CN100359746C - 层积型锂二次电池及其制造方法 - Google Patents

层积型锂二次电池及其制造方法 Download PDF

Info

Publication number
CN100359746C
CN100359746C CNB2004800029409A CN200480002940A CN100359746C CN 100359746 C CN100359746 C CN 100359746C CN B2004800029409 A CNB2004800029409 A CN B2004800029409A CN 200480002940 A CN200480002940 A CN 200480002940A CN 100359746 C CN100359746 C CN 100359746C
Authority
CN
China
Prior art keywords
plate
folding
positive
plates
minus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800029409A
Other languages
English (en)
Other versions
CN1742403A (zh
Inventor
卢焕辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Clean Energy Usa Acquiring Co
A123 Systems Inc
A123 Systems LLC
Original Assignee
Enerland Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerland Co Ltd filed Critical Enerland Co Ltd
Publication of CN1742403A publication Critical patent/CN1742403A/zh
Application granted granted Critical
Publication of CN100359746C publication Critical patent/CN100359746C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种层积型锂二次电池及其制造方法。该方法包括将多个阳极板粘合在隔板一个表面的一部分上,该阳极板在隔板上互相邻近,将多个阴极板粘合在此隔板的另一个表面的一部分上,该阴极板在隔板上互相邻近,通过将隔板未粘合电极板的部分折叠而用隔板覆盖阴极板或阳极板,沿着电极板之间形成的折线的固定的一个方向,顺序地折叠隔板,获得层积体,以及将所得到的层积体装入袋子中,接着注入电解质溶液和进行封装。该方法以固定的一个方向折叠而不是锯齿形折叠,简化了折叠方法,并通过使电极板所占长度最小化而减小了粘合方法所需设备的尺度。此外,隔板可牢固固定,与锯齿形折叠相比,可提高电池充电/放电特性和循环寿命。

Description

层积型锂二次电池及其制造方法
技术领域
本发明涉及一种锂二次电池及其制造方法,更具体而言,本发明涉及其中多个阴极板和多个阳极板互相交错相对的层积型锂二次电池及其制造方法。
背景技术
电池是通过化学反应将化学药品的化学能转化为电能的装置,分为两类:一次电池和两次电池。在可充电的二次电池中,锂二次电池是最重要的一种,因为在已有的电池中,锂二次电池具有最高的电压和最大的能量密度。
制造锂二次电池的常规方法之一如图6所示。该方法是这样制造锂二次电池的:依次沉积栅极型阳极集电器11,基体-膜型阳极12,基体-膜型隔板13,基体-膜型阴极14和栅极型阴极集电器15,接着层压这些元件将它们集成,然后将层压的元件以锯齿形方式折叠。更详细的解释可获自US 5,460,904。用此方法制造的锂二次电池(以下称为“集成型锂二次电池”)包含整体形式的阳极和阴极,其缺陷在于折叠过程中有时会发生电极损坏。
为了避免上述缺陷,KR 309,604和336,396公开了其中使用多个阳极板和多个阴极板的实施例。图7是依照KR 309,604的一个剖视图,该图显示了多个阳极板和阴极板在隔板中的排列。KR 309,604和336,396中公开的方法包括将多个阳极板22以预定的间隔(至少能够插入一个电极板的距离)粘合在隔板21的一个表面上,将多个阴极板23以预定的间隔(至少能够插入一个电极板的间隙)粘合在隔板21的另一个表面上,然后将隔板以锯齿形方式折叠,获得具有层积结构的锂二次电池,其中每个阳极板22和每个阴极板23是交替层积的。未作解释的参考数字24是粘合剂层。层积型锂二次电池避免了上述集成型锂二次电池的缺陷;这种方法可以防止由折叠过程造成的电极损坏。但是,它们仍然存在如下缺陷:折叠方法复杂,并且由于隔板的折叠是以锯齿形方式进行的而难以牢固地固定隔板。电极和隔板之间形成的以及由隔板松散固定造成的间隙使电化学电池的循环寿命和充电/放电特性恶化。特别是电极表面积越大,间隙形成的可能性也越大,从而难以制造具有均匀电学性质的电池。此外,由于电极板是以在其中插入至少一个阴极或者阳极的间隔的方式粘合的,粘合电极板的隔板的长度变长,从而需要更大的设备和更大的工作区。
本发明人在KR公开专利2002-93781中公开了一种制造锂二次电池的方法,该方法包括将阳极板和阴极板都以预定的次序安排在隔板的一个表面上,然后沿着固定的一个方向而不是以锯齿形方式折叠隔板。该方法避免了由锯齿形折叠造成的缺陷。但是,该方法存在阴极板和阳极板相互邻近排列可能造成短路的缺陷。另外,该方法还存在如下缺陷:由于粘合了电极板的隔板长度变长,因而需要更大的设备和更大的工作区。
因此,需要有一种新的层积型锂二次电池及其制造方法,以克服由锯齿形折叠造成的缺陷(折叠方法的困难和电池循环寿命的缩短)并且防止可能出现的短路。
发明概述
本发明的一个目的是提供一种制造层积型锂二次电池的方法,其中折叠是沿着固定的一个方向而不是以锯齿形方式进行的,并且防止了可能出现的短路。
本发明的另一目的是提供一种制造层积型锂二次电池的方法,其中将电极板所占据的长度最小化,从而只需要小型设备来粘合电极板。
本发明的又一目的是提供一种层积型锂二次电池,该电池防止了可能的短路,并且充电/放电特性得到了提高。
附图简述
图1是显示本发明电极板在隔板上的一种优选排列方式的视图,其中图1A、1B和1C分别是其剖视图、顶视图和底视图。
图2是显示折叠方法的说明性视图。
图3是用图2所示的顺序折叠方法获得的层积体的剖视图。
图4是含有一个分接头的电极板的透视图,该电极板是通过用包含电极活性材料的溶液涂覆集电器的两个表面,然后将涂覆的集电器切成合适的大小而获得的。
图5是显示实施例2的电池的循环寿命的特征曲线图。
图6是显示依照现有技术制造集成型锂二次电池的一种常规方法的视图。
图7是显示依照KR 309,604的现有技术,多个阳极板和阴极板在隔板上的一种排列方式的剖视图。
发明详述
本发明的方法包括:
a)将多个阳极板粘合在隔板一个表面的一部分上,所述的阳极板在隔板上互相邻近,
b)将多个阴极板粘合在此隔板的另一个表面的一部分上,所述的阴极板在隔板上互相邻近,并且所述阴极板的形状与所述阳极板相同,其中所述阴极板的数目比所述阳极板少一个,并且除了一个多出的阳极板外,所述阴极板中的每一个与所述阳极板中的每一个跨过隔板彼此面对,
c)通过将未粘合阳极板的部分折叠而用隔板覆盖阳极板,
d)沿着两个相邻的板之间形成的折线以固定的一个方向顺序地折叠隔板,获得层积体,和
e)将上述层积体装入袋子中,接着加入电解质和进行封装。
图1是显示依照本发明,多个电极板在隔板上的一种优选排列方式的视图,其中图1A、1B和1C分别是其剖视图、顶视图和底视图。图2是显示折叠方法的说明性视图。图3是通过顺序折叠获得的层积体的剖视图。
如图1A~1C所示,依照本发明的方法,将由隔板(200)隔开的阳极板100a和阴极板100b(合在一起为“100”)以邻近方式粘合。此处使用的术语“邻近”不应理解为两个毗连板之间的物理接触,而是指当沿着两个毗连板之间形成的折叠线300将两个板之一折叠时,两个毗连板可以相互重叠。除了邻近排列外,电极板100在隔板200上的排列还应当满足如下要求:当沿着折叠线300顺序折叠时,阳极板100a的分接头103a应当互相重叠,且阴极板100b的分接头103b也应当互相重叠。重叠的分接头103a和103b通过超声波焊接被各自独立地连接到合适的引线上(例如分别连接到镍和铝引线上)。
电极板100的粘合是用本领域熟知的方法进行的。例如,可以将粘合剂涂覆在将要固定电极板100的隔板200上,或者涂覆在将要粘合到隔板200上的电极板100上。至于使用的粘合剂,可以提及的有离子导电性聚合物材料,其选自聚环氧丙烷,聚氨酯,聚甲基丙烯酸甲酯,聚甲基丙烯酸丁酯,聚氰基丙烯酸酯,聚丙烯酸亚乙基酯,聚丙烯腈,聚偏1,1-二氟乙烯,聚六聚二氟丙烯(polyhexapropylene fluoride),聚环氧乙烷或者它们的混合物。将离子导电性聚合物材料溶解在合适的溶剂中,然后用常规的技术涂覆在隔板200或者电极板100的一侧上。至于使用的溶剂,可以提及的有碳酸二甲酯,乙腈,四氢呋呐,丙酮和甲基乙基酮。
图4是显示依照本发明的电极板100的一个优选实施方案的透视图。如图4所示,电极板100是通过下面的方法制备的:用包含电极活性材料的溶液涂覆集电器101的两个表面形成电极活性材料的涂层102,随后将涂覆的集电器101切成合适的大小。如果电极板100有分接头103,可以将电极板100切成例如矩形或者圆形。可以根据最后的电化学电池的所需形式来改变电极板100的形状。即,通过调节切断机模板或者选择合适形状的冲孔机可以大量制造具有所需形状的电极板100。对涂覆在集电器101表面上的电极活性材料(阴极活性材料和阳极活性材料)没有特别的限制。可以广泛使用在锂二次电池领域中用作电极活性材料的材料。优选的阴极和阳极活性材料列举于USP 5,837,015,5,635,151和5,501,548中。具体而言,作为阴极活性材料,可以提及能够嵌入/放出(deintercalation)锂离子的锂过渡金属氧化物,例如LiCoO2,LiMn2O4,LiNiO2或者LiMnO2。至于阳极活性材料,可以提及能够嵌入/放出锂离子的材料,例如金属锂,锂合金,碳(例如石墨)。优选阳极活性材料是碳(例如石墨)。在嵌入/放出反应过程中阴极活性材料的电化学势高,而阳极活性材料的电化学势低。将阴极或者阳极活性材料分散在合适的溶剂中,涂覆在集电器101的表面上,然后切割成所需的形状,分别形成阴极板或者阳极板。可以将电极活性材料涂覆在集电器101的一个表面上。优选如图1所示的涂覆在集电器101的两个表面上。双面涂覆使单位体积的放电容量增加。至于集电器101的优选实例,请查阅USP 5,837,015,5,635,151和5,501,548,这些专利通过引用结合在此。依照本发明的具体实施方案,分别使用铝薄板和铜薄板作为阴极和阳极集电器101。同时,通常将电极活性材料和增加电化学电池导电性的导电材料以及将电极活性材料和导电材料都粘合到集电器101上的粘合剂组合在一起,涂覆在集电器101的表面上。参照电极活性材料,很容易进行导电材料和粘合剂的选择,这是本发明所属技术领域的普通技术人员熟知的。如果需要,可以任选使用其他添加剂(例如抗氧化剂,阻燃剂等)。
可以根据使用的阳极活性材料,使用的阴极活性材料,使用的电解质以及所需的电池放电容量,适当地选择阳极板100a或者阴极板100b的数量。通常,所用的阳极板100a的数量比阴极板100b的数量多一个。当阳极板(或者阴极板)数量超过100时,折叠方法可能变得复杂。因此,使用的阳极板数量为2~100。优选使用3~50,更优选3~20,最优选4~15块阳极板。
在电极板100粘合到隔板200上以后,将没有粘合电极板的部分A沿着折叠线300折叠并覆盖电极100,具体为阳极板100a(请参阅图2A)。然后,如图2B所示地沿着折叠线300顺序折叠,制造出每个阳极板100a和每个阴极板100b相互交替并且被隔板200隔开的层积体。图3是用该折叠方法获得的层积体的剖视图。
如图3所示,层积体包含多个阳极板100a和阴极板100b,这些阳极板和阴极板相互面对并且被隔板200隔开。阳极板100a和阴极板100b被隔板200完全隔开,因此彻底消除了短路危险。此时,将隔板200沿着折叠线300的固定的一个方向顺序折叠,得到其中已连接的双层薄膜从里至外以固定的一个方向顺序折叠的构造。具体而言,隔板200不具有其中将单层薄膜从里至外以固定的一个方向顺序折叠而形成的构造,这种构造是常规的层积型电池中通常所具有的,而是具有这样一种构造:其中已连接的双层薄膜是从里至外以固定的一个方向顺序折叠的,并且阳极板100a与阴极板100b互相交错地位于双层薄膜之间所形成的空间中。依照本发明的隔板的构造具有 形状,因为已连接的双层薄膜是从里至外以固定的一个方向顺序折叠的。在这种构造中,隔板防止了阳极板100a和阴极板100b的直接电接触并且提供了用于离子通过的孔。优选实例为多孔聚烯烃薄膜如聚乙烯薄膜或者聚丙烯薄膜,多孔聚偏1,1-二氟乙烯薄膜,多孔六聚二氟丙烯薄膜和多孔聚环氧乙烷薄膜,但是不局限于此。在本领域中聚乙烯薄膜被广泛用作隔板200。隔板200可以包含两种或以上的多孔薄膜。
通常,最终的电池的制造方法包括将层积体装入包装体中,接着注入电解质溶液并且在真空下热封该包装体。此时,通常使用铁或者铝作为包装材料。至于电解质,可以使用液体电解质,凝胶电解质或者固体电解质。依照本发明优选的实施方案,使用的是液体电解质,该电解质是通过将锂盐,例如LiCF3SO3,Li(CF3SO2)2,LiPF6,LiBF4,LiClO4或者LiN(SO2C2F5)2,溶解在极性有机溶剂中,例如溶解在碳酸亚乙酯,碳酸亚丙酯,碳酸二甲酯,碳酸二乙酯和碳酸甲·乙酯中而获得的。
可以连续进行本发明方法的步骤,制造出大型的锂二次电池。例如可以在将卷起来的隔板以合适的速度展开后,连续进行步骤a)~e)。这样做时,上面排列了电极板100的隔板200是以固定的一个方向折叠的,而不是以锯齿形方式折叠的,因此可以牢固地固定隔板。此外,与常规方法相比,折叠的总次数减少了1/2,这样做提高了该方法的性能。
本发明还涉及一种用上述方法制造的层积型锂二次电池,其中被隔板隔开的多个阳极板和多个阴极板是相互面对的。更具体而言,本发明涉及一种层积型锂二次电池,该电池包含:多个阳极板,多个阴极板,将阳极板与阴极板隔开的隔板,以及电解质,其中隔板具有其中已连接的双层薄膜从里至外以固定的一个方向折叠的构造,并且阳极板与阴极板互相交错地位于双层薄膜之间所形成的空间中。依照本发明的层积型锂二次电池具有这样的结构,以便多个阳极板和阴极板相互面对,阳极板的分接头和阴极板的分接头各自独立地彼此重叠,隔板具有其中已连接的双层薄膜从里至外以固定的一个方向折叠的构造,并且电解质装在阴极板和隔板之间以及阳极板和隔板之间。具有这样一种结构的层积型锂二次电池消除了由不希望有的阴极板和阳极板的接触造成的短路危险。此外,由于层积型锂二次电池是通过固定的一个方向折叠而获得的,因而充电/放电特性得到了提高。具体而言,与采用KR 309,604和336,396中公开的锯齿形折叠方法获得的锂二次电池相比,通过固定的一个方向折叠而获得的锂二次电池能够牢固地固定隔板,从而提高了充电/放电特性,并且延长了电池的循环寿命。
下面将参照具体的实施例进一步描述本发明。但是,应当理解的是举出这些实施例仅仅是用于举例说明,而不应当理解是对本发明的限制。可以在不偏离本发明范围和精神的情况下进行大量的更改。
实施例
实施例1:电极板的制备
用常规方法制备阴极板:将100g作为阴极活性材料的LiCoO2粉末、5g作为导电材料的碳黑和5g作为粘合剂的聚偏1,1-二氟乙烯的混合物均匀混合,然后将100ml N-甲基吡咯烷酮加入到混合物中。将得到的溶液涂覆在充当集电器的厚度为15μm的铝箔的两边,干燥,然后用辊式压制机(rollpresser)按压。阴极板的厚度为150μm。
同样,制备阳极板:将100g石墨粉和10g作为粘合剂的聚偏1,1-二氟乙烯均匀混合,然后将100ml N-甲基吡咯烷酮加入到混合物中。将得到的溶液涂覆在充当阳极集电器的厚度为15μm的铜箔的两边,干燥,然后用压制机按压。阴极板的厚度为150μm。
用冲孔机切出阴极板和阳极板,以得到如图4所示的阴极和阳极板,其中大小为3cm×4cm的每个阴极和阳极板带有0.5cm×0.5cm大小的分接头。将获得的阴极板和阳极板贮存在盒子中。
实施例2:电池的制备
通过将乙腈(获自Aldrich)和聚环氧乙烷(获自Aldrich,平均分子量1,000,000)以100∶3的重量比混合,制备聚合物溶液。将获得的聚合物溶液用液体定量装置(liquid constant delivery apparatus)以2μm的厚度涂覆在充当隔板的多孔聚乙烯板(TecklonTM,ENTEK制造,厚度:25μm)的两边。
将从盒子中取出的阳极板和阴极板按照图1所示的次序粘合。此后,沿着折叠线以固定的一个方向顺序折叠,得到如图3所示的层积体。阴极板和阳极板突出的分接头各自独立地用镍和铝引线导出并用超声波平行焊接。将层积体容纳在含有容纳层积体的袋子的铝层压板中,将通过1.2mol LiPF6溶解在3ml碳酸亚乙酯和碳酸甲·乙酯(体积比1∶1)的混合溶剂中而制备的电解质溶液注入袋子中。在真空下热封该袋子,制造出厚度为3.8mm,宽度为35mm且长度为62mm的层积型锂二次电池。
对照例1
采用和实施例2所述方式相同的方式获得层积型锂二次电池,不同之处在于:在两个阳极板之间以及在两个阴极板之间形成间隔(3.3cm),并且以图7所示的锯齿形方式顺序折叠隔板。
下表1中总结了实施例2和对照例1的结果:
[表1]
    实施例2     对照例1
  电极板的折叠次数     6次     11次
  粘合方法所需要的时间 4秒 10秒
  电极板粘合方法所需要的设备长度 20cm 40cm
  折叠技术     固定的一个方向     锯齿形
电池循环寿命试验
对实施例2的电池的循环寿命进行试验并和对照例1进行对比。其结果显示于图5中。图5中,充电放电条件如下:
充电:电流500mA,4.2V
电压4.2V,50mA;
放电:电流500mA,3.0V
如图5所示,本发明的锂二次电池在超过150次循环后保持了92%或以上的放电容量,而对照例1的电池此时的放电容量不到88%并且有减小的趋势逐渐变大(放电容量下降速度逐渐加快的趋势)。
如上所述,本发明的方法提高了如下好处:首先,没有由于阴极板和阳极板不合需要的接触而造成短路的危险,因为阴极板和阳极板是被隔板明确地隔开的。而且,由于折叠是以固定的一个方向而不是以锯齿形方式进行的,可以避免由锯齿形折叠造成的缺陷,例如方法的不便,难以牢固固定隔板,导致电极板和隔板之间有间隙且电池循环寿命降低。除了上述优点之外,该方法减小了粘合电极板所需设备的尺度,并且能够充分利用工作区,因为阳极板以及阴极板是相互邻近的,故而与KR 309,604、KR336,396和韩国公开专利2002-93781相比,可以将粘合了电极板的部分减小1/2。此外,与KR 309,604、KR 336,396和韩国公开专利2002-93781相比,折叠数也减小了1/2,从而提高了该方法的效率。另外,用依照本发明的方法制造的锂二次电池由于有通过紧密固定在顺序折叠过程中被夹在阳极板和阴极板之间的隔板而形成的稳定界面而具有高度增强的充电/放电特性。此外,该电池消除了短路的危险,因为阳极板和阴极板是被隔板完全隔开的。

Claims (6)

1、一种层积型锂二次电池的制造方法,该方法包括:
a)将多个阳极板粘合在隔板一个表面的一部分上,所述的阳极板在隔板上互相邻近,
b)将多个阴极板粘合在此隔板的另一个表面的一部分上,所述的阴极板在隔板上互相邻近,并且所述阴极板的形状与所述阳极板相同,其中所述阴极板的数目比所述阳极板少一个,并且除了一个多出的阳极板外,每一个所述阴极板都面对一个位于隔板另一面的所述阳极板,
c)通过将未粘合阳极板的部分折叠而用隔板覆盖阳极板,
d)沿着两个相邻的板之间形成的折线以固定的一个方向顺序地折叠隔板,获得层积体,和
e)将上述层积体装入袋子中,接着加入电解质和进行封装。
2、根据权利要求1所述的方法,其中阴极板中的每一个为这样的元件:该阴极板中,将阴极活性材料涂覆到阴极集电器的一面或两面上;并且其中所述阳极板中的每一个为这样的元件:该阳极板中,将阳极活性材料涂覆在阳极集电器的一面或两面上。
3、根据权利要求2所述的方法,其中该阴极活性材料为锂过渡金属氧化物。
4、根据权利要求2所述的方法,其中所述阳极活性材料是金属锂,锂合金,或碳材料。
5、根据权利要求1所述的方法,其中该隔板选自聚乙烯膜,聚丙烯膜,聚偏1,1-二氟乙烯膜,六聚二氟丙烯膜,聚环氧乙烷膜及其组合。
6、根据权利要求1所述的方法,其中该电解质为液体电解质,凝胶电解质或固体电解质。
CNB2004800029409A 2003-01-27 2004-01-27 层积型锂二次电池及其制造方法 Expired - Lifetime CN100359746C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030005350 2003-01-27
KR10-2003-0005350A KR100509437B1 (ko) 2003-01-27 2003-01-27 적층형 리튬이차전지 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN1742403A CN1742403A (zh) 2006-03-01
CN100359746C true CN100359746C (zh) 2008-01-02

Family

ID=36094024

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800029409A Expired - Lifetime CN100359746C (zh) 2003-01-27 2004-01-27 层积型锂二次电池及其制造方法

Country Status (4)

Country Link
US (1) US8067112B2 (zh)
KR (1) KR100509437B1 (zh)
CN (1) CN100359746C (zh)
WO (1) WO2004068626A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666653B2 (ja) * 2004-05-14 2011-04-06 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP5157244B2 (ja) * 2007-05-11 2013-03-06 Tdk株式会社 電気化学デバイス及びその製造方法
KR100987300B1 (ko) * 2007-07-04 2010-10-12 주식회사 엘지화학 스택-폴딩형 전극조립체 및 그것의 제조방법
KR101749488B1 (ko) * 2008-02-25 2017-07-04 엘리언스 포 서스터너블 에너지, 엘엘씨 플렉시블한 박막 고체 상태 리튬 이온 배터리
US20100304198A1 (en) * 2009-05-28 2010-12-02 Samsung Sdi Co., Ltd. Electrode assembly for secondary battery and method of manufacturing the same
EP2330667B1 (en) * 2009-11-23 2017-03-22 BlackBerry Limited Rechargeable battery with reduced magnetic leak
US9240610B2 (en) * 2009-11-23 2016-01-19 Blackberry Limited Rechargeable battery with reduced magnetic leak
EP2569816B8 (en) * 2010-05-14 2014-10-08 Manz Italy S.r.l. Apparatus and method for the production of electric energy storage devices
IT1400397B1 (it) * 2010-05-14 2013-05-31 Arcotronics Ind S R L Ora Kemet Electronics S R L Apparato di produzione di dispositivi di accumulo di energia elettrica
IT1400280B1 (it) * 2010-05-14 2013-05-24 Arcotronics Ind S R L Ora Kemet Electronics S R L Metodo di produzione di dispositivi di accumulo di energia elettrica
US9083062B2 (en) * 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
EP2650124B1 (en) * 2010-12-09 2019-05-15 Asahi Kasei Kabushiki Kaisha Fine-structure laminate, method for preparing fine-structure laminate, and production method for fine-structure laminate
US20120189894A1 (en) * 2011-01-26 2012-07-26 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery including the same
KR101256067B1 (ko) * 2011-03-24 2013-04-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9413035B2 (en) 2011-06-24 2016-08-09 Johnson Controls Technology Llc Electrochemical cell having interrupted electrodes
CN102299294B (zh) * 2011-07-14 2013-12-18 美国电化学动力公司 一种片段式电池及其制备方法
CN102569720A (zh) * 2011-12-02 2012-07-11 苏州冠硕新能源有限公司 电池
US8802283B2 (en) 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery
KR20130091031A (ko) * 2012-02-07 2013-08-16 에스케이이노베이션 주식회사 배터리 셀
US9231271B2 (en) * 2012-02-28 2016-01-05 Amperex Technology Limited Merged battery cell with interleaved electrodes
US9401502B2 (en) 2012-04-11 2016-07-26 Nokia Technologies Oy Battery pack
KR20150047458A (ko) 2012-05-21 2015-05-04 에이일이삼 시스템즈, 엘엘씨 다중 셀 리튬 이온 배터리들
CN102683742A (zh) * 2012-06-12 2012-09-19 东莞新能源科技有限公司 一种锂离子电芯及其制备方法
CN102769146A (zh) * 2012-06-29 2012-11-07 宁德新能源科技有限公司 一种锂离子电池极芯及其制备方法
KR101693289B1 (ko) * 2012-07-31 2017-01-06 삼성에스디아이 주식회사 이차 전지
CN103199305A (zh) * 2013-03-18 2013-07-10 东莞新能源科技有限公司 锂离子电芯及其制备方法
EP3486992B1 (en) * 2013-06-28 2020-09-23 Positec Power Tools (Suzhou) Co., Ltd Battery
WO2016045622A1 (zh) 2014-09-26 2016-03-31 苏州宝时得电动工具有限公司 电池、电池组和不间断电源
CN105355962B (zh) * 2015-11-25 2017-12-05 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池的制备方法
CN105870488A (zh) * 2016-04-01 2016-08-17 深圳吉阳智云科技有限公司 一种电芯及含有该电芯的电池
CN105958100A (zh) * 2016-05-29 2016-09-21 合肥国轩高科动力能源有限公司 一种卷绕式叠片电池
US10074870B2 (en) * 2016-08-15 2018-09-11 Microsoft Technology Licensing, Llc Battery with perforated continuous separator
CN107204415B (zh) * 2017-07-11 2023-08-08 利信(江苏)能源科技有限责任公司 一种高温安全型电芯
CN208028181U (zh) * 2018-02-05 2018-10-30 比亚迪股份有限公司 电池芯、电池、电池模组、车辆和电子设备
KR102259233B1 (ko) * 2019-10-16 2021-06-01 (주) 피토 다기종 2차전지 적층장치 및 그 제어방법
CN112259802B (zh) * 2020-03-31 2022-02-01 蜂巢能源科技有限公司 锂离子电池叠片方法及装置
WO2024079507A1 (en) * 2022-10-12 2024-04-18 Vidyasirimedhi Institute Of Science And Technology Battery and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255250A (zh) * 1998-02-05 2000-05-31 三菱电机株式会社 锂离子电池的制造方法
JP2001160393A (ja) * 1999-12-01 2001-06-12 Kao Corp 非水系二次電池
CN1301053A (zh) * 1999-12-20 2001-06-27 科卡姆工程株式会社 锂蓄电池及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941927B2 (ja) 1990-10-09 1999-08-30 東洋高砂乾電池株式会社 角型リチウム二次電池
US5503948A (en) * 1994-08-02 1996-04-02 Microelectronics And Computer Technology Corporation Thin cell electrochemical battery system; and method of interconnecting multiple thin cells
JP3068092B1 (ja) * 1999-06-11 2000-07-24 花王株式会社 非水系二次電池用正極の製造方法
JP2002151156A (ja) * 2000-11-13 2002-05-24 Toshiba Battery Co Ltd リチウム二次電池の製造方法
JP4504600B2 (ja) * 2000-11-30 2010-07-14 パナソニック株式会社 角形密閉式電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255250A (zh) * 1998-02-05 2000-05-31 三菱电机株式会社 锂离子电池的制造方法
JP2001160393A (ja) * 1999-12-01 2001-06-12 Kao Corp 非水系二次電池
CN1301053A (zh) * 1999-12-20 2001-06-27 科卡姆工程株式会社 锂蓄电池及其制造方法
US6423449B1 (en) * 1999-12-20 2002-07-23 Kokam Engineering Co., Ltd. Lithium secondary cell and method of fabricating the same

Also Published As

Publication number Publication date
CN1742403A (zh) 2006-03-01
KR100509437B1 (ko) 2005-08-26
WO2004068626A1 (en) 2004-08-12
KR20040068803A (ko) 2004-08-02
US20060088759A1 (en) 2006-04-27
US8067112B2 (en) 2011-11-29

Similar Documents

Publication Publication Date Title
CN100359746C (zh) 层积型锂二次电池及其制造方法
JP2022118135A (ja) シングルパウチバッテリセル及びその製造方法
CN105518904B (zh) 电池组
US6709785B2 (en) Stacked electrochemical cell and method for preparing the same
EP1562242B1 (en) Thin-type secondary battery and method of producing the same, and secondary battery module
US6726733B2 (en) Multiply stacked electrochemical cell and method for preparing the same
JP2008210810A (ja) 双極リチウムイオン再充電可能電池
WO2017156757A1 (en) Reference electrode structures for lithium cells
KR20170038672A (ko) 전극 접속들을 수용하는 노치들을 가지는 감긴 배터리 셀들
CN103119764A (zh) 具有包含双极性电极的长方六面体形电池的电池组
KR20050028863A (ko) 전기화학 디바이스의 제조방법
KR20060059716A (ko) 리튬 이차 전지
JP2012156405A (ja) 蓄電デバイス
WO2004097971A1 (en) Stacked lithium secondary battery and its fabrication
AU2012370347A1 (en) Lithium-ion battery
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
KR100509435B1 (ko) 리튬이차전지 및 그 제조방법
CN106170883B (zh) 扁平型二次电池
KR100555848B1 (ko) 전극판의 한방향 접착이 가능한 적층형 리튬이차전지의제조방법
KR100514214B1 (ko) 분리된 2겹의 격리막을 이용한 적층형 리튬이차전지 및 그제조방법
US20050237031A1 (en) Power supply, charging apparatus, and charging system
KR100514215B1 (ko) 다열 접착을 이용한 적층형 리튬이차전지의 제조방법
WO2003100901A1 (en) Lithium secondary battery and its fabrication
KR200312088Y1 (ko) 리튬이차전지 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151026

Address after: Delaware

Patentee after: A123 SYSTEMS, LLC

Address before: Delaware

Patentee before: Universal clean energy USA acquiring Co.

Effective date of registration: 20151026

Address after: Delaware

Patentee after: Universal clean energy USA acquiring Co.

Address before: Delaware

Patentee before: A123 SYSTEMS, Inc.

Effective date of registration: 20151026

Address after: Delaware

Patentee after: A123 SYSTEMS, Inc.

Address before: Seoul, South Kerean

Patentee before: Enerland Co.,Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080102