CA2651540A1 - Prevention and treatment of osteochondrosis in animals and humans - Google Patents
Prevention and treatment of osteochondrosis in animals and humans Download PDFInfo
- Publication number
- CA2651540A1 CA2651540A1 CA002651540A CA2651540A CA2651540A1 CA 2651540 A1 CA2651540 A1 CA 2651540A1 CA 002651540 A CA002651540 A CA 002651540A CA 2651540 A CA2651540 A CA 2651540A CA 2651540 A1 CA2651540 A1 CA 2651540A1
- Authority
- CA
- Canada
- Prior art keywords
- borate
- boron
- calcium
- borosilicate
- supplemental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 189
- 201000009859 Osteochondrosis Diseases 0.000 title abstract description 94
- 230000002265 prevention Effects 0.000 title description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 402
- 229910052796 boron Inorganic materials 0.000 claims abstract description 401
- 230000000153 supplemental effect Effects 0.000 claims abstract description 146
- 150000001875 compounds Chemical class 0.000 claims abstract description 130
- 238000000034 method Methods 0.000 claims abstract description 90
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 230
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 153
- 239000011575 calcium Substances 0.000 claims description 153
- 229910052791 calcium Inorganic materials 0.000 claims description 153
- -1 sodium fluoroborate Chemical compound 0.000 claims description 79
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 74
- 235000010338 boric acid Nutrition 0.000 claims description 72
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 66
- 239000004327 boric acid Substances 0.000 claims description 66
- 210000000845 cartilage Anatomy 0.000 claims description 62
- 241000282887 Suidae Species 0.000 claims description 61
- 235000000346 sugar Nutrition 0.000 claims description 60
- 239000002253 acid Substances 0.000 claims description 57
- 229910021538 borax Inorganic materials 0.000 claims description 43
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 43
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 40
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 40
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 40
- 239000011777 magnesium Substances 0.000 claims description 40
- 229910052749 magnesium Inorganic materials 0.000 claims description 40
- 239000011734 sodium Substances 0.000 claims description 40
- 229910052708 sodium Inorganic materials 0.000 claims description 40
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 38
- 150000007513 acids Chemical class 0.000 claims description 38
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 38
- 150000002910 rare earth metals Chemical class 0.000 claims description 38
- 229920000881 Modified starch Polymers 0.000 claims description 37
- 229910052742 iron Inorganic materials 0.000 claims description 37
- 235000019426 modified starch Nutrition 0.000 claims description 37
- 210000000988 bone and bone Anatomy 0.000 claims description 35
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 claims description 35
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 claims description 34
- 210000004349 growth plate Anatomy 0.000 claims description 29
- 230000003902 lesion Effects 0.000 claims description 29
- 229910019142 PO4 Inorganic materials 0.000 claims description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 25
- 239000010452 phosphate Substances 0.000 claims description 25
- 230000009467 reduction Effects 0.000 claims description 23
- 241000283086 Equidae Species 0.000 claims description 21
- 229940072020 calcium borogluconate Drugs 0.000 claims description 21
- SSKRIDIHZLFJCG-UHFFFAOYSA-L calcium;2,3-dihydroxy-3-[2-hydroxy-5-(hydroxymethyl)-1,3,2-dioxaborolan-4-yl]propanoate Chemical compound [Ca+2].OCC1OB(O)OC1C(O)C(O)C([O-])=O.OCC1OB(O)OC1C(O)C(O)C([O-])=O SSKRIDIHZLFJCG-UHFFFAOYSA-L 0.000 claims description 21
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 20
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 20
- 239000005715 Fructose Substances 0.000 claims description 20
- 229930091371 Fructose Natural products 0.000 claims description 20
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 20
- 239000000600 sorbitol Substances 0.000 claims description 20
- 235000010356 sorbitol Nutrition 0.000 claims description 20
- 229910052712 strontium Inorganic materials 0.000 claims description 20
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 20
- NAOLWIGVYRIGTP-UHFFFAOYSA-N 1,3,5-trihydroxyanthracene-9,10-dione Chemical compound C1=CC(O)=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1 NAOLWIGVYRIGTP-UHFFFAOYSA-N 0.000 claims description 19
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 claims description 19
- MSWZFWKMSRAUBD-CBPJZXOFSA-N 2-amino-2-deoxy-D-mannopyranose Chemical compound N[C@@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-CBPJZXOFSA-N 0.000 claims description 19
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 claims description 19
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 19
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 19
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 19
- 229920001353 Dextrin Polymers 0.000 claims description 19
- 239000004375 Dextrin Substances 0.000 claims description 19
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 claims description 19
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 19
- 229930195725 Mannitol Natural products 0.000 claims description 19
- 229920002472 Starch Polymers 0.000 claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 19
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 19
- 239000004473 Threonine Substances 0.000 claims description 19
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 19
- 150000001298 alcohols Chemical class 0.000 claims description 19
- 229940000489 arsenate Drugs 0.000 claims description 19
- 229910052788 barium Inorganic materials 0.000 claims description 19
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052790 beryllium Inorganic materials 0.000 claims description 19
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 19
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 claims description 19
- 235000019425 dextrin Nutrition 0.000 claims description 19
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 19
- 150000002148 esters Chemical class 0.000 claims description 19
- 239000000194 fatty acid Substances 0.000 claims description 19
- 229930195729 fatty acid Natural products 0.000 claims description 19
- 239000000174 gluconic acid Substances 0.000 claims description 19
- 235000012208 gluconic acid Nutrition 0.000 claims description 19
- 229960002442 glucosamine Drugs 0.000 claims description 19
- 229910052736 halogen Inorganic materials 0.000 claims description 19
- 229910052744 lithium Inorganic materials 0.000 claims description 19
- 239000000594 mannitol Substances 0.000 claims description 19
- 235000010355 mannitol Nutrition 0.000 claims description 19
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 235000013808 oxidized starch Nutrition 0.000 claims description 19
- 235000019698 starch Nutrition 0.000 claims description 19
- 150000008163 sugars Chemical class 0.000 claims description 19
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 19
- 239000000811 xylitol Substances 0.000 claims description 19
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 19
- 235000010447 xylitol Nutrition 0.000 claims description 19
- 229960002675 xylitol Drugs 0.000 claims description 19
- QGBLCIBATKETJC-UHFFFAOYSA-N 3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;manganese(2+) Chemical compound [Mn+2].O1B([O-])OB2OB([O-])OB1O2 QGBLCIBATKETJC-UHFFFAOYSA-N 0.000 claims description 18
- 241000282472 Canis lupus familiaris Species 0.000 claims description 18
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 18
- MMLLNGAMHOZEAP-UHFFFAOYSA-N [Ta+5].[Ta+5].[Ta+5].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Ta+5].[Ta+5].[Ta+5].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] MMLLNGAMHOZEAP-UHFFFAOYSA-N 0.000 claims description 18
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 claims description 18
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 18
- 229930182817 methionine Natural products 0.000 claims description 18
- 239000011707 mineral Substances 0.000 claims description 18
- 150000003873 salicylate salts Chemical class 0.000 claims description 18
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 claims description 18
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 claims description 18
- ZRQNRTRXAVFCMB-UHFFFAOYSA-N tris(2,4,5-trioxa-1-stanna-3-borabicyclo[1.1.1]pentan-1-yl) borate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] ZRQNRTRXAVFCMB-UHFFFAOYSA-N 0.000 claims description 18
- LNSYCBFBTCINRL-UHFFFAOYSA-N tristrontium;diborate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]B([O-])[O-].[O-]B([O-])[O-] LNSYCBFBTCINRL-UHFFFAOYSA-N 0.000 claims description 18
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 claims description 18
- 241000283690 Bos taurus Species 0.000 claims description 17
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 claims description 17
- 206010028851 Necrosis Diseases 0.000 claims description 15
- 241001494479 Pecora Species 0.000 claims description 15
- 230000017074 necrotic cell death Effects 0.000 claims description 15
- 241000283707 Capra Species 0.000 claims description 14
- 241000282326 Felis catus Species 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 235000002198 Annona diversifolia Nutrition 0.000 claims description 13
- 241000283074 Equus asinus Species 0.000 claims description 13
- 241001331845 Equus asinus x caballus Species 0.000 claims description 13
- 241000282838 Lama Species 0.000 claims description 13
- 210000001188 articular cartilage Anatomy 0.000 claims description 13
- 150000002367 halogens Chemical class 0.000 claims description 12
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 10
- 208000032843 Hemorrhage Diseases 0.000 claims description 8
- 241000282414 Homo sapiens Species 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 8
- 239000004328 sodium tetraborate Substances 0.000 claims description 8
- 244000005700 microbiome Species 0.000 claims description 7
- 206010061216 Infarction Diseases 0.000 claims description 6
- 229910021537 Kernite Inorganic materials 0.000 claims description 6
- WQZGKKKJIJFFOK-PQMKYFCFSA-N alpha-D-mannose Chemical compound OC[C@H]1O[C@H](O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-PQMKYFCFSA-N 0.000 claims description 6
- 229910021540 colemanite Inorganic materials 0.000 claims description 6
- 229910052860 datolite Inorganic materials 0.000 claims description 6
- 206010020718 hyperplasia Diseases 0.000 claims description 6
- 230000007574 infarction Effects 0.000 claims description 6
- 229910021539 ulexite Inorganic materials 0.000 claims description 6
- 206010007710 Cartilage injury Diseases 0.000 claims description 5
- 206010058314 Dysplasia Diseases 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 62
- 239000011574 phosphorus Substances 0.000 abstract description 62
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 62
- 239000000203 mixture Substances 0.000 abstract description 46
- 208000030175 lameness Diseases 0.000 abstract description 35
- 230000001965 increasing effect Effects 0.000 abstract description 23
- 230000002829 reductive effect Effects 0.000 abstract description 21
- 239000013589 supplement Substances 0.000 abstract description 13
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 230000000474 nursing effect Effects 0.000 abstract description 3
- 241000282898 Sus scrofa Species 0.000 description 48
- ZNRGSYUVFVNSAW-UHFFFAOYSA-N 3-nitrophenylboronic acid Chemical compound OB(O)C1=CC=CC([N+]([O-])=O)=C1 ZNRGSYUVFVNSAW-UHFFFAOYSA-N 0.000 description 27
- 108010067787 Proteoglycans Proteins 0.000 description 26
- 102000016611 Proteoglycans Human genes 0.000 description 26
- 235000005911 diet Nutrition 0.000 description 24
- 230000000694 effects Effects 0.000 description 24
- 230000037213 diet Effects 0.000 description 23
- 241000282412 Homo Species 0.000 description 22
- 210000001503 joint Anatomy 0.000 description 21
- 150000001639 boron compounds Chemical class 0.000 description 20
- 201000010099 disease Diseases 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 238000009472 formulation Methods 0.000 description 18
- 229920002683 Glycosaminoglycan Polymers 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 15
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 14
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 14
- 210000002744 extracellular matrix Anatomy 0.000 description 14
- 210000004124 hock Anatomy 0.000 description 14
- 230000012010 growth Effects 0.000 description 12
- 239000000454 talc Substances 0.000 description 12
- 229910052623 talc Inorganic materials 0.000 description 12
- 108010035532 Collagen Proteins 0.000 description 11
- 102000008186 Collagen Human genes 0.000 description 11
- 208000001132 Osteoporosis Diseases 0.000 description 11
- 229920001436 collagen Polymers 0.000 description 11
- 230000009469 supplementation Effects 0.000 description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 10
- 230000037396 body weight Effects 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 150000001642 boronic acid derivatives Chemical class 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 241000894007 species Species 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 235000013305 food Nutrition 0.000 description 7
- 235000010755 mineral Nutrition 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000029142 excretion Effects 0.000 description 6
- 229950003937 tolonium Drugs 0.000 description 6
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 6
- 229940088594 vitamin Drugs 0.000 description 6
- 229930003231 vitamin Natural products 0.000 description 6
- 235000013343 vitamin Nutrition 0.000 description 6
- 239000011782 vitamin Substances 0.000 description 6
- 208000027414 Legg-Calve-Perthes disease Diseases 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 235000014590 basal diet Nutrition 0.000 description 5
- 230000036770 blood supply Effects 0.000 description 5
- 244000309466 calf Species 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 235000019621 digestibility Nutrition 0.000 description 5
- 210000002310 elbow joint Anatomy 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 235000020786 mineral supplement Nutrition 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 241000283073 Equus caballus Species 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 210000002745 epiphysis Anatomy 0.000 description 4
- 210000003608 fece Anatomy 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 229940029985 mineral supplement Drugs 0.000 description 4
- 230000011164 ossification Effects 0.000 description 4
- 230000007170 pathology Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000002303 tibia Anatomy 0.000 description 4
- 108010067219 Aggrecans Proteins 0.000 description 3
- 102000016284 Aggrecans Human genes 0.000 description 3
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 3
- 238000011887 Necropsy Methods 0.000 description 3
- 208000020971 Osgood-Schlatter disease Diseases 0.000 description 3
- 241000282849 Ruminantia Species 0.000 description 3
- 229940072107 ascorbate Drugs 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000018678 bone mineralization Effects 0.000 description 3
- 230000037118 bone strength Effects 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 230000012173 estrus Effects 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- 229960002591 hydroxyproline Drugs 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 230000001338 necrotic effect Effects 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000001850 reproductive effect Effects 0.000 description 3
- 210000002832 shoulder Anatomy 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 210000004722 stifle Anatomy 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 210000001258 synovial membrane Anatomy 0.000 description 3
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 241001567848 Capitellum Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 206010023509 Kyphosis Diseases 0.000 description 2
- 102000000422 Matrix Metalloproteinase 3 Human genes 0.000 description 2
- 108010016160 Matrix Metalloproteinase 3 Proteins 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 208000017375 Scheuermann Disease Diseases 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000014461 bone development Effects 0.000 description 2
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000006027 corn-soybean meal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 230000002550 fecal effect Effects 0.000 description 2
- 235000021050 feed intake Nutrition 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 238000009408 flooring Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 210000002758 humerus Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 239000010871 livestock manure Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 235000021048 nutrient requirements Nutrition 0.000 description 2
- 208000016664 panner disease Diseases 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 210000005065 subchondral bone plate Anatomy 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 210000001179 synovial fluid Anatomy 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 235000021195 test diet Nutrition 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 210000000623 ulna Anatomy 0.000 description 2
- 210000001364 upper extremity Anatomy 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 235000019195 vitamin supplement Nutrition 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- OVVJGNDZLJHBQE-WCCKRBBISA-N (2s)-2-amino-4-methylsulfanylbutanoic acid;boron Chemical compound [B].CSCC[C@H](N)C(O)=O OVVJGNDZLJHBQE-WCCKRBBISA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-O (R)-carnitinium Chemical compound C[N+](C)(C)C[C@H](O)CC(O)=O PHIQHXFUZVPYII-ZCFIWIBFSA-O 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 241001466804 Carnivora Species 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 208000000088 Enchondromatosis Diseases 0.000 description 1
- 206010015079 Epiphysiolysis Diseases 0.000 description 1
- 206010015082 Epiphysitis Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- RZSYLLSAWYUBPE-UHFFFAOYSA-L Fast green FCF Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC(O)=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 RZSYLLSAWYUBPE-UHFFFAOYSA-L 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 208000020111 Freiberg disease Diseases 0.000 description 1
- 241001653121 Glenoides Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102100028084 Hyaluronan and proteoglycan link protein 1 Human genes 0.000 description 1
- 101710191341 Hyaluronan and proteoglycan link protein 1 Proteins 0.000 description 1
- 208000013038 Hypocalcemia Diseases 0.000 description 1
- 229920000288 Keratan sulfate Polymers 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- 208000031662 Noncommunicable disease Diseases 0.000 description 1
- 208000026616 Ollier disease Diseases 0.000 description 1
- 206010031149 Osteitis Diseases 0.000 description 1
- 208000004286 Osteochondrodysplasias Diseases 0.000 description 1
- 208000033143 Osteochondrosis of the metatarsal bone Diseases 0.000 description 1
- 206010031264 Osteonecrosis Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001135989 Porcine reproductive and respiratory syndrome virus Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000002226 Slipped Epiphyses Diseases 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 229930003471 Vitamin B2 Natural products 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000006053 animal diet Substances 0.000 description 1
- 239000010828 animal waste Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 210000000459 calcaneus Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000003011 chondroprotective effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 235000020940 control diet Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000001463 effect on reproduction Effects 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 210000003108 foot joint Anatomy 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000020509 fortified beverage Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- GDXUDZHLHOBFJH-UHFFFAOYSA-N germanium iron Chemical compound [Fe].[Ge] GDXUDZHLHOBFJH-UHFFFAOYSA-N 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 235000006486 human diet Nutrition 0.000 description 1
- 210000004095 humeral head Anatomy 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000000705 hypocalcaemia Effects 0.000 description 1
- 210000003692 ilium Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000031891 intestinal absorption Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 235000012661 lycopene Nutrition 0.000 description 1
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 1
- 229960004999 lycopene Drugs 0.000 description 1
- 239000001751 lycopene Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 210000001872 metatarsal bone Anatomy 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 235000020772 multivitamin supplement Nutrition 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 208000013435 necrotic lesion Diseases 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 208000007656 osteochondritis dissecans Diseases 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 210000004417 patella Anatomy 0.000 description 1
- 210000000426 patellar ligament Anatomy 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 230000000361 pesticidal effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 230000037074 physically active Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 208000017443 reproductive system disease Diseases 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 210000001203 second metatarsal bone Anatomy 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 210000004894 snout Anatomy 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000007473 univariate analysis Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/22—Boron compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/20—Inorganic substances, e.g. oligoelements
- A23K20/30—Oligoelements
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/10—Feeding-stuffs specially adapted for particular animals for ruminants
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/20—Feeding-stuffs specially adapted for particular animals for horses
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/30—Feeding-stuffs specially adapted for particular animals for swines
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/40—Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/16—Inorganic salts, minerals or trace elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Husbandry (AREA)
- Physical Education & Sports Medicine (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Birds (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Fodder In General (AREA)
Abstract
The invention provides compositions and methods for preventing and treating osteochondrosis and lameness by administration of supplemental boron containing compounds to animals and humans. The supplemental boron containing compounds are provided in animal feed compositions or as supplements for animal feed. Also provided by this invention are animal feed compositions that are supplemented with boron containing compounds and which have reduced phosphorus content. The invention also provides a method for decreasing the amount of phosphorus excreted by an animal, a method of increasing the efficiency of absorption of phosphorus by an animal, a method of reducing environmental phosphorus pollution by administering supplemental boron to the animal. The invention also provides a method of reducing pre-weaning mortality in an animal by feeding pregnant, nursing or lactating animals by administering supplemental boron containing compounds.
Description
PREVENTION AND TREATMENT OF OSTEOCIiONDROSIS
IN ANIMALS AND HUMANS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This is a continuation in part of International Application PCTIUS2006/021505, with an international filing date of June 2, 2006, which claims the benefit under 35 USC
119(e) of U.S. Provisional Application No. 60/687,653, filed June 2, 2005, all of which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION
IN ANIMALS AND HUMANS
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This is a continuation in part of International Application PCTIUS2006/021505, with an international filing date of June 2, 2006, which claims the benefit under 35 USC
119(e) of U.S. Provisional Application No. 60/687,653, filed June 2, 2005, all of which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION
[0002] Lameness is a major cause of culling and death in female pigs of breeding age, affecting over 20 million animals annually. At least 3 to 10% of young growing swine die or are culled due to lameness. Osteochondrosis (OC) is a major factor in this lameness, causing economic losses potentially exceeding $200 million in the United States alone.
[0003] OC is a non-infectious disease of cartilage affecting young growing animals and humans. OC is characterized by abnormal development of articular cartilages of the joints and in the growth plates of the bones, with associated changes in bone development.
Lameness occurs when OC changes cause pain and/or interfere with normal skeletal function.
Lameness occurs when OC changes cause pain and/or interfere with normal skeletal function.
[0004] OC is the major cause of lameness in swine. It has been reported that 20 to 80 percent or more of growing pigs are affected by. OC. OC severe enough to cause lameness is observed in 5 to 10 percent of horses and large breed dogs, and in 1 of 40 humans. OC is also reported in young growing cattle, especially bulls, and in sheep. OC is not common in cats but has been reported.
[0005] In humans, OC primarily afflicts adolescents, an age group that is very physically active and has bones which are still growing. The disease is more common among boys than girls. In children between the ages of 10 to 15, the disease frequently appears at the elbow, knee, or foot joints. Afflicted humans experience tenderness, swelling, and pain at the affected joints which worsens with activity.
[0006] Among the more common forms of OC in human children are: Freiberg's disease, which occurs in the head of the metatarsals of the feet in children between the ages of 12-15;
Legg-Calve-Perthes' disease, which occurs in the hip in children between the ages of 6 to 9;
Osgood-Schlatter disease, which occurs in the tibial tubercle apo.physis at the insertion of the patellar tendon in the knee in children between the ages of 10 to 15; Panner's disease, which occurs in the capitellum of the distal humerus at the elbow in children between the ages of 5-10; and Sinding-Larsen-Johannson disease, which occurs at the inferior pole of the patella in the knee in children between the of ages 10-15. Animal correlates of each human OC
condition are observed, with species and breed related "predilection sites".
In particular, different specific joints are more likely to be affected in a given species or breed; for instance there is a tendency for "elbow dysplasia" to develop in German Shepherds.
Legg-Calve-Perthes' disease, which occurs in the hip in children between the ages of 6 to 9;
Osgood-Schlatter disease, which occurs in the tibial tubercle apo.physis at the insertion of the patellar tendon in the knee in children between the ages of 10 to 15; Panner's disease, which occurs in the capitellum of the distal humerus at the elbow in children between the ages of 5-10; and Sinding-Larsen-Johannson disease, which occurs at the inferior pole of the patella in the knee in children between the of ages 10-15. Animal correlates of each human OC
condition are observed, with species and breed related "predilection sites".
In particular, different specific joints are more likely to be affected in a given species or breed; for instance there is a tendency for "elbow dysplasia" to develop in German Shepherds.
[0007] Thus, improved methods for the prevention and treatment of OC would be of great economic value in the livestock industry, would reduce animal suffering, and would help alleviate the painful joint discomfort and loss of function and mobility experienced by humans suffering from this disease.
[0008] Furthermore, phosphate pollution resulting from excess phosphorus in animal feed is an increasing problem. Such phosphorus can potentially contaminate ground water. There is a need to provide animal feed with reduced phosphorus content to reduce ground water contamination. Reduction in phosphorus use would assist animal producers in complying with nutrient control regulations.
[0009] In addition, other factors that lead to lameness are: (1) lesions in the cartilage and subarticular bone; (2) necrosis of the joint surface and subarticular bone, which can measured by the number of infarcts (necrotic tissue caused by the obstruction of the local blood supply); (3) growth plate widening, which can lead to hyperplasia, necrosis and hemorrhage ; and (4) articular cartilage damage, which can be evidenced by reduced concentrations of glycosaminoglycans (GAGs), hydroxyproline, and other biomolecules that are related to or components of proteoglycans or collagen.
[0010] It would be highly advantageous if one could provide a reduced phosphorus animal feed that would simultaneously facilitate the prevention and treatment of OC and lameness.
BRIEF SUMMARY OF THE PREFERRED EMBODIMENTS OF THE INVENTION
BRIEF SUMMARY OF THE PREFERRED EMBODIMENTS OF THE INVENTION
[0011] The inventors have made the unexpected discovery that the administration of boron containing compounds is effective in preventing and treating osteochondrosis in animals. In one embodiment, this invention provides an animal feed containing supplemental boron. Animal feeds contain plant material. Boron is a required element for plant growth.
As such all plants and hence all plant material in animal feeds contain some boron, e.g. 10-20 ppm boron in corn/soybean feed (unless the boron as been extracted). The animal feeds of the present invention contain supplemental boron in addition to the boron naturally present in the animal feed from the plant material. The supplemental boron is supplied as a boron-containing compound, as plant material with elevated boron levels or as microorganisms such as yeast with elevated boron levels. Among the boron-containing compounds that may be used in the practice of the present invention are sodium borate and boric acid as typical boron sources. However, the invention is not limited to these forms of boron. Also included are other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borbsucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm stipplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats.
As such all plants and hence all plant material in animal feeds contain some boron, e.g. 10-20 ppm boron in corn/soybean feed (unless the boron as been extracted). The animal feeds of the present invention contain supplemental boron in addition to the boron naturally present in the animal feed from the plant material. The supplemental boron is supplied as a boron-containing compound, as plant material with elevated boron levels or as microorganisms such as yeast with elevated boron levels. Among the boron-containing compounds that may be used in the practice of the present invention are sodium borate and boric acid as typical boron sources. However, the invention is not limited to these forms of boron. Also included are other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borbsucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm stipplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats.
[0012] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction in phosphorus content of the animal feed. Thus, in another embodiment, the invention provides an improved animal feed containing supplemental boron-containing compounds and reduced phosphorus content. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid. However, the invention is not limited to these forms of supplemental boron.
Other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used as well. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate,. calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among these organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The boron can be combined with talc in a ratio of boron containing compound to talc of approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1. 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1; 22:1, 23:1; 24:1 or 25:1 prior to addition to the animal feed. The supplemental boron containing compounds are included in the animal feed at about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron and the total phosphorus content is reduced by at least 3%
as compared to a comparable animal feed without supplemental boron. Generally, the animal feed is supplemented with boron at concentrations ranging from about 5 to about 150 ppm. The animal feed is suitable for pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
Other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used as well. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate,. calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among these organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The boron can be combined with talc in a ratio of boron containing compound to talc of approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1. 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1; 22:1, 23:1; 24:1 or 25:1 prior to addition to the animal feed. The supplemental boron containing compounds are included in the animal feed at about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron and the total phosphorus content is reduced by at least 3%
as compared to a comparable animal feed without supplemental boron. Generally, the animal feed is supplemented with boron at concentrations ranging from about 5 to about 150 ppm. The animal feed is suitable for pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[0013] In another embodiment, the invention provides a method of decreasing the amount of phosphorus excreted by an animal. In this embodiment, animals are fed a diet of an improved animal feed composition containing about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron supplied as boron containing compounds, plant material with elevated boron levels, yeast or other microorganisms with elevated boron levels in which the animal feed composition has at least a 3%
reduction in phosphorus as compared to a comparable animal feed without supplemental boron.
Generally, the animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used.
Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
reduction in phosphorus as compared to a comparable animal feed without supplemental boron.
Generally, the animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used.
Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[0014] An additional embodiment provides a method of increasing the efficiency of absorption of phosphorus in animals. In this embodiment, animals are fed a diet of an improved animal feed composition containing about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron wherein the phosphorus absorption is improved by at least a 3% as compared to a comparable animal feed without supplemental boron. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[00151 In yet an additional embodiment, this invention provides a method of reducing environmental phosphorus pollution from an animal farm. In this embodiment, animals are fed a diet of an improved animal feed composition containing 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds whereby the phosphorus efflux is reduced by at least 3% as compared to that of a comparable animal feed without supplemental boron. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid. However, inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used.
Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified.
starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[00161 In a further embodiment, the invention also provides a method of treating or preventing OC by administering a therapeutically effective amount of a boron containing compound to a mammal in need of such treatment. In such an embodiment, the boron containing compound can be sodium borate or boric acid. However, the invention can be used with other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and 'compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The mammal to be treated can be a human or an animal. The supplemental boron-containing compounds can be administered prior to the appearance of symptoms of osteochondrosis as a preventive measure. Among the animals that can benefit from this invention are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats.
[00171. In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction in the incidence and extent of lesions in the cartilage and subarticular bone of animals. Thus, in this embodiment, the invention provides a method for reducing the incidence and extent of lesions in the cartilage and subarticular bone of animals. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used.
However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0018] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the prevention of necrosis of the joint surface and subarticular bone as measured by the number of infarcts (necrotic tissue caused by the obstruction of the local blood supply). Thus, in this embodiment, the invention provides a method for preventing necrosis of the joint surface and subarticular bone as measured by the number of infarcts (necrotic tissue caused by the obstruction of the local blood supply). In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used.
However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0019] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of hyperplasia, necrosis and hemorrhage. Thus, in this embodiment, the invention provides a method for reducing hyperplasia, necrosis and hemorrhage. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron.
In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate,'magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the aniinals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0020] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of dysplasia (abnormal development and or abnormal structure) in cartilage, growth plate and bone as measured by the growth plate width (a wide growth plate being representative of abnormal growth and improper ossification). Thus, in this embodiment, the invention provides a method for reducing dysplasia as measured by the growth plate width; (a wide growth plate being representative of abnormal growth and improper ossification). In this embodiment, the -Mu~;aÃmÃp'jqg supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0021] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of articular cartilage damage as evidenced by higher concentrations, typical of healthy tissue, of glycosaminoglycans (GAGs), hydroxyproline, and other biomolecules that are related to or components of proteoglycans or collagen. Thus, in this embodiment, the invention provides a method of reducing articular cartilage damage as evidenced by higher concentrations, typical of healthy tissue, of glycosaminoglycans (GAGs), hydroxyproline, and other biomolecules that are related to or components of proteoglycans or collagen. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about I to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. ,In such an embodiment, the feed could also be in the form of a liquid.
In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0022] In another embodiment, the invention provides a method of decreasing the amount of pre-weaning mortality in animals. In another embodiment, the invention provides a method of improving reproductive rates of animals by increasing the rate of return to estrus and conception rates. In these embodiments, previously pregnant, pregnant, nursing and/or lactating animals are fed a diet of increased boron. The diet may contain about I to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds. The boron may be provided in improved animal feed composition or in milk or water. Generally, the milk, water or animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such embodiments, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or. are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammoniurn borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compound formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[0023] In an additional embodiment, the boron-containing compounds are added to drinking water, mineral or vitamin supplements, in a milk formulation, or other food products for the treatment and prevention of OC and/or reduction in pre-weaning mortality.
[0024] In an additional embodiment, this invention provides a boron-talc composition where the ratio of boron-containing compound to talc is approximately 5:1, 6:1, 7:1; 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1.
In such an embodiment, the boron is a boron containing compound which can be sodium borate or boric acid. However, the invention is not limited to these forms of supplemental boron. Other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used as well. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate,. calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium ' borosilicate, lithium borosilicate, and sodium fluoroborate. Among these organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of -glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
[0025] Talc is available for use in the present exemplary embodiments from a variety of commercial sources. For example, Luzenac America is a supplier of talc.
Examples of talc products from Luzenac America include: E-Z Flow 40, E-Z- Flow MB, E-Z Flow MT, E-Z
Flow RM, and E-Z Flow VT.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] Figure 1 is a graph indicating a reduction in the occurrence of osteochondrosis with supplemental boron treatment.
[0027] Figure 2 is a graph showing the association between increasing osteochondrosis scores in the pig right hock with increasing soundness scores among pigs not receiving supplemental boron.
[0028] Figure 3 is a graph showing the effect of supplemental boron treatment in the reduction of soundness scores associated with early growth.
[0029] Figure 4 and 5 are graphs which show that administration of 3-NPB along with boron resulted in a prevalence and severity of gross joint pathology similar to that observed in unsupplemented pigs.
DETAILED DESCRIPTION OF THE INVENTION
Introduction [0030] Boron has long been known to be an essential plant nutrient, but a role for boron in human physiology has only recently been appreciated. The present inventors have discovered a beneficial effect of boron supplementation of animal and human diets. In particular, although previous studies had shown that boron containing compounds could alleviate the bone disease, osteoporosis, the present inventors have discovered that boron containing compounds also alleviate a disease of the joints and growth plate cartilages, osteochondrosis (OC).
[0031] Osteoporosis is a disease in which bones become fragile and become increasingly likely to break as the disease progresses. Osteoporosis, or porous bone, is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility and an increased susceptibility to fractures of the hip, spine, and wrist. Thus, osteoporosis is a disease that specifically strikes the bone, generally after full 'and normal development. Also, because of its progressive nature, osteoporosis is a disease that most commonly manifests itself in older individuals. One out of every two women and one in four men over the age of 50 will have an osteoporosis-related fracture in their lifetimes.
[0032] In contrast, osteochondrosis is a generalized skeletal disease of growing animals and results from a disturbance in the articular and growth plate cartilages.
The bone is only secondarily affected. As a consequence, dyschondroplasia is technically a more correct term to describe this condition. A further condition, osteochondrosis dissecans, results in the chipping, fracturing and/or fragmentation of the articular surface.
Osteochondrosis dissecans is thought to be caused by an underlying weakness in the cartilage caused by an osteochondrotic lesion. Lesions are characterized by focal impaired endochondondral ossification, resulting in areas of retained cartilage extending into the subchondral bone. See R. John Wardale and Victor C. Duance. Journal of Cell Science 107, 47-59 (1994).
[0033] Because of the differences in the pathobiology of OC and osteoporosis -the two diseases affect different aspects of the bone system and different age groups -one would not expect that a treatment that alleviates osteoporosis, a degenerative disease of the bones of the elderly, would help in the treatment of OC, a disease of the cartilage in joints of the young.
The inventors have found that surprisingly, boron containing compounds are useful agents in the prevention and treatment of OC.
Role of boron in the behavior of cartilage [0034] , The extracellular matrix (ECM) of the articular cartilage provides cushioning between opposing bone surfaces at a joint in a mammalian limb. Synovial fluid is the fluid contained in joints. Synovial membranes line the joints, bursae, and tendon sheaths. The function of the synovial fluid is to lubricate the joint space and transport nutrients to the articular cartilage. The articular cartilage provides a low friction point of contact for the smooth flexing operation of the joints and also a cushioning function at joints, by absorbing the impact of shocks transmitted through the bones and supporting the weight of the animal.
The cartilage is composed of a variety of components including proteoglycan and a collagen network in an aqueous environment.
[0035] Proteoglycans play a role in maintaining the cushioning seen at joints.
The cartilage ECM is illustrated as a network of the collagen fibers which interlocks with and is interlocked by proteoglycan. The proteoglycan is a flexible gel-like material and the collagen forms a mesh-network that holds the proteoglycan in place. The proteoglycan provides compressive strength while tensile strength is provided by the collagen network.
Proteoglycan in articular and growth plate cartilage contains large amounts of sulfated glycosaminoglycans (GAG) that have a strong negative charge. At physiologic pH, these negatively charged GAG molecules draw sodium ions and water into the ECM of the cartilage, causing the proteoglycan to "inflate". The inflated proteoglycan provides buoyant pressure to resist compression, thus protecting the collagen network and underlying structures from compression damage. Better cushioning and thus greater compression resistance is provided by a fully hydrated proteoglycan complement and a fully extended and taut collagen network.
[0036] Without limiting this invention to any particular mechanism nor being bound by theory, one potential model for how boron functions in OC is the "standing hypothesis". In this hypothesis, boron functions by crosslinking the proteoglycan into the extracellular matrix. One postulated mechanism for how this occurs is that boron provides for three-dimensional boroester crosslinking of carbohydrate, proteoglycan, glycoprotein, glycolipid, lipid, protein, and amino acid structures. In the case of extracellular membrane structures such as cartilage and neural tissue, this would include proteoglycans such as aggrecan (the large aggregating proteoglycan of cartilage), complex proteins such as collagen in its various forms and types, and associated proteins such as cartilage link protein. The crosslinking of the proteoglycan stabilizes and unifies the matrix, allowing for better distribution of compressive forces and prevention of proteoglycan loss, which would decrease the cushioning ability of the synovial membrane. In contrast, boron functions to prevent osteoporosis by increasing the plasma levels of hydroxylated steroids. See U.S. Patent No.
4,849,220. Thus, one would not have predicted that boron would have an effect in treating a disease of the cartilage, such as OC, which has a totally different etiology from osteoporosis.
In osteoporosis, the bone itself is directly affected. In OC, the cartilage is affected.
Etiologyand pathology of OC
[0037] Although the precise cause of OC is not yet known, a number of mechanisms for the progression of this disease have been suggested. The influence of compressive forces in producing damage to the growing and transitioning cartilage appears to be a major factor.
Studies in pigs have suggested that focal changes in blood supply during normal epiphyseal growth is central to the pathogenesis of osteochondrosis. Cartilage canals are temporary blood vessel-containing structures within growing cartilage. The canals gradually regress with age during the process of chondrification, wherein the blood vessels contained within the canals are replaced with cartilage. Formation of the lesions associated with osteochondrosis has been associated with the premature chondrification and regression of these canals. In particular, the premature disruption of the blood supply results in necrosis of the cartilage canal distal to the point of interruption. See Ytrehus et al.
Bone 35: 1294-1306 (2004). Thus, it is not surprising that severe clinical osteochondrosis appears most commonly in fast-growing animals with rapid weight gain. See Wardale and Duance Journal of Cell Science 107: 47-59 (1994).
[0038] It has also been demonstrated in humans and dogs that in osteochondrosis, the proteoglycan of cartilage is resorbed by the action of matrix metalloproteinase-3 (MMP-3) derived from synovial membrane cells and chondrocytes. See Shinmei et al.
1991; Okada et al. 1992; Mehraban et al. 1994. Loss of proteoglycan from the extracellular matrix of the cartilage would lead to a decreased capacity of the cartilage to absorb and cushion compressive forces.
Role of Boron in OC
[0039] In order to further probe the contribution of boron deficiency in OC, and to test whether boron functions in OC through quadrivalent crosslinking, 3-nitrophenylboronic acid (3-NPB) was administered to animals. 3-NPB blocks crosslinks by binding to sites normally occupied by boric acid or borate. The results are described in Example 5. 3-NPB treated animals had increased lameness and clinical manifestations of OC. The increase in lameness could be prevented by supplementing the diet with boron. These experiments show that OC
is directly correlated to boron levels in pigs, horses, cattle, and dogs.
Boron compounds for the treatment of OC in Animals [0040] Given the widespread occurrence of OC in livestock and in particular, pigs, this invention discloses a safe and effective means of preventing and treating OC
by providing for animal feed to be supplemented with boron containing compounds. It will be appreciated by one of skill in the art that animal feeds, derived at least in part from plant materials, will contain basal levels of boron since boron is a required element for plant growth. For instance, typical alfalfa contains about 37 ppm boron. Thus, the term supplemental boron as used herein refers to exogenously added boron that supplements the basal levels of boron already present in commonly used animal feeds. When the term boron is used in this disclosure, it can denote both elemental boron and boron containing compounds.
The boron containing compounds useful for the practice of this invention may include any suitable organic or inorganic boron containing compounds, including boron containing minerals.
Among the preferred forms of boron are sodium borate and boric acid. Other useful inorganic forms of boron include calcium borate. One of skill in the art will recognize that other inorganic forms of boron that may be used in this invention include borates with:
magnesium, halogen, ammonium, potassium, iron and magnesium, tantalum, beryllium and nickel, carbonate, sodium and calcium, arsenate, calcium and rare earth, sulphate, magnesium and calcium, manganese, aluminum, calcium and strontium, phosphate, tin, zinc, and strontium. Other forms include: borosilicates or silicoborates with calcium, sodium, aluminum, calcium and rare earth, lead, barium, lithium, and fluoroborate with sodium.
Natural inorganic boron containing compounds are known to skilled artisans by various mineral names such as borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kurnakovite, meyerhofferite, priceite, nobleite, and searlesite to name but a few such designations. A
listing of inorganic borate compounds and minerals can be found in Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Volume V Boron, by Joseph William Mellor, Longman Group Limited, London, 1980.
[0041] Examples of organic boron-containing compounds are well known to those of skill in the art. Examples of such organic boron-containing compounds are found in U.S.
Patent Nos. 4,312,989, 4,499,082, and 5,312,816 all of which are hereby incorporated by reference. Among the forms of organic boron that would be useful in the practice of this invention are organic boron complexes such as boron threonine, boron methionine, and boron ascorbate, as well as boron complexed with other amino acids. These amino acids can include the 20 common amino acids that are specified by the genetic code, as well as variant and modified amino acids which are not encoded by the genetic code. These are examples of organic forms of boron that are rapidly metabolized to release borate or boric acid. Other useful forms of organic boron are boron carbohydrate complexes such as those disclosed in U.S. Patent No. 5,962,049. Among the carbohydrates that form useful complexes with boron include saccharides such as fructose, sorbitol, mannitol, xylitol, and sorbose. A
commercially available form of boron complexed with fructose is Fruitex BTM
available from FutureCeuticals and described in US Patent No. 5,962,049.
[0042] Other organic forms of boron that can be used in the practice of this invention include: borated modified starches (such as hydrolyzed or oxidized starches), borate non-modified starches, borated dextrins, borated amidated sugars (such as glucosamine or mannosamine), borate esters of glycerol fatty acids, borate-salicylate complexes, salts of bisoxalato borate (such as sodium or potassium salts), calcium borosucrose, borate esters ( such as (RO) 3B), alcohol amine borate esters, and borate complexes with sugar acids (such as saccharic acid and gluconic acid), and borate complexes with aminated sugar acids. One particularly desirable sugar acid to use in this invention is calcium borogluconate. Yet another form of boron are anion exchange resins which can be boronated. One such resin which can be boronated is AmberliteTM
j0043] It will be appreciated by one of skill in the art that when a particular boron containing compound is-described herein, it is intended that all possible solvates, pharmaceutically acceptable salts, esters, amides, complexes, chelates, stereoisomers, geometric isomers, crystalline or amorphous forms, metabolites, metabolic precursors or prodrugs of the compound are also separately described by a chemical structural formula or chemical name. Furthermore, if any of the boron containing compounds described herein contain stereochemistry, all enantiomeric and diastereomeric forms of the compound are intended. Thus, when applicable, boron containing compounds may occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included. A racemate or racemic mixture does not necessarily imply a 50:50 mixture of stereoisomers.
[0044] Furthermore, it will be appreciated by one of skill in the art that the borates of the present invention will encompass many different grades, including those that are FDA and non-FDA approved. Thus, among the grades of borates that can be used in the practice of this invention are: pharmaceutical or formulary grade, nuclear grade, fertilizer grade, industrial grade, pesticidal grade, and special quality (SQ) grade.
[0045] Suitable ranges for use of the boron containing compounds includes the supplementation of boron in animal feed from about 1 to about 500 ppm above that naturally present in the animal feed. Another suitable range for supplementation is about 1 to about 150 ppm. As shown in Figures 1, 3 and 4, the inventors have found that supplemental boron at 25 ppm to 50 ppm provides a significant reduction in the occurrence of OC
in pigs.
Accordingly, in one embodiment, this invention provides an animal feed composition that is supplemented with 25 ppm to 50 ppm boron containing compounds. In one embodiment, the supplemental boron containing compound is sodium borate. In another embodiment, the supplemental boron containing compound is boric acid. It will be clear to one of skill in the art that other concentrations of boron may be used depending on the severity of the disease or animal to be treated. Furthermore, it will be clear to one of skill in the art that other supplemental boron containing compounds may also be used in the practice of this invention.
[00461 The boron described herein may be combined with talc. The boron-containing compound to talc ratio may be approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1.
Incorporation of supnlemental boron into animal feeds [0047] A variety of methods are known in the art for the production of animal feeds.
These various methods can be adapted to allow inclusion of supplemental boron into the feed in amounts that will have a beneficial effect on OC when fed to animals.
[0048] For example, supplemental boron in the amounts disclosed above can be incorporated into animal feed compositions such as those described in U.S.
Patent No.
3,946,109. Alternatively, a variety of other feed compositions are commercially available from suppliers such as Purina, ADM, Land O'Lakes, and Moorman's. Supplemental boron can be mixed into a composition of choice using for instance, the mixing methods disclosed in U.S. Patent No. 4,189,240. The composition containing supplemental boron can be used to form animal feed food blocks such as those disclosed in U.S. Patent No.
5,120,565.
Alternatively, supplemental boron can be incorporated into an animal feed composition which is formed by methods such as spray drying as disclosed in U.S. Patent No. 4,777,240.
The citation of these patents is solely to illustrate various methods available in the art for incorporating supplemental boron into an animal feed product and is not meant to limit the practice of the invention to the use of any one or more of these methods.
[0049] Other boron sources that can be incorporated into animal feeds to practice this invention include yeast preparations that are high in boron. It is already common practice to incorporate yeast into animal feeds. Hence, it would be fairly straightforward to include yeast with elevated boron levels in animal feed. Alternatively, crops that have been grown in soils with elevated boron levels can be harvested specifically for the purpose of serving as an enhanced boron source that can be incorporated into animal feeds. Such elevated boron levels may be naturally in the soil, may result from boron pollution, or may be added to the soil by fertilization or other means. Alternatively, supplemental boron containing compounds can be added to supplements, base mixes, and premixes that also contain vitamins and minerals. Such supplements, mixes, or premixes are typically added at an amount to constitute 0.5% to 30% of the final animal feed composition. In such an embodiment, the elemental boron concentration would be much higher (from about 3 times to 200 times higher) prior to dilution in the animal feed to result in a supplemental boron equivalent of I -500 ppm over a total daily ration.
[0050] Another alternative is to supplement animal feeds with foods, such as alfalfa, grapes, or coffee grounds, which are naturally high in boron content.
Additionally, these and other foods can be manipulated to contain higher levels of boron by growth under elevated boron conditions as described above or by means of transgenic plant technology or other recombinant methods.
[0051] In a further embodiment, supplemental boron containing compounds can be provided as dietary supplements that can be directly hand-fed or "top-dressed"
onto an animal feed. Such an embodiment could be in a formulation that contains other nutrients, excipients, or flavors. As an example, an equine nutrient supplement containing supplemental boron and other vitamins and minerals could be fed to a horse with a small spoon or cup or in the form of a bar or pellet. Alternatively, the supplement could be placed on top of or mixed in the animal's feed.
[0052] Such boron can be supplied to animal feeds as a boron-talc composition.
The ratio of boron-containing compound to talc in the boron-talc composition can be approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1 [0053] Should it be necessary, boron levels can be precisely determined by a variety of methods known in the art. U.S. Patent Publication 20040020840 and the patents disclosed therein describe a number of such methods.
Reduction ofphosphorus content of animal feeds and improvement of pre-weaningmortality [0054] Phosphate pollution resulting from excess phosphorus in animal feed is an increasing problem. For example, approximately 70% of the phosphorus in a typical corn/soybean meal diet is unavailable to pigs, according to the National Research Council's 1998 Nutrient Requirements for Swine. This unavailable phosphorus ends up being excreted in manure. The high phosphate content of swine manure contributes to the environmental pollution associated with pig farming. Reducing the amount of excreted nutrients, particularly phosphorus, in swine production systems is an environmental priority and an important economic issue facing the swine industry. Thus, a means to increase the bioavailability of phosphorus in feed ingredients used to formulate swine rations would be desirable. The inventors have found that inclusion of supplemental boron in pig feed results in an increased absorption and utilization of the phosphorus present in pig diets.
Supplemental boron promotes the efficient incorporation of phosphate into the calcium phosphate (hydroxyapatite) of bones. This effect is expected to be true in other animals as well.
[0055] By increasing the efficiency of absorption and utilization of phosphorus from animal diets such as pig diets, the inventors have found that the amount of phosphorus in typical pig feed formulations can be reduced. These results are shown in Example 4. The increased utilization of phosphorus from pig diets coupled with the reduction in the starting amount of phosphorus in pig feed can be expected to contribute to a reduction of phosphate pollution that results from pig farming. Thus, the inclusion of supplemental boron in animal feed as taught by this invention will not only contribute to the prevention and treatment of OC, it will also contribute to pollution reduction. While the foregoing discussion has focused on pigs, this invention is not limited to the reduction of phosphorus from pig feed exclusively. Rather, one of skill in the art will recognize that reduction of phosphorus use is applicable to all animals.
[0056] The formation of most bones of the axial skeleton begins with the formation of a cartilage model which is calcified and remodeled into bone that is mineralized with calcium and phosphate. Supplemental boron enhances the efficiency of this process. The postulated mechanism by which supplemental boron enhances the efficiency of the process is through stabilization of the extracellular matrix, although there may be other mechanisms.
[0057] Supplemental boron improves the efficiency of cartilage transformation/bone mineralization which improves the structural integrity of bone and bone mineralization characteristics. Calcium is added to diets at a level that promotes sufficient bone strength.
The level of calcium that promotes optimum bone strength also paradoxically inhibits the intestinal absorption of phosphorus. Phosphorus absorption is also more efficient when dietary phosphorus level is reduced. The inventors have discovered that addition of supplemental boron to animal feed promotes bone mineralization and permits a proportional 3 to 5 % reduction of both calcium and phosphorus in the animal feed while maintaining bone strength.
[0058] The 1998 NRC report on "Nutrient Requirements of Swine", data from which is shown below in Table 1, indicates that typical requirements for calcium and phosphorus will vary during the lifetime of a pig. At earlier stages, when the bones of the skeleton are still undergoing development, greater amounts of calcium and phosphorus are needed to support increased bone growth. The requirements for calcium and phosphorus decrease as a pig matures and bone development is completed. Although the data presented below are for pigs, similar trends in requirements for calcium and phosphorus are observed during the life cycle of other animals.
Table 1 Growing Pigs (NRC, 1998) Body Weight (kg) 3-5 5-10 10-20 20-50 50-80 80-120 Calcium (%) 0.90 0.80 0.70 0.60 0.50 0.45 Phosphorus, total 010 0.70 0.65 0.60 0.50 0.45 0.40 Sows Calcium % 0.75 Phosphorus, total !0 0.60 [0059] The inclusion of supplemental boron in the diet of various animals allows the levels of calcium and phosphorus to be reduced by at least 3% throughout the life cycle of animals. Thus, while the ratio of calcium to phosphorus is generally kept constant at each weight range indicated in Table 1, the absolute amounts of calcium and phosphorus can be lowered by at least 3% due to the addition of supplemental boron containing compounds.
[0060] Thus, in another embodiment, this invention provides an animal feed containing supplemental boron with a reduced level of phosphorus. In one embodiment, the supplemental boron is preferably provided at a concentration of about I to about 500 ppm elemental boron and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron. The calcium level is generally reduced comparably to the phosphorus level. However, it will be recognized that if the supplemental boron containing compound is supplied as a calcium salt, such as calcium borate or calcium borogluconate, levels of calcium in the animal feed can also be correspondingly reduced.
One such compound, calcium borogluconate, is already in use to treat hypocalcemia in cattle, sheep, and goats. In another embodiment, the supplemental boron concentration is preferably about 1 about 150 ppm and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron. In yet another embodiment, the supplemental boron concentration is preferably about 25 ppm to 50 ppm and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron.
[0061] In another embodiment, the invention provides a method of decreasing the amount of pre-weaning mortality by animals. In this embodiment, pregnant, nursing or lactating animals are fed a diet of an improved animal feed composition containing about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds in which the animal feed composition has at least a 3%
reduction in phosphorus as compared to a comparable animal feed without supplemental boron.
Generally, the animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used or other inorganic forms of boron as described herein.
OC in humans [0062] Osteochondrosis with its various manifestations has been found to be strikingly similar in six species of animals in which it has been reported. This has prompted experts to assert that it would be expected that osteochondrosis in humans would have the same etiology, pathogenesis, and pathology as has been observed in animals. See Olsson, S.E. and Reiland, S. 1978. The nature of osteochondrosis in animals - summary and conclusions with comparative aspects on osteochondrosis dissecans in man. Acta Radiologica Supplement No.
358:299-306.
[0063] Osteochondrosis in humans is defined in Dorland's Medical Dictionary as follows: a disease of the growth or ossification centers in children that begins as a degeneration or necrosis followed by regeneration or recalcification. Also called epiphyseal ischemic necrosis (q.v.), it may affect (1) the calcaneus (os calcis), a condition sometimes called apophysitis; (2) the capitular epiphysis (head) of the femur, a condition known as Legg-Calvd-Perthes disease, Perthes disease, Waldenstrom's disease, coxa plana, and pseudocoxalgia; (3) the ilium; (4) the lunate (semilunar) bone, known as Kienbock's disease;
(5) head of the second metatarsal bone, known as Freiberg's infraction; (6) the navicular (tarsal scaphoid); (7) the tuberosity of the tibia, called Osgood-Schlatter disease and Schlatter's disease; (8) the vertebrae, called Scheuermann's disease or kyphosis, juvenile kyphosis, vertebral epiphysitis, and kyphosis dorsalis juvenilis; (9) the capitellum of the humerus, called Panner's disease.
[0064] The locations, of the joints affected in human children can be contrasted with regions affected in the pig. In the pig, osteochondrosis can be located in the following areas, listed in descending orde'r of severity of lesions: 1. Articular-epiphyseal lesions: stifle, elbow, lumbar synovial intervertebral joints, hock, shoulder, and hip, 2.
Growth plate lesions:
distal ulna, distal femur, costochondral junction, femoral head, humeral head, ischiatic tuberosity, and thoracolumbar vertebrae, 3. Epiphysiolysis and apophysiolysis lesions:
glenoid cavity, ischiatic tuberosity, capital femoral epiphysis, vertebral epiphyses, anconeal process, and distal ulnar epiphysis.
[0065] Because of the similarity of the disease in pigs and humans, another embodiment of the invention is the treatment and prevention of OC in humans. Boron compounds can be administered to patients suffering from OC. The boron containing compounds useful for the practice of this invention may include any suitable organic, inorganic, or mineral boron containing compounds. Among the preferred forms of boron are sodium borate and boric acid. Other useful inorganic forms of boron include calcium borate. Examples of organic boron-containing compounds are well known to those of skill in the art.
Examples of such organic boron-containing compounds are found in U.S. Patent Nos. 4,312,989, 4,499,082, and 5,312,816. Dosages that may fmd use in humans include 1-13 ppm.
Formulations of boron for use in humans [0066] Described below are administration methods that are useful for humans.
One particularly useful administration method is the provision of boron as mineral or vitamin supplements, for example, in food or pill format. However, it will be appreciated that many of the methods disclosed below, while especially applicable to humans, can also be used for the administration of boron to animals as well.
[0067] One especially useful form of administration for the boron containing compounds of the present invention is as a mineral supplement with vitamins that can be taken orally as a pill or added to food. Multi-vitamin and mineral supplements are useful in the maintenance and improvement of health by insuring adequate intake of micronutrients that are needed for disease prevention and to compensate for nutritional deficiencies that result from factors as inadequate dietary intake of essential nutrients. Vitamin and mineral preparations are commonly administered as general nutritional supplements or to treat specific medical conditions. Accordingly, the supplemental boron containing compounds of the present invention can be administered as mineral supplements with vitamins such as vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, vitamin B 1, vitamin B2, niacinamide, vitarnin B6, vitamin B12, biotin, pantothenic acid, carnitine, silicon, molybdenum, germanium iron, phosphorus, iodine, magnesium, zinc, selenium, copper, chromium, potassium, choline, lycopene, and co-enzyme Q-10. Examples of mineral supplement formulations to which supplemental boron containing compounds can be added can be found in U.S.
Patent Nos.
4,752,479, 5,869,084, and 6,361,800. Such supplements containing the boron compounds of the present invention can be administered as chewable vitamin pills, or as supplements that can be added to beverages, or as supplements that can be added to foods.
[0068] In practicing the method of the present invention, the boron compounds may be administered per se or as components of a pharmaceutically acceptable composition. When used in medicine, the form of the supplemental boron compounds should be both pharmacologically and pharmaceutically acceptable.
[0069] Thus, the present invention may be practiced with the boron compounds being provided in pharmaceutical formulations, both for veterinary and for human medical use, comprising the active agent (the boron compound) together with one or more pharmaceutically acceptable carriers thereof and optionally any other therapeutic ingredients.
The carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not unsuitably deleterious to the recipient thereof.
The active agent is provided in an amount effective to achieve the desired pharmacological effect, as described above, and in a quantity appropriate to achieve the desired daily dose.
[0070] The formulations include those suitable for oral, rectal, topical, nasal, ophthalmic, or parenteral (including subcutaneous, intramuscular, and intravenous) administration.
Formulations suitable for parenteral administration are preferred.
[0071] The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active compound into association with a carrier which constitutes one or more accessory ingredients. In general, the formulations may be prepared by uniformly and intimately bringing the active compounds into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into desired formulations.
[0072] Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tablets, or lozenges, each containing a predetermined amount of the active ingredient as a powder or in the form of granules; or as a suspension in an aqueous liquor or a non-aqueous liquid, such as a syrup, an elixir, an emulsion, or a draught.
[0073] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, with the active compound being in a free-flowing form such as a powder or granules which optionally is mixed with a binder, disintegrant, lubricant, inert diluent, surface active agent, or discharging agent. Molded tablets comprised of a mixture of the powdered active compound with a suitable carrier may be made by molding in a suitable machine.
[0074] One desirable formulation of the composition for administration is in a powdered form for dissolution or dilution with water or another suitable beverage or liquid before use.
Alternatively, the composition can be contained in a ready to use form as part of a fortified beverage in liquid form. Also, boron containing compounds can be added to milk replacers.
The composition can also be contained in a pudding with a custard or flan like texture or in the form of a bar suitable for ready consumption.
[0075] A syrup may be made by adding the active compound to a concentrated aqueous solution of a sugar, for example sucrose, to which may also be added any accessory ingredient(s). Such accessory ingredient(s) may include flavorings, suitable preservatives, agents to retard crystallization of the sugar, and agents to increase the solubility of any other ingredient, such as a polyhydroxy alcohol, for example glycerol or sorbitol.
[0076] Formulations suitable for parenteral administration conveniently comprise a sterile aqueous preparation of the active compound, which preferably is isotonic with the blood of the recipient (e.g., physiological saline solution).
[0077] Nasal spray formulations comprise purified aqueous solutions of the active compound with preservative agents and isotonic agents. Such formulations preferably are adjusted to a pH and isotonic state compatible with the nasal mucous meinbranes.
[0078] Formulations for rectal administration may be presented as a suppository with a suitable carrier such as cocoa butter, hydrogenated fats, or hydrogenated fatty carboxylic acids.
[0079] Topical formulations comprise the active compound dissolved or suspended in one or more media, such as mineral oil, petroleum, polyhydroxy alcohols, or other bases used for topical pharmaceutical formulations.
[0080] In addition to the aforementioned ingredients, the formulations of this invention may further include one or more accessory ingredient(s) selected from diluents, buffers, flavoring agents, binders, disintegrants, surface active agents, thickeners, lubricants, preservatives (including antioxidants), and the like.
[00811 The following examples further demonstrate several preferred embodiments of this invention. Vi7hile the examples illustrate the invention, they are not intended to limit the invention. The patents cited herein are incorporated by reference in their entirety.
Example 1: Boron Supplementation and its Effects on OC-associated Lameness in Swine Materials and Methods [0082] Three groups of 19 pigs, Duroc and Yorkshire pigs were randomly blocked by =breed, litter and weight. The basal diet consisted of commercial corn-soy diet containing 10 ppm boron.
[0083] Test diet group B was fed a basal diet plus 25 mg/kg boron as sodium borate decahydrate (borax). Test diet group A was fed a basal diet plus 25 mg/kg boron as sodium borate decahydrate (borax) and 250 mg/kg ascorbic acid.
[0084] Pigs were weighed at the beginning of the study, 4 weeks later and every 3 weeks until the end of the study. Animals were scored for soundness on a 5-point scale at each weighing. (Five-point scale: 1= no soundness defects; 2= minor soundness issues but still sound enough for retention as breeding animal; 3=not sound 'enough for retention for breeding but still marketable; 4= unsound, likely to be rejected at slaughter;
5=severely lame, requiring euthanasia for humane reasons.) Grading was done by the caretaker and the investigator at all weighing times. An experienced independent treatment-blind rater also evaluated the soundness of each animal and the ratings he provided were compared with the ratings of the caretaker and investigator by use of Cohen's Kappa test.
[0085] The animals were housed in a modern curtain sided barn with deep straw bedding, with ad libitum access to feed and water. Waterers and feeders were on a concrete pad but the remainder of the flooring was deep straw over a ground limestone and sand base. Floor space allowances exceeded the recommendations of the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, First Revised Edition, 1999.
Federation of Animal Science Societies. Savoy, IL.
[0086] Pigs in the study were fed a typical corn-soybean meal diet which contained a proprietary commercial supplement from the Moorman's company at the manufacturer's suggested inclusion rate. The basal diet (no boron supplementedy was analysed and found to contain boron at the rate of 10 ppm which is typical for a corn-soybean meal based diet.
[0087] Animals were observed twice daily by the caretaker.
[0088] In mid October one pig was observed to be severely lame and was euthanized and necropsied. Three additional pigs, one lame Duroc, a sound York and a sound Duroc (littermate to the lame pig) were euthanized and necropsied for observational purposes in mid-November.
[0089] At the end of the study the pigs were transported to a laboratory where they were euthanized and necropsied. Six pigs in each of group B and group A were put on the control diet for 7 days at the end of the study.
[0090] At necropsy, samples of liver, heart, kidney, fat, skeletal muscle, proximal tibia, blood, and the rostral snout were retained and frozen at -40 C prior to chemical analysis. All joints of the axial skeleton were evaluated for the presence of gross lesions of osteochondrosis and graded on a 5 point scale. (5-point scale: 1= no gross abnormalities;
2=minor imperfections in articular conformation or articular reddening present but no cartilage erosions; 3 = cartilage intact but surface irregularities of the cartilage are present; 4=
fissuring or erosion of articular cartilage is obvious; 5= full thickness cartilage lesions or cartilage flaps, osteochondritis dissecans obviously present).
[0091] The proximal femur (femoral head) and articular surfaces and growth plates associated with the stifle, hock, shoulder, elbow and carpus were sectioned with a band saw and approx. 0.5 to 1.0 cro sections fixed in formalin. Bone sections were decalcified with formic acid/sodium citrate, embedded in paraffin and sectioned at 5 microns.
Sections were deparaffinized according to standard procedures. Two sections were made from each joint and growth plate and stained with either hematoxylinleosin (H&E) or with toluidine blue (pH
4)/fast green for evaluation of the articular cartilage, subchondral bone and growth plate.
[0092] Mean joint lesion scores, growth rate and soundness scores by treatment and by factors boron and ascorbate were compared using an analysis of variance and t-test as appropriate. Soundness scores were dichotomised into binary categorical variables for lameness (soundness score>2) and for absence of defects (soundness<2), and the binary variables analysed by chi-square and logistic regression.
[0093] Tissue specimens stained with H&E were examined microscopically for the presence of lesions of osteochondrosis. Toluidine Blue staining allowed assessment of retention or loss of proteoglycan from the extracellular matrix (ECM) of the cartilage. Each tissue section was scored by a treatment-blind board-certified pathologist.
[0094] Further, specific joints and structures are selected for more detailed histomorphometric analysis. Both epiphyseal and growth plate specimens were obtained from boron treated and untreated animals.
[0095] The results show that boron supplementation can be effective in reduction of the incidence of osteochondrosis-associated lameness in growing swine. Animals supplemented with boron had healthier joints than those receiving the basal diet with no supplemental boron (Figure 1). Increasing soundness score (higher score=increasing lameness/leg unsoundness) is associated with increasing lameness in the pigs not receiving boron (Figure 2). Figure 3 illustrates the effect of early rapid growth (weight on 23 October) on soundness scores at the termination of the study (18 December). Pigs that did not receive boron and grew rapidly tended to develop leg unsoundness and lameness. Boron supplementation was useful in cartilage protection and prevention of lameness in rapidly growing swine, whereas the untreated group displayed a high prevalence of lameness and leg unsoundness that was clearly associated with the presence of cartilage damage typical of osteochondrosis in swine.
[0096] In further microscopic analysis of the cartilage, one hundred and forty-one (141) sections of articular cartilage and growth plate have been prepared by formate decalcification and staining with H&E and Toluidine blue. The toluidine blue (TBlue) stain provided a semi-quantitative measure of sulfated glycosaminoglycan (sGAG) content. The consistently higher TBlue staining intensity among the boron supplemented group suggested a higher sGAG content in cartilage from boron supplemented pigs. (This effect of boron has been confirmed by a sGAG analysis procedure.) Lesions were evaluated by an experienced board certified pathologist specializing in porcine tissues. Lesions are classified into 2 factors.
One factor comprising presence or absence of necrosis, infarction, hemorrhage or eosinophilic matrix streaks provides a measure of the structural integrity of the articular surface, while another factor comprising hyperplasia and abnormal differentiation provides a measure of the condition of the growth plate associated with growth plate widening. Growth plate lesions associated with widening were found in 57% of tissues from the unsupplemented group as compared with 19% of the tissues from pigs receiving 25 ppm boron. Articular cartilage lesions (necrosis, hemorrhage, infarction, or streaks) were found in 21 Jo of tissues from unsupplemented pigs as compared with 4% of tissues from pigs receiving 25 ppm supplemental B. These data indicate that supplementation with boron can improve the structural integrity of the articular cartilage and the growth plate.
[0097] Anecdotal evidence from aontinuing experimental use of boron added to feed or drinking water indicates a consistent and sustained positive response in swine in a variety of production settings and genetics. This evidence is described in Example 6.
Example 2: Glycosaminoglycan Study.
[0098] Boron nutrition is necessary to maintain the glycosaminoglycan concentration of cartilage at normal, healthy levels required for the cartilage to perform its function of resisting compression forces or to maintain the weight bearing ability of the cartilage.
[0099] Proteoglycans, a major component of healthy cartilage, draw and hold water which allows them to bear weight. We have measured the major subcomponent of proteoglycan, glycosaminoglyca.n (GAG) and have found that it is significantly reduced in non-boron supplemented pig cartilage tissue. Our data and the literature would support the statement that cartilage with low GAG levels fails to function much more readily than cartilage with higher levels of GAG.
[00100] Hock joints and elbow joints were obtained at necropsy from pigs in two feeding groups: one group having been fed a commercial ration supplemented with 50 mg B/kg feed and the other being fed only the standard commercial pig ration.
[00101] Cartilage plugs were harvested from the articular surfaces of 40 hock and elbow joints using a #5 (10.5 mm) cork borer. The samples were papain digested and analyzed for concentration of sulfated glycosaminoglycan (sGAG) using a spectrophotometric microplate analysis procedure adapted from Farndale, et al (1986), using a chondrotin sulfate standard.
This method measures total sulfated glycosaminoglycan, most of which is chondrotin sulfate and keratan sulfate components of aggrecan. Aggrecan is the large aggregating proteoglycan of cartilage responsible for creating and maintaining the osmotic pressure of cartilage.
Quanititation of sGAG concentration thus provides a measure of the weight-bearing and anti-friction properties of cartilage and is a measure of cartilage quality and durability.
[00102] The sGAG concentration (dry matter basis) in the cartilage of the pigs fed 50 ppm boron was 11050 ng/g as compared with 5045 ng/g among the unsupplemented pigs.
This difference was significarit at p<0.01. These data indicate that the chondroprotective properties of boron are mediated at least in part via mechanism that lead to increased sGAG
levels in the cartilage.
Example 3: Reproductive effects in Female Swine.
[00103] It was observed that when sows were fed diets containing 50 ppm supplemental boron during the late gestation and early lactation period, piglet quality as assessed by uniformity, growth, and general thrift was improved, and pre-weaning piglet mortality was reduced. A preliminary pilot study confirmed these observations. Sows were fed a standard corn-soy diet. Half of the sows received an oral administration of a boron supplement to provide 1 mg boron per kg body weight. The other half did not receive any supplementation.
Preliminary analysis of the data from the first 600 pigs indicated that the provision of boron to the gestating and lactating sows reduced pre-weaning mortality from 23% to 16% and increased piglet weight at 12 days of age from 8.0 pounds to 8.5 pounds, as compared to the non-supplemented groups.
[00104] To test the effect of boron on sows and their litters, a trial was established in a large commercial swine operation during an outbreak of porcine viral reproductive and respiratory disease (PRRSV). Boron was administered orally to a group of 51 sows individually housed in crates at the rate of 1 mg boron per pound BW per day beginning 1 week prior to farrowing and continuing until the piglets were weaned at 14 days of age.
Their performance was compared to that of cohort of 50 sows of identical genetics and identical housing and husbandry conditions that did not receive boron. Boron treatment was supplied as a single daily dosing and was discontinued at weaning. All sows were fed a standard commercial sow diet.
[00105] There were no effects on litter size at birth or piglet birth weight.
Piglets raised by sows consuming boron weighed 9.01 lbs at 12 days of age as compared with 8.32 lbs for the piglets raised by control sows (p=0.06). Piglet mortality in the boron treated group was 15.2% as compared with 20.3% among the controls (p=0.03). Sows that were fed boron returned to estrus an average of 1.6 days quicker than control sows (p=0.047).
Boron treated sows were 1.2 times as likely as control sows to conceive (p=0.04). This result would be expected to have significant positive impact in a commercial pig raising operation.
[00106] It is postulated that borate exerts its beneficial effects in OCD
prevention by modulation and stabilization of the extracellular matrix (ECM). In tissues like cartilage that possess an abundant ECM consisting of proteoglycan and collagen, the main effect of boron is likely mediated by a change in the mechanic (material) properties of the cartilage ECM.
However many other tissues with important functions do also possess ECM
components and extracellular receptors, the structure of which may be stabilized by boron cross-links which improves their functionality in cell to cell signaling, receptor functions, and adhesion functions. It is postulated that the effect of borate on reproduction is modulated by this sort of mechanism.
Example 4: Effects of Boron on Phosphorus Digestibility and Excretion and Feed Conversion.
[00107] A 28-day feeding trial was conducted in a large commercial farm setting with 144 crossbred pigs of initial body weight of 24 kg. Pigs were randomly allocated to 24 pens of 6 pigs per pen in a thermoneutral controlled environment barn with steel grid flooring. Each pen was equipped with a single-hole feeder. Water was available free-choice from a nipple drinker. Pigs were fed a commercial pig diet containing 0.5% phosphorus plus 0 or 50 mg/kg Boron and a calcium level of either 0.5 or 0.65% in a 2 x 2 factorial design.
Feces were collected on the last 3 days of the study from each pen and a pooled aliquot was dried and submitted for chemical analysis. Yttrium oxide was added to the diet at 0.05%
and served as a marker for phosphorus digestibility. Pig growth and feed consumption was measured at the end of the study with the pen as the experimental unit. Data was analyzed for effects of boron and calcium by univariate and multivariate analysis of variance and t-tests.
j00108] Supplemental boron increased average daily gain, improved feed conversion ratio and phosphorus digestibility, and reduced fecal phosphorus excretion per unit of growth (p<0.05). (Table 2). Daily feed intake was not significantly modified by boron or calcium level (p>.20). Decreasing calcium level improved feed conversion (p<0.05).
There were no significant interactive effects of boron x calcium on feed conversion or phosphorus excretion (p>.25).
[00109] The digestibility and fecal excretion of phosphorus is of significant concem to animal agriculture. Phosphorus is a costly dietary ingredient and the phosphorus in animal wastes is a potential environmental pollutant. In the present study, the phosphorus excretion per unit of production was reduced by 15% by adding boron to the diet. Boron also produced a significant effect on overall feed conversion ratio. It is expected that these effects of boron would have a significant impact in reducing environmental pollution as well as reducing production costs in animal agriculture Table 2. Effects of Boron Supplementation No Added B 50 ppm Added B S.E. p Feed Conversion Ratio (feedlgain) 2.65 2.32 0.082 0.033 Phosphorus Digestibility (%) 33.4 36.3 0.820 0.017 Phosphorus excretion in Feces (g/Kg gain) 88.1 74.6 2.88 0.028 Average daily gain (grams per day) 507 549 13.6 0.018 Avg. daily feed intake 1330 1270 45 0.21 Example 5: 3-NPB Studies [00110] It was hypothesized that boron mediates its effect in the pig by quadrivalent crosslinking. 3-nitrophenylboronic acid (3-NPB) which is an avid blocker of boron crosslinks was administered orally to pigs of about 100 kg body weight at the rates of 0 and 1 grams in combination with supplemental boron at the rates of 0 and 50 ppm in feed. The 3-NPB was administered for 10 days. The pigs were evaluated for lameness daily and euthanatized on day 13 and the joints and other organs were examined.
[00111] All of the pigs that received 3-NPB but no supplemental boron developed clinical manifestations of OCD within 10 days, but only one in 5 of the pigs receiving supplemental boron developed lameness when 3-NPB was provided (Table 3). A chi-square analysis indicated a significant (p<0.05) effect of 3-NPB in inducing lameness and a significant effect of supplemental boron in preventing the lameness induced by 3-NPB.
[001121 Examination of shoulder, stifle, hock and elbow joints showed that 3-NPB treated pigs with no supplemental boron had a higher prevalence of osteochondrosis lesions and a more intense severity of lesions than other treatment groups, with the lowest prevalence of lesions and the lowest severity among those pigs receiving supplemental boron and no 3-NPB. Administration of 3-NPB along with boron resulted in a prevalence and severity of gross joint pathology similar to that observed in unsupplemented pigs.
(Figures 4 and 5).
[00113] It was concluded that 3-NPB is acting as a competitive inhibitor of borate.
[00114] It is generally considered that the pig is the archetypic model species for osteochondrosis in mammals (see Reiland S. Osteochondrosis in the pig. Acta Radiol 1-118, 1975) The cascade of pathophysiologic events that culminate in clinical manifestations of osteochondrosis (OCD) in the pig are generally believed to be those events that occur in the other mammalian species that develop OCD, particularly the horse, dog, ruminants and humans. Since the pig is the model for OCD in other mammals and it has been demonstrated that boron is useful for prevention and treatment of OCD in'the pig, it logically follows that boron should have a similar effect in other mammals and the effect should be mediated by a similar biochemical mechanism.
[00115] Therefore, it was concluded that administration of 3-NPB in species that are known to be susceptible to OCD but at a low prevalence, specifically cattle, horses, and dogs, should produce cartilage lesions indicating presence of a boron receptor moiety in cartilage.
[00116] Three healthy Holstein steer calves of average weight about 2501bs and three healthy Quarter Horse fillies of average weight of about 500 lbs were administered 3-NPB at the rate of 10 mg/kg body weight per day. The 3-NPB was given to the calves by daily intraperitoneal injection, while the horses were administered the daily dose of 3-NPB mixed in feed. All animals consumed a standard ration of commercial feed and free-choice alfalfa-grass mixed hay.
[001171 Lameness was first observed in the calves at day 7 of the 3-NPB
treatment. One calf was euthanatized at treatment day 14 and the other two at treatment day 21. Severe OCD
lesions were visible in the hock and elbow joints of all calves with increasing severity noted with increasing time on 3-NPB.
[00118] Among the horses treated with ora13-NPB, one filly showed clear signs of front leg lameness during exercise on treatment day 10 and was euthanatized on day 14. The other two horses were euthanatized on treatment day 28, at which time lameness was visible during exercise in one of the two horses. OCD lesions of varying degree were observed in the shoulder, elbow, fetlock and hock joints of all horses. Among the notable lesions were a 1 cm x 1 cm necrotic lesion of the cartilage was found on the proximal articular surface of left front P1 at day 14, a developing flap lesion on the distal tibia at day 28 and in another horse, profound thinning of cartilage and obvious cartilage wear lines were observed in the left front fetlock and left elbow at day 28.
[001191 In experiments with normal healthy crossbred hounds of age 10 weeks (body weight 8 kg), the administration of 3-NPB as a single daily dose of 10 mg per kg body weight resulted in visible foreleg lameness as early as 12 days. Necropsy revealed gross lesions of necrosis and hemorrhage in the distal ulnar growth plate. There was also evidence of cartilage erosion in the articular surfaces of the distal tibia and the proximal ulna. The gross lesions in the distal ulnar growth plates resembled the pathologic changes associated with osteochondrosis in swine.
100120] It is concluded that the pig is a suitable model for OCD in both ruminant and non-ruminant animals, including carnivores, and that boron receptor sites exist in all mammalian species, and that supplemental boron is expected to be an effective preventative and remedy in all mammalian species.
Table 3 3-NPB' Clinical Lameness Score * Level of Boron Supplementation Crosstabulation Count Clinical Lameness Score Level of Boron Visible Supplementation Normal Lameness Total 0 3-NPB None 6 0 6 1 gram daily x 10 days 0 4 4 Total 6 4 10 50 ppm 3-NPB None 5 0 5 1 gram daily x 10 days 4 1 6 Total 9 1 10 Example 6: Use of boron in swine in field situations [00121] Boron was added to the diet of sows at 1 mg/kg body weight as boric acid. There was no negative effect on reproduction or fertility. The sows appeared to have normal estrus activity and normal conception rate, with no negative effects on cyclic activity or on pigs born or on piglet viability. Three sows that were noticeably and seriously lame became perfectly sound. Among a group of 95 piglets the birth to weaning mortality was 2 piglets.
The usual mortality for this farm was about 5 to 7%. These piglets remained on boron 50 ppm plus ascorbate 125ppm. One pig was euthanized and examined at a weight of about 85 pounds. No abnormalities were observed in any of the joints. All bones of the appendicular skeleton were sectioned on the band saw. Bones had excellent mineralization and the growth plates were narrow and crisply demarcated, including the distal ulnar growth plate which is an early predilection site for OC-related abnormalities.
[00122] An Iowa farm treated a group of about 100 pigs with 50 ppm boron as boric acid.
None of these pigs developed any signs of lameness or unsoundness. The farmer reported that these pigs are the most sound he has raised. The estimated previous lameness/unsoundness rate was about 25 to 30%, and zero in the test group. The pigs demonstrated excellent growth rate. The absence of lameness and hock swelling was observed. Two pigs with hock swelling were euthanised from among the younger and older pigs not treated with boric acid. The younger pig of about 50 pounds body weight showed evidence of early OC changes in the hock. An older pig of about 250 pounds body weight with severe lameness in the right hock was euthanised. Severe advanced OCD was observed in the hock, and growth plate abnormalities were observed when the bones were sectioned.
Culture of the hock joints was negative, ruling out bacterial infection and indicating that OC
is the likely cause of lameness.
[00151 In yet an additional embodiment, this invention provides a method of reducing environmental phosphorus pollution from an animal farm. In this embodiment, animals are fed a diet of an improved animal feed composition containing 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds whereby the phosphorus efflux is reduced by at least 3% as compared to that of a comparable animal feed without supplemental boron. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid. However, inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used.
Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified.
starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[00161 In a further embodiment, the invention also provides a method of treating or preventing OC by administering a therapeutically effective amount of a boron containing compound to a mammal in need of such treatment. In such an embodiment, the boron containing compound can be sodium borate or boric acid. However, the invention can be used with other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and 'compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. The mammal to be treated can be a human or an animal. The supplemental boron-containing compounds can be administered prior to the appearance of symptoms of osteochondrosis as a preventive measure. Among the animals that can benefit from this invention are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats.
[00171. In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction in the incidence and extent of lesions in the cartilage and subarticular bone of animals. Thus, in this embodiment, the invention provides a method for reducing the incidence and extent of lesions in the cartilage and subarticular bone of animals. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used.
However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0018] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the prevention of necrosis of the joint surface and subarticular bone as measured by the number of infarcts (necrotic tissue caused by the obstruction of the local blood supply). Thus, in this embodiment, the invention provides a method for preventing necrosis of the joint surface and subarticular bone as measured by the number of infarcts (necrotic tissue caused by the obstruction of the local blood supply). In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used.
However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0019] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of hyperplasia, necrosis and hemorrhage. Thus, in this embodiment, the invention provides a method for reducing hyperplasia, necrosis and hemorrhage. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron.
In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate,'magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the aniinals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0020] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of dysplasia (abnormal development and or abnormal structure) in cartilage, growth plate and bone as measured by the growth plate width (a wide growth plate being representative of abnormal growth and improper ossification). Thus, in this embodiment, the invention provides a method for reducing dysplasia as measured by the growth plate width; (a wide growth plate being representative of abnormal growth and improper ossification). In this embodiment, the -Mu~;aÃmÃp'jqg supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. In such an embodiment, the feed could also be in the form of a liquid. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0021] In a further unexpected discovery, the inventors have determined that the addition of supplemental boron to animal feed allows for the reduction of articular cartilage damage as evidenced by higher concentrations, typical of healthy tissue, of glycosaminoglycans (GAGs), hydroxyproline, and other biomolecules that are related to or components of proteoglycans or collagen. Thus, in this embodiment, the invention provides a method of reducing articular cartilage damage as evidenced by higher concentrations, typical of healthy tissue, of glycosaminoglycans (GAGs), hydroxyproline, and other biomolecules that are related to or components of proteoglycans or collagen. In this embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 1 to about 500 ppm supplemental elemental boron. In other embodiments, the boron containing compounds are typically included in animal feed at concentrations providing about I to about 150 ppm supplemental elemental boron. In yet another embodiment, the supplemental boron containing compounds are typically included in animal feed at concentrations providing about 50 ppm or about 25 to 50 ppm supplemental elemental boron. ,In such an embodiment, the feed could also be in the form of a liquid.
In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate. Among the animals that would benefit from the animal feed are pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, cats, as well as humans.
[0022] In another embodiment, the invention provides a method of decreasing the amount of pre-weaning mortality in animals. In another embodiment, the invention provides a method of improving reproductive rates of animals by increasing the rate of return to estrus and conception rates. In these embodiments, previously pregnant, pregnant, nursing and/or lactating animals are fed a diet of increased boron. The diet may contain about I to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds. The boron may be provided in improved animal feed composition or in milk or water. Generally, the milk, water or animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such embodiments, the supplemental boron containing compound can be sodium borate or boric acid can be used. However, other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or. are metabolized in the body to release boron as borate or boric acid can be used. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen borate, ammoniurn borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate. Among the organic forms are complexes and compound formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
The method is suitable for use with pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats among other animals.
[0023] In an additional embodiment, the boron-containing compounds are added to drinking water, mineral or vitamin supplements, in a milk formulation, or other food products for the treatment and prevention of OC and/or reduction in pre-weaning mortality.
[0024] In an additional embodiment, this invention provides a boron-talc composition where the ratio of boron-containing compound to talc is approximately 5:1, 6:1, 7:1; 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1.
In such an embodiment, the boron is a boron containing compound which can be sodium borate or boric acid. However, the invention is not limited to these forms of supplemental boron. Other inorganic forms of boron such as calcium borate, as well as, organic boron compounds and complexes that dissociate or are metabolized in the body to release boron as borate or boric acid can be used as well. Among the inorganic forms are sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate,. calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium ' borosilicate, lithium borosilicate, and sodium fluoroborate. Among these organic forms are complexes and compounds formed by boron, usually as boric acid, with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of -glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
[0025] Talc is available for use in the present exemplary embodiments from a variety of commercial sources. For example, Luzenac America is a supplier of talc.
Examples of talc products from Luzenac America include: E-Z Flow 40, E-Z- Flow MB, E-Z Flow MT, E-Z
Flow RM, and E-Z Flow VT.
BRIEF DESCRIPTION OF THE DRAWINGS
[0026] Figure 1 is a graph indicating a reduction in the occurrence of osteochondrosis with supplemental boron treatment.
[0027] Figure 2 is a graph showing the association between increasing osteochondrosis scores in the pig right hock with increasing soundness scores among pigs not receiving supplemental boron.
[0028] Figure 3 is a graph showing the effect of supplemental boron treatment in the reduction of soundness scores associated with early growth.
[0029] Figure 4 and 5 are graphs which show that administration of 3-NPB along with boron resulted in a prevalence and severity of gross joint pathology similar to that observed in unsupplemented pigs.
DETAILED DESCRIPTION OF THE INVENTION
Introduction [0030] Boron has long been known to be an essential plant nutrient, but a role for boron in human physiology has only recently been appreciated. The present inventors have discovered a beneficial effect of boron supplementation of animal and human diets. In particular, although previous studies had shown that boron containing compounds could alleviate the bone disease, osteoporosis, the present inventors have discovered that boron containing compounds also alleviate a disease of the joints and growth plate cartilages, osteochondrosis (OC).
[0031] Osteoporosis is a disease in which bones become fragile and become increasingly likely to break as the disease progresses. Osteoporosis, or porous bone, is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility and an increased susceptibility to fractures of the hip, spine, and wrist. Thus, osteoporosis is a disease that specifically strikes the bone, generally after full 'and normal development. Also, because of its progressive nature, osteoporosis is a disease that most commonly manifests itself in older individuals. One out of every two women and one in four men over the age of 50 will have an osteoporosis-related fracture in their lifetimes.
[0032] In contrast, osteochondrosis is a generalized skeletal disease of growing animals and results from a disturbance in the articular and growth plate cartilages.
The bone is only secondarily affected. As a consequence, dyschondroplasia is technically a more correct term to describe this condition. A further condition, osteochondrosis dissecans, results in the chipping, fracturing and/or fragmentation of the articular surface.
Osteochondrosis dissecans is thought to be caused by an underlying weakness in the cartilage caused by an osteochondrotic lesion. Lesions are characterized by focal impaired endochondondral ossification, resulting in areas of retained cartilage extending into the subchondral bone. See R. John Wardale and Victor C. Duance. Journal of Cell Science 107, 47-59 (1994).
[0033] Because of the differences in the pathobiology of OC and osteoporosis -the two diseases affect different aspects of the bone system and different age groups -one would not expect that a treatment that alleviates osteoporosis, a degenerative disease of the bones of the elderly, would help in the treatment of OC, a disease of the cartilage in joints of the young.
The inventors have found that surprisingly, boron containing compounds are useful agents in the prevention and treatment of OC.
Role of boron in the behavior of cartilage [0034] , The extracellular matrix (ECM) of the articular cartilage provides cushioning between opposing bone surfaces at a joint in a mammalian limb. Synovial fluid is the fluid contained in joints. Synovial membranes line the joints, bursae, and tendon sheaths. The function of the synovial fluid is to lubricate the joint space and transport nutrients to the articular cartilage. The articular cartilage provides a low friction point of contact for the smooth flexing operation of the joints and also a cushioning function at joints, by absorbing the impact of shocks transmitted through the bones and supporting the weight of the animal.
The cartilage is composed of a variety of components including proteoglycan and a collagen network in an aqueous environment.
[0035] Proteoglycans play a role in maintaining the cushioning seen at joints.
The cartilage ECM is illustrated as a network of the collagen fibers which interlocks with and is interlocked by proteoglycan. The proteoglycan is a flexible gel-like material and the collagen forms a mesh-network that holds the proteoglycan in place. The proteoglycan provides compressive strength while tensile strength is provided by the collagen network.
Proteoglycan in articular and growth plate cartilage contains large amounts of sulfated glycosaminoglycans (GAG) that have a strong negative charge. At physiologic pH, these negatively charged GAG molecules draw sodium ions and water into the ECM of the cartilage, causing the proteoglycan to "inflate". The inflated proteoglycan provides buoyant pressure to resist compression, thus protecting the collagen network and underlying structures from compression damage. Better cushioning and thus greater compression resistance is provided by a fully hydrated proteoglycan complement and a fully extended and taut collagen network.
[0036] Without limiting this invention to any particular mechanism nor being bound by theory, one potential model for how boron functions in OC is the "standing hypothesis". In this hypothesis, boron functions by crosslinking the proteoglycan into the extracellular matrix. One postulated mechanism for how this occurs is that boron provides for three-dimensional boroester crosslinking of carbohydrate, proteoglycan, glycoprotein, glycolipid, lipid, protein, and amino acid structures. In the case of extracellular membrane structures such as cartilage and neural tissue, this would include proteoglycans such as aggrecan (the large aggregating proteoglycan of cartilage), complex proteins such as collagen in its various forms and types, and associated proteins such as cartilage link protein. The crosslinking of the proteoglycan stabilizes and unifies the matrix, allowing for better distribution of compressive forces and prevention of proteoglycan loss, which would decrease the cushioning ability of the synovial membrane. In contrast, boron functions to prevent osteoporosis by increasing the plasma levels of hydroxylated steroids. See U.S. Patent No.
4,849,220. Thus, one would not have predicted that boron would have an effect in treating a disease of the cartilage, such as OC, which has a totally different etiology from osteoporosis.
In osteoporosis, the bone itself is directly affected. In OC, the cartilage is affected.
Etiologyand pathology of OC
[0037] Although the precise cause of OC is not yet known, a number of mechanisms for the progression of this disease have been suggested. The influence of compressive forces in producing damage to the growing and transitioning cartilage appears to be a major factor.
Studies in pigs have suggested that focal changes in blood supply during normal epiphyseal growth is central to the pathogenesis of osteochondrosis. Cartilage canals are temporary blood vessel-containing structures within growing cartilage. The canals gradually regress with age during the process of chondrification, wherein the blood vessels contained within the canals are replaced with cartilage. Formation of the lesions associated with osteochondrosis has been associated with the premature chondrification and regression of these canals. In particular, the premature disruption of the blood supply results in necrosis of the cartilage canal distal to the point of interruption. See Ytrehus et al.
Bone 35: 1294-1306 (2004). Thus, it is not surprising that severe clinical osteochondrosis appears most commonly in fast-growing animals with rapid weight gain. See Wardale and Duance Journal of Cell Science 107: 47-59 (1994).
[0038] It has also been demonstrated in humans and dogs that in osteochondrosis, the proteoglycan of cartilage is resorbed by the action of matrix metalloproteinase-3 (MMP-3) derived from synovial membrane cells and chondrocytes. See Shinmei et al.
1991; Okada et al. 1992; Mehraban et al. 1994. Loss of proteoglycan from the extracellular matrix of the cartilage would lead to a decreased capacity of the cartilage to absorb and cushion compressive forces.
Role of Boron in OC
[0039] In order to further probe the contribution of boron deficiency in OC, and to test whether boron functions in OC through quadrivalent crosslinking, 3-nitrophenylboronic acid (3-NPB) was administered to animals. 3-NPB blocks crosslinks by binding to sites normally occupied by boric acid or borate. The results are described in Example 5. 3-NPB treated animals had increased lameness and clinical manifestations of OC. The increase in lameness could be prevented by supplementing the diet with boron. These experiments show that OC
is directly correlated to boron levels in pigs, horses, cattle, and dogs.
Boron compounds for the treatment of OC in Animals [0040] Given the widespread occurrence of OC in livestock and in particular, pigs, this invention discloses a safe and effective means of preventing and treating OC
by providing for animal feed to be supplemented with boron containing compounds. It will be appreciated by one of skill in the art that animal feeds, derived at least in part from plant materials, will contain basal levels of boron since boron is a required element for plant growth. For instance, typical alfalfa contains about 37 ppm boron. Thus, the term supplemental boron as used herein refers to exogenously added boron that supplements the basal levels of boron already present in commonly used animal feeds. When the term boron is used in this disclosure, it can denote both elemental boron and boron containing compounds.
The boron containing compounds useful for the practice of this invention may include any suitable organic or inorganic boron containing compounds, including boron containing minerals.
Among the preferred forms of boron are sodium borate and boric acid. Other useful inorganic forms of boron include calcium borate. One of skill in the art will recognize that other inorganic forms of boron that may be used in this invention include borates with:
magnesium, halogen, ammonium, potassium, iron and magnesium, tantalum, beryllium and nickel, carbonate, sodium and calcium, arsenate, calcium and rare earth, sulphate, magnesium and calcium, manganese, aluminum, calcium and strontium, phosphate, tin, zinc, and strontium. Other forms include: borosilicates or silicoborates with calcium, sodium, aluminum, calcium and rare earth, lead, barium, lithium, and fluoroborate with sodium.
Natural inorganic boron containing compounds are known to skilled artisans by various mineral names such as borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kurnakovite, meyerhofferite, priceite, nobleite, and searlesite to name but a few such designations. A
listing of inorganic borate compounds and minerals can be found in Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Volume V Boron, by Joseph William Mellor, Longman Group Limited, London, 1980.
[0041] Examples of organic boron-containing compounds are well known to those of skill in the art. Examples of such organic boron-containing compounds are found in U.S.
Patent Nos. 4,312,989, 4,499,082, and 5,312,816 all of which are hereby incorporated by reference. Among the forms of organic boron that would be useful in the practice of this invention are organic boron complexes such as boron threonine, boron methionine, and boron ascorbate, as well as boron complexed with other amino acids. These amino acids can include the 20 common amino acids that are specified by the genetic code, as well as variant and modified amino acids which are not encoded by the genetic code. These are examples of organic forms of boron that are rapidly metabolized to release borate or boric acid. Other useful forms of organic boron are boron carbohydrate complexes such as those disclosed in U.S. Patent No. 5,962,049. Among the carbohydrates that form useful complexes with boron include saccharides such as fructose, sorbitol, mannitol, xylitol, and sorbose. A
commercially available form of boron complexed with fructose is Fruitex BTM
available from FutureCeuticals and described in US Patent No. 5,962,049.
[0042] Other organic forms of boron that can be used in the practice of this invention include: borated modified starches (such as hydrolyzed or oxidized starches), borate non-modified starches, borated dextrins, borated amidated sugars (such as glucosamine or mannosamine), borate esters of glycerol fatty acids, borate-salicylate complexes, salts of bisoxalato borate (such as sodium or potassium salts), calcium borosucrose, borate esters ( such as (RO) 3B), alcohol amine borate esters, and borate complexes with sugar acids (such as saccharic acid and gluconic acid), and borate complexes with aminated sugar acids. One particularly desirable sugar acid to use in this invention is calcium borogluconate. Yet another form of boron are anion exchange resins which can be boronated. One such resin which can be boronated is AmberliteTM
j0043] It will be appreciated by one of skill in the art that when a particular boron containing compound is-described herein, it is intended that all possible solvates, pharmaceutically acceptable salts, esters, amides, complexes, chelates, stereoisomers, geometric isomers, crystalline or amorphous forms, metabolites, metabolic precursors or prodrugs of the compound are also separately described by a chemical structural formula or chemical name. Furthermore, if any of the boron containing compounds described herein contain stereochemistry, all enantiomeric and diastereomeric forms of the compound are intended. Thus, when applicable, boron containing compounds may occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included. A racemate or racemic mixture does not necessarily imply a 50:50 mixture of stereoisomers.
[0044] Furthermore, it will be appreciated by one of skill in the art that the borates of the present invention will encompass many different grades, including those that are FDA and non-FDA approved. Thus, among the grades of borates that can be used in the practice of this invention are: pharmaceutical or formulary grade, nuclear grade, fertilizer grade, industrial grade, pesticidal grade, and special quality (SQ) grade.
[0045] Suitable ranges for use of the boron containing compounds includes the supplementation of boron in animal feed from about 1 to about 500 ppm above that naturally present in the animal feed. Another suitable range for supplementation is about 1 to about 150 ppm. As shown in Figures 1, 3 and 4, the inventors have found that supplemental boron at 25 ppm to 50 ppm provides a significant reduction in the occurrence of OC
in pigs.
Accordingly, in one embodiment, this invention provides an animal feed composition that is supplemented with 25 ppm to 50 ppm boron containing compounds. In one embodiment, the supplemental boron containing compound is sodium borate. In another embodiment, the supplemental boron containing compound is boric acid. It will be clear to one of skill in the art that other concentrations of boron may be used depending on the severity of the disease or animal to be treated. Furthermore, it will be clear to one of skill in the art that other supplemental boron containing compounds may also be used in the practice of this invention.
[00461 The boron described herein may be combined with talc. The boron-containing compound to talc ratio may be approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1.
Incorporation of supnlemental boron into animal feeds [0047] A variety of methods are known in the art for the production of animal feeds.
These various methods can be adapted to allow inclusion of supplemental boron into the feed in amounts that will have a beneficial effect on OC when fed to animals.
[0048] For example, supplemental boron in the amounts disclosed above can be incorporated into animal feed compositions such as those described in U.S.
Patent No.
3,946,109. Alternatively, a variety of other feed compositions are commercially available from suppliers such as Purina, ADM, Land O'Lakes, and Moorman's. Supplemental boron can be mixed into a composition of choice using for instance, the mixing methods disclosed in U.S. Patent No. 4,189,240. The composition containing supplemental boron can be used to form animal feed food blocks such as those disclosed in U.S. Patent No.
5,120,565.
Alternatively, supplemental boron can be incorporated into an animal feed composition which is formed by methods such as spray drying as disclosed in U.S. Patent No. 4,777,240.
The citation of these patents is solely to illustrate various methods available in the art for incorporating supplemental boron into an animal feed product and is not meant to limit the practice of the invention to the use of any one or more of these methods.
[0049] Other boron sources that can be incorporated into animal feeds to practice this invention include yeast preparations that are high in boron. It is already common practice to incorporate yeast into animal feeds. Hence, it would be fairly straightforward to include yeast with elevated boron levels in animal feed. Alternatively, crops that have been grown in soils with elevated boron levels can be harvested specifically for the purpose of serving as an enhanced boron source that can be incorporated into animal feeds. Such elevated boron levels may be naturally in the soil, may result from boron pollution, or may be added to the soil by fertilization or other means. Alternatively, supplemental boron containing compounds can be added to supplements, base mixes, and premixes that also contain vitamins and minerals. Such supplements, mixes, or premixes are typically added at an amount to constitute 0.5% to 30% of the final animal feed composition. In such an embodiment, the elemental boron concentration would be much higher (from about 3 times to 200 times higher) prior to dilution in the animal feed to result in a supplemental boron equivalent of I -500 ppm over a total daily ration.
[0050] Another alternative is to supplement animal feeds with foods, such as alfalfa, grapes, or coffee grounds, which are naturally high in boron content.
Additionally, these and other foods can be manipulated to contain higher levels of boron by growth under elevated boron conditions as described above or by means of transgenic plant technology or other recombinant methods.
[0051] In a further embodiment, supplemental boron containing compounds can be provided as dietary supplements that can be directly hand-fed or "top-dressed"
onto an animal feed. Such an embodiment could be in a formulation that contains other nutrients, excipients, or flavors. As an example, an equine nutrient supplement containing supplemental boron and other vitamins and minerals could be fed to a horse with a small spoon or cup or in the form of a bar or pellet. Alternatively, the supplement could be placed on top of or mixed in the animal's feed.
[0052] Such boron can be supplied to animal feeds as a boron-talc composition.
The ratio of boron-containing compound to talc in the boron-talc composition can be approximately 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1; 21:1, 22:1, 23:1, 24:1 or 25:1 [0053] Should it be necessary, boron levels can be precisely determined by a variety of methods known in the art. U.S. Patent Publication 20040020840 and the patents disclosed therein describe a number of such methods.
Reduction ofphosphorus content of animal feeds and improvement of pre-weaningmortality [0054] Phosphate pollution resulting from excess phosphorus in animal feed is an increasing problem. For example, approximately 70% of the phosphorus in a typical corn/soybean meal diet is unavailable to pigs, according to the National Research Council's 1998 Nutrient Requirements for Swine. This unavailable phosphorus ends up being excreted in manure. The high phosphate content of swine manure contributes to the environmental pollution associated with pig farming. Reducing the amount of excreted nutrients, particularly phosphorus, in swine production systems is an environmental priority and an important economic issue facing the swine industry. Thus, a means to increase the bioavailability of phosphorus in feed ingredients used to formulate swine rations would be desirable. The inventors have found that inclusion of supplemental boron in pig feed results in an increased absorption and utilization of the phosphorus present in pig diets.
Supplemental boron promotes the efficient incorporation of phosphate into the calcium phosphate (hydroxyapatite) of bones. This effect is expected to be true in other animals as well.
[0055] By increasing the efficiency of absorption and utilization of phosphorus from animal diets such as pig diets, the inventors have found that the amount of phosphorus in typical pig feed formulations can be reduced. These results are shown in Example 4. The increased utilization of phosphorus from pig diets coupled with the reduction in the starting amount of phosphorus in pig feed can be expected to contribute to a reduction of phosphate pollution that results from pig farming. Thus, the inclusion of supplemental boron in animal feed as taught by this invention will not only contribute to the prevention and treatment of OC, it will also contribute to pollution reduction. While the foregoing discussion has focused on pigs, this invention is not limited to the reduction of phosphorus from pig feed exclusively. Rather, one of skill in the art will recognize that reduction of phosphorus use is applicable to all animals.
[0056] The formation of most bones of the axial skeleton begins with the formation of a cartilage model which is calcified and remodeled into bone that is mineralized with calcium and phosphate. Supplemental boron enhances the efficiency of this process. The postulated mechanism by which supplemental boron enhances the efficiency of the process is through stabilization of the extracellular matrix, although there may be other mechanisms.
[0057] Supplemental boron improves the efficiency of cartilage transformation/bone mineralization which improves the structural integrity of bone and bone mineralization characteristics. Calcium is added to diets at a level that promotes sufficient bone strength.
The level of calcium that promotes optimum bone strength also paradoxically inhibits the intestinal absorption of phosphorus. Phosphorus absorption is also more efficient when dietary phosphorus level is reduced. The inventors have discovered that addition of supplemental boron to animal feed promotes bone mineralization and permits a proportional 3 to 5 % reduction of both calcium and phosphorus in the animal feed while maintaining bone strength.
[0058] The 1998 NRC report on "Nutrient Requirements of Swine", data from which is shown below in Table 1, indicates that typical requirements for calcium and phosphorus will vary during the lifetime of a pig. At earlier stages, when the bones of the skeleton are still undergoing development, greater amounts of calcium and phosphorus are needed to support increased bone growth. The requirements for calcium and phosphorus decrease as a pig matures and bone development is completed. Although the data presented below are for pigs, similar trends in requirements for calcium and phosphorus are observed during the life cycle of other animals.
Table 1 Growing Pigs (NRC, 1998) Body Weight (kg) 3-5 5-10 10-20 20-50 50-80 80-120 Calcium (%) 0.90 0.80 0.70 0.60 0.50 0.45 Phosphorus, total 010 0.70 0.65 0.60 0.50 0.45 0.40 Sows Calcium % 0.75 Phosphorus, total !0 0.60 [0059] The inclusion of supplemental boron in the diet of various animals allows the levels of calcium and phosphorus to be reduced by at least 3% throughout the life cycle of animals. Thus, while the ratio of calcium to phosphorus is generally kept constant at each weight range indicated in Table 1, the absolute amounts of calcium and phosphorus can be lowered by at least 3% due to the addition of supplemental boron containing compounds.
[0060] Thus, in another embodiment, this invention provides an animal feed containing supplemental boron with a reduced level of phosphorus. In one embodiment, the supplemental boron is preferably provided at a concentration of about I to about 500 ppm elemental boron and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron. The calcium level is generally reduced comparably to the phosphorus level. However, it will be recognized that if the supplemental boron containing compound is supplied as a calcium salt, such as calcium borate or calcium borogluconate, levels of calcium in the animal feed can also be correspondingly reduced.
One such compound, calcium borogluconate, is already in use to treat hypocalcemia in cattle, sheep, and goats. In another embodiment, the supplemental boron concentration is preferably about 1 about 150 ppm and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron. In yet another embodiment, the supplemental boron concentration is preferably about 25 ppm to 50 ppm and the phosphorus level is reduced by 3 to 5% as compared to comparable animal feed without supplemental boron.
[0061] In another embodiment, the invention provides a method of decreasing the amount of pre-weaning mortality by animals. In this embodiment, pregnant, nursing or lactating animals are fed a diet of an improved animal feed composition containing about 1 to about 500, about 1 to about 150 or about 50 ppm or about 25 to 50 ppm supplemental boron containing compounds in which the animal feed composition has at least a 3%
reduction in phosphorus as compared to a comparable animal feed without supplemental boron.
Generally, the animal feed contains supplemental boron at concentrations ranging from 5-150 ppm. In such an embodiment, the supplemental boron containing compound can be sodium borate or boric acid can be used or other inorganic forms of boron as described herein.
OC in humans [0062] Osteochondrosis with its various manifestations has been found to be strikingly similar in six species of animals in which it has been reported. This has prompted experts to assert that it would be expected that osteochondrosis in humans would have the same etiology, pathogenesis, and pathology as has been observed in animals. See Olsson, S.E. and Reiland, S. 1978. The nature of osteochondrosis in animals - summary and conclusions with comparative aspects on osteochondrosis dissecans in man. Acta Radiologica Supplement No.
358:299-306.
[0063] Osteochondrosis in humans is defined in Dorland's Medical Dictionary as follows: a disease of the growth or ossification centers in children that begins as a degeneration or necrosis followed by regeneration or recalcification. Also called epiphyseal ischemic necrosis (q.v.), it may affect (1) the calcaneus (os calcis), a condition sometimes called apophysitis; (2) the capitular epiphysis (head) of the femur, a condition known as Legg-Calvd-Perthes disease, Perthes disease, Waldenstrom's disease, coxa plana, and pseudocoxalgia; (3) the ilium; (4) the lunate (semilunar) bone, known as Kienbock's disease;
(5) head of the second metatarsal bone, known as Freiberg's infraction; (6) the navicular (tarsal scaphoid); (7) the tuberosity of the tibia, called Osgood-Schlatter disease and Schlatter's disease; (8) the vertebrae, called Scheuermann's disease or kyphosis, juvenile kyphosis, vertebral epiphysitis, and kyphosis dorsalis juvenilis; (9) the capitellum of the humerus, called Panner's disease.
[0064] The locations, of the joints affected in human children can be contrasted with regions affected in the pig. In the pig, osteochondrosis can be located in the following areas, listed in descending orde'r of severity of lesions: 1. Articular-epiphyseal lesions: stifle, elbow, lumbar synovial intervertebral joints, hock, shoulder, and hip, 2.
Growth plate lesions:
distal ulna, distal femur, costochondral junction, femoral head, humeral head, ischiatic tuberosity, and thoracolumbar vertebrae, 3. Epiphysiolysis and apophysiolysis lesions:
glenoid cavity, ischiatic tuberosity, capital femoral epiphysis, vertebral epiphyses, anconeal process, and distal ulnar epiphysis.
[0065] Because of the similarity of the disease in pigs and humans, another embodiment of the invention is the treatment and prevention of OC in humans. Boron compounds can be administered to patients suffering from OC. The boron containing compounds useful for the practice of this invention may include any suitable organic, inorganic, or mineral boron containing compounds. Among the preferred forms of boron are sodium borate and boric acid. Other useful inorganic forms of boron include calcium borate. Examples of organic boron-containing compounds are well known to those of skill in the art.
Examples of such organic boron-containing compounds are found in U.S. Patent Nos. 4,312,989, 4,499,082, and 5,312,816. Dosages that may fmd use in humans include 1-13 ppm.
Formulations of boron for use in humans [0066] Described below are administration methods that are useful for humans.
One particularly useful administration method is the provision of boron as mineral or vitamin supplements, for example, in food or pill format. However, it will be appreciated that many of the methods disclosed below, while especially applicable to humans, can also be used for the administration of boron to animals as well.
[0067] One especially useful form of administration for the boron containing compounds of the present invention is as a mineral supplement with vitamins that can be taken orally as a pill or added to food. Multi-vitamin and mineral supplements are useful in the maintenance and improvement of health by insuring adequate intake of micronutrients that are needed for disease prevention and to compensate for nutritional deficiencies that result from factors as inadequate dietary intake of essential nutrients. Vitamin and mineral preparations are commonly administered as general nutritional supplements or to treat specific medical conditions. Accordingly, the supplemental boron containing compounds of the present invention can be administered as mineral supplements with vitamins such as vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, vitamin B 1, vitamin B2, niacinamide, vitarnin B6, vitamin B12, biotin, pantothenic acid, carnitine, silicon, molybdenum, germanium iron, phosphorus, iodine, magnesium, zinc, selenium, copper, chromium, potassium, choline, lycopene, and co-enzyme Q-10. Examples of mineral supplement formulations to which supplemental boron containing compounds can be added can be found in U.S.
Patent Nos.
4,752,479, 5,869,084, and 6,361,800. Such supplements containing the boron compounds of the present invention can be administered as chewable vitamin pills, or as supplements that can be added to beverages, or as supplements that can be added to foods.
[0068] In practicing the method of the present invention, the boron compounds may be administered per se or as components of a pharmaceutically acceptable composition. When used in medicine, the form of the supplemental boron compounds should be both pharmacologically and pharmaceutically acceptable.
[0069] Thus, the present invention may be practiced with the boron compounds being provided in pharmaceutical formulations, both for veterinary and for human medical use, comprising the active agent (the boron compound) together with one or more pharmaceutically acceptable carriers thereof and optionally any other therapeutic ingredients.
The carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and not unsuitably deleterious to the recipient thereof.
The active agent is provided in an amount effective to achieve the desired pharmacological effect, as described above, and in a quantity appropriate to achieve the desired daily dose.
[0070] The formulations include those suitable for oral, rectal, topical, nasal, ophthalmic, or parenteral (including subcutaneous, intramuscular, and intravenous) administration.
Formulations suitable for parenteral administration are preferred.
[0071] The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active compound into association with a carrier which constitutes one or more accessory ingredients. In general, the formulations may be prepared by uniformly and intimately bringing the active compounds into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into desired formulations.
[0072] Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tablets, or lozenges, each containing a predetermined amount of the active ingredient as a powder or in the form of granules; or as a suspension in an aqueous liquor or a non-aqueous liquid, such as a syrup, an elixir, an emulsion, or a draught.
[0073] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, with the active compound being in a free-flowing form such as a powder or granules which optionally is mixed with a binder, disintegrant, lubricant, inert diluent, surface active agent, or discharging agent. Molded tablets comprised of a mixture of the powdered active compound with a suitable carrier may be made by molding in a suitable machine.
[0074] One desirable formulation of the composition for administration is in a powdered form for dissolution or dilution with water or another suitable beverage or liquid before use.
Alternatively, the composition can be contained in a ready to use form as part of a fortified beverage in liquid form. Also, boron containing compounds can be added to milk replacers.
The composition can also be contained in a pudding with a custard or flan like texture or in the form of a bar suitable for ready consumption.
[0075] A syrup may be made by adding the active compound to a concentrated aqueous solution of a sugar, for example sucrose, to which may also be added any accessory ingredient(s). Such accessory ingredient(s) may include flavorings, suitable preservatives, agents to retard crystallization of the sugar, and agents to increase the solubility of any other ingredient, such as a polyhydroxy alcohol, for example glycerol or sorbitol.
[0076] Formulations suitable for parenteral administration conveniently comprise a sterile aqueous preparation of the active compound, which preferably is isotonic with the blood of the recipient (e.g., physiological saline solution).
[0077] Nasal spray formulations comprise purified aqueous solutions of the active compound with preservative agents and isotonic agents. Such formulations preferably are adjusted to a pH and isotonic state compatible with the nasal mucous meinbranes.
[0078] Formulations for rectal administration may be presented as a suppository with a suitable carrier such as cocoa butter, hydrogenated fats, or hydrogenated fatty carboxylic acids.
[0079] Topical formulations comprise the active compound dissolved or suspended in one or more media, such as mineral oil, petroleum, polyhydroxy alcohols, or other bases used for topical pharmaceutical formulations.
[0080] In addition to the aforementioned ingredients, the formulations of this invention may further include one or more accessory ingredient(s) selected from diluents, buffers, flavoring agents, binders, disintegrants, surface active agents, thickeners, lubricants, preservatives (including antioxidants), and the like.
[00811 The following examples further demonstrate several preferred embodiments of this invention. Vi7hile the examples illustrate the invention, they are not intended to limit the invention. The patents cited herein are incorporated by reference in their entirety.
Example 1: Boron Supplementation and its Effects on OC-associated Lameness in Swine Materials and Methods [0082] Three groups of 19 pigs, Duroc and Yorkshire pigs were randomly blocked by =breed, litter and weight. The basal diet consisted of commercial corn-soy diet containing 10 ppm boron.
[0083] Test diet group B was fed a basal diet plus 25 mg/kg boron as sodium borate decahydrate (borax). Test diet group A was fed a basal diet plus 25 mg/kg boron as sodium borate decahydrate (borax) and 250 mg/kg ascorbic acid.
[0084] Pigs were weighed at the beginning of the study, 4 weeks later and every 3 weeks until the end of the study. Animals were scored for soundness on a 5-point scale at each weighing. (Five-point scale: 1= no soundness defects; 2= minor soundness issues but still sound enough for retention as breeding animal; 3=not sound 'enough for retention for breeding but still marketable; 4= unsound, likely to be rejected at slaughter;
5=severely lame, requiring euthanasia for humane reasons.) Grading was done by the caretaker and the investigator at all weighing times. An experienced independent treatment-blind rater also evaluated the soundness of each animal and the ratings he provided were compared with the ratings of the caretaker and investigator by use of Cohen's Kappa test.
[0085] The animals were housed in a modern curtain sided barn with deep straw bedding, with ad libitum access to feed and water. Waterers and feeders were on a concrete pad but the remainder of the flooring was deep straw over a ground limestone and sand base. Floor space allowances exceeded the recommendations of the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, First Revised Edition, 1999.
Federation of Animal Science Societies. Savoy, IL.
[0086] Pigs in the study were fed a typical corn-soybean meal diet which contained a proprietary commercial supplement from the Moorman's company at the manufacturer's suggested inclusion rate. The basal diet (no boron supplementedy was analysed and found to contain boron at the rate of 10 ppm which is typical for a corn-soybean meal based diet.
[0087] Animals were observed twice daily by the caretaker.
[0088] In mid October one pig was observed to be severely lame and was euthanized and necropsied. Three additional pigs, one lame Duroc, a sound York and a sound Duroc (littermate to the lame pig) were euthanized and necropsied for observational purposes in mid-November.
[0089] At the end of the study the pigs were transported to a laboratory where they were euthanized and necropsied. Six pigs in each of group B and group A were put on the control diet for 7 days at the end of the study.
[0090] At necropsy, samples of liver, heart, kidney, fat, skeletal muscle, proximal tibia, blood, and the rostral snout were retained and frozen at -40 C prior to chemical analysis. All joints of the axial skeleton were evaluated for the presence of gross lesions of osteochondrosis and graded on a 5 point scale. (5-point scale: 1= no gross abnormalities;
2=minor imperfections in articular conformation or articular reddening present but no cartilage erosions; 3 = cartilage intact but surface irregularities of the cartilage are present; 4=
fissuring or erosion of articular cartilage is obvious; 5= full thickness cartilage lesions or cartilage flaps, osteochondritis dissecans obviously present).
[0091] The proximal femur (femoral head) and articular surfaces and growth plates associated with the stifle, hock, shoulder, elbow and carpus were sectioned with a band saw and approx. 0.5 to 1.0 cro sections fixed in formalin. Bone sections were decalcified with formic acid/sodium citrate, embedded in paraffin and sectioned at 5 microns.
Sections were deparaffinized according to standard procedures. Two sections were made from each joint and growth plate and stained with either hematoxylinleosin (H&E) or with toluidine blue (pH
4)/fast green for evaluation of the articular cartilage, subchondral bone and growth plate.
[0092] Mean joint lesion scores, growth rate and soundness scores by treatment and by factors boron and ascorbate were compared using an analysis of variance and t-test as appropriate. Soundness scores were dichotomised into binary categorical variables for lameness (soundness score>2) and for absence of defects (soundness<2), and the binary variables analysed by chi-square and logistic regression.
[0093] Tissue specimens stained with H&E were examined microscopically for the presence of lesions of osteochondrosis. Toluidine Blue staining allowed assessment of retention or loss of proteoglycan from the extracellular matrix (ECM) of the cartilage. Each tissue section was scored by a treatment-blind board-certified pathologist.
[0094] Further, specific joints and structures are selected for more detailed histomorphometric analysis. Both epiphyseal and growth plate specimens were obtained from boron treated and untreated animals.
[0095] The results show that boron supplementation can be effective in reduction of the incidence of osteochondrosis-associated lameness in growing swine. Animals supplemented with boron had healthier joints than those receiving the basal diet with no supplemental boron (Figure 1). Increasing soundness score (higher score=increasing lameness/leg unsoundness) is associated with increasing lameness in the pigs not receiving boron (Figure 2). Figure 3 illustrates the effect of early rapid growth (weight on 23 October) on soundness scores at the termination of the study (18 December). Pigs that did not receive boron and grew rapidly tended to develop leg unsoundness and lameness. Boron supplementation was useful in cartilage protection and prevention of lameness in rapidly growing swine, whereas the untreated group displayed a high prevalence of lameness and leg unsoundness that was clearly associated with the presence of cartilage damage typical of osteochondrosis in swine.
[0096] In further microscopic analysis of the cartilage, one hundred and forty-one (141) sections of articular cartilage and growth plate have been prepared by formate decalcification and staining with H&E and Toluidine blue. The toluidine blue (TBlue) stain provided a semi-quantitative measure of sulfated glycosaminoglycan (sGAG) content. The consistently higher TBlue staining intensity among the boron supplemented group suggested a higher sGAG content in cartilage from boron supplemented pigs. (This effect of boron has been confirmed by a sGAG analysis procedure.) Lesions were evaluated by an experienced board certified pathologist specializing in porcine tissues. Lesions are classified into 2 factors.
One factor comprising presence or absence of necrosis, infarction, hemorrhage or eosinophilic matrix streaks provides a measure of the structural integrity of the articular surface, while another factor comprising hyperplasia and abnormal differentiation provides a measure of the condition of the growth plate associated with growth plate widening. Growth plate lesions associated with widening were found in 57% of tissues from the unsupplemented group as compared with 19% of the tissues from pigs receiving 25 ppm boron. Articular cartilage lesions (necrosis, hemorrhage, infarction, or streaks) were found in 21 Jo of tissues from unsupplemented pigs as compared with 4% of tissues from pigs receiving 25 ppm supplemental B. These data indicate that supplementation with boron can improve the structural integrity of the articular cartilage and the growth plate.
[0097] Anecdotal evidence from aontinuing experimental use of boron added to feed or drinking water indicates a consistent and sustained positive response in swine in a variety of production settings and genetics. This evidence is described in Example 6.
Example 2: Glycosaminoglycan Study.
[0098] Boron nutrition is necessary to maintain the glycosaminoglycan concentration of cartilage at normal, healthy levels required for the cartilage to perform its function of resisting compression forces or to maintain the weight bearing ability of the cartilage.
[0099] Proteoglycans, a major component of healthy cartilage, draw and hold water which allows them to bear weight. We have measured the major subcomponent of proteoglycan, glycosaminoglyca.n (GAG) and have found that it is significantly reduced in non-boron supplemented pig cartilage tissue. Our data and the literature would support the statement that cartilage with low GAG levels fails to function much more readily than cartilage with higher levels of GAG.
[00100] Hock joints and elbow joints were obtained at necropsy from pigs in two feeding groups: one group having been fed a commercial ration supplemented with 50 mg B/kg feed and the other being fed only the standard commercial pig ration.
[00101] Cartilage plugs were harvested from the articular surfaces of 40 hock and elbow joints using a #5 (10.5 mm) cork borer. The samples were papain digested and analyzed for concentration of sulfated glycosaminoglycan (sGAG) using a spectrophotometric microplate analysis procedure adapted from Farndale, et al (1986), using a chondrotin sulfate standard.
This method measures total sulfated glycosaminoglycan, most of which is chondrotin sulfate and keratan sulfate components of aggrecan. Aggrecan is the large aggregating proteoglycan of cartilage responsible for creating and maintaining the osmotic pressure of cartilage.
Quanititation of sGAG concentration thus provides a measure of the weight-bearing and anti-friction properties of cartilage and is a measure of cartilage quality and durability.
[00102] The sGAG concentration (dry matter basis) in the cartilage of the pigs fed 50 ppm boron was 11050 ng/g as compared with 5045 ng/g among the unsupplemented pigs.
This difference was significarit at p<0.01. These data indicate that the chondroprotective properties of boron are mediated at least in part via mechanism that lead to increased sGAG
levels in the cartilage.
Example 3: Reproductive effects in Female Swine.
[00103] It was observed that when sows were fed diets containing 50 ppm supplemental boron during the late gestation and early lactation period, piglet quality as assessed by uniformity, growth, and general thrift was improved, and pre-weaning piglet mortality was reduced. A preliminary pilot study confirmed these observations. Sows were fed a standard corn-soy diet. Half of the sows received an oral administration of a boron supplement to provide 1 mg boron per kg body weight. The other half did not receive any supplementation.
Preliminary analysis of the data from the first 600 pigs indicated that the provision of boron to the gestating and lactating sows reduced pre-weaning mortality from 23% to 16% and increased piglet weight at 12 days of age from 8.0 pounds to 8.5 pounds, as compared to the non-supplemented groups.
[00104] To test the effect of boron on sows and their litters, a trial was established in a large commercial swine operation during an outbreak of porcine viral reproductive and respiratory disease (PRRSV). Boron was administered orally to a group of 51 sows individually housed in crates at the rate of 1 mg boron per pound BW per day beginning 1 week prior to farrowing and continuing until the piglets were weaned at 14 days of age.
Their performance was compared to that of cohort of 50 sows of identical genetics and identical housing and husbandry conditions that did not receive boron. Boron treatment was supplied as a single daily dosing and was discontinued at weaning. All sows were fed a standard commercial sow diet.
[00105] There were no effects on litter size at birth or piglet birth weight.
Piglets raised by sows consuming boron weighed 9.01 lbs at 12 days of age as compared with 8.32 lbs for the piglets raised by control sows (p=0.06). Piglet mortality in the boron treated group was 15.2% as compared with 20.3% among the controls (p=0.03). Sows that were fed boron returned to estrus an average of 1.6 days quicker than control sows (p=0.047).
Boron treated sows were 1.2 times as likely as control sows to conceive (p=0.04). This result would be expected to have significant positive impact in a commercial pig raising operation.
[00106] It is postulated that borate exerts its beneficial effects in OCD
prevention by modulation and stabilization of the extracellular matrix (ECM). In tissues like cartilage that possess an abundant ECM consisting of proteoglycan and collagen, the main effect of boron is likely mediated by a change in the mechanic (material) properties of the cartilage ECM.
However many other tissues with important functions do also possess ECM
components and extracellular receptors, the structure of which may be stabilized by boron cross-links which improves their functionality in cell to cell signaling, receptor functions, and adhesion functions. It is postulated that the effect of borate on reproduction is modulated by this sort of mechanism.
Example 4: Effects of Boron on Phosphorus Digestibility and Excretion and Feed Conversion.
[00107] A 28-day feeding trial was conducted in a large commercial farm setting with 144 crossbred pigs of initial body weight of 24 kg. Pigs were randomly allocated to 24 pens of 6 pigs per pen in a thermoneutral controlled environment barn with steel grid flooring. Each pen was equipped with a single-hole feeder. Water was available free-choice from a nipple drinker. Pigs were fed a commercial pig diet containing 0.5% phosphorus plus 0 or 50 mg/kg Boron and a calcium level of either 0.5 or 0.65% in a 2 x 2 factorial design.
Feces were collected on the last 3 days of the study from each pen and a pooled aliquot was dried and submitted for chemical analysis. Yttrium oxide was added to the diet at 0.05%
and served as a marker for phosphorus digestibility. Pig growth and feed consumption was measured at the end of the study with the pen as the experimental unit. Data was analyzed for effects of boron and calcium by univariate and multivariate analysis of variance and t-tests.
j00108] Supplemental boron increased average daily gain, improved feed conversion ratio and phosphorus digestibility, and reduced fecal phosphorus excretion per unit of growth (p<0.05). (Table 2). Daily feed intake was not significantly modified by boron or calcium level (p>.20). Decreasing calcium level improved feed conversion (p<0.05).
There were no significant interactive effects of boron x calcium on feed conversion or phosphorus excretion (p>.25).
[00109] The digestibility and fecal excretion of phosphorus is of significant concem to animal agriculture. Phosphorus is a costly dietary ingredient and the phosphorus in animal wastes is a potential environmental pollutant. In the present study, the phosphorus excretion per unit of production was reduced by 15% by adding boron to the diet. Boron also produced a significant effect on overall feed conversion ratio. It is expected that these effects of boron would have a significant impact in reducing environmental pollution as well as reducing production costs in animal agriculture Table 2. Effects of Boron Supplementation No Added B 50 ppm Added B S.E. p Feed Conversion Ratio (feedlgain) 2.65 2.32 0.082 0.033 Phosphorus Digestibility (%) 33.4 36.3 0.820 0.017 Phosphorus excretion in Feces (g/Kg gain) 88.1 74.6 2.88 0.028 Average daily gain (grams per day) 507 549 13.6 0.018 Avg. daily feed intake 1330 1270 45 0.21 Example 5: 3-NPB Studies [00110] It was hypothesized that boron mediates its effect in the pig by quadrivalent crosslinking. 3-nitrophenylboronic acid (3-NPB) which is an avid blocker of boron crosslinks was administered orally to pigs of about 100 kg body weight at the rates of 0 and 1 grams in combination with supplemental boron at the rates of 0 and 50 ppm in feed. The 3-NPB was administered for 10 days. The pigs were evaluated for lameness daily and euthanatized on day 13 and the joints and other organs were examined.
[00111] All of the pigs that received 3-NPB but no supplemental boron developed clinical manifestations of OCD within 10 days, but only one in 5 of the pigs receiving supplemental boron developed lameness when 3-NPB was provided (Table 3). A chi-square analysis indicated a significant (p<0.05) effect of 3-NPB in inducing lameness and a significant effect of supplemental boron in preventing the lameness induced by 3-NPB.
[001121 Examination of shoulder, stifle, hock and elbow joints showed that 3-NPB treated pigs with no supplemental boron had a higher prevalence of osteochondrosis lesions and a more intense severity of lesions than other treatment groups, with the lowest prevalence of lesions and the lowest severity among those pigs receiving supplemental boron and no 3-NPB. Administration of 3-NPB along with boron resulted in a prevalence and severity of gross joint pathology similar to that observed in unsupplemented pigs.
(Figures 4 and 5).
[00113] It was concluded that 3-NPB is acting as a competitive inhibitor of borate.
[00114] It is generally considered that the pig is the archetypic model species for osteochondrosis in mammals (see Reiland S. Osteochondrosis in the pig. Acta Radiol 1-118, 1975) The cascade of pathophysiologic events that culminate in clinical manifestations of osteochondrosis (OCD) in the pig are generally believed to be those events that occur in the other mammalian species that develop OCD, particularly the horse, dog, ruminants and humans. Since the pig is the model for OCD in other mammals and it has been demonstrated that boron is useful for prevention and treatment of OCD in'the pig, it logically follows that boron should have a similar effect in other mammals and the effect should be mediated by a similar biochemical mechanism.
[00115] Therefore, it was concluded that administration of 3-NPB in species that are known to be susceptible to OCD but at a low prevalence, specifically cattle, horses, and dogs, should produce cartilage lesions indicating presence of a boron receptor moiety in cartilage.
[00116] Three healthy Holstein steer calves of average weight about 2501bs and three healthy Quarter Horse fillies of average weight of about 500 lbs were administered 3-NPB at the rate of 10 mg/kg body weight per day. The 3-NPB was given to the calves by daily intraperitoneal injection, while the horses were administered the daily dose of 3-NPB mixed in feed. All animals consumed a standard ration of commercial feed and free-choice alfalfa-grass mixed hay.
[001171 Lameness was first observed in the calves at day 7 of the 3-NPB
treatment. One calf was euthanatized at treatment day 14 and the other two at treatment day 21. Severe OCD
lesions were visible in the hock and elbow joints of all calves with increasing severity noted with increasing time on 3-NPB.
[00118] Among the horses treated with ora13-NPB, one filly showed clear signs of front leg lameness during exercise on treatment day 10 and was euthanatized on day 14. The other two horses were euthanatized on treatment day 28, at which time lameness was visible during exercise in one of the two horses. OCD lesions of varying degree were observed in the shoulder, elbow, fetlock and hock joints of all horses. Among the notable lesions were a 1 cm x 1 cm necrotic lesion of the cartilage was found on the proximal articular surface of left front P1 at day 14, a developing flap lesion on the distal tibia at day 28 and in another horse, profound thinning of cartilage and obvious cartilage wear lines were observed in the left front fetlock and left elbow at day 28.
[001191 In experiments with normal healthy crossbred hounds of age 10 weeks (body weight 8 kg), the administration of 3-NPB as a single daily dose of 10 mg per kg body weight resulted in visible foreleg lameness as early as 12 days. Necropsy revealed gross lesions of necrosis and hemorrhage in the distal ulnar growth plate. There was also evidence of cartilage erosion in the articular surfaces of the distal tibia and the proximal ulna. The gross lesions in the distal ulnar growth plates resembled the pathologic changes associated with osteochondrosis in swine.
100120] It is concluded that the pig is a suitable model for OCD in both ruminant and non-ruminant animals, including carnivores, and that boron receptor sites exist in all mammalian species, and that supplemental boron is expected to be an effective preventative and remedy in all mammalian species.
Table 3 3-NPB' Clinical Lameness Score * Level of Boron Supplementation Crosstabulation Count Clinical Lameness Score Level of Boron Visible Supplementation Normal Lameness Total 0 3-NPB None 6 0 6 1 gram daily x 10 days 0 4 4 Total 6 4 10 50 ppm 3-NPB None 5 0 5 1 gram daily x 10 days 4 1 6 Total 9 1 10 Example 6: Use of boron in swine in field situations [00121] Boron was added to the diet of sows at 1 mg/kg body weight as boric acid. There was no negative effect on reproduction or fertility. The sows appeared to have normal estrus activity and normal conception rate, with no negative effects on cyclic activity or on pigs born or on piglet viability. Three sows that were noticeably and seriously lame became perfectly sound. Among a group of 95 piglets the birth to weaning mortality was 2 piglets.
The usual mortality for this farm was about 5 to 7%. These piglets remained on boron 50 ppm plus ascorbate 125ppm. One pig was euthanized and examined at a weight of about 85 pounds. No abnormalities were observed in any of the joints. All bones of the appendicular skeleton were sectioned on the band saw. Bones had excellent mineralization and the growth plates were narrow and crisply demarcated, including the distal ulnar growth plate which is an early predilection site for OC-related abnormalities.
[00122] An Iowa farm treated a group of about 100 pigs with 50 ppm boron as boric acid.
None of these pigs developed any signs of lameness or unsoundness. The farmer reported that these pigs are the most sound he has raised. The estimated previous lameness/unsoundness rate was about 25 to 30%, and zero in the test group. The pigs demonstrated excellent growth rate. The absence of lameness and hock swelling was observed. Two pigs with hock swelling were euthanised from among the younger and older pigs not treated with boric acid. The younger pig of about 50 pounds body weight showed evidence of early OC changes in the hock. An older pig of about 250 pounds body weight with severe lameness in the right hock was euthanised. Severe advanced OCD was observed in the hock, and growth plate abnormalities were observed when the bones were sectioned.
Culture of the hock joints was negative, ruling out bacterial infection and indicating that OC
is the likely cause of lameness.
Claims (46)
1. A method for reducing the incidence and extent of lesions in the cartilage and subarticular bone of an animal comprising providing the animal an animal feed comprising supplemental boron wherein the supplemental boron concentration in said animal feed is from about 1 to about 500 ppm.
2. The method of claim 1 wherein the supplemental boron concentration is from about 1 to about 150 ppm.
3. The method of claim 1 wherein the supplemental boron concentration is from about 25 to about 50 ppm.
4. The method of claims 1 - 3 wherein the animal feed is a liquid.
5. The method of claims 1 - 4 wherein the supplemental boron is selected from organic boron containing compounds, inorganic boron containing compounds, boron containing minerals, plant material with elevated boron levels and microorganisms such as yeast with elevated boron levels.
6. The method of claim 5 wherein the inorganic boron containing compound is selected from the group consisting of sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate.
7. The method of claim 5 wherein the organic boron containing compound is selected from the group consisting of complexes and compounds formed by boron with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
8. The method of claim 5 wherein the boron containing mineral is selected from the group consisting of borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kurnakovite, meyerhofferite, priceite, nobleite, and searlesite.
9. A method for preventing or reducing the incidence of necrosis of the joint surface or subarticular bone of an animal comprising providing the animal an animal feed comprising supplemental boron wherein the supplemental boron concentration in said animal feed is from about 1 to about 500 ppm.
10. The method of claim 9 wherein the necrosis is assessed by determining the number of infarcts.
11. The method of claim 9 wherein the supplemental boron concentration is from about 1 to about 150 ppm.
12. The method of claim 9 wherein the supplemental boron concentration is from about 25 to about 50 ppm.
13. The method of claims 9 - 12 wherein the animal feed is a liquid.
14. The method of claims 9 - 13 wherein the supplemental boron is selected from organic boron containing compounds, inorganic boron containing compounds, boron containing minerals, plant material with elevated boron levels and microorganisms such as yeast with elevated boron levels.
15. The method of claim 14 wherein the inorganic boron containing compound is selected from the group consisting of sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate.
16. The method of claim 14 wherein the organic boron containing compound is selected from the group consisting of complexes and compounds formed by boron with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
17. The method of claim 14 wherein the boron containing mineral is selected from the group consisting of borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kumakovite, meyerhofferite, priceite, nobleite, and searlesite.
18. A method for reducing hyperplasia, necrosis or hemorrhage in an animal comprising providing the animal an animal feed comprising supplemental boron wherein the supplemental boron concentration in said animal feed is from about 1 to about 500 ppm.
19. The method of claim 18 wherein the reduction in hyperplasia, necrosis or hemorrhage is measured by the growth plate width.
20. The method of claim 18 wherein the supplemental boron concentration is from about 1 to about 150 ppm.
21. The method of claim 18 wherein the supplemental boron concentration is from about 25 to about 50 ppm.
22. The method of claims 18 - 21 wherein the animal feed is a liquid.
23. The method of claims 18 - 22 wherein the supplemental boron is selected from organic boron containing compounds, inorganic boron containing compounds, boron containing minerals, plant material with elevated boron levels and microorganisms such as yeast with elevated boron levels.
24. The method of claim 23 wherein the inorganic boron containing compound is selected from the group consisting of sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate.
25. The method of claim 23 wherein the organic boron containing compound is selected from the group consisting of complexes and compounds formed by boron with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
26. The method of claim 23 wherein the boron containing mineral is selected from the group consisting of borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kurnakovite, meyerhofferite, priceite, nobleite, and searlesite.
27. A method for the reduction of dysplasia in cartilage, growth plate and bone in an animal, comprising: providing the animal an animal feed comprising supplemental boron wherein the supplemental boron concentration in said animal feed is from about 1 to about 500 ppm.
28. The method of claim 27 wherein the reduction in dysplasia is measured by the growth plate width.
29. The method of claim 27 wherein the supplemental boron concentration is from about 1 to about 150 ppm.
30. The method of claim 27 wherein the supplemental boron concentration is from about 25 to about 50 ppm.
31. The method of claims 27 - 30 wherein the animal feed is a liquid.
32. The method of claims 27 - 31 wherein the supplemental boron is selected from organic boron containing compounds, inorganic boron containing compounds, boron containing minerals, plant material with elevated boron levels and microorganisms such as yeast with elevated boron levels.
33. The method of claim 32 wherein the inorganic boron containing compound is selected from the group consisting of sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate.
34. The method of claim 32 wherein the organic boron containing compound is selected from the group consisting of complexes and compounds formed by boron with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
35. The method of claim 32 wherein the boron containing mineral is selected from the group consisting of borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kurnakovite, meyerhofferite, priceite, nobleite, and searlesite.
36. A method of reducing articular cartilage damage in an animal comprising providing the animal an animal feed comprising supplemental boron wherein the supplemental boron concentration in said animal feed is from about 1 to about 500 ppm.
37. The method of claim 36 wherein the supplemental boron concentration is from about 1 to about 150 ppm.
38. The method of claim 36 wherein the supplemental boron concentration is from about 25 to about 50 ppm.
39. The method of claims 36 - 38 wherein the animal feed is a liquid.
40. The method of claims 36 - 39 wherein the supplemental boron is selected from organic boron containing compounds, inorganic boron containing compounds, boron containing minerals, plant material with elevated boron levels and microorganisms such as yeast with elevated boron levels.
41. The method of claim 40 wherein the inorganic boron containing compound is selected from the group consisting of sodium borate, boric acid, calcium borate, magnesium borate, halogen containing borate, ammonium borate, potassium borate, iron and magnesium containing borate, tantalum borate, beryllium borate, iron and nickel containing borate, carbonate containing borate, sodium and calcium containing borate, arsenate containing borate, calcium and rare earth containing borate, sulphate containing borate, magnesium and calcium containing borate, manganese borate, aluminum borate, calcium and strontium containing borate, phosphate containing borate, tin borate, strontium borate, zinc borate, calcium borosilicate, sodium borosilicate, aluminum borosilicate, calcium and rare earth containing borosilicate, lead borosilicate, barium borosilicate, lithium borosilicate, and sodium fluoroborate.
42. The method of claim 40 wherein the organic boron containing compound is selected from the group consisting of complexes and compounds formed by boron with fructose, sorbitol, mannitol, xylitol, sorbose, threonine, methionine, modified starches, hydrolyzed starches, oxidized starches, non-modified starches, dextrins, amidated sugars, glucosamine, mannosamine, esters of glycerol fatty acids, salicylate complexes, salts of bisoxalato acid, calcium borosucrose, alcohols, alcohol amines, sugar acids, saccharic acid, gluconic acid, aminated sugar acids, and calcium borogluconate.
43. The method of claim 40 wherein the boron containing mineral is selected from the group consisting of borax, colemanite, hydroboracite, kernite, ulexite, datolite, danburite, szaibelyite, suanite, inderite, sassolite, inyoite, probertite, howlite, ezcurrite, kumakovite, meyerhofferite, priceite, nobleite, and searlesite.
44. The method of claims 1, 9, 18, 27, or 36 wherein the animal is a mammal.
45. The method of claim 44 wherein the mammal is a human.
46. The method of claim 44 wherein the mammal is selected from pigs, horses, mules, donkeys, cattle, sheep, goats, llamas, dogs, and cats.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2006/021505 WO2006130839A1 (en) | 2005-06-02 | 2006-06-02 | Prevention and treatment of osteochondrosis in animals and humans |
USPCT/US2006/021505 | 2006-06-02 | ||
PCT/US2006/046687 WO2007142684A1 (en) | 2006-06-02 | 2006-12-06 | Prevention and treatment of osteochondrosis in animals and humans |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2651540A1 true CA2651540A1 (en) | 2007-12-13 |
Family
ID=38801774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002651540A Abandoned CA2651540A1 (en) | 2006-06-02 | 2006-12-06 | Prevention and treatment of osteochondrosis in animals and humans |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP2035019A4 (en) |
JP (1) | JP2009538906A (en) |
CN (1) | CN101448509A (en) |
AU (1) | AU2006344341A1 (en) |
BR (1) | BRPI0621735A2 (en) |
CA (1) | CA2651540A1 (en) |
RU (1) | RU2008152745A (en) |
WO (1) | WO2007142684A1 (en) |
ZA (1) | ZA200809417B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807586A (en) * | 1996-07-30 | 1998-09-15 | Energetics, Inc. | Method of dietary supplementation |
US6764692B1 (en) * | 2002-08-27 | 2004-07-20 | Carlos Cortelezzi | Method to treat laminitis and reduce dietary intake for horses |
AU2006252390B2 (en) * | 2005-06-02 | 2012-03-29 | B-Tera Corp. | Prevention and treatment of osteochondrosis in animals and humans |
-
2006
- 2006-12-06 BR BRPI0621735A patent/BRPI0621735A2/en not_active IP Right Cessation
- 2006-12-06 CN CNA2006800547267A patent/CN101448509A/en active Pending
- 2006-12-06 JP JP2009513127A patent/JP2009538906A/en not_active Abandoned
- 2006-12-06 AU AU2006344341A patent/AU2006344341A1/en not_active Abandoned
- 2006-12-06 CA CA002651540A patent/CA2651540A1/en not_active Abandoned
- 2006-12-06 EP EP06847512A patent/EP2035019A4/en not_active Withdrawn
- 2006-12-06 WO PCT/US2006/046687 patent/WO2007142684A1/en active Application Filing
- 2006-12-06 RU RU2008152745/15A patent/RU2008152745A/en not_active Application Discontinuation
-
2008
- 2008-11-04 ZA ZA200809417A patent/ZA200809417B/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP2035019A4 (en) | 2009-08-19 |
JP2009538906A (en) | 2009-11-12 |
WO2007142684A1 (en) | 2007-12-13 |
RU2008152745A (en) | 2010-07-20 |
BRPI0621735A2 (en) | 2016-09-13 |
EP2035019A1 (en) | 2009-03-18 |
AU2006344341A1 (en) | 2007-12-13 |
CN101448509A (en) | 2009-06-03 |
ZA200809417B (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2671747C (en) | Animal feed compositions | |
US8685949B2 (en) | Use of 25-hydroxy vitamin D3 to improve vitality of animals | |
EP1917071B1 (en) | Use of 25-hydroxy vitamin d3 to improve male animal fertility | |
US20120328715A1 (en) | Prevention and treatment of osteochondrosis in animals and humans | |
US20140228329A1 (en) | Use of 25-hydroxy vitamin d3 to promote phosphorous utilisation in ruminants | |
JP2008541767A5 (en) | ||
CA2651540A1 (en) | Prevention and treatment of osteochondrosis in animals and humans | |
Chung et al. | Use of 25‐hydroxy vitamin D3 to improve vitality of animals | |
Goff | Ca/P and vitamin D issues in lameness and other metabolic problems in pigs. | |
Weaver et al. | Effects of spray-dried blood cells in lactation diets on sow and litter performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |
Effective date: 20121206 |