof, semiconductor and mfg. method thereof
US6117752A (en) 1997-08-12 2000-09-12 Kabushiki Kaisha Toshiba Method of manufacturing polycrystalline semiconductor thin film
CN1388564A (en) 2001-05-30 2003-01-01 Lg.菲利浦Lcd株式会社 Method for making amorphous silicon crystalize using mask
CN1389600A (en) 2001-05-11 2003-01-08 Lg.菲利浦Lcd株式会社 Method for crystalizing amorphous silicon
CN1396317A (en) 2001-06-07 2003-02-12 Lg菲利浦Lcd株式会社 Amorphous silicon crystallizing method
US6555449B1 (en) 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
CN1501437A (en) 2002-09-16 2004-06-02 三星电子株式会社 Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120739A (en) 1994-08-25 1996-04-17 夏普公司 Semiconductor device and method for fabricating the same
CN1162189A (en) 1996-02-23 1997-10-15 株式会社半导体能源研究所 Thin-film semiconductor and mfg. method thereof, semiconductor and mfg. method thereof
US6555449B1 (en) 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
US6117752A (en) 1997-08-12 2000-09-12 Kabushiki Kaisha Toshiba Method of manufacturing polycrystalline semiconductor thin film
CN1389600A (en) 2001-05-11 2003-01-08 Lg.菲利浦Lcd株式会社 Method for crystalizing amorphous silicon
CN1388564A (en) 2001-05-30 2003-01-01 Lg.菲利浦Lcd株式会社 Method for making amorphous silicon crystalize using mask
CN1396317A (en) 2001-06-07 2003-02-12 Lg菲利浦Lcd株式会社 Amorphous silicon crystallizing method
CN1501437A (en) 2002-09-16 2004-06-02 三星电子株式会社 Mask for polycrystallization and method of manufacturing thin film transistor using polycrystallization mask

Also Published As

Publication number Publication date
CN1614745A (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR100376018B1 (en) A Display Device and fabricating method thereof
US5523262A (en) Rapid thermal annealing using thermally conductive overcoat
US6310362B1 (en) Electro-optical device
US6844249B2 (en) Method for manufacturing a semiconductor device using laser light
US20020048868A1 (en) Insulated gate field effect transistor and method for forming the same
CN1252796C (en) Method for making amorphous silicon crystalize using mask
US20080141935A1 (en) Mask for sequential lateral solidification and crystallization method using thereof
JP3348334B2 (en) Method of manufacturing a thin film semiconductor device
US7192818B1 (en) Polysilicon thin film fabrication method
JP4827276B2 (en) The method for manufacturing a laser irradiation device, laser irradiation method and a semiconductor device
US8183122B2 (en) Semiconductor device including semiconductor thin film, which is subjected to heat treatment to have alignment mark, crystallizing method for the semiconductor thin film, and crystallizing apparatus for the semiconductor thin film
US6964831B2 (en) Method of fabricating polysilicon film by excimer laser crystallization process
US7507645B2 (en) Method of forming polycrystalline semiconductor layer and thin film transistor using the same
JP3586558B2 (en) Apparatus for use in reforming method and practice of the thin film
CN100374950C (en) Variable mask device for crystallizing silicon layer and method for crystallizing using the same
TW200504882A (en) Method for manufacturing polysilicon film
US20020055207A1 (en) Method for fabricating thin-film transistor
JPH10104659A (en) Production of polycrystalline silicon thin-film transistor
US7361566B2 (en) Method of forming poly-silicon thin film transistors
CN1389600A (en) Method for crystalizing amorphous silicon
TW200903651A (en) Method of fabricating polycrystalline silicon, TFT fabricating using the same, method of fabricating the TFT, and organic light emitting diode display device including the TFT
JP2003318194A (en) Semiconductor device and its manufacturing method
US20020118317A1 (en) Method of forming an LCD with predominantly <100> polycrystalline silicon regions
US20070099352A1 (en) Method for annealing silicon thin films and polycrystalline silicon thin films prepared therefrom
US20030013281A1 (en) Polysilicon crystallizing method, method of fabricating thin film transistor using the same, and method of fabricating liquid crystal display thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted