CA2547294C - Method and system for messaging across cellular networks and a public data network - Google Patents

Method and system for messaging across cellular networks and a public data network Download PDF

Info

Publication number
CA2547294C
CA2547294C CA2547294A CA2547294A CA2547294C CA 2547294 C CA2547294 C CA 2547294C CA 2547294 A CA2547294 A CA 2547294A CA 2547294 A CA2547294 A CA 2547294A CA 2547294 C CA2547294 C CA 2547294C
Authority
CA
Canada
Prior art keywords
instant message
user
message
mobile unit
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2547294A
Other languages
French (fr)
Other versions
CA2547294A1 (en
Inventor
Charles A. Carey
Bruce A. Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Inc
Original Assignee
AOL LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/519,525 external-priority patent/US6714793B1/en
Application filed by AOL LLC filed Critical AOL LLC
Publication of CA2547294A1 publication Critical patent/CA2547294A1/en
Application granted granted Critical
Publication of CA2547294C publication Critical patent/CA2547294C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

A method of enabling a user of a cellular communications device to communicate with other users using instant messages includes enabling a user of a cellular communications device to receive, at the cellular communications device, availability information for a user-defined group of other users. The other users within the user-defined group are included in an instant message name list maintained for the user and the availability information includes an indication of an availability of the other users to communicate using instant messages. The method further includes receiving the availability information at the cellular communications device, and displaying the availability information in a user interface on the cellular communications device.

Description

METHOD AND SYSTEM FOR MESSAGING ACROSS
CELLULAR NETWORKS AND A PUBLIC DATA

NETWORK
FIELD OF THE INVENTION
The present invention generally relates to non-voice message transmission and reception across cellular and public or private data networks and, more particularly to a method and system for message delivery between a cellular and public data network.

BACKGROUND OF THE INVENTION
Around the world, tens of millions of users are using software that enables them to be alerted when friends, family and colleagues go on-line for the real-time exchange of messages. A commonly used term for this type of real-time exchange is instant messaging. Instant messaging is cheap, with most vendors giving away the product and others charging nominal licensing fees. It is also powerful, allowing users to communicate in one window while, for example, looking over a document in another. Team members in different locations can set up impromptu conversations, bouncing ideas and strategies off each other. It provides quick and dirty collaboration, with little to buy and not much to set up.

I

The best known instant messaging system is America Online's AOL INSTANT
MESSENGER(TM) (AIM) that was originally designed as a feature for AOLTM's pay service.
AIM is software that anyone with an Internet connection can download, whether they are an AOLTM member or not. After registering a screen name, the user can maintain lists of AOLTM members and other AIM users, and be alerted whenever one of those in the list comes on-line. When one of those in the list comes on-line, the corresponding screen name appears in an AIM interface window on the screen. By clicking on the name appearing in the AIM
interface window, the user may then send an instant message and initiate a conversation session. Users can also sort their buddies into groups. For example, a lawyer could create separate groups for partners, associates, in-house counsel and adversaries.
Other vendors, such as YAHOO!(TM), PeopleLink, MIRABILIS(TM) (ICQTM) and Activerse, offer similar instant message service.
Despite the apparent success of instant messaging systems, it is still limited to a user accessing the service through computer-based systems hardwired to the Internet. There exists a need to provide the benefits of instant messaging, immediate knowledge of another online status and real-time text communication, outside of hardwired Internet systems. Specifically in a wireless environment, it would be advantageous to know if a subscriber has turned on their cellular phone. It would also be advantageous to communicate via text messages, which are far less costly than voice communications because text message data uses up much less bandwidth or resources than voice data.

SUMMARY OF THE INVENTION
Illustrative embodiments of the present invention may provide, for example, a method, system and computer program product for instant message communication in a wireless and non-wireless environment. In one such illustrative embodiment, first, a message is sent from a mobile unit device over a wireless communication network. The message includes a destination address, information associated with the mobile unit device's user, message content and message address. If, according to information previously stored for the mobile unit device's user at the instant message system, the destination address is associated with an instant message function, the associated instant message function is executed at the instant message system using the information contained in the message content, if required as determined by the associated instant message function. If, according to information previously stored for the mobile unit device's user at the instant message system, the
2 destination address is associated with an instant message name, an instant message is created according to the message content and is sent to the user with the associated instant message name.
In accordance with another illustrative embodiment of the present invention, if said instant message function is a sign on function, an instant message session is initiated according to prestored user profile information and the message content. The message content is an instant message name associated with the user of the mobile unit device and a predefined password.
In accordance with still another illustrative embodiment of the present invention, the status information of users associated with instant message names stored for the user of the mobile unit device in the instant message system are determined and sent to the mobile unit device of the user. The user's mobile unit device then presents the sent status information.
In accordance with yet another illustrative embodiment of the present invention, if said instant message function is a sign off function, the instant message session associated with the mobile unit device's user is ended.

In accordance with yet another illustrative embodiment of the present invention, if said instant message function is a delete instant message name function, the stored instant message is deleted according to the message content. The message content is at least one instant message name.
In accordance with still another illustrative embodiment of the present invention, if said instant message function is an update instant message name function, the status information of users associated with instant message names stored for the user of the mobile unit device in the instant message system are determined and sent to the mobile unit device of the user. The user's mobile unit device then presents the sent status information.
In accordance with further illustrative embodiments of the present invention, an instant message name is associated with a destination address at the instant message system.
This association is saved in memory in the instant message system according to a registered user of a mobile unit device. An executable address loading program is generated according to the saved association and then sent through the wireless environment to the mobile unit device of the registered user. At the mobile unit device the executable address loading program is executed, thereby entering the associated instant message name and address into memory.
3 In accordance with still further illustrative embodiments of the present invention, an instant message is processed according to sender user information stored at the instant message system if it is intended for a recipient user signed on through a mobile unit device and then sent through the wireless environment to the mobile unit device of the recipient user. The user's mobile unit device presents the sent instant message and the instant message name of the creator of the instant message.
In accordance with another illustrative embodiment, a computer readable medium has instructions stored therein for execution by a computer-based server. The instructions direct the server to store one or more functions or instant message names, each of the one or more functions or instant message names being assigned to an address in a list of addresses assigned to a subscribing user. The instructions further direct the server to receive an instant message request with an address, the instant message request being received from a cellular device. The instructions further direct the server to identify one of the stored instant message names or functions associated with the address of the received instant message request.
The instructions further direct the server to generate an instant message if the address is identified to be associated with an instant message name, and to execute a function if the address is associated with a stored function.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and many of the attendant advantages of illustrative embodiments will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIGURE 1 is a block diagram of the components of an embodiment of the present invention;
FIGURE 2 is a flow diagram of a process of entering instant message names formed in accordance with an embodiment of the present invention;

FIGURES 3-7 are flow diagrams of various exemplary processes formed in accordance with an embodiment of the present invention;
4 FIGURES 8 and 9 are screen shots of an example user interface for remotely entering instant message names; and FIGURES 10-14 are diagrams of example user interfaces implemented on a cellular phone.
DETAILED DESCRIPTION
The present embodiment is an integrated wireless and traditional instant messaging system and method. As shown in FIGURE 1, the system 20 includes an instant message routing system 22 that includes a routing server 24 and a database 26 for storing a profile for each subscribing user. Each user profile includes a list of instant message names with each name assigned to an address (phone number). The routing server 24 is in communication with one or more short message service centers (SMSC) 32 that is in communication with one or more wireless mobile carriers 34. Each wireless mobile carrier 34 supports subscribing users operating mobile unit devices 36, such as a hand-held cell phone, a bag phone or a vehicle phone. The routing server 24 is also coupled to a public or private data network 30, such as the Internet. Also coupled to the public or private data network 30 are an instant message server 40 and one or more traditional systems 42, such as a personal computer.
The communication link between the routing server 24 and the short message service center 32 is also either a public or private data network, such as the Internet or a private dedicated circuit. A protocol residing over the communication link defines the structure of information communicated between the routing server 24 and the short message service center 32. Preferably this link is the Internet with TCP/IP operating thereon.
Operating over TCP/IP is another protocol that allows the routing server 24 to identify the effectiveness of communications to the mobile unit devices 36. An example protocol residing over TCP/IP is the short message peer-to-peer (SMPP) protocol or configuration or data
5 management procedure (CDMP) protocol. These protocols provide visibility of the status of message deliveries to the mobile unit devices 36.
A data bearer protocol defines the structure of data messages communicated between the mobile unit devices 36, the mobile carrier 34 and the short message service center 32. The global system for mobile communications (GSM) environment, used as the primary digital wireless standard throughout Europe, uses the short message service (SMS)' standard data bearer protocol for formatting data for delivery between the mobile unit devices 36, wireless mobile carrier 34 and the short message service center 32. The SMS protocol describes the format of data, called SMS packages, sent or received through the system.
In accordance with the present invention, the format of data messages, i.e. SMS
package, sent from the mobile unit device includes the phone number of the mobile unit device, a destination phone number, the short message service center address (preferably a number), a validity period value and message content.
The validity period value informs the short message service center 32 how long to attempt delivery. Each data message (SMS package) is preferably a single block of information. As can be readily appreciated by those of ordinary skill in the art of wireless communication, the SMS package may be divided up into multiple packets of data and sent at various intervals.
FIGURE 2 illustrates a method for remotely creating an instant message name list for a cellular phone. First, a user, who is a subscriber to a wireless instant message service, uses a traditional system 42 coupled to the network 30 to sign on to a web site supported or generated by the routing server 24. A user becomes a subscriber by completing a registration process that can be performed during online communication with either servers 24 or 40 or through other means, such as e-mail, conventional mail or telephonic communication. Once the user has entered into the routing server's web site by preferably completing a sign-on or logon with password verification, the user begins instant message name list (i.e.
buddy list) creation for the user's mobile unit device 36. If the cell phone user
6 knows the instant message name that corresponds to a desired recipient, decision block 50, the user enters the instant message name. The entered instant message name is then saved in a look-up table at a location in the database 26, block 52. The look-up table is stored in relation to predefined user profile information. Each instant message name stored in the look-up table has a corresponding destination address, preferably a phone number. For example, the routing server 24 receives from the mobile carrier 24 or a telecommunications controlling agency a set of n telephone numbers. In the database 26 for each user profile, the server 24 associates a number from the set of n telephone numbers to an entered instant message name. As a result, the routing system 22 reuses a limited number of phone numbers.
If the cell phone user does not know the instant message name that corresponds to a desired recipient, decision block 50, the user enters information that corresponds to the desired recipient, such as an e-mail address, block 54. The server hosting the name list creation website then searches for an instant message name that corresponds to the entered information, blocks 56 and 60. If, at decision block 60, there is a corresponding instant message name, the corresponding instant message name is entered and saved, see block 52 above.
If, at decision block 60, the search fails to find a corresponding instant message name, no name entry occurs and the user is given the opportunity to enter more instant message names, decision block 62 and block 66. The user is also given the opportunity to enter more instant message names, decision block 62 and block 66, after block 52.
If, at decision block 62, the user does not wish to enter more instant message names, a program is generated by the server hosting the name list creation website for programming the created instant message name list into the user's mobile unit device 36, block 68. Next, at block 70, the generated program is sent through the short message service center 32, where it is formatted according to the proper protocol, and then through the mobile carrier 34 to the user's mobile unit device 36. At block 72, the user's mobile unit device 36
7 receives and executes the program, thus saving the instant message name list in an address book stored in memory. In other words, the mobile unit device is programmed in an over-the-air-programming manner to include the instant message name list within the mobile unit device's instant message listings (i.e.
address book).
In an alternative embodiment, if the mobile carrier 34 and corresponding mobile unit devices 36 do not include the hardware or software components for receiving and executing the program for loading the saved instant message name list, the loading of instant message names and corresponding phone numbers that are stored at the routing system 22 are manually entered into the address book of the user's mobile unit device 36.
FIGURES 3-7 illustrate the process of instant message function delivery, message delivery and instant message reception using a mobile unit device across a wireless and non-wireless network. First, at block 80 of FIGURE 3, through a user interface on the mobile unit device 36 the user selects an instant message function or an instant message name(s) from the mobile unit device's address book based on the latest stored instant message name status information received from the instant message name routing server 24 as a result of a sign on, a status update or the last communication with the instant message routing server 24 (see FIGURE 5 below). Then, the user enters message content information (either function related information or a message accordingly). Alternatively, the message content information is entered first, then an instant message function or an instant message name is selected. Examples of user interaction with the instant message routing server 24 and with the mobile unit device 36 are illustrated by example in FIGURES 8-14 below. Next, at block 82, the user's selection and entered information is formatted according to the predefined protocol and sent to the mobile carrier 34. At block 84, the mobile carrier 34 receives the formatted data and sends the formatted data to a short message service center 32 according to the included short message service center address information. At decision
8 block 86, the short message service center 32 determines if the received formatted data includes address data assigned to an instant message routing server 24, i.e. an address field or phone number. If the formatted data does not include address data assigned to an instant message routing server 24, the formatted data is probably an email message and is processed according to known cellular Short Message processing methods, block 88. Also commonly referred to as email for cell phones. If the formatted data does include address data assigned to an instant message routing server 24, the formatted data is reformatted according to the predefined protocol used to communicate information between the short message service center 32 and the instant message routing server 24 and then sent to the instant message routing server 24, block 90.
As shown in FIGURE 4, at decision block 102, the instant message routing server 24 compares the destination number included in the reformatted data to the look-up table in the user profile location in the database 26 that corresponds to the mobile unit device phone number included with the received data. The comparison determines what action corresponds to the destination number. If the action corresponding to the destination number is an instant message function, the instant message routing server 24 executes the instant message function, see FIGURE 5 below. If the action corresponding to the destination number is an instant message name, the instant message routing server 24 repackages the formatted data as an instant message and sends it to the recipient associated with instant message name, block 104. Before or after the repackaging occurs, the instant message routing server 24 determines if the recipient that corresponds to the instant message name is signed on to the instant message system, i.e. the instant message server 40, decision block 106. If the recipient is not signed on, the instant message routing server 24 sends a failure message to the user's mobile unit device 36 through the short message service center 32 and mobile carrier 34, block 108. In a first alternate embodiment, if the recipient is not signed on, the instant message server 40 stores the instant message until the instant message
9 server 40 detects that the recipient has signed on through an instant message routing server 24 or a traditional system 42. In a second alternate embodiment, if the recipient is not signed on, the instant message is forwarded to a previously designated e-mail address.
If the recipient is signed on, the instant message routing server 24 sends the instant message to the recipient through the instant message server 40 over the network 30, block 110. The process of sending an instant message to a mobile unit device recipient is described in more detail below in FIGURES 6 and 7.
FIGURE 5 illustrates the process of processing data received from a mobile unit device 36 that corresponds to an instant message function, from B
of FIGURE 4. First, at decision block 120, if the function is a sign on function, the instant message routing server 24 establishes a new instant message session with the instant message server 40 for the user associated with the mobile unit device 36 that send the sign on function. The establishment of a new instant message session is done in accordance with the proper password(s) that was included in the message content sent from the mobile unit device 36, block 122.
The instant message routing server 24 checks with instant message server 40 to determine which of the names in the instant message name list associated with the user and stored in the database 26 are available or signed on, block 124. This determination of who is available is then sent to the mobile unit device 36 through the short message service center 32 and the mobile carrier 34, block 126. Once the mobile unit device 36 receives the availability determination, the device process it and makes the availability information available for use by the user, block 127.
If the instant message function is not the sign on (sign on) function and if no instant message session is presently active for the user at the instant message routing server 24, decision block 128, a message informing the user that sign on must occur first is presented, block 130. If an instant message session exists and the function is a sign off (sign off) function, decision block 132, the instant message routing server 24 ends the corresponding instant message session, block 134. However, if the function is not the sign off function, the function is processed according to instant message rules, block 136. The following other functions are available: delete; add; and check status. With regards to the delete function, the instant message routing server 24 deletes each instant message name included in the message content from the instant message name list stored with the user's profile information in the database 26. With regards to the add function, the instant message routing server 24 adds each instant message name included in the message content to the instant message name list stored with the user's profile information in the database 26. During instant message session the instant message routing server 24, like an instant message session on a traditional system 42, continually receives connection status information of each instant message name in the instant message name list. With regards to the check status function, the instant message routing server 24 sends the latest received connection status information to the mobile user device 36 through the short message service center 32 and the mobile carrier 34.
FIGURES 6 and 7 illustrate the process of sending an instant message to a recipient signed on to the instant message service from a mobile unit device through an instant message routing server 24. The process of FIGURE 6 occurs when an instant message is sent from another user of a mobile unit device 36, C
from FIGURE 4, or from a user of a traditional system 42, such as a desktop or laptop computer. First, at block 140, the instant message server 40 receives an instant message and, at block 142, sends it to the signed on recipient identified in the instant message. If, at decision block 144, the recipient is a normal instant message recipient, i.e. not a recipient with an instant message session active through the instant message routing server 24, the recipient receives and views the instant message as per instant message procedures, block 146. If, on the other hand, at decision block 144, the recipient is a user with an instant message session active through the instant message routing server 24, the instant message routing server 24 receives the instant message, block 148. Then, at block 150, the instant message routing server 24 prepares the received instant message according to the predefined protocol and sends the prepared instant message to the short message service center 32, where the short message service center 32 stores and forwards the instant message to the mobile carrier 36 according to the predefined wireless protocol, block 152.
As shown in FIGURE 7, at block 160, the mobile carrier 36 prepares the instant message received from the short message service center 32 for transmission and sends the prepared transmission to the mobile unit device 36.
If, to at decision block 162, the mobile unit device 36 successfully receives the prepared transmission of the instant message, the mobile unit device 36 replies to the short message service center 32 that the transmission was received, block 164. Then, at block 166, the short message service center 32 receives the mobile unit device's successful reply and deletes the stored instant message.
If, however, at decision block 162, the mobile unit device 36 did not successfully receive the prepared transmission of the instant message and if, at decision block 168, a transmission delivery threshold has not been reached, a message is sent to the short message service center 32 that the mobile unit device 36 did not successfully receive the instant message, block 170. This message of unsuccessful reception is sent by the mobile carrier 34. When the short message service center 32. receives a message of unsuccessful reception, the short message service center 32 retrieves the stored instant message that corresponds to the unsuccessfully sent transmission and resends the transmission to the mobile unit device 36 through the mobile carrier 34, blocks 172 and 160.
Again, at decision block 162, if the mobile unit device 36 did not successfully receive the prepared transmission of the instant message and if, at decision block 168, a transmission delivery threshold has been reached, the mobile carrier 34 sends a message to the instant message routing server 24 through the short message service center 32 that the mobile unit device 36 is not connected or not receiving instant messages, block 174. When the instant message routing server receives a message of this type, the instant message routing server 24 signs off or logs off the instant message session associated with the user of the mobile unit device 36 that failed to receive the transmission, block 176. The transmission delivery threshold is preferably a predefined number of delivery attempts.
Once the number of attempts have been reached or exceeded, the mobile carrier 34 assumes the mobile user device 36 is off or out of reception range. It can be readily appreciated by those of ordinary skill in the art of cell phone communication, that various data delivery methods can be used for insuring information gets delivered during temporary periods of time when the cell phone is out of communication with the mobile carrier.
FIGURES 8-14 illustrate example user interfaces used for instant message name list creation (FIGURE 2) and for mobile unit device interaction (FIGURES 3-7). As shown in FIGURE 8, a wireless instant messaging sign on window 200 includes data fields for entry of the user's screen name 202 and password 204. The user's screen name and password are stored in one of the routing server 24 or the instant message server 40 as a result of a previously performed registration process. After the correct information is entered in the data fields 202 and 204, the user is provided access to various user wireless instant messaging information, such as user account information and an instant message name list interface, as shown in FIGURE 9. The wireless instant messaging sign on window 200 is presented on a traditional system 42 that is coupled to the public or private data network 30. The traditional system 42 includes previously loaded software received from either the instant message routing server 24 or the instant message server 40 as a result of the registration process.
As shown in FIGURE 9, an instant message name list window 220 is an interface that allows users interaction with the stored instant message name list.
Each instant message name in the list corresponds to a phone number assigned to the instant message routing server 24. Through window 220 the user enters, deletes or reorders instant message names based on a comparison with the address book stored in the user's mobile unit device and the user's desired entries.
The server 24 or 40 that hosts the window 220 assigns a phone number to each new instant message name entered by the user. The phone numbers assigned are selected from a pool of phone numbers specifically assigned for that purpose.
After the user has entered any new instant message names into window 220, the user requests loading of the newly entered instant message names into the user's mobile unit device 36. The server 24 or 40 that hosts the window 220 then generates an instant message name entry executable program that is sent through to the short message service center 32 and the mobile carrier 34 to the user's mobile unit device 36. When the user's mobile unit device 36 receives the executable program, the mobile unit device 36 executes the instant message name entry program and loads the newly entered names with corresponding phone numbers into the mobile unit device's address book stored in memory.
FIGURE 10 shows a mobile unit device 230 with an example first address book user interface (ui) screen 228. The first address book ui screen 228 includes the instant message names stored in the first four locations in the mobile unit device's address book. The mobile unit device 230 includes on-screen and off-screen user interface control features (e.g. touch screen, cursor control, soft function keys). Two examples on-screen user interface control features are a "Select" 232 and a "Back" 234 function displayed at the bottom of the address book ui screen 228. In order for a user to send an instant message, the user selects a create message display screen, enters a text message using the mobile unit device's keypad, such as the T9 enabled keypad produced by Tegic Communications, and then selects a recipient (an instant message name) from the address book ui screen. User activation of the "Select" function allows the user to select a user identified (e.g. highlighted) instant message name in the name list as the recipient of the entered instant message. User activation of the "Back"
function allows the user to view the previously displayed ui screen.

FIGURE 11 shows an example second ui screen 236 of the address book.
The second ui screen 236 shows address book locations occupied by the following instant message functions: update recipient (instant message name or buddy) availability; delete a recipient; sign off; sign on. When the user selects and sends the update recipient availability ("Buddies") function with any necessary predefined message content to the instant message routing server 24, the instant message routing server 24 checks availability of recipients (instant message names in the stored instant message name list) and sends the results back to the mobile unit device 230. FIGURE 12 shows the results of an executed recipient update on 1o the display of the mobile unit device 230. In display area 238, recipients Emma972 and Gomer22 are indicated as being on-line (i.e. signed on the instant message system). Richard53, tom235 and zebra 98 are indicated as being off-line (i.e. signed off the instant message system).
When the user selects and sends the "Delete" recipient function with the recipient's instant message name in the message content to the instant message routing server 24, the instant message routing server 24 deletes the included instant message name from the user's instant message name list stored in the database 22. Selection of the "SignOff' function commands the instant message routing server 24 to end the instant message session associated with the user.
Selection of the "SignOn" function commands the instant message routing server 24 to initiate an instant message session with the instant message server 40 according to screen name and password information sent as message content to the instant message routing server 24, see FIGURE 13. The "SignOn" function message content can be saved at the mobile unit device and reused for subsequent sign on requests. Alternatively, the instant message routing server 24 stores the user's instant message screen name and password and the phone number of the user's mobile unit device 36 to aid with automatic sign on.

FIGURE 14 shows how a received message appears on the mobile unit device 230. The message content of the received message is displayed with the instant message name of the originator of the received message.
As can be readily appreciated by those of ordinary skill in the art, the fractions performed by the routing system 22 may be combined with the instant message server 40 or the short message service center 32. The short message service center 40 may be included in the mobile carrier infrastructure. Also, the functions of the components of the present invention may be distributed to multiple servers across one or more of the included networks.
While the presently preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A computer readable medium having instructions stored therein for execution by a computer-based server, said instructions comprising instructions for directing the server to:
store one or more functions or instant message names, each of the one or more functions or instant message names being assigned to an address in a list of addresses assigned to a subscribing user;
receive an instant message request with an address, the instant message request being received from a cellular device;
identify one of the stored instant message names or functions associated with the address of the received instant message request;
generate an instant message if the address is identified to be associated with an instant message name; and execute a function if the address is associated with a stored function.
2. The medium of Claim 1, wherein the instructions direct the server to use information included in the instant message request when executing the function.
3. The medium of Claim 1, wherein the function is an instant message function.
4. The medium of Claim 3, wherein the instructions direct the server to execute the instant message function if the address is associated with the instant message function.
CA2547294A 2000-03-06 2001-03-06 Method and system for messaging across cellular networks and a public data network Expired - Lifetime CA2547294C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/519,525 US6714793B1 (en) 2000-03-06 2000-03-06 Method and system for instant messaging across cellular networks and a public data network
US09/519,525 2000-03-06
CA002400807A CA2400807C (en) 2000-03-06 2001-03-06 Method and system for messaging across cellular networks and a public data network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002400807A Division CA2400807C (en) 2000-03-06 2001-03-06 Method and system for messaging across cellular networks and a public data network

Publications (2)

Publication Number Publication Date
CA2547294A1 CA2547294A1 (en) 2001-09-13
CA2547294C true CA2547294C (en) 2012-10-23

Family

ID=36646345

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2547294A Expired - Lifetime CA2547294C (en) 2000-03-06 2001-03-06 Method and system for messaging across cellular networks and a public data network

Country Status (1)

Country Link
CA (1) CA2547294C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025570A1 (en) * 2019-08-05 2021-02-11 НЕЧАЕВ, Марк Александрович Method for the exchange of messages between users

Also Published As

Publication number Publication date
CA2547294A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
US9621489B2 (en) Selectively sending electronic messages via alternate delivery mechanisms
AU2001245497A1 (en) Method and system for messaging across cellular networks and a public data network
US8019363B2 (en) Facilitating messaging between a mobile device and a user
RU2459240C2 (en) Extended messaging platform
US20110143788A1 (en) Unified addressing
CA2547294C (en) Method and system for messaging across cellular networks and a public data network
US20090239499A1 (en) Apparatuses and methods for log management employed in mobile stations
JP5131494B2 (en) E-mail system and e-mail communication method

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210308