CN100339664C - Cooling System - Google Patents

Cooling System Download PDF

Info

Publication number
CN100339664C
CN100339664C CN 200510062548 CN200510062548A CN100339664C CN 100339664 C CN100339664 C CN 100339664C CN 200510062548 CN200510062548 CN 200510062548 CN 200510062548 A CN200510062548 A CN 200510062548A CN 100339664 C CN100339664 C CN 100339664C
Authority
CN
China
Prior art keywords
refrigerant
temperature
compressor
liquid
injection
Prior art date
Application number
CN 200510062548
Other languages
Chinese (zh)
Other versions
CN1677016A (en
Inventor
大西泰宽
上杉秀史
Original Assignee
株式会社日立空调系统
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004098836A priority Critical patent/JP4403300B2/en
Application filed by 株式会社日立空调系统 filed Critical 株式会社日立空调系统
Publication of CN1677016A publication Critical patent/CN1677016A/en
Application granted granted Critical
Publication of CN100339664C publication Critical patent/CN100339664C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plant or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements, e.g. for transferring liquid from evaporator to boiler

Abstract

一种制冷系统,包括压缩机、冷凝器、膨胀阀、蒸发器、分别检测吸入压缩机的制冷剂的温度和压力以及从压缩机排出的制冷剂压力的传感器,包括输入通道和连接在输入通道中的流量控制阀的液体注入系统,和用来根据传感器传送的检测值,估计压缩机排出的气体制冷剂的温度,并根据估计温度向流量调节阀送出控制液体制冷剂注入量指令的控制装置,从而可以将从压缩机排出的气体的温度控制为设定值,而不论工作状态如何。 A refrigeration system comprising a compressor, a condenser, an expansion valve, an evaporator, respectively, the temperature and pressure of the refrigerant compressor and a sensor discharged from the compressor intake refrigerant pressure detection, comprising an input connected to an input channel and a channel the liquid injection system of the flow control valve, and means for transmitting sensor based on the detected value of the estimated temperature of the compressor discharge refrigerant gas and sends the control means controls the liquid refrigerant injection amount command based on the estimated temperature of the flow rate control valve , from the temperature of the gas can be discharged from the compressor is controlled to a set value, irrespective of the operating state.

Description

制冷系统 Cooling System

技术领域 FIELD

本发明涉及制冷系统,尤其涉及通过向压缩机中注入液体制冷剂来控制从压缩机中排放的制冷剂的温度的技术。 The present invention relates to refrigeration systems and more particularly by injecting liquid refrigerant into the compressor to control the refrigerant discharged from the compressor temperature technology.

背景技术 Background technique

制冷系统包括用来压缩制冷剂的压缩机、用来冷凝压缩制冷剂的冷凝器、用来降低冷凝的制冷剂的压力的减压装置和用来蒸发减压的制冷剂以冷却冰箱或类似装置中的空气的蒸发器。 Refrigeration system comprises a compressor for compressing a refrigerant, a condenser for condensing compressed refrigerant, a pressure reducing device for reducing the pressure of the refrigerant condensed and evaporated under reduced pressure and the refrigerant used to cool the refrigerator or the like air evaporator.

在这种制冷系统中,需要防止压缩机排出的气体制冷剂的温度(此温度在下文中被称作“排出气体温度”)超过设定温度,以防止制冷剂变质和制冷剂中含有的制冷机油的粘度降低。 In this refrigeration system, it is necessary to prevent the temperature of the gas refrigerant discharged from the compressor (this temperature is referred to hereinafter as "exhaust gas temperature") exceeds the set temperature to prevent the deterioration of refrigerating machine oil and the refrigerant contained in the refrigerant the viscosity reduction. 因此,排出气体温度由排出气体温度传感器检测,如果检测到的温度不低于设定温度,则在液体注入装置的压缩冲程中,液体制冷剂被注入压缩机中的制冷剂中(例如,参见JP-A-09-159288)。 Thus, the exhaust gas temperature detected by the exhaust gas temperature sensor, if the detected temperature is not lower than the set temperature, the liquid in the compression stroke injection apparatus, liquid refrigerant is injected into the refrigerant compressor (e.g., see, JP-A-09-159288).

另外,由于被吸入压缩机的制冷剂的压力低,并且制冷剂的密度低,所以从压缩机排出的气体制冷剂的热容量小。 Further, since the sucked into the compressor of the low pressure of the refrigerant, and the low density of the refrigerant, the heat capacity is small gas refrigerant discharged from the compressor agent. 因此,在非稳态条件,例如压缩机开始工作的情况下,气体制冷剂的温度被降低,因为从压缩机排出的气体制冷剂与管路等类似装置接触,它们在气体制冷剂到达气体传感器之前吸收了气体制冷剂的热量。 Thus, in the non-steady state conditions, for example, when the compressor starts operating, the refrigerant temperature of the gas is reduced, since the contact like the gas discharged from the compressor and the refrigerant piping, etc., which reaches the gas refrigerant in the gas sensor before absorption of heat from the gas refrigerant. 结果,在气体传感器检测的温度和实际的排出气体温度之间产生温差,直到管路和类似装置的温度升高至稳态条件下的温度。 As a result, a temperature difference between the temperature detected by the gas sensor and the actual temperature of the exhaust gas, pipeline and the like until the temperature is raised to a temperature under steady state conditions.

然而,与JP-A-09-159288中披露的制冷系统相似,在根据排出气体温度传感器的检测值将液体制冷剂注入压缩机的这种控制情况下,在控制开始时会产生延迟,从而排出气体温度将可能超过设定温度。 However, the disclosure of JP-A-09-159288 is similar to the refrigeration system, in which case the control value based on the detected exhaust gas temperature sensor of the liquid injection refrigerant compressor, when the control starts is a delay, thereby discharging the gas temperature may exceed the set temperature.

发明内容 SUMMARY

本发明的目的是控制排出气体温度至设定温度,而不论制冷系统的操作状态如何。 Object of the present invention is to control the exhaust gas temperature to the set temperature, and regardless of how the operating state of the refrigeration system.

为此目的,本发明提供了一种制冷系统,包括吸取制冷剂以压缩制冷剂的压缩机、用来冷凝压缩机排出的制冷剂的冷凝器、用来降低冷凝的制冷剂的压力的减压装置、用来蒸发减压的制冷剂的蒸发器、用来向压缩机注入液体制冷剂的液体注入装置、分别用于检测吸入压缩机的制冷剂的温度和压力以及从压缩机排出的制冷剂的压力的传感器,以及依靠传感器传送的检测值控制液体制冷剂注入量的控制装置,其中,控制装置根据传感器传送的检测值,估计从压缩机排出的气体制冷剂的温度,并根据估计温度发出控制液体制冷剂注入量的指令。 Object, the present invention provides a refrigeration system for this purpose, comprising a suction refrigerant compressor for compressing a refrigerant, a condenser for condensing the refrigerant discharged from the compressor for reducing the pressure of the condensed refrigerant is reduced means for vaporizing the refrigerant in the evaporator is reduced, the liquid for injecting a liquid refrigerant injection to the compressor means, for respectively detecting an intake refrigerant of the compressor and the temperature and pressure of the refrigerant discharged from the compressor pressure sensors, and rely on the detection value of the sensor control transfer of liquid refrigerant injection amount control means, wherein the control means based on the detected value transmitted by the sensor, the estimated temperature of the exhaust gas refrigerant from the compressor, and issued based on the estimated temperature control of the liquid refrigerant injection amount instruction.

也就是说,输入压缩机的能量与从压缩机输出的能量相等,因此从压缩机排出的气体制冷剂的温度(排出气体温度)可通过吸入压缩机的制冷剂的温度(输入气体温度)和压力(输入气体压力)以及排出压缩机的气体制冷剂的压力(排出气体压力)获得。 That is, the energy input to the compressor and the compressor is equal to the energy output, and therefore the temperature of the gas refrigerant from the compressor discharge (exhaust gas temperature) by the suction temperature of the refrigerant compressor (input gas temperature) and pressure of the gas pressure of the refrigerant (gas input pressure) of the compressor and the discharge (exhaust gas pressure) is obtained.

这里,注意到,即使在制冷负荷突然变化的非稳态条件下,对于输入气体温度、输入气体压力和排出气体压力,传感器的检测值基本上等于实际值,因此,排出气体温度可从输入气体温度、输入气体压力和排出气体压力通过计算准确地估计出来。 Here, it is noted that even under non-steady state conditions cooling load sudden changes of the input gas temperature, input exhaust gas pressure and the gas pressure, the detection value of the sensor is substantially equal to the actual values, therefore, the temperature of the exhaust gas from the gas input temperature, input exhaust gas pressure and the gas pressure accurately estimated by calculation. 此外,通过根据估计的排出气体温度计算液体制冷剂的注入量,液体制冷剂的适当的量可被计算出来。 Further, by calculating the amount of injection of the liquid refrigerant according to the estimated exhaust gas temperature, an appropriate amount of liquid refrigerant can be calculated. 因此,如果估计的排出气体温度超过设定温度,通过控制液体制冷剂的注入量,即使在非稳态条件下,液体制冷剂仍能以适当的量被注入。 Thus, if the estimated exhaust gas temperature exceeds the set temperature by controlling the injection amount of the liquid refrigerant, even under non-steady state conditions, the liquid refrigerant is injected into the still to an appropriate amount.

在此情况下,在稳态条件下,制冷负荷被稳定地保持时,传感器检测出的排出气体温度基本上等于实际值,因此,需要执行控制,以使液体制冷剂以基于传感器检测值的量被注入压缩机。 In this case, under steady state conditions, when the cooling load is stably maintained, the sensor detects the exhaust gas temperature is substantially equal to the actual values, therefore, it is necessary to perform control so that the liquid refrigerant amount based on the detected value of the sensor It is injected into the compressor. 更具体而言,提供了用来检测排出压缩机的气体制冷剂温度的温度传感器,如果传感器检测值和估计温度之间的偏差小于设定值,则根据温度传感器的检测值控制注入压缩机的液体制冷剂的注入量,但如果偏差超过设定值,则根据估计温度控制液体制冷剂的注入量。 More specifically, there is provided a temperature sensor for detecting the temperature of the exhaust gas refrigerant compressor, if the deviation between the sensor detection value and the estimated value is less than the set temperature, the compressor control based on the detection value of the injection temperature sensor injection amount of the liquid refrigerant, but if the deviation exceeds the set value, the control of liquid refrigerant injection amount based on the estimated temperature.

因此,根据本发明,排出气体温度可被控制到设定值,而不论操作条件如何。 Thus, according to the present invention, the exhaust gas temperature can be controlled to the set value, irrespective of the operating conditions.

通过以下结合附图对本发明的实施例的说明,本发明的其它目的、特征和优点将变得更加明显。 By drawings embodiments of the present invention in conjunction with the following, other objects, features and advantages of the present invention will become more apparent.

附图说明 BRIEF DESCRIPTION

图1是应用本发明的第一个实施例的制冷系统的系统的示意图;图2是解释注入液体制冷剂至压缩机的控制的流程图;图3是说明应用本发明的第二个实施例的制冷系统的系统示意图。 Figure 1 is a schematic view of one application of the invention is the refrigeration system according to the embodiment of the system; FIG. 2 is a flow chart for explaining control of liquid refrigerant is injected to the compressor; FIG. 3 illustrates a second embodiment of the present invention is applied a system schematic of the refrigeration system.

具体实施方式 Detailed ways

(第一个实施例)参见图1和图2,下文将解释应用本发明的制冷系统的第一个实施例。 (First Embodiment) Referring to FIGS. 1 and 2, will be explained hereinafter, application of a refrigeration system according to the present embodiment of the invention. 参见图1,它是描述本发明第一个实施例的制冷系统的系统示意图,将对应用于冰箱中的制冷系统的实施例进行说明,但本发明不限于此实施例,它可被用在冷冻装置、空调系统或类似装置中。 Referring to Figure 1, which is a schematic view of a system described in the first embodiment of the refrigeration system of the embodiment of the present invention, will be applied to the embodiment of the refrigerator cooling system will be described, embodiments of the present invention is not limited to this embodiment, it may be used in refrigeration apparatus, air-conditioning system or similar device.

参见图1,用在冰箱中的制冷系统,包括向其内吸入制冷剂以压缩制冷剂的涡旋式压缩机(下文简称“压缩机”)10、用来冷凝和液化压缩机10排出的气体制冷剂的冷凝器12、作为减压装置用来减压被冷凝器12液化的制冷剂的膨胀阀14和用来蒸发被膨胀阀14减压的制冷剂的蒸发器16等。 Referring to Figure 1, a refrigeration system is used in a refrigerator, comprising a scroll compressor to which the suction refrigerant compressing refrigerant (hereinafter referred to as "compressor") 10 for discharging the condensed and liquefied gas compressor 10 a refrigerant condenser 12, as pressure means for the expansion valve 12 is pressure liquefied refrigerant to a condenser 14 and evaporator expansion valve 14 is depressurized refrigerant evaporator 16 and the like. 此外,制冷剂管路18通过膨胀阀14将冷凝器12连接至蒸发器16。 Further, by expanding the refrigerant line 18 connecting the condenser 14 to the evaporator 16 a valve 12. 需要注意,除涡旋式压缩机之外的任何类型的压缩机均可被用作压缩机10。 It is noted that any type of compressor other than a scroll compressor 10 can be used as a compressor.

用来检测被吸入压缩机10的制冷剂的温度(下文简称为“输入气体温度”)的输入气体温度传感器24和用来检测被吸入压缩机10的制冷剂的压力(下文简称为“输入气体压力”)的输入气体压力传感器27被设置在压缩机10的注入侧。 For detecting the temperature of the refrigerant sucked into the compressor 10 (hereinafter simply referred to as "input gas temperature") of the input gas temperature sensor 24 for detecting and the refrigerant sucked into the compressor 10 a pressure (hereinafter, simply referred to as "input gas pressure ") input gas pressure sensor 27 is provided at the injection side of the compressor 10. 此外,用来检测从压缩机10排出的气体制冷剂的压力(下文简称为“排出气体压力”)的排出气体压力传感器28被设置在压缩机10的排出侧。 Further, for detecting the pressure of the gas refrigerant discharged from the compressor 10 (hereinafter simply referred to as "exhaust gas pressure") of the exhaust gas pressure sensor 28 is disposed on the discharge side of the compressor 10.

压缩机10通过液体注入回路作为液体注入装置被注入液体制冷剂。 The compressor 10 through the liquid injection circuit is injected as a liquid injection means liquid refrigerant. 液体注入回路包括从制冷剂管路18分出并连接到压缩机10的中压段的注入管路20,和连接到注入管路20中的作为流量调节装置的流量调节阀22。 A liquid injection circuit includes a refrigerant line 18 branched from and connected to the intermediate pressure section of the injection pipe 20 of the compressor 10, connected to injection conduit 20 as a flow regulating valve 22 regulating flow device. 在压缩机的中压段中,制冷剂处于压缩冲程,也就是被压缩,因此液体制冷剂通过注入管路20被注入这个阶段中。 In the medium-pressure section of the compressor, the refrigerant in the compression stroke, is compressed, so that the liquid refrigerant passes through the injection line 20 is injected into this stage. 需要注意,作为流量调节装置,可以使用多个固定流速调节器(例如可更换的毛细管)和能够逐步调整流速的电磁阀。 Note that, as a flow regulating device, a plurality of fixed flow-rate regulator (e.g. replaceable capillary) and the solenoid valve to gradually adjust the flow rate. 此外,控制单元26被设置用来向流量调节阀22发出与输入气体温度传感器24、输入气体压力传感器27和排出气体压力传感器28传送的检测值相应的指令。 Further, the control unit 26 is provided to a respective valve 22 issues an instruction value detection sensor 28 is transmitted to the input gas temperature sensor 24, the gas input pressure sensor 27 and the exhaust gas flow to the pressure regulator.

下文将解释组成上述制冷循环的制冷系统的基本操作。 Hereinafter will be explained the basic operation of the refrigeration system of the composition of the refrigeration cycle. 吸入压缩机的制冷剂被压缩,然后被排出。 The refrigerant sucked into the compressor is compressed and then discharged. 所述排出的液体制冷剂与例如大气中的空气进行热交换,以在冷凝器12中被冷凝。 The liquid refrigerant discharged from the heat exchange with the atmospheric air, for example, so as to be condensed in condenser 12. 所述冷凝的制冷剂通过制冷剂管路18导入膨胀阀14,以便被减压。 The condensed refrigerant passes through the refrigerant introduced into the expansion valve 14 the line 18 so as to be under reduced pressure. 被减压的制冷剂通过二级制冷剂(例如,空气)在蒸发器16中被蒸发。 Decompressed refrigerant is evaporated in the evaporator 16 through a secondary refrigerant (e.g., air). 被蒸发的制冷剂被返回至压缩机10。 The vaporized refrigerant is returned to the compressor 10. 通过蒸发器16中的制冷剂冷却的二级制冷剂被导入冰箱。 It is introduced into the refrigerator through the evaporator 16 of the secondary refrigerant in the refrigerant cooled. 需要注意,用来冷却冰箱内部的制冷循环的操作已被解释,除了制冷剂的流动通过四通选择阀被反方向引导之外,用来加热热负荷的制冷循环的操作基本上与上述操作类似。 It is noted that the operation for cooling the inside of the refrigeration cycle refrigerator has been explained, in addition to the flow of refrigerant is guided by the opposite direction than the four-way selector valve, a refrigeration cycle for heating operation of the heat load is substantially similar to the operation described above .

参见图2,根据本发明,在制冷系统起动时,向压缩机10注入的例子中,向压缩机10中注入液体制冷剂的控制操作将被解释。 Examples Referring to Figure 2, according to the present invention, in the refrigeration system startup, injection to the compressor 10, the injection control operation of the liquid refrigerant into the compressor 10 will be explained. 图2显示了控制注入液体制冷剂至压缩机10中的流程图。 Figure 2 shows a flow chart of injection control of the liquid refrigerant to the compressor 10. 图中显示的控制程序被装在控制单元26中。 FIG display control program is installed in the control unit 26.

如图2所示,获得传感器的检测值(S102)。 As shown in FIG 2, the detection value of the sensor is obtained (S102). 更具体而言,获得由输入气体温度传感器24检测的输入气体温度T1、由输入气体压力传感器27检测的输入气体压力P1和由排出气体压力传感器28检测的排出气体压力P2。 More specifically, the input gas temperature is obtained from the input gas temperature T1 detected by the sensor 24, the input gas pressure detected by the sensor 27 and the input gas pressure P1 detected by the discharge gas pressure 28 exhaust gas pressure sensor P2. 排出气体温度T2从输入气体温度T1、输入气体压力P1和排出气体压力P2通过计算被估计出来(S104)。 Exhaust gas temperature T2 from the input gas temperature T1, the input gas pressure P1 and pressure P2 of the exhaust gas is estimated (S104) by calculation. 所述排出气体的估计温度T2与设定的排出气体温度T0进行比较(S106)。 Estimating the exhaust gas temperature T2 T0 is compared with the set temperature of the exhaust gas (S106). 需要注意,设定温度T0被预先确定,以防止制冷剂变质和制冷剂中含有的制冷机油的粘度降低,并设定在例如90至110摄氏度的范围中。 Note that the set temperature T0 is determined in advance, in order to prevent a decrease in viscosity of the refrigerating machine oil, and deterioration of the refrigerant contained in the refrigerant, and is set in the range of e.g. 90 to 110 degrees Celsius.

在步骤106中,如果排出气体的温度T2不低于设定温度T0,则确定排出气体的温度T2应当被降低,因此作为液体制冷剂的注入量的液体注入量Q(kg/sec)通过排出气体的估计温度T2和设定温度T0之间的差值被计算出来(S108)。 In step 106, if the exhaust gas temperature T2 not lower than the set temperature T0, it is determined that the exhaust gas temperature T2 to be lowered, and therefore the amount of liquid injected as the liquid refrigerant injection amount Q (kg / sec) through the discharge the difference between the temperature T2 and the set temperature T0 of the gas estimate is calculated (S108). 对应所述计算出的液体注入量Q(kg/sec)的指令被传送给流量控制阀22(S110)。 Instruction corresponding to the calculated injection amount of the liquid Q (kg / sec) is transmitted to the flow control valve 22 (S110). 流量控制阀22根据传送的指令被调整至预定的打开程度,从而使液体制冷剂从制冷剂管路18注入压缩机10的中压段。 The flow control valve 22 is adjusted to a predetermined opening degree in accordance with an instruction transmitted, so that the liquid refrigerant is injected into the intermediate-pressure section of the compressor 10 from the refrigerant line 18. 需要注意:在步骤106中,如果排出气体温度T2低于设定温度T0,则液体注入量Q(kg/sec)可根据排出气体温度T2和设定温度T0之间的偏差被减少(S107)。 Note: In step 106, if the exhaust gas temperature T2 is lower than the set temperature T0, the liquid injection quantity Q (kg / sec) can be reduced (S107) according to a deviation between the exhaust gas temperature T0 and the set temperature T2 .

为了解释排出气体温度T2的估计原理,考虑压缩机10的能量守恒。 In order to explain the principles of the estimated exhaust gas temperature T2, the conservation of energy considerations of the compressor 10. 也就是说,对压缩机10的输入能量和压缩机10输出的输出能量必须是相等的,因此能量守恒能通过例如下述方程(公式)(1)表示。 That is, the input energy and output energy output of the compressor 10 of the compressor 10 must be equal, and therefore conservation of energy can, for example, (1) represented by the following equation (equation). 因此,从公式(1)中看出,除了排出气体的温度T2处,在步骤104中的值均可被测量出来。 Thus, it is seen from the formula (1), except that the temperature T2 at the exhaust gas, the value in step 104 can be measured. 作为选择,它们可由压缩机10的规格预先确定。 Alternatively, they may be the specifications of the compressor 10 is determined in advance. 因此,排出气体的温度T2可通过公式(1)获得。 Thus, the exhaust gas temperature T2 may be (1) obtained by the equation.

<输入气体的焓>×<制冷剂循环量(kg/sec)>+<压缩需要的能量>一<排出气体的焓>×<制冷剂循环量(kg/sec)>=<通过液体注射注入的液体制冷剂的焓>×<液体注入量Q(kg/sec)>(1)公式(1)中的参数可通过如下计算获得:<输入气体的焓>可从入口温度T1、吸入压力P1和制冷剂的物理性质通过计算得到。 & Lt; input gas enthalpy & gt; × & lt; a refrigerant circulation amount (kg / sec) & gt; + & lt; compression energy required & gt; a & lt; exhaust gas enthalpy & gt; × & lt; a refrigerant circulation amount (kg / sec) & gt; = & lt; through the liquid injection injected liquid refrigerant enthalpy & gt; × & lt; liquid injection amount Q (kg / sec) & gt; (1) equation (1) the parameters can be calculated to obtain: & lt ; input gas enthalpy & gt; from an inlet temperature T1, the pressure P1 and the refrigerant suction physical properties obtained by calculation. 具体而言,通过将入口温度T1和吸收压力P1代入例如根据物理属性确定的摩尔图(例如,如R410之类的制冷剂)获得。 Specifically, for example, be obtained by absorption of the inlet temperature T1 and the pressure P1 in FIG substituting the molar (e.g., such as refrigerant R410) physical properties determined. 摩尔图展示了制冷循环中焓和压力之间关系。 FIG molar shows the relationship between the pressure and the enthalpy of the refrigerating cycle.

<制冷剂循环量(kg/sec)>可从输入气体体积(m3/sec)、容积效率(%)和输入气体密度(kg/m3)获得。 & Lt; refrigerant circulation amount (kg / sec) & gt; available, volume efficiency (%) and an input gas density (kg / m3) is obtained from the input gas volume (m3 / sec). 需要注意:输入气体密度是通过输入气体温度T1、输入气体压力P1和制冷剂的物理属性计算出来的。 Note: gas density is input by the input gas temperature T1, the input gas pressure P1 is calculated and physical properties of the refrigerant. 此外,容积效率是被实际吸入压缩机10的制冷剂的体积变化指数,它是由制冷剂的泄漏或类似情况引起的,并且由压缩机10的规格决定。 Moreover, volumetric efficiency is actually sucked into the compressor 10 of the refrigerant volume change of the index, which is a leakage or the like caused by the refrigerant, and the compressor 10 is determined by the specifications.

<压缩需要的能量>可通过压缩机10的整体绝热压力效率(%)、输入气体温度T1、输入气体压力P1和压缩机的规格计算出来。 & Lt; compression energy required & gt; by pressure overall adiabatic efficiency (%) of the compressor 10, the gas input temperature T1, the pressure P1 and the incoming gas calculated from the specifications of the compressor. 需要注意:整体绝热压力效率(%)可由压缩机10的规格决定。 Note: The overall pressure adiabatic efficiency (%) by standard decision compressor 10. 此外,代替计算,其可利用测量装置测量注入压缩机10的功率来获得。 Further, instead of calculating, measuring device which may utilize injection to obtain the power of the compressor 10.

<排出气体的焓>可从输入气体压力P1、排出气体温度T2获得。 & Lt; exhaust gas enthalpy & gt; T2 can be obtained from the input gas pressure P1, the exhaust gas temperature. 在步骤S104中,排出气体温度T2是通过计算估计出的值。 In step S104, the exhaust gas temperature T2 is calculated by the estimated value.

<通过液体注射注入的液体制冷剂的焓>可由注入压缩机10的液体制冷剂的温度和液体制冷剂的物理属性计算出来。 & Lt; liquid injection by the liquid injection refrigerant enthalpy & gt; physical properties by injection and liquid refrigerant temperature liquid refrigerant from the compressor 10 is calculated. 需要注意:注入的液体制冷剂的温度可从排出压力P2获得。 Note: injection temperature of the liquid refrigerant may be obtained from the discharge pressure P2. 做为选择,它可通过温度传感器测得。 Alternatively, it can be measured by a temperature sensor.

<液体注入量Q(kg/sec)>在压缩机的启动时刻被初始化为0,但在制冷系统的工作过程中,在步骤S110中计算出的直接液体注入量Q(kg/sec)可被使用。 & Lt; Liquid injection amount Q (kg / sec) & gt; is initialized to 0 at the time of startup of the compressor, but during operation of the refrigeration system, the liquid injection amount is directly calculated in step S110 Q (kg / sec) It can be used. 在本实施例中,对于输入气体温度T1、输入气体压力P1和排出气体压力P2,因为即使在压缩机启动时或类似的非稳态情况下,它们在检测值和实际值之间显示了基本相同的值,所以实际的排出气体温度T2可根据输入气体温度T1、输入气体压力P1和排出气体压力P2估计(推测)。 In the present embodiment, the input gas temperature T1, the input gas pressure P1 and pressure P2 of the exhaust gas, because even when the compressor starts or similar non-steady state, which show substantially between the detected value and the actual value the same value, so the actual exhaust gas temperature T2 may be based on input gas temperatures T1, the gas pressure P1 and the input exhaust gas pressure P2 estimated (estimation). 因此,通过控制液体注入量Q,即使在非稳态条件下,液体制冷剂仍可被精确地注入。 Thus, by controlling the injection amount of the liquid Q, even under non-steady state conditions, the liquid refrigerant can still be accurately injected. 此外,通过根据估计的气体温度T2计算液体注入量Q,适当注入量的液体制冷剂可被注入至压缩机10中。 Further, the gas temperature T2 is calculated according to the estimated amount of liquid injection Q, the proper amount of liquid injection refrigerant may be injected into the compressor 10.

也就是说,在此实施例中,可以在制冷循环的工作过程中,根据估计的排出气体温度T2执行预定的控制以控制液体注入量Q(kg/sec)。 That is, in this embodiment, during operation of the refrigeration cycle may be in accordance with the estimated exhaust gas temperature T2 controlled to control the execution of a predetermined amount of liquid injection Q (kg / sec). 因此,在排出气体到达如温度传感器之类的测量部分的过程中,即使当排出气体的温度通过与其接触的部件(包括管路)的热吸收被降低时,排出气体温度也能被适当地控制,因此可以防止因制冷气体的过热引起的制冷剂和制冷机油变质。 Thus, the exhaust gas reaches the measuring section such as a temperature sensor process or the like, even when the temperature of the exhaust gas by means of contact therewith (including the line) is reduced when absorbing heat, the exhaust gas temperature can also be appropriately controlled , it is possible to prevent overheating of the refrigerant gas due to deterioration of refrigerant and the refrigerating machine oil. 因此,压缩机10的滑动部分的润滑可以被保证,从而可以防止压缩机10被卡住。 Thus, the lubrication of the sliding portions of the compressor 10 may be guaranteed, so that the compressor 10 can be prevented from being caught. 此外,由于温度传感器本身在检测中的延迟的影响不会产生。 Further, the temperature sensor itself due to the detection of no delay.

这里需要注意:在制冷系统工作过程中,代替根据估计的排出气体温度控制液体注入量Q(kg/sec),在输入温度T1、输入压力P1和排出压力P2逐渐变化的同时,测量排出气体温度T2,这样获得的测量值可被存储在控制单元26的存储器中作为数据表。 It should be noted: in the refrigeration system during operation, instead of controlling the liquid injection amount Q (kg / sec) The exhaust gas temperature estimation, while entering the temperatures T1, inlet pressure P1 and the discharge pressure P2 gradually changing measured exhaust gas temperature T2, the measured value thus obtained can be stored in memory in the control unit 26 as a data table. 此外,在制冷系统的工作过程中,通过对照表上的输入温度T1、输入压力P1和排出压力P2以估计出排出气体温度T2,液体注入量Q(kg/ec)可被控制。 Further, during operation of the refrigeration system by the input temperature T1 on the table, and enter the discharge pressure P1 to pressure P2 estimated exhaust gas temperature T2, the amount of liquid injection Q (kg / ec) can be controlled.

在制冷系统的工作过程中,代替根据估计的排出气体温度T2控制液体注入量Q(kg/sec),可以使用数据表,其上存有根据逐渐变化的输入气体温度T1、输入气体压力P1和排出气体压力P2获得的排出气体温度T2的测量值,所述数据表被存在控制单元26的存储器中。 During operation of the refrigeration system, instead of according to the estimated exhaust gas temperature T2 of the liquid injection controlling the amount Q (kg / sec), the data table may be used, according to which there input gas temperature T1 gradually changes, and the input gas pressure P1 exhaust gas temperature of the exhaust gas pressure P2 obtained measurement value T2, the data table is stored in the memory 26 of the control unit. 此外,在制冷系统工作过程中,已经被检测的输入气体温度T1、输入气体压力P1和排出气体压力P2与数据表进行对照,以估计排出气体温度T2,根据此温度,液体注入量Q(kg/sec)可被控制。 Further, in the refrigeration system during operation, has been detected in the input gas temperature T1, the input gas pressure P1 and the exhaust gas pressure P2 and the data table controls to estimate the exhaust gas temperature T2, according to the temperature, fluid injection amount Q (kg / sec) can be controlled.

除了本实施例之外,可以考虑在压缩机中,就在压缩冲程的下游,结合温度传感器,以降低控制中的延迟。 In addition to the embodiment of the present embodiment may be considered in the compressor, just downstream of the compression stroke, in conjunction with temperature sensors, to reduce the delay in control. 然而,它应结合到压缩机10的耐压密封容器中,相应地,导致复杂的结构或密封能力的降低,致使压缩机10的可靠性变差。 However, it should be incorporated into the pressure-resistant sealed container of the compressor 10, respectively, resulting in reduced sealing ability, or a complicated structure, resulting in deterioration of the reliability of the compressor 10. 考虑此点,根据本实施例,即使不设置温度传感器,压缩机10的排出气体温度仍可估计出来。 Consideration of this point, according to the present embodiment, even without providing the temperature sensor, the exhaust gas temperature of the compressor 10 can still be estimated.

此外,在本实施例中,虽然说明了使用R410(重量比R32∶50%/R125∶50%)的结构,但是各种制冷剂均可以被使用。 Further, in the present embodiment it has been described using R410 (wt ratio R32:50% / R125:50%) of the structure, but various refrigerant can be used. 然而需要注意,R410A的润滑性与例如含氯原子的R22或R12相比不高,与R404A(重量比R125∶44%/R143a∶52%/R134a∶4%)相比具有易升温的倾向。 Note, however, is not high lubricity R410A R22 or R12 as compared with e.g. chlorine atom, compared with of R404A (weight ratio R125:44% / R143a:52% / R134a:4%) having a predisposition to warming. 因此,通过在使用R10A的制冷系统中应用本发明,本发明进一步地展示了它的技术效果和优势。 Thus, by applying the present invention is the use of R10A in refrigeration systems, the present invention further demonstrated its technical effects and advantages.

(第二实施例)以下将参照图3说明应用本发明的第二个实施例,参见图3,它是说明本发明该实施例中的制冷系统的系统示意图。 (Second Embodiment) The following 3 illustrates a second embodiment of the present invention is applied with reference to FIG. 3, which is a schematic diagram of the system according to the embodiment of the refrigeration system of the present invention. 第二个实施例的结构基本上与第一个实施例的相同,但是,在第二实施例中,稳态条件和非稳态条件被测定,然后根据测定的结果,液体注入量的控制模式被转换。 A second embodiment of the structure is substantially same as the first embodiment, however, in the second embodiment, the non-steady state conditions, and steady state conditions were measured, and the result of measurements, the amount of liquid injection control mode to be converted.

参见图3,与图1显示的第一个实施例相比,排出温度传感器30被设置在制冷系统中压缩机10的排出侧。 Referring to Figure 3, compared to the first embodiment shown in FIG. 1, the discharge side of the discharge temperature sensor 30 is disposed in a refrigeration system compressor 10. 在第二个实施例中,排出气体温度T3的检测值被送入控制单元26。 In a second embodiment, the detected value of exhaust gas temperature T3 is fed to the control unit 26. 此外,与第一个实施例相似,排出气体温度T2也由控制单元26估计,以获得排出气体温度T2和T3之间的温差。 Further, similarly to the first embodiment, the exhaust gas temperature T2 is also estimated by the control unit 26, to obtain a temperature difference between exhaust gas temperature T2 and T3. 如果所述获得的温差小于预定值,那么确定制冷系统处于稳态。 If the temperature difference is smaller than the predetermined value is obtained, it is determined that the refrigeration system is in a steady state. 因此,根据排出温度传感器30测出的排出气体温度T3,液体注入量Q(kg/sec)可被控制。 Accordingly, the discharge temperature sensor 30 according to the measured exhaust gas temperature T3, the injection amount of the liquid Q (kg / sec) can be controlled. 需要注意,稳态条件是指制冷系统稳定地工作,也就是,例如排出气体温度基本上等于与排出气体接触的管路或类似装置的温度。 It is noted that the steady-state condition is that the refrigeration system works stably, i.e., for example, the exhaust gas temperature is substantially equal to the line contact with the exhaust gas temperature of the device or the like.

此时,如果排出气体温度T2和T3之间的温差不小于预定值,那么确定制冷系统处于非稳态。 At this time, if the temperature difference between the exhaust gas temperature T2 and T3 is not less than the predetermined value, it is determined that the refrigeration system is in steady state. 因此,从输入气体温度T1、输入气体压力P1和排出气体压力P2通过计算估计排出气体的实际温度T2,如第一个实施例所述,基于估计的温度T2,液体注入量Q(kg/sec)可被控制。 Thus, the input gas temperatures T1, pressure P1 input gas temperature and the exhaust gas pressure P2 estimated actual exhaust gas by computing T2, as described in the first embodiment, based on the estimated temperature T2, the amount of liquid injection Q (kg / sec ) can be controlled.

也就是说,当制冷系统处于稳态时,作为检测值的排出气体温度T3,与排出气体温度T2相比,有更大可能性接近实际排出气体温度,因此优选执行基于排出气体温度T3的控制。 That is, when the refrigeration system is in a steady state, as the exhaust gas temperature detection value T3, T2 compared with the exhaust gas temperature, there is a greater possibility of approaching the actual exhaust gas temperature, it is preferable to perform control based on the exhaust gas temperature T3 is . 同时,当制冷系统处于非稳态时,作为估计值的排出气体温度T2,与排出气体温度T3相比,有更大可能性接近实际排出气体温度,因此第一个实施例中描述的预测控制被优先执行。 Meanwhile, when the refrigeration system is in a steady state, as the exhaust gas temperature estimation value T2, T3 compared to the exhaust gas temperature, there is a greater possibility of approaching the actual exhaust gas temperature, and therefore a prediction described in the first control embodiment It takes precedence.

根据该实施例,即使存在制冷系统从稳态条件至非稳态条件,或从非稳态条件至稳态条件的状态重复变换,由于液体制冷剂能精确地以适当的量注入压缩机10,所以可以进一步防止排出气体温度超过设定温度T0。 According to this embodiment, even if the refrigeration system repeatedly transformed from a steady state condition to the non-steady state conditions or non steady state conditions from a state to a steady state condition, since the liquid refrigerant can be precisely injected in an appropriate amount of the compressor 10, it is possible to further prevent the exhaust gas temperature exceeds the set temperature T0.

虽然本发明以第一个和第二个实施例的形式进行了说明,但本发明并不限于这些实施例。 While the present invention has been described in the first and second form of embodiment, but the present invention is not limited to these embodiments. 例如,虽然压缩机启动的时候被作为非稳态的例子,但是本发明也能被用在制冷机的盖被打开或关闭的情况下。 For example, although the compressor is activated when unsteady as examples, but the present invention can also be used in the case of a refrigerator cover is opened or closed. 也就是,本发明可被应用在由于制冷负荷相对突然地变化而引起被吸入压缩机10的制冷剂的压力和温度变化的情况下。 That is, the present invention can be applied in the case where the cooling load due to the sudden change in the relative caused by the refrigerant sucked into the compressor 10 a pressure and temperature changes.

此外,在多个压缩机10被包括在制冷系统中的情况下,或构造其中包括多个制冷系统的多系统的情况下,由于任一压缩机的重复启动或停止,或工作的制冷系统的数量的增加或减少,而引起通过循环的制冷剂的量突然变化,通过应用本发明,可以进一步防止排出气体温度超过设定温度T0。 Further, in the case where a plurality of the compressor 10 is included in the refrigeration system, or the system configuration including a plurality of multiple refrigeration system, since any one of the repeat start or stop the compressor, the refrigeration system or work of the number of increase or decrease caused by a sudden change in the amount of circulating refrigerant, by applying the present invention, it is possible to further prevent the exhaust gas temperature exceeds the set temperature T0.

本领域的技术人员还可进一步理解,虽然上述描述基于本发明的实施例,但是本发明并不限于此,各种改变和改进可以被做出,而不脱离本发明的精神和附加的权利要求的范围。 Those skilled in the art will be further understood that, although the above described embodiments of the present invention based on embodiments, but the present invention is not limited thereto, and various changes and modifications may be made without departing from the spirit of the appended claims and the present invention range.

Claims (4)

1.一种制冷系统,包括压缩机,其用于吸取制冷剂以便压缩制冷剂;冷凝器,其用来冷凝从压缩机排出的制冷剂;减压装置,其用来降低被冷凝的制冷剂的压力;蒸发器,其用来蒸发被减压的制冷剂;液体注入装置,其用来向压缩机注入液体制冷剂;传感器,其分别用于检测吸入压缩机的制冷剂的温度和压力以及从压缩机排出的制冷剂的压力;控制装置,所述控制装置用于控制注入压缩机的液体制冷剂的注入量,其中,所述控制装置根据传感器传送的检测值,估计从压缩机排出的制冷剂的温度,并根据估计温度向液体注入装置发出控制液体制冷剂注入量的指令。 1. A refrigeration system comprising a compressor for sucking a refrigerant so as to compress the refrigerant; a condenser to condense the refrigerant discharged from the compressor; decompression means, which is used to reduce the refrigerant condensed pressure; an evaporator for evaporating the refrigerant decompressed; liquid injection device for injecting liquid refrigerant to the compressor; sensors for respectively detecting the temperature and pressure of the refrigerant sucked into the compressor, and from the pressure of the refrigerant discharged from the compressor; and a control means controlling the injection amount of the liquid refrigerant injecting apparatus for controlling a compressor, wherein said control means based on the detected value transmitted by the sensor, is estimated from the compressor discharge temperature of the refrigerant, and controlling the liquid injection means instructs injection amount based on the estimated temperature of the refrigerant in the liquid.
2.根据权利要求1所述的制冷系统,其特征在于:所述控制装置包括用来比较估计温度和设定温度的装置,和计算装置,如果估计温度高于设定温度,所述计算装置根据估计温度计算液体制冷剂的注入量。 The refrigeration system as recited in claim 1, wherein: said control means comprises a means for temperature and a set temperature calculating means for comparing the estimated and if the estimated temperature is higher than the set temperature, said computing means the liquid refrigerant injection amount is calculated based on the estimated temperature.
3.根据权利要求1所述的制冷系统,其特征在于:所述液体注入装置包括供液体制冷剂流过的注入通道,以及在该注入通道中连接的流量调节装置,所述流量调节装置用于根据从控制部分发送的指令来改变液体制冷剂的注入量。 The refrigeration system of claim 1, wherein: the liquid supply means includes a flow of refrigerant through said liquid injection passageway is injected, and the injection rate of the connection of the regulating passage means, said flow regulating device It is changed to the liquid refrigerant injection amount according to an instruction transmitted from the control section.
4.根据权利要求1所述的制冷系统,其特征在于:提供用来检测排出压缩机的气体制冷剂温度的附加的温度传感器,如果附加的传感器的检测值和所估计的温度之间的偏差小于设定值,则控制装置根据所述附加的温度传感器的检测值控制液体制冷剂的注入量,但如果所述偏差不小于设定值,则控制装置根据估计温度控制液体制冷剂的注入量。 4. The refrigeration system of claim 1, wherein: the additional temperature sensor detects the temperature of the discharged gas refrigerant to the compressor, if the deviation between the detected value of the additional sensors and the estimated temperature less than the set value, the control means controls the injection amount of the liquid refrigerant based on the detected values ​​of the additional temperature sensor, but if the deviation is not less than the set value, the amount of liquid refrigerant injection control means based on the estimated temperature control .
CN 200510062548 2004-03-30 2005-03-29 Cooling System CN100339664C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098836A JP4403300B2 (en) 2004-03-30 2004-03-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
CN1677016A CN1677016A (en) 2005-10-05
CN100339664C true CN100339664C (en) 2007-09-26

Family

ID=35049677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510062548 CN100339664C (en) 2004-03-30 2005-03-29 Cooling System

Country Status (3)

Country Link
US (1) US20050217292A1 (en)
JP (1) JP4403300B2 (en)
CN (1) CN100339664C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964496A (en) * 2007-10-08 2015-10-07 艾默生环境优化技术有限公司 System and method for monitoring overheat of a compressor
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052752A (en) * 2005-12-19 2009-03-12 Panasonic Corp Refrigeration cycle device
JP4975328B2 (en) * 2006-01-25 2012-07-11 サンデン株式会社 Electric compressor
JP4767134B2 (en) * 2006-09-01 2011-09-07 三洋電機株式会社 Refrigeration equipment
JP4905018B2 (en) * 2006-09-25 2012-03-28 ダイキン工業株式会社 Refrigeration equipment
KR101340725B1 (en) * 2006-10-17 2013-12-12 엘지전자 주식회사 Water cooling type air conditioner
JP4895883B2 (en) * 2007-03-26 2012-03-14 三菱電機株式会社 Air conditioning apparatus
JP4380730B2 (en) 2007-05-28 2009-12-09 株式会社デンソー Suction pressure estimation apparatus for a compressor of a refrigeration cycle apparatus
JP4375437B2 (en) 2007-05-28 2009-12-02 株式会社デンソー Suction pressure estimation apparatus for a compressor of a refrigeration cycle apparatus
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) * 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
KR101329752B1 (en) 2007-12-26 2013-11-20 엘지전자 주식회사 Air conditioning system
KR101402158B1 (en) * 2008-01-28 2014-06-27 엘지전자 주식회사 Air conditioning system
JP5058143B2 (en) * 2008-12-22 2012-10-24 株式会社日立産機システム Oil-free scroll compressor
JP5191969B2 (en) * 2009-09-30 2013-05-08 三菱重工コンプレッサ株式会社 Gas processing equipment
SG171566A1 (en) * 2009-12-01 2011-06-29 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic device
JP5398571B2 (en) * 2010-02-15 2014-01-29 三菱重工業株式会社 Air conditioning apparatus
JP5475874B2 (en) * 2010-04-30 2014-04-16 ダイキン工業株式会社 Heat pump system
CN102606481A (en) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 Anti-overheating device for rotary compressor
EP2672201B1 (en) 2011-01-31 2019-03-27 Mitsubishi Electric Corporation Air-conditioning device
CN103238034B (en) * 2011-01-31 2015-04-01 三菱电机株式会社 Air-conditioning device
EP2672202A4 (en) 2011-01-31 2014-10-08 Mitsubishi Electric Corp Air-conditioning device
CN102278806A (en) * 2011-05-26 2011-12-14 王玉龙 An air conditioner refrigerant pressure detecting means with the
EP2728277A4 (en) * 2011-06-29 2015-02-25 Mitsubishi Electric Corp Air-conditioning device
WO2013069043A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
JP5774121B2 (en) 2011-11-07 2015-09-02 三菱電機株式会社 Air conditioning apparatus
JP5735441B2 (en) * 2012-02-22 2015-06-17 日立アプライアンス株式会社 Refrigeration equipment
KR20130112627A (en) * 2012-04-04 2013-10-14 동부대우전자 주식회사 Abnormal detecting apparatus and method of cooling cycle for refrigerator
CN103375408A (en) * 2012-04-16 2013-10-30 丹佛斯(天津)有限公司 Temperature control device and method for compressor, compressor components and refrigerating system
WO2014128830A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014128831A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
CN105008820B (en) 2013-03-12 2017-03-08 三菱电机株式会社 Air conditioning unit
EP2975336A4 (en) 2013-03-12 2016-10-19 Mitsubishi Electric Corp Air conditioner
JP5855312B2 (en) 2013-03-12 2016-02-09 三菱電機株式会社 Air conditioning apparatus
JP5972213B2 (en) * 2013-04-18 2016-08-17 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration equipment
JP5795025B2 (en) * 2013-05-30 2015-10-14 三菱電機株式会社 Refrigeration cycle system
CN104296435B (en) * 2013-07-19 2016-08-24 艾默生环境优化技术(苏州)有限公司 Refrigeration system and control method of the refrigeration system
CN103471302B (en) * 2013-08-29 2016-06-29 合肥天鹅制冷科技有限公司 One kind of wide temperature liquid cooling liquid supply source
CN104728091A (en) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 Exhaust temperature control method and device of compressor
WO2015140950A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Air conditioner
KR20150146278A (en) * 2014-06-23 2015-12-31 주식회사 진성이앤지 Radiation member
WO2016079858A1 (en) 2014-11-20 2016-05-26 三菱電機株式会社 Scroll compressor
JP6393181B2 (en) * 2014-12-24 2018-09-19 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle system
US9964348B2 (en) 2015-09-16 2018-05-08 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
US9982919B2 (en) 2015-09-16 2018-05-29 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
WO2018102380A1 (en) * 2016-11-30 2018-06-07 DC Engineering, P.C. Method and system for improving refrigeration system efficiency

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209101A (en) * 1938-05-05 1940-07-23 Honeywell Regulator Co Refrigeration system
JP2618501B2 (en) * 1989-10-30 1997-06-11 株式会社日立製作所 Low temperature for a scroll-type refrigeration apparatus
JP3965717B2 (en) * 1997-03-19 2007-08-29 株式会社日立製作所 Refrigeration equipment and refrigeration
WO2000023752A1 (en) * 1998-10-19 2000-04-27 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2001050598A (en) * 2001-02-21 2001-02-23 Mitsubishi Heavy Ind Ltd Autonomous regulating valve and compression type refrigerator having the same
JP4582473B2 (en) * 2001-07-16 2010-11-17 Smc株式会社 Constant temperature liquid circulating device
DE10138255B4 (en) * 2001-08-03 2012-06-06 Gea Grasso Gmbh Arrangement of cascade refrigeration system
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
KR100421390B1 (en) * 2001-11-20 2004-03-09 엘지전자 주식회사 Turbo compressor cooling structure
US6615598B1 (en) * 2002-03-26 2003-09-09 Copeland Corporation Scroll machine with liquid injection
US6595024B1 (en) * 2002-06-25 2003-07-22 Carrier Corporation Expressor capacity control
JP4330369B2 (en) * 2002-09-17 2009-09-16 株式会社神戸製鋼所 Screw refrigeration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
CN104964496A (en) * 2007-10-08 2015-10-07 艾默生环境优化技术有限公司 System and method for monitoring overheat of a compressor
CN104964496B (en) * 2007-10-08 2017-09-12 艾默生环境优化技术有限公司 System and method for monitoring compressor overheating
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method

Also Published As

Publication number Publication date
JP2005282972A (en) 2005-10-13
CN1677016A (en) 2005-10-05
JP4403300B2 (en) 2010-01-27
US20050217292A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5063347B2 (en) Refrigeration and air conditioning equipment
US9494158B2 (en) Variable speed compressor protection system and method
JP5318099B2 (en) The refrigeration cycle apparatus, and a method of controlling the same
CN1120970C (en) Refrigerating system, heat pump system and detecting method for leakage of refrigerating agent of said system
CN1886625B (en) Freezer and air conditioner
JP3334507B2 (en) The method of the refrigeration system unit and refrigeration system unit
CN1240978C (en) Start-up method and apparatus in refrigeration chillers
DK2491317T3 (en) Operation of the refrigerant vapor compression system
EP1139039B1 (en) Economizer circuit enhancement
CN102575887B (en) Control parameters of a transport refrigeration system for a transport refrigeration system and a method
Aprea et al. An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger
Disawas et al. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
JP5197004B2 (en) Thermal control method and system
CN101512255B (en) Transportation refrigeration system, refrigerant vapor compression system and method for controlling loading volume of refrigerant
Chaiwongsa et al. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device
CN1181303C (en) Refrigerator
EP2096378A1 (en) Refrigeration cycle device
CN102168895B (en) Injection system and method for refrigeration system compressor
CN100416187C (en) Low temperature Refrigeration system
CN100513944C (en) Air-conditioning plant
JP2010526985A (en) The refrigerant vapor compression system having a flash tank economizer
JP5169295B2 (en) Refrigeration equipment
Wongwises et al. Performance of the two-phase ejector expansion refrigeration cycle
US6192696B1 (en) Refrigerating apparatus

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model