CH689561A5 - Penetration method for determining the consistency of a substrate. - Google Patents

Penetration method for determining the consistency of a substrate. Download PDF

Info

Publication number
CH689561A5
CH689561A5 CH02429/92A CH242992A CH689561A5 CH 689561 A5 CH689561 A5 CH 689561A5 CH 02429/92 A CH02429/92 A CH 02429/92A CH 242992 A CH242992 A CH 242992A CH 689561 A5 CH689561 A5 CH 689561A5
Authority
CH
Switzerland
Prior art keywords
probe
penetration
resistance
soil
measuring
Prior art date
Application number
CH02429/92A
Other languages
German (de)
Inventor
Raymond Andina
Original Assignee
Raymond Andina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raymond Andina filed Critical Raymond Andina
Priority to CH02429/92A priority Critical patent/CH689561A5/en
Priority to EP93915615A priority patent/EP0606433B1/en
Priority to DE59306879T priority patent/DE59306879D1/en
Priority to PCT/CH1993/000185 priority patent/WO1994003682A1/en
Priority to AT93915615T priority patent/ATE155186T1/en
Publication of CH689561A5 publication Critical patent/CH689561A5/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/027Investigation of foundation soil in situ before construction work by investigating properties relating to fluids in the soil, e.g. pore-water pressure, permeability

Abstract

In order to determine the consistency or nature of soil or sub-soil, or to be able to classify the soil or sub-soil, the permeability of the soil or sub-soil layers under examination is measured. This is done by measuring, as the key parameter, the degree of consolidation or so-called pore-water over pressure. To this end, the invention calls for the use of a penetrator (1) with a measurement probe which has a flattened tip (16, 21).

Description

       

  
 



  Die vorliegende Erfindung betrifft ein Verfahren zum Ermitteln der Konsistenz bzw. der Beschaffenheit eines Untergrundes oder Erdreiches bzw. zum Klassieren desselben sowie eine Penetrationsvorrichtung für das Ermitteln der Konsistenz bzw. Beschaffenheit eines Untergrundes oder Erdreiches bzw. zum Klassieren desselben. 



  Verfahren zum Klassieren von Untergründen bzw. von Erdreich und zum Ermitteln der Beschaffenheit bzw. Konsistenz, wie Festigkeit, Dichte, Kompaktheit, Widerstand, Viskosität usw., sind bekannt. So beschreibt das Schweizer Patent 466 154 eine Penetrations- bzw. Bohr- oder Sondiervorrichtung sowie ein Verfahren zum Messen und Ermitteln der obgenannten Faktoren von einem Untergrund bzw. von einem Erdreich. Eine Weiterentwicklung der genannten Vorrichtung ist im Schweizer Patent 679 887 beschrieben. 



  Die gemäss diesen Patentschriften bekannten Verfahren sowie Penetrationsvorrichtungen und Messsonden arbeiten mit dem Prinzip, dass das zu beurteilende Material bzw. die entsprechende Schicht mittels einer konisch ausgebildeten Sondenspitze durchdrungen wird, wobei einerseits der Widerstand auf die Sondenspitze gemessen wird, im weiteren die Reibung bzw. der Widerstand an einem die Sondenspitze umgebenden Rand- oder Mantelbereich, sowie letztendlich die Reibung bzw. der Widerstand am hinter der Spitze die Sonde  einhüllenden Mantelrohr. Die Reibung bzw. der Widerstand am Randbereich der Spitze sowie am Mantelrohr entsteht vornehmlich durch seitliches Verdrängen des zu durchdringenden Materials, womit sich je im Randbereich der Spitze sowie unmittelbar dahinter eine stark verdichtete Zone in der zu beurteilenden Schicht ergibt. 



  Aufgrund dieser drei Messwerte kann auf die Beschaffenheit bzw. Konsistenz des Untergrundes geschlossen werden, wobei die Genauigkeit der ermittelten Werte limitiert ist, indem insbesondere die beiden letztgenannten Widerstands- bzw. Reibungsmesswerte relativ ungenau sind, indem die Verdrängung des Materials kaum gleichmässig erfolgt und zudem stark von der im Untergrund vorhandenen Feuchtigkeit beeinflusst wird. Zudem handelt es sich hierbei um eine durch künstlich kurzzeitig aufgebaute Spannung im Boden beeinflusste Grösse. Dazu kommt, dass die Messung der letztgenannten Widerstände bzw. der Reibung am Sondenkranz bzw. am Mantelrohr aufwendig und kompliziert ist, muss doch die Sonde derart konstruiert sein, dass eine voneinander unabhängige Messung von mindestens zwei bzw. drei Messwerten möglich ist. 



  Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Messmethode vorzuschlagen, mittels welcher es auf einfache Art und Weise möglich ist, möglichst genau die Konsistenz bzw. die Beschaffenheit eines Untergrundes bzw. eines Erdreiches zu ermöglichen. 



  Erfindungsgemäss wird diese Aufgabe mittels eines Verfahrens gemäss dem Wortlaut nach Anspruch 1 ge löst. 



  Erfindungsgemäss wird vorgeschlagen, die Beschaffenheit bzw. Konsistenz des Untergrundes durch Messen der sog. Konsolidation (auch Konsolidierung genannt) des Untergrundmaterials zu ermitteln. Zu diesem Zweck wird nicht nur, wie allgemein üblich, eine spitzenförmige Messsonde verwendet, sondern bevorzugt eine Messsonde mit einer stumpfen "Spitze", bzw. die Sondenspitze ist zylindrisch ausgebildet mit einer flachen Spitzen- bzw. Frontfläche. Dadurch wird nun beim Eindringen der Sonde das zu klassierende Material im Untergrund nicht mehr durch die Spitze seitlich verdrängt, sondern die flache Spitze "schiebt" quasi das Material vor sich her. Damit wird aber beim Messen des Gegendruckes auf die Spitze nicht mehr die Kohäsion des Materials gemessen, sondern die Permeabilität des Materials.

   Ein wesentlicher Faktor für die Durchlässigkeit bzw. die Konsolidation des Untergrundes ist der sog. Porenwasserüberdruck, d.h. der in den Poren des Materials herrschende hydrostatische Druck, der sich aufgrund der effektiven oder imaginären Feuchtigkeit im Untergrund beim Eindringen der Sonde einstellt. Aufgrund der Kapillarwirkung im Untergrund stellt sich in unseren Breitengraden praktisch immer eine gewisse Wassersättigung ein, womit der damit verbundene sog. Porenwasserüberdruck ein repräsentatives Mass für die Permeabilität oder Konsolidierung und, damit verbunden, für die Konsistenz des Untergrundmaterials darstellt. 



  Es versteht sich von selbst, dass beispielsweise ein Erdreich, dessen Hohlräume mit Wasser gefüllt sind,  nur verdichtet werden kann, wenn das Porenwasser entweichen kann. Bei Tonen, beispielsweise, sind die Poren sehr eng und setzen daher dem Strömen des Wassers einen grossen Widerstand entgegen. Das Porenwasser kann also bei einer Belastung nur langsam entweichen, wobei der dadurch im Wasser entstehende Druck als Porenwasserüberdruck bezeichnet wird. 



  Diese offenbar wesentliche Grösse für die Klassierung des Untergrundes bzw. für die Ermittlung der Konsistenz oder Beschaffenheit des Untergrundes wird erfindungsgemäss durch die Verwendung vorzugsweise einer flachen Sondenspitze nebst einer konischen erreicht. Ein Messen dieses charakteristischen Konsolidationsgrades bzw. Porenwasserüberdruckes ist mit den herkömmlichen Messmethoden, wie beispielsweise mit den üblicherweise verwendeten konischen Sondenspitzen nur erschwert möglich. 



  Für das Ermitteln des Porenwasserüberdruckes bzw. der Permeabilität wird, wie erfindungsgemäss beansprucht, eine Penetrationsvorrichtung verwendet, welche an ihrem ins Erdreich voranzutreibenden Ende bzw. an ihrer Spitze eine Sonde aufweist, vorzugsweise mit einer abgeflachten Oberfläche bzw. in Sondenspitze. Die Sonde wird nun mit einer bestimmten Vorantriebsgeschwindigkeit ins Erdreich bzw. den Untergrund nach bekannter Art und Weise getrieben, wie beispielsweise bekannt aus den beiden vorab genannten Schweizer Patenten. An einer bestimmten Stelle wird der auf die flache Spitze herrschende Gegendruck bzw. die Gegenkraft durch den Untergrund gemessen (RpV = Spitzenwiderstand bei Geschwindigkeit V = Bruchwiderstand),  worauf unmittelbar nach der erfolgten Messung die Penetrationsvorrichtung gestoppt wird.

   Bei erfolgtem Anhalten wird erneut der Gegendruck auf die Bohrsondenspitze gemessen (RpO = Spitzenwiderstand beim Anhalten = Bodenwiderstand). 



  Wie oben erklärt, wird beim kontinuierlichen Vorantreiben der Bohrsonde die im Untergrund herrschende Feuchtigkeit in die Umgebung verdrängt, wobei diese Verdrängung abhängig ist von der Konsistenz und Durchlässigkeit des Untergrundmaterials. Beim Stoppen der Penetrationsvorrichtung stellt sich sofort je nach der Konsistenz und Durchlässigkeit des zu durchdringenden Materials eine Entspannung des Gegendruckes ein, da ja die im Untergrund herrschende Feuchtigkeit je nach Durchlässigkeit des Materials verdrängt wird und somit ein Druckabbau stattfindet. Dabei ist es aufgrund der sehr genauen Messgeräte nun möglich, die zeitliche Staffelung zwischen den beiden oder mehreren zeitlich abgestuften Messungen derart zu wählen, dass eine gewisse Entspannung des Gegendruckes aufgrund der Feuchtigkeit im Untergrund eintreten kann und die aufgrund des Konsolidationsgrades bestimmt werden kann.

   Nach Messen der beiden genannten Gegendrücke auf die Bohrsondenspitze wird die Penetrationsvorrichtung wiederum mit der vorab angegebenen bestimmten Geschwindigkeit weiter in den Untergrund getrieben. 



  Durch die jeweiligen Messwerte an den jeweiligen Messstellen im Untergrund und durch die Geometrie der Bohrsondenspitze kann nun der Konsolidationsgrad an der entsprechenden Stelle ermittelt werden. Der Po renwasserüberdruck ist proportional zur Differenz zwischen dem bei der bestimmten Geschwindigkeit der Penetrationsvorrichtung auf die Messsonde herrschenden Gegendruck (Bruchwiderstand) und dem Gegendruck bei angehaltener Messvorrichtung (Bodenwiderstand) sowie proportional zum Sondenquerschnitt und umgekehrt proportional zum Volumen der Sondenspitze, wobei auf die Errechnung des Sondenspitzenvolumens unter Bezug auf die nachfolgend angefügten Figuren noch näher einzugehen ist. 



  Durch Vergleichen der ermittelten Werte für den Porenwasserüberdruck mit einer geeichten Vergleichsskala ist eine Klassierung des Bodens möglich. Der Vorteil dieser Messmethode liegt darin, dass einerseits das Führen der Penetrationsvorrichtung mit ihrer Sonde in den Untergrund einfacher wird, da die bei spitzigen Messsonden auftretende seitliche Auslenkung, die sich oft bei Penetrationsvorrichtungen einstellt, wegfällt. Zudem ist die Messmethode eindeutig, ergibt sich doch bei der Verwendung einer flachen Spitze immer ein Spitzenwinkel von 180 DEG  und nicht, wie bei der Verwendung einer konischen Spitze, einmal ein Winkel von 60 DEG , einmal ein Winkel von 90 DEG  und letztendlich wiederum ein anderer Winkel von 130 DEG . Zudem ist es nicht möglich, Messwerte mit verschiedenen konischen Spitzen zu vergleichen, da eine Umwandlung mittels des Korrekturfaktors nicht möglich ist.

   Es ist daher nicht verwunderlich, dass international mittels üblich verwendeten Penetrationvorrichtungen ermittelte Werte der Beschaffenheit eines Untergrundes nicht miteinander verglichen werden können, da jeweils andere Sondenspitzenwinkel verwendet werden. Zudem ba sieren diese Werte auf Ermittlung der Kohäsion des Untergrundmaterials. 



  Letztendlich hat es sich auch gezeigt, dass auf die Berücksichtigung der seitlichen Reibung auf die Penetrations- bzw. Bohrsonden weitgehendst verzichtet werden kann. Allerdings ermöglicht auch diese Methode die Verwendung beispielsweise eines Mantelrohres, welches die Penetrations- bzw. Bohrsonden umgibt, an welchem Mantelrohr getrennt die sog. seitliche Reibung beim Vorantreiben der Bohrsonde in den Untergrund, falls erwünscht oder notwendig, gemessen werden kann. 



  Entsprechend wird erfindungsgemäss weiter eine Penetrationsvorrichtung vorgeschlagen gemäss dem Wortlaut nach Anspruch 6. 



  Weitere bevorzugte Ausführungsvarianten der Penetrationsvorrichtung sind in den abhängigen Ansprüchen 7 bis 12 charakterisiert. 



  Die Erfindung wird nun anschliessend und unter Bezug auf die beigefügten Figuren näher erläutert. 



  Dabei zeigen: 
 
   Fig. 1 schematisch im Längsschnitt eine erfindungsgemässe Penetrationsvorrichtung, insbesondere eine erfindungsgemässe Sonde, mit Stange und Mantelrohr für getrennte Messungen, 
   Fig. 2 schematisch im Längsschnitt dargestellt eine  Sondenspitze einer herkömmlichen Penetrationsvorrichtung, 
   Fig. 3 im Längsschnitt eine bevorzugte universelle Ausführungsvariante einer erfindungsgemässen Penetrationsvorrichtung mit zentraler Sonde, und 
   Fig. 4 eine oberhalb des Erdreiches angeordnete, schematisch dargestellte Messeinrichtung im Längsschnitt. 
 



  In Fig. 1 ist schematisch im Längsschnitt eine Penetrationsvorrichtung 1 dargestellt, im wesentlichen umfassend Bohr- bzw. Penetrationssonde 2 und, frontseitig angeordnet, eine Messsonde 16, welche über einen Spannstift 17 mit der oder den Penetrations- bzw. Bohrsonde 2 verbunden ist. Sowohl Penetrations- bzw. Bohrsonde 2 wie auch die Sonde 16 sind zylindrisch ausgebildet. Die Sonde 16 weist an ihrem Frontende bzw. an ihrer Spitze 21 eine flache Oberfläche 22 auf. Zudem weist die Frontpartie 21 einen gegenüber dem dahinterliegenden Bereich der Sonde vergrösserten Durchmesser auf. Die Zone mit vergrössertem Durchmesser weist eine Höhe h auf. Schlussendlich sind sowohl Sonde wie Penetrations- und Bohrstangen in einem Mantelrohr 9 eingehüllt. 



  Beim Eindring- bzw. Penetrationsvorgang in den Untergrund wird die flache Bohrsondenspitze 22 in den Untergrund getrieben, wodurch das durch die Sonde zu beurteilende bzw. klassierende Material in Pfeilrichtung vor der Sonde hergeschoben wird oder ggf. seit lich verdrängt wird. Dabei wesentlich ist, dass die dabei im Wasser real oder imaginär herrschende Feuchtigkeit, welche sich infolge der Kapillarwirkung aus dem Grundwasser her einstellt, nach unten und seitlich verdrängt wird. Dieser sich einstellende Wasserdruck bzw. der Porenwasserüberdruck ist ein Mass für die Konsistenz bzw. Zusammensetzung oder die Durchlässigkeit des zu beurteilenden Materials. 



  In Fig. 2 ist zum Vergleich eine herkömmliche Penetrationsvorrichtung bzw. eine Bohrsondenspitze im Längsschnitt dargestellt, wobei zum besseren Verständnis gleiche Teile im Vergleich zu Fig. 1 mit denselben Referenzzahlen versehen sind. Wie aus Fig. 2 deutlich erkennbar, weist die Bohr- bzw. Penetrations- oder Messsonde 16 eine konisch ausgebildete Spitze auf, wodurch beim Vorantreiben der Penetrationsvorrichtung in den Untergrund das zu beurteilende Material seitlich verdrängt wird. Damit kann aber nicht allein die Durchlässigkeit bzw. Permeabilität des Materials gemessen werden, denn das Messresultat wird im weiteren auch wesentlich durch die durch die Geometrie der Sondenspitze auftretende Kohäsion resp. Reibung beeinflusst.

   Weiter wird, wie schematisch mittels Pfeilen dargestellt, ersichtlich, dass sich das seitlich verdrängte Material seitlich hinter der Bohrsondenspitze am Mantelrohr anreichert, wodurch sich in dieser Zone eine Verdichtung einstellt. Damit wird aber, im Gegensatz zur Penetration der Bohrsonde von Fig. 1, die seitliche Reibung am Mantelrohr wesentlich, weshalb diese Grösse bei der Beurteilung bzw. bei der Klassierung des Materials ebenfalls mitzuberücksichtigen ist. 



  Im Vergleich von Fig. 1 zu Fig. 2 kann also festgehalten werden, dass mit der Penetrationsvorrichtung bzw. der Sonde von Fig. 1 die Durchlässigkeit bzw. Permeabilität des Untergrundes gemessen wird, währenddem mit der Penetrationsvorrichtung von Fig. 2 im wesentlichen die Kohäsion und Reibung des zu beurteilenden Materials gemessen wird. 



  In Fig. 3 ist eine bevorzugte universelle Ausführungsvariante einer erfindungsgemässen Penetrationsvorrichtung 1 im Längsschnitt dargestellt. Wiederum ist frontseitig an Penetrations- bzw. Bohrsonden 2 und 10 eine Messsonde 16 angeordnet, verbunden über einen Spannstift 17 mit der unmittelbar hinter der Sonde angeordneten zentralen Sondier- bzw. Penetrationsstange 10. 



  Gemäss der Ausführungsvariante von Fig. 3 ist die Sonde 16 zweiteilig ausgebildet, umfassend zwei koaxial zueinander angeordnete Partien, nämlich eine zentrale Sondenpartie 16a und eine äussere ringförmige Partie 16b. Analog zur Ausbildung der Sonde von Fig. 1 weisen beide Teile eine frontseitig ausgebildete, zylinderförmige Partie 21a bzw. 21b auf, welche vorzugsweise einen gegenüber der dahinterliegenden Partie der Sonde verbreiterten Durchmesser aufweist. Die frontseitigen Partien bzw. Frontflächen 22a und 22b der beiden Sondenpartien 16a und 16b sind aufeinander ausgerichtet und bilden somit in der dargestellten Ausführung gemäss Fig. 3 eine einzige ebene Fläche 22. 



  Die zentralen Sondier- bzw. Penetrationssonde 2 bzw.  10 werden von einem zentralen Sondenmantelrohr 9 eingehüllt, welches ebenfalls die zentrale Partie 16a der Sonde einhüllt. Die äussere Partie 16b der Sonde wird von einem Hüllrohr bzw. Schaft 11 getragen bzw. gehalten, welches seinerseits das Mantelrohr 9 einhüllt. Diesen Schaft 11 einhüllend sowie die frontseitige ringförmige Sondenpartie 16b einhüllend ist ein weiterer Schaft bzw. ein Mantelrohr 14 angeordnet, in welchem gleitend die äussere Sondenpartie 16b angeordnet ist. 



  Der oben erwähnte Spannstift 17 kann nach Beendigung der Bohrung durchbrochen werden, wenn ein Zurückziehen der Sonde 16 nicht mehr möglich ist. Durch das Zerstören dieser Spannstiftverbindung können sämtliche Hüllen und Penetrations- bzw. Bohrstangen an die Erdoberfläche zurückgezogen werden. 



  Für das Durchführen der Penetrationssondierung bzw. für das Ermitteln der Konsistenz oder Beschaffenheit des Untergrundes wird die Penetrationsvorrichtung 1 gemäss Fig. 3 durch geeignete Antriebsmittel in den Untergrund vorangetrieben. Auf die Darstellung und die Beschreibung derartiger Antriebsmittel kann verzichtet werden, da sie bereits aus den beiden oben erwähnten Schweizer Patenten hinlänglich bekannt sind, sowie aus der noch hängigen französischen Patentanmeldung 9 112 256. 



  Die Penetrationsvorrichtung 1, umfassend die zweiteilige Sondierspitze, wird mit einer bestimmten konstanten Vortriebsgeschwindigkeit in den Untergrund vorangetrieben, wobei an sich nachfolgenden Messstel len der Gegendruck bzw. die Gegenkraft auf die flache Oberfläche 22 der Sondenspitze 21 gemessen wird. Die Messung dieser Gegenkräfte erfolgt an der Erdoberfläche und ergibt sich aus der Kraftübertragung von der Sonde über die dahinterliegenden Sondier- bzw. Penetrationsstangen, womit diese Gegenkraft an der Erdoberfläche gemessen werden kann. 



  An diesen Messstellen wird jeweils der Penetrationsvorgang für kurze Zeit unterbrochen, wobei kurz nachfolgend an die Messung im bewegten Zustand eine weitere Messung des Gegendruckes unmittelbar beim Anhalten der Penetrationsvorrichtung erfolgt. Die Beschaffenheit bzw. die Konsistenz des Untergrundes wird nun durch diese sog. Permeabilitäts- oder Durchlässigkeitsmessung bestimmt, indem die Differenz zwischen den beiden erwähnten Gegendruckmessungen gebildet wird. Der Porenwasserdruck ergibt sich aus der nachfolgenden Gleichung:
 



  (Rpv-RpO) . Sondenquerschnitt : Sondenspitzenvolumen 



  Bei Rpv handelt es sich um die Messung des sog. Bruchwiderstandes im bewegten Zustand, beispielsweise bei einer Geschwindigkeit von 2 cm/s. Bei RpO handelt es sich um den Gegendruck, den sog. Bodenwiderstand, im Stillstand, und beim Sondenquerschnitt handelt es sich um denjenigen, dargestellt in Fig. 3. Das Sondenspitzenvolumen ergibt sich aus der Fläche 22, multipliziert mit der Höhe h gemäss Fig. 3. 



  Sollte aufgrund der Bodenbeschaffenheit, wie beispielsweise beim Vorhandensein von grobkörnigem Mate rial oder vereinzelten Steinen, die äussere Reibung ein wesentlicher Faktor darstellen, so besteht mit der Konstruktion der Penetrationsvorrichtung gemäss Fig. 3 die Möglichkeit, den Widerstand bzw. die Reibung am äusseren Mantel 14 zu messen. 



  Wird nun aber eine Stelle erreicht, wo die Penetrationsvorrichtung 1 nicht mehr ohne weiteres mit der bestimmten konstanten Geschwindigkeit weiter vorangetrieben werden kann, beispielsweise infolge lehmigen oder sehr kompakten Untergrundes, so kann analog der Penetrationsvorrichtung gemäss der CH-PS 679 887 der weitere Vorantrieb nur unter Verwendung der zentralen Sonde 16a weiter erfolgen. Dadurch wird die Frontsondenoberfläche wesentlich verkleinert, wodurch sich natürlich auch ein verringerter Widerstand auf die Frontpartie 22a der zentralen Sonde 16a einstellt.

   Zu diesem Zweck erfolgt die weitere Penetration nur noch durch Vorantreiben der zentralen Sonde 16a, gegebenenfalls zusammen mit dem die mittige Sondenpartie 16a einhüllenden Mantelrohr 9, womit weiterhin die Möglichkeit besteht, zusätzlich zum Widerstand auf die Frontpartie 22a die seitliche Reibung auf das Mantelrohr 9 zu messen. 



  Analog zur oben angeführten Gleichung werden wiederum an sich nachfolgenden Messstellen sowohl der Widerstand bei bewegter wie bei ruhender Penetrationsvorrichtung auf die Sonde 16a gemessen und der Porenwasserdruck analog bestimmt, wobei in diesem Fall der Sondenquerschnitt dem Querschnitt der Frontpartie 22a entspricht und das Sondenspitzenvolumen = Querschnittsfläche 22a . h. 



  Die bei den jeweiligen Messungen ermittelten Werte für den Porenwasserdruck werden nun mit entsprechenden Eichkurven verglichen, bei welchen der Porenwasserdruck in Abhängigkeit von verschiedenen Vorantriebsgeschwindigkeiten für bestimmte Beschaffenheiten bzw. Konsistenzen von Untergründen bzw. von Erdreichen aufgezeichnet bzw. aufgelistet ist. Anhand der mittels der Messung ermittelten Werte und der Vorantriebsgeschwindigkeit kann so anhand der Eichkurven sofort auf die Konsistenz bzw. Beschaffenheit des Untergrundes geschlossen werden. 



  Somit erfolgt die Beurteilung der Beschaffenheit bzw. der Konsistenz des Untergrundes nicht anhand der Kohäsion des Untergrundmaterials, sondern aufgrund der Permeabilität bzw. Durchlässigkeit des Materials bzw. aufgrund des Porenwasserdruckes, welcher in diesem Material herrscht. Bei Blockierung der Penetrationsvorrichtung infolge einer nur schwer durchdringbaren Schicht kann der Vorantrieb statt sog. statisch mit gleichbleibender Geschwindigkeit auch sog. dynamisch erfolgen, wie beispielsweise in der CH-PS 679 887 beschrieben. 



  Anhand von Fig. 4, letztendlich, soll aufgezeichnet werden, wie die Messung einerseits des Widerstandes auf die Messsonde 16 erfolgt, wie auch anderseits, unabhängig davon die Messung der Reibung auf das die Sonde umgebende Mantelrohr erfolgt. An sich ist die Messung von mehreren Werten bei der Penetration einer Penetrationsvorrichtung unabhängig voneinander bereits aus den beiden obgenannten Schweizer Patenten bekannt und in diesen eingehend beschrieben, doch  soll an dieser Stelle unter Bezug auf die schematische Darstellung der Messvorrichtung der Vorgang noch einmal kurz skizziert werden. 



  Gemäss der schematischen Darstellung in Fig. 4 wirkt eine zentrale Gesamtlast 31 für das Vorantreiben der Penetrationsvorrichtung in den Untergrund. Diese Gesamtlast 31 wirkt primär auf eine Traverse 33, wobei mittels Längsstangen 35 und einer weiteren Quertraverse 37 die Last auf die zentrale Sonde bzw. auf die Sonde 2 und das die zentrale Sonde umgebende Mantelrohr 9 übertragen wird. Die Übertragung erfolgt über ein zentrales Kopfteil 39 der Sonde. Durch das Anbringen einer Messbox 43 zwischen die erwähnte Traverse 37 und einer weiteren Traverse 36 kann die Widerstandskraft bzw. Gegenkraft auf die Sonde im Untergrund gemessen werden. 



  Über eine weitere Traverse 43 und Längsstangen 38 wird die Last auf ein Kopfteil 41 und somit auf das Mantelrohr 14 übertragen. Die am äusseren Mantelrohr 14 auftretende Reibung wird mittels einer weiteren Messbox 45 gemessen, die zwischen den beiden Traversen 33 und 34 angeordnet ist. 



  Die beiden Messboxen 43 und 45 können derart mit elektronischen Mess- und Auswertungseinrichtungen verbunden sein, dass jeweils automatisch an bestimmten Stellen des Vorantreibens der Penetrationsvorrichtung in den Untergrund zwei Messwerte aufgenommen und registriert werden, und zwar kurz vor und gerade beim Anhalten der Penetrationsvorrichtung. Die so gemessenen Werte werden wie oben beschrieben erfin dungsgemäss ausgewertet. 



  Die unter Bezug auf die Fig. 1 bis 4 dargestellte erfindungsgemässe Penetrationsvorrichtung bzw. die Beschreibung des Vorganges bezieht sich selbstverständlich nur auf ein Beispiel, das auf x-beliebige Art und Weise modifiziert, abgeändert oder ergänzt werden kann. Wesentlich ist dabei, dass die Messung bzw. Ermittlung der Konsistenz des Untergrundes mittels Erfassen der Permeabilität bzw. des Konsolidationsgrades des Untergrundmaterials erfolgt. Dabei wird vorzugsweise eine flache Sondenspitze verwendet, wobei jedoch die Messung, wohl erschwert, auch mit einer herkömmlich konischen Sonde erfolgen kann. So können als weitere Anwendungsmöglichkeiten beliebig viele zeitlich abgestufte Messungen durchgeführt werden, um anhand bekannter Theorien z.B. den Durchlässigkeitsbeiwert o.ä. zu bestimmen. 



  Zusammenfassend sollen noch einmal die wesentlichen Vorteile im Vergleich zu den herkömmlichen Messmethoden angeführt werden: 



  Durch die Verwendung der erfindungsgemässen flachen Sondenspitze reduziert sich das Messverfahren weitgehendst auf das Messen eines einzigen Messwertes, nämlich auf den Widerstand auf die Sondenfläche. Seitliche Reibungen und Widerstandkräfte können oft vernachlässigt werden, da sie oft kaum ins Gewicht fallen. 



  Durch die Wahl einer flachen Sondenspitze und durch die Messung der Permeabilität ist es möglich, den  sog. Konsolidationsgrad zu bestimmen. 



  Das mittels einer flachen Spitze "verschobene Volumen" ist wesentlich geringer als dasjenige bei Verwendung einer kegelförmigen bzw. konischen Spitze. Dies ergibt sich insbesondere aus der Oberfläche der Sondenspitze, die bei Wahl einer flachen Spitze wesentlich kleiner ist als die Oberfläche eines Kegelmantels. Somit entfallen auch allfällige Korrekturfaktoren aufgrund der Wahl eines unterschiedlichen Kegelspitzenwinkels. 



  Für die Klassierung und Ermittlung der Konsistenz eines Untergrundes kann auf nur einen einzigen Wert, nämlich den Konsolidationsgrad, abgestellt werden. 



  
 



  The present invention relates to a method for determining the consistency or the nature of a substrate or soil or for classifying the same, and to a penetration device for determining the consistency or nature of a substrate or soil or for classifying the same.



  Methods for classifying substrates or soil and for determining the quality or consistency, such as strength, density, compactness, resistance, viscosity, etc., are known. For example, Swiss Patent 466 154 describes a penetration or drilling or probing device and a method for measuring and determining the above-mentioned factors from a subsoil or a soil. A further development of the device mentioned is described in Swiss Patent 679 887.



  The methods known according to these patent specifications as well as penetration devices and measuring probes work on the principle that the material to be assessed or the corresponding layer is penetrated by means of a conically shaped probe tip, the resistance on the probe tip being measured on the one hand, and the friction or the resistance on the other Resistance at an edge or jacket area surrounding the probe tip, and finally the friction or the resistance at the jacket tube enveloping the probe behind the tip. The friction or resistance at the edge area of the tip and on the casing tube arises primarily through lateral displacement of the material to be penetrated, which results in a strongly compressed zone in the layer to be assessed, both in the edge area of the tip and immediately behind it.



  On the basis of these three measured values, the nature or consistency of the subsoil can be inferred, the accuracy of the determined values being limited, in particular because the latter two resistance or friction measured values are relatively imprecise, since the material is hardly displaced evenly and is also strong is influenced by the moisture present in the underground. In addition, it is a variable that is influenced by artificially briefly created tension in the soil. In addition, the measurement of the latter resistances or the friction on the probe ring or on the jacket tube is complex and complicated, since the probe must be constructed in such a way that independent measurement of at least two or three measured values is possible.



  It is therefore an object of the present invention to propose a measurement method by means of which it is possible in a simple manner to enable the consistency or the nature of a substrate or a soil to be as accurate as possible.



  According to the invention this object is achieved by means of a method according to the wording of claim 1 ge.



  According to the invention, it is proposed to determine the nature or consistency of the substrate by measuring the so-called consolidation (also called consolidation) of the substrate material. For this purpose, not only is a tip-shaped measuring probe used, as is generally customary, but preferably a measuring probe with a blunt "tip", or the probe tip is cylindrical with a flat tip or front surface. As a result, when the probe penetrates, the material to be classified is no longer displaced laterally through the tip, but rather the flat tip "pushes" the material in front of it. However, when measuring the back pressure on the tip, it is no longer the cohesion of the material that is measured, but the permeability of the material.

   An essential factor for the permeability or the consolidation of the subsoil is the so-called pore water overpressure, i.e. the hydrostatic pressure prevailing in the pores of the material, which arises due to the effective or imaginary moisture in the subsoil when the probe penetrates. Due to the capillary effect in the subsurface, there is practically always a certain water saturation in our latitudes, with which the associated so-called pore water pressure represents a representative measure of the permeability or consolidation and, associated with this, of the consistency of the subsurface material.



  It goes without saying that, for example, a soil whose voids are filled with water can only be compacted if the pore water can escape. In the case of clays, for example, the pores are very narrow and therefore offer great resistance to the flow of water. The pore water can therefore only escape slowly when subjected to a load, the resulting pressure in the water being referred to as the pore water overpressure.



  This apparently essential size for the classification of the subsurface or for the determination of the consistency or nature of the subsurface is achieved according to the invention by using a flat probe tip in addition to a conical one. Measuring this characteristic degree of consolidation or excess pore water pressure is difficult with the conventional measuring methods, such as, for example, with the conical probe tips commonly used.



  For the determination of the excess pore water pressure or the permeability, as claimed according to the invention, a penetration device is used which has a probe at its end to be driven into the ground or at its tip, preferably with a flattened surface or in the tip of the probe. The probe is now driven into the ground or underground at a certain propulsion speed in a known manner, as is known, for example, from the two aforementioned Swiss patents. At a certain point the back pressure on the flat tip or the counter force through the substrate is measured (RpV = peak resistance at speed V = breaking resistance), whereupon the penetration device is stopped immediately after the measurement.

   When stopping has been carried out, the back pressure on the drill probe tip is measured again (RpO = peak resistance when stopping = ground resistance).



  As explained above, when the drilling probe is continuously advanced, the moisture present in the subsurface is displaced into the surroundings, this displacement being dependent on the consistency and permeability of the subsurface material. When the penetration device is stopped, a relaxation of the counterpressure occurs immediately, depending on the consistency and permeability of the material to be penetrated, since the moisture prevailing in the subsurface is displaced depending on the permeability of the material, and pressure is therefore reduced. Due to the very precise measuring devices, it is now possible to choose the staggered time between the two or more staggered measurements in such a way that a certain relaxation of the back pressure due to the moisture in the subsurface can occur and which can be determined on the basis of the degree of consolidation.

   After measuring the two back pressures mentioned on the drilling probe tip, the penetration device is driven further into the subsurface at the predetermined speed specified above.



  The degree of consolidation at the corresponding point can now be determined by the respective measured values at the respective measuring points in the subsurface and by the geometry of the drilling probe tip. The pore water overpressure is proportional to the difference between the back pressure (rupture resistance) prevailing at the determined speed of the penetration device and the back pressure when the measuring device is stopped (floor resistance) as well as proportional to the probe cross section and inversely proportional to the volume of the probe tip, with the calculation of the probe tip volume with reference to the figures attached below is to be discussed in more detail.



  A classification of the soil is possible by comparing the determined values for the excess pore water pressure with a calibrated comparison scale. The advantage of this measuring method is that, on the one hand, guiding the penetration device with its probe into the ground becomes easier, since the lateral deflection that often occurs with pointed measurement probes, which often occurs with penetration devices, is eliminated. In addition, the measurement method is clear, because when using a flat tip, there is always a tip angle of 180 ° and not, as with the use of a conical tip, once an angle of 60 °, once an angle of 90 ° and ultimately another Angle of 130 degrees. In addition, it is not possible to compare measured values with different conical peaks, since conversion using the correction factor is not possible.

   It is therefore not surprising that values of the nature of a substrate determined internationally by means of commonly used penetration devices cannot be compared with one another, since different probe tip angles are used in each case. In addition, these values are based on determining the cohesion of the substrate material.



  Ultimately, it has also been shown that the penetration or drilling probes can largely be dispensed with considering the lateral friction. However, this method also makes it possible to use, for example, a casing tube which surrounds the penetration or drilling probes, on which casing pipe the so-called lateral friction when driving the drilling probe into the ground can be measured separately, if desired or necessary.



  Accordingly, according to the invention, a penetration device is further proposed according to the wording of claim 6.



  Further preferred embodiment variants of the penetration device are characterized in the dependent claims 7 to 12.



  The invention will now be explained in more detail with reference to the accompanying figures.



  Show:
 
   1 schematically shows in longitudinal section a penetration device according to the invention, in particular a probe according to the invention, with a rod and jacket tube for separate measurements,
   2 shows schematically in longitudinal section a probe tip of a conventional penetration device,
   3 shows in longitudinal section a preferred universal embodiment variant of a penetration device according to the invention with a central probe, and
   Fig. 4 shows a schematically illustrated measuring device arranged above the ground in longitudinal section.
 



  In Fig. 1, a penetration device 1 is shown schematically in longitudinal section, essentially comprising drilling or penetration probe 2 and, arranged on the front, a measuring probe 16 which is connected to the penetration or drilling probe 2 via a dowel pin 17. Both the penetration or drilling probe 2 and the probe 16 are cylindrical. The probe 16 has a flat surface 22 at its front end or at its tip 21. In addition, the front part 21 has a larger diameter than the region of the probe located behind it. The zone with an enlarged diameter has a height h. Finally, both the probe and the penetration and drill rods are encased in a casing tube 9.



  During the penetration or penetration process into the subsurface, the flat drill probe tip 22 is driven into the subsurface, whereby the material to be assessed or classified by the probe is pushed in front of the probe in the direction of the arrow or possibly displaced since. It is essential that the real or imaginary moisture in the water, which arises from the groundwater as a result of the capillary action, is displaced downwards and sideways. This water pressure or the excess pore water pressure is a measure of the consistency or composition or the permeability of the material to be assessed.



  A conventional penetration device or a drill probe tip is shown in longitudinal section in FIG. 2 for comparison, the same parts being provided with the same reference numbers in comparison to FIG. 1 for better understanding. As can be clearly seen from FIG. 2, the drilling or penetration or measuring probe 16 has a conical tip, as a result of which the material to be assessed is laterally displaced when the penetration device is driven into the ground. However, this does not mean that the permeability or permeability of the material can be measured alone, because the measurement result is furthermore essentially determined by the cohesion or. Friction affects.

   Furthermore, as shown schematically by means of arrows, it can be seen that the laterally displaced material accumulates laterally behind the drill probe tip on the casing tube, as a result of which compression occurs in this zone. However, in contrast to the penetration of the drilling probe of FIG. 1, the lateral friction on the casing tube becomes essential, which is why this size must also be taken into account when assessing or classifying the material.



  In comparison of FIG. 1 to FIG. 2, it can thus be stated that the permeability or permeability of the substrate is measured with the penetration device or the probe from FIG. 1, while essentially the cohesion and Friction of the material to be assessed is measured.



  3 shows a preferred universal embodiment variant of a penetration device 1 according to the invention in longitudinal section. Again, a measuring probe 16 is arranged on the front on penetration or drilling probes 2 and 10, connected via a dowel pin 17 to the central probing or penetration rod 10 arranged directly behind the probe.



  According to the embodiment variant of FIG. 3, the probe 16 is formed in two parts, comprising two parts arranged coaxially to one another, namely a central probe part 16a and an outer annular part 16b. Analogously to the design of the probe of FIG. 1, both parts have a cylindrical portion 21a or 21b formed on the front, which preferably has a diameter which is widened compared to the portion of the probe lying behind it. The front parts or front surfaces 22a and 22b of the two probe parts 16a and 16b are aligned with one another and thus form a single flat surface 22 in the embodiment shown in FIG. 3.



  The central probe or penetration probe 2 or 10 are enveloped by a central probe jacket tube 9, which likewise envelops the central part 16a of the probe. The outer part 16b of the probe is carried or held by a cladding tube or shaft 11, which in turn envelops the jacket tube 9. Enveloping this shaft 11 and enveloping the annular probe section 16b on the front side, a further shaft or jacket tube 14 is arranged, in which the outer probe section 16b is slidably arranged.



  The above-mentioned dowel pin 17 can be broken through after completion of the drilling if it is no longer possible to withdraw the probe 16. By destroying this dowel pin connection, all shells and penetration or boring bars can be pulled back to the surface of the earth.



  To carry out the penetration probing or to determine the consistency or nature of the substrate, the penetration device 1 according to FIG. 3 is driven into the substrate by suitable drive means. The representation and description of such drive means can be dispensed with, since they are already well known from the two Swiss patents mentioned above, and from the still pending French patent application 9 112 256.



  The penetration device 1, comprising the two-part probe tip, is driven into the subsurface at a certain constant rate of advance, with subsequent measuring points measuring the counter pressure or the counterforce on the flat surface 22 of the probe tip 21. These counterforces are measured on the surface of the earth and result from the force transmission from the probe via the probe or penetration rods behind it, with which this counterforce can be measured on the surface of the earth.



  At each of these measuring points, the penetration process is interrupted for a short time, with a further measurement of the counterpressure taking place shortly after the measurement in the moving state immediately when the penetration device is stopped. The condition or consistency of the substrate is now determined by this so-called permeability or permeability measurement, in that the difference between the two back pressure measurements mentioned is formed. The pore water pressure results from the following equation:
 



  (Rpv-RpO). Probe cross-section: probe tip volume



  Rpv is the measurement of the so-called breaking resistance in the moving state, for example at a speed of 2 cm / s. RpO is the back pressure, the so-called ground resistance, at standstill, and the probe cross-section is the one shown in FIG. 3. The probe tip volume results from the area 22 multiplied by the height h according to FIG. 3 .



  If due to the nature of the ground, such as the presence of coarse-grained mate rial or isolated stones, the external friction is an important factor, then with the construction of the penetration device according to FIG. 3 there is the possibility of increasing the resistance or the friction on the outer jacket 14 measure up.



  If, however, a point is reached where the penetration device 1 can no longer be easily advanced at the certain constant speed, for example as a result of loamy or very compact subsoil, analogous to the penetration device according to CH-PS 679 887, the further propulsion can only be undertaken Use of the central probe 16a continues. This significantly reduces the front probe surface, which naturally also results in a reduced resistance to the front part 22a of the central probe 16a.

   For this purpose, the further penetration only takes place by driving the central probe 16a, possibly together with the jacket tube 9 enveloping the central probe section 16a, with which there is still the possibility of measuring the lateral friction on the jacket tube 9 in addition to the resistance on the front section 22a .



  Analogous to the equation given above, in turn at subsequent measuring points, both the resistance to the probe 16a when the penetration device is moving and at rest are measured and the pore water pressure is determined analogously, in which case the probe cross section corresponds to the cross section of the front part 22a and the probe tip volume = cross-sectional area 22a. H.



  The values for the pore water pressure determined in the respective measurements are now compared with corresponding calibration curves, in which the pore water pressure is recorded or listed as a function of different propulsion speeds for certain properties or consistencies of substrates or soil. Based on the values determined by means of the measurement and the rate of advance, the consistency or nature of the substrate can be inferred immediately from the calibration curves.



  Thus, the assessment of the nature or consistency of the substrate is not based on the cohesion of the substrate material, but on the basis of the permeability or permeability of the material or on the basis of the pore water pressure which prevails in this material. If the penetration device is blocked due to a layer that is difficult to penetrate, the propulsion can also take place dynamically, instead of statically at a constant speed, as described, for example, in Swiss Patent No. 679,887.



  4, ultimately, it is to be recorded how the resistance on the measuring probe 16 is measured, on the one hand, and how, on the other hand, the friction on the jacket tube surrounding the probe is measured independently. The measurement of several values during the penetration of a penetration device independently of one another is already known from the two above-mentioned Swiss patents and is described in detail therein, but the process will be briefly outlined again here with reference to the schematic representation of the measuring device.



  According to the schematic representation in FIG. 4, a central total load 31 acts to drive the penetration device into the ground. This total load 31 acts primarily on a crossmember 33, the load being transmitted to the central probe or to the probe 2 and the jacket tube 9 surrounding the central probe by means of longitudinal rods 35 and a further crossmember 37. The transmission takes place via a central head part 39 of the probe. By attaching a measuring box 43 between the mentioned cross member 37 and a further cross member 36, the resistance or counterforce on the probe can be measured in the subsurface.



  The load is transmitted to a head part 41 and thus to the casing tube 14 via a further cross member 43 and longitudinal rods 38. The friction occurring on the outer casing tube 14 is measured by means of a further measuring box 45, which is arranged between the two cross members 33 and 34.



  The two measuring boxes 43 and 45 can be connected to electronic measuring and evaluation devices in such a way that two measured values are automatically recorded and registered at certain points in the driving of the penetration device into the ground, shortly before and precisely when the penetration device is stopped. The values measured in this way are evaluated according to the invention as described above.



  The penetration device according to the invention shown with reference to FIGS. 1 to 4 and the description of the process of course only relate to an example that can be modified, changed or supplemented in any desired manner. It is essential that the measurement or determination of the consistency of the substrate is carried out by recording the permeability or the degree of consolidation of the substrate material. A flat probe tip is preferably used, but the measurement, although more difficult, can also be carried out with a conventionally conical probe. As a further application, any number of time-graded measurements can be carried out in order to use e.g. the permeability coefficient or similar to determine.



  In summary, the main advantages compared to conventional measurement methods should be listed again:



  By using the flat probe tip according to the invention, the measuring method is largely reduced to measuring a single measured value, namely to the resistance on the probe surface. Lateral friction and resistance forces can often be neglected, as they are often of little importance.



  By choosing a flat probe tip and measuring the permeability, it is possible to determine the degree of consolidation.



  The volume "shifted" by means of a flat tip is considerably less than that when using a conical or conical tip. This results in particular from the surface of the probe tip, which is much smaller than the surface of a cone shell when a flat tip is selected. This means that any correction factors due to the choice of a different cone tip angle are also eliminated.



  For the classification and determination of the consistency of a substrate, only one single value, namely the degree of consolidation, can be used.


    

Claims (11)

1. Penetrationsverfahren zum Ermitteln der Konsistenz bzw. der Beschaffenheit eines Untergrundes oder Erdreiches bzw. zum Klassieren desselben, dadurch gekennzeichnet, dass die Permeabilität resp. der Porenwasserüberdruck in den jeweils zu beurteilenden Schichten des Untergrundes bzw. des Erdreiches gemessen wird.     1. penetration method for determining the consistency or the nature of a substrate or soil or for classifying the same, characterized in that the permeability or. the excess pore water pressure is measured in the layers of the subsoil or the soil to be assessed. 2. Penetrationsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der für die Klassierung des Bodens bzw. des Untergrundes massgebende Porenwasserüberdruck durch Messen der Permeabilität mittels einer eine flache Sondenoberfläche aufweisenden Sonde bestimmt wird. 2. The penetration method as claimed in claim 1, characterized in that the pore water excess pressure which is decisive for the classification of the soil or the subsurface is determined by measuring the permeability by means of a probe having a flat probe surface. 3. 3rd Penetrationsverfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass für das Messen der Permeabilität eine im wesentlichen zylindrische Sonde mit flacher Oberfläche mit einer bestimmten Geschwindigkeit in den Untergrund vorangetrieben wird und an periodisch sich nachfolgenden Stellen der Widerstandsdruck bzw. die Widerstandskraft auf den Sondenkopf gemessen wird; an den jeweils sich nachfolgenden Messstellen das Vorantreiben unterbrochen wird, um unmittelbar beim Anhalten des Penetrationsvorganges erneut den Widerstandsdruck bzw. die Widerstandskraft auf die Sondenoberfläche zu messen, aus welchen jeweiligen beiden Messwerten an der einen Stelle sich die Konsolidierung bzw. die relative "Entspannung" des Bodens ergibt, welche massgebend ist für die Ermittlung des Porenwasserüberdruckes, worauf die Penetration bzw.  Penetration method according to one of claims 1 or 2, characterized in that for measuring the permeability an essentially cylindrical probe with a flat surface is driven into the subsurface at a certain speed and at periodically following points the resistance pressure or the resistance force on the probe head is measured; at the measuring points that follow each other, the driving is interrupted in order to measure the resistance pressure or the resistance force on the probe surface again immediately upon stopping the penetration process, from which respective two measured values at one point the consolidation or the relative "relaxation" of the Soil results, which is decisive for the determination of the excess pore water pressure, whereupon the penetration or Sondierung bis zur nachfolgenden Stelle mit der bestimmten Penetrationsgeschwindigkeit fortgesetzt wird.  Probing is continued until the next point with the determined penetration speed. 4. Penetrationsverfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der Konsolidationsgrad aufgrund der Beziehung: (Rpv-RpO) . q : Vol ermittelt wird, wobei Rpv = dem Gegendruck bzw. Widerstand ist auf die flache Sondenoberfläche bei einer bestimmten Penetrationsgeschwindigkeit v; RpO = dem Gegendruck bzw. dem Widerstand ist bei v = O; q = dem Sondenquerschnitt ist und Vol = dem Volumen des Sondenendes, welches einen grösseren Durchmesser aufweist als die unmittelbar hinter der Sondenoberfläche angeordneten Sondenpartien bzw. als die in den Untergrund treibende Penetrationsstange. 4. Penetration method according to one of claims 2 or 3, characterized in that the degree of consolidation due to the relationship: (Rpv-RpO). q: Vol is determined, where Rpv = the counter pressure or resistance on the flat probe surface at a specific penetration speed v; RpO = the counter pressure or the resistance is at v = O; q = the cross section of the probe and Vol = the volume of the end of the probe, which has a larger diameter than the probe parts arranged immediately behind the probe surface or as the penetration rod driving into the subsurface. 5. 5. Penetrationsverfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Sondenoberfläche mindestens zweiteilig ist, bestehend mindestens aus zwei koaxial zueinander angeordneten Partien, umfassend eine zentrale Sondenoberfläche mit reduziertem Querschnitt, wobei die Sondenpartien mit den beiden Sondenoberflächen aufeinander eine einzige Fläche bildend ausgerichtet bis zu einer Eindringtiefe gleichzeitig für die Durchführung der Messung der Permeabilität vorangetrieben werden, bis ein Vorantreiben der Sonde mit der bestimmten Geschwindigkeit weitgehendst erschwert ist, worauf die zentrale Sondenpartie für die Fortführung der Messungen allein weiter mittels Penetration vorangetrieben wird.  Penetration method according to any one of claims 2 to 4, characterized in that the probe surface is at least in two parts, consisting of at least two parts arranged coaxially to one another, comprising a central probe surface with a reduced cross-section, the probe parts being aligned with one another to form a single surface with the two probe surfaces be pushed to a depth of penetration at the same time for carrying out the measurement of the permeability until it is extremely difficult to advance the probe at the determined speed, whereupon the central part of the probe for the continuation of the measurements is driven on solely by means of penetration. 6. Penetrationsvorrichtung zum Ermitteln der Konsistenz bzw. 6. Penetration device for determining the consistency or Beschaffenheit eines Untergrundes oder Erdreiches bzw. zum Klassieren desselben, gemäss dem Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass die Messsonde (16) eine im wesentlichen wenigstens nahezu flache Sondenoberfläche (22) aufweist und dass die Sonde (16) zylindrisch ausgebildet ist mit einem im Frontbereich (21) der Sonde vergrösserten Durchmesser.  Condition of a subsoil or soil or for classifying the same, according to the method according to one of claims 1-5, characterized in that the measuring probe (16) has an essentially at least almost flat probe surface (22) and that the probe (16) is cylindrical is formed with a larger diameter in the front area (21) of the probe. 7. Penetrationsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Sonde (16) und die für das Vorantreiben der Sonde notwendigen Penetrationsstangen (2, 10) in einem Mantelrohr (9, 14) geführt sind. 7. Penetration device according to claim 6, characterized in that the probe (16) and the penetration rods (2, 10) necessary for driving the probe are guided in a jacket tube (9, 14). 8. 8th. Penetrationsvorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Sonde (16) zwei im wesentlichen koaxial zueinander angeordnete Partien (16a, 16b) aufweist, wobei die zentrale Sonde (16a) gegenüber der diese ringförmig umgebenden Sondenhülle (16b) in Längsrichtung zur Penetrationsvorrichtung auslenkbar verschieblich angeordnet ist, um im Falle einer Blockierung der Sonde mit reduziertem Querschnitt weiter in den Untergrund vorangetrieben zu werden.  Penetration device according to one of Claims 6 or 7, characterized in that the probe (16) has two parts (16a, 16b) which are arranged essentially coaxially to one another, the central probe (16a) in the longitudinal direction relative to the probe sleeve (16b) which surrounds it in a ring is displaceably arranged to be displaceable to the penetration device in order to be driven further into the ground in the event of a blockage of the probe with a reduced cross-section. 9. 9. Penetrationsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die beiden Sondenpartien bzw. die zentrale Sonde und die Sondenhülle (16a, 16b) im Bereich ihrer Oberfläche (21a, 21b) aneinander anliegend, eine einzige Fläche (22a, 22b, 22) bildend, angeordnet sind und im Bereich entfernt von der Oberfläche (21a, 21b) voneinander beabstandet sind, derart, dass die zentrale Sonde (16a) im durch den Abstand gebildeten Zwischenraum durch ein Mantelrohr (9) geführt ist, welches im Falle des Auslenkens bzw. des allein weiter Vorantreibens der zentralen Partie (16a) der Sonde ebenfalls mit weiter vorangetrieben werden kann.  Penetration device according to claim 8, characterized in that the two probe sections or the central probe and the probe cover (16a, 16b) are arranged adjacent to one another in the region of their surface (21a, 21b), forming a single surface (22a, 22b, 22) and are spaced apart from each other in the area from the surface (21a, 21b), such that the central probe (16a) is guided in the space formed by the distance through a casing tube (9), which in the case of deflection or alone further driving the central part (16a) of the probe can also be advanced. 10. 10th Penetrationsvorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass über der Erdoberfläche Messeinrichtungen (43, 45) vorgesehen sind, um den auf die Sondenoberfläche (22) wirkenden Gegendruck bzw. um die Widerstandskraft zu messen.  Penetration device according to one of Claims 6 to 9, characterized in that measuring devices (43, 45) are provided above the earth's surface in order to measure the back pressure acting on the probe surface (22) or to measure the resistance. 11. Penetrationsvorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass mindestens zwei Messvorrichtungen (43, 45) vorgesehen sind, damit nebst dem Gegendruck bzw. der Widerstandskraft auf die Sondenoberfläche (22) auch die seitliche Reibung auf das Mantelrohr (9, 14) messbar ist. 11. Penetration device according to one of claims 6 to 10, characterized in that at least two measuring devices (43, 45) are provided, so that in addition to the back pressure or the resistance to the probe surface (22), the lateral friction on the casing tube (9, 14) is measurable.  
CH02429/92A 1992-07-31 1992-07-31 Penetration method for determining the consistency of a substrate. CH689561A5 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CH02429/92A CH689561A5 (en) 1992-07-31 1992-07-31 Penetration method for determining the consistency of a substrate.
EP93915615A EP0606433B1 (en) 1992-07-31 1993-07-23 Method of determining the consistency of sub-soil
DE59306879T DE59306879D1 (en) 1992-07-31 1993-07-23 METHOD FOR DETERMINING THE CONSISTENCY OF A SUBSTRATE
PCT/CH1993/000185 WO1994003682A1 (en) 1992-07-31 1993-07-23 Method of determining the consistency of sub-soil
AT93915615T ATE155186T1 (en) 1992-07-31 1993-07-23 METHOD FOR DETERMINING THE CONSISTENCY OF A SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH02429/92A CH689561A5 (en) 1992-07-31 1992-07-31 Penetration method for determining the consistency of a substrate.

Publications (1)

Publication Number Publication Date
CH689561A5 true CH689561A5 (en) 1999-06-15

Family

ID=4233602

Family Applications (1)

Application Number Title Priority Date Filing Date
CH02429/92A CH689561A5 (en) 1992-07-31 1992-07-31 Penetration method for determining the consistency of a substrate.

Country Status (5)

Country Link
EP (1) EP0606433B1 (en)
AT (1) ATE155186T1 (en)
CH (1) CH689561A5 (en)
DE (1) DE59306879D1 (en)
WO (1) WO1994003682A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009313C2 (en) * 1998-06-04 1999-12-07 Stichting Grondmechanica Delft Pipe system for introducing measurement apparatus into ground is for determining e.g. ground deformations, densities, subsidence, has outer pipe releasably connected to pointed end part
JP4642070B2 (en) * 2004-03-23 2011-03-02 ベンシック・ジオテック・プロプライエタリー・リミテッド An improved ball penetration tester for soft soil investigations.
CN102830215B (en) * 2012-09-03 2014-10-29 中国矿业大学 High-pressure clay consolidating instrument
CN110044673B (en) * 2019-05-17 2021-10-08 安徽理工大学 Soil sample preparation and consolidation device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6611541A (en) * 1966-08-17 1968-02-19
JPS57123319A (en) * 1981-01-22 1982-07-31 Kiso Jiban Consultant Kk Method and apparatus for subsurface exploration
US4554819A (en) * 1983-09-28 1985-11-26 Ali Muhammad A Method of and apparatus for measuring in situ, the subsurface bearing strength, the skin friction, and other subsurface characteristics of the soil
GB2165051B (en) * 1984-09-28 1989-01-11 Pm Insitu Tech Limited Improved pressure meter

Also Published As

Publication number Publication date
EP0606433A1 (en) 1994-07-20
WO1994003682A1 (en) 1994-02-17
ATE155186T1 (en) 1997-07-15
EP0606433B1 (en) 1997-07-09
DE59306879D1 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
DE4228580C1 (en) Earth drill for the manufacture of an in-situ concrete displacement pile
DE2349181A1 (en) METHOD AND DEVICE FOR ANALYZING VOLTAGE AND LOAD CONDITIONS
DE19521639C2 (en) Procedure for monitoring an HDI procedure
EP0606433B1 (en) Method of determining the consistency of sub-soil
DE60115741T2 (en) Excavation equipment for the production of in-situ concrete piles
DE102017122414B4 (en) Soil penetrometer and method for determining soil parameters
DE2503415A1 (en) DEVICE FOR A PENETROMETER
DE3905409C2 (en)
DE4215383C2 (en) Test load pile for measuring the load-bearing capacity of pile foundations
DE4411829A1 (en) Determining mechanical characteristics of soil for construction and agriculture
CH715377A1 (en) Procedure for checking the load-bearing capacity of a foundation.
DE19648547A1 (en) Appliance for quality inspection of nozzle jet method in foundation soil
DE69914281T2 (en) Method and device for checking the tightness of a fill
DE19834731C1 (en) Measuring device for bore holes for making high pressure injection bodies
DE2233831C2 (en) Concrete mix workability testing device - uses sampling tube with index indicating height of retained cement when tube is removed from mix
DE1698521B1 (en) Method and device for measuring the water permeability of a natural soil
DE2402058B1 (en)
DE19919351C1 (en) Laboratory process to determine soil subsidence resulting from water ingress in geological, mining, soil mechanics and soil physics applications
DE3915768C2 (en)
DE4328540C2 (en) Device for determining deformation indices of building and landfill materials
DE10113804C2 (en) Device for measuring the radius or diameter of cavities
DE935398C (en) Device for connecting a geophone used for seismic storage research with the ground
DE19949393C1 (en) Support or wall in a borehole is formed by a jet at the drill rod which sprays a mixture of loose soil and concrete with a lower coil spring to monitor the edge of the mixture for a controlled wall thickness
CH389513A (en) Hand pile driver for testing the subsoil
DE10335366B4 (en) Method and device for producing a stabilizing column in the soil

Legal Events

Date Code Title Description
PL Patent ceased