CA2958154A1 - Compact multifunctional battery booster - Google Patents

Compact multifunctional battery booster

Info

Publication number
CA2958154A1
CA2958154A1 CA 2958154 CA2958154A CA2958154A1 CA 2958154 A1 CA2958154 A1 CA 2958154A1 CA 2958154 CA2958154 CA 2958154 CA 2958154 A CA2958154 A CA 2958154A CA 2958154 A1 CA2958154 A1 CA 2958154A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
battery
compact
internal
battery charger
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA 2958154
Other languages
French (fr)
Inventor
Brian F. Butler
Linh Nguyen
Patrick Clarke
Shenzhong ZHU
Xiao Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schumacher Electric Corp
Original Assignee
Schumacher Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/12Starting of engines by means of mobile, e.g. portable, starting sets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1811Charging electric vehicles using converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1822Charging electric vehicles by exchange of energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/187Battery temperature regulation
    • B60L11/1872Battery temperature regulation by control of electric loads
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • H02J7/0021Monitoring or indicating circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with indicating devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0052Charge circuits only
    • H02J7/0054Battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0052Charge circuits only
    • H02J7/0055Charge circuits only adapted for charging from various sources, e.g. AC, DC, multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuits adapted for supplying loads only
    • H02J7/0065Circuits adapted for supplying loads only using converters specially adapted for use with a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with indicating devices
    • H02J2007/005Detection of remaining charge capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M2003/1557Single ended primary inductor converters [SEPIC]

Abstract

A compact battery charger for charging a battery comprising: a microprocessor; a set of terminals operatively coupled to said microprocessor and configured to electrically couple with an automotive battery; and an internal lithium ion battery, wherein the internal lithium ion battery is a lithium ion battery, wherein a single-ended primary-inductor converter may be configured to receive an input voltage of 5VDC to 20VDC and output a predetermined DC charge voltage to said internal lithium ion battery.

Description

COMPACT MULTIFUNCTIONAL BATTERY BOOSTER
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Application No. 62/037,379 by Brian F. Butler et al., filed on August 14, 2014 and entitled "Compact Multifunctional Battery Booster." U.S. Provisional Patent Application No. 62/037,379 is hereby incorporated by reference in its entirety.
TECHNICAL FIELD

[0002] The present invention relates to a portable battery booster system and apparatus. More specifically, the present invention relates to systems, methods, and apparatuses for providing a compact multifunctional battery booster and charger.
BACKGROUND

[0003] It is well known that motorists from time to time find themselves with a battery of insufficient charge to start their vehicle. This is generally an occasion of extreme inconvenience and distress, particularly where one finds himself in this situation in an area where there are other vehicles and drivers, but no means for connecting the battery of the disabled vehicle to the battery of one of the other available vehicles. To remedy this, battery boosters were developed to jump start stranded cars. For example, U.S. Patent No. 4,079,304 discloses a battery booster system for jump starting an engine of a vehicle with a defective (or depleted) battery and interconnecting the same with a vehicle having a charged battery. Similarly, U.S. Patent Publication No. 2014/0159509 discloses a portable battery boost and jump starter apparatus for charging a vehicle battery.
Typically, such battery booster systems rely on an internal lead acid battery, which is typically large, heavy, and cumbersome. Despite the advancements thus far, a need exists for an improved compact multifunctional battery booster, and, more particularly, to an improved lithium ion battery booster.
SUMMARY OF THE INVENTION

[0004] The present disclosure is directed to an improved compact multifunctional battery booster and charger, and, more particularly, to an improved lithium ion battery booster and charger.

[0005] According to a first aspect of the present invention, a compact battery booster comprises: a processor; a display device operatively coupled to the processor, wherein the display device displays a status of the compact battery booster; a storage capacitor and an internal lithium ion battery, each of said storage capacitor and said internal lithium ion battery configured to provide a boosting energy to a vehicle coupled to an external battery; a direct current (DC) output terminal configured to electrically couple with the external battery; a single-ended primary-inductor converter configured to receive a variable input voltage between 5 volts DC and 20 volts DC and to output a predetermined output voltage to said storage capacitor and said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said storage capacitor or said internal lithium ion battery, thereby providing the boosting energy from said storage capacitor or said internal lithium ion battery to said vehicle.

[0006] According to a second aspect of the present invention, a compact battery charger comprises: a processor; a display device operatively coupled to the processor, wherein the display device displays a status of the compact battery charger; an internal lithium ion battery, said internal lithium ion battery configured to provide a predetermined output energy; a direct current (DC) output terminal, wherein the DC output terminal is configured to couple with an external battery; a single-ended primary-inductor converter configured to receive an input voltage within predetermined input voltage range and to output a predetermined charge voltage to said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said internal lithium ion battery, thereby providing the predetermined output energy from said internal lithium ion battery to said external battery.

[0007] According to a third aspect of the present invention, a compact battery charger comprises: an internal lithium ion battery, said internal lithium ion battery configured to provide a predetermined output energy; a direct current (DC) output terminal, wherein the DC output terminal is configured to couple with an external battery; an internal induction coil, wherein the internal induction coil receives energy from an electromagnetic field created by an external induction coil and converts the electromagnetic field to produce an input voltage; a DC to DC
converter that receives the input voltage and outputs a predetermined output voltage to said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said internal lithium ion battery, thereby providing the predetermined output energy from said internal lithium ion battery to said external battery.

[0008] In certain aspects, the storage capacitor is a supercapacitor.

[0009] In certain aspects, the storage capacitor draws a charging current from the external battery.

[0010] In certain aspects, the device further comprises a supercapacitor, wherein the single-ended primary-inductor converter charges the supercapacitor.

[0011] In certain aspects, the device further comprises a supercapacitor, wherein the supercapacitor draws current from the external battery to charge the supercapacitor.

[0012] In certain aspects, the predetermined input voltage range is 5 volts to 20 volts.

[0013] In certain aspects, the predetermined charge voltage is greater than the input voltage.

[0014] In certain aspects, the predetermined output energy is a boosting energy for starting an engine coupled to the external battery.

[0015] In certain aspects, the predetermined output energy is a charging energy for charging the external battery.

[0016] In certain aspects, the device further comprises (1) a reverse polarity sensor configured to detect a polarity of the external battery; (2) a temperature sensor configured to detect a temperature of said internal lithium ion battery and to provide a temperature signal to said processor; and (3) a voltage sensor configured to detect a voltage of said internal lithium ion battery.

[0017] In certain aspects, the device further comprises a removable internal data storage device.

[0018] In certain aspects, the device further comprises an internal induction coil, wherein the internal induction coil receives energy from an electromagnetic field created by an external induction coil and converts the electromagnetic field to produce the input voltage.

[0019] In certain aspects, the device further comprises a second DC
output terminal, wherein the DC output terminal provides a boosting energy for starting an engine coupled to the external battery, and wherein the second DC output terminal provides a charging energy to a portable electronic device.

[0020] In certain aspects, the second DC output terminal is a Universal Serial Bus (USB) port.

[0021] In certain aspects, the display device enters into a sleep mode after a predetermined time period of inactivity.

[0022] In certain aspects, the DC output terminal runs a predetermined current through the external battery to preheat the external battery.

[0023] In certain aspects, the device further comprises a DC to alternating current (AC) converter coupled between the internal lithium ion battery and an AC output terminal.

[0024] In certain aspects, the device further comprises an internal data storage device, wherein the internal data storage device backs up digital content stored to a portable electronic device via a USB port.
DESCRIPTION OF THE DRAWINGS

[0025] These and other advantages of the present invention will be readily understood with reference to the following specifications and attached drawings wherein:

[0026] Figure 1 illustrates an exemplary compact battery charger block diagram configured for use with a battery charging system.

[0027] Figure 2 illustrates a flow diagram of an example method for providing the jump start function using a compact battery charger.

[0028] Figure 3 illustrates an example schematic diagram of a charger having a single-ended primary-inductor converter circuit and a supercapacitor.
DETAILED DESCRIPTION

[0029] Preferred embodiments of the present invention will be described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail because they may obscure the invention in unnecessary detail. The present invention relates to a compact battery charger system, method, and apparatus. For this disclosure, the following terms and definitions shall apply:

[0030] As used herein, the word "exemplary" means "serving as an example, instance, or illustration." The embodiments described herein are not limiting, but rather are exemplary only. It should be understood that the described embodiments are not necessarily to be construed as preferred or advantageous over other embodiments. Moreover, the terms "embodiments of the invention,"
"embodiments," or "invention" do not require that all embodiments of the invention include the discussed feature, advantage, or mode of operation.

[0031] The terms "communicate" and "communicating" as used herein, include both conveying data from a source to a destination and delivering data to a communications medium, system, channel, network, device, wire, cable, fiber, circuit, and/or link to be conveyed to a destination. The term "communication" as used herein means data so conveyed or delivered. The term "communications" as used herein includes one or more of a communications medium, system, channel, network, device, wire, cable, fiber, circuit, and/or link.

[0032] The terms "coupled," "coupled to," and "coupled with" as used herein, each mean a relationship between or among two or more devices, apparatuses, files, circuits, elements, functions, operations, processes, programs, media, components, networks, systems, subsystems, and/or means, constituting any one or more of: (i) a connection, whether direct or through one or more other devices, apparatuses, files, circuits, elements, functions, operations, processes, programs, media, components, networks, systems, subsystems, or means; (ii) a communications relationship, whether direct or through one or more other devices, apparatuses, files, circuits, elements, functions, operations, processes, programs, media, components, networks, systems, subsystems, or means;
and/or (iii) a functional relationship in which the operation of any one or more devices, apparatuses, files, circuits, elements, functions, operations, processes, programs, media, components, networks, systems, subsystems, or means depends, in whole or in part, on the operation of any one or more others thereof.

[0033] The term "data" as used herein means any indicia, signals, marks, symbols, domains, symbol sets, representations, and any other physical form or forms representing information, whether permanent or temporary, whether visible, audible, acoustic, electric, magnetic, electromagnetic, or otherwise manifested. The term "data" is used to represent predetermined information in one physical form, encompassing any and all representations of corresponding information in a different physical form or forms.

[0034] The term "database" as used herein means an organized body of related data, regardless of the manner in which the data or the organized body thereof is represented. For example, the organized body of related data may be in the form of one or more of a table, map, grid, packet, datagram, frame, file, email, message, document, report, list, or any other form.

[0035] The term "network" as used herein includes both networks and inter-networks of all kinds, including the Internet, and is not limited to any particular network or inter-network.

[0036] The term "processor" as used herein means processing devices, apparatuses, programs, circuits, components, systems, and subsystems, whether implemented in hardware, tangibly embodied software, or both, and whether or not it is programmable. The term "processor"
as used herein includes, but is not limited to, one or more computing devices, hardwired circuits, signal-modifying devices and systems, devices and machines for controlling systems, central processing units, programmable devices and systems, field-programmable gate arrays, application-specific integrated circuits, systems on a chip, systems comprising discrete elements and/or circuits, state machines, virtual machines, data processors, processing facilities, and combinations of any of the foregoing.

[0037] A compact battery charger 102, as disclosed herein, may be used to start (a/k/a "boost", "jump", or "jump start") an engine coupled to an external battery 104 (e.g., a 6V/12V
nominal voltage vehicular battery, which may be fully or partially depleted).
In certain aspects, the compact battery charger 102 may be further configured to charge the external battery 104, and/or other electronic devices operatively coupled with the compact battery charger 102. Example vehicular batteries include, without limitation, lead-acid batteries (e.g., wet/flooded batteries, calcium-calcium batteries, Valve-Regulated, Lead Acid (VRLA) batteries, gel cell, and Absorbed Glass Mat (AGM)) and other rechargeable batteries (e.g., lithium ion, lithium ion polymer, Nickel-Metal Hydride (NiMH), Nickel Cadmium (NiCd)). Other electronic devices that may be operatively coupled with the compact battery charger 102 include, for example, portable electronic devices 152 (e.g., phones, tablet computers, portable computers, etc.), toys, etc.

[0038] Figure 1 illustrates a block diagram of an example compact battery charger 102.
Specifically, Figure 1 illustrates a compact battery charger 102 having a processor 128 (e.g., a central processing unit (CPU)) that is operatively coupled to a Read-Only Memory (ROM) 118 for receiving one or more instruction sets, to a Random Access Memory (RAM) 120 having a plurality of buffers for temporarily storing and retrieving information, and to an internal data storage device 122 (e.g., a hard drive, such a solid state drive, or other non-volatile data storage device, such as flash memory).
A clock 130 is also coupled to the processor 128 for providing clock or timing signals or pulses thereto. Those skilled in the art will understand that the compact battery charger 102 includes one or more bus structures for interconnecting its various components. Further, to increase ease of use in mobile applications, the various components of a compact battery charger 102 may be housed in a single housing. In certain aspects, multiple processors 128 may be provided to facilitate operation of the compact battery charger 102, whether or not embodied within the compact battery charger 102 itself. Accordingly, serial communication may be employed to communicate information and data between multiple processors that may be used.

[0039] The internal battery 150 may be a rechargeable lithium ion battery for outputting a direct current (DC) voltage, such as lithium iron phosphate and lithium ion polymer batteries. The internal battery 150 should be sufficiently rated to boost (jump start) a vehicle coupled to an external battery 104. For example, the internal battery 150 may be rated from about 3,000 mah to 20,000 mah, or higher. A compact battery charger 102 having a 12,000 mah internal battery 150, for instance, may output 200 cranking amps / 400 peak amps during the jump start function, which is sufficient to start a vehicle, but higher power internal batteries are contemplated for larger vehicles and trucks. In certain embodiments, the internal battery 150 may comprise a plurality of electrically coupled batteries (e.g., connected in parallel, or when multiple lower voltage batteries are to be summed, in series). For example, lithium ion batteries containing LiFePO, LiFePO4, LiFeMgPO4, and LiFeYPO4 have a nominal cell voltage of about 3.2V to 3.3V each. Thus, internal battery 150 need not be limited to a single battery or single battery cell. Accordingly, four lithium ion cells may be connected in series to achieve a nominal voltage of 12.8V to 13.2V. To the extent that a higher nominal voltage is desired, additional lithium ion cells may be connected in series to achieve higher voltages.

[0040] The compact battery charger 102 may receive external power via a direct current (DC) input terminal 154 coupled to a DC power supply 156 and/or an alternating current (AC) input terminal 134 coupled to an AC power supply 148. AC power supply 148 may be wall current (e.g., 110VAC), while the DC power supply 156 may be, for example, an automotive cigarette lighter (e.g., 12VDC) or a USB port (i.e., 5VDC). The compact battery charger 102 may provide a plurality of DC
outputs 136 to facilitate charging energy (e.g., to external battery 104 or one or more portable electronic devices 152) or boosting energy (e.g., to a vehicle/external battery 104). In certain aspects, such as when a USB Port or 12V port is used, a DC connector may be used for both DC input terminal 154 and DC output terminal 136. That is, the compact battery charger 102 may draw power from a device coupled to the DC connector (functioning as a DC input terminal 154), or supply power to the device coupled to the DC connector (functioning as a DC output terminal 136). To convert the AC power supply 148, an AC to DC transformer may be provided, which may be integral with, or external to, the compact battery charger 102. An AC to DC transformer may removably coupled to wall current and removably coupled to the compact battery charger 102. In certain aspects, a power inverter and AC output terminal may be provided to output an AC voltage (e.g., a 110VAC output).
In such an embodiment, power from the DC power supply 156 or the internal battery 150 may be processed (e.g., using a DC to AC inverter) and used to supply the AC voltage to the AC output terminal.

[0041] In operation, when the AC power supply 148 or DC power supply 156 is unavailable (e.g., disconnected, out of service, when a circuit breaker is blown, the compact battery charger 102 is otherwise disconnected, etc.), the compact battery charger 102 may draw the power needed to operate the compact battery charger 102's components from the external battery 104 and/or internal battery 150, thereby enabling the user to determine the status of the compact battery charger 102 (and state of charge, or other parameters, of the external battery 104) when the AC power supply 148 and the DC
power supply 156. To that end, the compact battery charger 102 may report a power supply failure (e.g., as an alert) to one or more portable electronic devices 152 (e.g., phones, tablet computers, portable computers, or other handheld terminals) within a battery monitoring system via a communication network. A suitable example battery monitoring system is disclosed by commonly owned U.S. Patent Serial No. 14/826,805 by Brian F. Butler et al, filed August 14, 2015 and titled "Battery Charger Status Control System And Method."

[0042] The battery charging method or technique can be any of a variety of charging techniques including conventional, fast charging, and the like. The compact battery charger 102 may be further configured to determine, automatically, different battery chemistry (e.g., AGM, gel, lithium ion, etc.) and the battery's nominal voltage. The charging characteristics of a battery charger may be configured to match the battery chemistry of the battery to be charged. For example, lead acid batteries may be charged with constant power, constant current, constant voltage, or combination thereof. Such batteries are known to be charged with both linear as well as switched-mode battery chargers. U.S. Patent No. 7,808,211, assigned to the same assignee as the assignee of the present invention, discloses an example of a switched-mode battery charger for automotive and marine battery applications. Further, commonly owned U.S. Patent No. 8,947,054 discloses a battery charger and method utilizing alternating DC charging current, while commonly owned U.S. Patent No.
8,575,899 discloses a battery charger with automatic voltage detection.

[0043] The identified battery chemistry and voltage may be displayed on display device 114.
The compact battery charger 102 may indicate to the user (e.g., via display device 114) the number of ampere hours put into battery, and/or an indication of the state of health of the external battery 104.
For example, if customer inputs a battery size/model number, the compact battery charger 102 can use the battery capacity to provide the state of health. The compact battery charger 102 may indicate to the user the state of charge or health of the internal battery 150 (e.g., the number of coulombs) via display device 114.

[0044] The compact battery charger 102 may further include an input/output interface 126 that interfaces the processor 128 with one or more peripheral and/or communicative devices, such as a user interface 138, a Global Positioning System (GPS) transmitter 140, a wired link 142, a wireless device 144, a microphone 158, and a speaker 124, which may be used to signal an alert (e.g., charge complete, error, etc.) or other status information.

[0045] As illustrated, the processor 128 may be operatively coupled to a display device 114 via a display driver 116. The display device 114 may comprise, or otherwise employ, one or more light emitting diodes (LEDs) and/or a liquid crystal display (LCD) screen. The LCD screen may be an alphanumeric segmented LCD display, or a matrix LCD display, such as those used on portable electronic devices. In certain embodiments, the LCD screen may further provide touch screen functionality to facilitate user input device via a thin layer of sensing circuitry present either beneath the visible portion of display device 114's surface, or as part of a thin, clear membrane overlying the display device 114 that is sensitive to the position of a pen or finger on its surface. In operation, the display driver 116 may receive display data from the processor 128 via input/output interface 126 and display that display data via the display device 114. For example, interactive display device 114 may be provided on the housing to provide the user with status information and/or input capability (e.g., via a touch screen or voice commands using, for example, wave files).
Reminders, or other information (e.g., status information), may be displayed to the user, via the display device 114, as a scrolling message or menu structure (e.g., a graphical user interface (GUI)).

[0046] With regard to the internal data storage device 122, example flash memory devices include, for example, memory cards, such as RS-MMC, miniSD, microSD, etc. The internal data storage device 122 can function as an external hard drive or flash drive, thereby enabling the user to store digital files to the compact battery charger 102. In instances where the internal data storage device 122 is removable, as is the case with memory cards, the user can interchange, upgrade, or remove the memory card (e.g., if the compact battery charger 102 becomes defective) to avoid data loss. The display device 114 may be used to display, for example, the contents of the internal data storage device 122, the remaining storage capacity (e.g., as a percentage or in terms of available bytes), and, in certain aspects, the digital files themselves (e.g., photos may be displayed, files accessed, etc.). In certain aspects, in addition to (or in lieu of) charging a portable electronic device (e.g., a smart phone), the compact battery charger 102 may back up digital content stored to the portable electronic device 152 when the portable electronic device 152 is coupled to the compact battery charger 102 via, for example, the USB port.

[0047] When an external battery 104 is connected to DC output terminal 136 (e.g., via clamps), the display device 114 may display the external battery 104's voltage. The display device 114 may also indicate the state of charge in terms of percent of charge of the jump starter's internal battery 150. During user inactivity, such as when charging the external battery 104 or the internal battery 150, the display device 114 may enter a sleep mode and will not display any messages until activity is detected (e.g., when devices are connected/disconnected from the compact battery charger 102 or the user interface 138 is actuated). As discussed below, if the external battery 104's voltage is too low to detect, the display device 114 may remain blank and the voltage will not display, but a manual start procedure may be selected to enable the jump start function. The jump start function may be used to start a vehicle having an external battery 104 (e.g., a depleted automotive battery).
The jump start function causes the compact battery charger 102 to output about 400-600 peak amperes (270-405 cranking amperes) via clamps coupled to the DC output terminal 136. One of skill in the art, however, would recognize that the internal battery 150 may be replaced with a higher capacity battery to facilitate higher output currents.

[0048] In one example, once an AC power supply 148 is connected, a first LED may be illuminated to indicate that the compact battery charger 102's internal battery 150 is charging. When the compact battery charger 102 is fully charged, a second LED on the unit may be illuminated.
Finally, when the DC output terminal 136 is successfully coupled (e.g., clamped or otherwise electrically coupled) to external battery 104, a third LED may be illuminated.
Rather than employing separate LEDs, an LCD display or a single multi-color LED may be employed that changes color depending on the status of the compact battery charger 102. The compact battery charger 102 may be further equipped with a light, which functions as a map light, flash light, emergency light, etc. The light may be activated and deactivated via user interface 138. The light may be an LED that outputs, for example, about 1 Watt/90 Lm.

[0049] When an LCD display is employed, the display device 114 may be configured to display, in addition to, or in lieu of, the LEDs, a number of messages to indicate the current status, or operation of the compact battery charger 102 to the user. In selecting the message(s) to display, the compact battery charger 102 measures one or more parameters of the internal battery 150, external battery 104, or of the compact battery charger 102. Parameters include, for example, voltage, power capacity, temperature, connection status, etc. Example messages include those illustrated in Table A, where "[XX]" represents a measured or calculated value.

Message Status/Condition Coupled to AC power supply 148 or DC power supply 156 and Charging [XX]%
internal battery 150 is charging.
Coupled to AC power supply 148 and internal battery 150 is Fully Charged fully charged.
Disconnect from AC power supply 148 or DC power supply Battery Too Hot To Charge 156 and allow internal battery 150 to cool down before charging.
Battery Too Cold To Charge The temperature of the internal battery 150 is too low.
The USB port is in use while the internal battery 150 is Charging - USB On charging.
The 12V port is in use while the internal battery 150 is Charging ¨ 12V On charging.
The internal battery 150 is fully charged and the USB port is in Fully Charged - USB On use.
The internal battery 150 is fully charged and the 12V port is in Fully Charged - 12V On use.
Attempting to use the jump starter function while the internal Unplug Charger battery 150 is charging.
Charge Aborted Charging cannot be completed normally.
The USB port is in use. The percentage shows the internal Battery [XX]% - USB On battery 150's charge.
Battery [XX]% - 12V On The 12V port is in use.
12V/USB Overload The 12V/USB port is overloaded.
While using the 12V/USB port, the internal battery 150's Battery Low - Recharge voltage has dropped. The 12V/USB power will shut off after minutes.
Battery [XX]% - Clamps The compact battery charger 102 is turned on, but does not Disconnected detect external battery 104.
The DC output terminal 136 is connected backwards to an Warning - Reverse Polarity external battery 104 (i.e., reverse polarity).
The jump start function button has been selected, but the Battery Low-Recharge internal battery 150 has discharged below a predetermined level.
The jump start function button has been selected, but 12V/USB
Turn Off 12V/USB
function is activated.
Off The jump start button has been pressed twice.
The internal temperature of the internal battery 150 is too Battery Too Hot warm. Allow internal battery 150 to cool down before attempting another jump start.
Jump Start Ready - Battery The temperature of the internal battery 150 is too low, which Cold: Reduced Performance reduces cranking performance.
The jump start button has been pressed, compact battery Jump Start Ready charger 102 is correctly connected to a vehicle battery, and the compact battery charger 102 is ready for jump start function.
Battery Cool Down - [XX] Shows waiting time needed before attempting another engine Seconds Remaining start.
Table A

[0050] The user interface 138 may be used to enable the user to switch the output charge amperage (e.g., 1A, 10A, 50A, 100A, etc.) or another setting (e.g., charge, boost, other). Example user interface 138 devices may include, for example, physical buttons, physical switches, a digitizer (whether a touch pad, or transparent layer overlaying the display device 114), voice command (e.g.
via the microphone 158 and speaker 124), and other input devices. For instance, using the digitizer, a user may control or interact with the compact battery charger 102 by writing or tapping on the display device 114 using, a pen, stylus, or finger.

[0051] The GPS transmitter 140 may be used to track and/or monitor the location of the compact battery charger 102 and to relay the location information in the form of positional data (e.g., geographic coordinate system data or Internet Protocol (IP) address) to a booster management server or another device in battery charging system or via a communication network.
For example, a computer may be configured to track the activities, location, and/or charge history of a particular compact battery charger 102 in a battery charging system. The positional data may also be locally stored to the compact battery charger 102 (e.g., to internal data storage device 122).

[0052] The wireless device 144 may be configured to manage communication and/or transmission of signals or data between the processor 128 and another device (e.g., a remote interface device via a communication network or directly with a remote interface device) by way of a wireless transceiver. The wireless device 144 may be a wireless transceiver configured to communicate via one or more wireless standards such as Bluetooth (e.g., short-wavelength, Ultra-High Frequency (UHF) radio waves in the Industrial, Scientific, and Medical (ISM) band from 2.4 to 2.485 GHz), near-field communication (NFC), Wi-Fi (e.g., Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards), etc. For example, wireless connectivity (e.g., RF
900MHz or Wi-Fi) may be integrated with the compact battery charger 102 to provide remote monitoring and control of the compact battery charger 102 via one or more portable electronic devices 152.
Using a wireless device 144, a user may be able to start and/or stop the compact battery charger 102's charge cycle or otherwise change the settings.

[0053] That is, via a communication network and a booster management server, a user may monitor live charging status updates, charging conditions, historic data, remotely update software and firmware, and stay connected with the compact battery charger 102 manufacturer's news and updates.
In certain aspects, an internal cellular modem may be implemented that utilizes standards-based wireless technologies, such as 2G, 3G, 4G, Code Division Multiple Access (CDMA), and Global System for Mobile Communications (GSM), to provide wireless data communication over worldwide cellular networks. An advantage of an internal cellular modem is that there is no reliance on a user's local network (e.g., wireless router, modem, etc.), thereby enabling communication between the compact battery charger 102 and communication network, even in the event of a total power failure in a user's location.

[0054] In certain aspects, a wired link 142 may be provided to manage communication and/or transmission of signals or data between the processor 128 and another device via, for example, a data port 146 (e.g., RS-232, USB, and/or Ethernet ports) capable of being wiredly coupled with another data port 146 positioned outside the compact battery charger 102 housing. As noted above, a USB
port or 12V supply may be provided as DC output terminals 136 on the charger to facilitate the charging of accessories, such as portable electronic devices 152. Thus, the compact battery charger's 102 internal battery 150 may also be used as a power source for one or more DC
accessories.
Charging while operating the accessories can extend run time of the compact battery charger 102, but will also extend recharge time. If the load exceeds the charging input amperage (e.g., 1A), however, the accessory being charged may discharge the internal battery 150.

[0055] The USB port may provide, for example, up to 3.0A at 5VDC. To activate the USB
port, a USB power button (or other user selectable element) may be provided via user interface 138.
The USB port may be activated by pressing the USB power button, and disabled by, for example, pressing the USB power button a second time, two or more times in quick succession, or held for a predetermined period of time. The 12VDC power output may provide, for example, up to 6.0A a 12VDC.

[0056] The compact battery charger 102 may further comprise a plurality of sensors to provide measurement data descriptive of the surrounding environment. In certain aspects, the USB
output may automatically shut off when no load is detected (e.g., after 5-10 minutes of a no load state). The 12VDC power supply, however, may remain active until the compact battery charger 102 reaches a low battery state (e.g., the internal battery 150's charge level is less than a predetermined threshold, e.g., number of coulombs). The 12VDC power supply may be used to supply power to an integrated or remotely situated air compressor (e.g., for tire inflation) and may further function as a memory saver. The 12VDC power supply may be limited to 6.0A with over current protection. In certain aspects, a user may wish to check the internal battery 150's charge level. To do so, a button (or other user selectable element) may be provided via user interface 138 that causes the charge level to be displayed on the display device 114. To ensure accuracy of the measurement, the user may be instructed (e.g., via display device 114) to turn off the compact battery charger 102 before actuating the button (or displaying the charge level). In one aspect, the display device 114 can show the internal battery 150's percent of charge, or a battery icon indicating the same. For example, the display device 114 may display "100%" (or a solid battery icon) when the internal battery 150 is fully charged.

[0057] The compact battery charger 102 may include a temperature or humidity sensor, or configured to monitor other appliances or devices, either directly (e.g., using a sensor) or wirelessly (e.g., using Wi-Fi). For example, the compact battery charger 102 may be configured to charge and monitor, in addition to automotive batteries, one or more portable electronic devices 152 being charged by said compact battery charger 102. Another temperature sensor may be provided to measure the temperature of a battery being charged (e.g., a lithium-ion battery). If the measured temperature deviates from an operating range (i.e., a range in which the measured value is acceptable), the charging or boosting operating may be prohibited.

[0058] A power management circuit 132 may be used to manage power needed to operate the compact battery charger 102 (and components thereof), start an engine, and to charge the external battery 104 or other device. That is, AC power may be drawn from an AC power supply 148, converted to DC power, and used to charge external battery 104 and/or internal battery 150. For instance, the compact battery charger 102 may be removably coupled with an AC
power supply 148 located outside the housing (e.g., a wall outlet) via an AC input terminal 134 and an AC to DC
converter. In such an example, an AC wall charger may receive 120VAC from an electrical wall outlet and output, via an inverter, 12VDC to the compact battery charger 102's input socket. When charging, an LED (e.g., a green LED) may light, and/or the display device 114 may display a message such as "Charging - [XX]%." When the charging has completed, the LED
may pulse, and/or the display device 114 may display a message such as "Fully Charged."

[0059] In certain aspects, a Single-Ended Primary-Inductor Converter (SEPIC) circuit 302, in conjunction with an AC to DC converter 314, may be used to charge the internal battery 150.
Generally speaking, a SEPIC circuit 302 is a type of DC to DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of a SEPIC circuit 302 is controlled by the duty cycle of the control transistor.
A SEPIC circuit 302 exchanges energy between capacitors and inductors in order to convert a variable input voltage to a predetermined output voltage. The amount of energy exchanged is controlled by a switch, which may be a transistor such as a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). As a result, a SEPIC circuit 302 enables a wide variation in input voltage both substantially higher and lower than nominal battery voltage. For example, to charge a 12 volt battery (nominal voltage) to 14.4V, the variable input voltage can be a voltage from a predetermined range, such as between 5VDC to 20VDC, thereby enabling internal battery 150 recharging functionality via a USB port, which is 5VDC. That is, the input voltage may not be always known, but the predetermined range may be known. In certain aspects, the SEPIC circuit 302 may be shut off (e.g., bypassed) to facilitate a higher efficiency charge. For example, if a 20V power supply is used, the compact battery charger 102 may bypass the SEPIC circuit 302, whereas, if 12VDC power supply (e.g., a vehicle charger accessory) is used, the SEPIC circuit 302 may be employed.

[0060] Accordingly, as illustrated in Figure 3, a supercapacitor 308, or another storage capacitor, may be used in conjunction with the SEPIC circuit 302 to supply a large amount of power that is sufficient time to jump start a vehicle. Supercapacitors 308 are useful in that, unlike batteries, they do not necessarily suffer from ageing and temperature problems. Because the amount of energy in the capacitor is finite, however, supercapacitors 308 are primarily used for engine starting. Yet, when a supercapacitor is simply coupled to a depleted battery, the finite energy reserve is drained into the battery, often lowering the supercapacitor's 308 voltage to a level that cannot start an engine. A
jump starter battery, on the otherhand, can start an engine as it has sufficient current to override the discharging effects of a depleted vehicle battery. In cold weather, however, the peak current that a battery can supply may be limited due to the temperature effecting the chemical reaction inside the jump starter battery. This limit in peak current may be such that the engine may not turn over. Thus, an improved system for starting the vehicle may be jump starter having both an internal battery 150 and a supercapacitor 308, where the battery can supplies sufficient current to overcome the effects of the depleted external battery 104, while the supercapacitor 308 may supply the peak current.

[0061] In general, a supercapacitor 308 can hold a very high charge that can be released relatively quickly, thereby making it suitable for jump starting a vehicle, since the vehicle cranking operation lasts for a very short period of time during which high cranking power is required.
Moreover, supercapacitors 308 are relatively small in size and can be employed in the compact battery charger 102 to provide sufficient cranking power to jump-start a vehicle. In operation, the SEPIC circuit 302 would draw current from the depleted external battery 104, which would be used to charge the supercapacitor 308. A small lithium battery may be used in combination with the supercapacitor to prevent the supercapacitor 308 from discharging the current back to the depleted external battery 104 until the compact battery charger 102 determines that the user trying to start the vehicle. Existing supercapacitor jump starter systems are deficient because they would require the removal of one of the external battery 104 connections to prevent the capacitor from discharging back into the dead battery. The disclose arrangement, however, obviates the need to disconnect one of the external battery's 104 terminals. Thus, in one aspect of the present invention, a compact battery charger 102 is provided that employs a SEPIC circuit 302 in conjunction with a supercapacitor 308.

[0062] An example schematic diagram 300 of a charger having a SEPIC
circuit 302 in conjunction with a supercapacitor 308 is illustrated in Figure 3. As illustrated, DC input power is received from a DC power supply 156 via DC input terminal 154, or either AC
power supply 148 via an AC to DC converter 314. The DC input power is received by SEPIC circuit 302 and output to the internal battery 150 and the supercapacitor 308, in parallel, via an internal battery controller circuit 304 and a supercapacitor controller circuit 306, respectively. The internal battery controller circuit 304 and a supercapacitor controller circuit 306 may be used to monitor the parameters of the internal battery 150 and the supercapacitor 308, such as the charge level. Further, internal battery controller circuit 304 may monitor the temperature of the internal battery 150. The parameters may be communicated to the processor 128, which controlled, inter alia, the battery control relay 310, and supercapacitor controller 312.

[0063] The supercapacitor 308 and internal battery 150 may receive charging current from the DC input power. When DC input power is unavailable, for instance, the supercapacitor 308 may receive charging current from external battery 104 via the supercapacitor controller 312. For example, if an external battery 104 having a nominal voltage of 12VDC has depleted to 6VDC, the external battery 104 may be unable to start a vehicle, but the remaining power may be drawn from the depleted external battery 104 to the supercapacitor 308, which could then be used to boost the vehicle. As noted above, existing supercapacitor-only battery boosters were required to disconnect one of the external battery's 104 terminals so as to avoid premature discharge of the supercapacitor into the depleted battery. The lithium ion battery, however, may be used to output a current to the external battery 104, which may be monitored by the processor 128. If a drop in current is detected at the DC output terminal 136, the processor 128 may determines that the user is attempting to start the vehicle and the supercapacitor controller 312 may be instructed to electrically couple the supercapacitor 308 to the external battery 104 (via DC output terminal 136), thereby causing the supercapacitor 308 to quickly discharge into the external battery 104, thereby enabling the vehicle to start. The processor 128 may be similarly configured to control the battery control relay 310, which enables the internal battery 150 to discharge into the external battery 104.

[0064] Thus, the internal battery 150 and a supercapacitor 308 can each be recharged by a SEPIC circuit 302, which may any input voltage between, for example, 5VDC to 20VDC. The internal battery controller circuit 304 recharges the battery inside the compact battery charger 102 properly, while a separate supercapacitor controller circuit 306 charges the supercapacitor 308. The supercapacitor 308 may also be recharged from the internal battery 150, thereby providing multiple peak current starts. The jump starting function is controlled by one or more processors 108 (e.g., a microprocessor(s)) once the jump starter cables are attached to an external battery 104 and the jump start function is engaged (either manually or automatically) the internal jump starter battery is connected by a circuit or relay to the vehicle's battery. The internal battery 150 transfers energy into the external battery 104 and when the vehicle ignition is actuated (e.g., the key is turned, or the start button is pressed), current drawn from the starter motor will cause a voltage drop across the jump starter connection leads. This voltage drop will be detected by the one or more processors 108, at which point the one or more processors 108 will electrically couple the supercapacitor in parallel with its internal battery 150 to supply the peak current required to start the engine. If the engine starts, the jump starter function is done and the compact battery charger 102 can recharge itself (e.g., the internal battery 150 and/or the supercapacitor 308) from an electrical connection to the vehicle's electrical system, which may continue until the internal battery 150 and/or the supercapacitor 308 are fully charged. Afterwhich the compact battery charger 102 may shut off its charging function, or the clamps are removed. If the vehicle does not start, once the starter is disengaged the voltage on the external battery 104 will stabilize and the supercapacitor 308 will recharge from the internal battery 150 (or any available power from the external battery 104), and prepare for the next attempt to start the engine, whereby the process is repeated.

[0065] There are a number of ways in which the internal battery 150 may be charged. The user may also charge the internal battery 150 while driving via the DC input terminal 154 using a 12VDC car charger that couples to the cigarette lighter. Accordingly, a 12VDC
input socket may be used to recharge the compact battery charger 102 to a point where the compact battery charger 102 is charged. The compact battery charger 102 may then be used to jump start a vehicle having an external battery 104. In certain aspects, the compact battery charger 102 may be charged through the clamps, which may be retractable and/or configured to be housed in a recess of the compact battery charger 102's housing. For example, charging may be accomplished by leaving the relay closed, thereby allowing the alternator in the vehicle, which can provide up to 70A, to rapidly charge the internal battery 150. Thus, the compact battery charger 102 may be configured to sense the current in a bidirectional manner through the clamps (e.g., (1) to measure current going from the compact battery charger 102 into the external battery 104, and (2) from the external battery 104 into the compact battery charger 102). To prevent overheating when current is passing into the compact battery charger 102, a temperature sensor may be coupled to the compact battery charger 102, whereby the relay is shut off if the compact battery charger 102, or the internal battery 150, reaches a predetermined shut-off temperature threshold. Indeed, a benefit of maximizing the amount of current going back into the compact battery charger 102 is that it yields a faster charge.

[0066] In lieu of clamps, the compact battery charger 102's charger cables may be fixedly coupled to the external battery 104 (e.g., via a bolt and ring terminals) and configured to quick connect to compact battery charger 102 (e.g., using quick connects/disconnect connectors). In certain instances, the quick connect connectors may not be compatible with different devices. For example, a battery maintainer (a/k/a trickle charger) may use a first type of connector, while a compact battery charger 102 may use a second type of connector. Such issues are common between different manufacturers. Due to the inconvenience of disconnecting and reconnecting the fixedly coupled connections, it may be advantageous to use a charger cable that fixedly couples to the external battery 104 at one end, but provides a plurality of different connectors at the second end. For example, the first end may be fixedly coupled to a battery terminal through the ring terminals, while the second end may be provided with two connecters, namely (1) an EC5 (male) connector configured to couple with an EC5 (female) connector of the compact battery charger 102 and (2) a second (male) connector configured to couple with a second (female) connector of a battery charger/maintainer. One or more end caps may be further provided to protect the unused connector from dirt and debris. Such a charger cable would be of particular use for vehicles that are not often used and typically require jump starting. While two connectors are described, such a charger cable need not be limited to two connectors, nor should it be limited to the example connector types described.

[0067] In another alterative, the entire compact battery charger 102 may be permanently coupled to an external battery 104 or a vehicle's electrical system (e.g., installed under the hood or inside the vehicle). For example, the compact battery charger 102 may be fixedly coupled to the vehicle and remotely actuated using a physical button or controller (e.g., one positioned under the hood, on the dashboard, in the glove box, etc.), or wirelessly. When integrated with the vehicle, the compact battery charger's 102 housing may be fabricated to mitigate damage from engine temperature or engine fluids. Wireless control may be accomplished using, for example, a portable electronic device 152 that is communicatively coupled to the compact battery charger 102 via a communication network. For instance, a smart phone may wirelessly send a signal to the compact battery charger 102, either directly or through the vehicle's control system, which causes the compact battery charger 102 to output boosting energy or charging energy to the external battery 104 of the vehicle. The wireless communication may employ one or more wireless standards such as Bluetooth (e.g., short-wavelength, UHF radio waves in the ISM band from 2.4 to 2.485 GHz), NFC, Wi-Fi (e.g., IEEE 802.11 standards), etc. When permanently coupled to the external battery 104 or vehicle's electrical system, the compact battery charger 102 may charge the internal battery 150 when the vehicle is running via the vehicle's electrical system (e.g., 12VDC supply).

[0068] In certain aspects, the supercapacitor 308 may be integrated with the vehicle's electrical system and configured to receive any residual power from the vehicle's accessories for use in jump starting the vehicles. For example, vehicles often have sufficient power to power the vehicle's entertainment system, but insufficient power to turn over the engine. In this example, the power may be diverted from the entertainment system (or other accessory or auxiliary system) at the press of a button and used to charge an integrated supercapacitor, which may be used to jump start the vehicle.

[0069] In certain aspects, the compact battery charger 102 may employ inductive charging to facilitate wireless charging of the internal battery 150. For example, the compact battery charger 102 may be placed on a corresponding charging inductor pad to charge the compact battery charger 102's internal battery 150. In one aspect, the charging inductor pad may comprise an induction coil that creates an alternating electromagnetic field from within a charging inductor pad and a second induction coil in the compact battery charger 102 that receives power from the electromagnetic field and converts the received power into electric current to charge the internal battery 150. The two induction coils in proximity combine to form an electrical transformer.
Greater distances between transmitter and receiver coils can be achieved when the inductive charging system uses resonant inductive coupling. The coils may be fabricated using a number of materials, such as silver plated copper (or aluminum) to minimize weight and decrease resistance resulting from the skin effect. The charging inductor pad and the compact battery charger 102 may operate in compliance with one or more wireless power transfer standards, such as the Power Matters Alliance (PMA) under the IEEE
Standards Association (IEEE-SA) Industry Connections, Rezence, and Qi. The PMA
interface standard describes analog power transfer (inductive and resonant), digital transceiver communication, cloud based power management, and environmental sustainability.

[0070] Rezence is an interface standard developed by the Alliance for Wireless Power (A4WP) for wireless electrical power transfer based on the principles of magnetic resonance. The Rezence system comprises a single power transmitter unit (PTU) and one or more power receiver units (PRUs). The interface standard supports power transfer up to 50 Watts, at distances up to 5 centimeters. The power transmission frequency is about 6.78 MHz, and a plurality of devices can be powered from a single PTU depending on transmitter and receiver geometry and power levels. To use the Rezence system, the compact battery charger 102 (i.e., PRU) is placed on top of the charging inductor pad (i.e., PTU), which charges the compact battery charger 102's internal battery 150 via resonant inductive coupling. In addition to power transfer, the Rezence system may be used to transfer data from the compact battery charger 102 (e.g., from the internal data storage device 122) to another device via the charging inductor pad. There exists, however, overlap between the PMA and Rezence specifications. For instance, PMA adopted the Rezence specification as the PMA magnetic resonance charging specification for both transmitters and receivers in both single and multi-mode configurations, while Rezence adopted the PMA inductive specification as a supported option for multi-mode inductive, magnetic resonance implementations. Akin to Rezence, Qi is an interface standard developed by the Wireless Power Consortium for inductive electrical power transfer over distances of up to 4 centimeters. The Qi system comprises a PTU and a PRU. To use the Qi system, the compact battery charger 102 (i.e., PRU) is placed on top of the charging inductor pad (i.e., PTU), which charges the compact battery charger 102's internal battery 150 via resonant inductive coupling.

[0071] Inductive charging offers advantages to the compact battery charger 102, beyond convenience of use. First, the connections on both the compact battery charger 102 and charging inductor pad are enclosed; therefore corrosion is avoided (or mitigated) because any electronic components are protected from water and oxygen in the atmosphere. Moreover, to mitigate water damage, the compact battery charger 102's housing may be waterproof and buoyant to facilitate, for example, marine applications. Second, inductive charging also lends durability to the compact battery charger 102 because the need to plug and unplug the device is obviated, resulting in significantly less wear and tear on the socket of the device and the attaching cable.

[0072] In certain aspects, the compact battery charger 102 may employ solar cells to facilitate a charging of the internal battery 150 and/or supercapacitor 308. The solar cell may be provided as a separate solar cell panel, or integrated with the compact battery charger 102.
For example, solar cells may be positioned on an exterior surface of the compact battery charger's 102 housing or, when integrated with a vehicle, the solar cell may be positioned on the vehicle, such as the roof, hood, trunk, windows, etc.

[0073] The compact battery charger 102's housing may further comprise a metal (e.g., aluminum) plate on a back side to facilitate exterior warming of the interior battery 150 via the user's hand. Conversely, a button may be provided on the user interface 138 that causes power to be diverted from the interior battery 150 to a heating apparatus, such as a flexible heater. Flexible heaters can conform to a surface, such as a the compact battery charger 102. Example flexible heaters include silicone rubber heaters, polyimide film heaters, heating tapes, etc. Suitable flexible heaters include, for example, polyimide film insulated flexible heaters, such as those available from OMEGA
Engineering Inc, and Kapton heaters (a form of ultra-thin, ultra-flexible, semitransparent, lightweight heaters), such as those available from Bucan Electric Heating Devices Inc.

[0074] The DC power may be output to the external battery 104 or other devices by way of a DC output terminal 136 (e.g., battery terminal cables/clamps). Thus, power management circuit 132 and processor 128 may control the charging operation of the external battery 104 to provide charging, maintaining, and, in certain embodiments, the jump start function. Further, power management circuit 132 and processor 128 may facilitate reverse hook-up protection, as well as automatic nominal battery voltage detection. While the power management circuit 132 and processor 128 are illustrated as separate components, one of skill in the art would appreciate that power management functionality (e.g., battery charging, battery maintaining, etc.) may be provided as a single component that combines the functionality of the power management circuit 132 and processor 128.

[0075] The output power may be controlled by software (e.g., via a relay, MOSFET, and/or a silicon-controlled rectifier). The output power may be controlled using one or more parameters, such as maximum current over time, maximum temperature of battery, maximum time alone and/or minimum voltage (with or without time). Thus, when a parameter value is exceeded (or a requirement isn't met), the output voltage may be shut off. The compact battery charger 102 may include the ability to sense, or otherwise detect, that a battery (or other load/power supply) is coupled to the clamps. When a battery is not detected, the power may be shut off; however, the user may be provided with a manual override option (e.g., by holding a button for a predetermined amount of time, such as 2 to 10 seconds, or about 5 seconds). In certain aspects, the compact battery charger 102 may not charge an external battery 104 when the external battery 104 is too hot or cold, thereby avoiding potential hazards and maintaining efficiency.

[0076] The compact battery charger 102 may further include the ability to sense the occurrence of a manual override, and, if voltage is still 0 after engine start, the user may be instructed to check and replace the vehicle battery. Further, an automatic shut-off function may be provided if a battery/load/power supply is not attached to the clamps within a predetermined amount of time (e.g., about 1 to 60 minutes, more preferably about 5 to 30 minutes, most preferably about 15 minutes). The compact battery charger 102 may further preheat a cold battery by, for example, running amperes though the battery, or an internal heater. The compact battery charger 102 may further employ alternate power sources, such as a solar panel to enable battery maintaining and charging, as well as data monitoring through solar panels (e.g., one or more 12-14 Watt panels).
For example, solar cells may be used to charge or maintain fleet vehicles, such as vehicle dealership fleets, rental vehicles fleets, etc.

[0077] To use the jump start function, the DC output terminal 136 may be coupled to the external battery 104 (i.e., the battery to be charged/jumped, whether directly or indirectly) and the user interface 138 may be used to activate the boost feature. If the compact battery charger 102 is being charged when the jump start function is selected, the display device 114 may indicate that the jump start function cannot be performed while the compact battery charger 102 is charging. If the clamps are improperly connected (e.g., reverse polarity or disconnected), an aural alarm may sound, and the display device 114 may display a warning message, such as "Warning ¨
Reverse Polarity" or "Warning - Battery Disconnected." Conversely, if the clamps are properly connected and the compact battery charger 102 is ready for use, the display device 114 may display a standby message, such as "Jump Start Ready."

[0078] If the compact battery charger 102's jump start function is attempted twice within a predetermined time period (e.g., a minute), the jump start function may be prohibited until the compact battery charger 102 has cooled down. During the cool down period, the display device 114 may display a cool down message, which may also indicate the remaining time for the cool down period.

[0079] If the external battery 104's voltage is too low for the compact battery charger 102 to detect that the clamps are connected, a manual start procedure (e.g., the manual override) may be selected to enable the jump start function. To use the manual start procedure, the DC output terminal 136 may be coupled to the external battery 104 and the user interface 138 may be used to activate the boost feature. For example, the same button may be used to trigger the jump start function, but instead of a momentary press, the button may be pressed and held for a predetermined period of time (e.g., about 2 to 10 seconds, more preferably about 5 seconds) until the display device 114 displays the standby message. In certain aspects, the manual start procedure may override safety features to ensure that power is delivered regardless of connection status. Accordingly, the compact battery charger 102 may energize the clamps and cause sparking if they are touched together (i.e., shorted).

[0080] Figure 2 illustrates a flow diagram 200 of an example method for providing the jump start function using a compact battery charger 102. The process starts at step 202, which may be initiated by the user actuating a jump start function button on the user interface 138. At step 204, the compact battery charger 102's processor 128 determines, using one or more sensors, whether the temperature of the internal battery 150 is within an operating range. For example, if the temperature of the internal battery 150 exceeds a first predetermined shut-off temperature threshold, a warning is provided at step 220 indicating that the internal battery 150 is too hot.
Similarly, if the temperature of the internal battery 150 does not meet a first predetermined shut-off temperature threshold, a warning is provided at step 220 indicating that the internal battery 150 is too cold.
Otherwise, the process proceeds to the next step.

[0081] At step 206, the compact battery charger 102's processor 128 determines whether the state of charge for the internal battery 150 is within an operating range. For example, if the internal battery 150's state of charge does not meet a predetermined charge level threshold, a warning is provided at step 220 indicating that the internal battery 150 is not adequately charged. Otherwise, the process proceeds to the next step.

[0082] At step 208, the compact battery charger 102's processor 128 determines whether the internal battery 150 is being charged. If the internal battery 150's is being charged, a warning is provided at step 220 indicating that the internal battery 150 is being charged and cannot be used to provide the jump start function. Otherwise, the process proceeds to the next step.

[0083] At step 210, the compact battery charger 102's processor 128 determines whether an external battery 104 is coupled to the compact battery charger 102 (e.g., via clamps coupled to the DC
output terminal 136). If no external battery 104 is detected (e.g., by measuring a voltage or resistance across the battery terminals), a warning is provided at step 220 indicating that the external battery 104 is not detected. Otherwise, the process proceeds to the next step.

[0084] At step 212, the compact battery charger 102's processor 128 determines whether an accessory is currently coupled to, or otherwise using, the compact battery charger 102 (e.g., via DC

output terminal 136 or an AC output terminal). If an accessory is detected (e.g., by detecting a load or other current draw at an output terminal), a warning is provided at step 220 indicating that the internal battery 150 is in use and cannot be used to provide the jump start function.
Otherwise, the process proceeds to the next step.

[0085] At step 214, the compact battery charger 102's processor 128 determines whether an external battery 104 is properly coupled to the compact battery charger 102.
If a reverse polarity condition is detected for the external battery 104, a warning is provided at step 220 indicating that the external battery 104 is improperly connected. Otherwise, the process proceeds to the next step.

[0086] At step 216, the compact battery charger 102's processor 128 determines whether the compact battery charger 102 is in a cool down period. For example, as noted above, if the compact battery charger 102's jump start function is attempted twice within a predetermined time period (e.g., a minute), the jump start function may be prohibited until the compact battery charger 102 has cooled down (i.e., the predetermine time period has elapsed). Accordingly, if the jump start function has been performed within a predetermined period of time, a warning is provided at step 220 indicating a cool down message, which may also indicate the remaining time for the cool down period. After the predetermined time period has elapsed at step 222 (e.g., using a timer), the process may proceed to the next step.

[0087] At step 218, the compact battery charger 102 is ready to perform the jump start function, whereby boosting energy may be output to the external battery 104 upon actuating the jump start function button on the user interface 138, or automatically. The boosting energy may be provided for a predetermined period of time, before shutting off. For example, the boosting energy may be provided for 1 to 60 seconds, more preferably 5 to 30 seconds.

[0088] A warning may be provided at step 220 via one or more of a display device 114, a speaker 124, or to another device (e.g., a portable electronic device 152) via a communication network. The message may indicate to the user one or more statuses/conditions of the internal battery 150, external battery 104, and/or of the compact battery charger 102, such as those illustrated in Table A.

[0089] At step 224, the process may be reset such that the process is repeated. The reset feature may be manually triggered (e.g., via a button) or automatically once a predetermined condition is met. For example, if the temperature of the internal battery 150 is outside of the operating range, the system may be automatically reset once the temperature of the internal battery 150 returns to the operating range. If a reset is not selected at step 224, the processed exits at step 226.

[0090] In certain aspects, a manual override option may be selected (e.g., at any time) that causes the compact battery charger 102 to proceed to step 218, the compact battery charger 102 is ready to perform the jump start function, regardless of the status of the internal battery 150, external battery 104, or of the compact battery charger 102. Further, the compact battery charger 102's processor 128 determines whether the voltage of the internal battery 150 or the external battery 104 exceeds a predetermined threshold, in which case charging and/or boosting is prohibited to prevent overcharging.

[0091] The above-cited patents and patent publications are hereby incorporated by reference in their entirety. Although various embodiments have been described with reference to a particular arrangement of parts, features, and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other embodiments, modifications, and variations will be ascertainable to those of skill in the art. Thus, it is to be understood that the invention may therefore be practiced otherwise than as specifically described above.

Claims (21)

    What is claimed is:
  1. Claim 1. A compact battery booster comprising:
    a processor;
    a display device operatively coupled to the processor, wherein the display device displays a status of the compact battery booster;
    a storage capacitor and an internal lithium ion battery, each of said storage capacitor and said internal lithium ion battery configured to provide a boosting energy to a vehicle coupled to an external battery;
    a direct current (DC) output terminal configured to electrically couple with the external battery;
    a single-ended primary-inductor converter configured to receive a variable input voltage between 5 volts DC and 20 volts DC and to output a predetermined output voltage to said storage capacitor and said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said storage capacitor or said internal lithium ion battery, thereby providing the boosting energy from said storage capacitor or said internal lithium ion battery to said vehicle.
  2. Claim 2. The compact battery charger of claim 1, wherein the storage capacitor is a supercapacitor.
  3. Claim 3. The compact battery charger of claim 1, wherein the storage capacitor draws a charging current from the external battery.
  4. Claim 4. A compact battery charger comprising:
    a processor;

    a display device operatively coupled to the processor, wherein the display device displays a status of the compact battery charger;
    an internal lithium ion battery, said internal lithium ion battery configured to provide a predetermined output energy;
    a direct current (DC) output terminal, wherein the DC output terminal is configured to couple with an external battery;
    a single-ended primary-inductor converter configured to receive an input voltage within predetermined input voltage range and to output a predetermined charge voltage to said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said internal lithium ion battery, thereby providing the predetermined output energy from said internal lithium ion battery to said external battery.
  5. Claim 5. The compact battery charger of claim 4, further comprising a supercapacitor, wherein the single-ended primary-inductor converter charges the supercapacitor.
  6. Claim 6. The compact battery charger of claim 4, further comprising a supercapacitor, wherein the supercapacitor draws current from the external battery to charge the supercapacitor.
  7. Claim 7. The compact battery charger of claim 4, wherein the predetermined input voltage range is 5 volts to 20 volts.
  8. Claim 8. The compact battery charger of claim 4, wherein the predetermined charge voltage is greater than the input voltage.
  9. Claim 9. The compact battery charger of claim 4, wherein the predetermined output energy is a boosting energy for starting an engine coupled to the external battery.
  10. Claim 10. The compact battery charger of claim 4, wherein the predetermined output energy is a charging energy for charging the external battery.
  11. Claim 11. The compact battery charger of claim 4, further comprising (1) a reverse polarity sensor configured to detect a polarity of the external battery; (2) a temperature sensor configured to detect a temperature of said internal lithium ion battery and to provide a temperature signal to said processor; and (3) a voltage sensor configured to detect a voltage of said internal lithium ion battery.
  12. Claim 12. The compact battery charger of claim 4, further comprising a removable internal data storage device.
  13. Claim 13. The compact battery charger of claim 4, further comprising an internal induction coil, wherein the internal induction coil receives energy from an electromagnetic field created by an external induction coil and converts the electromagnetic field to produce the input voltage.
  14. Claim 14. The compact battery charger of claim 4, further comprising a second DC
    output terminal, wherein the DC output terminal provides a boosting energy for starting an engine coupled to the external battery, and wherein the second DC output terminal provides a charging energy to a portable electronic device.
  15. Claim 15. The compact battery charger of claim 14, wherein said second DC
    output terminal is a Universal Serial Bus (USB) port.
  16. Claim 16. The compact battery charger of claim 4, wherein the display device enters into a sleep mode after a predetermined time period of inactivity.
  17. Claim 17. The compact battery charger of claim 4, wherein the DC output terminal runs a predetermined current through the external battery to preheat the external battery.
  18. Claim 18. The compact battery charger of claim 4, further comprising a DC to alternating current (AC) converter coupled between the internal lithium ion battery and an AC
    output terminal.
  19. Claim 19. The compact battery charger of claim 4, further comprising an internal data storage device, wherein the internal data storage device backs up digital content stored to a portable electronic device via a USB port.
  20. Claim 20. A compact battery charger comprising:
    an internal lithium ion battery, said internal lithium ion battery configured to provide a predetermined output energy;
    a direct current (DC) output terminal, wherein the DC output terminal is configured to couple with an external battery;
    an internal induction coil, wherein the internal induction coil receives energy from an electromagnetic field created by an external induction coil and converts the electromagnetic field to produce an input voltage;
    a DC to DC converter that receives the input voltage and outputs a predetermined output voltage to said internal lithium ion battery; and a power management circuit operatively coupled to the processor, the power management circuit configured to electrically couple the DC output terminal with said internal lithium ion battery, thereby providing the predetermined output energy from said internal lithium ion battery to said external battery.
  21. Claim 21. The compact battery charger of claim 19, further comprising a removable data storage device.
CA 2958154 2014-08-14 2015-08-14 Compact multifunctional battery booster Pending CA2958154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201462037379 true 2014-08-14 2014-08-14
US62/037,379 2014-08-14
PCT/US2015/045335 WO2016025869A1 (en) 2014-08-14 2015-08-14 Compact multifunctional battery booster

Publications (1)

Publication Number Publication Date
CA2958154A1 true true CA2958154A1 (en) 2016-02-18

Family

ID=55302861

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2958154 Pending CA2958154A1 (en) 2014-08-14 2015-08-14 Compact multifunctional battery booster

Country Status (4)

Country Link
US (2) US9397513B2 (en)
EP (1) EP3180848A4 (en)
CA (1) CA2958154A1 (en)
WO (1) WO2016025869A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429455B2 (en) * 2013-08-14 2016-08-30 Chromalox, Inc. Powering sensors in a heat trace system
WO2016154431A1 (en) * 2015-03-24 2016-09-29 Horizon Hobby, LLC Systems and methods for battery charger with safety component
US20170229882A1 (en) * 2016-02-04 2017-08-10 Ksfl Co., Ltd. Power device having high electricity storage performance capacitor
WO2017196868A1 (en) * 2016-05-09 2017-11-16 Image Insight, Inc. Medical devices for diagnostic imaging
US9816475B1 (en) * 2016-05-11 2017-11-14 Cooper Technologies Company System and method for maximizing short-term energy storage in a supercapacitor array for engine start applications
US20170332517A1 (en) * 2016-05-13 2017-11-16 Lenovo (Beijing) Co., Ltd. Heat dissipating apparatus and electronic device
KR101786347B1 (en) * 2016-05-20 2017-10-18 현대자동차주식회사 Vehicle electric power system for jump start
US9797306B1 (en) * 2016-05-24 2017-10-24 Jeff Stapleton Portable generator
EP3264567A1 (en) * 2016-06-27 2018-01-03 Shenzhen Carku Technology Co., Ltd. Power supply apparatus

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079304A (en) 1976-08-03 1978-03-14 Brandenburg John D Battery jumper system for vehicles
US4829223A (en) 1988-01-25 1989-05-09 Broberg Daniel M Vehicle battery charger
JP2959657B2 (en) * 1993-05-13 1999-10-06 キヤノン株式会社 Electronics
US5796255A (en) 1996-04-06 1998-08-18 Mcgowan; Ricky Dean Electronic controlled, spark free booster cable system
US5793185A (en) * 1997-06-10 1998-08-11 Deltona Transformer Corporation Jump starter
JP3156657B2 (en) * 1997-11-12 2001-04-16 日本電気株式会社 Secondary battery unit
EP1032955A4 (en) * 1998-07-27 2002-08-07 Gnb Technologies Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
WO2001071883A1 (en) * 2000-03-20 2001-09-27 Startloop As Device for charging a starting battery in a vehicle
US20030075134A1 (en) 2000-08-31 2003-04-24 Kold Ban International, Ltd. Methods for starting an internal combustion engine
US6426606B1 (en) * 2000-10-10 2002-07-30 Purkey Electrical Consulting Apparatus for providing supplemental power to an electrical system and related methods
US6756764B2 (en) 2001-03-05 2004-06-29 John S. Smith Portable jumper system and method
US6819010B2 (en) 2001-03-08 2004-11-16 Kold Ban International, Ltd. Vehicle with switched supplemental energy storage system for engine cranking
US7345450B2 (en) 2002-02-19 2008-03-18 V Ector Products, Inc. Microprocessor controlled booster apparatus with polarity protection
CA2519356A1 (en) * 2003-03-21 2004-10-07 Vector Products, Inc. Combination jump starter and high-frequency charger
US7161253B2 (en) 2003-08-06 2007-01-09 Briggs & Stratton Corporation Portable power source
US7528579B2 (en) 2003-10-23 2009-05-05 Schumacher Electric Corporation System and method for charging batteries
US6871625B1 (en) 2004-01-26 2005-03-29 Kold Ban International, Ltd. Vehicle with switched supplemental energy storage system for engine cranking
US7199555B2 (en) * 2004-05-19 2007-04-03 Chien Hung Taiwan Ltd. Portable emergency vehicle battery charger with microprocessor
WO2007011734A3 (en) 2005-07-15 2007-11-22 Schumacher Electric Corp Battery charger and method utilizing alternating dc charging current
WO2007069595A1 (en) * 2005-12-14 2007-06-21 Shin-Kobe Electric Machinery Co., Ltd. Battery state judging method, and battery state judging device
US7692411B2 (en) * 2006-01-05 2010-04-06 Tpl, Inc. System for energy harvesting and/or generation, storage, and delivery
US20070285049A1 (en) 2006-02-24 2007-12-13 Michael Krieger Jump starter with built-in battery charger
JP4707626B2 (en) * 2006-08-11 2011-06-22 三洋電機株式会社 A non-contact charger and the charger combination of the portable electronic device
EP2132853A2 (en) * 2007-04-03 2009-12-16 Lockheed Martin Corporation Transportable electrical energy storage system
WO2008124510A1 (en) * 2007-04-04 2008-10-16 Cooper Technologies Company System and method for boosting battery output
US8407066B2 (en) * 2007-05-04 2013-03-26 Financial Healthcare Systems, Llc Insurance estimating system
US20090174362A1 (en) 2008-01-03 2009-07-09 F.D. Richardson Enterprises, Inc. Doing Business As Richardson Jumpstarters Method and apparatus for providing supplemental power to an engine
US8493021B2 (en) * 2008-01-03 2013-07-23 F. D. Richardson Entereprises, Inc. Method and apparatus for providing supplemental power to an engine
US7834593B2 (en) 2008-02-29 2010-11-16 Schumacher Electric Corporation Thermal runaway protection system for a battery charger
US20100301800A1 (en) 2009-05-26 2010-12-02 Mathew Inskeep Multi-purpose battery jump starter and reconditioner
US8575899B2 (en) 2009-07-16 2013-11-05 Schumacher Electric Corporation Battery charger with automatic voltage detection
US9608460B2 (en) 2009-07-30 2017-03-28 Aerovironment, Inc. Remote rechargeable monitoring system and method
US20110100735A1 (en) * 2009-11-05 2011-05-05 Ise Corporation Propulsion Energy Storage Control System and Method of Control
US20120105010A1 (en) * 2010-05-17 2012-05-03 Masahiro Kinoshita Lithium ion secondary battery system and battery pack
US9871392B2 (en) 2010-09-17 2018-01-16 Schumacher Electric Corporation Portable battery booster
CN105391115A (en) 2010-11-29 2016-03-09 马丁·克布勒 Lithium starter battery and solid state switch therefor
US8443071B2 (en) * 2011-10-04 2013-05-14 Advanergy, Inc. Data server system and method
US20130266824A1 (en) * 2012-03-13 2013-10-10 Maxwell Technologies, Inc. Ultracapacitor and integrated battery combination
US9026811B2 (en) * 2012-07-05 2015-05-05 Gigastone Corporation Portable power bank device with projecting function capable of charging an external device and displaying data from the external device
US20140159509A1 (en) * 2012-09-11 2014-06-12 Mathew Inskeep Battery Boost Jump Starter
US9809183B2 (en) 2012-09-23 2017-11-07 Darryl Weflen Self-contained automotive battery booster system
US20140139175A1 (en) 2012-11-19 2014-05-22 Jose A. Gonzalez Pocket Jumper
JP6164857B2 (en) * 2013-02-12 2017-07-19 キヤノン株式会社 The power supply apparatus, a control method of the power supply apparatus, power receiving apparatus, a control method of the power receiving device, the program
US9007015B1 (en) 2014-07-03 2015-04-14 The Noco Company Portable vehicle battery jump start apparatus with safety protection

Also Published As

Publication number Publication date Type
US20160297311A1 (en) 2016-10-13 application
US20160049819A1 (en) 2016-02-18 application
EP3180848A4 (en) 2018-03-14 application
EP3180848A1 (en) 2017-06-21 application
US9397513B2 (en) 2016-07-19 grant
WO2016025869A1 (en) 2016-02-18 application
US20170226980A1 (en) 2017-08-10 application

Similar Documents

Publication Publication Date Title
US6833685B2 (en) Battery charger with standby mode
US6404168B1 (en) Auxiliary battery for portable devices
US7737658B2 (en) Battery packs having a charging mode and a discharging mode
US20120088555A1 (en) Wireless charging equipment for mobile phones
US20090026842A1 (en) Power supply unit
US7183748B1 (en) Electric charger and power supply device for portable terminal
US20090140698A1 (en) Multi-mode charging system for an electric vehicle
US20100090524A1 (en) Electric power supply system and vehicle
US8102147B2 (en) Wireless multi-charger system and controlling method thereof
US20080238357A1 (en) Ultra fast battery charger with battery sensing
US20110074360A1 (en) Power adapter with internal battery
US6344733B1 (en) Portable jump-starting battery pack with charge monitoring system
US20130093381A1 (en) Energy saving cable assembly
US20110260681A1 (en) Portable Wireless Charging Device
US20060145659A1 (en) Battery pack system and method for waking up a charge control circuit of a mobile communication device
US20120025768A1 (en) Power supply device having precharging circuit for charging capacitor
US6150796A (en) Low current vehicular adapter charger
US8552686B2 (en) Battery control apparatus and method
US6218812B1 (en) Solid state battery charger
KR20100133557A (en) Non-contact charging system for vehicle and charging control method thereof
US20100130263A1 (en) System and method for dual power source management
US20070194626A1 (en) Power supply for battery powered devices
US8049464B2 (en) Rechargeable battery and method for its operation
JP2006296109A (en) Household compact power supply
US9007015B1 (en) Portable vehicle battery jump start apparatus with safety protection