CA2551750A1 - Water heater with programmable low temperature mode - Google Patents

Water heater with programmable low temperature mode Download PDF

Info

Publication number
CA2551750A1
CA2551750A1 CA002551750A CA2551750A CA2551750A1 CA 2551750 A1 CA2551750 A1 CA 2551750A1 CA 002551750 A CA002551750 A CA 002551750A CA 2551750 A CA2551750 A CA 2551750A CA 2551750 A1 CA2551750 A1 CA 2551750A1
Authority
CA
Canada
Prior art keywords
water
range
values
temperature
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002551750A
Other languages
French (fr)
Inventor
Nissim Isaacson
Original Assignee
STERLING WATER HEATER CORP.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STERLING WATER HEATER CORP. filed Critical STERLING WATER HEATER CORP.
Publication of CA2551750A1 publication Critical patent/CA2551750A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/14Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermo-sensitive resistors
    • F23N5/143Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermo-sensitive resistors using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/172Scheduling based on user demand, e.g. determining starting point of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • F24H15/429Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data for selecting operation modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/06Controlling two predeterming temperatures, e.g. day-night
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms

Abstract

The temperature in a water tank (e.g., a residential water tank) is monitored, and a controller switches between a high temperature mode of operation and a low temperature mode of operation (e.g., based on a daily or weekly program). During the low temperature mode of operation, the controller generates signals to selectively activate a water heater to keep the water's temperature within a first range of values, (e.g., between 105 and 113 °F). During the high temperature mode of operation, the controller generates signals that cause the water heater to heat the water to a temperature that is above the first range of values.
This arrangement may be used for saving energy by operating in the low temperature mode at night and during those parts of the day when nobody is home, and by operating in the high temperature mode in the morning and evening when the demand for hot water is typically high. This arrangement is also well-suited for day-care centers and nursing homes, in which case the low temperature mode is used to reduce the risk of scalding. It is also useful in the homes of people who wish to avoid violating a religious injunction that prohibits heating liquids beyond a threshold temperature on the Sabbath.

Description

WATER HEATER WITH
PROGRAMMABLE LOW TEMPERATURE MODE
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of US Provisional Patent Application 60/698,024, filed July 11, 2005 and also claims the benefit of US Provisional Patent Application 60/739,247, filed November 23, 2005.
BACKGROUND
[0002] Conventional water heaters for residential and mixed use buildings typically keep the water in the tank between about 140-1 SO°, and a thermostat is usually used to control the water temperature. (Note that all temperatures mentioned herein are specified in degrees Fahrenheit.) However, since thermostats do not provide a high a degree of accuracy, the water temperature can often fluctuate by up to 10° before the heating system switches on. In many cases, the inaccurate nature of the temperature control in conventional water heaters is not a problem, because the user can compensate for temperature variations by mixing in more or less cold water at the tap. In other cases, e.g., when small children or infirm adults may be using the hot water, the 140-150° temperature. posses a potential risk of scalding the user. This risk can be eliminated by reducing the temperature of the water in the tank at all times (e.g., to 110°).
However, keeping the temperature that low makes it very likely that the users will run out of hot water during high demand periods (e.g., in the morning, when many members of the household may be showering). Moreover, for low temperature operation, the large fluctuations of conventional temperature controls becomes more of an issue, since a 10°
increase would increase the risk of scalding, and a 10° decrease would cause the users to run out of hot water during high demand periods.
SUMMARY
[0003] A controller monitors the temperature of water in a tank and switches between a high temperature mode of operation and a low temperature mode of operation based on time.
During the low temperature mode of operation, the controller generates signals to selectively activate a water heater to keep the water's temperature within a first range of values (most preferably within a 4° or 6° subset of the 105°-113° F range). During the high temperature mode of operation, the contxolier generates signals that cause the water heater to heat the water to a temperature that is above the first range of values.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 is a block diagram of a gas-fired water heater with a controller that is configured to provide a high temperature mode of operation and a low temperature mode of operation.
[0005] FIG. 2 is a schematic diagram of an alternative temperature control circuit for the system shown in FIG. 1.
[0006] FIG: 3 is a pictorial representation of the FIG. 1 embodiment; with the controller mounted on the water tank.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0007] FIG. 1 is a block diagram of a gas-fired water heater that has a high temperature mode of operation and a low temperature mode of operation. The water heater maintains accurate control over the water temperature in the low temperature mode of operation. The water heater uses a programmable controller/timer for switching between the high temperature and the low temperature modes at regular intervals. Note that the invention is described herein in the context of a gas-fired heater. However, the present invention is not limited to gas-fired heaters, and may be used with other types of water heating systems (e.g., electric and oil-fired water heaters) to provide similar results.
[0008] A water tank 30 of any conventional construction may be used. One example of a suitable water tank is the Bradford White M-I series of upright residential gas water heaters. The water in the water tank 30 is heated by a gas burner 45 which is configured with a suitable valve 46 to control the flow of gas from the gas supply 48 into the burner 45. One example of a suitable gas valve is the Robertshaw 722 series. The gas burner 45 and valve 46 are hooked up to the gas supply 48 using conventional techniques that are well known to persons skilled in the relevant art. A gas ignition controller 40 is hooked up to valve 46, also using conventional techniques that are well known to persons skilled in the relevant art. One example of a suitable gas ignition controller is the Robertshaw 780 series. Taken together, the ignition controller 40, the valve 46, and the burner 45 are configured so that an electrical input signal to the ignition controller 40 provides control over the flow of gas through the valve 46 into the burner 45 in order to heat the water 32 in the tank 30.
[0009] The decision to turn on the burner 45 or turn off the burner 45 is made by a controller 20, which sends appropriate electrical signals to the ignition controller 40 to control the flow of gas into the burner 45. More specifically, when the controller 20 receives information indicating that the temperature of the water 32 in the tank 30 is too low, the controller 20 sends appropriate electrical signals to the ignition controller 40 which will, in turn, cause the burner 45 to turn on, thereby raising the temperature of the water 32. If the controller 20 receives information indicating that the temperature of the water 32 in the tank 30 is at or above the desired temperature at any given moment, the controller 20 turns off the signal to the ignition controller 40, which causes the valve 46 to turn off so that the burner 45 will stop heating the water 32 in the tank 30.
[0010] The controller 20 receives information about the temperature of the water 32 from a temperature probe 25. The temperature-sensing portion of the probe 25 is in thermal contact with the water 32 in the tank 30. For the application described below, the water temperature must be sensed with a higher degree of accuracy than in conventional water heaters.
Accordingly, the temperature probe 25 must be designed to provide relatively high accuracy.
One preferred approach for implementing a temperature probe with sufficiently high accuracy is to use a thermistor such as the Invensys-Robertshaw 54584-006. Alternative temperature sensors that can provide sufficient accuracy include RTDs and integrated circuit temperature sensors, such as the LM34 analog temperature sensor or the LM92 digital temperature sensor, both made by National Semiconductor. The latter can sense temperatures between 60 and 120° F
to an accuracy of less than 1 ° F.
[0011] The interface between the temperature probe 25 and the controller 20 will depend on the particular sensor technology that is selected for use in the temperature probe 25.

,. ,." , ~, ,~ ~ . ,. ,. , .

I . ". ...... . . 11 -n . i,l.~ ...i. , ..

However, for any given sensor technology, the interface between the controller 20 and the temperature probe 25 is preferable implemented using conventional techniques that are well 'known to persons skilled in the relevant art. Based on the signals arriving from the temperature probe 25, the controller 20 obtains information about the temperature of the water 32 in the tank 30. The controller 20 using this information to decide whether or not to turn on the burner 45 by sending appropriate control signals to the ignition controller 40.
Circumstances when the controller 20 turns the burner 45 on or off are described below.
[0012] One useful application for the dual-mode water heater depicted in FIG.
1 would be a day care center in mixed-use building. At night and in the morning, when the residents will likely be; taking showers and using a lot of hot water, the controller 20 selects the high temperature mode and maintains the temperature of the water in the tank at about 140°. This is accomplished by reading the signals arriving from the temperature sensor 25 to sense the temperature of the water in the tank 30, and sending appropriate signals to the ignition controller 40 to turn the burner 45 on or off. The temperature monitoring via the sensor 25 may be done constantly or periodically, but in the latter case it should be done often enough so that the temperature cannot change too much between measurements, based on to the thermal inertia of the water in the tank 30.
[0013] When the controller 20 recognizes that it is time for the day care center to open (e.g., based on a time schedule that has been programmed into the controller 20), the controller 20 sets the system to operate in the low temperature mode. Optionally, the switch to the low temperature mode is programmed to occur an interval of time before the lower temperature water is actually required, since the tank will not cool instantly as soon as the mode is switch~l. For example, if the day care center opens at 8 AM, the controller may be programmed to switch to ,. .,.,.". ,, ", ,.,.., t .

the low temperature mode a half hour in advance of that time, at 7:30 AM. The temperature will drop between 7:30 and 8 as hot water is drawn out of the tank (by ordinary use of hot water) and replaced by incoming cold water.
[0014] Optionally, after the low temperature mode has been selected, hot water may be drained from the tank under control of the controller 20 in order to rapidly reduce the temperature of the water to the desired level. One way to accomplish this is by having the controller 20 send appropriate signals to an electrically operated valve (not shown) that draws hot water from any hot water pipe that is fed by the tank 30. Of course, appropriate plumbing must be provided between the hot water supply, the valve, and an appropriate drain.
[0015] A suitable program of operation for the controller 20 for use in a day care center that operates on weekdays only is set forth in Table 1 below.
Da 5:00 AM - 7:30 7:30 AM - 6:00 6:00 PM - 5:00 AM PM AM

Sunda 140 140 140 Monda 140 110 140 Tuesda 140 110 140 Wednesday140 110 140 Thursday 140 110 140 Friday 140 110 140 Saturda 140 ~ 140 ~ 140 [0016] Another useful application for the dual-mode water heater depicted in FIG. 1 would be in residential homes. In the evening and in the morning, when the residents will likely be taking showers and using a lot of hot water, the controller selects the high temperature mode and maintains the temperature of the water in the tank at a desired high temperature (e.g., 130°).
At night and during portions of the day when nobody is home, the temperature may be set to a desired low temperature (e.g., 90°) in order to save energy.
Temperature control is implemented . . .~ , ,.. , ", , .. a ~~ ~ .,.a,~ ", i ..

in the same way as in the day care application discussed above, except that the timing of the transitions and the temperature set points are different. A suitable program of operation for the controller 20 for achieving energy savings in residential homes is set forth in Table 2 below.
Da 6-8AM 8AM-5PM 5-11 PM 11 PM-6AM

Sunda 130 130 130 90 Monda 130 90 130 90 Tuesda 130 90 130 90 Wednesda 130 90 130 90 _ Thursda 130 90 130 90 Frida 130 90 130 90 Saturday 130 ~ 130 ~ _ 90 [0017] A third example of a suitable application for the dual-mode water heater depicted in FIG. 1 would be for use in the homes of people who observe the Jewish law that prohibits heating liquids beyond a certain threshold temperature on the Sabbath: Many Jewish legal authorities that were contacted by the inventor maintain that the threshold temperature is 113° F, and others maintain that the threshold temperature is as low as 106° F.
However, all these authorities agree that heating liquids on Sabbath is not prohibited by Jewish law when the liquid is not heated beyond the threshold temperature.
[0018] In a conventional water heater, when the water temperature is set at about 140°, when a person draws hot water from the tank, cold water flows into the tank via the cold water inlet pipe. When that cold water mixes with the hot water that is already present in the tank, its temperature will be raised above the threshold, which would violate the prohibition of heating liquids an the Sabbath. To avoid this, some observant Jews refrain from using hot water on the Sabbath., so that the incoming cold water is never heated beyond the threshold temperature.

,, ,. ~, ", , , n ~ ~ .,. ., i [0019] If, however, the hot water that is contained in the tank is always kept at or below 112°, which is below the threshold temperature according to the aforementioned Jewish legal authorities, when the cold water flows into the tank via the cold water inlet pipe, it will not be heated past the threshold temperature. Under these circumstances, Jewish law permits people to draw hot: water out of the tank on Sabbath, even though cold water will flow into the hot water tank as the hot water leaves.
[0020] Thus, for this application, the controller 20 is programmed to switch into the low temperature mode of operation about one hour before Sabbath (to provide a period of cool-down time), and to switch back to the normal high temperature mode when Sabbath is over. In the embodiment described above with rapid cooling, that time can be reduced. Since the Jewish Sabbath starts at sundown on Friday evening and lasts until the stars come out on Saturday night, and since the sun sets at different times during the year, a suitable program for the controller 20 for automatically entering the low temperature mode before Sabbath begins is shown in Table 3:
Month start low tem . mode end low tem mode. Saturda Frida at at January 3:30 PM 5:30 PM

Febru 4:00 PM 6:00 PM

March 4:30 PM 6:30 PM

April 5:00 PM 7:00 PM

Ma 5:30 PM 7:30 PM

June 6:00 PM 8:00 PM

July 6:00 PM 8:00 PM

August 5:30 PM 7:30 PM

Se tember4:30 PM 7:00 PM

October 4:00 PM 6:30 PM

November 3:30 PM 6:00 PM

December 3:00 PM 5:30 PM

TABL>; 3 [0021] Preferably, the controller is programmed to make suitable adjustments in regions that observe daylight savings time, to adjust for the changed time of sunset.
[0022] Alternatively, instead of roughly estimating the time when Sabbath begins based on the month, a more precise start time for switching to the low temperature mode can be determined based on the date. The controller 20 can obtain knowledge of the date by keeping track of time after being set once by the user in any conventional manner. In alternative embodiments, an appropriate receiver (not shown) that receives the atomic clock signals broadcast by the National Institute of Standards and Technology in Boulder, Colorado, may be added so the system to determine the date and time. The controller 20 would then determine the correct time to switch modes based on the expected time of sunset on the day in question (e.g., by using an appropriate look-up table indexed by the date).
[0023] . Optionally, a Jewish calendar may be programmed into the controller 20, and the controller may be programmed to select the low temperature mode during those Jewish holidays when similar prohibitions on heating water are applicable.
[0024] Controlling the temperature with a high degree of accuracy is particularly important in the first and third applications described above, especially in the low-temperature mode of operation. For example, in the context of a daycare center, if the water is 10° too hot while the daycare center is opened, it would increase the risk of accidentally scalding, and temperatures above 113° are problematic for the Jewish Sabbath. (Note that for those users who choose to comply with a lower threshold temperature, such as 106°, all the relevant temperature values set forth herein must be adjusted accordingly). Conversely, if the water temperature drops too far (e.g., to 100°), it may not be hot enough for the user's desired use (e.g. washing hands or ,. , , . " " . ,.",.. . ~

doing dishes), especially during periods of high demand. Accordingly, the controller 20 should make appropriate and timely adjustments to minimize the temperature fluctuations, preferably to within a 6° F range, and more preferably to within a 4° range (e.g., to manage the temperature fluctuations within the tank 30 so that it always stays between 105°
and 111 °, or more preferably between 107° and 111 °).
[0025] In the embodiment illustrated in FIG. 1, the controller 20 turns the burner 45 on and off as required in both the low temperature mode and the high temperature mode by sending appropriate signals to the ignition controller 40. Thus, the controller 20 has direct control over the burner 45 in both the low temperature and the high temperature modes. In an alternative embodiment, the controller 20 retains direct control over the burner 45 in low temperature mode, but passes responsibility for controlling the temperature to another device (e.g., a conventional thermostat) in the high temperature mode where accuracy is less important.
This may be accomplished as shown in FIG. 2, for example, by having the controller 20' selectively actuate a relay 90 to connect a thermostat 92 to the control input of the ignition controller 40 in high temperature mode, and to connect the control output of the controller 20 to the ignition controller 40 in low temperature mode. In that case, the controller 20' would have direct control over the burner 45 in low temperature mode, but would have indirect control over the burner in the high temperature mode (by letting the thermostat bring the temperature up to a range that is higher than the temperatures associated with the low temperature mode).
[0026] FIG. 3 shows how the system can be physically connected to a water heater. A
control panel 80 is shown mounted to the body of the water heater 30 at a convenient height. The control panel 80 preferably houses the controller 20 (shown in FIG. 1 ), as well as a display and buttons for implementing a user interface, which may be implemented in any of a variety of ,. ...,.,~, .." ",.,.~." , .

ways that will be apparent to persons skilled in the relevant arts. For example, a user interface similar to those used for programmable air conditioning thermostats may be used, preferably including a digital display that displays the current temperature of the water in the tank and/or the temperature setting. The control panel 80 may be mounted to the tank's wall using any suitable approach including but not limited to screws, glues, magnets, straps that surround the tank, etc. A magnetic mount may make it easier to install the above-described embodiments in retrofits of existing tanks. Preferably, the control panel 80 is relatively small and as lightweight to facilitate easy mounting.
[0027] The tank 30 has a utility compartment 82, which may be used to house the gas ignition controller. In electric heat embodiments, the utility compartment 82 may be used to house components like a controller power module, a transformer, a heating element control switch, and the connection to the temperature probe. Optionally, a cover for the utility compartment 82 may be shaped to accommodate the control cable connection, and the power module may be fixed to the cover itself to simplify the installation and retrofitting of existing tanks. A cable 84 connects the control panel 80 to the components housed in the utility compartment 82. Optionally, the cable 84 may be coiled to simplify installation onto different sized tanks or at other locations that may be preferred by the user.

Claims (36)

1. A water heating apparatus comprising:
a tank for holding a volume of water;
a temperature sensor configured to be in thermal contact with the water and produce an output signal that is accurately indicative of the water's temperature;
means for heating the water in the tank; and a controller that monitors the water's temperature based on the output signal and selects, based on the passage of time, either a high temperature mode of operation or a low temperature mode of operation, wherein in the low temperature mode, the controller, based on the output signal, generates signals to selectively activate the means for heating so as to keep the water's temperature within a first range of values, and wherein, in the high temperature mode, the controller generates signals that cause the means for heating to heat the water to a temperature that is above the first range of values.
2. The water heating apparatus of claim 1, wherein the temperature sensor comprises a thermistor.
3. The water heating apparatus of claim 1, wherein the temperature sensor is implemented in an integrated circuit.
4. The water heating apparatus of claim 1, wherein the means for heating comprises a gas burner, and wherein the controller comprises a gas ignition controller that is operatively connected to the gas burner.
5. The water heating apparatus of claim 1, wherein the tank has a capacity of at least 30 gallons.
6. The water heating apparatus of claim 1, wherein the controller is programmed to cycle between the low temperature mode and the high temperature mode based on the time of day and a user-programmed setting.
7. The water heating apparatus of claim 6, wherein the first range of values has a range of 6°
F or less, and the upper limit of the first range of values is below 113° F.
8. The water heating apparatus of claim 7, wherein the lower limit of the first range of values is at least 105° F.
9. An apparatus comprising:
a temperature sensor configured to be in thermal contact with water in a tank and produce an output signal that is accurately indicative of the water's temperature; and a controller configured to monitor the water's temperature based on the output signal and select, based on the passage of time, either a high temperature mode of operation or a low temperature mode of operation, wherein in the low temperature mode, the controller, based on the output signal, generates signals to selectively activate a water heater to keep the water's temperature within a first range of values, and wherein, in the high temperature mode, the controller generates signals that cause the water heater to heat the water to a temperature that is above the first range of values.
10. The apparatus of claim 9, wherein the temperature sensor comprises a thermistor.
11. The apparatus of claim 9, wherein the temperature sensor is implemented in an integrated circuit.
12. The apparatus of claim 9, wherein the controller is programmed to cycle between the low temperature mode and the high temperature mode based on the time of day and a user-programmed setting.
13. The apparatus of claim 12, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
14. The apparatus of claim 13, wherein the lower limit of the first range of values is at least 105° F.
15. A method of controlling the temperature of water in a tank comprising the steps of:
monitoring the temperature of the water in the tank;

switching, based on the passage of time, between a high temperature mode of operation and a low temperature mode of operation;
generating, during the low temperature mode, signals to selectively activate a water heater to keep the water's temperature within a first range of values; and generating, during the high temperature mode, signals that cause the water heater to heat the water to a temperature that is above the first range of values.
16. The method of claim 15, wherein the switching step comprises switching between the high temperature mode and the low temperature mode based on the time of day and a user-programmed setting.
17. The method of claim 16, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
18. The method of claim 17, wherein the lower limit of the first range of values is at least 105° F.
19. A water heating apparatus comprising:
a tank for holding a volume.of water;
a temperature sensor configured to be in thermal contact with the water and produce an output signal that is accurately indicative of the water's temperature;
means for heating the water in the tank; and a controller that monitors the water's temperature based on the output signal and recognizes when the Jewish Sabbath occurs based on the passage of time or receipt of a time-dependent signal, wherein the controller, based on the output signal, selectively activates the means for heating to keep the water's temperature within a first range of values during the Jewish Sabbath, and wherein the controller controls the means for heating so that water is heated to a temperature that is above the first range of values during at least some other times.
20. The water heating apparatus of claim 19, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
21. The water heating apparatus of claim 20, wherein the lower limit of the first range of values is at least 105° F.
22. The water heating apparatus of claim 19, wherein the controller recognizes when Jewish holidays occur based on the passage of time or receipt of a time-dependent signal, and wherein the controller, based on the output signal, selectively activates the means for heating to keep the water's temperature within the first range of values during Jewish holidays.
23. The water heating apparatus of claim 22, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
24. The water heating apparatus of claim 23, wherein the lower limit of the first range of values is at least 105° F.
25. An apparatus comprising:
a temperature sensor configured to be in thermal contact with water in a tank and produce an output signal that is accurately indicative of the water's temperature; and a controller that monitors the water's temperature based on the output signal and recognizes when the Jewish Sabbath occurs based on the passage of time or receipt of a time-dependent signal, wherein the controller, based on the output signal, selectively activates a water heater to keep the water's temperature within a first range of values during the Jewish Sabbath, and to heat the water to a temperature that is above the first range of values during at least some other times.
26. The apparatus of claim 25, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
27. The apparatus of claim 26, wherein the lower limit of the first range of values is at least 105 ° F.
28. The apparatus of claim 25, wherein the controller recognizes when Jewish holidays occur based on the passage of time or receipt of a time-dependent signal, and wherein the controller, based on the output signal, selectively activates the means for heating to keep the water's temperature within the first range of values during Jewish holidays.
29: The apparatus of claim 28, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
30. The apparatus of claim 29, wherein the lower limit of the first range of values is at least 105° F.
31. A. method comprising:
accurately sensing the temperature of water in a tank;
recognizing when the Jewish Sabbath occurs; and selectively activating a water heater to keep the water's temperature within a first range of values during the Jewish Sabbath, and to heat the water to a temperature that is above the first range of values during at least some other times.
32. The method of claim 31, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
33. The method of claim 32, wherein the lower limit of the first range of values is at least 105° F.
34. The method of claim 31, further comprising the steps of:
recognizing when Jewish holidays occur; and selectively activating the water heater to keep the water's temperature within the first range of values during the Jewish holidays.
35. The method of claim 34, wherein the first range of values has a range of 6° F or less, and the upper limit of the first range of values is below 113° F.
36. The method of claim 35, wherein the lower limit of the first range of values is at least 105° F.
CA002551750A 2005-07-11 2006-07-10 Water heater with programmable low temperature mode Abandoned CA2551750A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69802405P 2005-07-11 2005-07-11
US60/698,024 2005-07-11
US73924705P 2005-11-23 2005-11-23
US60/739,247 2005-11-23

Publications (1)

Publication Number Publication Date
CA2551750A1 true CA2551750A1 (en) 2007-01-11

Family

ID=37625939

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002551750A Abandoned CA2551750A1 (en) 2005-07-11 2006-07-10 Water heater with programmable low temperature mode

Country Status (2)

Country Link
US (1) US20070051819A1 (en)
CA (1) CA2551750A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672576B2 (en) 2006-05-10 2010-03-02 Ilan Grossbach Water dispenser with sabbath function
CN107152788A (en) * 2017-07-20 2017-09-12 广东万家乐燃气具有限公司 Control system of electric water heater and electric heater

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913927B2 (en) * 2008-07-29 2011-03-29 James Edward Sambrook Fuel economizer
US9442499B2 (en) * 2009-05-04 2016-09-13 R. W. Beckett Corporation Controller for temperature regulation system
US20120095614A1 (en) * 2010-10-14 2012-04-19 Delayo Richard Electronic control device and method for boiler system
US8002903B1 (en) * 2010-10-26 2011-08-23 General Electric Company Dishwasher that uses cold water during peak electricity demand and associated method of control
CN102211593A (en) * 2011-05-11 2011-10-12 北京二七轨道交通装备有限责任公司 Railway rail grinding train water tank and railway rail grinding train
US8624444B2 (en) 2012-06-07 2014-01-07 Robert Monetti Energy saving switch for and process for conserving energy while operating a water heater
US9535434B2 (en) 2013-03-15 2017-01-03 International Business Machines Corporation Managing hot water storage and delivery
CN108286795B (en) * 2017-01-09 2020-08-07 芜湖美的厨卫电器制造有限公司 Water heater and control method thereof
GB2560007B (en) * 2017-02-24 2021-01-20 Tadmor Ronen Sabbath controller for a hot water tank
US11435113B2 (en) * 2018-02-06 2022-09-06 A. O. Smith Corporation Dual input water heater
GR1009781B (en) * 2019-03-07 2020-07-06 Βασιλειος Θεοδωρου Ιορδανιδης Fuel savings in all-type stoves and burners
US11592210B2 (en) 2020-06-08 2023-02-28 Max Moskowitz System and method for providing heated water to sabbath observers
US11536490B2 (en) 2020-07-14 2022-12-27 Haier Us Appliance Solutions, Inc. Water heater appliances and methods of sabbath operation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508261A (en) * 1982-01-28 1985-04-02 Gerald Blank Hot water control and management system
US4834284A (en) * 1988-06-29 1989-05-30 Fluidmaster, Inc. Hot water control
US6363216B1 (en) * 1999-07-27 2002-03-26 Kenneth A. Bradenbaugh Water heater having dual side-by-side heating elements
US6633726B2 (en) * 1999-07-27 2003-10-14 Kenneth A. Bradenbaugh Method of controlling the temperature of water in a water heater
US7346274B2 (en) * 1999-07-27 2008-03-18 Bradenbaugh Kenneth A Water heater and method of controlling the same
US6350967B1 (en) * 2000-05-24 2002-02-26 American Water Heater Company Energy saving water heater control
US6648235B2 (en) * 2002-04-08 2003-11-18 Guard Sound Industry Co., Ltd. Control method of thermostatic system
US6920843B1 (en) * 2002-09-09 2005-07-26 William E. Wilson Programmable water heater
US6955301B2 (en) * 2003-03-05 2005-10-18 Honeywell International, Inc. Water heater and control
US6915069B2 (en) * 2003-07-14 2005-07-05 Ken A. Bradenbaugh Temperature sensor assembly, water heater including the temperature sensor assembly, and method of sensing a temperature
US7015432B2 (en) * 2004-06-05 2006-03-21 Avista Technologies, Llc Water heater control system and method for controlling temperature with same
US7250445B1 (en) * 2005-01-14 2007-07-31 Ehrenpreis Eli D Anti-oxidant suppository for treating radiation proctopathy and other anorectal disorders
US7167813B2 (en) * 2005-01-31 2007-01-23 Honeywell International Inc. Water heater performance monitoring system
US7380522B2 (en) * 2005-10-05 2008-06-03 American Water Heater Company Energy saving water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672576B2 (en) 2006-05-10 2010-03-02 Ilan Grossbach Water dispenser with sabbath function
US7970264B2 (en) 2006-05-10 2011-06-28 Ilan Grossbach Water dispenser with Sabbath function
CN107152788A (en) * 2017-07-20 2017-09-12 广东万家乐燃气具有限公司 Control system of electric water heater and electric heater
CN107152788B (en) * 2017-07-20 2022-09-02 广东万家乐燃气具有限公司 Electric water heater control system and electric water heater

Also Published As

Publication number Publication date
US20070051819A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US20070051819A1 (en) Water heater with programmable low temperature mode
EP1305555B1 (en) Programmable domestic water heating system
US8485138B2 (en) Water heater with temporary capacity increase
US5839654A (en) Portable air comfort system thermostat enabling personal localized control of room temperature
US20060230772A1 (en) System and method for efficient and expedient delivery of hot water
US9390381B2 (en) Intelligent water heater controller
US6293471B1 (en) Heater control device and method to save energy
US20140316586A1 (en) Thermostat for a hvac
US9234664B1 (en) Backward-compatible, programmable, and on-demand water heater and recirculation pump control unit and method of using
AU2001280031A1 (en) Programmable domestic water heating system
US20130299600A1 (en) Water heater having improved temperature control
US10642289B1 (en) Connected mixing valve for controlling water temperature
CN101861497A (en) The heating control system and method for saving energy
US20150131977A1 (en) Smart water heater with improved temperature control
JPH01208655A (en) Hot-water apparatus and controlling device thereof
JP6403620B2 (en) Heating recommended condition judgment system
US5556564A (en) Control unit for controlling the temperature of a domestic water supply
CA2700771C (en) Storage-type water heater and control thereof based on water demand
GB2387671A (en) A water-heating system controller
JPWO2014128929A1 (en) Energy management system, system controller, thermal insulation control method and program
US11853086B1 (en) Water delivery system
JP3889367B2 (en) Bath temperature estimation device and bath water heater
KR101993471B1 (en) Method for Controlling Heating Device Based on Sleep Information
KR200245337Y1 (en) Hot water heating device that automatically controls the heating environment for each heating compartment
JP4971684B2 (en) Water heater

Legal Events

Date Code Title Description
FZDE Discontinued