CA2992429A1 - Data model for home automation - Google Patents

Data model for home automation Download PDF

Info

Publication number
CA2992429A1
CA2992429A1 CA2992429A CA2992429A CA2992429A1 CA 2992429 A1 CA2992429 A1 CA 2992429A1 CA 2992429 A CA2992429 A CA 2992429A CA 2992429 A CA2992429 A CA 2992429A CA 2992429 A1 CA2992429 A1 CA 2992429A1
Authority
CA
Canada
Prior art keywords
data
plurality
system
devices
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA2992429A
Other languages
French (fr)
Inventor
Ken Sundermeyer
Corey Gates
Chris Decenzo
Paul J. Dawes
Aaron Wood
Abhay Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iControl Networks Inc
Original Assignee
iControl Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201562172913P priority Critical
Priority to US201562172885P priority
Priority to US62/172,885 priority
Priority to US62/172,913 priority
Priority to US14/943,162 priority
Priority to US14/943,162 priority patent/US10062245B2/en
Application filed by iControl Networks Inc filed Critical iControl Networks Inc
Priority to PCT/US2016/036574 priority patent/WO2016201033A1/en
Publication of CA2992429A1 publication Critical patent/CA2992429A1/en
Application status is Pending legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/2818Controlling appliance services of a home automation network by calling their functionalities from a device located outside both the home and the home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2825Reporting to a device located outside the home and the home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/2803Home automation networks
    • H04L12/283Processing of data at an internetworking point of a home automation network
    • H04L12/2834Switching of information between an external network and a home network

Abstract

A system comprises an automation network including a gateway at a premises coupled to a remote server. Premises devices are coupled to the gateway and form a device network in the premises. An automation user interface (AUI) application runs on remote devices and accesses the premises devices, and the remote devices comprise multiple device types. An application program interface (API) executes on the gateway and/or remote server and serves normalized data including state and/or history data of the premises devices to the AUI application on the remote devices. A normalized data model generates the normalized data including the state and/or history data of the plurality of premises devices agnostically to the plurality of remote devices.

Description

DATA MODEL FOR HOME AUTOMATION
Inventors:
Ken SUNDERMEYER
Corey GATES
Chris DECENZO
Paul J. DAWES
Aaron WOOD
Abhay GUPTA
RELATED APPLICATIONS
This application claims the benefit of United States (US) Patent Application Number 62/172,885, filed June 9, 2015.
This application claims the benefit of US Patent Application Number 62/172,913, filed June 9, 2015.
This application is a continuation in part application of US Patent Application Number 12/189,780, filed August 11,2008.
This application is a continuation in part application of US Patent Application Number 13/531,757, filed June 25, 2012.
This application is a continuation in part application of US Patent Application Number 12/197,958, filed August 25, 2008.
This application is a continuation in part application of US Patent Application Number 13/334,998, filed December 22, 2011.
This application is a continuation in part application of US Patent Application Number 12/539,537, filed August 11, 2009.
This application is a continuation in part application of US Patent Application Number 14/645,808, filed March 12, 2015.

This application is a continuation in part application of US Patent Application Number 13/104,932, filed May 10, 2011.
This application is a continuation in part application of US Patent Application Number 13/929,568, filed June 27, 2013.
This application is a continuation in part application of US Patent Application Number 14/628,651, filed February 23, 2015.
This application is a continuation in part application of US Patent Application Number 13/718,851, filed December 18, 2012.
This application is a continuation in part application of US Patent Application Number 12/972,740, filed December 20, 2010.
This application is a continuation in part application of US Patent Application Number 13/954,553, filed July 30, 2013.
This application is a continuation in part application of US Patent Application Number 14/943,162, filed November 17, 2015.
TECHNICAL FIELD
The embodiments described herein relate generally to a method and apparatus for improving the capabilities of security systems in home and business applications. More particularly, the embodiments described herein relate to a touchscreen device that integrates security system control and functionality with network content interactivity, management and presentation.
BACKGROUND
The field of home and small business security is dominated by technology suppliers who build comprehensive 'closed' security systems, where the individual components (sensors, security panels, keypads) operate solely within the confines of a single vendor solution. For example, a wireless motion sensor from vendor A
cannot be used with a security panel from vendor B. Each vendor typically has developed sophisticated proprietary wireless technologies to enable the installation and management

2

3 PCT/US2016/036574 of wireless sensors, with little or no ability for the wireless devices to operate separate from the vendor's homogeneous system. Furthermore, these traditional systems are extremely limited in their ability to interface either to a local or wide area standards-based network (such as an IP network); most installed systems support only a low-bandwidth, intermittent connection utilizing phone lines or cellular (RF) backup systems.
Wireless security technology from providers such as GE Security, Honeywell, and DSC/Tyco are well known in the art, and are examples of this proprietary approach to security systems for home and business.
Furthermore, with the proliferation of the internet, ethernet and WiFi local area networks (LANs) and advanced wide area networks (WANs) that offer high bandwidth, low latency connections (broadband), as well as more advanced wireless WAN
data networks (e.g. GPRS or CDMA 1 xRTT) there increasingly exists the networking capability to extend these traditional security systems to offer enhanced functionality. In addition, the proliferation of broadband access has driven a corresponding increase in home and small business networking technologies and devices. It is desirable to extend traditional security systems to encompass enhanced functionality such as the ability to control and manage security systems from the world wide web, cellular telephones, or advanced function internet-based devices. Other desired functionality includes an open systems approach to interface home security systems to home and small business networks.
Due to the proprietary approach described above, the traditional vendors are the only ones capable of taking advantage of these new network functions. To date, even though the vast majority of home and business customers have broadband network access in their premises, most security systems do not offer the advanced capabilities associated with high speed, low-latency LANs and WANs. This is primarily because the proprietary vendors have not been able to deliver such technology efficiently or effectively. Solution providers attempting to address this need are becoming known in the art, including three categories of vendors: traditional proprietary hardware providers such as Honeywell and GE Security; third party hard-wired module providers such as Alarm.com, NextAlarm, and uControl; and new proprietary systems providers such as InGrid.
A disadvantage of the prior art technologies of the traditional proprietary hardware providers arises due to the continued proprietary approach of these vendors. As they develop technology in this area it once again operates only with the hardware from that specific vendor, ignoring the need for a heterogeneous, cross-vendor solution. Yet another disadvantage of the prior art technologies of the traditional proprietary hardware providers arises due to the lack of experience and capability of these companies in creating open internet and web based solutions, and consumer friendly interfaces.
A disadvantage of the prior art technologies of the third party hard-wired module providers arises due to the installation and operational complexities and functional limitations associated with hardwiring a new component into existing security systems.
Moreover, a disadvantage of the prior art technologies of the new proprietary systems providers arises due to the need to discard all prior technologies, and implement an entirely new form of security system to access the new functionalities associated with broadband and wireless data networks. There remains, therefore, a need for systems, devices, and methods that easily interface to and control the existing proprietary security technologies utilizing a variety of wireless technologies.
=
INCORPORATION BY REFERENCE
Each patent, patent application, and/or publication mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual patent, patent application, and/or publication was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of the integrated security system, under an embodiment.

4 Figure 2 is a block diagram of components of the integrated security system, under an embodiment.
Figure 3 is a block diagram of the gateway software or applications, under an embodiment.
Figure 4 is a block diagram of the gateway components, under an embodiment.
Figure 5 is a block diagram of IP device integration with a premise network, under an embodiment.
Figure 6 is a block diagram of IP device integration with a premise network, under an alternative embodiment.
Figure 7 is a block diagram of a touchscreen, under an embodiment.
Figure 8 is an example screenshot of a networked security touchscreen, under an embodiment.
Figure 9 is a block diagram of network or premise device integration with a premise network, under an embodiment.
Figure 10 is a block diagram of network or premise device integration with a premise network, under an alternative embodiment.
Figure 11 is a flow diagram for a method of forming a security network including integrated security system components, under an embodiment.
Figure 12 is a flow diagram for a method of forming a security network including integrated security system components and network devices, under an embodiment.
Figure 13 is a flow diagram for installation of an IP device into a private network environment, under an embodiment.
Figure 14 is a block diagram showing communications among IP devices of the private network environment, under an embodiment.
Figure 15 is a flow diagram of a method of integrating an external control and management application system with an existing security system, under an embodiment.
Figure 16 is a block diagram of an integrated security system wirelessly interfacing to proprietary security systems, under an embodiment.

5 Figure 17 is a flow diagram for wirelessly 'learning' the gateway into an existing security system and discovering extant sensors, under an embodiment.
Figure 18 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel wirelessly coupled to a gateway, under an embodiment.
Figure 19 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel wirelessly coupled to a gateway, and a touchscreen, under an alternative embodiment.
Figure 20 is a block diagram of a security system in which the legacy panel is replaced with a wireless security panel connected to a gateway via an Ethernet coupling, under another alternative embodiment.
Figure 21 is a flow diagram for automatic takeover of a security system, under an embodiment.
Figure 22 is a flow diagram for automatic takeover of a security system, under an alternative embodiment.
Figure 23 is a general flow diagram for IP video control, under an embodiment.

Figure 24 is a block diagram showing camera tunneling, under an embodiment.
Figure 25 shows example request commands, under an embodiment.
Figure 26 shows different examples of selecting thermostat modes, under an embodiment.
Figure 27 shows examples of toggle commands, under an embodiment.
Figure 28 shows range commands for lights and theimostats, under an embodiment.
Figure 29 shows a text input command, under an embodiment.
Figure 30 is an example site object (e.g., "Cabin"), under an embodiment.
Figure 31 is an example summary object, under an embodiment.
Figure 32 shows example security objects, under an embodiment.
Figure 33 shows a remote client user interface, under an embodiment.

6 Figure 34 is an example of a shift object that is a main shift button, under an embodiment.
Figure 35 is a messaging object, under an embodiment.
Figure 36 is an example alarm message with "Disarm" button or icon, under an embodiment.
Figure 37 is an example home view settings object, under an embodiment.
Figure 38 is an example home view and device data object showing the overlay (left view), floor plan (middle view), and floor plan with device data overlay (right view), under an embodiment.
Figure 39 shows examples of different sensor group, under an embodiment.
Figure 40 is a table of elements for device state objects (e.g., Z-Wave and camera device state objects), under an embodiment.
Figure 41 shows various examples of door objects, under an embodiment.
Figure 42 shows various example lighting objects, under an embodiment.
Figure 43 shows various example thermostat objects, under an embodiment.
Figure 44 shows various example camera objects, under an embodiment.
Figure 45 is a flow diagram for playing live video, under an embodiment.
Figure 46 shows various example energyMeter objects, under an embodiment.
Figures 47A and 4713 (collectively "Figure 47") show an example login error code table, under an embodiment.
Figure 48 shows example displays of text history by type, under an embodiment.

Figure 49 shows an example display of text history by device ID, under an embodiment.
Figure 50 shows example displays of text history by user ID, under an embodiment.
Figure 51 shows example displays of media history by camera ID, under an embodiment.
Figure 52 shows an example display of graph history for a thermostat device, under an embodiment.

7 Figure 53 shows an example display of graph history for an energy device, under an embodiment.
Figure 54 is a flow diagram for closed queries (discrete history request), under an embodiment.
Figure 55 is a flow diagram for open queries (continuous history updates), under an embodiment.
Figure 56 is a history processor service (class) description, under an embodiment.
Figure 57 is a flow diagram for a cache process, under an embodiment.
DETAILED DESCRIPTION
An integrated security system is described that integrates broadband and mobile access and control with conventional security systems and premise devices to provide a tri-mode security network (broadband, cellular/GSM, POTS access) that enables users to remotely stay connected to their premises. The integrated security system, while delivering remote premise monitoring and control functionality to conventional monitored premise protection, complements existing premise protection equipment. The integrated security system integrates into the premise network and couples wirelessly with the conventional security panel, enabling broadband access to premise security systems. Automation devices (cameras, lamp modules, thermostats, etc.) can be added, enabling users to remotely see live video and/or pictures and control home devices via their personal web portal or webpage, mobile phone, and/or other remote client device.
Users can also receive notifications via email or text message when happenings occur, or do not occur, in their home.
Although the detailed description herein contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the embodiments described herein. Thus, the following illustrative embodiments are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.

8 As described herein, computer networks suitable for use with the embodiments described herein include local area networks (LAN), wide area networks (WAN), Internet, or other connection services and network variations such as the world wide web, the public intemet, a private intemet, a private computer network, a public network, a mobile network, a cellular network, a value-added network, and the like.
Computing devices coupled or connected to the network may be any microprocessor controlled device that permits access to the network, including terminal devices, such as personal computers, workstations, servers, mini computers, main-frame computers, laptop computers, mobile computers, palm top computers, hand held computers, mobile phones, TV set-top boxes, or combinations thereof. The computer network may include one of more LANs, WANs, Intemets, and computers. The computers may serve as servers, clients, or a combination thereof.
The integrated security system can be a component of a single system, multiple systems, and/or geographically separate systems. The integrated security system can also be a subcomponent or subsystem of a single system, multiple systems, and/or geographically separate systems. The integrated security system can be coupled to one or more other components (not shown) of a host system or a system coupled to the host system.
One or more components of the integrated security system and/or a corresponding system or application to which the integrated security system is coupled or connected includes and/or runs under and/or in association with a processing system. The processing system includes any collection of processor-based devices or computing devices operating together, or components of processing systems or devices, as is known in the art. For example, the processing system can include one or more of a portable computer, portable communication device operating in a communication network, and/or a network server. The portable computer can be any of a number and/or combination of devices selected from among personal computers, personal digital assistants, portable computing devices, and portable communication devices, but is not so limited.
The processing system can include components within a larger computer system.

9 The processing system of an embodiment includes at least one processor and at least one memory device or subsystem. The processing system can also include or be coupled to at least one database. The term "processor" as generally used herein refers to any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASIC), etc. The processor and memory can be monolithically integrated onto a single chip, distributed among a number of chips or components, and/or provided by some combination of algorithms. The methods described herein can be implemented in one or more of software algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.
The components of any system that includes the integrated security system can be located together or in separate locations. Communication paths couple the components and include any medium for communicating or transferring files among the components.
The communication paths include wireless connections, wired connections, and hybrid wireless/wired connections. The communication paths also include couplings or connections to networks including local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), proprietary networks, interoffice or backend networks, and the Internet. Furthermore, the communication paths include removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines, buses, and electronic mail messages.
Aspects of the integrated security system and corresponding systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the integrated security system and corresponding systems and methods include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the integrated security system and corresponding systems and methods may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
It should be noted that any system, method, and/or other components disclosed herein may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the above described components may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.
Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words "herein,"
"hereunder," "above," "below," and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word "or" is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of embodiments of the integrated security system and corresponding systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the integrated security system and corresponding systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the integrated security system and corresponding systems and methods provided herein can be applied to other systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the integrated security system and corresponding systems and methods in light of the above detailed description.
In accordance with the embodiments described herein, a wireless system (e.g., radio frequency (RF)) is provided that enables a security provider or consumer to extend the capabilities of an existing RF-capable security system or a non-RF-capable security system that has been upgraded to support RF capabilities. The system includes an RF-capable Gateway device (physically located within RF range of the RF-capable security system) and associated software operating on the Gateway device. The system also includes a web server, application server, and remote database providing a persistent store for information related to the system.

The security systems of an embodiment, referred to herein as the iControl security system or integrated security system, extend the value of traditional home security by adding broadband access and the advantages of remote home monitoring and home control through the formation of a security network including components of the integrated security system integrated with a conventional premise security system and a premise local area network (LAN). With the integrated security system, conventional home security sensors, cameras, touchscreen keypads, lighting controls, and/or Internet Protocol (IP) devices in the home (or business) become connected devices that are accessible anywhere in the world from a web browser, mobile phone or through content-enabled touchscreens. The integrated security system experience allows security operators to both extend the value proposition of their monitored security systems and reach new consumers that include broadband users interested in staying connected to their family, home and property when they are away from home.
The integrated security system of an embodiment includes security servers (also referred to herein as iConnect servers or security network servers) and an iHub gateway (also referred to herein as the gateway, the iHub, or the iHub client) that couples or integrates into a home network (e.g., LAN) and communicates directly with the home security panel, in both wired and wireless installations. The security system of an embodiment automatically discovers the security system components (e.g., sensors, etc.) belonging to the security system and connected to a control panel of the security system and provides consumers with full two-way access via web and mobile portals.
The gateway supports various wireless protocols and can interconnect with a wide range of control panels offered by security system providers. Service providers and users can then extend the system's capabilities with the additional IP cameras, lighting modules or security devices such as interactive touchscreen keypads. The integrated security system adds an enhanced value to these security systems by enabling consumers to stay connected through email and SMS alerts, photo push, event-based video capture and rule-based monitoring and notifications. This solution extends the reach of home security to households with broadband access.

The integrated security system builds upon the foundation afforded by traditional security systems by layering broadband and mobile access, IP cameras, interactive touchscreens, and an open approach to home automation on top of traditional security system configurations. The integrated security system is easily installed and managed by the security operator, and simplifies the traditional security installation process, as described below.
The integrated security system provides an open systems solution to the home security market. As such, the foundation of the integrated security system customer premises equipment (CPE) approach has been to abstract devices, and allows applications to manipulate and manage multiple devices from any vendor. The integrated security system DeviceConnect technology that enables this capability supports protocols, devices, and panels from GE Security and Honeywell, as well as consumer devices using Z-Wave, IP cameras (e.g., Ethernet, wifi, and Homeplug), and IP touchscreens.
The DeviceConnect is a device abstraction layer that enables any device or protocol layer to interoperate with integrated security system components. This architecture enables the addition of new devices supporting any of these interfaces, as well as add entirely new protocols.
The benefit of DeviceConnect is that it provides supplier flexibility. The same consistent touchscreen, web, and mobile user experience operate unchanged on whatever security equipment selected by a security system provider, with the system provider's choice of IP cameras, backend data center and central station software.
The integrated security system provides a complete system that integrates or layers on top of a conventional host security system available from a security system provider. The security system provider therefore can select different components or configurations to offer (e.g., CDMA, GPRS, no cellular, etc.) as well as have iControl modify the integrated security system configuration for the system provider's specific needs (e.g., change the functionality of the web or mobile portal, add a GE or Honeywell-compatible TouchScreen, etc.).

The integrated security system integrates with the security system provider infrastructure for central station reporting directly via Broadband and GPRS
alarm transmissions. Traditional dial-up reporting is supported via the standard panel connectivity. Additionally, the integrated security system provides interfaces for advanced functionality to the CMS, including enhanced alarm events, system installation optimizations, system test verification, video verification, 2-way voice over IP and GSM.
The integrated security system is an IP centric system that includes broadband connectivity so that the gateway augments the existing security system with broadband and GPRS connectivity. If broadband is down or unavailable GPRS may be used, for example. The integrated security system supports GPRS connectivity using an optional wireless package that includes a GPRS modem in the gateway. The integrated security system treats the GPRS connection as a higher cost though flexible option for data transfers. In an embodiment the GPRS connection is only used to route alarm events (e.g., for cost), however the gateway can be configured (e.g., through the iConnect server interface) to act as a primary channel and pass any or all events over GPRS.
Consequently, the integrated security system does not interfere with the current plain old telephone service (POTS) security panel interface. Alarm events can still be routed through POTS; however the gateway also allows such events to be routed through a broadband or GPRS connection as well. The integrated security system provides a web application interface to the CSR tool suite as well as XML web services interfaces for programmatic integration between the security system provider's existing call center products. The integrated security system includes, for example, APIs that allow the security system provider to integrate components of the integrated security system into a custom call center interface. The APIs include XML web service APIs for integration of existing security system provider call center applications with the integrated security system service. All functionality available in the CSR Web application is provided with these API sets. The Java and XML-based APIs of the integrated security system support provisioning, billing, system administration, CSR, central station, portal user interfaces, and content management functions, to name a few. The integrated security system can provide a customized interface to the security system provider's billing system, or alternatively can provide security system developers with APIs and support in the integration effort.
The integrated security system provides or includes business component interfaces for provisioning, administration, and customer care to name a few.
Standard templates and examples are provided with a defined customer professional services engagement to help integrate OSS/BSS systems of a Service Provider with the integrated security system.
The integrated security system components support and allow for the integration of customer account creation and deletion with a security system. The iConnect APIs provides access to the provisioning and account management system in iConnect and provide full support for account creation, provisioning, and deletion.
Depending on the requirements of the security system provider, the iConnect APIs can be used to completely customize any aspect of the integrated security system backend operational system.
The integrated security system includes a gateway that supports the following standards-based interfaces, to name a few: Ethernet IP communications via Ethernet ports on the gateway, and standard XML/TCP/IP protocols and ports are employed over secured SSL sessions; USB 2.0 via ports on the gateway; 802.11b/g/n IP
communications; GSM/GPRS RF WAN communications; CDMA 1 xRTT RF WAN
communications (optional, can also support EVDO and 3G technologies).
The gateway supports the following proprietary interfaces, to name a few:
interfaces including Dialog RF network (319.5 MHz) and RS485 Superbus 2000 wired interface; RF mesh network (908 MHz); and interfaces including RF network (345 MHz) and RS485/RS232bus wired interfaces.
Regarding security for the IP communications (e.g., authentication, authorization, encryption, anti-spoofing, etc), the integrated security system uses SSL to encrypt all IP
traffic, using server and client-certificates for authentication, as well as authentication in the data sent over the SSL-encrypted channel. For encryption, integrated security system issues public/private key pairs at the time/place of manufacture, and certificates are not stored in any online storage in an embodiment.
The integrated security system does not need any special rules at the customer premise and/or at the security system provider central station because the integrated security system makes outgoing connections using TCP over the standard HTTP
and HTTPS ports. Provided outbound TCP connections are allowed then no special requirements on the firewalls are necessary.
Figure 1 is a block diagram of the integrated security system 100, under an embodiment. The integrated security system 100 of an embodiment includes the gateway 102 and the security servers 104 coupled to the conventional home security system 110.
At a customer's home or business, the gateway 102 connects and manages the diverse variety of home security and self-monitoring devices. The gateway 102 communicates with the iConnect Servers 104 located in the service provider's data center 106 (or hosted in integrated security system data center), with the communication taking place via a communication network 108 or other network (e.g., cellular network, intemet, etc.).
These servers 104 manage the system integrations necessary to deliver the integrated system service described herein. The combination of the gateway 102 and the iConnect servers 104 enable a wide variety of remote client devices 120 (e.g., PCs, mobile phones and PDAs) allowing users to remotely stay in touch with their home, business and family.
In addition, the technology allows home security and self-monitoring information, as well as relevant third party content such as traffic and weather, to be presented in intuitive ways within the home, such as on advanced touchscreen keypads.
The integrated security system service (also referred to as iControl service) can be managed by a service provider via browser-based Maintenance and Service Management applications that are provided with the iConnect Servers. Or, if desired, the service can be more tightly integrated with existing OSS/BSS and service delivery systems via the iConnect web services-based XML APIs.
The integrated security system service can also coordinate the sending of alarms to the home security Central Monitoring Station (CMS) 199. Alarms are passed to the CMS 199 using standard protocols such as Contact ID or SIA and can be generated from the home security panel location as well as by iConnect server 104 conditions (such as lack of communications with the integrated security system). In addition, the link between the security servers 104 and CMS 199 provides tighter integration between home security and self-monitoring devices and the gateway 102. Such integration enables advanced security capabilities such as the ability for CMS personnel to view photos taken at the time a burglary alarm was triggered. For maximum security, the gateway 102 and iConnect servers 104 support the use of a mobile network (both GPRS
and CDMA options are available) as a backup to the primary broadband connection.
The integrated security system service is delivered by hosted servers running software components that communicate with a variety of client types while interacting with other systems. Figure 2 is a block diagram of components of the integrated security system 100, under an embodiment. Following is a more detailed description of the components.
The iConnect servers 104 support a diverse collection of clients 120 ranging from mobile devices, to PCs, to in-home security devices, to a service provider's internal systems. Most clients 120 are used by end-users, but there are also a number of clients 120 that are used to operate the service.
Clients 120 used by end-users of the integrated security system 100 include, but are not limited to, the following:
Clients based on gateway client applications 202 (e.g., a processor-based device running the gateway technology that manages home security and automation devices).
A web browser 204 accessing a Web Portal application, performing end-user configuration and customization of the integrated security system service as well as monitoring of in-home device status, viewing photos and video, etc.
Device and user management can also be performed by this portal application.
A mobile device 206 (e.g., PDA, mobile phone, etc.) accessing the integrated security system Mobile Portal. This type of client 206 is used by end-users to view system status and perform operations on devices (e.g., turning on a lamp, arming a security panel, etc.) rather than for system configuration tasks such as adding a new device or user.
PC or browser-based "widget" containers 208 that present integrated security system service content, as well as other third-party content, in simple, targeted ways (e.g. a widget that resides on a PC desktop and shows live video from a single in-home camera). "Widget" as used herein means applications or programs in the system.
Touchscreen home security keypads 208 and advanced in-home devices that present a variety of content widgets via an intuitive touchscreen user interface.
Notification recipients 210 (e.g., cell phones that receive SMS-based notifications when certain events occur (or don't occur), email clients that receive an email message with similar information, etc.).
Custom-built clients (not shown) that access the iConnect web services XML API to interact with users' home security and self-monitoring information in new and unique ways. Such clients could include new types of mobile devices, or complex applications where integrated security system content is integrated into a broader set of application features.
In addition to the end-user clients, the iConnect servers 104 support PC
browser-based Service Management clients that manage the ongoing operation of the overall service. These clients run applications that handle tasks such as provisioning, service monitoring, customer support and reporting.
There are numerous types of server components of the iConnect servers 104 of an embodiment including, but not limited to, the following: Business Components which manage information about all of the home security and self-monitoring devices;
End-User Application Components which display that information for users and access the Business Components via published XML APIs; and Service Management Application Components which enable operators to administer the service (these components also access the Business Components via the XML APIs, and also via published SNMP
MIBs).
The server components provide access to, and management of, the objects associated with an integrated security system installation. The top-level object is the "network." It is a location where a gateway 102 is located, and is also commonly referred to as a site or premises; the premises can include any type of structure (e.g., home, office, warehouse, etc.) at which a gateway 102 is located. Users can only access the networks to which they have been granted permission. Within a network, every object monitored by the gateway 102 is called a device. Devices include the sensors, cameras, home security panels and automation devices, as well as the controller or processor-based device running the gateway applications.
Various types of interactions are possible between the objects in a system.
Automations define actions that occur as a result of a change in state of a device. For example, take a picture with the front entry camera when the front door sensor changes to "open". Notifications are messages sent to users to indicate that something has occurred, such as the front door going to "open" state, or has not occurred (referred to as an iWatch notification). Schedules define changes in device states that are to take place at predefined days and times. For example, set the security panel to "Armed" mode every weeknight at 11:00pm.
The iConnect Business Components are responsible for orchestrating all of the low-level service management activities for the integrated security system service. They define all of the users and devices associated with a network (site), analyze how the devices interact, and trigger associated actions (such as sending notifications to users).
All changes in device states are monitored and logged. The Business Components also manage all interactions with external systems as required, including sending alarms and other related self-monitoring data to the home security Central Monitoring System (CMS) 199. The Business Components are implemented as portable Java J2EE
Servlets, but are not so limited.

The following iConnect Business Components manage the main elements of the integrated security system service, but the embodiment is not so limited:
A Registry Manager 220 defines and manages users and networks. This component is responsible for the creation, modification and termination of users and networks. It is also where a user's access to networks is defined.
A Network Manager 222 defines and manages security and self-monitoring devices that are deployed on a network (site). This component handles the creation, modification, deletion and configuration of the devices, as well as the creation of automations, schedules and notification rules associated with those devices.
A Data Manager 224 manages access to current and logged state data for an existing network and its devices. This component specifically does not provide any access to network management capabilities, such as adding new devices to a network, which are handled exclusively by the Network Manager 222.
To achieve optimal performance for all types of queries, data for current device states is stored separately from historical state data (a.k.a. "logs") in the database. A Log Data Manager 226 performs ongoing transfers of current device state data to the historical data log tables.
Additional iConnect Business Components handle direct communications with certain clients and other systems, for example:
An iHub Manager 228 directly manages all communications with gateway clients, including receiving information about device state changes, changing the configuration of devices, and pushing new versions of the gateway client to the hardware it is running on.
A Notification Manager 230 is responsible for sending all notifications to clients via SMS (mobile phone messages), email (via a relay server like an SMTP
email server), etc.

An Alarm and CMS Manager 232 sends critical server-generated alarm events to the home security Central Monitoring Station (CMS) and manages all other communications of integrated security system service data to and from the CMS.
The Element Management System (EMS) 234 is an iControl Business Component that manages all activities associated with service installation, scaling and monitoring, and filters and packages service operations data for use by service management applications. The SNMP MIBs published by the EMS can also be incorporated into any third party monitoring system if desired.
The iConnect Business Components store information about the objects that they manage in the iControl Service Database 240 and in the iControl Content Store 242. The iControl Content Store is used to store media objects like video, photos and widget content, while the Service Database stores information about users, networks, and devices. Database interaction is performed via a JDBC interface. For security purposes, the Business Components manage all data storage and retrieval.
The iControl Business Components provide web services-based APIs that application components use to access the Business Components' capabilities.
Functions of application components include presenting integrated security system service data to end-users, performing administrative duties, and integrating with external systems and back-office applications.
The primary published APIs for the iConnect Business Components include, but are not limited to, the following:
A Registry Manager API 252 provides access to the Registry Manager Business Component's functionality, allowing management of networks and users.
A Network Manager API 254 provides access to the Network Manager Business Component's functionality, allowing management of devices on a network.

A Data Manager API 256 provides access to the Data Manager Business Component's functionality, such as setting and retrieving (current and historical) data about device states.
A Provisioning API 258 provides a simple way to create new networks and configure initial default properties.
Each API of an embodiment includes two modes of access: Java API or XML
API. The XML APIs are published as web services so that they can be easily accessed by applications or servers over a network. The Java APIs are a programmer-friendly wrapper for the XML APIs. Application components and integrations written in Java should generally use the Java APIs rather than the XML APIs directly.
The iConnect Business Components also have an XML-based interface 260 for quickly adding support for new devices to the integrated security system. This interface 260, referred to as DeviceConnect 260, is a flexible, standards-based mechanism for defining the properties of new devices and how they can be managed. Although the format is flexible enough to allow the addition of any type of future device, pre-defined XML profiles are currently available for adding common types of devices such as sensors (SensorConnect), home security panels (PanelConnect) and IP cameras (CameraConnect).
The iConnect End-User Application Components deliver the user interfaces that run on the different types of clients supported by the integrated security system service.
The components are written in portable Java J2EE technology (e.g., as Java Servlets, as JavaServer Pages (JSPs), etc.) and they all interact with the iControl Business Components via the published APIs.
The following End-User Application Components generate CSS-based HTML/JavaScript that is displayed on the target client. These applications can be dynamically branded with partner-specific logos and URL links (such as Customer Support, etc.). The End-User Application Components of an embodiment include, but are not limited to, the following:

An iControl Activation Application 270 that delivers the first application that a user sees when they set up the integrated security system service. This wizard-based web browser application securely associates a new user with a purchased gateway and the other devices included with it as a kit (if any). It primarily uses functionality published by the Provisioning API.
An iControl Web Portal Application 272 runs on PC browsers and delivers the web-based interface to the integrated security system service. This application allows users to manage their networks (e.g. add devices and create automations) as well as to view/change device states, and manage pictures and videos.
Because of the wide scope of capabilities of this application, it uses three different Business Component APIs that include the Registry Manager API, Network Manager API, and Data Manager API, but the embodiment is not so limited.
An iControl Mobile Portal 274 is a small-footprint web-based interface that runs on mobile phones and PDAs. This interface is optimized for remote viewing of device states and pictures/videos rather than network management.
As such, its interaction with the Business Components is primarily via the Data Manager API.
Custom portals and targeted client applications can be provided that leverage the same Business Component APIs used by the above applications.
A Content Manager Application Component 276 delivers content to a variety of clients. It sends multimedia-rich user interface components to widget container clients (both PC and browser-based), as well as to advanced touchscreen keypad clients. In addition to providing content directly to end-user devices, the Content Manager 276 provides widget-based user interface components to satisfy requests from other Application Components such as the iControl Web 272 and Mobile 274 portals.
A number of Application Components are responsible for overall management of the service. These pre-defined applications, referred to as Service Management Application Components, are configured to offer off-the-shelf solutions for production management of the integrated security system service including provisioning, overall service monitoring, customer support, and reporting, for example. The Service Management Application Components of an embodiment include, but are not limited to, the following:
A Service Management Application 280 allows service administrators to perform activities associated with service installation, scaling and monitoring/alerting. This application interacts heavily with the Element Management System (EMS) Business Component to execute its functionality, and also retrieves its monitoring data from that component via protocols such as SNMP MIBs.
A Kitting Application 282 is used by employees performing service provisioning tasks. This application allows home security and self-monitoring devices to be associated with gateways during the warehouse kitting process.
A CSR Application and Report Generator 284 is used by personnel supporting the integrated security system service, such as CSRs resolving end-user issues and employees enquiring about overall service usage. The push of new gateway firmware to deployed gateways is also managed by this application.
The iConnect servers 104 also support custom-built integrations with a service provider's existing OSS/BSS, CSR and service delivery systems 290. Such systems can access the iConnect web services XML API to transfer data to and from the iConnect servers 104. These types of integrations can compliment or replace the PC
browser-based Service Management applications, depending on service provider needs.
As described above, the integrated security system of an embodiment includes a gateway, or iHub. The gateway of an embodiment includes a device that is deployed in the home or business and couples or connects the various third-party cameras, home security panels, sensors and devices to the iConnect server over a WAN
connection as described in detail herein. The gateway couples to the home network and communicates directly with the home security panel in both wired and wireless sensor installations. The gateway is configured to be low-cost, reliable and thin so that it complements the integrated security system network-based architecture.
The gateway supports various wireless protocols and can interconnect with a wide range of home security control panels. Service providers and users can then extend the system's capabilities by adding IP cameras, lighting modules and additional security devices. The gateway is configurable to be integrated into many consumer appliances, including set-top boxes, routers and security panels. The small and efficient footprint of the gateway enables this portability and versatility, thereby simplifying and reducing the overall cost of the deployment.
Figure 3 is a block diagram of the gateway 102 including gateway software or applications, under an embodiment. The gateway software architecture is relatively thin and efficient, thereby simplifying its integration into other consumer appliances such as set-top boxes, routers, touch screens and security panels. The software architecture also provides a high degree of security against unauthorized access. This section describes the various key components of the gateway software architecture.
The gateway application layer 302 is the main program that orchestrates the operations performed by the gateway. The Security Engine 304 provides robust protection against intentional and unintentional intrusion into the integrated security system network from the outside world (both from inside the premises as well as from the WAN). The Security Engine 304 of an embodiment comprises one or more sub-modules or components that perform functions including, but not limited to, the following:
Encryption including 128-bit SSL encryption for gateway and iConnect server communication to protect user data privacy and provide secure communication.
Bi-directional authentication between the gateway and iConnect server in order to prevent unauthorized spoofing and attacks. Data sent from the iConnect server to the gateway application (or vice versa) is digitally signed as an additional layer of security. Digital signing provides both authentication and validation that the data has not been altered in transit.

Camera SSL encapsulation because picture and video traffic offered by off-the-shelf networked IP cameras is not secure when traveling over the Internet.
The gateway provides for 128-bit SSL encapsulation of the user picture and video data sent over the intemet for complete user security and privacy.
802.11b/g/n with WPA-2 security to ensure that wireless camera communications always takes place using the strongest available protection.
A gateway-enabled device is assigned a unique activation key for activation with an iConnect server. This ensures that only valid gateway-enabled devices can be activated for use with the specific instance of iConnect server in use. Attempts to activate gateway-enabled devices by brute force are detected by the Security Engine. Partners deploying gateway-enabled devices have the knowledge that only a gateway with the correct serial number and activation key can be activated for use with an iConnect server. Stolen devices, devices attempting to masquerade as gateway-enabled devices, and malicious outsiders (or insiders as knowledgeable but nefarious customers) cannot effect other customers' gateway-enabled devices.
As standards evolve, and new encryption and authentication methods are proven to be useful, and older mechanisms proven to be breakable, the security manager can be upgraded "over the air" to provide new and better security for communications between the iConnect server and the gateway application, and locally at the premises to remove any risk of eavesdropping on camera communications.
A Remote Firmware Download module 306 allows for seamless and secure updates to the gateway firmware through the iControl Maintenance Application on the server 104, providing a transparent, hassle-free mechanism for the service provider to deploy new features and bug fixes to the installed user base. The firmware download mechanism is tolerant of connection loss, power interruption and user interventions (both intentional and unintentional). Such robustness reduces down time and customer support issues. Gateway firmware can be remotely download either for one gateway at a time, a group of gateways, or in batches.

The Automations engine 308 manages the user-defined rules of interaction between the different devices (e.g. when door opens turn on the light). Though the automation rules are programmed and reside at the portal/server level, they are cached at the gateway level in order to provide short latency between device triggers and actions.
DeviceConnect 310 includes definitions of all supported devices (e.g., cameras, security panels, sensors, etc.) using a standardized plug-in architecture. The DeviceConnect module 310 offers an interface that can be used to quickly add support for any new device as well as enabling interoperability between devices that use different technologies/protocols. For common device types, pre-defined sub-modules have been defined, making supporting new devices of these types even easier.
SensorConnect 312 is provided for adding new sensors, CameraConnect 316 for adding IP cameras, and PanelConnect 314 for adding home security panels.
The Schedules engine 318 is responsible for executing the user defined schedules (e.g., take a picture every five minutes; every day at 8am set temperature to 65 degrees Fahrenheit, etc.). Though the schedules are programmed and reside at the iConnect server level they are sent to the scheduler within the gateway application.
The Schedules Engine 318 then interfaces with SensorConnect 312 to ensure that scheduled events occur at precisely the desired time.
The Device Management module 320 is in charge of all discovery, installation and configuration of both wired and wireless IP devices (e.g., cameras, etc.) coupled or connected to the system. Networked IP devices, such as those used in the integrated security system, require user configuration of many IP and security parameters ¨ to simplify the user experience and reduce the customer support burden, the device management module of an embodiment handles the details of this configuration.
The device management module also manages the video routing module described below.
The video routing engine 322 is responsible for delivering seamless video streams to the user with zero-configuration. Through a multi-step, staged approach the video routing engine uses a combination of UPnP port-forwarding, relay server routing and STUN/TURN peer-to-peer routing.

Figure 4 is a block diagram of components of the gateway 102, under an embodiment. Depending on the specific set of functionality desired by the service provider deploying the integrated security system service, the gateway 102 can use any of a number of processors 402, due to the small footprint of the gateway application firmware. In an embodiment, the gateway could include the Broadcom BCM5354 as the processor for example. In addition, the gateway 102 includes memory (e.g., FLASH 404, RAM 406, etc.) and any number of input/output (I/O) ports 408.
Referring to the WAN portion 410 of the gateway102 , the gateway 102 of an embodiment can communicate with the iConnect server using a number of communication types and/or protocols, for example Broadband 412, GPRS 414 and/or Public Switched Telephone Network (PTSN) 416 to name a few. In general, broadband communication 412 is the primary means of connection between the gateway 102 and the iConnect server 104 and the GPRS/CDMA 414 and/or PSTN 416 interfaces acts as back-up for fault tolerance in case the user's broadband connection fails for whatever reason, but the embodiment is not so limited.
Referring to the LAN portion 420 of the gateway 102, various protocols and physical transceivers can be used to communicate to off-the-shelf sensors and cameras.
The gateway 102 is protocol-agnostic and technology-agnostic and as such can easily support almost any device networking protocol. The gateway 102 can, for example, support GE and Honeywell security RF protocols 422, Z-Wave 424, serial (RS232 and RS485) 426 for direct connection to security panels as well as WiFi 428 (802.11b/g) for communication to WiFi cameras.
The integrated security system includes couplings or connections among a variety of IP devices or components, and the device management module is in charge of the discovery, installation and configuration of the IP devices coupled or connected to the system, as described above. The integrated security system of an embodiment uses a "sandbox" network to discover and manage all IP devices coupled or connected as components of the system. The IP devices of an embodiment include wired devices, wireless devices, cameras, interactive touchscreens, and security panels to name a few.

These devices can be wired via ethernet cable or Wifi devices, all of which are secured within the sandbox network, as described below. The "sandbox" network is described in detail below.
Figure 5 is a block diagram 500 of network or premise device integration with a premise network 250, under an embodiment. In an embodiment, network devices 257 are coupled to the gateway 102 using a secure network coupling or connection such as SSL over an encrypted 802.11 link (utilizing for example WPA-2 security for the wireless encryption). The network coupling or connection between the gateway 102 and the network devices 255-257 is a private coupling or connection in that it is segregated from any other network couplings or connections. The gateway 102 is coupled to the premise router/firewall 252 via a coupling with a premise LAN 250. The premise router/firewall 252 is coupled to a broadband modem 251, and the broadband modem 251 is coupled to a WAN 200 or other network outside the premise. The gateway 102 thus enables or forms a separate wireless network, or sub-network, that includes some number of devices and is coupled or connected to the LAN 250 of the host premises.
The gateway sub-network can include, but is not limited to, any number of other devices like WiFi IP cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few. The gateway 102 manages or controls the sub-network separately from the LAN
250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 254 can be coupled to the LAN 250 without being coupled to the gateway 102.
Figure 6 is a block diagram 600 of network or premise device integration with a premise network 250, under an alternative embodiment. The network or premise devices 255-257 are coupled to the gateway 102. The network coupling or connection between the gateway 102 and the network devices 255-257 is a private coupling or connection in that it is segregated from any other network couplings or connections. The gateway 102 is coupled or connected between the premise router/firewall 252 and the broadband modem 251. The broadband modem 251 is coupled to a WAN 200 or other network outside the premise, while the premise router/firewall 252 is coupled to a premise LAN

250. As a result of its location between the broadband modem 251 and the premise router/firewall 252, the gateway 102 can be configured or function as the premise router routing specified data between the outside network (e.g., WAN 200) and the premise router/firewall 252 of the LAN 250. As described above, the gateway 102 in this configuration enables or forms a separate wireless network, or sub-network, that includes the network or premise devices 255-257 and is coupled or connected between the LAN
250 of the host premises and the WAN 200. The gateway sub-network can include, but is not limited to, any number of network or premise devices 255-257 like WiFi IP
cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few.
The gateway 102 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 254 can be coupled to the LAN
250 without being coupled to the gateway 102.
The examples described above with reference to Figures 5 and 6 are presented only as examples of IP device integration. The integrated security system is not limited to the type, number and/or combination of IP devices shown and described in these examples, and any type, number and/or combination of IP devices is contemplated within the scope of this disclosure as capable of being integrated with the premise network.
The integrated security system of an embodiment includes a touchscreen (also referred to as the iControl touchscreen or integrated security system touchscreen), as described above, which provides core security keypad functionality, content management and presentation, and embedded systems design. The networked security touchscreen system of an embodiment enables a consumer or security provider to easily and automatically install, configure and manage the security system and touchscreen located at a customer premise. Using this system the customer may access and control the local security system, local IP devices such as cameras, local sensors and control devices (such as lighting controls or pipe freeze sensors), as well as the local security system panel and associated security sensors (such as door/window, motion, and smoke detectors). The customer premise may be a home, business, and/or other location equipped with a wired or wireless broadband IP connection.
The system of an embodiment includes a touchscreen with a configurable software user interface and/or a gateway device (e.g., iHub) that couples or connects to a premise security panel through a wired or wireless connection, and a remote server that provides access to content and information from the premises devices to a user when they are remote from the home. The touchscreen supports broadband and/or WAN
wireless connectivity. In this embodiment, the touchscreen incorporates an IP broadband connection (e.g., Wifi radio, Ethernet port, etc.), and/or a cellular radio (e.g., GPRS/GSM, CDMA, WiMax, etc.). The touchscreen described herein can be used as one or more of a security system interface panel and a network user interface (UI) that provides an interface to interact with a network (e.g., LAN, WAN, internet, etc.).
The touchscreen of an embodiment provides an integrated touchscreen and security panel as an all-in-one device. Once integrated using the touchscreen, the touchscreen and a security panel of a premise security system become physically co-located in one device, and the functionality of both may even be co-resident on the same CPU and memory (though this is not required).
The touchscreen of an embodiment also provides an integrated IP video and touchscreen UI. As such, the touchscreen supports one or more standard video CODECs/players (e.g., H.264, Flash Video, MOV, MPEG4, M-JPEG, etc.). The touchscreen UI then provides a mechanism (such as a camera or video widget) to play video. In an embodiment the video is streamed live from an IP video camera. In other embodiments the video comprises video clips or photos sent from an IP camera or from a remote location.
The touchscreen of an embodiment provides a configurable user interface system that includes a configuration supporting use as a security touchscreen. In this embodiment, the touchscreen utilizes a modular user interface that allows components to be modified easily by a service provider, an installer, or even the end user.
Examples of such a modular approach include using Flash widgets, HTML-based widgets, or other downloadable code modules such that the user interface of the touchscreen can be updated and modified while the application is running. In an embodiment the touchscreen user interface modules can be downloaded over the internet. For example, a new security configuration widget can be downloaded from a standard web server, and the touchscreen then loads such configuration app into memory, and inserts it in place of the old security configuration widget. The touchscreen of an embodiment is configured to provide a self-install user interface.
Embodiments of the networked security touchscreen system described herein include a touchscreen device with a user interface that includes a security toolbar providing one or more functions including arm, disarm, panic, medic, and alert. The touchscreen therefore includes at least one screen having a separate region of the screen dedicated to a security toolbar. The security toolbar of an embodiment is present in the dedicated region at all times that the screen is active.
The touchscreen of an embodiment includes a home screen having a separate region of the screen allocated to managing home-based functions. The home-based functions of an embodiment include managing, viewing, and/or controlling IP
video cameras. In this embodiment, regions of the home screen are allocated in the form of widget icons; these widget icons (e.g. for cameras, thermostats, lighting, etc) provide functionality for managing home systems. So, for example, a displayed camera icon, when selected, launches a Camera Widget, and the Camera widget in turn provides access to video from one or more cameras, as well as providing the user with relevant camera controls (take a picture, focus the camera, etc.) The touchscreen of an embodiment includes a home screen having a separate region of the screen allocated to managing, viewing, and/or controlling internet-based content or applications. For example, the Widget Manager UI presents a region of the home screen (up to and including the entire home screen) where intern& widgets icons such as weather, sports, etc. may be accessed). Each of these icons may be selected to launch their respective content services.

The touchscreen of an embodiment is integrated into a premise network using the gateway, as described above. The gateway as described herein functions to enable a separate wireless network, or sub-network, that is coupled, connected, or integrated with another network (e.g., WAN, LAN of the host premises, etc.). The sub-network enabled by the gateway optimizes the installation process for IP devices, like the touchscreen, that couple or connect to the sub-network by segregating these IP devices from other such devices on the network. This segregation of the IP devices of the sub-network further enables separate security and privacy policies to be implemented for these IP
devices so that, where the IP devices are dedicated to specific functions (e.g., security), the security and privacy policies can be tailored specifically for the specific functions.
Furthermore, the gateway and the sub-network it forms enables the segregation of data traffic, resulting in faster and more efficient data flow between components of the host network, components of the sub-network, and between components of the sub-network and components of the network.
The touchscreen of an embodiment includes a core functional embedded system that includes an embedded operating system, required hardware drivers, and an open system interface to name a few. The core functional embedded system can be provided by or as a component of a conventional security system (e.g., security system available from GE Security). These core functional units are used with components of the integrated security system as described herein. Note that portions of the touchscreen description below may include reference to a host premise security system (e.g., GE
security system), but these references are included only as an example and do not limit the touchscreen to integration with any particular security system.
As an example, regarding the core functional embedded system, a reduced memory footprint version of embedded Linux forms the core operating system in an embodiment, and provides basic TCP/IP stack and memory management functions, along with a basic set of low-level graphics primitives. A set of device drivers is also provided or included that offer low-level hardware and network interfaces. In addition to the standard drivers, an interface to the RS 485 bus is included that couples or connects to the security system panel (e.g., GE Concord panel). The interface may, for example, implement the Superbus 2000 protocol, which can then be utilized by the more comprehensive transaction-level security functions implemented in PanelConnect technology (e.g SetAlarmLevel (int level, int partition, char *accessCode)).
Power control drivers are also provided.
Figure 7 is a block diagram of a touchscreen 700 of the integrated security system, under an embodiment. The touchscreen 700 generally includes an application/presentation layer 702 with a resident application 704, and a core engine 706.
The touchscreen 700 also includes one or more of the following, but is not so limited:
applications of premium services 710, widgets 712, a caching proxy 714, network security 716, network interface 718, security object 720, applications supporting devices 722, PanelConnect API 724, a gateway interface 726, and one or more ports 728.

More specifically, the touchscreen, when configured as a home security device, includes but is not limited to the following application or software modules:

and/or RS-232 bus security protocols to conventional home security system panel (e.g., GE Concord panel); functional home security classes and interfaces (e.g. Panel ARM
state, Sensor status, etc.); Application/Presentation layer or engine;
Resident Application;
Consumer Home Security Application; installer home security application; core engine;
and System bootloader/Software Updater. The core Application engine and system bootloader can also be used to support other advanced content and applications. This provides a seamless interaction between the premise security application and other optional services such as weather widgets or IP cameras.
An alternative configuration of the touchscreen includes a first Application engine for premise security and a second Application engine for all other applications. The integrated security system application engine supports content standards such as HTML, XML, Flash, etc. and enables a rich consumer experience for all 'widgets', whether security-based or not. The touchscreen thus provides service providers the ability to use web content creation and management tools to build and download any 'widgets' regardless of their functionality.

As discussed above, although the Security Applications have specific low-level functional requirements in order to interface with the premise security system, these applications make use of the same fundamental application facilities as any other 'widget', application facilities that include graphical layout, interactivity, application handoff, screen management, and network interfaces, to name a few.
Content management in the touchscreen provides the ability to leverage conventional web development tools, performance optimized for an embedded system, service provider control of accessible content, content reliability in a consumer device, and consistency between 'widgets' and seamless widget operational environment.
In an embodiment of the integrated security system, widgets are created by web developers and hosted on the integrated security system Content Manager (and stored in the Content Store database). In this embodiment the server component caches the widgets and offers them to consumers through the web-based integrated security system provisioning system. The servers interact with the advanced touchscreen using HTTPS
interfaces controlled by the core engine and dynamically download widgets and updates as needed to be cached on the touchscreen. In other embodiments widgets can be accessed directly over a network such as the Internet without needing to go through the iControl Content Manager Referring to Figure 7, the touchscreen system is built on a tiered architecture, with defined interfaces between the Application/Presentation Layer (the Application Engine) on the top, the Core Engine in the middle, and the security panel and gateway APIs at the lower level. The architecture is configured to provide maximum flexibility and ease of maintenance.
The application engine of the touchscreen provides the presentation and interactivity capabilities for all applications (widgets) that run on the touchscreen, including both core security function widgets and third party content widgets.
Figure 8 is an example screenshot 800 of a networked security touchscreen, under an embodiment.
This example screenshot 800 includes three interfaces or user interface (UI) components 802-806, but is not so limited. A first UI 802 of the touchscreen includes icons by which a user controls or accesses functions and/or components of the security system (e.g., "Main", "Panic", "Medic", "Fire", state of the premise alarm system (e.g., disarmed, armed, etc.), etc.); the first UI 802, which is also referred to herein as a security interface, is always presented on the touchscreen. A second UI 804 of the touchscreen includes icons by which a user selects or interacts with services and other network content (e.g., clock, calendar, weather, stocks, news, sports, photos, maps, music, etc.) that is accessible via the touchscreen. The second UI 804 is also referred to herein as a network interface or content interface. A third UI 806 of the touchscreen includes icons by which a user selects or interacts with additional services or componets (e.g., intercom control, security, cameras coupled to the system in particular regions (e.g., front door, baby, etc.) available via the touchscreen.
A component of the application engine is the Presentation Engine, which includes a set of libraries that implement the standards-based widget content (e.g., XML, HTML, JavaScript, Flash) layout and interactivity. This engine provides the widget with interfaces to dynamically load both graphics and application logic from third parties, support high level data description language as well as standard graphic formats. The set of web content-based functionality available to a widget developer is extended by specific touchscreen functions implemented as local web services by the Core Engine.
The resident application of the touchscreen is the master service that controls the interaction of all widgets in the system, and enforces the business and security rules required by the service provider. For example, the resident application determines the priority of widgets, thereby enabling a home security widget to override resource requests from a less critical widget (e.g. a weather widget). The resident application also monitors widget behavior, and responds to client or server requests for cache updates.
The core engine of the touchscreen manages interaction with other components of the integrated security system, and provides an interface through which the resident application and authorized widgets can get information about the home security system, set alarms, install sensors, etc. At the lower level, the Core Engine's main interactions are through the PanelConnect API, which handles all communication with the security panel, and the gateway Interface, which handles communication with the gateway. In an embodiment, both the iHub Interface and PanelConnect API are resident and operating on the touchscreen. In another embodiment, the PanelConnect API runs on the gateway or other device that provides security system interaction and is accessed by the touchscreen through a web services interface.
The Core Engine also handles application and service level persistent and cached memory functions, as well as the dynamic provisioning of content and widgets, including but not limited to: flash memory management, local widget and content caching, widget version management (download, cache flush new/old content versions), as well as the caching and synchronization of user preferences. As a portion of these services the Core engine incorporates the bootloader functionality that is responsible for maintaining a consistent software image on the touchscreen, and acts as the client agent for all software updates. The bootloader is configured to ensure full update redundancy so that unsuccessful downloads cannot corrupt the integrated security system.
Video management is provided as a set of web services by the Core Engine.
Video management includes the retrieval and playback of local video feeds as well as remote control and management of cameras (all through iControl CameraConnect technology).
Both the high level application layer and the mid-level core engine of the touchscreen can make calls to the network. Any call to the network made by the application layer is automatically handed off to a local caching proxy, which determines whether the request should be handled locally. Many of the requests from the application layer are web services API requests, although such requests could be satisfied by the iControl servers, they are handled directly by the touchscreen and the gateway. Requests that get through the caching proxy are checked against a white list of acceptable sites, and, if they match, are sent off through the network interface to the gateway.
Included in the Network Subsystem is a set of network services including HTTP, HTTPS, and server-level authentication functions to manage the secure client-server interface.
Storage and management of certificates is incorporated as a part of the network services layer.

Server components of the integrated security system servers support interactive content services on the touchscreen. These server components include, but are not limited to the content manager, registry manager, network manager, and global registry, each of which is described herein.
The Content Manager oversees aspects of handling widget data and raw content on the touchscreen. Once created and validated by the service provider, widgets are 'ingested' to the Content Manager, and then become available as downloadable services through the integrated security system Content Management APIs. The Content manager maintains versions and timestamp information, and connects to the raw data contained in the backend Content Store database. When a widget is updated (or new content becomes available) all clients registering interest in a widget are systematically updated as needed (a process that can be configured at an account, locale, or system-wide level).
The Registry Manager handles user data, and provisioning accounts, including information about widgets the user has decided to install, and the user preferences for these widgets.
The Network Manager handles getting and setting state for all devices on the integrated security system network (e.g., sensors, panels, cameras, etc.). The Network manager synchronizes with the gateway, the advanced touchscreen, and the subscriber database.
The Global Registry is a primary starting point server for all client services, and is a logical referral service that abstracts specific server locations/addresses from clients (touchscreen, gateway 102, desktop widgets, etc.). This approach enables easy scaling/migration of server farms.
The touchscreen of an embodiment operates wirelessly with a premise security system. The touchscreen of an embodiment incorporates an RF transceiver component that either communicates directly with the sensors and/or security panel over the panel's proprietary RF frequency, or the touchscreen communicates wirelessly to the gateway over 802.11, Ethernet, or other IP-based communications channel, as described in detail herein. In the latter case the gateway implements the PanelConnect interface and communicates directly to the security panel and/or sensors over wireless or wired networks as described in detail above.
The touchscreen of an embodiment is configured to operate with multiple security systems through the use of an abstracted security system interface. In this embodiment, the PanelConnect API can be configured to support a plurality of proprietary security system interfaces, either simultaneously or individually as described herein.
In one embodiment of this approach, the touchscreen incorporates multiple physical interfaces to security panels (e.g. GE Security RS-485, Honeywell RF, etc.) in addition to the PanelConnect API implemented to support multiple security interfaces. The change needed to support this in PanelConnect is a configuration parameter specifying the panel type connection that is being utilized.
So for example, the setARMState() function is called with an additional parameter (e.g., Armstate = setARMState(type="ARM STAYI ARM AWAY] DISARM", Parameters="ExitDelay=301Lights=OFF", panelType --"GE Concord4 RS485")). The `panelType parameter is used by the setARMState function (and in practice by all of the PanelConnect functions) to select an algorithm appropriate to the specific panel out of a plurality of alogorithms.
The touchscreen of an embodiment is self-installable. Consequently, the touchscreen provides a 'wizard' approach similar to that used in traditional computer installations (e.g. InstallShield). The wizard can be resident on the touchscreen, accessible through a web interface, or both. In one embodiment of a touchscreen self-installation process, the service provider can associate devices (sensors, touchscreens, security panels, lighting controls, etc.) remotely using a web-based administrator interface.
The touchscreen of an embodiment includes a battery backup system for a security touchscreen. The touchscreen incorporates a standard Li-ion or other battery and charging circuitry to allow continued operation in the event of a power outage. In an embodiment the battery is physically located and connected within the touchscreen enclosure. In another embodiment the battery is located as a part of the power transformer, or in between the power transformer and the touchscreen.
The example configurations of the integrated security system described above with reference to Figures 5 and 6 include a gateway that is a separate device, and the touchscreen couples to the gateway. However, in an alternative embodiment, the gateway device and its functionality can be incorporated into the touchscreen so that the device management module, which is now a component of or included in the touchscreen, is in charge of the discovery, installation and configuration of the IP devices coupled or connected to the system, as described above. The integrated security system with the integrated touchscreen/gateway uses the same "sandbox" network to discover and manage all IP devices coupled or connected as components of the system.
The touchscreen of this alternative embodiment integrates the components of the gateway with the components of the touchscreen as described herein. More specifically, the touchscreen of this alternative embodiment includes software or applications described above with reference to Figure 3. In this alternative embodiment, the touchscreen includes the gateway application layer 302 as the main program that orchestrates the operations performed by the gateway. A Security Engine 304 of the touchscreen provides robust protection against intentional and unintentional intrusion into the integrated security system network from the outside world (both from inside the premises as well as from the WAN). The Security Engine 304 of an embodiment comprises one or more sub-modules or components that perform functions including, but not limited to, the following:
Encryption including 128-bit SSL encryption for gateway and iConnect server communication to protect user data privacy and provide secure communication.
Bi-directional authentication between the touchscreen and iConnect server in order to prevent unauthorized spoofing and attacks. Data sent from the iConnect server to the gateway application (or vice versa) is digitally signed as an additional layer of security. Digital signing provides both authentication and validation that the data has not been altered in transit.

Camera SSL encapsulation because picture and video traffic offered by off-the-shelf networked IP cameras is not secure when traveling over the Internet.
The touchscreen provides for 128-bit SSL encapsulation of the user picture and video data sent over the intemet for complete user security and privacy.
802.11b/g/n with WPA-2 security to ensure that wireless camera communications always takes place using the strongest available protection.
A touchscreen-enabled device is assigned a unique activation key for activation with an iConnect server. This ensures that only valid gateway-enabled devices can be activated for use with the specific instance of iConnect server in use. Attempts to activate gateway-enabled devices by brute force are detected by the Security Engine. Partners deploying touchscreen-enabled devices have the knowledge that only a gateway with the correct serial number and activation key can be activated for use with an iConnect server. Stolen devices, devices attempting to masquerade as gateway-enabled devices, and malicious outsiders (or insiders as knowledgeable but nefarious customers) cannot effect other customers' gateway-enabled devices.
As standards evolve, and new encryption and authentication methods are proven to be useful, and older mechanisms proven to be breakable, the security manager can be upgraded "over the air" to provide new and better security for communications between the iConnect server and the gateway application, and locally at the premises to remove any risk of eavesdropping on camera communications.
A Remote Firmware Download module 306 of the touchscreen allows for seamless and secure updates to the gateway firmware through the iControl Maintenance Application on the server 104, providing a transparent, hassle-free mechanism for the service provider to deploy new features and bug fixes to the installed user base. The firmware download mechanism is tolerant of connection loss, power interruption and user interventions (both intentional and unintentional). Such robustness reduces down time and customer support issues. Touchscreen firmware can be remotely download either for one touchscreen at a time, a group of touchscreen, or in batches.

The Automations engine 308 of the touchscreen manages the user-defined rules of interaction between the different devices (e.g. when door opens turn on the light).
Though the automation rules are programmed and reside at the portal/server level, they are cached at the gateway level in order to provide short latency between device triggers and actions.
DeviceConnect 310 of the touchscreen touchscreen includes definitions of all supported devices (e.g., cameras, security panels, sensors, etc.) using a standardized plug-in architecture. The DeviceConnect module 310 offers an interface that can be used to quickly add support for any new device as well as enabling interoperability between devices that use different technologies/protocols. For common device types, pre-defined sub-modules have been defined, making supporting new devices of these types even easier. SensorConnect 312 is provided for adding new sensors, CameraConnect 316 for adding IP cameras, and PanelConnect 314 for adding home security panels.
The Schedules engine 318 of the touchscreen is responsible for executing the user defined schedules (e.g., take a picture every five minutes; every day at 8am set temperature to 65 degrees Fahrenheit, etc.). Though the schedules are programmed and reside at the iConnect server level they are sent to the scheduler within the gateway application of the touchscreen. The Schedules Engine 318 then interfaces with SensorConnect 312 to ensure that scheduled events occur at precisely the desired time.
The Device Management module 320 of the touchscreen is in charge of all discovery, installation and configuration of both wired and wireless IP
devices (e.g., cameras, etc.) coupled or connected to the system. Networked IP devices, such as those used in the integrated security system, require user configuration of many IP
and security parameters, and the device management module of an embodiment handles the details of this configuration. The device management module also manages the video routing module described below.
The video routing engine 322 of the touchscreen is responsible for delivering seamless video streams to the user with zero-configuration. Through a multi-step, staged approach the video routing engine uses a combination of UPnP port-forwarding, relay server routing and STUN/TURN peer-to-peer routing. The video routing engine is described in detail in the Related Applications.
Figure 9 is a block diagram 900 of network or premise device integration with a premise network 250, under an embodiment. In an embodiment, network devices 255, 256, 957 are coupled to the touchscreen 902 using a secure network connection such as SSL over an encrypted 802.11 link (utilizing for example WPA-2 security for the wireless encryption), and the touchscreen 902 coupled to the premise router/firewall 252 via a coupling with a premise LAN 250. The premise router/firewall 252 is coupled to a broadband modem 251, and the broadband modem 251 is coupled to a WAN 200 or other network outside the premise. The touchscreen 902 thus enables or forms a separate wireless network, or sub-network, that includes some number of devices and is coupled or connected to the LAN 250 of the host premises. The touchscreen sub-network can include, but is not limited to, any number of other devices like WiFi IP
cameras, security panels (e.g., IP-enabled), and IP devices, to name a few. The touchscreen 902 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 254 can be coupled to the without being coupled to the touchscreen 902.
Figure 10 is a block diagram 1000 of network or premise device integration with a premise network 250, under an alternative embodiment. The network or premise devices 255, 256, 1057 are coupled to the touchscreen 1002, and the touchscreen 1002 is coupled or connected between the premise router/firewall 252 and the broadband modem 251. The broadband modem 251 is coupled to a WAN 200 or other network outside the premise, while the premise router/firewall 252 is coupled to a premise LAN
250. As a result of its location between the broadband modem 251 and the premise router/firewall 252, the touchscreen 1002 can be configured or function as the premise router routing specified data between the outside network (e.g., WAN 200) and the premise router/firewall 252 of the LAN 250. As described above, the touchscreen 1002 in this configuration enables or forms a separate wireless network, or sub-network, that includes the network or premise devices 255, 156, 1057 and is coupled or connected between the LAN 250 of the host premises and the WAN 200. The touchscreen sub-network can include, but is not limited to, any number of network or premise devices 255, 256, 1057 like WiFi IP cameras, security panels (e.g., IP-enabled), and security touchscreens, to name a few. The touchscreen 1002 manages or controls the sub-network separately from the LAN 250 and transfers data and information between components of the sub-network and the LAN 250/WAN 200, but is not so limited. Additionally, other network devices 254 can be coupled to the LAN 250 without being coupled to the touchscreen 1002.
The gateway of an embodiment, whether a stand-along component or integrated with a touchscreen, enables couplings or connections and thus the flow or integration of information between various components of the host premises and various types and/or combinations of IP devices, where the components of the host premises include a network (e.g., LAN) and/or a security system or subsystem to name a few.
Consequently, the gateway controls the association between and the flow of information or data between the components of the host premises. For example, the gateway of an embodiment forms a sub-network coupled to another network (e.g., WAN, LAN, etc.), with the sub-network including IP devices. The gateway further enables the association of the IP devices of the sub-network with appropriate systems on the premises (e.g., security system, etc.). Therefore, for example, the gateway can form a sub-network of IP
devices configured for security functions, and associate the sub-network only with the premises security system, thereby segregating the IP devices dedicated to security from other IP devices that may be coupled to another network on the premises.
The gateway of an embodiment, as described herein, enables couplings or connections and thus the flow of information between various components of the host premises and various types and/or combinations of IP devices, where the components of the host premises include a network, a security system or subsystem to name a few.
Consequently, the gateway controls the association between and the flow of information or data between the components of the host premises. For example, the gateway of an embodiment forms a sub-network coupled to another network (e.g., WAN, LAN, etc.), with the sub-network including IP devices. The gateway further enables the association of the IP devices of the sub-network with appropriate systems on the premises (e.g., security system, etc.). Therefore, for example, the gateway can form a sub-network of IP
devices configured for security functions, and associate the sub-network only with the premises security system, thereby segregating the IP devices dedicated to security from other IP devices that may be coupled to another network on the premises.
Figure 11 is a flow diagram for a method 1100 of folining a security network including integrated security system components, under an embodiment.
Generally, the method comprises coupling 1102 a gateway comprising a connection management component to a local area network in a first location and a security server in a second location. The method comprises forming 1104 a security network by automatically establishing a wireless coupling between the gateway and a security system using the connection management component. The security system of an embodiment comprises security system components located at the first location. The method comprises integrating 1106 communications and functions of the security system components into the security network via the wireless coupling.
Figure 12 is a flow diagram for a method 1200 of forming a security network including integrated security system components and network devices, under an embodiment. Generally, the method comprises coupling 1202 a gateway to a local area network located in a first location and a security server in a second location. The method comprises automatically establishing 1204 communications between the gateway and security system components at the first location, the security system including the security system components. The method comprises automatically establishing communications between the gateway and premise devices at the first location.
The method comprises forming 1208 a security network by electronically integrating, via the gateway, communications and functions of the premise devices and the security system components.
In an example embodiment, Figure 13 is a flow diagram 1300 for integration or installation of an IP device into a private network environment, under an embodiment.

The IP device includes any IP-capable device that, for example, includes the touchscreen of an embodiment. The variables of an embodiment set at time of installation include, but are not limited to, one or more of a private SSID/Password, a gateway identifier, a security panel identifier, a user account TS, and a Central Monitoring Station account identification.
An embodiment of the IP device discovery and management begins with a user or installer activating 1302 the gateway and initiating 1304 the install mode of the system.
This places the gateway in an install mode. Once in install mode, the gateway shifts to a default (Install) Wifi configuration. This setting will match the default setting for other integrated security system-enabled devices that have been pre-configured to work with the integrated security system. The gateway will then begin to provide 1306 DHCP
addresses for these IP devices. Once the devices have acquired a new DHCP
address from the gateway, those devices are available for configuration into a new secured Wifi network setting.
The user or installer of the system selects 1308 all devices that have been identified as available for inclusion into the integrated security system. The user may select these devices by their unique IDs via a web page, Touchscreen, or other client interface. The gateway provides 1310 data as appropriate to the devices. Once selected, the devices are configured 1312 with appropriate secured Wifi settings, including SSID
and WPA/WPA-2 keys that are used once the gateway switches back to the secured sandbox configuration from the "Install" settings. Other settings are also configured as appropriate for that type of device. Once all devices have been configured, the user is notified and the user can exit install mode. At this point all devices will have been registered 1314 with the integrated security system servers.
The installer switches 1316 the gateway to an operational mode, and the gateway instructs or directs 1318 all newly configured devices to switch to the "secured" Wifi sandbox settings. The gateway then switches 1320 to the "secured" Wit-1 settings. Once the devices identify that the gateway is active on the "secured" network, they request new DHCP addresses from the gateway which, in response, provides 1322 the new addresses.
The devices with the new addresses are then operational 1324 on the secured network.
In order to ensure the highest level of security on the secured network, the gateway can create or generate a dynamic network security configuration based on the unique ID and private key in the gateway, coupled with a randomizing factor that can be based on online time or other inputs. This guarantees the uniqueness of the gateway secured network configuration.
To enable the highest level of performance, the gateway analyzes the RF
spectrum of the 802.11x network and determines which frequency band/channel it should select to run.
An alternative embodiment of the camera/IP device management process leverages the local ethernet connection of the sandbox network on the gateway.
This alternative process is similar to the Wifi discovery embodiment described above, except the user connects the targeted device to the ethernet port of the sandbox network to begin the process. This alternative embodiment accommodates devices that have not been pre-configured with the default "Install" configuration for the integrated security system.
This alternative embodiment of the IP device discovery and management begins with the user/installer placing the system into install mode. The user is instructed to attach an IP device to be installed to the sandbox Ethernet port of the gateway. The IP
device requests a DHCP address from the gateway which, in response to the request, provides the address. The user is presented the device and is asked if he/she wants to install the device. If yes, the system configures the device with the secured Wifi settings and other device-specific settings (e.g., camera settings for video length, image quality etc.). The user is next instructed to disconnect the device from the ethernet port. The device is now available for use on the secured sandbox network.
Figure 14 is a block diagram showing communications among integrated IP
devices of the private network environment, under an embodiment. The IP
devices of this example include a security touchscreen 1403, gateway 1402 (e.g., "iHub"), and security panel (e.g., "Security Panel 1", "Security Panel 2", "Security Panel n"), but the embodiment is not so limited. In alternative embodiments any number and/or combination of these three primary component types may be combined with other components including IP devices and/or security system components. For example, a single device that comprises an integrated gateway, touchscreen, and security panel is merely another embodiment of the integrated security system described herein.
The description that follows includes an example configuration that includes a touchscreen hosting particular applications. However, the embodiment is not limited to the touchscreen hosting these applications, and the touchscreen should be thought of as representing any IP device.
Referring to Figure 14, the touchscreen 1403 incorporates an application 1410 that is implemented as computer code resident on the touchscreen operating system, or as a web-based application running in a browser, or as another type of scripted application (e.g., Flash, Java, Visual Basic, etc.). The touchscreen core application 1410 represents this application, providing user interface and logic for the end user to manage their security system or to gain access to networked information or content (Widgets). The touchscreen core application 1410 in turn accesses a library or libraries of functions to control the local hardware (e.g. screen display, sound, LEDs, memory, etc.) as well as specialized librarie(s) to couple or connect to the security system.
In an embodiment of this security system connection, the touchscreen 1403 communicates to the gateway 1402, and has no direct communication with the security panel. In this embodiment, the touchscreen core application 1410 accesses the remote service APIs 1412 which provide security system functionality (e.g. ARM/DISARM

panel, sensor state, get/set panel configuration parameters, initiate or get alarm events, etc.). In an embodiment, the remote service APIs 1412 implement one or more of the following functions, but the embodiment is not so limited: Armstate =
setARMState(type="ARM STAYI ARM AWAY1DISARM", Parameters="ExitDelay=301Lights=OFF"); sensorState=getSensors(type="ALLI
SensorName SensorNameList"); result = setSensorState(SensorName, parameters="Optionl, Options2,...Option n"); interruptHandler =SensorEvent();
and, interruptHandler=alarmEvent().
Functions of the remote service APIs 1412 of an embodiment use a remote PanelConnect API 1424 which which resides in memory on the gateway 1402. The touchscreen 1403 communicates with the gateway 1402 through a suitable network interface such as an Ethernet or 802.11 RF connection, for example. The remote PanelConnect API 1424 provides the underlying Security System Interfaces 1426 used to communicate with and control one or more types of security panel via wired link 1430 and/or RF link 3. The PanelConnect API 1224 provides responses and input to the remote services APIs 1426, and in turn translates function calls and data to and from the specific protocols and functions supported by a specific implementation of a Security Panel (e.g. a GE Security Simon XT or Honeywell Vista 20P). In an embodiment, the PanelConnect API 1224 uses a 345MHz RF transceiver or receiver hardware/firmware module to communicate wirelessly to the security panel and directly to a set of 345 MHz RF-enabled sensors and devices, but the embodiment is not so limited.
The gateway of an alternative embodiment communicates over a wired physical coupling or connection to the security panel using the panel's specific wired hardware (bus) interface and the panel's bus-level protocol.
In an alternative embodiment, the Touchscreen 1403 implements the same PanelConnect API 1414 locally on the Touchscreen 1403, communicating directly with the Security Panel 2 and/or Sensors 2 over the proprietary RF link or over a wired link for that system. In this embodiment the Touchscreen 1403, instead of the gateway 1402, incorporates the 345 MHz RF transceiver to communicate directly with Security Panel 2 or Sensors 2 over the RF link 2. In the case of a wired link the Touchscreen incorporates the real-time hardware (e.g. a PIC chip and RS232-variant serial link) to physically connect to and satisfy the specific bus-level timing requirements of the SecurityPane12.
In yet another alternative embodiment, either the gateway 1402 or the Touchscreen 1403 implements the remote service APIs. This embodiment includes a Cricket device ("Cricket") which comprises but is not limited to the following components: a processor (suitable for handling 802.11 protocols and processing, as well as the bus timing requirements of SecurityPanell); an 802.11 (WiFi) client IP
interface chip; and, a serial bus interface chip that implements variants of RS232 or RS485, depending on the specific Security Panel.
The Cricket also implements the full PanelConnect APIs such that it can perform the same functions as the case where the gateway implements the PanelConnect APIs. In this embodiment, the touchscreen core application 1410 calls functions in the remote service APIs 1412 (such as setArmState()). These functions in turn couple or connect to the remote Cricket through a standard IP connection ("Cricket IP Link") (e.g., Ethernet, Homeplug, the gateway's proprietary Wifi network, etc.). The Cricket in turn implements the PanelConnect API, which responds to the request from the touchscreen core application, and performs the appropriate function using the proprietary panel interface. This interface uses either the wireless or wired proprietary protocol for the specific security panel and/or sensors.
Figure 15 is a flow diagram of a method of integrating an external control and management application system with an existing security system, under an embodiment.
Operations begin when the system is powered on 1510, involving at a minimum the power-on of the gateway device, and optionally the power-on of the connection between the gateway device and the remote servers. The gateway device initiates 1520 a software and RF sequence to locate the extant security system. The gateway and installer initiate and complete 1530 a sequence to 'learn' the gateway into the security system as a valid and authorized control device. The gateway initiates 1540 another software and RF
sequence of instructions to discover and learn the existence and capabilities of existing RF devices within the extant security system, and store this information in the system.
These operations under the system of an embodiment are described in further detail below.
Unlike conventional systems that extend an existing security system, the system of an embodiment operates utilizing the proprietary wireless protocols of the security system manufacturer. In one illustrative embodiment, the gateway is an embedded computer with an IP LAN and WAN connection and a plurality of RF transceivers and software protocol modules capable of communicating with a plurality of security systems each with a potentially different RF and software protocol interface. After the gateway has completed the discovery and learning 1540 of sensors and has been integrated 1550 as a virtual control device in the extant security system, the system becomes operational.
Thus, the security system and associated sensors are presented 1550 as accessible devices to a potential plurality of user interface subsystems.
The system of an embodiment integrates 1560 the functionality of the extant security system with other non-security devices including but not limited to IP cameras, touchscreens, lighting controls, door locking mechanisms, which may be controlled via RF, wired, or powerline-based networking mechanisms supported by the gateway or servers.
The system of an embodiment provides a user interface subsystem 1570 enabling a user to monitor, manage, and control the system and associated sensors and security systems. In an embodiment of the system, a user interface subsystem is an HTML/XML/Javascript/Java/AJAX/Flash presentation of a monitoring and control application, enabling users to view the state of all sensors and controllers in the extant security system from a web browser or equivalent operating on a computer, PDA, mobile phone, or other consumer device.
In another illustrative embodiment of the system described herein, a user interface subsystem is an HTML/XML/Javascript/Java/AJAX presentation of a monitoring and control application, enabling users to combine the monitoring and control of the extant security system and sensors with the monitoring and control of non-security devices including but not limited to IP cameras, touchscreens, lighting controls, door locking mechanisms.
In another illustrative embodiment of the system described herein, a user interface subsystem is a mobile phone application enabling users to monitor and control the extant security system as well as other non-security devices.

In another illustrative embodiment of the system described herein, a user interface subsystem is an application running on a keypad or touchscreen device enabling users to monitor and control the extant security system as well as other non-security devices.
In another illustrative embodiment of the system described herein, a user interface subsystem is an application operating on a TV or set-top box connected to a TV
enabling users to monitor and control the extant security system as well as other non-security devices.
Figure 16 is a block diagram of an integrated security system 1600 wirelessly interfacing to proprietary security systems, under an embodiment. A security system 1610 is coupled or connected to a Gateway 1620, and from Gateway 1620 coupled or connected to a plurality of information and content sources across a network including one or more web servers 1640, system databases 1650, and applications servers 1660. While in one embodiment network 1630 is the Internet, including the World Wide Web, those of skill in the art will appreciate that network 1630 may be any type of network, such as an intranet, an extranet, a virtual private network (VPN), a mobile network, or a non- TCP/IP based network.
Moreover, other elements of the system of an embodiment may be conventional, well-known elements that need not be explained in detail herein. For example, security system 1610 could be any type home or business security system, such devices including but not limited to a standalone RF home security system or a non-RF-capable wired home security system with an add-on RF interface module. In the integrated security system 1600 of this example, security system 1610 includes an RF-capable wireless security panel (WSP) 1611 that acts as the master controller for security system 1610.
Well-known examples of such a WSP include the GE Security Concord, Networx, and Simon panels, the Honeywell Vista and Lynx panels, and similar panesl from DSC and Napco, to name a few. A wireless module 1614 includes the RF hardware and protocol software necessary to enable communication with and control of a plurality of wireless devices 1613. WSP 1611 may also manage wired devices 1614 physically connected to WSP 1611 with an RS232 or RS485 or Ethernet connection or similar such wired interface.
In an implementation consistent with the systems and methods described herein, Gateway 1620 provides the interface between security system 1610 and LAN
and/or WAN for purposes of remote control, monitoring, and management. Gateway 1620 communicates with an external web server 1640, database 1650, and application server 1660 over network 1630 (which may comprise WAN, LAN, or a combination thereof).
In this example system, application logic, remote user interface functionality, as well as user state and account are managed by the combination of these remote servers.
Gateway 1620 includes server connection manager 1621, a software interface module responsible for all server communication over network 1630. Event manager 1622 implements the main event loop for Gateway 1620, processing events received from device manager 1624 (communicating with non-security system devices including but not limited to IP
cameras, wireless thermostats, or remote door locks). Event manager 1622 further processes events and control messages from and to security system 1610 by utilizing WSP manager 1623.
WSP manager 1623 and device manager 1624 both rely upon wireless protocol manager 1626 which receives and stores the proprietary or standards-based protocols required to support security system 1610 as well as any other devices interfacing with gateway 1620. WSP manager 1623 further utilizes the comprehensive protocols and interface algorithms for a plurality of security systems 1610 stored in the WSP DB client database associated with wireless protocol manager 1626. These various components implement the software logic and protocols necessary to communicate with and manager devices and security systems 1610. Wireless Transceiver hardware modules 1625 are then used to implement the physical RE communications link to such devices and security systems 1610. An illustrative wireless transceiver 1625 is the GE
Security Dialog circuit board, implementing a 319,5MHz two-way RE transceiver module.
In this example, RE Link 1670 represents the 319.5MHz RF communication link, enabling gateway 1620 to monitor and control WSP 1611 and associated wireless and wired devices 1613 and 1614, respectively.
In one embodiment, server connection manager 1621 requests and receives a set of wireless protocols for a specific security system 1610 (an illustrative example being that of the GE Security Concord panel and sensors) and stores them in the WSP
DB
portion of the wireless protocol manager 1626. WSP manager 1623 then utilizes such protocols from wireless protocol manager 1626 to initiate the sequence of processes detailed in Figure 15 and Figure 16 for learning gateway 1620 into security system 1610 as an authorized control device. Once learned in, as described with reference to Figure 16 (and above), event manager 1622 processes all events and messages detected by the combination of WSP manager 1623 and the GE Security wireless transceiver module 1625.
In another embodiment, gateway 1620 incorporates a plurality of wireless transceivers 1625 and associated protocols managed by wireless protocol manager 1626.
In this embodiment events and control of multiple heterogeneous devices may be coordinated with WSP 1611, wireless devices 1613, and wired devices 1614. For example a wireless sensor from one manufacturer may be utilized to control a device using a different protocol from a different manufacturer.
In another embodiment, gateway 1620 incorporates a wired interface to security system 1610, and incorporates a plurality of wireless transceivers 1625 and associated protocols managed by wireless protocol manager 1626. In this embodiment events and control of multiple heterogeneous devices may be coordinated with WSP 1611, wireless devices 1613, and wired devices 1614.
Of course, while an illustrative embodiment of an architecture of the system of an embodiment is described in detail herein with respect to Figure 16, one of skill in the art will understand that modifications to this architecture may be made without departing from the scope of the description presented herein. For example, the functionality described herein may be allocated differently between client and server, or amongst different server or processor-based components. Likewise, the entire functionality of the gateway 1620 described herein could be integrated completely within an existing security system 1610. In such an embodiment, the architecture could be directly integrated with a security system 1610 in a manner consistent with the currently described embodiments.
Figure 17 is a flow diagram for wirelessly 'learning' the Gateway into an existing security system and discovering extant sensors, under an embodiment. The learning interfaces gateway 1620 with security system 1610. Gateway 1620 powers up 1710 and initiates software sequences 1720 and 1725 to identify accessible WSPs 1611 and wireless devices 1613, respectively (e.g., one or more WSPs and/or devices within range of gateway 1620). Once identified, WSP 1611 is manually or automatically set into 'learn mode' 1730, and gateway 1620 utilizes available protocols to add 1740 itself as an authorized control device in security system 1610. Upon successful completion of this task, WSP 1611 is manually or automatically removed from 'learn mode' 1750.
Gateway 1620 utilizes the appropriate protocols to mimic 1760 the first identified device 1614. In this operation gateway 1620 identifies itself using the unique or pseudo-unique identifier of the first found device 1614, and sends an appropriate change of state message over RF Link 1670. In the event that WSP 1611 responds to this change of state message, the device 1614 is then added 1770 to the system in database 1650.
Gateway 1620 associates 1780 any other information (such as zone name or token-based identifier) with this device 1614 in database 1650, enabling gateway 1620, user interface modules, or any application to retrieve this associated information.
In the event that WSP 1611 does not respond to the change of state message, the device 1614 is not added 1770 to the system in database 1650, and this device 1614 is identified as not being a part of security system 1610 with a flag, and is either ignored or added as an independent device, at the discretion of the system provisioning rules.
Operations hereunder repeat 1785 operations 1760, 1770, 1780 for all devices 1614 if applicable. Once all devices 1614 have been tested in this way, the system begins operation 1790.
In another embodiment, gateway 1620 utilizes a wired connection to WSP 1611, but also incorporates a wireless transceiver 1625 to communicate directly with devices 1614. In this embodiment, operations under 1720 above are removed, and operations under 1740 above are modified so the system of this embodiment utilizes wireline protocols to add itself as an authorized control device in security system 1610.
A description of an example embodiment follows in which the Gateway (Figure 16, element 1620) is the iHub available from iControl Networks, Palo Alto, CA, and described in detail herein. In this example the gateway is "automatically"
installed with a security system.
The automatic security system installation begins with the assignment of an authorization key to components of the security system (e.g., gateway, kit including the gateway, etc.). The assignment of an authorization key is done in lieu of creating a user account. An installer later places the gateway in a user's premises along with the premises security system. The installer uses a computer to navigate to a web portal (e.g., integrated security system web interface), logs in to the portal, and enters the authorization key of the installed gateway into the web portal for authentication. Once authenticated, the gateway automatically discovers devices at the premises (e.g., sensors, cameras, light controls, etc.) and adds the discovered devices to the system or "network".
The installer assigns names to the devices, and tests operation of the devices back to the server (e.g., did the door open, did the camera take a picture, etc.). The security device information is optionally pushed or otherwise propagated to a security panel and/or to the server network database. The installer finishes the installation, and instructs the end user on how to create an account, username, and password. At this time the user enters the authorization key which validates the account creation (uses a valid authorization key to associate the network with the user's account). New devices may subsequently be added to the security network in a variety of ways (e.g., user first enters a unique ID for each device/sensor and names it in the server, after which the gateway can automatically discover and configure the device).
A description of another example embodiment follows in which the security system (Figure 16, element 1610) is a Dialog system and the WSP (Figure 16, element 1611) is a SimonXT available from General Electric Security, and the Gateway (Figure 16, element 1620) is the iHub available from iControl Networks, Palo Alto, CA, and described in detail herein. Descriptions of the install process for the SimonXT and iHub are also provided below.
GE Security's Dialog network is one of the most widely deployed and tested wireless security systems in the world. The physical RF network is based on a 319.5 MHz unlicensed spectrum, with a bandwidth supporting up to 19Kbps communications.
Typical use of this bandwidth ¨even in conjunction with the integrated security system--is far less than that. Devices on this network can support either one-way communication (either a transmitter or a receiver) or two-way communication (a transceiver).
Certain GE Simon, Simon XT, and Concord security control panels incorporate a two-way transceiver as a standard component. The gateway also incorporates the same two-way transceiver card. The physical link layer of the network is managed by the transceiver module hardware and firmware, while the coded payload bitstreams are made available to the application layer for processing.
Sensors in the Dialog network typically use a 60-bit protocol for communicating with the security panel transceiver, while security system keypads and the gateway use the encrypted 80-bit protocol. The Dialog network is configured for reliability, as well as low-power usage. Many devices are supervised, i.e. they are regularly monitored by the system 'master' (typically a GE security panel), while still maintaining excellent power usage characteristics. A typical door window sensor has a battery life in excess of 5-7 years.
The gateway has two modes of operation in the Dialog network: a first mode of operation is when the gateway is configured or operates as a 'slave' to the GE
security panel; a second mode of operation is when the gateway is configured or operates as a 'master' to the system in the event a security panel is not present. In both configurations, the gateway has the ability to 'listen' to network traffic, enabling the gateway to continually keep track of the status of all devices in the system. Similarly, in both situations the gateway can address and control devices that support setting adjustments (such as the GE wireless thermostat).

In the configuration in which the gateway acts as a 'slave' to the security panel, the gateway is 'learned into' the system as a GE wireless keypad. In this mode of operation, the gateway emulates a security system keypad when managing the security panel, and can query the security panel for status and 'listen' to security panel events (such as alarm events).
The gateway incorporates an RF Transceiver manufactured by GE Security, but is not so limited. This transceiver implements the Dialog protocols and handles all network message transmissions, receptions, and timing. As such, the physical, link, and protocol layers of the communications between the gateway and any GE device in the Dialog network are totally compliant with GE Security specifications.
At the application level, the gateway emulates the behavior of a GE wireless keypad utilizing the GE Security 80-bit encrypted protocol, and only supported protocols and network traffic are generated by the gateway. Extensions to the Dialog RF
protocol of an embodiment enable full control and configuration of the panel, and iControl can both automate installation and sensor enrollment as well as direct configuration downloads for the panel under these protocol extensions.
As described above, the gateway participates in the GE Security network at the customer premises. Because the gateway has intelligence and a two-way transceiver, it can 'hear' all of the traffic on that network. The gateway makes use of the periodic sensor updates, state changes, and supervisory signals of the network to maintain a current state of the premises. This data is relayed to the integrated security system server (e.g., Figure 2, element 260) and stored in the event repository for use by other server components. This usage of the GE Security RF network is completely non-invasive;
there is no new data traffic created to support this activity.
The gateway can directly (or indirectly through the Simon XT panel) control two-way devices on the network. For example, the gateway can direct a GE Security Thermostat to change its setting to 'Cool' from 'Off , as well as request an update on the current temperature of the room. The gateway performs these functions using the existing GE Dialog protocols, with little to no impact on the network; a gateway device control or data request takes only a few dozen bytes of data in a network that can support 19 Kbps.
By enrolling with the Simon XT as a wireless keypad, as described herein, the gateway includes data or information of all alarm events, as well as state changes relevant to the security panel. This information is transferred to the gateway as encrypted packets in the same way that the information is transferred to all other wireless keypads on the network.
Because of its status as an authorized keypad, the gateway can also initiate the same panel commands that a keypad can initiate. For example, the gateway can arm or disarm the panel using the standard Dialog protocol for this activity. Other than the monitoring of standard alarm events like other network keypads, the only incremental data traffic on the network as a result of the gateway is the infrequent remote arm/disarm events that the gateway initiates, or infrequent queries on the state of the panel.
The gateway is enrolled into the Simon XT panel as a 'slave' device which, in an embodiment, is a wireless keypad. This enables the gateway for all necessary functionality for operating the Simon XT system remotely, as well as combining the actions and information of non-security devices such as lighting or door locks with GE
Security devices. The only resource taken up by the gateway in this scenario is one wireless zone (sensor ID).
The gateway of an embodiment supports three forms of sensor and panel enrollment/installation into the integrated security system, but is not limited to this number of enrollment/installation options. The enrollment/installation options of an embodiment include installer installation, kitting, and panel, each of which is described below.
Under the installer option, the installer enters the sensor IDs at time of installation into the integrated security system web portal or iScreen. This technique is supported in all configurations and installations.
Kits can be pre-provisioned using integrated security system provisioning applications when using the kitting option. At kitting time, multiple sensors are automatically associated with an account, and at install time there is no additional work required.
In the case where a panel is installed with sensors already enrolled (i.e.
using the GE Simon XT enrollment process), the gateway has the capability to automatically extract the sensor information from the system and incorporate it into the user account on the integrated security system server.
The gateway and integrated security system of an embodiment uses an auto-learn process for sensor and panel enrollment in an embodiment. The deployment approach of an embodiment can use additional interfaces that GE Security is adding to the Simon XT
panel. With these interfaces, the gateway has the capability to remotely enroll sensors in the panel automatically. The interfaces include, but are not limited to, the following:
EnrollDevice(ID, type, name, zone, group); SetDeviceParameters(ID, type, Name, zone, group), GetDeviceParameters(zone); and RemoveDevice(zone).
The integrated security system incorporates these new interfaces into the system, providing the following install process. The install process can include integrated security system logistics to handle kitting and pre-provisioning. Pre-kitting and logistics can include a pre-provisioning kitting tool provided by integrated security system that enables a security system vendor or provider ("provider") to offer pre-packaged initial 'kits'. This is not required but is recommended for simplifying the install process. This example assumes a 'Basic' kit is preassembled and includes one (1) Simon XT, three (3) Door/ window sensors, one (1) motion sensor, one (1) gateway, one (1) keyfob, two (2) cameras, and ethernet cables. The kit also includes a sticker page with all Zones (1-24) and Names (full name list).
The provider uses the integrated security system kitting tool to assemble 'Basic' kit packages. The contents of different types of starter kits may be defined by the provider. At the distribution warehouse, a worker uses a bar code scanner to scan each sensor and the gateway as it is packed into the box. An ID label is created that is attached to the box. The scanning process automatically associates all the devices with one kit, and the new ID label is the unique identifier of the kit. These boxes are then sent to the provider for distribution to installer warehouses. Individual sensors, cameras, etc. are also sent to the provider installer warehouse. Each is labeled with its own barcode/ ID.
An installation and enrollment procedure of a security system including a gateway is described below as one example of the installation process.
1. Order and Physical Install Process a. Once an order is generated in the iControl system, an account is created and an install ticket is created and sent electronically to the provider for assignment to an installer.
b. The assigned installer picks up his/her ticket(s) and fills his/her truck with Basic and/or Advanced starter kits. He/she also keeps a stock of individual sensors, cameras, iHubs, Simon XTs, etc. Optionally, the installer can also stock homeplug adapters for problematic installations.
c. The installer arrives at the address on the ticket, and pulls out the Basic kit. The installer determines sensor locations from a tour of the premises and discussion with the homeowner. At this point assume the homeowner requests additional equipment including an extra camera, two (2) additional door/window sensors, one (1) glass break detector, and one (1) smoke detector.
d. Installer mounts SimonXT in the kitchen or other location in the home as directed by the homeowner, and routes the phone line to Simon XT if available. GPRS and Phone numbers pre-programmed in SimonXT to point to the provider Central Monitoring Station (CMS).
e. Installer places gateway in the home in the vicinity of a router and cable modem. Installer installs an ethernet line from gateway to router and plugs gateway into an electrical outlet.

2. Associate and Enroll gateway into SimonXT
a. Installer uses either his/her own laptop plugged into router, or homeowners computer to go to the integrated security system web interface and log in with installer ID/pass.
b. Installer enters ticket number into admin interface, and clicks 'New Install' button. Screen prompts installer for kit ID (on box's barcode label).
c. Installer clicks 'Add SimonXT'. Instructions prompt installer to put Simon XT into install mode, and add gateway as a wireless keypad. It is noted that this step is for security only and can be automated in an embodiment.
d. Installer enters the installer code into the Simon XT. Installer Learns 'gateway' into the panel as a wireless keypad as a group I device.
e. Installer goes back to Web portal, and clicks the 'Finished Adding SimonXT' button.
3. Enroll Sensors into SimonXT via iControl a. All devices in the Basic kit are already associated with the user's account.
b. For additional devices, Installer clicks 'Add Device' and adds the additional camera to the user's account (by typing in the camera ID/Serial #).
c. Installer clicks 'Add Device' and adds other sensors (two (2) door/window sensors, one (1) glass break sensor, and one (I) smoke sensor) to the account (e.g., by typing in IDs).
d. As part of Add Device, Installer assigns zone, name, and group to the sensor. Installer puts appropriate Zone and Name sticker on the sensor temporarily.
e. All sensor information for the account is pushed or otherwise propagated to the iConnect server, and is available to propagate to CMS automation software through the CMS application programming interface (API).
f. Web interface displays 'Installing Sensors in System....' and automatically adds all of the sensors to the Simon XT panel through the GE RF link.

g. Web interface displays 'Done Installing' --> all sensors show green.
4. Place and Tests Sensors in Home a. Installer physically mounts each sensor in its desired location, and removes the stickers.
b. Installer physically mounts WiFi cameras in their location and plugs into AC power. Optional fishing of low voltage wire through wall to remove dangling wires. Camera transformer is still plugged into outlet but wire is now inside the wall.
c. Installer goes to Web interface and is prompted for automatic camera install. Each camera is provisioned as a private, encrypted Wifi device on the gateway secured sandbox network, and firewall NAT traversal is initiated. Upon completion the customer is prompted to test the security system.
d. Installer selects the 'Test System' button on the web portal -- the SimonXT
is put into Test mode by the gateway over GE RF.
e. Installer manually tests the operation of each sensor, receiving an audible confirmation from SimonXT.
f. gateway sends test data directly to CMS over broadband link, as well as storing the test data in the user's account for subsequent report generation.
g. Installer exits test mode from the Web portal.
5. Installer instructs customer on use of the Simon XT, and shows customer how to log into the iControl web and mobile portals. Customer creates a username/password at this time.
6. Installer instructs customer how to change Simon XT user code from the Web interface. Customer changes user code which is pushed to SimonXT automatically over GE RF.
An installation and enrollment procedure of a security system including a gateway is described below as an alternative example of the installation process. This installation process is for use for enrolling sensors into the SimonXT and integrated security system and is compatible with all existing GE Simon panels.
The integrated security system supports all pre-kitting functionality described in the installation process above. However, for the purpose of the following example, no kitting is used.
1. Order and Physical Install Process a. Once an order is generated in the iControl system, an account is created and an install ticket is created and sent electronically to the security system provider for assignment to an installer.
b. The assigned installer picks up his/her ticket(s) and fills his/her truck with individual sensors, cameras, iHubs, Simon XTs, etc. Optionally, the installer can also stock homeplug adapters for problematic installations.
c. The installer arrives at the address on the ticket, and analyzes the house and talks with the homeowner to determine sensor locations. At this point assume the homeowner requests three (3) cameras, five (5) door/window sensors, one (1) glass break detector, one (1) smoke detector, and one (1) keyfob.
d. Installer mounts SimonXT in the kitchen or other location in the home.
The installer routes a phone line to Simon XT if available. GPRS and Phone numbers are pre-programmed in SimonXT to point to the provider CMS.
e. Installer places gateway in home in the vicinity of a router and cable modem, and installs an ethernet line from gateway to the router, and plugs gateway into an electrical outlet.
2. Associate and Enroll gateway into SimonXT
a. Installer uses either his/her own laptop plugged into router, or homeowners computer to go to the integrated security system web interface and log in with an installer ID/pass.

b. Installer enters ticket number into admin interface, and clicks 'New Install' button. Screen prompts installer to add devices.
c. Installer types in ID of gateway, and it is associated with the user's account.
d. Installer clicks 'Add Device' and adds the cameras to the user's account (by typing in the camera ID/Serial #).
e. Installer clicks 'Add SimonXT'. Instructions prompt installer to put Simon XT into install mode, and add gateway as a wireless keypad.
f. Installer goes to Simon XT and enters the installer code into the Simon XT. Learns 'gateway' into the panel as a wireless keypad as group 1 type sensor.
g. Installer returns to Web portal, and clicks the 'Finished Adding SimonXT' button.
h. Gateway now is alerted to all subsequent installs over the security system RF.
3. Enroll Sensors into SimonXT via iControl a. Installer clicks 'Add Simon XT Sensors' -- Displays instructions for adding sensors to Simon XT.
b. Installer goes to Simon XT and uses Simon XT install process to add each sensor, assigning zone, name, group. These assignments are recorded for later use.
c. The gateway automatically detects each sensor addition and adds the new sensor to the integrated security system.
d. Installer exits install mode on the Simon XT, and returns to the Web portal.
e. Installer clicks 'Done Adding Devices'.
f. Installer enters zone/sensor naming from recorded notes into integrated security system to associate sensors to friendly names.

g. All sensor information for the account is pushed to the iConnect server, and is available to propagate to CMS automation software through the CMS API.
4. Place and Tests Sensors in Home a. Installer physically mounts each sensor in its desired location.
b. Installer physically mounts Wifi cameras in their location and plugs into AC power. Optional fishing of low voltage wire through wall to remove dangling wires. Camera transformer is still plugged into outlet but wire is now inside the wall.
c. Installer puts SimonXT into Test mode from the keypad.
d. Installer manually tests the operation of each sensor, receiving an audible confirmation from SimonXT.
e. Installer exits test mode from the Simon XT keypad.
f. Installer returns to web interface and is prompted to automatically set up cameras. After waiting for completion cameras are now provisioned and operational.
5. Installer instructs customer on use of the Simon XT, and shows customer how to log into the integrated security system web and mobile portals. Customer creates a username/password at this time.
6. Customer and Installer observe that all sensors/cameras are green.
7. Installer instructs customer how to change Simon XT user code from the keypad.
Customer changes user code and stores in SimonXT.
8. The first time the customer uses the web portal to Arm/Disarm system the web interface prompts the customer for the user code, which is then stored securely on the server. In the event the user code is changed on the panel the web interface once again prompts the customer.

The panel of an embodiment can be programmed remotely. The CMS pushes new programming to SimonXT over a telephone or GPRS link. Optionally, iControl and GE provide a broadband link or coupling to the gateway and then a link from the gateway to the Simon XT over GE RF.
In addition to the configurations described above, the gateway of an embodiment supports takeover configurations in which it is introduced or added into a legacy security system. A description of example takeover configurations follow in which the security system (Figure 2, element 210) is a Dialog system and the WSP (Figure 2, element 211) is a GE Concord panel (e.g., equipped with POTS, GE RF, and Superbus 2000 interface (in the case of a Lynx takeover the Simon XT is used) available from General Electric Security. The gateway (Figure 2, element 220) in the takeover configurations is an iHub (e.g., equipped with built-in 802.11b/g router, Ethernet Hub, GSM/GPRS
card, RS485 inteface, and iControl Honeywell-compatible RF card) available from iControl Networks, Palo Alto, CA. While components of particular manufacturers are used in this example, the embodiments are not limited to these components or to components from these vendors.
The security system can optionally include RF wireless sensors (e.g., GE
wireless sensors utilizing the GE Dialog RF technology), IP cameras, a GE-iControl Touchscreen (the touchscreen is assumed to be an optional component in the configurations described herein, and is thus treated separately from the iHub; in systems in which the touchscreen is a component of the base security package, the integrated iScreen (available from iControl Networks, Palo Alto, CA) can be used to combine iHub technology with the touchscreen in a single unit), and Z-Wave devices to name a few.
The takeover configurations described below assume takeover by a "new" system of an embodiment of a security system provided by another third party vendor, referred to herein as an "original" or "legacy" system. Generally, the takeover begins with removal of the control panel and keypad of the legacy system. A GE Concord panel is installed to replace the control panel of the legacy system along with an iHub with GPRS
Modem.
The legacy system sensors are then connected or wired to the Concord panel, and a GE

keypad or touchscreen is installed to replace the control panel of the legacy system. The iHub includes the iControl RF card, which is compatible with the legacy system. The iHub finds and manages the wireless sensors of the legacy system, and learns the sensors into the Concord by emulating the corresponding GE sensors. The iHub effectively acts as a relay for legacy wireless sensors.
Once takeover is complete, the new security system provides a homogeneous system that removes the compromises inherent in taking over or replacing a legacy system. For example, the new system provides a modern touchscreen that may include additional functionality, new services, and supports integration of sensors from various manufacturers. Furthermore, lower support costs can be realized because call centers, installers, etc. are only required to support one architecture. Additionally, there is minimal install cost because only the panel is required to be replaced as a result of the configuration flexibility offered by the iHub.
The system takeover configurations described below include but are not limited to a dedicated wireless configuration, a dedicated wireless configuration that includes a touchscreen, and a fished Ethernet configuration. Each of these configurations is described in detail below.
Figure 18 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel wirelessly coupled to an iHub, under an embodiment.
All existing wired and RF sensors remain in place. The iHub is located near the Concord panel, and communicates with the panel via the 802.11 link, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.
Figure 19 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel wirelessly coupled to an iHub, and a GE-iControl Touchscreen, under an embodiment. All existing wired and RF sensors remain in place.
The iHub is located near the Concord panel, and communicates with the panel via the 802.11 link, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.
The GE-iControl Touchscreen can be used with either of an 802.11 connection or Ethernet connection with the iHub. Because the takeover involves a GE Concord panel (or Simon XT), the touchscreen is always an option. No extra wiring is required for the touchscreen as it can use the 4-wire set from the replaced keypad of the legacy system.
This provides power, battery backup (through Concord), and data link (RS485 Superbus 2000) between Concord and touchscreen. The touchscreen receives its broadband connectivity through the dedicated 802.11 link to the iHub.
Figure 20 is a block diagram of a security system in which the legacy panel is replaced with a GE Concord panel connected to an iHub via an Ethernet coupling, under an embodiment. All existing wired and RF sensors remain in place. The iHub is located near the Concord panel, and wired to the panel using a 4-wire SUperbus 2000 (RS485) interface, but is not so limited. The iHub manages cameras through a built-in 802.11 router. The iHub listens to the existing RF HW sensors, and relays sensor information to the Concord panel (emulating the equivalent GE sensor). The wired sensors of the legacy system are connected to the wired zones on the control panel.
The takeover installation process is similar to the installation process described above, except the control panel of the legacy system is replaced; therefore, only the differences with the installation described above are provided here. The takeover approach of an embodiment uses the existing RS485 control interfaces that GE
Security and iControl support with the iHub, touchscreen, and Concord panel. With these interfaces, the iHub is capable of automatically enrolling sensors in the panel. The exception is the leverage of an iControl RF card compatible with legacy systems to 'takeover' existing RF sensors. A description of the takeover installation process follows.

During the installation process, the iHub uses an RF Takeover Card to automatically extract all sensor IDs, zones, and names from the legacy panel.
The installer removes connections at the legacy panel from hardwired wired sensors and labels each with the zone. The installer pulls the legacy panel and replaces it with the GE
Concord panel. The installer also pulls the existing legacy keypad and replaces it with either a GE keypad or a GE-iControl touchscreen. The installer connects legacy hardwired sensors to appropriate wired zone (from labels) on the Concord. The installer connects the iHub to the local network and connects the iHub RS485 interface to the Concord panel. The iHub automatically 'enrolls' legacy RF sensors into the Concord panel as GE sensors (maps IDs), and pushes or otherwise propagates other information gathered from HW panel (zone, name, group). The installer performs a test of all sensors back to CMS. In operation, the iHub relays legacy sensor data to the Concord panel, emulating equivalent GE sensor behavior and protocols.
The areas of the installation process particular to the legacy takeover include how the iHub extracts sensor info from the legacy panel and how the iHub automatically enrolls legacy RF sensors and populates Concord with wired zone information.
Each of these areas is described below.
In having the iHub extract sensor information from the legacy panel, the installer 'enrolls' iHub into the legacy panel as a wireless keypad (use install code and house ID-available from panel). The iHub legacy RF Takeover Card is a compatible legacy RF
transceiver. The installer uses the web portal to place iHub into 'Takeover Mode', and the web portal the automatically instructs the iHub to begin extraction. The iHub queries the panel over the RF link (to get all zone information for all sensors, wired and RF).
The iHub then stores the legacy sensor information received during the queries on the iConnect server.
The iHub also automatically enrolls legacy RF sensors and populates Concord with wired zone information. In so doing, the installer selects 'Enroll legacy Sensors into Concord' (next step in 'Takeover' process on web portal). The iHub automatically queries the iConnect server, and downloads legacy sensor information previously extracted. The downloaded information includes an ID mapping from legacy ID to 'spoofed' GE ID. This mapping is stored on the server as part of the sensor information (e.g., the iConnect server knows that the sensor is a legacy sensor acting in GE mode).
The iHub instructs Concord to go into install mode, and sends appropriate Superbus 2000 commands for sensor learning to the panel. For each sensor, the 'spoofed' GE
ID is loaded, and zone, name, and group are set based on information extracted from legacy panel. Upon completion, the iHub notifies the server, and the web portal is updated to reflect next phase of Takeover (e.g., 'Test Sensors').
Sensors are tested in the same manner as described above. When a HW sensor is triggered, the signal is captured by the iHub legacy RF Takeover Card, translated to the equivalent GE RF sensor signal, and pushed to the panel as a sensor event on the SuperBus 2000 wires.
In support of remote programming of the panel, CMS pushes new programming to Concord over a phone line, or to the iConnect CMS/Alarm Server API, which in turn pushes the programming to the iHub. The iHub uses the Concord Superbus 2000 link to push the programming to the Concord panel.
Figure 21 is a flow diagram for automatic takeover 2100 of a security system, under an embodiment. Automatic takeover includes establishing 2102 a wireless coupling between a takeover component running under a processor and a first controller of a security system installed at a first location. The security system includes some number of security system components coupled to the first controller. The automatic takeover includes automatically extracting 2104 security data of the security system from the first controller via the takeover component. The automatic takeover includes automatically transferring 2106 the security data to a second controller and controlling loading of the security data into the second controller. The second controller is coupled to the security system components and replaces the first controller.
Figure 22 is a flow diagram for automatic takeover 2200 of a security system, under an alternative embodiment. Automatic takeover includes automatically forming 2202 a security network at a first location by establishing a wireless coupling between a security system and a gateway. The gateway of an embodiment includes a takeover component. The security system of an embodiment includes security system components. The automatic takeover includes automatically extracting 2204 security data of the security system from a first controller of the security system.
The automatic takeover includes automatically transferring 2206 the security data to a second controller.
The second controller of an embodiment is coupled to the security system components and replaces the first controller.
Components of the gateway of the integrated security system described herein control discovery, installation and configuration of both wired and wireless IP devices (e.g., cameras, etc.) coupled or connected to the system, as described herein with reference to Figures 1-4, as well as management of video routing using a video routing module or engine. The video routing engine initiates communication paths for the transfer of video from a streaming source device to a requesting client device, and delivers seamless video streams to the user via the communication paths using one or more of UPnP port-forwarding, relay server routing and STUN/TURN peer-to-peer routing, each of which is described below.
By way of reference, conventional video cameras have the ability to stream digital video in a variety of formats and over a variety of networks. Internet protocol (IP) video cameras, which include video cameras using an IP transport network (e.g., Ethernet, WiFi (IEEE 802.11 standards), etc.) are prevalent and increasingly being utilized in home monitoring and security system applications. With the proliferation of the internet, Ethernet and WiFi local area networks (LANs) and advanced wide area networks (WANs) that offer high bandwidth, low latency connections (broadband), as well as more advanced wireless WAN data networks (e.g. GPRS or CDMA 1 xRTT), there increasingly exists the networking capability to extend traditional security systems to offer IP-based video. However, a fundamental reason for such IP video in a security system is to enable a user or security provider to monitor live or otherwise streamed video from outside the host premises (and the associated LAN).

The conventional solution to this problem has involved a technique known as 'port fowarding', whereby a 'port' on the LAN's router/firewall is assigned to the specific LAN IP address for an IP camera, or a proxy to that camera. Once a port has been 'forwarded' in this manner, a computer external to the LAN can address the LAN's router directly, and request access to that port. This access request is then forwarded by the router directly to the IP address specified, the IP camera or proxy. In this way an external device can directly access an IP camera within the LAN and view or control the streamed video.
The issues with this conventional approach include the following: port forwarding is highly technical and most users do not know how/why to do it; automatic port forwarding is difficult and problematic using emerging standards like UPnP;
the camera IP address is often reset in response to a power outage/router reboot event;
there are many different routers with different ways/capabilities for port forwarding.
In short, although port forwarding can work, it is frequently less than adequate to support a broadly deployed security solution utilizing IP cameras.
Another approach to accessing streaming video externally to a LAN utilizes peer-to-peer networking technology. So-called peer-to-peer networks, which includes networks in which a device or client is connected directly to another device or client, typically over a Wide Area Network (WAN) and without a persistent server connection, are increasingly common. In addition to being used for the sharing of files between computers (e.g., Napster and KaZaa), peer-to-peer networks have also been more recently utilized to facilitate direct audio and media streaming in applications such as Skype. In these cases, the peer-to-peer communications have been utilized to enable telephony-style voice communications and video conferencing between two computers, each enabled with an IP-based microphone, speaker, and video camera. A fundamental reason for adopting such peer-to-peer technology is the ability to transparently 'punch through' LAN firewalls to enable external access to the streaming voice and video content, and to do so in a way that scales to tens of millions of users without creating an untenable server load.

A limitation of the conventional peer-to-peer video transport lies in the personal computer (PC) -centric nature of the solution. Each of the conventional solutions uses a highly capable PC connected to the video camera, with the PC providing the advanced software functionality required to initiate and manage the peer-to-peer connection with the remote client. A typical security or remote home monitoring system requires multiple cameras, each with its own unique IP address, and only a limited amount of processing capability in each camera such that the conventional PC-centric approach cannot easily solve the need. Instead of a typical PC-centric architecture with three components (a "3-way IP Video System") that include a computer device with video camera, a mediating server, and a PC client with video display capability, the conventional security system adds a plurality of fourth components that are standalone IP video cameras (requiring a "4-way IP Video System"), another less-than-ideal solution.
In accordance with the embodiments described herein, IP camera management systems and methods are provided that enable a consumer or security provider to easily and automatically configure and manage IP cameras located at a customer premise.
Using this system IP camera management may be extended to remote control and monitoring from outside the firewall and router of the customer premise.
With reference to Figures 5 and 6, the system includes a gateway 253 having a video routing component so that the gateway 253 can manage and control, or assist in management and control, or video routing. The system also includes one or more cameras (e.g., WiFi IP camera 254, Ethernet IP camera 255, etc.) that communicate over the LAN 250 using an IP format, as well as a connection management server 210 located outside the premise firewall 252 and connected to the gateway 253 by a Wide Area Network (WAN) 200. The system further includes one or more devices 220, 230, located outside the premise and behind other firewalls 221, 231, 241 and connected to the WAN 200. The other,devices 220, 230, 240 are configured to access video or audio content from the IP cameras within the premise, as described above.
Alternatively, with reference to Figures 9 and 10, the system includes a touchscreen 902 or 1002 having a video routing component so that the touchscreen 902 or 1002can manage and control, or assist in management and control, or video routing.
The system also includes one or more cameras (e.g., WiFi IP camera 254, Ethernet IP
camera 255, etc.) that communicate over the LAN 250 using an IP format, as well as a connection management server 210 located outside the premise firewall 252 and connected to the gateway 253 by a Wide Area Network (WAN) 200. The system further includes one or more devices 220, 230, 240 located outside the premise and behind other firewalls 221, 231, 241 and connected to the WAN 200. The other devices 220, 230, 240 are configured to access video or audio content from the IP cameras within the premise, as described above.
Figure 23 is a general flow diagram for IP video control, under an embodiment.
The IP video control interfaces, manages, and provides WAN-based remote access to a plurality of IP cameras in conjunction with a home security or remote home monitoring system. The IP video control allows for monitoring and controlling of IP video cameras from a location remote to the customer premise, outside the customer premise firewall, and protected by another firewall. Operations begin when the system is powered on 2310, involving at a minimum the power-on of the gateway, as well as the power-on of at least one IP camera coupled or connected to the premise LAN. The gateway searches 2311 for available IP cameras and associated IP addresses. The gateway selects from one or more possible approaches to create connections between the IP
camera and a device external to the firewall. Once an appropriate connection path is selected, the gateway begins operation 2313, and awaits 2320 a request for a stream from one of the plurality of IP video cameras available on the LAN. When a stream request is present the server retrieves 2321 the requestor's WAN IP address/port.
When a server relay is present 2330, the IP camera is instructed 2331 to stream to the server, and the connection is managed 2332 through the server. In response to the stream terminating 2351, operations return to gateway operation 2313, and waits to receive another request 2320 for a stream from one of the plurality of IP
video cameras available on the LAN.

When a server relay is not present 2330, the requestor's WAN IP address/port is provided 2333 to the gateway or gateway relay. When a gateway relay is present 2340, the IP camera is instructed 2341 to stream to the gateway, and the gateway relays 2342 the connection to the requestor. In response to the stream terminating 2351, operations return to gateway operation 2313, and waits to receive another request 2320 for a stream from one of the plurality of IP video cameras available on the LAN. When a gateway relay is not present 2340, the IP camera is instructed 2343 to stream to an address, and a handoff 2344 is made resulting in direct communication between the camera and the requestor. In response to the stream terminating 2351, operations return to gateway operation 2313, and waits to receive another request 2320 from one of the plurality of IP
video cameras available on the LAN.
The integrated security system of an embodiment supports numerous video stream formats or types of video streams. Supported video streams include, but are not limited to, Motion Picture Experts Group (MPEG) -4 (MPEG-4)/Real-Time Streaming Protocol (RTSP), MPEG-4 over Hypertext Transfer Protocol (HTTP), and Motion Joint Photographic Experts Group (JPEG) (MJPEG).
The integrated security system of an embodiment supports the MPEG-4/RTSP
video streaming method (supported by video servers and clients) which uses RTSP for the control channel and Real-time Transport Protocol (RTP) for the data channel. Here the RTSP channel is over Transmission Control Protocol (TCP) while the data channel uses User Datagram Protocol (UDP). This method is widely supported by both streaming sources (e.g., cameras) and stream clients (e.g., remote client devices, Apple Quicktime, VideoLAN, IPTV mobile phones, etc).
Encryption can be added to the two channels under MPEG-4/RTSP. For example, the RTSP control channel can be encrypted using SSL/TLS. The data channel can also be encrypted.
If the camera or video stream source inside the home does not support encryption for either RTSP or RTP channels, the gateway located on the LAN can facilitate the encrypted RTSP method by maintaining separate TCP sessions with the video stream source device and with the encrypted RTSP client outside the LAN, and relay all communication between the two sessions. In this situation, any communication between the gateway and the video stream source that is not encrypted could be encrypted by the gateway before being relayed to the RTSP client outside the LAN. In many cases the gateway is an access point for the encrypted and private Wifi network on which the video stream source device is located. This means that communication between the gateway and the video stream source device is encrypted at the network level, and communication between the gateway and the RTSP client is encrypted at the transport level.
In this fashion the gateway can compensate for a device that does not support encrypted RTSP.
The integrated security system of an embodiment also supports reverse RTSP.
Reverse RTSP includes taking a TCP-based protocol like RTSP, and reversing the roles of client and server (references to "server" include the iControl server, also referred to as the iConnect server) when it comes to TCP session establishment. For example, in standard RTSP the RTSP client is the one that establishes the TCP connection with the stream source server (the server listens on a port for incoming connections).
In Reverse RTSP, the RTSP client listens on a port for incoming connections from the stream source server. Once the TCP connection is established, the RTSP client begins sending commands to the server over the TCP connection just as it would in standard RTSP.
When using Reverse RTSP, the video stream source is generally on a LAN, protected by a firewall. Having a device on the LAN initiate the connection to the RTSP
client outside the firewall enables easy network traversal.
If the camera or video stream source inside the LAN does not support Reverse RTSP, then the gateway facilitates the Reverse RTSP method by initiating separate TCP
sessions with the video stream source device and with the Reverse RTSP client outside the LAN, and then relays all communication between the two sessions. In this fashion the gateway compensates for a stream source device that does not support Reverse RTSP.
As described in the encryption description above, the gateway can further compensate for missing functionalities on the device such as encryption. If the device does not support encryption for either RTSP or RTP channels, the gateway can communicate with the device using these un-encrypted streams, and then encrypt the streams before relaying them out of the LAN to the RTSP Reverse client.
Servers of the integrated security system can compensate for RTSP clients that do not support Reverse RTSP. In this situation, the server accepts TCP
connections from both the RTSP client and the Reverse RTSP video stream source (which could be a gateway acting on behalf of a stream source device that does not support Reverse RTSP).
The server then relays the control and video streams from the Reverse RTSP
video stream source to the RTSP client. The server can further compensate for the encryption capabilities of the RTSP client; if the RTSP client does not support encryption then the server can provide an unencrypted stream to the RTSP client even though an encrypted stream was received from the Reverse RTSP streaming video source.
The integrated security system of an embodiment also supports Simple Traversal of User Datagram Protocol (UDP) through Network Address Translators (NAT) (STUN)/Traversal Using Relay NAT (TURN) peer-to-peer routing. STUN and Turn are techniques for using a server to help establish a peer-to-peer UDP data stream (it does not apply to TCP streams). The bandwidth consumed by the data channel of a video stream is usually many thousands of times larger than that used by the control channel.
Consequently, when a peer-to-peer connection for both the RTSP and RTP
channels is not possible, there is still a great incentive to use STUN/TURN techniques in order to achieve a peer-to-peer connection for the RTP data channel.
Here, a method referred to herein as RTSP with STUN/TURN is used by the integrated security system. The RTSP with STUN/TURN is a method in which the video streaming device is instructed over the control channel to stream its UDP data channel to a different network address than that of the other end of the control TCP
connection (usually the UDP data is simply streamed to the IP address of the RTSP
client). The result is that the RTSP or Reverse RTSP TCP channel can be relayed using the gateway and/or the server, while the RTP UDP data channel can flow directly from the video stream source device to the video stream client.

If a video stream source device does not support RTSP with STUN/TURN, the gateway can compensate for the device by relaying the RTSP control channel via the server to the RTSP client, and receiving the RTP data channel and then forwarding it directly to the RTSP with STUN/TURN enabled client. Encryption can also be added here by the gateway.
The integrated security system of an embodiment supports MPEG-4 over HTTP.
MPEG-4 over HTTP is similar to MPEG-4 over RTSP except that both the RTSP
control channel and the RTP data channel are passed over an HTTP TCP session. Here a single TCP session can be used, splitting it into multiple channels using common HTTP
techniques like chunked transfer encoding.
The MPEG-4 over HTTP is generally supported by many video stream clients and server devices, and encryption can easily be added to it using SSL/TLS.
Because it uses TCP for both channels, STUN/TURN techniques may not apply in the event that a direct peer-to-peer TCP session between client and server cannot be established.
As described above, encryption can be provided using SSL/TLS taking the form of HTTPS. And as with MPEG-4 over RTSP, a gateway can compensate for a stream source device that does not support encryption by relaying the TCP streams and encrypting the TCP stream between the gateway and the stream client. In many cases the gateway is an access point for the encrypted and private Wifi network on which the video stream source device is located. This means that communication between the gateway and the video stream source device is encrypted at the network level, and communication between the gateway and the video stream client is encrypted at the transport level. In this fashion the gateway can compensate for a device that does not support HTTPS.
As with Reverse RTSP, the integrated security system of an embodiment supports Reverse HTTP. Reverse HTTP includes taking a TCP-based protocol like HTTP, and reversing the roles of client and server when it comes to TCP session establishment. For example, in conventional HTTP the HTTP client is the one that establishes the TCP
connection with the server (the server listens on a port for incoming connections). In Reverse HTTP, the HTTP client listens on a port for incoming connections from the server. Once the TCP connection is established, the HTTP client begins sending commands to the server over the TCP connection just as it would in standard HTTP.
When using Reverse HTTP, the video stream source is generally on a LAN, protected by a firewall. Having a device on the LAN initiate the connection to the HTTP
client outside the firewall enables easy network traversal.
If the camera or video stream source inside the LAN does not support Reverse HTTP, then the gateway can facilitate the Reverse HTTP method by initiating separate TCP sessions with the video stream source device and with the Reverse HTTP
client outside the LAN, and then relay all communication between the two sessions. In this fashion the gateway can compensate for a stream source device that does not support Reverse HTTP.
As described in the encryption description above, the gateway can further compensate for missing functionalities on the device such as encryption. If the device does not support encrypted HTTP (e.g., HTTPS), then the gateway can communicate with the device using HTTP, and then encrypt the TCP stream(s) before relaying out of the LAN to the Reverse HTTP client.
The servers of an embodiment can compensate for HTTP clients that do not support Reverse HTTP. In this situation, the server accepts TCP connections from both the HTTP client and the Reverse HTTP video stream source (which could be a gateway acting on behalf of a stream source device that does not support Reverse HTTP). The server then relays the TCP streams from the Reverse HTTP video stream source to the HTTP client. The server can further compensate for the encryption capabilities of the HTTP client; if the HTTP client does not support encryption then the server can provide an unencrypted stream to the HTTP client even though an encrypted stream was received from the Reverse HTTP streaming video source.
The integrated security system of an embodiment supports MJPEG as described above. MJPEG is a streaming technique in which a series of JPG images are sent as the result of an HTTP request. Because MJPEG streams are transmitted over HTTP, HTTPS
can be employed for encryption and most MJPEG clients support the resulting encrypted stream. And as with MPEG-4 over HTTP, a gateway can compensate for a stream source device that does not support encryption by relaying the TCP streams and encrypting the TCP stream between the gateway and the stream client. In many cases the gateway is an access point for the encrypted and private Wifi network on which the video stream source device is located. This means that communication between the gateway and the video stream source device is encrypted at the network level, and communication between the gateway and the video stream client is encrypted at the transport level. In this fashion the gateway can compensate for a device that does not support HTTPS.
The integrated system of an embodiment supports Reverse HTTP. Reverse HTTP
includes taking a TCP-based protocol like HTTP, and reversal of the roles of client and server when it comes to TCP session establishment can be employed for MJPEG
streams.
For example, in standard HTTP the HTTP client is the one who establishes the TCP
connection with the server (the server listens on a port for incoming connections). In Reverse HTTP, the HTTP client listens on a port for incoming connections from the server. Once the TCP connection is established, the HTTP client begins sending commands to the server over the TCP connection just as it would in standard HTTP.
When using Reverse HTTP, the video stream source is generally on a LAN, protected by a firewall. Having a device on the LAN initiate the connection to the HTTP
client outside the firewall enables network traversal.
If the camera or video stream source inside the LAN does not support Reverse HTTP, then the gateway can facilitate the Reverse HTTP method by initiating separate TCP sessions with the video stream source device and with the Reverse HTTP
client outside the LAN, and then relay all communication between the two sessions. In this fashion the gateway can compensate for a stream source device that does not support Reverse HTTP.
As described in the encryption description above, the gateway can further compensate for missing functionalities on the device such as encryption. If the device does not support encrypted HTTP (e.g., HTTPS), then the gateway can communicate with the device using HTTP, and then encrypt the TCP stream(s) before relaying out of the LAN to the Reverse HTTP client.
The servers can compensate for HTTP clients that do not support Reverse HTTP.
In this situation, the server accepts TCP connections from both the HTTP
client and the Reverse HTTP video stream source (which could be a gateway acting on behalf of a stream source device that does not support Reverse HTTP). The server then relays the TCP streams from the Reverse HTTP video stream source to the HTTP client. The server can further compensate for the encryption capabilities of the HTTP client; if the HTTP
client does not support encryption then the server can provide an unencrypted stream to the HTTP client even though an encrypted stream was received from the Reverse HTTP
streaming video source.
The integrated security system of an embodiment considers numerous parameters in determining or selecting one of the streaming formats described above for use in transferring video streams. The parameters considered in selecting a streaming format include, but are not limited to, security requirements, client capabilities, device capabilities, and network/system capabilities.
The security requirements for a video stream are considered in determining an applicable streaming format in an embodiment. Security requirements fall into two categories, authentication and privacy, each of which is described below.
Authentication as a security requirement means that stream clients must present credentials in order to obtain a stream. Furthermore, this presentation of credentials should be done in a way that is secure from network snooping and replays. An example of secure authentication is Basic Authentication over HTTPS. Here a usemame and password are presented over an encrypted HTTPS channel so snooping and replays are prevented. Basic Authentication alone, however, is generally not sufficient for secure authentication.
Because not all streaming clients support SSL/TLS, authentication methods that do not require it are desirable. Such methods include Digest Authentication and one-time requests. A one-time request is a request that can only be made by a client one time, and the server prevents a reuse of the same request. One-time requests are used to control access to a stream source device by stream clients that do not support SSL/TLS. An example here is providing video access to a mobile phone. Typical mobile phone MPEG-4 viewers do not support encryption. In this case, one of the MPEG-4 over RTSP
methods described above can be employed to get the video stream relayed to an server.
The server can then provide the mobile phone with a one-time request Universal Resource Locator (URL) for the relayed video stream source (via a Wireless Application Protocol (WAP) page). Once the stream ends, the mobile phone would need to obtain another one-time request URL from the server (via WAP, for example) in order to view the stream again.
Privacy as a security requirement means that the contents of the video stream must be encrypted. This is a requirement that may be impossible to satisfy on clients that do not support video stream encryption, for example many mobile phones. If a client supports encryption for some video stream format(s), then the "best" of those formats should be selected. Here "best" is determined by the stream type priority algorithm.
The client capabilities are considered in determining an applicable streaming format in an embodiment. In considering client capabilities, the selection depends upon the supported video stream formats that include encryption, and the supported video stream formats that do not support encryption.
The device capabilities are considered in determining an applicable streaming format in an embodiment. In considering device capabilities, the selection depends upon the supported video stream formats that include encryption, the supported video stream formats that do not support encryption, and whether the device is on an encrypted private Wifi network managed by the gateway (in which case encryption at the network level is not required).
The network/system capabilities are considered in determining an applicable streaming format in an embodiment. In considering network/system capabilities, the selection depends upon characteristics of the network or system across which the stream must travel. The characteristics considered include, for example, the following: whether there is a gateway and/or server on the network to facilitate some of the fancier video streaming types or security requirements; whether the client is on the same LAN as the gateway, meaning that network firewall traversal is not needed.
Streaming methods with the highest priority are peer-to-peer because they scale best with server resources. Universal Plug and Play (UPnP) can be used by the gateway to open ports on the video stream device's LAN router and direct traffic through those ports to the video stream device. This allows a video stream client to talk directly with the video stream device or talk directly with the gateway which can in turn facilitate communication with the video stream device.
Another factor in determining the best video stream format to use is the success of STUN and TURN methods for establishing direct peer-to-peer UDP communication between the stream source device and the stream client. Again, the gateway and the server can help with the setup of this communication.
Client bandwidth availability and processing power are other factors in determining the best streaming methods. For example, due to its bandwidth overhead an encrypted MJPEG stream should not be considered for most mobile phone data networks.
Device bandwidth availability can also be considered in choosing the best video stream format. For example, consideration can be given to whether the upstream bandwidth capabilities of the typical residential DSL support two or more simultaneous MJPEG streams.
Components of the integrated security system of an embodiment, while considering various parameters in selecting a video streaming format to transfer video streams from streaming source devices and requesting client devices, prioritize streaming formats according to these parameters. The parameters considered in selecting a streaming format include, as described above, security requirements, client capabilities, device capabilities, and network/system capabilities. Components of the integrated security system of an embodiment select a video streaming format according to the following priority, but alternative embodiments can use other priorities.

The selected format is UPnP or peer-to-peer MPEG-4 over RTSP with encryption when both requesting client device and streaming source device support this format.
The selected format is UPnP or peer-to-peer MPEG-4 over RTSP with authentication when the requesting client device does not support encryption or UPnP or peer-to-peer MPEG-4 over RTSP with encryption.
The selected format is UPnP (peer-to-peer) MPEG-4 over HTTPS when both requesting client device and streaming source device support this format.
The selected format is UPnP (peer-to-peer) MPEG-4 over HTTP when the requesting client device does not support encryption or UPnP (peer-to-peer) over HTTPS.
The selected folinat is UPnP (peer-to-peer) MPEG-4 over RTSP facilitated by gateway or touchscreen (including or incorporating gateway components) (to provide encryption), when the requesting client device supports encrypted RTSP and the streaming source device supports MPEG-4 over RTSP.
The selected format is UPnP (peer-to-peer) MPEG-4 over HTTPS facilitated by gateway or touchscreen (including or incorporating gateway components) (to provide encryption) when the requesting client device supports MPEG-4 over HTTPS and the streaming source device supports MPEG-4 over HTTP.
The selected format is UPnP (peer-to-peer) MJPEG over HTTPS when the networks and devices can handle the bandwidth and both requesting client device and streaming source device support MJPEG over HTTPS.
The selected format is Reverse RTSP with STUN/TURN facilitated by the server when the streaming source device initiates SSL/TLS TCP to server, the streaming source device supports Reverse RTSP over SSL/TLS with STUN/TURN, and the requesting client device supports RTSP with STUN/TURN.
The selected format is Reverse RTSP with STUN/TURN facilitated by server and gateway or touchscreen (including or incorporating gateway components) when the gateway initiates SSL/TLS TCP to the server and to the streaming source device, the streaming source device supports RTSP, and the requesting client device supports RTSP
with STUN/TURN.
The selected format is Reverse MPEG over RTSP/HTTP facilitated by the server when the streaming source device initiates SSL/TLS TCP to server, the streaming source device supports Reverse RTSP or HTTP over SSL/TLS, and the requesting client device supports MPEG over RTSP/HTTP.
The selected format is Reverse MPEG over RTSP/HTTP facilitated by server and gateway or touchscreen (including or incorporating gateway components) when the gateway initiates SSL/TLS TCP to server and to streaming source device, the streaming source device supports MPEG over RTSP or HTTP, and the requesting client device supports MPEG over RTSP/HTTP.
The selected format is UPnP (peer-to-peer) MJPEG over HTTP when the networks and devices can handle the bandwidth and when the requesting client device does not support encryption and does not support MPEG-4.
The selected format is Reverse MJPEG over HTTPS facilitated by the server when the streaming source device initiates SSL/TLS TCP to server, the streaming source device supports Reverse MJPEG over SSL/TLS, and the requesting client device supports MJPEG.
The selected format is Reverse MJPEG over HTTPS facilitated by server and gateway or touchscreen (including or incorporating gateway components) when the gateway initiates SSL/TLS TCP to the server and to the streaming source device, the streaming source device supports MJPEG, and the requesting client device supports MJPEG.
Figure 24 is a block diagram showing camera tunneling, under an embodiment.
Additional detailed description of camera tunnel implementation details follow.
An embodiment uses XMPP for communication with a remote video camera as a lightweight (bandwidth) method for maintaining real-time communication with the remote camera. More specifically, the remote camera is located on another NAT
(e.g., NAT traversal).

An embodiment comprises a method for including a remotely located camera in a home automation system. For example, using XMPP via cloud XMPP server to couple or connect camera to home automation system. This can be used with in-car cameras, cell phone cameras, and re-locatable cameras (e.g., dropped in the office, the hotel room, the neighbor's house, etc.).
Components of an embodiment are distributed so that any one can be offline while system continues to function (e.g., panel can be down while camera still up, motion detection from camera, video clip upload etc. continue to work.
Embodiments extend the PSIA in one or more of the following areas: wifi roaming configuration; video relay commands; wifi connectivity test; media tunnel for live video streaming in the context of a security system; motion notification mechanism and configuration (motion heartbeat) (e.g., helps with scalable server); XMPP
for lightweight communication (helps with scalable server, reduced bandwidth, for maintaining persistent connection with a gateway); ping request sent over XMPP
as health check mechanism; shared secret authentication bootstrapping process;
asynchronous error status delivery by the camera for commands invoked by the gateway if the camera is responsible for delivering errors to the gateway in an asynchronous fashion (e.g., gateway requests a firmware update or a video clip upload).
Embodiments extend the home automation system to devices located on separate networks, and make them useable as general-purpose communication devices.
These cameras can be placed in the office, vacation home, neighbor house, software can be put onto a cell phone, into a car, navigation system, etc.
Embodiments use a global device registry for enabling a device/camera to locate the server and home to which it is assigned.
Embodiments include methods for bootstrapping and re-bootstrapping of authentication credentials. The methods include activation key entry by installer into the cloud web interface. Activation key generation is based upon mac address and a shared secret between manufacturer and the service provider. Embodiments of the system allow activation of a camera with valid activation key that is not already provisioned in the global registry server.
Embodiments include a web-based interface for use in activating, configuring, remote firmware update, and re-configuring of a camera.
Embodiments process or locate local wifi access points and provide these as options during camera configuring and re-configuring. Embodiments generate and provide recommendations around choosing a best wifi access point based upon characteristics of the network (e.g., signal strength, error rates, interference, etc.).
Embodiments include methods for testing and diagnosing issues with wifi and network access.
Embodiments include cameras able to perform this wifi test using only one physical network interface, an approach that enables the camera to dynamically change this physical interface from wired to wifi. Embodiments are able to change the network settings (wifi etc) remotely using the same process.
Cameras of an embodiment can be configured with multiple network preferences with priority order so that the camera can move between different locations and the camera can automatically find the best network to join (e.g., can have multiple ssid +
bssid + password sets configured and prioritized).
Regarding firmware download, embodiments include a mechanism to monitor the status of the firmware update, provide feedback to the end user and improve overall quality of the system.
Embodiments use RTSP over SSL to a cloud media relay server to allow live video NAT traversal to a remote client (e.g., PC, cell phone, etc.) in a secure manner where the camera provides media session authentication credentials to the server. The camera initiates the SSL connection to the cloud and then acts as a RTSP
server over this connection.
Embodiments include methods for using NAT traversal for connecting to the cloud for remote management and live video access allows the integrated security components to avoid port forwarding on the local router(s) and as a result maintain a more secure local network and a more secure camera since no ports are required to be open.
Embodiments enable camera sensors (e.g., motion, audio, heat, etc.) to serve as triggers to other actions in the automation system. The capture of video clips or snapshots from the camera is one such action, but the embodiments are not so limited.
A camera of an embodiment can be used by multiple systems.
A detailed description of flows follows relating to the camera tunnel of an embodiment.
A detailed description of camera startup and installation follows as it pertains to the camera tunnel of an embodiment.
Activation Key a. camera to follow same algorithm as ihub where activation key is generated from serial based upon a one-way hash on serial and a per-vendor shared secret.
b. Used comicontroLutil.ops.activation.ActivationKeyUtil class to validate serialNo <-> activationKey.
Registry Request [partneri/registry/[device typeNserial]
a. new column in existing registry table for id type; nullable but the application treats null as "gateway".
b. rest endpoints allow adding with the new optional argument.
c. current serial and siteId uniqueness enforcement by application depends upon device type (for any device type, there should be uniqueness on serial; for gateway device type, there should be uniqueness on siteId; for other device types, there need not be uniqueness on siteId).
d. if no activation yet (e.g., no entry) then send dummy response (random but repeatable reply; may include predictable "dummy" so that steps below can infer.
e. add/update registry server endpoints for adding/updating entries.

If Camera has no password Camera retrieves "Pending Key" via POST to /<CredentialGatewayURL>/GatewayService/<siteID>/PendingDeviceKey.
a. pending key request (to get password) with serial and activation key.
b. server checks for dummy reply; if dummy then responds with retry backoff response.
c. server invokes pass-through API on gateway to get new pending key.
d. if device is found, then gateway performs validation of serial+activation key, returns error if mismatch.
e. if activation key checks out, then gateway checks pending key status.
f. if device currently has a pending key status, then a new pending password is generated.
g. gateway maintains this authorization information in a new set of variables on the camera device.
h. device-authorization/session-key comprises the current connected password.
i. device-authorization/pending-expiry comprises a UTC timestamp representing the time the current pending password period ends; any value less than the current time or blank means the device is not in a pending password state.
j. device-authorization/pending-session-key comprises the last password returned to the camera in a pending request; this is optional (device may choose to maintain this value in memory).
k. session-key and pending-session-key variables tagged with "encryption" in the device def which causes rest and admin to hide their value from client.
ConnectInfo request a. returns xmpp host and port to connect to (comes from config as it does for gateway connect info).
b. returns connectInfo with additional <xmpp> parameter.

Start portal add camera wizard a. user enters camera serial, activation key.
b. addDevice rest endpoint on gateway called c. gateway verifies activation key is correct.
d. gateway calls addDevice method on gapp server to add LWG_SerComm_iCamera_l 000 with given serial to site.
e. Server detects the camera type and populates registry.
f. gateway puts device into pending password state (e.g., updates device-auth/pending-expiry point).
g. rest endpoints on gateway device for managing device pending password state.
h. start pending password state: POST future UTC value to device-auth/pending-expiry; device-auth/pending-expiry set to 30 minutes from time device was added.
i. stop pending password state: POST -1 to device-auth/pending-expiry.
j. check pending password state: GET device-auth/pending-expiry.
k. message returned with "Location" header pointing to relative URI.
1. user told to power on camera (or reboot if already powered on).
m. once camera connects, gateway updates device-auth/pending-expiry to -1 and device-auth/session-key with password and device/connection-status to connected n. portal polls for device/connection-status to change to connected; if does not connect after X seconds, bring up error page (camera has not connected -continue waiting or start over).
o. user asked if wifi should be configured for this camera.
p. entry fields for wifi ssid and password.
q. portal can pre-populate ssid and password fields with picklist of any from other cameras on the site.
r. get XML of available SSIDs.
s. non-wifi option is allowed.
t. portal submits options to configure camera (use null values to specify non-will.);
upon success, message is returned with "Location" header pointing to relative URI.
u. checks configuration progress and extracting "status" and "subState"
fields.
v. puts device state into "configuring"; upon error, puts device state into "configuration failure".
w. performs firmware upgrade if needed, placing device state into "upgrading";
upon error, puts device state into "upgrade failure".
x. upon configuration success, puts device state of "ok" and applies appropriate configuration for camera (e.g., resolutions, users, etc.).
y. if non-blank wifi parameters, automatically perform "wifi test" method to test wifi without disconnecting Ethernet.
z. portal wizard polls device status until changes to "ok" or "upgrade failure/"configuration failure" in "status" field, along with applicable, if any, with error code reason, in "subState" field; upon error, show details to user, provide options (start over, configure again, reboot, factory reset, etc) aa. notify user they can move camera to desired location.
Camera reboots a. gets siteId and server URL from registry.
b. makes pending paid key request to server specifying correct siteId, serial and activation key; gets back pending password.
c. makes connectInfo request to get xmpp server.
d. connects over xmpp with pending password.
If Camera reboots again a. get siteId and server URL from registry.
b. already has password (may or may not be pending) so no need to perform pending paid key request.
c. make connectInfo request to get xmpp server.
d. connect over xmpp with password.

xmpp connect with password a. xmpp user is of the form [serial]@[serverKsiteIdi b. session server performs authentication by making passthrough API request to gateway for given SiteId.
c. Session xmpp server authenticates new session using DeviceKey received in GET
request against received xmpp client credential.
d. If authencation fails or GET receives non-response, server returns to camera XMPP connect retry backoff with long backoff.
e. gateway device performs password management.
f. compares password with current key and pending key (if not expired); if matches pending, then update device-authisession-key to be pending value, and clear out the device-auth/pending-expiry.
g. gateway device updates the device/connection-status point to reflect that camera is connected.
h. gateway device tracks the xmpp session server this camera is connected to via new point device/proxy-host and updates this info if changed.
i. if deviceConnected returns message, then session server posts connected event containing xmpp user to queue monitored by all session servers.
j. session servers monitor these events and disconnect/cleanup sessions they have for same user.
k. may use new API endpoint on session server for broadcast messages.
xmpp connect with bad password a. Upon receiving a new connection request, session server performs authentication by making passthrough API request to gateway for given SiteId.
b. Session xmpp server authenticates new session using DeviceKey received in above GET request against received xmpp client credential.
c. If authencation fails or GET receives non-response from virtual gateway.

d. Session server rejects incoming connection (is there a backoff/retry XMPP
response that can be sent here).
e. Session server logs event.
f. Gateway logs event.
xmpp disconnect a. session server posts disconnected event to gateway (with session server name).
b. gateway updates the device/connected variable/point to reflect that camera is disconnected.
c. gateway updates the device/connection-status variable/point to reflect that camera is disconnected.
d. gateway clears the device/proxy-host point that contains the session host to this camera is connected.
LWGW shutdown a. During LWGW shutdown, gateway can broadcast messages to all XMPP servers to ensure all active XMPP sessions are gracefully shutdown.
b. gateways use REST client to call URI, which will broadcast to all XMPP
servers.
To configure camera during installation a. applies all appropriate configuration for camera (e.g., resolutions, users, etc).
b. returns message for configuration applied, wifi test passed, all settings taken.
returns other response code with error code description upon any failure.
To reconfigure wifi SSID and key a. returns message for wifi credentials set.
b. returns other response code with error code description upon any failure.

API Pass-through Handling for Gateway Fail-over case a. When performing passthrough for LWGW, the API endpoint handles the LWGW
failover case (e.g., when gateway is not currently running on any session server).
b. passthrough functions in the following way: current session server IP is maintained on the gateway object; server looks up gateway object to get session IP and then sends passthrough request to that session server; if that request returns gateway not found message, server error message, or a network level error (e.g., cannot route to host, etc.), if the gateway is a LWGW then server should lookup theprimary/secondary LW Gateway group for this site; server should then send resume message to primary, followed by rest request; if that fails, then server send resume message to secondary followed by rest request c. alternatively, passthrough functions in the following way: rather than lookup session server IP on gateway object, passthrough requests should be posted to a passthrough queue that is monitored by all session servers; the session server with the Gateway on it should consume the message (and pass it to the appropriate gateway); the server should monitor for expiry of these messages, and if the gateway is a LWGW then server should lookup the primary/secondary LW
Gateway group for this site; server should then send resume message to primary, followed by rest request; if that fails, then server send resume message to secondary followed by rest request.
A detailed description follows for additional flows relating to the camera tunnel of an embodiment.
Motion Detection a. camera sends openhome motion event to session server via xmpp.
b. session server posts motion event to gateway via passthrough API.
c. gateway updates the camera motion variable/point to reflect the event gateway updates the camera motion variable/point to reflect the event Capture Snapshot a. gateway posts openhome snapshot command to session server with camera connected.
b. gateway sends command including xmpp user id to xmpp command Queue monitored by all session servers.
c. session server with given xmpp user id consumes command and sends command to camera (command contains upload URL on gw webapp).
d. gateway starts internal timer to check if a response is received from camera (e.g., 5 sec wait window).
e. if broadcast RabbitMQ not ready, then gateway will use device/proxy-host value to know which session server to post command to.
f. session server sends command to camera (comprises upload URL on gw webapp) g. Example XML body:
<MediaUpload>
<id>1321896772660</id>
<snapShotImageType>JPEG</snapShotImageType>
<gateway_url>[gatewaysyncUr1Vgw/GatewayService/SPutJpg/s/[siteId]/[
deviceIndex]/[varValue]/[varIndex]/[whoNtsF[HMM]/[passCheck]/</
<failure_url>[gatewaysyncUr1]/gw/GatewayService/SPutJpgError/s/[siteI
d]/[deviceIndex]/[varValue]/[varIndex]/[who]/[ts]/[HMM]/[passCheck]/</
</MediaUpload>
h. session server receives response to sendRequestEvent from camera and posts response to gateway.
i. camera uploads to upload URL on gw webapp.
j. passCheck can be verified on server (based upon gateway secret);
alternatively, the OpenHome spec calls for Digest Auth here.
k. endpoint responds with message digest password if the URI is expected, otherwise returns non-response.

1. gw webapp stores snapshot, logs history event.
m. event is posted to gateway for deltas.
Capture Clip a. gateway posts openhome video clip capture command to session server with camera connected.
b. gateway sends command including xmpp user id to xmpp command Queue monitored by all session servers.
c. session server with given xmpp user id consumes command and sends command to camera (command comprises upload URL on gw webapp).
d. gateway starts internal timer to check if a response is received from camera (e.g., 5 sec wait window).
e. session server sends command to camera (comprises upload URL on gw webapp).
f. Example URI from session server to camera:
/openhome/streaming/channels/l/video/upload g. Example XML body:
<MediaUpload>
<id>1321898092270</id>
<videoClipFormatType>MP4</videoClipFormatType>
<gateway_url>[gatewaysyncUrlFgw/GatewayService/SPutMpeg/s/[siteIdi /[deviceIndex]/[varValue]/[varIndex]/[whoHts]/[HMM]/[passCheck]/</
<failure_url>[gatewaysyncUrl]/gw/GatewayService/SPutMpegFailed/s/[si teId]/[deviceIndex]/[varValue]/[varIndex]/[who]/[tsHHMMF[passCheck]
/<
<MediaUpload>
h. session server receives response to sendRequestEvent from camera and posts response to gateway.
i. camera uploads to upload URL on gw webapp.
j. passCheck can be verified on server (based upon gateway secret).

k. alternatively, spec calls for Digest Auth here.
1. endpoint responds with message digest password if the URI is expected, otherwise returns non-response.
m. gw webapp stores video clip, logs history event.
n. event is posted to gateway for deltas.
Live Video (relay) a. Upon user login to portal, portal creates a media relay tunnel by calling relayAPImanager create.
b. RelayAPImanager creates relays and sends ip-config-relay variable (which instructs gateway to create media tunnel) to gateway.
c. Upon receiving media tunnel create ip-config-relay command, gateway posts openhome media channel create command to session server with camera connected.
d. session server sends create media tunnel command to camera (comprises camera relay URL on relay server).
e. Example URI from session server to camera:
/openhome/streaming/mediatunnel/create f. Example XML body:
<CreateMediaTunnel>
<sessionID>l</sessionID>
<gatewayURL>TBD</gatewayURL>
<failureURL>TBD</failureURL>
</CreateMediaTunnel>
g. GatewayURL is created from relay server, port, and sessionId info included within ip-config-relay variable.
h. camera creates a TLS tunnel to relay server via POST to <gatewayURL>.
i. When user initiates live video, portal determines user is remote and retrieves URL
of Relay server from relayAPImanager.

j. Upon receiving a user pole connection on the relay server (along with valid rtsp request), relay sends streaming command to camera: example:
rtsp:://openhome/streaming/channels/l/rtsp k. Upon user portal logout, portals calls relayAPImanager to terminate media tunnel.
1. RelayAPImanager send ip-config-relay varlable to terminate media tunnel.
m. Gateway sends destroy media tunnel command to camera via XMPP.
Camera Firmware Update a. Gateway checks camera firmware version; if below minimum version, gateway sends command to camera (via session server) to upgrade firmware (command:
/openhome/system/updatefirmware).
b. Gateway checks firmware update status by polling:
/openhome/system/updatefirmware/status.
c. Gateway informs portal of upgrade status.
d. Camera auto-reboots after firmware update and reconnects to Session server.
Camera First-Contact Configuration a. After a camera is added successfully and is connected to the session server for the first time, gateway performs first contact configuration as follows.
b. Check firmware version.
c. Configure settings by: download config file using /openhome/sysetm/configurationData/configFile; or configure each category individually (configure video input channel settings -/openhome/system/video/inputs/channels; onfigure audio input channel settings (if any) - /openhome/system/audio/inputs/channels; configure video streaming channel settings - /openhome/streaming/channels; configure motion detection settings - example: PUT /openhome/custom/motiondetection/pir/0; configure event trigger settings - example: PUT /openhome/custom/event).

d. Reboot camera (/openhome/system/factoryreset) if camera responds with reboot required.
Data Model for Home Automation Communication and Control The integrated system of embodiments described herein includes a data model comprising a universal description for the elements of home control system or platform that enables a clean separation of back-end systems (e.g., gateways, servers, etc.) and frontend applications. The data model for home automation and control includes but is not limited to a view model (also referred to as a JavaScript Object Notation (JSON) view model) comprising a normalized data model configured to describe the state of elements of an integrated home automation or security system, a normalized set of commands to control and change the state of the home automation or security system, and an API and model for efficiently updating elements of the data model.
The data model for home automation and control also includes but is not limited to a history data model system (also referred to as a data model or JSON
history data model) comprising a normalized data model describing history for all elements of an integrated home automation/security system, a normalized set of commands to request history data, and an API and model for updating elements of the history data efficiently.
A detailed description follows of components of the data model for home automation and control.
Regarding the view model component of the data model for home automation and control, embodiments of the integrated system or platform described herein include RESTful interfaces configured to normalize information about devices, security panels and system states. Consequently, the view model improves quality and enables the easier addition and maintenance of clients or client devices. As described herein, client devices include processor-based devices, computers, smart telephones, stand-alone devices (e.g., modems, set-top boxes, etc.), touchscreen devices, wired devices, wireless devices, IP
devices, to name a few. The enhancements provided by the platform (e.g., iHub or server): provide the minimal data for client devices; centralize business logic - platform provides meta information such as what to hide (silent alarms), sort order, and virtual data (such as what orb to show); remove state machines from clients - platform conveys what is possible at any given time (such as ability to disarm, etc.); provide error handling - handle request delays and failures clearly (in this doc, this applies to security actions);
handle language and format lookup - given lang/locale code in request, responds with resolved strings; are efficient for all clients - track changes and minimize updates using deltas, reduce data size, and reduce number of nodes. In the example below, the client REST data is about 20% the size (after gzip) of the raw REST instances, and about 10%
the number of nodes to parse. More importantly, all the business logic has been baked into the data, and most of the need for partner preference lookup.
The client view model of an embodiment includes the views needed for cross-client consumer features, and includes the features used by mobile clients except for sign-in / authentication. In order to support the goals, the REST extensions of an embodiment return JSON data but are not so limited. The following general types are referenced herein:
1. Singletons: atomic objects, each with a unique name. Client REST
delivers complete items, nothing smaller, and there is only ever one per site.
For example, there is only one shift object, and one site object. Some singletons are required and they will always be provided as part of the model (such as a summary or security object), and some are conditional and their existence causes UI to appear (like energy, or cameras groups).
2. Groups: atomic objects, each with a unique name. Groups include an array of items (often, 1 per device) or an empty array to indicate there are no items of that type but they could exist.
3. Group items: instance objects, each with a unique ID. For example, you may have a group of two (2) doorlocks items, and later update a single doorlock item using its unique ID.
4. Values: key/value pairs included in items and commands. Items can be strings, boolean, long ints, or floats.

5. Commands: provide actions the user can invoke on the system (server or iHub). They include input objects with possible values (and sometimes current value).
6. Controls: provide local actions, like navigation.
For example, a client REST request may return:
"client": {
"ts": 98782636856, //server time for this update "version": 2.1, //API version "actionURI": "/ng/rest/icontrollui/operations?method----POST&action=", //any actions should be appended to this //base URI (if they don't start with I) "aSingletonObject": { //each singleton has a unique name "type": "mySingleton", "keyX": "valueX", "keyY": "valueY"
}, "anotherSingletonObject":
}, "aGroupObject": { //each group has a unique name, there can be only one "id": "aGroupObject", "name": "My Group Object", //localized name for group (may be used for tab, etc.) "numTrouble": 0, //if > 0, group flagged as containing a troubled object "items": [
"id": 321, //there can be multiple items, so they get unique IDs "tags": "tagl,tag2", //may be used to differentiate items of different types "state": { //the state object tells local UI what data may not be fresh "icon":
someIconId, //discreet ID for icon client should use (tech agnostic) "statusTxt": "Door Open", //Specific text for UI (already localized to user locale) "commandElement": 3 1, "commands": { //commands are actions that can be sent to the system "commandElement": { //each command gets a unique name to help UI layout "action": "bar?fixedParam=someValue", //URL to invoke command. May change, don't hardcode!
"method": "post", "params": //added to action URL, e.g.
"bar?fixedParam=someValue&pl=myValue"
"p1": text "anotherGroupObject": [
{¨}, II
{-}
Top level objects (keys, singleton objects, and groups) are named for quick lookup, and deltas may deliver individual singletons, groups, or items. Now the client can easily refer to these objects, and data bind them to the UI: var lightl name =
client.lighting.items[0].name.

Command elements provide a way for a user to request actions, such as changing sites, arming a panel, or changing a light dimmer. Model-defined controls are for submitting changes to the system, not for local view navigation (like changing tabs): they generally result in specific parameterized requests. Commands do not dictate the specific UI used. They should indicate the current value, possible new values, and a way to submit those actions to the server. The commands / parameters of an embodiment include:
= Request: make a change or request data.
= Select: show a value, send new value from list.
= Toggle: like select, but only two (2) values and shows future value.
= Range: select a numeric value with a control and send that number.
= textInput: enter a text value, ensure it matches a regular expression, and send it.
= timeMillis: enter a time, expressed in milliseconds since epoch (1/1/70).
Embodiments include rare commands that have multiple parameters of different types. For example, an arm command could have an option (toggle param) and request a PIN (textInput param). Only the request command has no param list so it has a type at the top-level; other commands just have a type for each parameter.
A request command is an action request that changes the system, and does not include parameters requiring definitions. For example, Figure 25 shows example request commands, under an embodiment. One example request command includes a Sign Out link. Another example request command includes an icon ("sensors"), the selection of which causes presentation (e.g., pop-up window, drop-down, etc.) of corresponding information. An implementation example of the sign out link is as follows:
"signOut":
"method": "post", "action": "/foo/bar/signOut",//rest URL to submit action (may be appended to a base URI) "label": "Sign Out", "busyStatusTxt": "Signing Out..." //Text to show (optional) after request is submitted The client shows a button or a link with label "Sign Out", for example. When clicked, it would send a REST http request as follows, and this command has NO optional parameters: POST http://portal-stageLicontrol.com/foo/bar/signOut. The response from this command is an operation object: operation: {"id":"630cf35e-e8bb-4957-b81d-4c961677da37","ts":1358411674097,"status":"pending"}. Subsequently, a full update status from updates endpoint indicates the result of the above operation.
A selection command parameter is analogous to a list of requests, each with a discrete label and value to submit. The UI shows the current value as selected, and allow the user to choose a new value from the list. Figure 26 shows different examples of selecting thermostat modes, under an embodiment. An implementation example of the select command is as follows:
"setMode":
"action": "foo/bar/mode", "method": "post", "params":
"mode": {
"type": "select", "options": [
{ "value": "auto", "label": "Auto Mode" }, { "value": "heat", "label": "Heat" }, { "value": "cool", "label": "Cool" }, { "value": "off' , "label": "Off' }

Any of the labels can be selected, and the matching value submitted.
A toggle command is similar to a selection, except there are guaranteed only two values and they include an action label (future value). Figure 27 shows examples of toggle commands, under an embodiment. For example, a light switch may say "Turn On". When the switch is pressed, the client can switch to the other label ("turn off"), then submit the request ("turn on" request). As another example, a lock switch may indicated "locked". When the switch is pressed, the client can switch to the other label or indicator ("unlocked"), then submit the request ("lock" request). An implementation example of the request is as follows:
"someFlagBoolean": {
"action": "foo/bar/light-23", "method": "post", "params": {
"state": {
"type": "toggle", "options": [
{ "value": "on", "label": "Enabled", "actionLabel": "Disable" }, //toggles need an actionLabel which is action to take { "value": "off", "label": "Disabled", "actionLabel": "Enable" }

Following is an example of sending a request to switch on the light: POST
http://portal-stagel.icontrol.com/foo/bar/light-23?state=on. For toggles, the current value is the future state. It should show the label for the current value, and the actionLabel for the button (if used). While pending, the other label can be shown after submit (to indicate the future state).
A range command of an embodiment is drawn as a slider or stepper, and allows the user to select from a wide range of numbers, such as brightness or temperature.
Figure 28 shows range commands for lights and thermostats, under an embodiment. An implementation example of the range command is as follows:
"setpointCooling":
"action": "Noo/bar/theimostat/thermostat-22", "method": "post", "label": "Cool to", "params":
"setpointCooling": {
"type": "range", "min": 35, "max": 95, "step": 1, "labels": [ //optional, only need this if unique labels for certain values { "value": 0, "label": "Off' }, //may have specific labels to use for certain values { "value": "default", "label": "{0}8zdeg;" } //otherwise, need to format the number for display ], The range command may not show the value as a number (such as a slider). If it does (such as a stepper), labels can be used for formatting. Note percentages (where max=1) of an embodiment are multiplied by 100 before display, but are not so limited.

An int parameter is like range, but can be any integer. An implementation example of the int parameter is as follows:
"getSomeDataUsingId": {
"action": "/foo/bar/getSomeDataUsingId", "method": "post", "label": "Id:", "params": {
"id": {
"type": "int"
}
}

The text input command is for inputting text, typically for naming things, and could be used for authentication if that UI is data driven. Figure 29 shows a text input command, under an embodiment. An implementation example of the text input command is as follows:
"setDevName": {
"action": "/foo/bar/deviceName", "method": "post", "label": "Name:", "params": {
"devName": {
"type": "textInput", "regExp": "[a-zA-Z0-9]?", //must *match* this regExp before submitting "minChars": 4, //must have at least this # chars before submitting "maxChars": 16, //must have <= this # chars "defaultValue":
}

A time in millis since epoch command passes a time parameter, using milliseconds since epoch (1970). An implementation example of the time in millis since epoch command is as follows:
"setAlarm": {
"action": "/foo/bar/setAlarm", "method": "post", "label": "Alarm at", "params": {
"alarmTs": {
"type": "timeMillis", "defaultValue": 1416962717204 //time in millis. Note that client can also pass -1 to mean "now"
}
}

Client views of an embodiment can be described with the following singleton objects:
1. Site: atom that indicates the current site, and controls to switch sites.
2. Summary: atom that indicates what orb to show, system summary text, and sensor summary text.
3. Security: atom that includes stateful functions (buttons) to show, and any arm protest or alarm dialog info to show.
4. Shift: atom that contains the current shift state, and functions to change shifts.
5. Messaging: atom that includes a list of any warnings, login msgs, and system messages.

6. hvwSettings: atom for static home view data, includes labels and device positions.
7. Panel: atom for security panel, includes static info like versions, and some commands such as emergency.
8. History: atom for history commands, does not contain history data (on request only).
9. pushNotificationSettings: used for enable/disable mobile push notifications.
Client views of an embodiment can be described with the following groups:
1. hvwData: atom that includes dynamic data such as device states, updated whenever a device state changes.
2. Sensor: group of sensor atoms.
3. Door: group of door lock and garage door atoms.
4. Lighting: group of switch atoms (typically lights).
5. Thermostat: group of thermostat atoms.
6. energyMeter: group of atoms reporting power.
7. Camera: group of camera atoms.
8. Card: array of list names (in order) used for Other Devices lists.
The site object of an embodiment describes the current site and allows users to switch sites. It also provides information about the current user. Figure 30 is an example site object (e.g., "Cabin"), under an embodiment. An implementation example of the site object is as follows:
"site": {
"id": "site", "name": "Sites", "userName": "Ken", "locale": "en_US", //THIS user's locale pref, which for touchscreen is the site owner "serverVersion": "5.5.0-1234", "isOwner": true, //the next few belong in site.state, will move in future...
"timeZoneIdentifier" : "America/Los_Angeles" //site timezone ID, java follows TANA standard "timeZoneOffsetMillis": -28800000, //site timezone offset from GMT in milliseconds (here PST, so -8h). Incorporates DST (so may be misleading if DST changed recently) "timeZoneLastDSTChangeMillis": 110239429423, //GMT in millis of last daylight savings time change "timeZoneOffsetPreDSTChangeMillis": -28836000, //tz offset BEFORE last DST
chg, typically + or -1h (36000 millis) "gatewayVersion":"5Ø1-1234", "state": {
"setSite": "0060350312345" //current site ID
"privacyLinkName" : "Privacy", //name to use for privacy link (ppref branding/linkName/footerPrivacy) "privacyLinkUrl" : "http://wvvw.x.com/privacy", //privacy page (ppref branding/url/footerPrivacy) "clientInactivityTimeoutMins": 30, //amount of inactivity time before client should prompt for PIN / touch //this is currently controlled by ppref session/maClientInactivityTimeout "commands": {
"setSite": { //if setSite cmd called, should get new state with the new site.
More importantly, request for "client" will give ALL new objects.
"action": "operations?method¨POST&actiorrqui/client/site/setSite", "method": "post", "params":
"site": {
"type": "select", "options": [

{ "value": "00503503523AB", "label": "My Cabin" }, { "value": "0060350312345", "label": "Ken's House" }, { "value": "00503503523AB", "label": "The Smith Home" }

1, "signOut":
"action": "operations?method=POST&action=lui/client/site/signOut", "method": "post", "label": "Sign Out"

The site object is functionally unique. If the user clicks a command to request a different site, the entire view model will be replaced with info on the new site.
Figure 31 is an example summary object, under an embodiment. The summary object describes the orb or equivalent, and summary text that may be shown.
History for the summary object is referred to as "Notable Events". If there is a security panel, it will include the security state (e.g., "Disarmed. 1 Sensor Open", "Armed Away", "All Quiet"). An implementation example of the summary object is as follows:
"summary": {
"id": "summary", "name": "Security", //If summary stuff shown in a tab (like mobile), this would be the tab's label.
"state": { //Note that for a panel-less config, the name is "System".
"systemIcon": "disarmed", //armed, disarmed, offline, or unknown "numTrouble": 0, Hcount of sensors with red icons (offline, alarm, tamper, trouble, low batt, tripped) "numOpen": 1, //count of door/win sensors that are not closed "numMotion": 0, //count of motion sensors that have state "motion"
(doesn't include camera sensors) "statusTxt": "Disarmed", //specific arm state "sensorStatusTxt": "1 Sensor Open", //shows either sensor status or current alarm "delayEndTs": 1268942401856, Hset if in panel exit delay. Time is relative to ts "sound": "" //loop to play if needed, for alarms or entry/exit delay }
The delayEndTS attribute is set once if exit delay is entered, and is cleared when exit delay completes. The end time is relative to the ts provided with this particular update. Exit delay countdown is handled locally as the difference between the time the delta was received (matched to the update time) and the end time.
Possible values for "statusTxt" include the following:
= "" (blank if panel status is unknowable because gateway or panel connection are offline. In that case, there's a warning message "Status Unavailable").
= "Armed All", "Armed Stay", "Armed Away", "Disarmed", "Armed Maximum", "Armed Night-Stay", "Armed Away Instant", "Armed Motion", "Subdisarmed".
= There may be appended to any of these "No Exit Delay". As in "Armed Stay, No Exit Delay".
Possible values for "sensorStatusTxt" include the following:
= "" (blanks if panel status is unknowable because gateway or panel connection are offline).
= If in an alarm: "Burglary Alarm", "Fire Alarm", "Carbon Monoxide Alan-n", "Audible Panic Alarm", "Tamper Alarm", "Freeze Alarm", "Personal Emergency Alarm", "Exit Fault Alarm", "Water Alarm", "Silent Panic Alaini", "Duress Alarm", "Temperature Alarm", "Waterflow Alarm", "Gas Alarm", "General Alarm" (note, these status text overrides are not in the current UX spec, but all clients use this convention).
= "Uncleared Alarm", "Sensor Tripped", "Sensors Tripped", "Sensor Problem", "Sensors Problem", "Sensor Bypassed", "Sensors Bypassed".
= [# of sensors open] Sensor(s) Open, = "Motion", "All Quiet"
Possible values for "systemIcon" include: "offline", "alarm", "armed", "disarmed". Possible values for num* are integers > 0. The sound attribute is driven by the panel point with mediaType panel/annunciator. Possible values for sound include:
none, exitDelay, entryDelay, armProtest, alarm, alarmFire, alarmCO.
Figure 32 shows example security objects, under an embodiment. A security object holds the security commands to arm and disarm. Note that some security information is also reflected in the "summary" object. A security change generally alters both the security and the summary object, but embodiments are not so limited.
An implementation example of the security object is as follows:
"security": {
"id": "security", "name": "Security", //use this for a tab name "state": {
"label": "Arm", //this is the label for the primary button "disabled": false, //if primary button is disabled "busy": false, //if primary button is busy, such as during ECP connection "protestList": [] //If panel is in arm-protest, client may show a message and list these issues }, //Note that state/protestList may not exist (null is the same as []) "items": [I/items with commands are only available if iHub & panel is in OK
state /
online "label": "Arm All", "commands": {
"panelAction":
"action":
"operations?method¨POST&action¨lui/client/security/setArmState?armState¨Away", "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..."

1, "label": "Doors & Windows", "commands": {
"panelAction": {
"action":
"operations?method=POST&action¨lui/client/security/setArmState?arrnState=Stay", "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..."

}
The security object describes arming controls. Most clients show a summary button which is a local navigation that presents the actual arm / disarm /
clear buttons.
An example rule for these items is that if there's only one, then the top level button will submit that command. For example, if the only item is Disarm, the embodiment effectively duplicates the labels at the top level, but clicking it auto-submits the command of the first item.
An example arming sequence of an embodiment is as follows, but embodiments are not so limited:
1. User clicks top level "Arm" button. Note that summary.statusTxt ¨
"Disarmed".
2. Dialog popups up with list of arm buttons. User clicks "Arm Away" button and sends its command.
3. Dialog closes. Local controller changes top-level Arm button to busy +
disabled (security.state.busy = true + security.state.disabled = true),and uses busyStatusTxt value "Arming" as new button label.
4. Command is sent (action submitted to server).
5. New Security object is returned from server, with the primary button busy+disabled, and the label is now "Arming" (Or "Disarming" or "Clearing"), no items.
6. After the panel has been reached and change occurs...
7. New Security object is returned, primary button now active and label is "Disarm".
The only item is disarm item + command.
8. commandResponse delta is received with success code 9. New Summary object is returned, summary.statusTxt == "Armed Away", and systemIcon == "armed" (so orb is now red).
Figure 33 shows a remote client user interface, under an embodiment. A local client user interface is similar to the remote client interface. When selecting "arm" to arm the system, if arming fails, then the arming sequence progresses after step 5 above, as follows:
1. A new Security object is returned which overwrites local changes.
2. If the command failed, a commandResponse delta update is sent by the server, as described in detail herein.
3. In response to commandResponse, client may popup up a dialog and displays the error, such as "Arm failed. PIN value is incorrect."
In the event of an arm protest, open zones that cannot be bypassed are handled as an arm failure (see commandResponse). However, for normal panel protests a protest list is presented to the user as follows:
1. User clicks top level "Arm" button. Note that summary.state.statusTxt "Disarmed".
2. Dialog popups up with list of arm buttons. User clicks "Aim Away" button.
3. Command is sent (action?value=away) to server.
4. New Security object in protest mode is returned, which overwrites local changes and has NEW items:
An implementation example is as follows:
"security": {
"id": "security", "state": {
"label": "Arm", "disabled": false, "busy": false, Net by client when sending command, AND RRA will pass as true if interm. response: protest or PIN
"protestList": ["Back Door - Open"] //a list of panel and zone protest strings to show //IMPORTANT: when protest command is sent, client should clear the local protestList "items": [
{ //there may be cases where panel cannot arm due to a protest; in that case this command is omitted "label": "Arm Anyway", "commands": {
"panelAction": {
"action":
"operations?method¨POST&action=/ui/client/security/setForceArm&arm=Away", //ensure you clear protestList locally "method": "post", "usePlugIn": "UIRest", //if conimand is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..." //copied into state by client when sending command "label": "Cancel", "commands": {
"panelAction":
"action":
"operations?method=POST&action----/ui/client/security/setCancelProtest", //ensure you clear protestList locally "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Canceling..."

10 This scenario is typically handled as a dialog, and is sent to clients with active sessions. For example, selecting Arm on your iPhone and then walking toward the door may result in presentation on the touchscreen of the protest dialog. Clearing it on any client will clear the dialog on all because the model will change as described.
When the PIN code is used to disarm (e.g., touchscreen), the disarm item includes the following parameters:
1. User clicks top level "Disarm" button. Note that summary.statusTxt ==
"Armed Away" or other.
2. Because params are required, Dialog popups up with prompt for PIN code, user clicks Ok button to submit.
3. Dialog closes. Local controller changes Disarm button to busy + disabled (security.state.busy = true + security.state.disabled = true).
4. Command is sent (e.g. action?value=disarm&pin=1234) to server.
5. New Security object is returned from server, with the primary button busy+disabled, and the label is now "Disarming".
6. After the panel has been reached and change occurs...
7. New Security object is returned, primary button now active and label is "Arm", and new items include arm buttons.
8. commandResponse delta is received with success code.

9. New Summary object is returned, summary.statusTxt == "Disarmed", and systemIcon == "disarmed" (so orb is now green).
An implementation example is as follows:
"security": {
"id": "security", "state": {
"label": "Disarm", "disabled": false, "busy": false, "items": [
"label": "Disarm", "commands": {
"panelAction":
"action":
"operations?method=POST8Laction=lui/client/security/setArmState?arm=disarm", "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Disarming..."
"params":
"pin": {
"type": "textInput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":

}
}
}

]
}
When the PIN code is used to arm (if panel quickarm--false, on touchscreen), an embodiment adds a pin parameter to the command for each arming button as follows:
"security": {
"id": "security", "state": {
"label":
"disabled": false, "busy": false, }, "items": [
{
"label": "Arm Stay", "commands": {
"panelAction": {
"action":
"operations?method=POST&action---/ui/client/security/setArmState?arm=Arm%20Stay", "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..."
"params": {

"pin": {
"type": "textInput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":

}

}
1, {
"label": "Aim Away", "commands": {
"panelAction": {
"action":
"operations?method=POST&action=lui/client/security/setArmState?arm¨Arm%20Away I
"method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..."
"params": {
"pin": {
"type": "textinput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":

/
}
/
}

]
}
When the embodiment includes options for no entry delay, or silent exit (e.g., touchscreen), these options (shown on touchscreen) include parameters added to the command for each arming button as follows:
"security": {
"security", "state": {
"label": "Arm", "disabled": false, "busy": false, "noEntryDelay": "1", "silentExit" : "1"
}, "items": [
{
"label": "Arm Stay", "commands": {
"panelArm": {
"action":
"operations?method=POST&action=lui/client/security/setArmState?arm¨Arrn%20Stay"
, "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Arming..."
"params": 1 "noEntryDelay": {
"type": "toggle", "options": [
1 "value": "1", "label": "No Entry Delay", "actionLabel": "Entry Delay" 1, 1 "value": "0", "label": "Entry Delay", "actionLabel": "No Entry Delay" 1 ]
} , "silentExit": {
"type": "toggle", "options": [
{ "value": "1", "label": "No Silent Exit", "actionLabel": "Silent Exit" }, { "value": "0", "label": "Silent Exit", "actionLabel": "No Silent Exit" }
]
}
I
I
I
I, {
"label": "Arm Away", ...
}
]
I

In entry delay, when a need arises to prompt for PIN (e.g., touchscreen), the scenario is no different than if the user tapped the Disarm button (as described herein), except the client effectively taps it for the user. When a system is Armed Away and the user opens a door, the client gets a new summary object with a countdown, and a new security object with only the Disarm command. In addition, it has a new state property "autoRunItem" with an item index. As soon as the client gets this new object with autoRunItem, it automatically executes that command as if the user pressed that button.
An implementation example is as follows:
"summary": {
"summary", "name": "Security", "state": {
"systemIcon": "armed", "numTrouble": 0, "numOpen": 1, "numMotion": 0, "statusTxt": "Armed Away.", "sensorStatusTxt": "All Quiet.", "delayEndTs": 1268942437235 //IMPORTANT: if non-zero, TS shows is showing entry //delay. In that case, is as if user tapped the main //security button.
}
1, "security": {
"id": "security", "state": {

"label": "Disarm", "disabled": false, "busy": false, "autoRunItem": 0 //index into items array. Ignore if -1 or empty 1, "items": [
{
"label": "Disarm", "commands": {
"panelAction": {
"action":
"operations?method¨POST&action=/ui/client/security/setArmState?arm=disarm", "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Disarming..."
"params": {
"pin": {
"type": "textInput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":
}

}

Like the arm button, the main shift button has a label and settings, and invokes a select list of shifts. Figure 34 is an example of a shift object that is a main shift button, under an embodiment. An implementation example of the shift object is as follows:
"shift": {
"id": "shift", "name": "Modes", "state": {
"label": "Vacation", "disabled": false, "busy": false, "pendingShiftMode": "shiftModes/shiftName2"
"commands": {
"setShiftMode":
"action":
"operations?method=POST&action¨lui/client/shift/setCurrentShiftMode", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "params": {
"pendingShiftMode":
"type": "select", "options": [
{ "value": "shiftModes/shiftNamel", "label": "At Home" }, { "value": "shiftModes/shiftName2", "label": "Vacation" }, /
/

I
Note that the top label is used just for a local button to invoke the list of commands (correlates to the correct iHub function for setting shift):
= <function name="Set Points" method="POST"mediaType="instance/config"action="/rest/icontrol/nw/3 19125nt00057/instances/2.shiftArmingLinkage/points">
0 <input name="pendingShiftMode" type="select"required="false" mediaTy pe="shift/pendingShiftMode">
= <option selected="true"/>
= <option>shiftModes/shiftNamel<option>
= <option>shiftModes/shiftName2<option>
= <option>shiftModes/shiftName3</option>
= <option>shiftModes/shiftName4<option>
= <option>shiftModes/shiftName5</option>
= <option>shiftModes/shiftName6<option>
= <option>shiftModes/shiftName7<option>
= <option>shiftModes/shiftName8<option>
</input>
= <function>
If the user has never seen shift before, a different label is presented, and a command to clear. This sets a ppref and clears it for that user for all sites and all clients.
The user can also click Cancel (or X or whatever the design is) and dismiss the command dialog, as follows:

"shift": {
"id": "shift", "name": "Modes", "state": {
"label": "Modes", "disabled": false, "busy": false, "pendingShiftMode":
"commands": {
"hasSeenShiftHelp":
"label": "OK", "action": "site/foo/bar/hasSeenShiftHelp", //rest URL to submit action (may be appended to a base URI) "method": "post", "usePlugIn": "UIRest", "statusTxt": "Welcome to Modes!/nAutomate your home with one click. To get started, visit System > Modes in the web portal."

Figure 35 is a messaging object, under an embodiment. Embodiments include several types of messages that are presented in the UI, as follows:
= Dismissible messages: shown to the user, then dismissed forever (either by clicking, or timeout), e.g., last sign in.
= Non-dismissable messages: shown to the user. They can be hidden and revisited later, but they don't go away until the state has changed, e.g., panel low battery.

Another vector for messages is the severity, of which an embodiment includes levels of severity as follows:
= Info messages: just information, not a problem or warning, e.g., last sign in, or connecting message.
= Warning messages: an error, problem, or warning: "System Unavailable", signin failure (dismissable), panel problem, or failed command.
= Alarm messages: an alarm, general shown in a modal dialog over all else (usually dismissible).
Some messaging objects are global and pertain to the general system and the security panel as follows:
= Panel warnings: system unavailable (if there's no communication to gateway or panel), low battery, ac loss, comm failure, and panel troubles.
= Login failure warning or last login info.
The messaging object is not meant for sub-components of the system, such as a camera offline. Messaging for sub-components is handled within those tabs, such as waiting / loading boxes and spinners. Offline panel is already handled by the orb +
summary text. And alarms and other items may be shown in dialogs.
A login message of an embodiment can be dismissed, so the client tracks when it is viewed and dismissed. For example, if message type "info" is "Last sign in:
May 30, 2012 734 PM", with dismissAfterSeconds=5 it would look like the following:
"messaging": {
"id": "messaging", "items": [
"type": "info", "isDismissable": true, "icon": "devStatOK", //note - client will probably not show this icon "statusTxt": "Last sign in: May 30, 2012 734 PM", //or "1 Sign In failure since last successful Sign In.", type=waming "dismissAfterSeconds": 5 //-1 is the default - it means show forever (same if prop doesn't exist) Once the render knows it has been shown to the user, a timer counts down from a pre-specified count (e.g., 5). Once the counter expires or has passed (or user clicks message to dismiss, whichever is sooner), the local message item will be deleted. If the user refreshes their browser, it may be shown again because a full delta snapshot would get this item again from the render-ready API. The possible "icon" values for messages are as follows: "devStatOK", "devStatOffline", "devStatInstalling", "devStatTamper", "devStatLowBatt".
The Partial List of "statusTxt" values is as follows: "System Unavailable" (if gateway or panel connection are offline); "Security Panel Low Battery";
"Broadband Connection - Unknown", "Not Connected for Remote Control", "Connecting for Remote Control..."; "Cellular Connection - Unknown", "No Cellular Connection", "Using Cellular Connection", "Cellular Backup Connection Available"; "RF Jam Detected", "AC
Power Failure", "Low Battery", "Tamper".
The clients include a way to clear certain panel warnings, so a command may be added. In that case, a warning item may have a clearWarning command to show a Clear button. An implementation example of a panel warning is as follows:
"messaging": {
"id": "messaging", "items": [
"warning", "isDismissable": false, "icon": "devStatOffline", "statusTxt": "Security Panel Low Battery", "timeTxt": ", //ignored for most warnings "dismissAfterSeconds": -1, "type": "warning", "isDismissable": false, "icon": "devStatOffline", "statusTxt": "Security Panel Communications Failure", "dismissAfterSeconds": -1, "commands": 1 "clearWarning":
"label": "Clear", "action": "site/foo/bar/clearWarnings", //rest URL to submit action (may be appended to a base URI) "method": "post", "usePlugIn": "UIRest" //if command is local defines plugin ID, else leave blank for HTTP reqs A security alarm includes a message type Alarm, and is shown in a modal dialog and is configured to be dismissed. Each alarm is shown with its timestamp, and multiple items can be shown in the same dialog. An implementation example is as follows:

"messaging": {
"id": "messaging", "items": [
Ittypell: "alarm", "isDismissable": true, "icon": "devStatAlarm", "statusTxt": "Burglary Alarm, Zone 5", "timeTxt": "9:26 AM", //generally get this column for message type alarm "dismissAfterSeconds": -1 //-1 is the default - it means show forever (same if prop doesn't exist) "alarm", "isDismissable": true, "icon": "devStatAlarm", "statusTxt": "Fire Alarm, Zone 1", "timeTxt": "9:28 AM", "dismissAfterSeconds": -1 //-1 is the default - it means show forever (same if prop doesn't exist) ] .
For the touchscreen of an embodiment the alarm dialog also includes the primary security button, so that alarm dialog will include a Disarm button, or ARM/Disarm, or Clear Alarm (buttons in security.state.label). Selecting a button results in performance of the corresponding command function (including showing the same prompt-for-PIN

dialog seen in entry delay). Figure 36 is an example alarm message with "Disarm"
button or icon, under an embodiment.
The home view settings object (hvwSettings) provides the base home view data that comes from a home view editor: location of walls, labels, and device position. A
detailed description of Homeview is in the Related Applications, incorporated by reference herein. Note that device states are dynamic and provided by a separate object, hvwData. Figure 37 is an example home view settings object, under an embodiment.
An implementation example is as follows:
"hvwSettings":
"id": "hvwSettings", "name": "Home View", "state": {
"show": true, //check ppref homeview/portal (portalljmobileAndroidlliphone) if enabled for client "floors": "28;tlakjsIkajsdflkajsdflkaldsfkjalsdkfjals", //ppref hvw/floors:
data needed to render floors, or " if not defined "labels": "wer'Living Room' ouk'Bedroomm, //ppref hvw/labels: data needed for all labels, or "devices": "oiu12 oboSCOFEBEF wer26" //ppref hvw/devices: data for device locations on floors, or "commands": {
"showHomeview":
"action": "foo/bar/showHomeView=-true", //values are true or false "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "label": "Turn On" //values are Turn On or Turn Off }, "saveHomeviewData": //cmd only available for site owners; this allows home view editor to save data (to pprefs) "action": "foo/bar/saveHomeviewData", //to implement in RRA, see IA hvw-controller.js, or portal homeViewEdSavePrefs.jsp "usePlugIn": "UIRest", "method": "post", "params":
"floors": { //string from ic_homeview instance - hvw.getFloorStr(). Cmd saves value to ppref homeview/floors "textInput", "minChars": 3, "maxChars": 4000 "labels": { //string from ic_homeview instance - hvw.getDeviceStr(). Cmd saves value to ppref homeview/floors "textInput", "minChars": 0, "maxChars": 4000 "devices": { //string from ic_homeview instance - hvw.LabelStr(). Cmd saves value to ppref homeview/floors "type": "textInput", "minChars": 0, "maxChars": 4000 The hvwData object provides a list of device data configured to overlay a floor plan. It is similar to the other device groups, except that some state values are unique (compound statusTxt, floatTxt for thermos etc.). Figure 38 is an example home view and device data object showing the overlay (left view), floor plan (middle view), and floor plan with device data overlay (right view), under an embodiment. An implementation example is as follows:
"hvwData":
"id": "hvwData", "currentTs": 93248579834759832, //current server time when update is sent.
Used by hvw engine to compute clock drift for phones etc.
"items": [
II First device "id": "hvwData-34", "devIndex": "34VER1", //deprecated device index provided by server. Generally, the LAST 6 digits of UniqueID, unless more #s to left "name": "Front Door", "tags": "sensor", // Values: "sensor"
"state": {
"icon": "devStatOpen", //can be any icon a "sensor" item supports, including devStatLowBatt, devStatOffline, devStatInstalling etc.
"statusTxt": "Front Door - Open\nLast Event: Yesterday, 2:36 PM", //shown if mouse is over the icon. May be 2 or 3 lines.
"floatTxt": ", //currently, only thermos have float text: temperature "activityTs": 93248579834759832 //time in millis of last event for this device (from last delta). * Details below // 2nd device "id": "hvvvData-22", "devIndex": "22", "name": "Downstairs Thermostat", "tags": "zw,theimostat", // Values: "zw"=indicates a ZW device;
"thermostat"
= for thermostats "state": {
"icon": "devStatThermoOn", //any icon device type supports, & may be devStatLowBatt, busy, or devStatAlarm (for gar door stopped) "statusTxt": "Downstairs Thermostat - Cooling, 78&deg;", "floatTxt": "78&deg;", //currently, only thermos have float text: temperature "activityTs": 93248579834759832 //time in millis of last activity event for this device (from last delta). * Details below The home view data time stamp (item[n].state.activityTs) property is configured to drive the home view history feature. The rules for setting that value are as follows (note these are different from just lastEventTs, which is any history event), and the time in activityTs reflects human interaction: sensors, doors, lights - last update for any point in the instance; lights that report energy - energy instance and related points should be ignored; thermostats - last update for any point in the instance, excluding temperature;
cameras - last update for any point in the "motion sensor" instance (has tag "motion");
energy meter - no value, so hardcode to zero. For status text, "Last event" is appended:
text according to the same rules.
Figure 39 shows examples of different sensor group, under an embodiment. An implementation example is as follows:

"sensor": {
"id": "sensor", "name": "Sensors", "items": [
{ // First sensor "id": "sensor-34", "devIndex": 34, "zone": 9, "name": "Front Door", "tags": "sensor", // Values: "sensor"
"state": {
"icon": "devStatOpen", "statusTxt": "Open", "lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "sort": 50, //Sort order 50-90 are "interesting" sensors (may be separated).
0-40 are "quiet"
"bypassed": false }, "commands": {
"bypassedBoolean": { // allows user to bypass this sensor "label": "Bypass", //label for the action button "action": "operations?method=POST&action¨/ui/client/sensors/sensor-34/bypassed&value=1", "method": "POST", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID, else leave blank for HTTP reqs "params": {

"pin": { //Note: PIN can be held in memory for 30 seconds, so if user bypasses a 2nd zone, reuse PIN (no prompt) "type": "textInput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":
}, // 2nd sensor "id": "sensor-35", "devIndex": 35, "name": "CO2 Detector", "tags": "sensor", "state": {
"icon": "devStatOk", "statusTxt": "Bypassed, Okay", "sort": 0, "bypassed": true "commands": {
"bypassedBoolean": { //only avail on TS, this command allows user to bypass this sensor "label": "Unbypass", "action": "operations?method=POST&action=lui/client/sensors/sensor-35/bypassed&value=0", "method": "POST", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "params": {
"pin": {
"type": "textInput", "regExp": "[0-9]?", "minChars": 4, "maxChars": 8, "defaultValue":
Embodiments include a list of possible sensor "statusTxt" values as follows:
ALARM, [Sensor state], "ALARM"; "Tripped"; Tampered, [Sensor state];
Trouble, [Sensor state]; Low Battery, [Sensor state]; "Offline"; "Unknown";
"Installing";
[Sensor state]; Bypassed, [Sensor state]. List of possible [Sensor state]
values are as follows: "Open", "Closed" (for doors, windows); "Motion", "No motion" (for motion sensors only); "Tripped", "Okay". A list of possible sensor "state"s "icon" is as follows:
"devStatOK", "devStatUnknown", "devStatOffline", "devStatInstalling", "devStatAlarm", "devStatTamper", "devStatLowBatt", "devStatOpen", "devStatMotion".
Regarding device state properties, Figure 40 is a table of elements for device state objects (e.g., Z-Wave and camera device state objects), under an embodiment.

Embodiments include a combined group including both door locks and garage door / barrier controllers in the same top-level object, where they are distinguished by the tag values. Figure 41 shows various examples of door objects, under an embodiment.
An implementation example is as follows:
"door": {
"id": "door", "name": "Doors", //This is typically the name of the tab (and the title - ignore screenshots) "icon": "symDoors", //indicates if any lock is unlocked, or any garage door is open "numTrouble": 0, "items": [
//FIRST LOCK
"id": "door-27", "devIndex": 27, "name": "Lock: Front Door", "tags": "doorlock,zw", // Values: "zw"=ZW device; "doorlock"=for doorlock types; "barrier"=for GDOs "state": {
"icon": "devStatUnlocked", //for lists: devStatOKlock, devStatUnknown, devStatOffline, devStatInstalling, devStatLowBatt "statusTxt": "Unlocked", //for list view: Locked II Unlocked. May INCLUDE
low battery, as in "Low Battery, Locked"
"lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "activityTxt": ", //while command being processed, may be "Locking..."
or "Unlocking..."

"isOpen": true, //last resting state of door. If door was open but is closing, isOpen=true until closed. This allows the newer UIs to know what state to show and use icon to detect low battery "troubleTxt": "Low Battery", //may be Unknown, Offline, Installing, Low Battery "busy": false //set by client to true when sending a command "commands": { //commands only available if device is in OK state (not Unknown, Offline, or Installing) "lockBoolean":
"action": "operations?method=POST8caction=/ui/client/doorLock/doorLock-27/setLock&value=0", //other action is value=1 "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "label": "Lock", "busyStatusTxt": "Locking...", "busyIcon": "devStatOKlock"
//FIRST Garage Door "id": "door-29", "devIndex": 29, "name": "My Garage Door", "tags": "barrier,zw", // Values: "zw"=ZW device; "doorlock"=for doorlock types;
"barrier"=for GDOs "state": {
"icon": "devStatGarageOpen", //devStat0Kgarage, devStatUnknown, devStatOffline, devStatInstalling, devStatTamper, devStatLowBatt "statusTxt": "Open", //Open, Closed, Stopped, Unknown, Offline, Installing "activityTxt": "", //while command being processed, may be "Opening..." or "Closing..."
"lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "isOpen": true, //last resting last state of door "troubleTxt": "Stopped", //normally empty, but may indicate Stopped "busy": false //set by client to true when sending command, AND set to true by RRA for opening/closing states "commands": { //commands only available if device is in OK state (not Unknown, Offline, or Installing). SPECIAL CASE: cmds also hidden during many other states:
opening, closing, certain troubles etc. See GDO UX spec table for full list.
"garageBoolean":
"label": "Close", "action":
"operations?method=POST&action--qui/client/garageDoor/garageDoor-20&value----0", //other action is /unlock "method": "post", "usePlugIn": "UIRest", //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "busyStatusTxt": "Closing...", "busyIcon": "devStat0Kgarage"
II

Figure 42 shows various example lighting objects, under an embodiment. An implementation example is as follows:
"lighting": {
"id": "lighting", "name": "Lights", "numTrouble": 0, "icon": "symLights", //this is summary icon for ALL lights, if any are active/on (currently OFF) "items": [
{ //START OF 1st light "id": "lighting-17", "devIndex": 17, "name": "Hallway Dimmer", "tags": "lighting,dimmer,zw", // Values: "zw"=ZW device; "lighting"=lighting device; either "dimmer" or "switch" depending on the type "state": {
"icon": "devStatOKlight", // devStatLight0n, devStatUnknown, devStatOffline, devStatInstalling "statusTxt": "Off', //"On", "50%", "15 w, On", "42 w, 80%"
"activityTxt": ", //while command being processed, may be "Turning On...", "Turning Off...", "Changing..." (if dimmer change) "lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "troubleTxt": ", //", "Unknown", "Offline", "Installing"
"detailTxt": ", //if energy device and non-zero: raw text for rendered energy, such as "15"

"shortUnitTxt": "" //if energy device and non-zero: short unit text "w" for watts, "kW" for kilowatts "IongUnitTxt": " //if energy device and non-zero: long unit text "watts" or "kilowatts"
"busy": false, //true if processing a command "level": 0 //for dimmers, dim percentage as float between 0 and 1, such as 0.3 } , "commands": { //commands only available if device is in OK state (not Unknown, Offline, or Installing) "lightBoolean": { //this command available for ALL switches and dimmers "action": "operations?method=POST&action=/ui/client/lighting/lighting-319125nt00057-22/setOnOff&onOrOff=1", 11=0 for off "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "label": "Turn On", "busyStatusTxt": "Turning On...", "busyIcon": "devStatLightOn"
I, "lightDimmer": { //this command only provided if dimmer "action": "operations?method=POST&action=/ui/client/lighting/lighting-319125nt00057-22/setDimmer", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "busyStatusTxt": "Adjusting...", "busyIcon": "devStatLightOn", "params": {

"level": {
"type": "range", "min": 0, "max": 100, "step": 10 "labels": [
{ "value": "default", "label": "{0}%" }

11 }, //END OF 1st light { 2nd light ... }
Figure 43 shows various example thermostat objects, under an embodiment. An implementation example is as follows:
"thermostat": {
"id": "thermostat", "name": "Thermostats", "numTrouble": 0, "icon": "symThermostats", //this is summary icon for all thermostats (indicates if any thermo has activity) "items": [
{ //START OF 1st thermostat "id": "thermostat-22", "devIndex": 22, "name": "Downstairs Thermostat", "tags": "thermostat,zw", // Values: "zw"--ZW device; "thermostat"=for thermostats "state": {
"icon" : "devStatThermoOn",// devStatThermoOn, devStatOKthermo, devStatUnknown, devStatOffline, devStatInstalling, devStatLowBatt "statusTxt" : "Heating, 71 ", "lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "activityTxt" : "Heating", //"Cooling", "Heating", "Hold". During command:
"Adjusting..." (setpoint chg), "Changing Mode...", "Changing Fan..."
"activity" : "heating", //unlocalized raw value to trigger color changes:
cooling, heating, ". If changing, last value.
"troubleTxt" : "Low Battery", //normally empty, but may indicate low batt for bat-stats "detailTxt" : "71 ", //raw text for rendered temperature, such as "71 "
"shortUnitTxt" : "F", //short unit for detail text: "C" for Celsius, "F" for Fahrenheit "longUnitTxt" : "Fahrenheit", //long unit for detail text: "Celsius" or "Fahrenheit"
"level" : 71, //raw temperature value as float or int, for analog renderers (needle, etc) "thermostatMode" : "auto", //these are values bound to commands below, only indicate following types: auto, heat, cool, off (other modes map into these) "thermostatFanMode": "auto", "setpointCooling" : 71, "setpointHeating" : 68, "busy" : false //true if processing a command "commands": { //commands only available if device is in OK state (not Unknown, Offline, or Installing) "thermostatMode":
"action": "operations?method=POST&action¨qui/client/thermostat/thermostat-22/setMode", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "busyStatusTxt": "Changing Mode...", "params":
"mode": {
"type": "select", "options": [
{ "value": "auto", "label": "Auto" }, { "value": "heat", "label": "Heat" }, //note that other types of heat (aux heat, emergency heat) are mapped to this selection { "value": "cool", "label": "Cool" }, { "value": "off', "label": "Off' }
}, "thermostatFanMode":
"action": "operations?method=POST&action¨lui/client/thermostat/thermostat-22/setFanMode", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "busyStatusTxt": "Changing Fan...", "params": {
"fanMode":
"type": "select", "options": [
{ "value": "auto", "label": "Auto" }, { "value": "on", "label": "On" }
}, "setpointHeating": {
"action": "operations?method=POST&action=lui/client/thermostat/thermostat-22/setPointHeating", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "busyStatusTxt": "Adjusting...", "prefixTxt": "Heat To", "params":
"setpointHeating": {
"type": "range", "min": 35.0, "max": 95.0, "step": 1.0, "labels": [{ "value": "default", "label": "{0}&deg;" }]
}

"setpointCooling": {
"action": "operations?method=POST&action=lui/clientithermostat/thermostat-22/setPointCooling", "method": "post", "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "busyStatusTxt": "Adjusting...", "prefixTxt": "Cool To", "params":
"setpointCooling":
"type": "range", "min": 0.0, "max": 98.0, "step": 1.0, "labels": [{ "value": "default", "label": "{0}8cdeg;" }]

1, //END OF 1st THERMOSTAT
2nd THERMOSTAT ...

// Example update if 1st thermostat fan mode is turned on (to merge into above view):
"update": {
"type": "merge", "Id": "thermostat-22", "data": {
"state": {
"setFanMode": "on"
Figure 44 shows various example camera objects, under an embodiment. Each camera type has certain capabilities, a limited set of "channels" (e.g., 2, 3, 4, etc.), and a configuration. For example, channel 2 may be configured to stream H.264-encoded video over an RTSP stream, with a default size of VGA and a max bitrate of 1000 kb.
The client is self-aware and as such knows what it can handle (e.g., rtsp or mjpeg, h.264 or mpeg, etc.), and a size to display (e.g., 4-up may be QVGA, 1-up may be VGA, etc.).
So, for each camera, the client evaluates the capabilities for each channel, selects a configuration, then requests a URL for that channel. Additionally, the client device retains information about its requested configuration. For example, if the client devices requests channel 3, the client "remembers" it will be a stream intended for QVGA
display. An implementation example is as follows:
"camera": {
"id": "camera", "name": "Cameras", //used as display name for tab or widget "numTrouble": 0, "icon": "symCameras", //this is summary icon for ALL cameras "items": [
{ //FIRST CAMERA
"id": "camera-33", "devIndex": 33, "name": "Living Room Camera", "tags": "camera,ip", // Values: "ip"¨for ip devices; "camera"=for cameras "clipChannel": 1, "state": {
"icon": "devStat0Kcamera", // devStatUnknown, devStatOffline, devStatInstalling "statusTxt": ", // { "channel": 1, "URL": ", "usemame": ", "password": " }, // { "channel": 2, "URL": "https://relay2-aristotledev.icontrol.com:443/video/8fdb/image.mjpeg?size=large", // "usemame": "icy995cX", "password": "kxQLFwuD" }, // { "channel": 3, "URL": "", "usemame": "", "password": "" }
II]
"commands": { //commands only available if device is in OK state (not Unknown, Offline, or Installing) "getLiveVideoURL": { //client selects a channel (based on client abilities) and request a URL (may be local or relay) "action": "hig/rest/icontrol/ui/client/camera/camera-214/newVideoStream", "method": "post", "directResponse": true, //if this is true, call action directly, returns response directly (no update) "usePlugIn": "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "params": {
"channel": { //note channel is an RRA abstraction mapping all possible stream requests for the camera "type": "select", "options": [I/possible codec vals: flv-h264, rtspHttps-mpeg, rtspHttps-h264, rtspUdp-mpeg, rtspUdp-h264, https-mjpeg { "value": 1, codec:"rtspHttps-h264", "maxWidth":640, "max}ieight":320, "maxBitrateKb":256, "audio":" 1, { "value": 2, codec:"https-mjpeg", "maxWidth":640, "maxHeight":320, "maxBitrateKb":512 "audio":"" }, { "value": 3, codec:"https-mjpeg", "maxWidth":320, "maxHeight":240, "maxBitrateKb":256 "audio":"" 1, { "value":10, codec:"flv-h264", "maxWidth":640, "maxHeight":320, "maxBitrateKb":256, "audio":"" } //psuedo ch for fly //IMPORTANT: with 4.0, command response is in HTTP body:
"{channe1:2,URL:...,username:...,password:...}"
"captureClip": { //tells camera to capture a video clip "action": "operations?method=POST&action=/ui/client/camera/camera-304/newClip", "method": "post", "usePlugIn": "UIRest" //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "captureSnapshot": { //tells camera to capture a snapshot / picture "action": "operations?method=POST&action=/ui/client/camera/camera-304/newSnapshot", "method": "post", "usePlugIn": "UIRest" //if command is local (TS) defines plugin ID. Else leave blank for HTTP reqs "populateBgImage": { //updates state.bgImage with latest image from camera (size == medium by default) "action": "kii/clienticamera/camera-304/populateBgImage", "method": "post", "directResponse": true, //if this is true, call action directly, returns response directly (no update) "usePlugIn": "UIRest", "params": {
"size": {
"type": "select", "options": [
{ "value": "medium" }, //default if no option specific, typically QVGA
(320x240) { "value": "large" } //typically full resolution of camera (for HD, 1280x768) I //IMPORTANT: with 4.0, cmd response is in HTTP body: {"bgImage":
" dataimage/jpeg;base64,ASDKJASDFASDFF9..."}
{ //SECOND CAMERA
"id": "camera-34", "devIndex": 34, "name": "Another Cam", "tags": "camera,ip", // Values: "ip"-=for ip devices; "camera"=for cameras "clipChannel": 1, "state": {
"icon": "devStatOffline", "statusTxt": "Offline"
//Note there are no commands because this cam is offline Note that if camera audio is supported, the values will populate the audio attribute with the codec to expect in that channel stream, from the following values:
"G.711alaw", "G.711ulaw", "G.726", "G.729", "G.729a", "G.729b", "PCM", "MP3", "AC3", "AAC", "ADPCM". For example:
"camera": {
"options": [ //for this camera and site, audio is enabled { "value": 1, codec:"rtspHttps-mpeg", "maxWidth":640, "maxHeight":320, "maxBitrateKb":256, "audio":"AAC" }, { "value": 2, codec:"https-mjpeg", "maxWidth":640, "maxHeight":320, "maxBitrateKb":512, "audio":"AAC" }, { "value": 3, codec:"https-mjpeg", "maxWidth":320, "maxHeight":240, "maxBitrateKb":256, "audio":"AAC" }
Like one or more other objects, the camera object provides a list of cameras, camera names, and status. Figure 45 is a flow diagram for playing live video, under an embodiment. The playing of live video uses a secure video module to ensure the integrity and security of each video stream. The prerequisites for client app initialization are as follows:
1. client application has system secure video module such as i0S, Android, or Web player 2. client application must have a partner-specific appKey to enable authentication 3. user authenticates with login, password, appKey etc. which returns an X-token (e.g., Authentication described herein) 4. with that X-token, client can request updates which contains the camera object listed above (e.g., Basic Client Workflow described herein) Once the app has a list of cameras and the user selects a camera, the app code selects a camera channel. This means searching through the getLiveVideoURL
command options for a specific camera. For example, if the app supports H.264 in an RTSP stream and a large image is desired, it iterates through the options list to find a channel where codec contains "h264" and "rtsp", and maxWidth is the largest available.
The value number is the channel to try first.
Like other RRA commands of an embodiment, the getLiveVideoURL command is an http request - the action URL plus parameters (in this case the param channe1=1).
For example:
http://portal-foo.bar.coming/rest/ui/c1ient/camera/camera-304/newVideoStream?channe1=1.
The RRA returns a JSON object with a video URL and other information needed for that video relay channel, for example:
{ 1tchannel":1,"URL": "rtsps://streaml-foo.bar.com:443/87bb/image.amp?size=large","username":"aaa","password":"bbb"}.

Unlike most RRA commands, this JSON is a direct response to the http request and is returned in the body of the http response, not as a new update.
With that info, the app requests the video module to play the video stream. An API call, for example, is as follows:
playLiveVideo(<appkey>,<url>,<username>,<cam-usemame>,<cam-pwd>,<statusCB>,<errCB>) For example:
playLiveVideo("1234567890kjkllkj","rtsps://streaml-foo.bar.com:443/87bb/image.amp?size¨large","jsmith","aaa","bbb",statusCB,errCB) .

If video cannot play using RTSP (or the codec is not supported), the error callback will get an error. The app then selects a different channel and makes another attempt (typically, MJPEG), and receives a different URL such as:
{ "channel":1,"URL":"https://relayl-foo.bar.com:443/video/80fc/image.mjpeg?size¨large","username":"aaa","password":
"bbb ,,}
Otherwise, the call sequence is the same.
Figure 46 shows various example energyMeter objects, under an embodiment.
The energyMeter group provides basic data for multiple types of energy devices, for example: energy-only (e.g., whole-home meters), combo devices (e.g., lights that report energy). Like hvwData described herein, they seem to overlap, but some of the state values are different. An implementation example is as follows:
"energyMeter": {
"id": "energyMeter", "name": "Energy", "icon": "symEnergy", "statusTxt": "28.3kW", //this is for a summary / live icon. If you have a WHM, shows that value, else blank.
"numTrouble": 0, "items": [
"id": "energyMeter-34", "devIndex": "16", "name": "Whole Home Meter", "tags": "zw,energyMeter,whm", // Values: "zw"=for ZW devices;
"energyMeter"=for energyMeter; "whm"=for whole home meters "state": {
"icon": "devStatEnergyWHMOn",//devStatOKenergyWHM, devStatUnknown, devStatOffline, devStatInstalling (this is WHOLE HOME meter) "statusTxt": "1.2 kW", //"Off", "5.3 \V", "264 W", "1.6 kW", "Unknown", "Offline", "Installing"
"lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "troubleTxt": ", //", "Unknown", "Offline", "Installing"
"detailTxt": ", //raw text for rendered energy, such as "12"
"shortUnitTxt": ", //short unit text "w" for watts, "kW" for kilowatts "longUnitTxt": ", //long unit text "watts" or "kilowatts"
"level": 1207.3 //raw value, always in watts, as float (as in 9.3 or 0.5) "id": "energyMeter-17", "devIndex": "17", "name": "EM: Upstairs Light", "tags": "zw,energyMeter", // Values: "zw"=for ZW devices;
"energyMeter"=for energyMeter; "whm"=for whole home meters "state": {
"icon": "devStatEnergyOn",//devStatOKenergy, devStatUnknown, devStatOffline, devStatInstalling (this is regular meter) "statusTxt": "28 w", //"Off", "5.3 W", "264 W", "1.6 kW", "Unknown", "Offline", "Installing"
"lastEvent": "Yesterday, 2:47pm", "lastEventTs": 93248579834759832 //time in millis of last event for this device (from last delta). See also hvwData "troubleTxt": ", //", "Unknown", "Offline", "Installing"
"detailTxt": ", //raw text for rendered energy, such as "12"
"shortUnitTxt": ", //short unit text "w" for watts, "kW" for kilowatts "longUnitTxt": ", //long unit text "watts" or "kilowatts"
"level": 28.0 //raw value, always in watts, as float (as in 9.3 or 0.5) //Example of using energy data:
var energyStatusTxt = client.energyMeter.items[0].state.statusTxt;
myDiv.innerHTML = energyStatusTxt;
If there are cloudServices available, and the user has installed cloudServices (e.g., via the installer app), and there are cards associated with those cloudServices, then each client lists those "installed" cards so the end user can launch the card, generally using a webview or iFrame. An implementation example is as follows:
"card": {
"card", "name": "Other Devices", "icon": "symOther", "items": [
{ //START OF 1st Card that has been added "id": "rachio", //* These all come from card.j son file "integrationId": "23974", //*
"version": "1.2.0", H*
"name": "Rachio", "deviceType": "other", //*
"preferLargeMode": false, //*
"startFile": "index.html", II*
"runInBackground": false, //*

"tags": "card,watering", //*
"cardUr1": "http://portal-maia.icontrol.com/cards/rachio/index.html?locale=en_US", "state": {
" authToken" : "0239450923840239...50238934728340", "icon": "devStatOKother", "preferences": "{prefl l',pref2:'val2'}", //card-specific prefs, stored in content manager "proxyResponse": { //this is the transient response to the last partnerProxyCall request "status": 200, "responseTxt": "<response text from the partnerProxyCall>"
"commands": {
"refreshAuthToken": { //used by card to ask the server to update the stored auth token in server "action": "/rest/icontrol/ui/client/card/refreshAuthToken&id=rachio", "usePlugIn": "UIRest", "method": "post"
}, "savePreferences": { //saves sitewide prefs in content manager, specific to this card "action": "hest/icontrol/ui/client/card/savePreferences&id=rachio", "usePlugIn": "UIRest", "method": "post", "params":
"data": {
"textInput", "regExp": ", //can set this to a token RegEx someday "minChars": 0, "maxChars": 2000, "defaultValue": ""
"partnerProxyCall": { //Sends req to remote server. Response is direct (not operation update) so should be called directly (do not append action to client actionURI).
//Response object will have a status and responseText property.
"action": "/rest/icontrol/ui/client/card/partnerProxyCall&id=rachio", "usePlugIn": "UIRest", "method": "post", "params": {
"path": { //e.g. http://wwvv.nest.com/foo/bar?someparam=someval "type": "textInput", "regExp": ", "minChars": 0, "maxChars": 2000, "defaultValue":
"callMethod": { //GET, POST, PUT, DELETE...
"type": "textInput", "regExp": "\\s+", Hcan set this to a token RegEx someday "minChars": 0, "maxChars": 10, "defaultValue": "GET"
"params": { //this should be an encoded JSON string "type": "textInput", "regExp": ", "minChars": 0, "maxChars": 2000, "defaultValue":

1, }, //END OF 1st Card Widget { ... 2nd Card Item ... }
{ 3rd Card Item ...

The conditional panel object enables the end user to change certain security panel settings such as chime, quickexit, and access codes, and send panel commands such as emergency. Some of these may only be available in the home (i.e. from the touchscreen).
An implementation example is as follows:
"panel": {
"id": "panel", "deviceId": "panel-1", //actual device ID to use with other RRA functions "name": "Security Panel", "gatewayVer": "5Ø1-131", //TODO: move up to panel "panelName": "DSC PowerSeries", //TODO: move up to panel "panelFirmwareVer": "PC1864 v4.51.1.25 p1.28 TL260GSSM v2.01.1.15 p1.28", //TODO: move up to panel "state": {
//"cellStrengthPct" : .5, //cell strength as percentage, else -1 if not supported //"chime" : false, // support for chime enabled/disable //"quickExit": true, // support for quickExit enable/disable }, "commands": { //panel commands defined here "sendEmergency": { //TS-ONLY, used for Emergency button on TS
"label" : "Emergency", "emergencyBtnHoldSecs": 2, "action" :
"operations?method=POST&action=/ui/client/security/sendEmergency", "method" : "post", "usePlugIn" : "UIRest", //if command is local defines plugin ID, else leave blank for HTTP reqs "params" : {
"emergency" : {
"type" : "select", "options" : [
{ "value": "fire", "label": "Fire", "busyStatusTxt": "Sending Fire Emergency..." }, { "value": "police", "label": "Police", "busyStatusTxt": "Sending Police Emergency..." }, { "value": "personal", "label": "Personal", "busyStatusTxt": "Sending Personal Emergency..." }
]
}
}
}
}
}

Embodiments include a history object that is a conditional object that holds commands for requesting history events (returned as updates). Since history uses access to the database, it my not be present for an offline touch screen but is not so limited.
While this is the history object for commands, the response to these commands will be historyEvents updates, peers to the top-level client object. An update example is as follows:
"history": {
"id" : "history", "retentionUiHistoryDays": 30, //value of ppref retentioninetwork/uiHistoryDays. Use to limit length of client cache "retentionMediaDays" : 15, //value of ppref retention/network/mediaDays. Use to limit client cache for media "todayStartMillis" :
1234654290123, //used for "Today" buckets, time when Today started in site timezone "yesterdayStartMillis" : 1234567890123, //used for "Yesterday" buckets, time when Yest. started in site timezone "commands": {
//history query commands defined here (see separate History spec) }
A PushNotificationSettings object tells the client whether mobile push notifications is enabled for that server, and allows the client to register or unregister push notifications. An implementation example is as follows:
{ //Only sent if the feature is enabled (see ppref) and user is owner of a site "pushNotificationSettings":
"id": "pushNotificationSettings", "name": "Push Notification", //localized label to use for setting UI
"commands": {

"registerPushNotification": { //register current device for push notification.
May be called automatically //on first launch (client to track), and if user checks box in UI
"action": "foo/bar/registerPushNotification", "method": "post", "label": "Enable Push Notification", //label for button or checkbox "params":
"channelID": // obtained from UrbanAirship plugin by calling....
"type": "textInput", "minChars": 1, "maxChars": 200 "deviceID": { //unique id for device from OS or from shellServices "type": "textInput", "minChars": 1, "maxChars": 200 "deviceName": { //user defined device name from OS or shellServices "type": "textInput", "minChars": 1, "maxChars": 200 "deviceModel": { //internal hardware ID from OS or shellServices. E.g, iPhone model = "iPhone5,1"
"type": "textInput", "minChars": 1, "maxChars": 200 }, "unRegisterPushNotification": { //client can unregister any device. Not sent if none registered.
"action": "foo/bar/unRegisterPushNotification", "method": "post", "label": "Remove", //action label for remove button "params":
"device": {
"type": "select", "options": [
{ "value": "q3rqe1", "channelID": "IME100503503523AB", "label": "Ken's Iphone 6S" }, //Portal allows remove any device.
{ "value": "q3rqe4", "channelID": "IMEI0060350312345", "label": "Ken's Ipad 3" }, //Mobile device may find self in { "value": "q3rqe9", "charmelID": "IME100503503523AB", "label": "Ken's Android" } //list and only allow remove of self.

25 There are additional objects used when the app of an embodiment runs in a client application shell. These objects do not use UIRest or talk to the gateway., The shell objects include:
= shellServices: provides versions, levels, and allows changing hardware settings such as backlight, volume etc.

= shellExternalWidgets: provides list of widgets and launch commands.
An implementation example of shellServices is as follows:
"shellServices":
"id" : "shellServices", //all top-level properties are fairly static "authenticationRequired": true, //true for mobile, false on TS. Also used to decide whether to use UIRest in shell.
"OSVer : "2.2", //Android OS version or iOS OS version etc.
"deviceID : "MoYlvkEBoISIBiwhSOATLqdvdfd421dcdfdefdxcr", //device identifier from OS
"deviceName : "Ken's iPhone 6", //device Name from OS
"deviceModel : "Huawei Nexus 6P", //device model from OS. For i0S, "iPhone6,1" etc.
"pushSiteID" : "Site", //Site ID in push message //THESE ARE TS ONLY!
"firmwareVer" : "5.5.0-12881debug", //TS: FW version of patches on top of Android OS
"modelNumber" : "ventana", /ITS: used to identify TS hardware "macid" : "40:2c:f4:a1:8a:ff', //TS: MAC address of TS
"activationKey" : "0293042390423j43204u234923", //TS: if NOT installed, provides key need for installation "restServerUrl" : "https://portal-foo.icontrol.com/restr , /ITS: if installed, get RRA
URL ppref branding/url/portal "authToken" : { //if TS installed, auth token needed to talk to RRA
"x-login" : "foo@icontrol.com", "x-token" : "1234567890123456"890123456789012", "x-token-type" : "tunneling-ts", "x-expire" : "1234567890123"
}

"ipAddress" : "192.168.107.123", //TS: IP address of the TS
"SSID" : "iHub_0060350367ff" , //TS: if installed, SSID of the iHub "BSSID" : "00:c0:02:5d:54:34", //TS: MAC address of router "state": {
"internetIsAvailable": true, //can internet be accessed (for example, internet widgets avail) "deviceSecurityEnabled" : true //true IFF phone/tablet is "locked" with either device PIN or fingerprint "fingerprintIdEnabled" : true //only true if deviceSecurityEnabled=true AND
device has touchID (i0S) / fingerprint scanner enabled (Android) "theme" : 0, //id of user-preferred bg image, app uses to select folder (theme0) which contains bg.jpg, style.css etc.
"themeUrl" : "file:///foo/bar/somewhere/themoOr //folder URL for current them files. Could be in the cloud...
//THESE ARE TS
"isOnAC" : true, //TS-ONLY
"batteryPct" : .75, //TS-ONLY
"batteryIsCharging" : false, //TS-ONLY true if device plugged in and battery is charging (even if fully charged) "wifiPct" : .8, //TS-ONLY float: 0-1 means % wifi strength, -1 means unknown or not using wifi "isOnWifi" : true, //TS-ONLY false if BB cable plugged in "brightness" : 100, //TS-ONLY the rest of these can be set by command below "led" : true, //TS-ONLY true if hardware LED should show panel state "volume" : 80, //TS-ONLY
"nightMode" : false, //TS-ONLY
"commands": {

"resetAppData": { // this command tells the shell to clear caches, stored data, cookies, form data, local storage etc.
"label": "Reset Settings", //DEPRECATED, UI should use STR.RESET APPLICATION SETTINGS
"action": "resetAppData", "method": "API BRIDGE", "usePlugIn": "ShellServices"
1, "launchInBrowser": { //non-TS: launches the default browser to a URL. Used for privacy link, Forgot Password etc.
"action": "launchInBrowser", "usePlugIn": "ShellServices", "method": "API_BRIDGE", "params": {
"urI":
"type": "textInput", "regExp": ", //can set this to a URL RegEx someday "minChars": 4, "maxChars": 8000, "defaultValue":

}
1, "launchInMail": { //non-TS: launches phone mail app and creates new message, such as Send Feedback, App Support etc.
"action": "launchInBrowser", "usePlugIn": "ShellServices", "method": "API_BRIDGE", "params":

"emailAddress": I
"type": "textInput", "regExp": "", //can set this to a URL RegEx someday "minChars": 4, "maxChars": 8000, "defaultValue":
I, "emailSubject": {
"type": "textInput", "regExp": "", //can set this to a URL RegEx someday "minChars": 0, "maxChars": 8000, "defaultValue":
I, "emailMessage": I
"type": "textInput", "regExp": ", //can set this to a URL RegEx someday "minChars": 0, "maxChars": 8000, "defaultValue":
I
}
I, "launchInWebview": { //launches a fullscreen webview (with close X in corner.
Useful for Forgot Password, IA etc.
"action": "launchInWebview", "usePlugIn": "ShellServices", "method": "API BRIDGE", "params": {

"ur1": { //url string, e.g. "https://portal-aristotledev.icontrol.com/myhome/access/forgot.jsp?locale=en_us"
"type": "textInput", "regExp": ", //can set this to a URL RegEx someday "minChars": 4, "maxChars": 8000, "defaultValue":
}, "cookie": { //document.cookie string, e.g. "username=John Smith; expires=Thu, Dec 2013 12:00:00 UTC; path=/"
"type": "textInput", "minChars": 3, "maxChars": 8000, "defaultValue":
}, "closeOnMatch": //RegEx string. If webview goes to any URL that matches this, webview is closed.
"type": "textInput", //For ex:
"(^((?!icontrol\.com\/myhomeVaccess).)*$)1(signin)"
"minChars": 4, //will close webview if leave domain or go to signin page "maxChars": 8000, "defaultValue":
}, "orientation" : { //whether webview can rotate, or should be locked "type" : "select", "options" : [
{ "value": "auto" }, //allows webview content to rotate with phone { "value": "portrait" }, //locks webview to portrait { "value": "landscape" }

]
1, "title" : { //Optional: if given, the close bar does not auto-hide, and title is always shown in bar. Will be used for cards (but not IA or Forgot Pwd) "type": "textInput", //For example "Nest"
"minChars": 2, "maxChars": 32, "defaultValue":
}

1, "rateThisApp": { // this command tells the shell to navigate to the app store for rating this app "action": "rateThisApp", "method": "API BRIDGE", "usePlugIn": "ShellServices"
}, "launchStoreForThisApp": { // this command tells the shell to navigate to the app store for this app "action": "launchStoreForThisApp", //probably same as rateThisApp, but this is used for upgrading "method": "API BRIDGE", "usePlugIn": "ShellServices"
}, "setBrightness": { // TS, this command and all those below "action": "setshellHardwareControl", "method": "API BRIDGE", "usePlugIn": "ShellServices", "busyStatusTxt": "Adjusting..."

"params": {
"brightness":{
"type": "range", "min": 0, "max": 100, "step": 1, "labels": [
{ "value": "default", "label": 1'{0}%" }
]
I
I, "setLED": {
"action": "setShellHardwareControl?led=false", "method": "API BRIDGE", "usePlugIn": "ShellServices", "busyStatusTxt": "Turning Off..."
I, "setNightMode": { I/ need UI to send this command "action": "setShellHardwareControl?nightMode¨true", "method": "API BRIDGE", "usePlugIn": "ShellServices", "busyStatusTxt": "Entering night mode (note: you can also do this by swiping down)..."
}, "setTheme": { II need UI to change this "action": "setShellHardwareControl", "method": "API BRIDGE", "usePlugIn": "ShellServices", "params": {

"theme": {
"type": "range", "min": 0, //App will use theme # to select folder (theme0,theme1...) which contains bg.jpg, style.css etc.
"max": 2, "step": 1, "labels": [
{ "value": 0, "label": "Grass" }, //localized labels are optional, not sure UX
design will require it { "value": 1, "label": "Water" }, { "value": 2, "label": "Snow" }
]
I
}
I, "setVolume": { // need UI to change this "action": "setShellHardwareControl", "method": "API BRIDGE", "usePlugIn": "ShellServices", "params": {
"volume": {
"type": "range", "min": 0, "max": 100, "step": 1, "labels": [
{ "value": "default", "label": "{0}%" }
]
I

}
I, "playSound": {
"action": "setShellHardwareControl", "method": "API BRIDGE", "usePlugIn": "ShellServices", "params": {
"playSoundId": {
"type": "select", "options": [
{ "value": "navBtnSound"}, { "value": "homeStnSound"}, { "value": "keyBtnSound"}, { "value": "orbBtnSound"}
]
I
I
//DEPRECATED - use local storage for show/hide emergency button and user UI
preferences /*
I, "setPreference": { //general storage to be handled by shell. This persists across restarts and app updates "action": "setPreference", "method": "API BRIDGE", "usePlugIn": "ShellServices", "params": {
"pref': {
"type": "textInput", "regExp": "\w*", "minChars": 2, "maxChars": 128, "defaultValue":

"getPreference":
"action": "getPreference", "method": "API BRIDGE", "usePlugIn": "ShellServices", "params": {
"pref":
"type": "textInput", "regExp": "\w", "minChars": 2, "maxChars": 128, "defaultValue":
}

*/

External widgets plugins provide a list of Android apps that can be launched, and manage the screen saver (which cycles through Android apps on a timer). An implementation example is as follows:
"shellExternalWidgets": {

"id": "shellExternalWidgets", "state": {
"screenSaverSettings": { //data for local screen saver. Default is disabled+empty:
{"seconds":-1,"items":[]}
"seconds": 900, //number of idle seconds before screen saver begins. If -1, disables screen saver "items": [ //array holds list of items and how long to show each { "type': "externalWidgets", "id" :"com.mobilesrepublic.appytable", "seconds"
:120}, {"type": "extemalWidgets", "id":"com.foo", "seconds" :120}
"commands": {
"launchWidget":
"action": "launchWidget", "method": "API BRIDGE", "usePlugIn": "External Widgets", "params":
"id": {
"type": "select", "options": [ //there are 2 widgets in this example. These are android app packages.
{ "value": "com.android.deskclock", "label": "Alarm Clock", "iconPath":
"clock_icon.png" }, { "value": "com.mobilesrepublic.appytable", "label": "News Republic", "iconPath": "NewsRepublic_icon.png" }

"setScreenSaverSettings": {
"label": "Set up", //label for the Editor button. Client has custom editor to set up values "action": "setScreenSaverSettings", //Note: VM will save this local preference "method": "API BRIDGE", "usePlugIn": "External Widgets", "params":
"screenSaverSettings": { //see value defns above in shellHardwareControl.state.screenSaverSettings "type": "textInput", "regExp": ".*", "minChars": 25, "maxChars": 99999, "defaultValue": {"seconds":-1,"items":0}
"testScreenSaver": { // this command enables "preview" of screen saver, skipping the initial seconds "label": "Preview", //label for the action button "action": "testScreenSaver", "method": "API BRIDGE", "usePlugIn": "External Widgets"
Regarding API/data model versioning, clients and RRA server may be at different versions, so the APIs and data returned need to track versions to accommodate several different cases. The client request headers of an embodiment pass X-version (for example: 4.0). In general, major and minor version numbers mean different things:
= Minor version updates are data-additive, so are generally backward compatible.
For example, API version 4.6 may have additional information that version 4.0 didn't have, but a client expecting 4.0 can ignore new data elements and should work OK.
= Major version updates may be structurally different, so generally not backward compatible. This can be handled a few ways (delivering old data to old clients, or force upgrade).
Upon sign-in, the client should pass the expected API version number. In that exchange, the possible outcomes are as follows:
1. Client is major version behind server and cannot be support: the server can reject the signin and return an upgrade error to the client (such as X-icErrorCode:
5.121-CLIENT UPGRADE REQUIRED). Client prompts user to upgrade before proceeding.
2. Client is minor version behind server: the server can accept the signin and return data with same version (if server code can transform data to backward co) or the minor newer version.
3. Client is same version as server: server returns data with same version.
4. Client is at minor version newer than server: server returns data with older version of data. If client is backward compatible (and has conditional code) it can proceed, or it can show error to user and stop.
5. Client is major version newer that server: client shows error to user and stops.
RRA would return X-icErrorCode: 5.121-CLIENT VERSION NOT SUPPORTED.
The approach of an embodiment is to ensure the server can support at least one previous major version. For example, if the server is at version 4.6, if a 3.1 client logs in, the client can return 3.x compatible data, perhaps just one flavor such as 3.9. The 3.1 client can accept the 3.9 data and proceed, or tell the user and exit the app.
The ng authentication API provides access to all the features of render ready and maintains a session, which obviates the need for authenticating directly to the raw server REST API. The login signature should match the standard REST login with a few additions: X-version, X-clientType, and X-siteId. The [partner] should be in all requests, including for login and logout, e.g. /ng/rest/icontrol/access/logout, where in this example URI the [partner] is "icontrol". Also, the post parameters should have upper case X, e.g.
X-login. For the header cases the case is not sensitive. (e.g. X-login or x-login). For the login the parameters, X-locale, X-version and User-Agent should be on the header, only the X-locale could be specified as a post parameter for the login. An example is as follows:
POST /ng/rest/icontrol/access/login HTTP/1.1 X-login: myusername X-password: mypassword X-expires: 86400000 //OPTIONAL, if not specified then user/security/password/rraDefaultTokenExpiration pref value will be the token lifetime and session will expire when token expires; if specified can't be bigger then user/security/password/temporarySecureTokenMaxLifetimeHours X-token: 02934503249850392485023485043245303 //OPTIONAL, if already authenticated on another session, used instead of X-password & expires X-locale: en_us //used ONLY until logged in and user locale pref on server is known X-version: 4.0 //client's API version. server decides if version still supported X-appVersion: yourAppName/9.5Ø123 //client's app name and version, can be used to force client app upgrades X-clientType: CUSTOM_APP_1 //8 possible values, identifies client type. See below for supported types.
X-siteId: 006035035dc6 //OPTIONAL: goes directly to this site, rather than default site X-appKey: 1234567890kjk11kj //required, partner-specific appKey issued by Icontrol User-Agent: yourAppName/9.5Ø123 (iPad; OS 5_1_1; en-US) //for tracking client usage Accept: application/json //required, only JSON supported X-format: json //required, only JSON supported The Client Type possible values of an embodiment are as follows (values are case insensitive ngats = NGATS == nGaTs != nga_ts):
For third parties, X-clientType must be one of the following CUSTOM
identifiers:
- If custom Android Application, clientType="CUSTOM_ANDROID"
- If custom Android Tablet Application, clientType="CUSTOM_ANDROID_TABLET"
CUSTOM_* - If custom iPhone Application, clientType="CUSTOM_IPHONE"
- If custom iPad Application, clientType="CUSTOM_IPAD"
- If custom Web Portal, clientType="CUSTOM_WEB_PORTAL"
- If custom application 1, clientType="CUSTOM_APP_1"
- If custom application 2, clientType="CUSTOM_APP_2"
- If custom application 3, clientType="CUSTOM_APP_3"
The internal only clientTypes are as follows:
default <not used>

For third parties, X-clientType must be one of the following CUSTOM
identifierds:
- If custom Android Application, clientType="CUSTOM_ANDROID"
- If custom Android Tablet Application, CUSTOM_* clientType="CUSTOM_ANDROIDJABLET"
- If custom iPhone Application, clientType="CUSTOM_IPHONE"
- If custom iPad Application, clientType="CUSTOM_IPAD"
- If custom Web Portal, clientType="CUSTOM_WEB_PORTAL"
- If custom application 1, clientType="CUSTOM_APP_1"
- If custom application 2, clientType="CUSTOM_APP_2"
- If custom application 3, clientType="CUSTOM_APP_3"
web Icontrol web app installer Icontrol installer app ngats nga app running on a touch screen (no auth req'd) ngaandroid nga app running on an Android phone (whether in shell or not) ngaiPhone nga app running on an iPhone or iPod ngaiPad nga app running on an iPad The login responses of an embodiment are as follows:
Successful Return:
HTTP status code: 200 Response header:
Set-Cookie: JSESSIONID=C72284E685817798CBD0A8F23E728977.myservername;
Path=ing/rest; Secure X-expires: 1347417701318 X-token: 4BEA...EA010 X-version: 4.0 Content-Type: application/json;charset=UTF-8 {"code":200,"detail":"4BEA...EA010"}
Failed Return:
HTTP status code: 401 Response header:

Set-Cookie: JSESSIONID=C72284E685817798CBD0A8F23E728977.myservername;
Path=ing/rest; Secure X-icErrorCode: 5.8-NO SIGN IN //see errorcode list below _ _ X-version: 4.5 Content-Type: text/plain;charset=UTF-8 {"code":401,"detail":"Sign In unsuccessful.<br/>Try again. Check your Caps Lock key."} //localized error string for UI
Figures 47A and 47B (collectively "Figure 47") show an example login error code table, under an embodiment.
During logout, this signature should match the standard REST logout:
POST /ng/rest/icontrol/access/logout HTTP/1.1 X-login: myusemame //optional X-token: 02934503249850392485023485043245303 //optional JSESSION: C72284E685817798CBD0A8F23E728977.myservername Accept: application/json Logout responses of an embodiment are as follows:
Successful Return:
HTTP status code: 200 {
Set-Cookie:
JSESSIONID=C72284E685817798CBD0A8F23E728977.myservername; Path=/ng/rest;
Secure X-version: 4.0 Content-Type: application/json;charset=UTF-8 Failed Return:
HTTP status code: 500 Set-Cookie: JSESSI0NID=C72284E685817798CBD0A8F23E728977.myservername;
Path=/ng/rest; Secure X-version: 4.0 Content-Type: text/plain;charset=UTF-8 Note: No specific icErrorCodes for sign out For login to extend token, the signature should match the standard REST token refresh:
POST /ng/rest/icontrol/access/tokenRefresh HTTP/1.1 X-login: myusername X-expires: 86400000 //can't be bigger than ppref user/security/password/temporarySecureTokenMaxLifetimeHours X-token: 02934...245303 X-locale: en_us X-version: 4.0 //client's API version. server decides if version still supported X-appVersion: yourAppName/9.5Ø123 //client's app name and version, can be used to force client app upgrades X-clientType: thirdParty //identifies client type for client-specific features X-appKey: 1234567890kjkllkj //required, partner-specific appKey issued by Icontrol User-Agent: yourAppName/9.5Ø123 (iPad; OS 5_1_1; en-US) //for tracking client usage Accept: application/json //required, only JSON supported X-format: json //required, only JSON supported Successful Return HTTP status code: 200 {
Set-Cookie: JSESSI0NID=C72284E685817798CBD0A8F23E728977.myservername;
Path=ing/rest; Secure X-expires: 1347417701318 X-token: 4BEAC...EA010 X-version: 4.0 Content-Type: application/json;charset=UTF-8 }
In basic client workflow, the client starts by requesting the entire site.
This fetches the core client objects, but not the shellHardware and external Widgets objects, which are fetched with a different request:
GET /ng/rest/icontrol/ui/updates {
X-login: myusername X-token: 02934503249850392485023485043245303 //assumes you've already authenticated to get this token X-locale: en_us X-version: 4.0 X-appVersion: yourAppName/9.5Ø123 X-clientType: thirdParty X-appKey: 1234567890kjk11kj User-Agent: yourAppName/9.5Ø123 (iPad; OS 5_1_1; en-US) Accept: application/json X-format: json The response will be a full snapshot describing all of the basic UI elements, and commands to fetch history (but not history data itself). The response will be complete, but may omit groups if they are not allowed for that site (e.g., if the customer did not pay for cameras). There also may be empty groups if things are allowed but not installed. An example follows for a site configuration having lights, no thermostats (allowed but none present), cameras not allowed, and Homeview allowed but not defined:
"updates": {
"count":!, "ts":13561152223, "version": 2.1, //vers, of data model provided by server (client req vers. was passed at session creation or signin) "update": [
"ts":1356115222362, "type": "replaceall", //clean start, replace ALL data with new data "data": {
"client": {

"complete" true, //default true, but if RRA does work in chunks, "false" tells client this update isn't complete yet (final update will be "true") "actionURI": "/ng/rest/icontrol/client/0060350419d7/", //any actions should be appended to this (if they don't start with I) "site": {...}, "summary": {...}, "security": {...}, "shift": {...}
"messaging": {_}, "hvwSettings": {
"id": "hvwSettings", "type": homeviewSettings, "show": false, //in this example, homeview is allowed but not shown, so no raw values or hvwData obj "commands": { //but do have a command to turn it on "showHomeview":
"action": "foo/bar/showHomeView=true"
"label": "Turn On"
"lighting": {
"id": "lighting", "numTrouble": 0, "icon": "devStatOKlight", "items": [ //Lights are allowed, and lights available "id": "lighting-17 "thermostat": {
"id": "thermostat", "items": [] //show the thermostat tab, but there are none installed "panel": {
"history": { //commands for requesting historyEvents }, // update[0].data.client "operations":{
} // update[0].data.operations "historyEvents":
} /I update[0].data.historyEvents 1 // update[0].data 1 // update [0]
]/I update array After the full snapshot is received, the client can request deltas from that snapshot, using the previous timestamp returned above. A sample client delta update request follows: GET
/ng/rest/icontro1/ui/updates?since=13561152223&linger=40000.
The next delta update only includes items that have changed since the last request. For example, imagine one sensor has changed state, so that single atom would be retrieved as follows (e.g., front door just closed):
"updates": {
"ts": "13561152231", "count":1, "update": [
"ts": "13561152229", "type": "merge", //there are 2 types of update: replace (a complete item) and merge (merge in the attributes) "data": { //in this case, merge is incomplete: only replace the changed attributes here "client": {
"sensor": { //a door closed, so update only that one zone "items": [
"id": "sensor-34", "state": {
"icon": "devStatOk", "statusTxt": "Closed", "sort": 0 //Sort order 50-90 are "interesting" sensors (may be separated). 0-40 are "quiet"
}

1, "summary": {
"state": { //Note: this is sparse since most attributes (like icon=disarmed) have NOT changed "numTrouble": 0, "numOpen": 0, //was 1, but last door was closed so update to 0 "sensorStatusTxt": "All Quiet.", }

Note that there is no list object in the example, only the item that changed.
The icon and statusTxt have changed, and the sort position has changed so it should be inserted in the client list and the list redrawn.
Occasionally, a device may be added or removed since a snapshot. Then a new group object is retrieved, with items added or removed. For example, if all the energy devices were deleted (but are still possible, e.g. the Energy tab should show in a client), an updated list "energyMeter" is retrieved but the list of items would be empty as shown in the following implementation:
"updates": {
"ts": "126894231203", "count":1, "update": {
"ts": "13561152229", "type": "relaceobject", "data": {
"client": {
"energyMeter":
"id": "energyMeter", "name": "Energy", "statusTxt": "No Energy Devices Installed", "items": [ //empty items array because none are installed This indicates to the client it can show an empty list of energy devices, with the status text provided. Another optimization suited for mobile speeds up initial login by requesting a full snapshot, but without the item lists included as follows:
GET ing/rest/icontrol/ui/updates?exclude=items.
In this case, all top-level singletons and groups are retrieved, but no detailed items list.
This enables drawing and badging the atoms quickly without needing to fetch all the details. Another request is then made to lazy-load the full snapshot after login is complete. This can support include, which would exclude everything excepts this comma-separated list (and all their children), such as include=site,history.
Updates may not come in all at once, as the RRA computes objects for the entire site. Once a replaceAll update includes complete=true, the client knows it has everything and can render the UI. The minimum objects for UI rendering, for example, include: site;
summary; messaging; history; hvwSettings (sent if ppref service/homeview is enabled).
In addition to hvvvSettings, the following objects are optional and may never arrive, and they can be rendered as they arrive: shift (sent if ppref service/showShift is enabled);
security (sent if panel installed); sensors (sent if panel installed); panel (sent if panel installed); hvwData (sent if ppref service/homeview is enabled); door (*sent if ppref service/deviceSupport/zWave is enabled); lighting (*); thermostat (*);
energyMeter (*);
camera (sent if ppref service/deviceSupport/camera is enabled); historyEvents (not sent until history command is processed).
Note that if a ppref allows an object, it will be sent whether there are devices installed or not. For example, if cameras are allowed but none are installed, a camera object is received but the items array will be empty. The client decides whether to show a cameras tab with a message, or hide the tab completely.

There are several type of updates the server can provide. The goal is to minimize the scope of updates to ensure the most efficient data transfer. There are two basic update types: replace and merge. Replace is used to add, remove, or do a major update to part of the object tree. Merge is used to replace existing values in the tree with new values. Specifically, there are multiple types of replaces, merge, and sound updates, used as follows:
= Replaceall: the entire client object should be replace with the new one;
sent on initial request, site change etc.
= Replaceobject: a top-level singleton or group object within client should be replaced. Sent when singletons change, troubles occur, or devices added/deleted.
= Replaceitem: a single item in an item array with an object should be replaced.
Sent when commands change an entire item.
= Merge: multiple values within existing tree should be overlayed with new values.
Sent for state changes like door opens, light goes on etc.
= Sound: update for a one-time sound to be played by the client (like chime).
Note that continuous sound (like alarms) is in summary.state.sound.
For example, on initial update call, the entire client tree can be returned as follows:
"update": [

"ts": "13561152229", , "type": "replaceall", //this is the entire client object "data": {
"client": {
"summary": {...}, "security": {...}, "shift": {_}, "messages": {...), "security": {...}, "sensors": {...}, "cameras": {...}, For smaller updates (deltas) the server provides a sparse context for that action, meaning all parent objects are present. For example, if the security panel is armed, two top-level objects will be replaced as follows:
"update": [
"ts": "13561152229", "type": "replaceobject", //this replaces only the top level objects defined "data": {
"client": {
"summary": {...}, //I armed the system, so only summary & security need to be replaced "security": {...}

There can also be a combination of updates. For example, if a door opens, an embodiment replaces the summary object plus the sensor item as follows:
"update": [

"ts": "13561152229", "type": "replaceobject", //new summary object "data": {
"client": {
5, "id": "summary", "name": "Security", "state": {
"systemIcon": "disarmed", "numTrouble": 0, "numOpen": 1, "numMotion": 0, "statusTxt": "Disarmed.", "sensorStatusTxt": "1 Sensor Open."
}
}
I
I, "ts" : "13561152229", "type": "replaceitem", //only replace one sensor "data": {
"client": {
"sensors": {
"items": [

"id": "sensor-34", "devIndex": 34, "zone": 9, "name": "Front Door", "tags": "sensor", // Values: "sensor"
"state": {
"icon": "devStatOpen", "statusTxt": "Open", "lastEvent": "Today, 1:a7pm", "sort": 50, "bypassed": false "commands": {...}

II
One efficient way to accomplish this is with a sparse merge so that only replacement values are provided where they have changed, as follows:
"update": [
"ts": "13561152229", "type": "merge", "data": {
"client": {
"summary": {
"state": {
"numOpen": 1, "sensorStatusTxt": "1 Sensor Open." //only these changed "sensors": {
"items": [
"id": "sensor-34", //need unique identifier for item "state": {
"icon": "devStatOpen", Hall these states changed "statusTxt": "Open", "lastEvent": "Today, 1:17pm", "sort": 50 Sound updates are like events in that they do not update the model, but tell the client to play a sound one time. For example, with a door chime:
"update": [
"ts": "13561152229", "type": "sound", "data": {
"soundId": "chime" Hid of sound to play For each session, a client can send commands, indicate that those features are "busy", and the server will let the client know when the command succeeds or fails. The server provides a separate "operation" object that allows the client to match each command request with later success or failure. When a command is submitted by UI to the Rest service using the action UI provided in data model:
= If the command request is successful, i.e. command is accepted by server as valid command and server is going to further process it; server will respond with a http status 200 and id for the command. When a command is successfully accepted, a unique ID is provided by the server.
= If the command request fails then server responds with http status of error.
= When the command completes, the client will get back a success or failure operation update. If successful, they can also expect an client data update with the new state.
= Operations expire after a pre-specified period of time (e.g., 30 minutes) (server removes from queue). If a full delta snapshot is requested, operation will only be provided over the pre-specified period (whether succeeded or failed).
For example, the following example is a command to lock a door (value=1):
POST operations?method=POST&action=lui/client/doorLock/doorLock-27/setLock&value=1. If the command request was rejected (for example, if a parameter was incorrect or missing), a failed status + message is returned, as follows:
HTTP status code = 200 "id": 3353, "ts": 34053345830945, "status": "failed", "statusTxt": "Unable to lock 'Front Door Lock' If the command request was successful, an HTTP response is returned providing a command ID:
HTTP status code 200 { //http response body "id": 3353, "ts": 34053345830945, "status": "pending"
The client queues that ID. If execution succeeds after a few seconds, client receives an update with the new client state data, and an operation update with success for that command ID:
"updates": {
"count":1, "ts":13561152223, "update": [
"ts":1356115222362, "type": "merge", "data": {
"client": {
"lock": {
"items": [
"id": "doorLock-27", "state": {
"icon": "devStatOKlock", "statusTxt": "Locked"
1, // updates.update[0].data.client "operations": {
"operation": [
"id": 3353, "ts": 34053345830947, "status": "success"
} // update[0].data.operations } // update[0].data } // update[0]
] // update array If the command fails after a few seconds, the client will get an update with "failed" status for that operation ID (note there is no client update) as follows:
"updates":
"count":1, "ts":13561152223, "update": [
"ts":1356115222362, "type": "merge", "data": {
"operations": {
"operation": [
"id": 3353, "ts": 34053345830947, "status": "failed", "statusTxt": "Unable to lock 'Front Door Lock' ] //update[0].data.operations.operation[0]
1 // update[0].data.operations 1 // update[0].data 1 // update[0]
] // update array A client may be instructed a command succeeds or failed, but it also may get no update if there is a communication or other problem. An example flow for client command/operation tracking is as follows:
1. Send command, get back operation ID.
2. Start a timer with that command ID to reset things if no operation update comes for that ID.
3. For the device being changed, make a back copy of the current state for that device (e.g., copy state to pendingState).
4. Modify current local state to busy icon / busy text (provided by command).
5. Update the UI to indicate device is busy.

While waiting, an operation update from the server can be received, or a local timer could time out. An embodiment includes several possible outcomes as follows, but is not so limited:
= If an operation delta received with success for that command ID, kill the timer and clear the command from client queue.
= If an operation delta received with failure for that ID, kill the timer and reset the local state. Alert user to failure with error statusTxt provided.
= If the timer times out with NO operation delta for that ID (still considered pending), kill the timer and reset the local state with no error alert.
Regarding optimizing updates, to minimize network traffic and UI redrawing, the render-ready API sends updates only for objects that are needed. For example, if a light turns on, the only objects that need to be updated and sent are the lighting and hvwData objects. Based on raw deltas, the RRA can determine which objects need updating by checking for the following strings in the delta mediaType:
mediaType contains objects to update shift shift panel, ac/, tamper, trouble-list, battery, bypass, security + summary +
message +
alarm panel sensor!, tamper/, trouble/, battery/, bypass, alarm, sensor + summary + hvwData mask thermostat, setpoint, battery/ thermostat + hvwData camera, sensor/motion camera + hvwData energy, power energyMeter + lighting + hvwData light lighting + hvwData lock, barrier, battery door + hvwData If none of the above strings are found within the mediaType value, then all objects should be refreshed. Note that hvwData should only be generated if hvwSettings.state.show = true. Also note that messaging should be regenerated when an operations update occurs.
As described in detail herein, the data model for home automation and control includes a history data model (also referred to as a data model or JSON
history data model) comprising a nomialized data model describing history for all elements of an integrated home automation/security system, a normalized set of commands to request history data, and an API and model for updating elements of the history data efficiently.
Regarding the history data model component of the data model for home automation and control, embodiments of the integrated system or platform described herein include render-ready APIs and REST data models for client devices or clients to present history information. The APIs are paired with the client view model described herein, but the API of embodiments runs on the server (e.g., security server) and leverages exiting portal history rendering code to transform it into a normalized format (e.g., JSON) that can be rendered on any client, so it is technology-agnostic. The description herein includes history data types, examples (screenshots) of how the data types are presented in the web portal, and the specific queries and data responses supported by the render-ready API of an embodiment.
An embodiment includes numerous categories of history, defined by the type of data returned and how that data is requested, including for example:
1. Text history by type: static requests for text history data such as notable events, access history, etc.
2. Text history by device ID: requests for text history data for a specific device (including panel, Z-Wave, camera events, etc.).
3. Text history by user ID: requests for text history data for a specific device (including panel, Z-Wave, camera events, etc.).
4. Media history by camera ID: same as history by device, but specific to cameras and includes media URLs.

5. Graph history for thermostat: this is a mix of numeric and text values meant for graphing.
6. Traph history for energy device: this is a mix of numeric and text values meant for graphing.
When providing text history by type, the web portal of an embodiment includes numerous static types of text history, including: notable events; all devices;
alerts;
automations; schedules; site access; system. The text history generally includes a date and history text sentence but is not so limited. Figure 48 shows example displays of text history by type, under an embodiment.
History data includes text history by device identification (ID) for which the client provides selection of a specific device for use in filtering the history data.
Figure 49 shows an example display of text history by device ID, under an embodiment.
History data further includes text history by user ID for which the client provides a specific user ID for use in filtering the history data. The text history by user ID
generally includes a date and history text sentence with user ID, but is not so limited.
Figure 50 shows example displays of text history by user ID, under an embodiment.
History data of an embodiment includes media history by camera ID. Similar to history data by device ID, this category returns the history data with extra values for media, including thumbnails and pictures or video clips. Figure 51 shows example displays of media history by camera ID, under an embodiment.
History data includes graph history for thermostat devices. The client provides a specific thermostat device ID and in response receives numerical data of that thermostat device to graph. Figure 52 shows an example display of graph history for a thermostat device, under an embodiment.
Similar to thermostat devices, history data of an embodiment includes graph history for energy devices. The client provides a specific energy device ID
and in response receives numerical data of that energy device to graph. Figure 53 shows an example display of graph history for an energy device, under an embodiment.

The history queries described herein are efficient, thereby enabling clients to cache history for relatively long periods of time. History can be requested for a fixed time period (start - end time) and retrieve a single block of events. History can be requested without an end time, so that the client automatically receives updates with new history events (until session expires). History with automatic updates can be deactivated or shut off for a current session. History requests can be filtered by common tags provided by REST (e.g., only dimmers, etc.). History updates can be retroactive, and if a client has cached history then updates are provided to the cache.
Specifically, if media is deleted (e.g., via portal), a client with cached data is configured to remove those events from cache. If silent alarm events were not reported when history was cached, the client retrieves and merges those new events into cache.
Text history of an embodiment is in event tags, which include one or more of the following attributes:
= ts: the UTC (millis) time integer for this history event such as (also servers as unique ID for this event).
= tags: standard REST tags to aid in client-side filtering; a light event may have "zw,lighting,dimmer", an automation event my have "automation".
= isWarning: a boolean indicating that the history item is notable.
= shortDateTxt: "10/6".
= longDateTxt: "Monday, October 6, 2014" (or "Today" or "Yesterday").
= timeTxt: "3 :47pm" .
= historyTxt: a line of history text to display such as "Security Panel Disarmed by Ken", which may include simple inline styles with standardized types; these are not arbitrary HTML; limited so that native clients (i0S, Android) can find and replace them easily to format text:
o <span class=tic_warni>: really important such as alarms or offline -usually rendered as red text.
o <span class=qc_strong5: important such as device or user names - usually rendered as bold text.

o <span class---tic_emr>: emphasized, such as state value - usually rendered as italics text.
o <span class¨ric_weak5: de-emphasized, such as zone number - usually rendered as gray text.
= hideUntilTs: "4" means show anytime, or epoch time if event (such as silent alarm) should be hidden until a certain time.
An implementation example of initial notable events data (two text events) is as follows:
"events": {
"ts" : 217630350, "tags" : "ne", "isWarning" : false, "shortDateTxt": "10/5", //this is localized, and corrected for site time "longDateTxt" : "Yesterday", "timeTxt" : "3:42pm", "historyTxt" : "<span class='ic_warn5Security Panel</span> Armed Stay by <span class='ic_warn'>Ken</span>", "hideUntilTs" : -1 "ts" : 217631267, "tags" : "ne", "isWarning" : true, "shortDateTxt": "10/6", "IongDateTxt" : "Monday, October 6, 2014", "timeTxt" : "9:13pm", "historyTxt" : "<span class=qc_ward>BURGLARY ALARM</span>", //for more examples, see portal history "hideUntilTs" : -1 ]//end of events array Embodiments include text history with HTML links, so if a more advanced client (e.g. portal) wants the history text to include links, the history request can add the parameter includeLinks=true. If that parameter is given, then the value of historyTxt returned may include link tags around certain text items typically clickable in the web portal, such as device names or users. These links are configured to call a common function provided by the client but are not so limited.
The tag returned inline for example includes the following:
<a href=javascripthistoryLinkNavigation(<uniqueId>,<linkType>)'>text</a>.
The link types are "device" (passed device ID), "user" (passed user ID), "me"
(no ID
passed), and there may be others as features are requested.
Another example includes a link to the panel device and a user John (presented here as broken out link here for clarity):
"historyTxt": "<a hreMavascripthistoryLinkNavigation(VMV9SQzgzMjI=V,Vdeviceq>
<span class='ic_warni>
Security Panel </span>
</a>
Armed Stay by <a hreffjavascripthistoryLinkNavigation(VjsmithV,Vuserg>
<span class='ic_warn'>
John </span>
</a>"

Another example includes a link to a camera image taken by the current user ("me"):
"historyTxt": "<a href¨javascripthistoryLinkNavigation(VaUNhbWVyYSAxMDAwV,VdeviceV)5 <span class='ic_warn'>
Yard iCamera </span>
</a>
picture taken by <a href¨javascripthistoryLinkNavigation(VV,VmeV)1>
<span class=lic_warnt>
Ken S
</span>
</a>"
A successful media capture history event is similar to text history, with one or more of the following additional attributes:
= mediaUrl: full URL to media such as video clip or image.
= thumbUrl: full URL to thumbnail picture (generally 80x60 pixels, but may be wider for HD).
= largeThumbUrl: full URL to still from video clip or pic.
The tags for these successful media capture events include the type, such as "clip" for video clip or "pic" for still image. An example of initial media history for single camera (e.g., 1 media event) is as follows:
"events": [
217630350, "tags" : "ip,camera,clip", "isWarning" : false, "shortDateTxt" : "10/6", //this is localized, and corrected for site time "longDateTxt" : "Monday, October 6, 2014", "timeTxt" : "3:42pm", "historyTxt" : "Clip captured at 3:42 on 10/6/14 by camera Front Door", "mediaUrl" :
"http://oidjf0asdiasfasoweijoaisdn.asdfowaidfoasndfakasdflsdjf/423423.mp4", "thumbUrl" :
"http://oidjf0asdiasf asoweijoaisdn.asdfowaidfoasndflkasdflsdjf/423423.jpg", //80x60 "largeThumbUr1":
"http://oidjf0asdiasfasoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423Ljpg"
//320x240 or larger j //end of events array Based on server media retention preferences, it is possible to get a media event but the actual media is no longer available. In this case, the media URLs will be empty and the client may throw these events away, as follows:
"events": [
"ts" : 217440350, "tags" : "ip,camera,pic,unavailable", "is Warning" : true, //true because there's a problem & portal would show a warning icon or red text "shortDateTxt" : "09/23", //this is localized, and corrected for site time "IongDateTxt" : "Monday, September 23, 2014", "timeTxt" : "2:56pm", "historyTxt" : "Camera_RC8322x picture captured by Claudiu 3. Picture no longer available.", //same whether media is deleted, or older than media retention pref "mediaUrl"
"thumbUrl" :
"largeThumbUr1": ", ] Hend of events array If a camera request includes tag cvr data, the start and end times are also retrieved and included for each segment of cvr data recorded within the camera, as follows:
"events": [
"tags" :
"startTs" : 217440350, //chunk 1 "endTs" : 236440350 "tags" :
"startTs" :317440350, //chunk 2 "endTs" : -1 //now / current time I//end of cvr portion of media events array An example involving thermostat graph history data (e.g., linear graph) is as follows:
"events": //this is passthru date from the UIRest thermostatSummary code of "graphData"
"minY":75.0, //y axis min for graph range "maxY":80.0, //y axis max for graph range "endX":1421424000000, /ix axis max for graph range "minXIntervalForValues":3600000, "dispLengthX":86400000, "data":[
"x":1421259096291, //value for x axis on graph "eventType":"off' //running status (heating, cooling, neither/off) of the thermo potential values are heat, cool, off "x":1421337600000, "tick":"s" //"tick" mark for graph "s" (small) }, "x":1421339308386, "eventType":"Not Connected" //??? potential values "Not Connected"
and "Connected"
"x":1421340214427, "value":77.0 //a value for the graph "x":1421352000000, "label":"12p", //label for tick mark "tick": "m" //"tick" mark for graph "m" (medium) "x":1421395200000, "label":"12a", //label for tick mark "tick":"b", //"tick" mark for graph "b" (big) "inGraphLabel":"Jan 16, 2015" //label for label in the graph "scalingInfo":[ //scale options "name":"h", "label":"1 Hour"
"name":"4h", "label":"4 Hours"
"name":"d", "label":"Day"
"name ":"w", "label": "Week"
An example involving an energy device graph history data (e.g., bar graph) is as follows:
"events": { //this is passthru date from the UIRest energySummary code of "graphData"
"minY":0.0, "maxY":100.0, "endX":1421445600000, "minXIntervalForValues":3600000, "dispLengthX":86400000, "summaryText":"900 Wh, $0.14", "measurementUnit":"'Wh", "thousandUnit":"k", "data":[
{
"x":1421362800000, "value":0.0, s"
}
{
"x":1421370000000, "value":100.0, s"
}, {
"x":1421373600000, "value":0.0, "label" :"6p", I, I
"x":1421395200000, "value" :0.0, "label":"12a", "tick" :"b", "inGraphLabel":"Jan 16, 2015"

/

"scalingInfo":[
{
"name":"d", "label": "Day"
}, {
"name": "w", "label":" Week"
}, {
"name":"m", "label": "Month"
}
]
.
}
A history event object of an embodiment includes a tag attribute used for client-side filtering, and every command includes a tag param that can be used for server-side filtering. In either case, tags are comma-separated, no spaces, and generally lower case.
For example: "zw,lighting,dimmer". A description of possible tag values by command type follows.
With reference to tags for history by type, the getEvents command request includes a type (e.g., all, notableEvents, system, etc.), and the events returned include a tag indicating that type. For example:
= notableEvents: tags for events should contain "ne".
= alerts: tags for events should contain "alert".
= automations: tags for events should contain "automation".

= schedules: tags for events should contain "schedule".
= site access: tags for events should contain "access".
= system: tags for events should contain "system".
= all: tags for each event may be one of the above, and for devices and media may include the tags defined elsewhere herein.
For tags for device history (including media), the getEventsForDevice response events (and device events in "all" above) should include the same tags identifying the device type as those specified herein with reference to the view model specification. All device classes are identified by a general tag, as follows:
= cameras include "ip,camera".
= zwave devices include "zw".
= security sensors include "sensor", as well as tags for certain zone events as follows, a door/win sensors also get tags for state changes "open" or "close".
o motion sensors get tags for state changes "motion", "nomotion".
o any sensor may get a tag for alarm status (breached zone): "alarm".
o any sensor may get tags for health changes: "offline", "online", "tamper", "lowbatt".
= security panel events include "panel", as well as tags for alarm events:
"alarm", "noalarm", "arm", "disarm", "offline", "online", "tamper", "lowbatt".
For Z-Wave devices, an embodiment includes more specific tags, examples of which are as follows:
= on/off switch: "zw,lighting,switch".
= dimmer switch: "zw,lighting,dimmer".
= thermostat: "zw,thermostat".
= door lock: "zw,doorlock".
= garage door: "zw,barrier".

= energy meter: "zw,energyMeter".
= whole-home energy meter: "zw,energyMeter,whm".
For cameras, if the history event includes a media URL it also includes a tag identifying the media type, as follows:
= video clip: tag includes "clip" (when passed as a filter, this means return only successful clip capture event that include a URL).
= captured picture: tag includes "pie" (when passed as a filter, this means return only successful pic capture event that include a URL).
= media that is no longer available: tag includes "unavailable".
For example, tags for a media event for a clip that is no longer available might be "ip,camera,clip,unavailable". Also for cameras, when the event is a motion event the "motion" tag is used for timelines. For example, a camera motion event would have tags "ip,camera,motion".
For tags for history by user, the getEventsForUser (and device events in "all"

above) should include "user" and the specific user ID. For example, if a user logged in yesterday, that event would include tags "user,usemame".
With history objects and commands, when history is available, the client object includes a history singleton that defines commands to request historyEvent updates. An implementation example is as follows:
"history": {
"id" : "history", "retentionUiHistoryDays": 30, //value of ppref retention/network/uiHistoryDays. Use to limit length of client cache "retentionMediaDays" : 15, //value of ppref retention/network/mediaDays. Use to limit client cache for media "commands": {
"getEvents": { //command to fetch general text history "action" = "999799/history/getEvents", //note that this action will return a query ID
"method": "post", "params": {
"reqType" : { //type of text history (filtering on server side is more efficient) "type" : "select", "options": [
{ "value": "all", "label": "All" }, { "value": "notableEvents", "label": "Notable Events" }, { "value": "alerts", "label": "Alerts" }, { "value": "automations", "label": "Automations" }, { "value": "schedules", "label": "Schedules" }, { "value": "siteAccess", "label": "Site Access" }, { "value": "system", "label": "System" }
]
1, "startTs": { //start time for the request in millis "type" : "timeMillis", //epoch time, milliseconds since 1970 "defaultValue": -1//should be older millis number, but default -1 means "now"
when the server processes it.
}, "endTs": { //end time for the request in millis "type" : "timeMillis", "defaultValue": -1//default -1 means "now", AND continues updating during session. Use real # for static query I, "minEvents": { //minimum events to fetch (backward from endTs). To cover the camera timeline //case, if tags are motion,clips,pics, guarantees 1 non-motion event "type" : "range", "min" : 0, "max" : 10000, //server may limit our max requests "step" : 1, "defaultValue": 20 "maxEvents": { //max events to fetch (backward from endTs) "type" : "range", "min" : 1, "max" : 5000, //server may limit our max requests "step" : 1, "defaultValue": 5000 //default is all available (max) "includeLinks": { //whether historyTxt string should include links around certain values like device names "type" : "boolean", "defaultValue": false }, "tags" : { //any tags to filter by, server-side. Comma separated list like "foo,bar".
Possible values TBD.
"type" : "textInput", "regExp" : ]?", //must *match* this regExp before submitting "minChars" : 0, //must have at least this # chars before submitting "maxChars" : 255, //must have <= this # chars "defaultValue": " //default is blank / no tags "queryId": { //optional: client can pass in previous ID to continue to get updates with the same ID
"type": "int" //integer "changesOnlySinceTs": -1 //if set, get what has changed since last checked at this timestamp "type" : "timeMillis", //epoch time, milliseconds since 1970 "defaultValue": -1 //Default -1 means ignore this param and fetch ALL events, but I
I' I, "getEventsForDevice": { //command to fetch history for specific device. If camera, will include media info.
"action": "999999/history/getEventsForDevice", //NOTE: unlike "getEvents", historyTxt returned for this cmd shouldn't embed redundant device name (except rename events) "method": "post", "params": {
"deviceId" : { //id for each device "type" : "select", "options" : [
{ "value" : "panel-1", "label": "Security Panel" }, { "value" : "door-23", "label": "Front Door" }, { "value" : "sensor-12", "label": "Yard Motion" }, { "value" : "camera-55", "label": "00810 Porch Camera" }, { "value" : "touchscreen-2", "label": "iScreen" }, { "value" : "thermostat-12", "label": "My Thermostat" }, { "value" : "light-17", "label": "Living Room Lights" }
]
I, "stuffs" : {...}, //same as above "endTs" : {...1, "minEvents" : {...}, "maxEvents" : {...}, "includeLinks": {...}, "tags" : {...}, //TBD: tags to filter by. Ex. values: "clip", "pic", "dimmer", "cvr"
etc.
"queryId" : {...}, "changesOnlySinceTs": {...}

}, "getEventsForUser": { //command to fetch history events for a specific user "action": "999999/history/getEventsForUser", //note that this action will return a query ID
"method": "post", "params": {
"userName" : { //username such as "ksunder", from site object in client JSON
specification "type" : "textInput", "regExp" : ".*", "minChars" : 6, "maxChars" : 255, "defaultValue": ""
}, "startTs" : {...1, "endTs" : {...}, "minEvents" : {...1, "maxEvents" : {...}, "includeLinks": {...}, "tags" : {...}, "queryId" : {...}, "changesOnlySinceTs": {...}
I
I, "getGraphDataForThermostat": { //in RRA, this calls the UIRest function with "outputType":"thermostatsSummary"
"action": "/myhome/rest/icontrol/client/319125nt00057/thermostats/175", "method": "post", "params": {
"deviceId" : {...}, "startTs" : {...}, "endTs" : {...}, "maxEvents" : {...}, //internal to RRA, it can chop off data if needed "scaling": { //used to specify what data you want for the graph (affects the tic marks and time labels) "type" : "textInput", "regExp" : "[0-9]{0,2}(hldjwIm)", //for example, "4h" for 4 hours "minChars" : 1, "maxChars" : 3, "defaultValue": "id' 1, "queryId" : {...}, "changesOnlySinceTs": {...}
I
I, "getGraphDataForEnergyDevice": { //in RRA, this calls the UIRest function with "outputType":"energySummary"
"action": "/myhome/rest/icontrol/client/319125nt00057/energy/321", "method": "post", "params": {

"deviceId" : {...}, "startTs" :
"endTs" : {...}, "maxEvents" : {...}, //same as "numberOfValues" in raw function "scaling" : {...}, "queryId" : {...}, "changesOnlySinceTs": {...}
1, "stopEventUpdates": { //if query had no endTs (so was constantly sending updates), this stops those deltas "action": "997999/history/stopEventUpdates", "method": "post", "params":
"queryId": {...}
"mediaF,ventDelete": { //delete a specific media event (clip, pic) "action": "997999/history/mediaEventDelete", "method": "post", "params":
"deviceId": "camera-55", "eventTs" : 217440350 "mediaEventDownload": { //request download of a specific media event (clip, pic). In response, server //sets header that triggers browsers to download & save file. For example:

//Content-Disposition:attachment; filename¨dp-pictures-quikcontrol_1442848319577.mp4 action": "999999/history/mediaEventDownload", "method": "post", "params":
"deviceId": "camera-55", "eventTs" : 217440350 "mediaEventEmail": { //server to send email with specific media event attached "action": "799999/history/mediaEventEmail", "method": "post", "params":
"deviceId": "camera-55", "eventTs" : 217440350, "emailAddress" : { //valid email address "type" : "textInput", "regExp" : ", //can set this to an e-mail RegEx someday "minChars" : 5, //must have at least this # chars before submitting "maxChars" : 255, //must have <=--- this # chars "defaultValue": " //default is blank "emailSubject":
"type": "textInput", "regExp": ", "minChars": 0, "maxChars": 255, "defaultValue": "Captured by your camera"
}, "emailMessage":
"textInput", "regExp": ", "minChars": 0, "maxChars": 8000, "defaultValue":

As an example, in order to request the text history for a specific door lock (id=12) for yesterday, the call is as follows:
POST http://someUrI/999999/history/getEventsForDevice?method=post&
deviceId=-12&
startTs=934859324859& //00:00 yesterday endTs-934945724859& Hthis is 24 hours later, in milliseconds minEvents=10& //if < 10 events in range, keep fetching beyond endTs until have min 10 events maxEvents=100& //only get up to 100 events, leading up to endTs tags=& //don't filter queryId=& //this is a new query, I don't have a pre-existing cache changesOnlySinceTs=0 //get all date, not just changes Embodiments include history updates. The request / update models of an embodiment include but are not limited to the following:
= Closed queries: return a single block of history events for a given time period.

= Closed queries with maxEvents: if maxEvents set, may not get the full time period when that max reached.
= Open queries: same as closed queries (get a big block, initially), but continue to get delta updates for that history query until "stop".
= Changes-only queries: helps client update existing cache; for the SAME
time range, only get data changed since last checked (needed to detect deleted or expired media).
The client may want to ask for all history for a given timeframe. It is unbounded (get all events for the time period), so this is appropriate for short timeframes (such as the last hour). For the closed query model, a simple request is issued with parameters, including a start and fixed end time. When the request is made, a query ID is provided to track the response as follows: operation:
{ 'id":"234","ts":1358411674097,"status":"pending"}. The client matches this query with the future response (and the UI that will render it). For example, if the query asks for notable events, and returns a query id of "234", the client knows that the events returned with id "234" are notable events list and not camera history.
If maxEvents is huge (max), all events for that time period are provided. For example, the time period is a full day as follows:
startTs=934859324859& //00:00 yesterday endTs=934945724859& //this is 24 hours after startTS, in milliseconds maxEvents=5000& //get all events The response then includes everything for that time period:
startTs:934859324859, //00:00 yesterday endTs:934945724859, //requested end time, 24 hours later events: [ //all events here {-}, {-}, {-}

An example follows of a full example of an update response to two closed queries: one query for Notable Events and one query for media history. The response included two (2) notable events and one (1) media event. Note that it is complete history over the requested time period, and the update type is replaceAll. The example is as follows:
"updates": {
"count" :1, "ts":217632876, "version": 2.1, //version of data model provided by server (client requested version was passed at session creation or signin) "update": [
217632876, //time of last response for this search "type": "replaceall", //initially, update is "replaceAll", but could be "merge" or "delete"
"data": {
"historyEvents": {
"complete" true, //default true, but if RRA does work in chunks, "false" tells client this update isn't complete yet (final update must be "true") "id" : "634", //id for request (client may cache and reuse this ID);
this request was for notable events.
"startTs" : 217630330, //start time of this search query "endTs" : 217632875, //end time for this request update "events": [
"ts" : 217630350, "tags" : "security", "isWarning" : false, "shortDateTxt": "10/6", //this is localized, and corrected for site time "longDateTxt" : "Monday, October 6, 2014", "timeTxt" : "3:42pm", "historyTxt" : "<span class=fic_warnI>Security Panel</span> Armed Stay by <span class='ic_warn5Ken</span>", "hideUntilTs" : -1 "ts" : 217631267, "tags" : "security", "isWarning" : true, "shortDateTxt": "10/6", "longDateTxt" : "Monday, October 6, 2014", "timeTxt" : "9:13pm", "historyTxt" : "SILENT PANIC ALARM", "hideUntilTs" : 217633596 //silent alarm 18 mins ago: client UI to hide for 12 mins (12m later than UPDATE ts) ] //end of events array } //end of historyEvents } //end of data 1, //end of update item "ts" : 217632876, "type": "replaceall", "data": {
"historyEvents":
"id" : "752", //id for request; this example is for camera history "startTs" : 217630330, //start time of this search query "endTs" : 217632875, //end time for this request update "events": {
{
"ts" : 217630350, "tags" : "camera,clip", "isWarning" : false, "shortDateTxt": "10/6", //this is localized, and corrected for site time "IongDateTxt" : "Monday, October 6, 2014", "timeTxt" : "3:42pm", "historyTxt" : "Clip captured at 3:42 on 10/6/14 by camera Front Door", "mediaUrl" :
"http://oidjf0asdiasf asoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423.mp4", "thumbUrl" :
"http://oidjf0asdiasf. asoweijoaisdn.asdfowaidfoasndfakasdflsdjf/423423.jpg"
}
J//end of events array } //end of historyEvents } //end of data 1 //end of update item ] // end of update array Embodiments include closed queries paging back in time. The client may want to present all history for a larger block of time, but for better performance configures the response in smaller portions. Without knowing how many events are in the time period, the responses can be limited using a maxEvents attribute of an embodiment.
When maxEvents is set data is delivered of a smaller time range than requested. For example, if a request is for data of an entire day, but max 100:
startTs=934859324859& //00:00 yesterday endTs-934945724859& //this is 24 hours later, in milliseconds maxEvents=100& //all events, or 100 events leading up to endTs, whichever is smaller In this example, if there were more than 100 events for the requested period, the response corresponds to the same end time but a later start time, as follows:
startTs:934902524859, //mid-day, later than the start time requested endTs :934945724859, //requested end time events: [ //only 100 events here At this point the client has 100 most recent events to be rendered. The request to retrieve data of the next subsequent 100 events is as follows:
startTs=934859324859& //00:00 yesterday endTs=934945724859& //mid-day yesterday, where last query left off maxEvents=100&
queryId=234& // cache exists for this type of query so pass in the same ID so can append In this example, therefore, the client populates the UI using segments or portions of data, fetching data backwards by requesting only 100 events at a time, until all events have been provided for the requested timeframe.
Another configuration is a paging model configured to enable the client to show a particular number of events (e.g., 100 events), and have the user gesture (e.g., swiping) to fetch the next subsequent segment of historical data. The user can continue to page backwards to view all history. In this paging model of an embodiment, maxEvents is set equal to a default value (e.g., 100), and an example is as follows:
startTs=934856819219& ll=now-30*24*60*60 (used retentionUiHistoryDays=-30 to compute oldest ts of available data) endTs=934945724859& //now maxEvents=100&
For example, if 100 events are available over the last two (2) days, and the user views a portion of the events and then requests presentation of additional events via the swiping gesture, an embodiment is configured to request again with the same startTs but endTs from two (2) days ago. An example of this second query is as follows:
startTs=932267406899& //=now-30*24*60*60*1000 (still 30 days ago, moved forward 6 seconds since the user hesitated) endTs=934859406899& //3 days ago, the start time from the last update response maxEvents=100& //all events, or 100 events leading up to endTs, whichever is smaller queryId=234& // cache exists for this type of query so pass in the same ID so can append End users may expect live events (e.g., in their home) to show up in history while logged in to a client. An embodiment provides this capability as follows:
1. Client uses closed queries, with timers to poll for newer history events (e.g., every 30 seconds).
2. Client requests an open-ended end time, and receives updates when history changes (until being shut off).
The open query is different in that there is no endTs, and the use of "4"
indicates an open query:
startTs=934859324859& //00:00 yesterday endTs=-1& //"up til now" AND continue to send update as they happen maxEvents=100& //100 events leading up to now, or all for the time period, whichever smaller The first response of an embodiment is identical to the closed query. In the example above, two (2) notable events are received. However, if some period of time later (e.g., 5 minutes) there is a new Notable Event, another update is provided. Note that it is also "replaceAll" since it represents all notable events for the latest time period, as follows:
"updates": {
"count": 1, "ts":235623875, //5 minutes later "version": 2.1, //vers, of data model provided by server (client req vers. was passed at session creation or signin) "update": [
"ts" : 217633176, //time of last response for this search (5 mins later) "type": "replaceall", //didn't set "changesOnlySinceTs", so this is a complete response for the time period "data": {
"historyEvents":
"id" : "634", //same id for initial request so client can extend the same cache + UI
"startTs" : 217632875, //end time from previous response "endTs" : 235623875, //now (5 minutes after startTs) "events": [
"ts" : 235623874, //new notable event that just happened "tags" : "security", "isWarning" : false, "shortDateTxt": "10/6", "IongDateTxt" : "Monday, October 6, 2014", "timeTxt" : "3:47pm", //this just happened "historyTxt" : "<span class=lc_ward>Security Panel</span> Disarmed by <span class=Tic_wam5Ken</span>", "hideUntilTs" : -1 ] //end of events array } //end of historyEvents } //end of data } //end of update item ] // end of update array }
From a perspective of the client, no difference exists between multiple closed queries, paging, and a single open query: updates come in and client continues concatenating to the cache and UI. With paging, older updates are received and concatenated on one end of the cache, and for open queries (or client polling) newer updates are received and concatenated on the other end of the cache.
An embodiment includes an aggressive client caching scheme (e.g., one saved to disk between sessions) and, as such, solves the following problems:
1. media (clips/pies) may be deleted by the user on another client (such as the web portal).
2. media may have expired so the history text is different.
In an example, which assumes a client cache for a given camera is full (e.g., includes 30 days of video clips and pies), each day the user launches the client an embodiment quickly renders this video timeline from local storage, and the client only needs to make queries to fetch the latest clips / pies. To verify the cache is valid a request is issued for changesOnlySinceTs (e.g., the last request), as follows:
POST http://someUr1/999779/history/getEventsForDevice?method=post&
deviceId=27& //camera ID

startTs=934859324859& //start time for my entire cache endTs=934859406899& //end time for my entire cache maxEvents=5000&
tags=&
queryId=634& //same ID as cache so associate updates with that cache changesOnlySinceTs=934859411220 //timestamp of the last update received (want knowledge of alterations in-range since then) The response covers the same time period as that of the cache, but if there was media deleted a delete update is received as follows:
"updates": {
"count":1, "ts":217632876, "version": 2.1, //vers, of data model provided by server (client req vers. was passed at session creation or signin) "update": [
"ts" : 217632876, "type": "delete", //this update will ONLY include events that need deleting "data": {
"historyEvents":
"id" : "634", //id for request. This example is for camera history "startTs" : 934859324859, //start time for our cache "endTs" : 934859406899, //end time for our cache "events": [
217630350 //this is the unique identifier, needed for deletes ] //end of events array } //end of historyEvents } //end of data } //end of update item {
"ts" : 217632876, "type": "merge", //this update will ONLY include events that need adding or replacing "data": {
"historyEvents": {
"id" : "634", //id for request, matches our cache "startTs" : 934859324859, //start time for our cache "endTs" : 934859406899, //end time for our cache "events": [
1 //this event is beyond media retention "ts" : 217620980, "tags" : "camera,clip", "isWarning" : false, "shortDateTxt": "9/12", "IongDateTxt" : "Friday, September 14, 2014", "timeTxt" : "5:37pm", "historyTxt" : "Clip is no longer available", //text description has changed "mediaUrl" : ", //media is no longer available "thumbUrl"

J//end of events array } //end of historyEvents } //end of data } //end of update item ] // end of update array Now the client can remove or update these events from the cache.
When for a specified time interval no history events are recorded, the response is as follows:
"data": {
"historyEvents":{
"events":[], /I an empty array "id":"3f03e7bd-2505-440c-91bc-e71a7687d206", "startTs":1422958836335, "endTs":1422959091962 // if requested endTs = -1 then will be returned system current timestamp }
1, "ts":1422959101988, "type":"replaceobject"

Note the "events" array is missing from the "historyEvents" object.
A description follows of the client architecture of the history processing module and how the module interacts with the server and controllers to use the history data model described herein. Figure 54 is a flow diagram for closed queries (discrete history request), under an embodiment.
Figure 55 is a flow diagram for open queries (continuous history updates), under an embodiment. Similar to the workflow for open queries, the workflow for changes-only queries for updating the cache request fixed interval changes and then update the cache and history ViewModel accordingly.

Figure 56 is a history processor service (class) description, under an embodiment.
The history processor includes "getHistory", which is a method that calls the "getEvent*"
command on server and returns a promise object. In this manner the invoker is completely isolated from asynchronous behavior of the history API. A "then"
handler is defined as follows: promise.then(function(param) {...}). The "getHistory"
process is as follows: build and send HTTP request to REST API; get requestID in response;
create promise object; put request ID and promise into "pendingRequests" Hashmap;
return the promise.
The history processor also includes "pendingRequests", which comprises a HashMap that includes all pending history requests. "RequestID" follows after "getEvents*" command successfully executed on the server and promise object provided to controller (or other invoker).
A history.events watcher triggers when some new history.events appears in the rootScope viewmodel (clientDataModelMaster responsible responsibility). The watcher process is as follows: get new events data; process as defined herein; cache new data to localStorage; merge processed data into historyViewModel; find promise by history.id in our pendingRequests hashmap; resolve the promise.
The history processor includes "restoreHistoryViewModelFromCache", which is a method called once per session. This method retrieves the cache from localStorage and adds cached items into historyViewModel.
The "historyViewModel" of the history processor service is the main history model. Therefore, all history views bind to this model. The structure is fixed and "view oriented" so time is not spent on dynamic search/filter for appropriate data.
An implementation example of the historyViewModel is as follows:
historyViewModel "alerts": [
"ts": 217631267, "tags": "security", "isWaming": true, "shortDateTxt": 1110/6/14, "longDateTxt": "Monday, October 6, 2014", "timeTxt": "9:13pm", "historyTxt": "SILENT PANIC ALARM", "hideUntilTs": 217633596 //silent alarm 18 mins ago: client UI to hide for 12 mins (it's 12m later than UPDATE ts) 1, "automation": [ list of automation events], "schedules": [ list of schedule events ], "notableEvents": [

"ts": 217630350, "tags": "security", "isWarning": false, "shortDateTxt": "10/6/14", //this is localized, and corrected for site time "IongDateTxt": "Monday, October 6, 2014", "timeTxt": "3:42pm", "historyTxt": "<span class¨'ic_ward>Security Panel</span> Armed Stay by <span class¨tic_warnr>Ken</span>", "hideUntilTs": -1 "ts": 217631267, "tags": "security", "is Warning": true, "shortDateTxt": "10/6/14", "IongDateTxt": "Monday, October 6, 2014", "timeTxt": "9:13pm", "historyTxt": "<span class=lic_ward>BURGLARY ALARM</span>", //for more examples, see portal history "hideUntilTs": -1 "ts": 217630350, "tags": "security", "isWarning": false, "shortDateTxt": "10/6/14", //this is localized, and corrected for site time "longDateTxt": "Monday, October 6, 2014", "timeTxt": "3:42pm", "historyTxt": "<span class=qc_warn5Security Panel</span> Armed Stay by <span class='ic_warn'>Ken</span>", "hideUntilTs": -1 "deviceEvents":
"camera-1": [I/camera-1 is actual deviceID
"ts": 217630350, "tags": "camera", "isWarning": false, "shortDateTxt": "10/6/14", //this is localized, and corrected for site time "IongDateTxt": "Monday, October 6, 2014", "timeTxt": "3:42pm", "historyTxt": "Clip captured at 3:42 on 10/6/14 by camera Front Door", "mediaType": "clip", "mediaUr1":
"http://oidj fOasdiasf asoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423.mp4", "thumbUr1":
"http://oidjf0asdiasf asoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423 jpg"
], "camera-2": [ //camera-2 is actual deviceID
"ts": 217630351, "tags": "camera", "isWarning": false, "shortDateTxt": "10/7/14", //this is localized, and corrected for site time "IongDateTxt": "Monday, October 7, 2014", "timeTxt": "4:42pm", "historyTxt": "Clip captured at 4:42 on 10/7/14 by camera Back Door", "mediaType": "clip", "mediaUr1":
"http://oidjf0asdiastasoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423.mp4", "thumbUr1":
"http://oidjf0asdiasf. asoweijoaisdn.asdfowaidfoasndf/lkasdflsdjf/423423 jpg"
"ts": 217630352, "tags": "camera", "isWarning": false, "shortDateTxt": "10/8/14", //this is localized, and corrected for site time "IongDateTxt": "Monday, October 8, 2014", "timeTxt": "4:42pm", "historyTxt": "Clip captured at 4:42 on 10/8/14 by camera Back Door", "mediaType": "clip", "mediaUr1":
"http://oidjf0asdiasfasoweijoaisdn.asdfowaidfoasndf/Ikasdflsdjf/423423.mp4", "thumbUr1":
"http://oidjf0asdiasfasoweijoaisdn.asdfowaidfoasndf/Ikasdflsdjf/423423.jpg"
], "other device id": [ list of events ]
}, "userEvents":
"user_id": [ list of events };
Figure 57 is a flow diagram for a cache process, under an embodiment.
History events provided by server include but are not limited to one or more of the following types: alerts, automation, schedules, notable events, system, device events, user events. When making requests, the history processor determines event type and stores the type with the request ID. Upon receiving the server response, the history processor matches event type assigned to request ID and merges or puts those events in an appropriate viewModel (by type). The rules for determining event type in an embodiment are as follows:
1. If command == 'getEvents' and paramsObj.reqType == 'notableEvents' -request type is 'notableEvents'.
2. If command == tgetEvents' and paramsObj.reqType ¨ 'system' - request type is 'system'.
3. If command == IgetEventsForDevice' - request type is ideviceEvents'.
4. If command == 'getGraphDataForThermostaf - request type is TdeviceEvents'.
5. If command == 'getGraphDataForEnergyDevice' - request type is 'deviceEvents'.

6. If command ¨ lgetEventsForUsery - request type is `userEvents'.
7. If command == fgetEvents' and paramsObj.reqType ¨ 'alerts - request type is 'alerts'.
Embodiments include a system comprising an automation network comprising a gateway at a premises coupled to a remote server. The system includes a plurality of premises devices coupled to the gateway and forming at least one device network in the premises. The plurality of premises devices includes security system devices and automation devices. The system includes an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server. The AUI application is configured to run on each of a plurality of remote devices. The plurality of remote devices comprises a plurality of device types.
The system includes an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI application on the plurality of remote devices. A normalized data model is configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
Embodiments includes a system comprising: an automation network comprising a gateway at a premises coupled to a remote server; a plurality of premises devices coupled to the gateway and forming at least one device network in the premises, wherein the plurality of premises devices includes security system devices and automation devices; an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI
application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types; an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
The AUI application is configured to generate and present an AUI at the plurality of remote devices, wherein the AUI includes at least one display element for managing and receiving data of the plurality of premises devices.
The AUI comprises a cross-client user interface that presents data of the data model to the plurality of remote devices.
The data of each of the plurality of premises devices includes at least one of command data, response data, state data, sensor data, identification data, detector data, and image data.
The API is configured to serve and the AUI is configured to process the normalized data of the data model regardless of a device type of a recipient remote device.
The API is a Representation State Transfer (REST) API.
The API is configured to respond to a device request using JavaScript object notation (JSON).
The data provided to the plurality of remote devices includes commands comprising data of actions capable of being invoked on at least one of the gateway and the remote server.
The commands include at least one of input objects, current value, and possible new values.
The commands include at least one of a request, select, toggle, range, text input, and time.
The data provided to the plurality of remote devices includes singletons comprising atomic objects.
The singletons include a site atom configured to indicate a current site.
The singletons include a summary atom configured to indicate orb for display, system summary text, and sensor summary text.

The singletons include a security atom configured to include at least one of stateful functions and alarm dialog information to show.
The singletons include a shift atom configured to include at least one of current shift state and functions to change shifts.
The singletons include a messaging atom configured to include at least one of a list of warnings, login messages, and system messages.
The singletons include a homeview settings atom configured to include at least one of static data, homeview data, device position, and labels.
The singletons include a panel atom configured to include at least one of versions and commands.
The singletons include a history atom configured to include history commands.
The data provided to the plurality of remote devices includes groups comprising an array of atomic objects.
The groups include dynamic data atoms comprising at least one of device states and device state updates.
The groups include groups of sensor atoms.
The groups include groups of door atoms comprising at least one of door lock atoms and garage door atoms.
The groups include groups of switch atoms.
The groups include groups of thermostat atoms.
The groups include groups of power reporting atoms.
The groups include groups of camera atoms.
The data provided to the plurality of remote devices includes group items comprising instance objects.
The data provided to the plurality of remote devices includes values comprising key/value pairs corresponding to items and commands.
The data provided to the plurality of remote devices includes controls comprising local actions.
The plurality of premises devices includes a touchscreen controller.

The plurality of premises devices includes a thermostat.
The plurality of premises devices includes at least one of a security panel, a security sensor, and a camera.
The plurality of premises devices includes a device controller.
The plurality of premises devices includes an actuator.
The plurality of premises devices includes at least one of a locking device and a lighting device.
The plurality of remote devices includes a cellular telephone.
The plurality of remote devices includes a touchscreen device.
The plurality of remote devices includes at least one of a mobile telephone and a tablet computer.
Embodiments include a method comprising configuring a gateway at a premises as an automation network. The gateway is coupled to a remote server. The method includes forming at least one device network in the premises. The at least one device network includes a plurality of premises devices coupled to the gateway. The method includes configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server. The AUI application is configured to run on each of a plurality of remote devices.
The plurality of remote devices comprises a plurality of device types. The method includes configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI application on the plurality of remote devices.
The API includes a normalized data model configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
Embodiments include a method comprising: configuring a gateway at a premises as an automation network, wherein the gateway is coupled to a remote server;
forming at least one device network in the premises, wherein the at least one device network includes a plurality of premises devices coupled to the gateway; configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI
application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types; configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI
application on the plurality of remote devices, wherein the API includes a normalized data model configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
The method comprises configuring the AUI application to generate and present an AUI at the plurality of remote devices, wherein the AUI includes at least one display element for managing and receiving data of the plurality of premises devices.
The method comprises configuring the AUI to include a cross-client user interface that presents data of the data model to the plurality of remote devices.
The data of each of the plurality of premises devices includes at least one of command data, response data, state data, sensor data, identification data, detector data, and image data.
The method comprises configuring the API to serve and configuring the AUI to process the normalized data of the data model regardless of a device type of a recipient remote device.
The API is a Representation State Transfer (REST) API.
The method comprises configuring the API to respond to a device request using JavaScript object notation (JSON).
The method comprises configuring the data provided to the plurality of remote devices to include commands comprising data of actions capable of being invoked on at least one of the gateway and the remote server.
The commands include at least one of input objects, current value, and possible new values.

The commands include at least one of a request, select, toggle, range, text input, and time.
The method comprises configuring the data provided to the plurality of remote devices to include singletons comprising atomic objects.
The singletons include a site atom configured to indicate a current site.
The singletons include a summary atom configured to indicate orb for display, system summary text, and sensor summary text.
The singletons include a security atom configured to include at least one of stateful functions and alarm dialog information to show.
The singletons include a shift atom configured to include at least one of current shift state and functions to change shifts.
The singletons include a messaging atom configured to include at least one of a list of warnings, login messages, and system messages.
The singletons include a homeview settings atom configured to include at least one of static data, homeview data, device position, and labels.
The singletons include a panel atom configured to include at least one of versions and commands.
The singletons include a history atom configured to include history commands.
The method comprises configuring the data provided to the plurality of remote devices to include groups comprising an array of atomic objects.
The groups include dynamic data atoms comprising at least one of device states and device state updates.
The groups include groups of sensor atoms.
The groups include groups of door atoms comprising at least one of door lock atoms and garage door atoms.
The groups include groups of switch atoms.
The groups include groups of thermostat atoms.
The groups include groups of power reporting atoms.
The groups include groups of camera atoms.

The method comprises configuring the data provided to the plurality of remote devices to include group items comprising instance objects.
The method comprises configuring the data provided to the plurality of remote devices to include values comprising key/value pairs corresponding to items and commands.
The method comprises configuring the data provided to the plurality of remote devices to include controls comprising local actions.
The plurality of premises devices includes at least one of a touchscreen controller, a thermostat, a security panel, a security sensor, a camera, a device controller, an actuator, a locking device, and a lighting device.
The plurality of remote devices includes at least one of a cellular telephone, a touchscreen device, a mobile telephone, and a tablet computer.
Embodiments include a system comprising an automation network including a gateway at a premises coupled to a remote server. The system includes a plurality of premises devices coupled to the gateway and forming at least one device network in the premises. The plurality of premises devices includes security system devices and automation devices. The system includes an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server. The AUI application is configured to run on each of a plurality of remote devices. The plurality of remote devices comprises a plurality of device types.
The system includes an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices. A normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.
Embodiments include a system comprising: an automation network comprising a gateway at a premises coupled to a remote server; a plurality of premises devices coupled to the gateway and forming at least one device network in the premises, wherein the plurality of premises devices includes security system devices and automation devices; an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI

application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types; an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.
The AUI application is configured to generate and present an AUI at the plurality of remote devices, wherein the AUI includes at least one display element for managing and receiving data of the plurality of premises devices.
The AUI comprises a cross-client user interface that presents data of the data model to the plurality of remote devices.
The API is configured to serve and the AUI is configured to process the normalized data of the data model regardless of a device type of a recipient remote device.
The API is a Representation State Transfer (REST) API.
The API is configured to respond to a device request using JavaScript object notation (JSON).
The data provided to the plurality of remote devices includes text history by type.
The data is provided in response to a static request for text history data.
The history data includes at least one of notable events and access history.
The text history includes at least one of notable events, all devices, alerts, automations, schedules, site access, and system.
The data provided to the plurality of remote devices includes text history by device identification (ID).

The data is provided in response to a request for text history data for a specific device of the plurality of premises devices.
The data provided to the plurality of remote devices includes text history by user identification (ID).
The data is provided in response to a request for text history data for a specific user corresponding to the plurality of premises devices.
The data provided to the plurality of remote devices includes media history by camera identification (ID).
The data is provided in response to a request for media history data for a specific camera device of the plurality of premises devices.
The media history includes media uniform resource locators (URLs).
The data provided to the plurality of remote devices includes history for a thermostat device of the plurality of premises devices.
The data provided includes at least one of numeric values and text values.
The data provided comprises a graph of historical data of the thermostat device.
The data provided to the plurality of remote devices includes history for an energy device of the plurality of premises devices.
The data provided includes at least one of numeric values and text values.
The data provided comprises a graph of historical data of the energy device.
The plurality of premises devices includes a touchscreen controller.
The plurality of premises devices includes a thermostat.
The plurality of premises devices includes at least one of a security panel, a security sensor, and a camera.
The plurality of premises devices includes a device controller.
The plurality of premises devices includes an actuator.
The plurality of premises devices includes at least one of a locking device and a lighting device.
The plurality of remote devices includes a cellular telephone.
The plurality of remote devices includes a touchscreen device.

The plurality of remote devices includes at least one of a mobile telephone and a tablet computer.
Embodiments include a method comprising configuring a gateway at a premises as an automation network. The gateway is coupled to a remote server. The method includes forming at least one device network in the premises. The at least one device network includes a plurality of premises devices coupled to the gateway. The method includes configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server. The AUI application is configured to run on each of a plurality of remote devices.
The plurality of remote devices comprises a plurality of device types. The method includes configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices. A
normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.
Embodiments include a method comprising: configuring a gateway at a premises as an automation network, wherein the gateway is coupled to a remote server;
forming at least one device network in the premises, wherein the at least one device network includes a plurality of premises devices coupled to the gateway; configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI
application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types; configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.

The method comprises configuring the AUI application to generate and present an AUI at the plurality of remote devices, wherein the AUI includes at least one display element for managing and receiving data of the plurality of premises devices.
The method comprises configuring the AUI to include a cross-client user interface that presents data of the data model to the plurality of remote devices.
The method comprises configuring the API to serve and the AUI to process the normalized data of the data model regardless of a device type of a recipient remote device.
The API is a Representation State Transfer (REST) API.
The method comprises configuring the API to respond to a device request using JavaScript object notation (JSON).
The method comprises configuring the data provided to the plurality of remote devices to include text history by type.
The method comprises providing the data in response to a static request for text history data.
The method comprises configuring the history data to include at least one of notable events and access history.
The method comprises configuring the text history to include at least one of notable events, all devices, alerts, automations, schedules, site access, and system.
The method comprises configuring the data provided to the plurality of remote devices to include text history by device identification (ID).
The method comprises providing the data in response to a request for text history data for a specific device of the plurality of premises devices.
The method comprises configuring the data provided to the plurality of remote devices to include text history by user identification (ID).
The method comprises providing the data in response to a request for text history data for a specific user corresponding to the plurality of premises devices.
The method comprises configuring the data provided to the plurality of remote devices to include media history by camera identification (ID).

The method comprises providing the data in response to a request for media history data for a specific camera device of the plurality of premises devices.
The method comprises configuring the media history to include media uniform resource locators (URLs).
The method comprises configuring the data provided to the plurality of remote devices to include history data for a thermostat device of the plurality of premises devices.
The method comprises configuring the data provided to include at least one of numeric values and text values.
The method comprises configuring the data provided to include a graph of historical data of the thermostat device.
The method comprises configuring the data provided to the plurality of remote devices to include history for an energy device of the plurality of premises devices.
The method comprises configuring the data provided to include at least one of numeric values and text values.
The method comprises configuring the data provided to include a graph of historical data of the energy device.
The plurality of premises devices includes at least one of a touchscreen controller, a thermostat, a security panel, a security sensor, a camera, a device controller, an actuator, a locking device, and a lighting device.
The plurality of remote devices includes at least one of a cellular telephone, a touchscreen device, a mobile telephone, and a tablet computer.
As described above, computer networks suitable for use with the embodiments described herein include local area networks (LAN), wide area networks (WAN), Internet, or other connection services and network variations such as the world wide web, the public internet, a private internet, a private computer network, a public network, a mobile network, a cellular network, a value-added network, and the like.
Computing devices coupled or connected to the network may be any microprocessor controlled device that permits access to the network, including terminal devices, such as personal computers, workstations, servers, mini computers, main-frame computers, laptop computers, mobile computers, palm top computers, hand held computers, mobile phones, TV set-top boxes, or combinations thereof. The computer network may include one of more LANs, WANs, Internets, and computers. The computers may serve as servers, clients, or a combination thereof.
The integrated security system can be a component of a single system, multiple systems, and/or geographically separate systems. The integrated security system can also be a subcomponent or subsystem of a single system, multiple systems, and/or geographically separate systems. The integrated security system can be coupled to one or more other components (not shown) of a host system or a system coupled to the host system.
One or more components of the integrated security system and/or a corresponding system or application to which the integrated security system is coupled or connected includes and/or runs under and/or in association with a processing system. The processing system includes any collection of processor-based devices or computing devices operating together, or components of processing systems or devices, as is known in the art. For example, the processing system can include one or more of a portable computer, portable communication device operating in a communication network, and/or a network server. The portable computer can be any of a number and/or combination of devices selected from among personal computers, personal digital assistants, portable computing devices, and portable communication devices, but is not so limited.
The processing system can include components within a larger computer system.
The processing system of an embodiment includes at least one processor and at least one memory device or subsystem. The processing system can also include or be coupled to at least one database. The term "processor" as generally used herein refers to any logic processing unit, such as one or more central processing units (CPUs), digital signal processors (DSPs), application-specific integrated circuits (ASIC), etc. The processor and memory can be monolithically integrated onto a single chip, distributed among a number of chips or components, and/or provided by some combination of algorithms. The methods described herein can be implemented in one or more of software algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.
The components of any system that includes the integrated security system can be located together or in separate locations. Communication paths couple the components and include any medium for communicating or transferring files among the components.
The communication paths include wireless connections, wired connections, and hybrid wireless/wired connections. The communication paths also include couplings or connections to networks including local area networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), proprietary networks, interoffice or backend networks, and the Internet. Furthermore, the communication paths include removable fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines, buses, and electronic mail messages.
Aspects of the integrated security system and corresponding systems and methods described herein may be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (PLDs), such as field programmable gate arrays (FPGAs), programmable array logic (PAL) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits (ASICs). Some other possibilities for implementing aspects of the integrated security system and corresponding systems and methods include: microcontrollers with memory (such as electronically erasable programmable read only memory (EEPROM)), embedded microprocessors, firmware, software, etc. Furthermore, aspects of the integrated security system and corresponding systems and methods may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. Of course the underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, etc.
It should be noted that any system, method, and/or other components disclosed herein may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, etc.). When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the above described components may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs.
Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words "herein,"
"hereunder," "above," "below," and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word "or" is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
The above description of embodiments of the integrated security system and corresponding systems and methods is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the integrated security system and corresponding systems and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the integrated security system and corresponding systems and methods provided herein can be applied to other systems and methods, not only for the systems and methods described above.
The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the integrated security system and corresponding systems and methods in light of the above detailed description.

Claims (128)

What is claimed is:
1. A system comprising:
an automation network comprising a gateway at a premises coupled to a remote server;
a plurality of premises devices coupled to the gateway and forming at least one device network in the premises, wherein the plurality of premises devices includes security system devices and automation devices;
an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types;
an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
2. The system of claim 1, wherein the AUI application is configured to generate and present an AUI at the plurality of remote devices, wherein the AUI includes at least one display element for managing and receiving data of the plurality of premises devices.
3. The system of claim 1, wherein the AUI comprises a cross-client user interface that presents data of the data model to the plurality of remote devices.
4. The system of claim 1, wherein the data of each of the plurality of premises devices includes at least one of command data, response data, state data, sensor data, identification data, detector data, and image data.
5. The system of claim 1, wherein the API is configured to serve and the AUI is configured to process the normalized data of the data model regardless of a device type of a recipient remote device.
6. The system of claim 5, wherein the API is a Representation State Transfer (REST) API.
7. The system of claim 6, wherein the API is configured to respond to a device request using JavaScript object notation (JSON).
8. The system of claim 7, wherein the data provided to the plurality of remote devices includes commands comprising data of actions capable of being invoked on at least one of the gateway and the remote server.
9. The system of claim 8, wherein the commands include at least one of input objects, current value, and possible new values.
10. The system of claim 8, wherein the commands include at least one of a request, select, toggle, range, text input, and time.
11. The system of claim 7, wherein the data provided to the plurality of remote devices includes singletons comprising atomic objects.
12. The system of claim 11, wherein the singletons include a site atom configured to indicate a current site.
13. The system of claim 11, wherein the singletons include a summary atom configured to indicate orb for display, system summary text, and sensor summary text.
14. The system of claim 11, wherein the singletons include a security atom configured to include at least one of stateful functions and alarm dialog information to show.
15. The system of claim 11, wherein the singletons include a shift atom configured to include at least one of current shift state and functions to change shifts.
16. The system of claim 11, wherein the singletons include a messaging atom configured to include at least one of a list of warnings, login messages, and system messages.
17. The system of claim 11, wherein the singletons include a homeview settings atom configured to include at least one of static data, homeview data, device position, and labels.
18. The system of claim 11, wherein the singletons include a panel atom configured to include at least one of versions and commands.
19. The system of claim 11, wherein the singletons include a history atom configured to include history commands.
20. The system of claim 7, wherein the data provided to the plurality of remote devices includes groups comprising an array of atomic objects.
21. The system of claim 20, wherein the groups include dynamic data atoms comprising at least one of device states and device state updates.
22. The system of claim 20, wherein the groups include groups of sensor atoms.
23. The system of claim 20, wherein the groups include groups of door atoms comprising at least one of door lock atoms and garage door atoms.
24. The system of claim 20, wherein the groups include groups of switch atoms.
25. The system of claim 20, wherein the groups include groups of thermostat atoms.
26. The system of claim 20, wherein the groups include groups of power reporting atoms.
27. The system of claim 20, wherein the groups include groups of camera atoms.
28. The system of claim 7, wherein the data provided to the plurality of remote devices includes group items comprising instance objects.
29. The system of claim 7, wherein the data provided to the plurality of remote devices includes values comprising key/value pairs corresponding to items and commands.
30. The system of claim 7, wherein the data provided to the plurality of remote devices includes controls comprising local actions.
31. The system of claim 1, wherein the plurality of premises devices includes a touchscreen controller.
32. The system of claim 1, wherein the plurality of premises devices includes a thermostat.
33. The system of claim 1, wherein the plurality of premises devices includes at least one of a security panel, a security sensor, and a camera.
34. The system of claim 1, wherein the plurality of premises devices includes a device controller.
35. The system of claim 1, wherein the plurality of premises devices includes an actuator.
36. The system of claim 1, wherein the plurality of premises devices includes at least one of a locking device and a lighting device.
37. The system of claim 1, wherein the plurality of remote devices includes a cellular telephone.
38. The system of claim 1, wherein the plurality of remote devices includes a touchscreen device.
39. The system of claim 1, wherein the plurality of remote devices includes at least one of a mobile telephone and a tablet computer.
40. A method comprising:
configuring a gateway at a premises as an automation network, wherein the gateway is coupled to a remote server;

forming at least one device network in the premises, wherein the at least one device network includes a plurality of premises devices coupled to the gateway;
configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types;
configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including state data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein the API includes a normalized data model configured to generate the normalized data including the state data of the plurality of premises devices agnostically to the plurality of remote devices.
41. The method of claim 40, comprising configuring the AUI application to generate and present an AUI at the plurality of remote devices, wherein the AUI
includes at least one display element for managing and receiving data of the plurality of premises devices.
42. The method of claim 40, comprising configuring the AUI to include a cross-client user interface that presents data of the data model to the plurality of remote devices.
43. The method of claim 40, wherein the data of each of the plurality of premises devices includes at least one of command data, response data, state data, sensor data, identification data, detector data, and image data.
44. The method of claim 40, comprising configuring the API to serve and configuring the AUI to process the normalized data of the data model regardless of a device type of a recipient remote device.
45. The method of claim 44, wherein the API is a Representation State Transfer (REST) API.
46. The method of claim 45, comprising configuring the API to respond to a device request using JavaScript object notation (JSON).
47. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include commands comprising data of actions capable of being invoked on at least one of the gateway and the remote server.
48. The method of claim 47, wherein the commands include at least one of input objects, current value, and possible new values.
49. The method of claim 47, wherein the commands include at least one of a request, select, toggle, range, text input, and time.
50. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include singletons comprising atomic objects.
51. The method of claim 50, wherein the singletons include a site atom configured to indicate a current site.
52. The method of claim 50, wherein the singletons include a summary atom configured to indicate orb for display, system summary text, and sensor summary text.
53. The method of claim 50, wherein the singletons include a security atom configured to include at least one of stateful functions and alarm dialog information to show.
54. The method of claim 50, wherein the singletons include a shift atom configured to include at least one of current shift state and functions to change shifts.
55. The method of claim 50, wherein the singletons include a messaging atom configured to include at least one of a list of warnings, login messages, and system messages.
56. The method of claim 50, wherein the singletons include a homeview settings atom configured to include at least one of static data, homeview data, device position, and labels.
57. The method of claim 50, wherein the singletons include a panel atom configured to include at least one of versions and commands.
58. The method of claim 50, wherein the singletons include a history atom configured to include history commands.
59. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include groups comprising an array of atomic objects.
60. The method of claim 59, wherein the groups include dynamic data atoms comprising at least one of device states and device state updates.
61. The method of claim 59, wherein the groups include groups of sensor atoms.
62. The method of claim 59, wherein the groups include groups of door atoms comprising at least one of door lock atoms and garage door atoms.
63. The method of claim 59, wherein the groups include groups of switch atoms.
64. The method of claim 59, wherein the groups include groups of thermostat atoms.
65. The method of claim 59, wherein the groups include groups of power reporting atoms.
66. The method of claim 59, wherein the groups include groups of camera atoms.
67. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include group items comprising instance objects.
68. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include values comprising key/value pairs corresponding to items and commands.
69. The method of claim 46, comprising configuring the data provided to the plurality of remote devices to include controls comprising local actions.
70. The method of claim 40, wherein the plurality of premises devices includes at least one of a touchscreen controller, a thermostat, a security panel, a security sensor, a camera, a device controller, an actuator, a locking device, and a lighting device.
71. The method of claim 40, wherein the plurality of remote devices includes at least one of a cellular telephone, a touchscreen device, a mobile telephone, and a tablet computer.
72. A system comprising:
an automation network comprising a gateway at a premises coupled to a remote server;

a plurality of premises devices coupled to the gateway and forming at least one device network in the premises, wherein the plurality of premises devices includes security system devices and automation devices;
an automation user interface (AUI) application configured to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types;
an application program interface (API) configured to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.
73. The system of claim 72, wherein the AUI application is configured to generate and present an AUI at the plurality of remote devices, wherein the AUI
includes at least one display element for managing and receiving data of the plurality of premises devices.
74. The system of claim 72, wherein the AUI comprises a cross-client user interface that presents data of the data model to the plurality of remote devices.
75. The system of claim 72, wherein the API is configured to serve and the AUI is configured to process the normalized data of the data model regardless of a device type of a recipient remote device.
76. The system of claim 75, wherein the API is a Representation State Transfer (REST) API.
77. The system of claim 76, wherein the API is configured to respond to a device request using JavaScript object notation (JSON).
78. The system of claim 77, wherein the data provided to the plurality of remote devices includes text history by type.
79. The system of claim 78, wherein the data is provided in response to a static request for text history data.
80. The system of claim 79, wherein the history data includes at least one of notable events and access history.
81. The system of claim 78, wherein the text history includes at least one of notable events, all devices, alerts, automations, schedules, site access, and system.
82. The system of claim 77, wherein the data provided to the plurality of remote devices includes text history by device identification (ID).
83. The system of claim 82, wherein the data is provided in response to a request for text history data for a specific device of the plurality of premises devices.
84. The system of claim 77, wherein the data provided to the plurality of remote devices includes text history by user identification (ID).
85. The system of claim 84, wherein the data is provided in response to a request for text history data for a specific user corresponding to the plurality of premises devices.
86. The system of claim 77, wherein the data provided to the plurality of remote devices includes media history by camera identification (ID).
87. The system of claim 86, wherein the data is provided in response to a request for media history data for a specific camera device of the plurality of premises devices.
88. The system of claim 87, wherein the media history includes media uniform resource locators (URLs).
89. The system of claim 77, wherein the data provided to the plurality of remote devices includes history for a thermostat device of the plurality of premises devices.
90. The system of claim 89, wherein the data provided includes at least one of numeric values and text values.
91. The system of claim 90, wherein the data provided comprises a graph of historical data of the thermostat device.
92. The system of claim 77, wherein the data provided to the plurality of remote devices includes history for an energy device of the plurality of premises devices.
93. The system of claim 92, wherein the data provided includes at least one of numeric values and text values.
94. The system of claim 93, wherein the data provided comprises a graph of historical data of the energy device.
95. The system of claim 72, wherein the plurality of premises devices includes a touchscreen controller.
96. The system of claim 72, wherein the plurality of premises devices includes a thermostat.
97. The system of claim 72, wherein the plurality of premises devices includes at least one of a security panel, a security sensor, and a camera.
98. The system of claim 72, wherein the plurality of premises devices includes a device controller.
99. The system of claim 72, wherein the plurality of premises devices includes an actuator.
100. The system of claim 72, wherein the plurality of premises devices includes at least one of a locking device and a lighting device.
101. The system of claim 72, wherein the plurality of remote devices includes a cellular telephone.
102. The system of claim 72, wherein the plurality of remote devices includes a touchscreen device.
103. The system of claim 72, wherein the plurality of remote devices includes at least one of a mobile telephone and a tablet computer.
104. A method comprising:
configuring a gateway at a premises as an automation network, wherein the gateway is coupled to a remote server;
forming at least one device network in the premises, wherein the at least one device network includes a plurality of premises devices coupled to the gateway;

configuring an automation user interface (AUI) application to access the plurality of premises devices via at least one of the gateway and the remote server, wherein the AUI application is configured to run on each of a plurality of remote devices, wherein the plurality of remote devices comprises a plurality of device types;
configuring an application program interface (API) to execute on at least one of the gateway and the remote server and to serve normalized data including history data of the plurality of premises devices to the AUI application on the plurality of remote devices, wherein a normalized data model is configured to generate the normalized data including the history data of the plurality of premises devices agnostically to the plurality of remote devices.
105. The method of claim 104, comprising configuring the AM application to generate and present an AUI at the plurality of remote devices, wherein the AUI
includes at least one display element for managing and receiving data of the plurality of premises devices.
106. The method of claim 104, comprising configuring the AUT to include a cross-client user interface that presents data of the data model to the plurality of remote devices.
107. The method of claim 104, comprising configuring the API to serve and the AUI to process the normalized data of the data model regardless of a device type of a recipient remote device.
108. The method of claim 107, wherein the API is a Representation State Transfer (REST) API.
109. The method of claim 108, comprising configuring the API to respond to a device request using JavaScript object notation (JSON).
110. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include text history by type.
111. The method of claim 110, comprising providing the data in response to a static request for text history data.
112. The method of claim 111, comprising configuring the history data to include at least one of notable events and access history.
113. The method of claim 110, comprising configuring the text history to include at least one of notable events, all devices, alerts, automations, schedules, site access, and system.
114. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include text history by device identification (ID).
115. The method of claim 114, comprising providing the data in response to a request for text history data for a specific device of the plurality of premises devices.
116. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include text history by user identification (ID).
117. The method of claim 116, comprising providing the data in response to a request for text history data for a specific user corresponding to the plurality of premises devices.
118. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include media history by camera identification (ID).
119. The method of claim 118, comprising providing the data in response to a request for media history data for a specific camera device of the plurality of premises devices.
120. The method of claim 119, comprising configuring the media history to include media uniform resource locators (URLs).
121. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include history data for a thermostat device of the plurality of premises devices.
122. The method of claim 121, comprising configuring the data provided to include at least one of numeric values and text values.
123. The method of claim 122, comprising configuring the data provided to include a graph of historical data of the thermostat device.
124. The method of claim 109, comprising configuring the data provided to the plurality of remote devices to include history for an energy device of the plurality of premises devices.
125. The method of claim 124, comprising configuring the data provided to include at least one of numeric values and text values.
126. The method of claim 125, comprising configuring the data provided to include a graph of historical data of the energy device.
127. The method of claim 104, wherein the plurality of premises devices includes at least one of a touchscreen controller, a thermostat, a security panel, a security sensor, a camera, a device controller, an actuator, a locking device, and a lighting device.
128. The method of claim 104, wherein the plurality of remote devices includes at least one of a cellular telephone, a touchscreen device, a mobile telephone, and a tablet computer.
CA2992429A 2005-03-16 2016-06-09 Data model for home automation Pending CA2992429A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US201562172913P true 2015-06-09 2015-06-09
US201562172885P true 2015-06-09 2015-06-09
US62/172,885 2015-06-09
US62/172,913 2015-06-09
US14/943,162 US10062245B2 (en) 2005-03-16 2015-11-17 Cross-client sensor user interface in an integrated security network
US14/943,162 2015-11-17
PCT/US2016/036574 WO2016201033A1 (en) 2015-06-09 2016-06-09 Data model for home automation

Publications (1)

Publication Number Publication Date
CA2992429A1 true CA2992429A1 (en) 2016-12-15

Family

ID=57504579

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2992429A Pending CA2992429A1 (en) 2005-03-16 2016-06-09 Data model for home automation

Country Status (3)

Country Link
EP (1) EP3308222A4 (en)
CA (1) CA2992429A1 (en)
WO (1) WO2016201033A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10051078B2 (en) 2007-06-12 2018-08-14 Icontrol Networks, Inc. WiFi-to-serial encapsulation in systems
US10062273B2 (en) 2010-09-28 2018-08-28 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10062245B2 (en) 2005-03-16 2018-08-28 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10079839B1 (en) 2007-06-12 2018-09-18 Icontrol Networks, Inc. Activation of gateway device
US10078958B2 (en) 2010-12-17 2018-09-18 Icontrol Networks, Inc. Method and system for logging security event data
US10091014B2 (en) 2005-03-16 2018-10-02 Icontrol Networks, Inc. Integrated security network with security alarm signaling system
US10127801B2 (en) 2005-03-16 2018-11-13 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10142392B2 (en) 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance
US10142394B2 (en) 2007-06-12 2018-11-27 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US10142166B2 (en) 2004-03-16 2018-11-27 Icontrol Networks, Inc. Takeover of security network
US10140840B2 (en) 2007-04-23 2018-11-27 Icontrol Networks, Inc. Method and system for providing alternate network access
US10156959B2 (en) 2005-03-16 2018-12-18 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10156831B2 (en) 2004-03-16 2018-12-18 Icontrol Networks, Inc. Automation system with mobile interface
US10200504B2 (en) 2007-06-12 2019-02-05 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US10237237B2 (en) 2007-06-12 2019-03-19 Icontrol Networks, Inc. Communication protocols in integrated systems
US10237806B2 (en) 2009-04-30 2019-03-19 Icontrol Networks, Inc. Activation of a home automation controller
US10313303B2 (en) 2007-06-12 2019-06-04 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US10339791B2 (en) 2007-06-12 2019-07-02 Icontrol Networks, Inc. Security network integrated with premise security system
US10348575B2 (en) 2013-06-27 2019-07-09 Icontrol Networks, Inc. Control system user interface
US10365810B2 (en) 2015-05-05 2019-07-30 Icontrol Networks, Inc. Control system user interface

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539250A (en) * 2001-08-08 2004-10-20 松下电器产业株式会社 Device control apparatus and device control system
US8473619B2 (en) * 2005-03-16 2013-06-25 Icontrol Networks, Inc. Security network integrated with premise security system
US8612591B2 (en) * 2005-03-16 2013-12-17 Icontrol Networks, Inc. Security system with networked touchscreen
EP2868039A4 (en) * 2012-06-27 2016-10-05 Icontrol Networks Inc Control system user interface
GB2428821B (en) * 2004-03-16 2008-06-04 Icontrol Networks Inc Premises management system
US9191228B2 (en) * 2005-03-16 2015-11-17 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
EP2327063A4 (en) * 2008-08-11 2015-07-22 Icontrol Networks Inc Cross-client sensor user interface in an integrated security network
US7640351B2 (en) * 2005-11-04 2009-12-29 Intermatic Incorporated Application updating in a home automation data transfer system
WO2008085205A2 (en) * 2006-12-29 2008-07-17 Prodea Systems, Inc. System and method for providing network support services and premises gateway support infrastructure
US20090228445A1 (en) * 2008-03-04 2009-09-10 Systems Biology (1) Pvt. Ltd. Automated molecular mining and activity prediction using xml schema, xml queries, rule inference and rule engines
US20140136936A1 (en) * 2012-11-09 2014-05-15 Microsoft Corporation Spreadsheet functions to call rest api sources

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156831B2 (en) 2004-03-16 2018-12-18 Icontrol Networks, Inc. Automation system with mobile interface
US10142166B2 (en) 2004-03-16 2018-11-27 Icontrol Networks, Inc. Takeover of security network
US10127801B2 (en) 2005-03-16 2018-11-13 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10062245B2 (en) 2005-03-16 2018-08-28 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10156959B2 (en) 2005-03-16 2018-12-18 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10091014B2 (en) 2005-03-16 2018-10-02 Icontrol Networks, Inc. Integrated security network with security alarm signaling system
US10142392B2 (en) 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance
US10225314B2 (en) 2007-01-24 2019-03-05 Icontrol Networks, Inc. Methods and systems for improved system performance
US10140840B2 (en) 2007-04-23 2018-11-27 Icontrol Networks, Inc. Method and system for providing alternate network access
US10237237B2 (en) 2007-06-12 2019-03-19 Icontrol Networks, Inc. Communication protocols in integrated systems
US10142394B2 (en) 2007-06-12 2018-11-27 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US10313303B2 (en) 2007-06-12 2019-06-04 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US10079839B1 (en) 2007-06-12 2018-09-18 Icontrol Networks, Inc. Activation of gateway device
US10339791B2 (en) 2007-06-12 2019-07-02 Icontrol Networks, Inc. Security network integrated with premise security system
US10200504B2 (en) 2007-06-12 2019-02-05 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US10051078B2 (en) 2007-06-12 2018-08-14 Icontrol Networks, Inc. WiFi-to-serial encapsulation in systems
US10237806B2 (en) 2009-04-30 2019-03-19 Icontrol Networks, Inc. Activation of a home automation controller
US10275999B2 (en) 2009-04-30 2019-04-30 Icontrol Networks, Inc. Server-based notification of alarm event subsequent to communication failure with armed security system
US10332363B2 (en) 2009-04-30 2019-06-25 Icontrol Networks, Inc. Controller and interface for home security, monitoring and automation having customizable audio alerts for SMA events
US10223903B2 (en) 2010-09-28 2019-03-05 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10127802B2 (en) 2010-09-28 2018-11-13 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10062273B2 (en) 2010-09-28 2018-08-28 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US10078958B2 (en) 2010-12-17 2018-09-18 Icontrol Networks, Inc. Method and system for logging security event data
US10348575B2 (en) 2013-06-27 2019-07-09 Icontrol Networks, Inc. Control system user interface
US10365810B2 (en) 2015-05-05 2019-07-30 Icontrol Networks, Inc. Control system user interface

Also Published As

Publication number Publication date
EP3308222A1 (en) 2018-04-18
EP3308222A4 (en) 2019-01-23
WO2016201033A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
US6792323B2 (en) Method, system, and computer program product for managing controlled residential or non-residential environments
CA2884013C (en) Gateway device for machine-to-machine communication with dual cellular interfaces
AU2005223267B2 (en) Premises management system
US9231904B2 (en) Deploying and managing networked devices
CA2550783C (en) Method, system, and computer program product for automatically managing components within a controlled environment
US9584520B2 (en) Multi-tiered authentication methods for facilitating communications amongst smart home devices and cloud-based servers
US9531618B2 (en) Method and apparatus for distributed control of an interfacing-device network
US10275999B2 (en) Server-based notification of alarm event subsequent to communication failure with armed security system
CN1679019B (en) Method, device and system for managing controlled residential or non-residential environments
US20160277261A9 (en) Multi-services application gateway and system employing the same
US8543665B2 (en) Multi-services application gateway and system employing the same
US20050198040A1 (en) Network information management system
US20120154126A1 (en) Bidirectional security sensor communication for a premises security system
US10078958B2 (en) Method and system for logging security event data
EP2898709B1 (en) Subscription-notification mechanisms for synchronization of distributed states
US10262210B2 (en) Method and system for encrypting network credentials using password provided by remote server to provisioning device
US9569587B2 (en) Multi-services application gateway and system employing the same
US9349276B2 (en) Automated reporting of account and sensor information
US20170302469A1 (en) Defining and implementing sensor triggered response rules
US7039391B2 (en) Method and system for communicating with a wireless device
US20150022666A1 (en) System and method for scalable video cloud services
WO2015184387A1 (en) Accessory management system using environment model
EP1851596A2 (en) System and methods for home appliance identification and control in a networked environment
US10231003B2 (en) Camera data access based on subscription status
WO2011140439A1 (en) Method and system to configure and manage broadband-enabled digital command and control systems