New! View global litigation for patent families

CA2508001A1 - Systems and methods of sample processing and temperature control - Google Patents

Systems and methods of sample processing and temperature control

Info

Publication number
CA2508001A1
CA2508001A1 CA 2508001 CA2508001A CA2508001A1 CA 2508001 A1 CA2508001 A1 CA 2508001A1 CA 2508001 CA2508001 CA 2508001 CA 2508001 A CA2508001 A CA 2508001A CA 2508001 A1 CA2508001 A1 CA 2508001A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
temperature
sample
processing
system
automated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CA 2508001
Other languages
French (fr)
Inventor
Kristopher Buchanan
Marc Key
John Favuzzi
Rosanne Welcher
Benno Guggenheimer
Robert Clark
Michael Barber
Bob Lathrop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dako Denmark AS
Original Assignee
Dakocytomation Denmark A/S
Kristopher Buchanan
Marc Key
John Favuzzi
Rosanne Welcher
Benno Guggenheimer
Robert Clark
Michael Barber
Bob Lathrop
Dako Denmark A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • G01N1/312Apparatus therefor for samples mounted on planar substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00039Transport arrangements specific to flat sample substrates, e.g. pusher blade
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00089Magazines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00366Several different temperatures used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00376Conductive heating, e.g. heated plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • G01N2035/00881Communications between instruments or with remote terminals network configurations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • Y02A90/22
    • Y02A90/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/30End effector
    • Y10S901/41Tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/112499Automated chemical analysis with sample on test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • Y10T436/114165Automated chemical analysis with conveyance of sample along a test line in a container or rack with step of insertion or removal from test line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • Y10T436/114998Automated chemical analysis with conveyance of sample along a test line in a container or rack with treatment or replacement of aspirator element [e.g., cleaning, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

Systems and methods of sample processing and temperature control are disclosed. Specifically, the present invention provides temperature control in relation to sample processing systems and methods of processing samples. Some embodiments provides temperature control for sample carriers and processing materials, such as reagents. Corresponding systems and devices are disclosed, including sample processing systems (1) (Fig. 10), sample carrier temperature regulation systems, reagent temperature regulation systems, sample processing control systems, and temperature regulation devices. The present invention in particular applicability to the fields of immunohistochemistry, in-situ hybridization, fluorescent in-situ hybridization, special staining, such as special staining of histological samples, microarray sample processing, and cytology, as well as other chemical and biological applications.

Description

SYSTEMS AND METHODS OF SAMPLE PROCESSING
AND TEMPERATURE CONTROL
TECHNICAL FIELD
The present invention is directed to the field of sample processing.
Embodiments of the invention may especially relate to temperature control. Specifically, the present invention relates to temperature control in relation to sample processing systems and methods of processing samples, and may be directed to sample processing in relation to sample carriers and processing materials such as reagents. Scientific fields to which the present invention may have particular applicability include immunohistochemistry, in-situ hybridization, fluorescent in-situ hybridization, special staining, such as special staining of histological samples, microarray sample processing, and cytology, as well as potentially other chemical and biological applications.
BACI~GROLTND OF THE INVENTION
Sample processing in chemical and biologic analyses, such as immunohistochemical (IHC) applications, may require one or a number of various processing sequences or protocols as part of an analysis of one or more samples. The sample processing sequences or protocols may be defined by the individual or organization requesting an analysis, such as a pathologist or histologist of a hospital, and may be further defined by the dictates of a particular analysis to be performed.
The sample processed may be any material, but is most likely a biologic material such as a biological sample or a biological specimen, perhaps such as a histological sample, e.g. tissue and cell specimens, cells, collections of cells, or tissue samples, the definition to include cell lines, proteins and synthetic peptides, tissues, cell preps, cell preparations, blood, bodily fluids, bone marrow, cytology specimens, blood smears, thin-layer preparations, and micro arrays. It should also be understood to include slide-based biological samples. In preparation for biologic sample analysis, for example, a biological sample may be acquired by known sample acquisition techniques and may comprise, for example in immunohistochemistry (IHC) applications, tissues generally or even in some applications one or a plurality of isolated cells, such as in microarray samples, and may be presented on a sample Garner such as a microscope slide. Furthermore, the sample may be presented on the carrier variously and potentially in some form of preservation.
As one example, a sample such as a layer or slice of tissue may be preserved in formaldehyde and presented on a carrier with one or more paraffin or other chemical layers infiltrating the sample.
IHC applications, for example, may require processing sequences or protocols that comprise steps such as deparaffinization, target retrieval, and staining, especially for in-situ hybridization (ISH) techniques. Important for many IHC applications, and many sample processing sequences and protocols, generally, are temperature characteristics associated with the sample, sample carrier, and the processing environment. As but one example, stains such as histochemical reagents are typically used to identify various histological features. The reagents may employ antibodies, for example, that bind to specific proteins of the sample. In many processes, a need can exist for adequate control of processing characteristics such as temperature. In regard to staining, it should be understood that the term staining can reference the end product of the process, by which certain parts of the sample may be stained, i.e. have obtain a different color, either in the optic range or in another electromagnetic range, such as ultra violet.
Staining may be detectable, perhaps automatically detectable, through some change in properties, such as fluorescent properties, magnetic properties, electrical properties or radioactive properties.
Staining a sample can involve a series of treatment steps, such as washing, binding of reagents to the specific parts of the sample, activation of the reagents, etc.
Sample processing with the reagents may require the addition and removal of reagents in accordance with a defined protocol that may include,a defined temperature.
Traditional sample processing technology has provided temperature control through heating devices that heat an entire set of sample carriers in the sampling processing system. Other technologies, such as the sample processing system described in U.S. Patent No. 6,183,693, may provide heating devices for individual sample carriers that are individually controlled to heat the slides. However, each of these traditional sample processing systems may lack a desired degree of temperature control or temperature tolerances.

2 Inadequacies in temperature control of traditional technologies may include uncontrolled cooling. Traditional systems may only provide ambient cooling when the heating devices are off. Ambient cooling is not considered active control and may not meet protocol temperature requirements or may not otherwise be optimal.
Although heating and heat control may be features of such systems, controlled cooling of the samples, sample Garners, and processing environments may not always be adequately addressed. Cooling techniques such as hooded fans may be incorporated in some traditional technologies. However, these devices can lack sufftcient capabilities of temperature control to meet certain protocol requirements, especially temperature tolerances for samples, sample Garners, reagents, and ambient system temperature.
Traditional systems may even lack temperature control, perhaps as related to temperature tolerances generally, as such tolerances may not be adequately maintained during ambient or other traditional cooling, or during processing sequences or events, generally. In some protocols, for example, the temperature tolerances during non-heating periods may be such that uncontrolled temperature changes may produce undesirable results during the processing sequence. Other IHC processes of the protocol may be adversely affected by uncontrolled temperature changes, the degree of temperature change, and temperature changes outside of preferred tolerances.
The lack of temperature control may actually dissuade technologists from employing preferred processing sequences or protocols, especially IHC sequences that may be dependent upon a particular temperature tolerance and the amount of temperature change during a processing sequence.
Certain types of temperature control may not have even been addressed in traditional sample processing system technologies. As previously mentioned, reagents can play a vital role in the staining sequence of many processing protocols.
The quality of the reagents, therefore, may be important for adequate sample processing.
Reagents, for example, can have a certain shelf life that may be limited if maintained at undesirable temperatures such as the typical ambient temperatures of traditional processing systems and the laboratories housing such systems. Traditional technologies may lack the temperature control needed to optimally preserve the reagents stored in the processing system that are often subject to inadequate or changing ambient temperatures of such systems and the laboratory environment.

3 Previously, in some traditional processing sequences, protocol steps may have been performed manually, potentially creating a time-intensive protocol and necessitating personnel to be actively involved in the sample processing. Attempts have been previously made to automate sample processing to address the need for expedient sample processing and a less manually burdensome operation. However, such previous efforts may have not fully addressed the needs for an automated sample processing system.
Previous efforts to automate sample processing may be especially deficient in several aspects that prevent more robust automated sample processing, such as: the lack of sufficient temperature control and temperature monitoring associated with sample processing, and the lack of real-time, lack of active, or lack of adaptive temperature control capabilities for multiple sample batch processing. As but one example, the lack of controlled cooling features of traditional systems may require longer wait times for the technologist during processing sequences to allow samples, sample carriers, and ambient temperatures to reach certain protocol temperatures.
The above-mentioned drawbacks or inadequacies of traditional sampling techniques may also be applicable to other chemical and biologic analyses beyond those examples previously described.
Past efforts at automated sample processing for samples presented on carriers such as slides, such as US Patent No. 6,352,861 and US Patent No. 5,839,091 have not afforded the various advantages and other combinations of features as presented herein.
DISCLOSURE OF THE INVENTION
Sample processing and temperature control can be accomplished to address the inadequacies of previous sample processing technology. The sample processing and temperature control features of the present invention are addressed in a fashion that may provide the processing of one or more batches of samples and carriers with common protocols or of a plurality of groups of one or more samples and carriers having differing processing protocols. Processing may in a occur sequential or non-sequential,fashion.
Processing of samples and temperature control may be determined by the protocol to be followed for each sample or a protocol for multiple samples. Aspects of the present

4 invention may be especially applicable to sample processing having one or a plurality of processing steps to be performed on one, a portion, or an entirety of samples.
Protocols may include certain temperature tolerances for samples and system components such as samples, Garners, or reagents. There may be temperature tolerances that may be necessary for some sample processing sequences. Aspects of the present invention may be especially applicable to IHC techniques, as well as in-situ hybridization (ISH) and fluorescent in-situ hybridization (FISH), special staining of histological samples, and microarrays; and especially techniques, generally, incorporating deparaffinization and/or target retrieval and/or the staining of samples. Furthermore, embodiments may be especially directed to processing sequences addressing issues of temperature control and data acquisition related thereto.
To achieve the foregoing and other objects of invention, the invention may comprise an automated sample processing system comprising a sample processing control system and a temperature regulation system or element, such as a temperature regulation device, that may be responsive to a sample processing control system. The temperature regulation device in some embodiments may actively regulate temperature, perhaps even corresponding to at least one protocol tolerance. In some embodiments it may comprise an adaptive sample processing control system. The invention may actively regulate temperature, including actively reducing temperature, and may adaptively control temperature, again including reducing temperature.
Embodiments of the invention may further comprise: regulating temperature, such as for a substance or within protocol or other tolerances; actively regulating temperature and even reducing temperature; controlling reduction of temperature; ramping temperature up or down; providing at least one sample, determining a processing sequence for it, determining at least one temperature tolerance, and actively regulating temperature corresponding to the tolerance.
Embodiments of the invention addressing temperature control may comprise:
sample Garner temperature regulation systems; sample carrier temperature regulation systems configurable with one or a _ plurality of sample carrier supports; and corresponding methods of sample carrier temperature regulation. Embodiments may also include: reagent temperature regulation systems; reagent temperature controls;
conductive

5 reagent temperature regulation systems; and corresponding methods of reagent temperature regulation.
In some embodiments, an automated sample processing system is disclosed comprising a plurality of drawers, a plurality of sample Garner retainment assemblies each removably configured with one of the drawers, a temperature regulation system, such as a temperature regulation device, and an adaptive sample processing control system to which the drawers, the sample carrier retainment assemblies, and the temperature regulation system may be responsive. An adaptive sample processing control system may automate the sample processing system such that one or more batches of samples may be adaptively processed according to one or more protocols, especially accordingly to temperature requirements of the protocol(s), potentially indicated by information on the slides that may be automatically identified by the sample processing control system perhaps through a camera or the like. Sample processing may comprise one or more sampling protocols and steps, such as deparaffinization, target retrieval, and staining, and the temperature requirements for each, such as their temperature tolerances.
As mentioned, sample processing temperature may be achieved to adequately maintain or change temperatures within protocol tolerances. Accordingly, in some embodiments, temperatures of the sample, sample Garner, or ambient system temperature, or combinations thereof, can be changed in a controlled fashion to achieve ramping temperature increases and decreases (and thus considered as having a temperature ramp up element or a temperature ramp down element, respectively), can have preferred tolerances, can minimize changes of temperature during processing, can maintain reagent quality through temperature control of the reagents, can provide for adaptive heating or cooling, and can control temperatures below or above ambient system or even the ambient lab environment temperature.
Temperature sensing, such as Infrared (IR) or other temperature sensing, may be accomplished in some embodiments, perhaps even by a camera or perhaps a photodiode device. Temperature information, such as ambient system temperature, slide temperature, sample temperature, and reagent temperature, may be identified, and in some preferred embodiments, instantaneously identified. In some embodiments, protocol information, such as required temperature, and required temperature tolerances may be provided. The

6

7 PCT/US2003/040880 system may include an adaptive sample processing control system or an adaptive temperature regulation element. An adaptive temperature element may include a system that alters or causes a change in the degree or nature of control due to changes in an another component. But one example may be a system that monitors or adjusts temperature more frequently in certain situations, perhaps such as when ambient and desired temperatures have a large spread -- perhaps greater than 5 or 10 degrees C -- or such as when there is an unusual change in ambient -- here perhaps a change of more than 3 or 5 degrees C. The sample processing system may process one or more slides, or one or more batches of slides, concurrently, sequentially, or in any other temporal fashion, potentially in accordance with temperature protocol information provided by a slide having a sample or provided by the adaptive sample processing control system.
Sample batches or individual slides may be inserted or removed during processing protocol steps by the control and monitoring accomplished by the adaptive sample processing control system.
Another embodiment of the present invention may comprise a method of sample processing, comprising the steps of accessing at least one of a plurality of samples or perhaps drawers, providing at least one sample Garner retainment assembly configured with at least one sample carrier, configuring at least one of the drawers with the at least one sample Garner retainment assemblies, utilizing a carrier temperature regulation element and adaptively or actively controlling temperature during processing of the sample Garners. Any aspect of temperature control disclosed herein may of course be combined with any element or elements of such disclosed sample processing systems, or with any of the disclosed features or steps of sample processing.
Many other embodiments of the invention are disclosed in this application, some of which may comprise independently, dependently, or in combination, sample processing systems, environmental control systems, and any of the various other systems, devices, apparatus, assemblies, steps, and features disclosed herein or in the incorporated references of this application. In addition, the various method steps may be provided for individual samples or multiple batch processing, sample diagnostic features, and real-time or adaptive capabilities for multiple batch processing.

BRIEF DESCRIPTION OF THE FIGURES
The accompanying figures illustrate some of the preferred embodiments of the present invention, and together with the written disclosures of the specification and claims, if any, facilitate an understanding of the disclosed embodiments.
Figure 1 is a isometric perspective view of an embodiment of an overall system incorporating some of the features of the invention.
Figure 2. is an elevated view of an embodiment of a portion of a sample carrier retainment assembly of one embodiment of the invention.
Figure 3 is a perspective view of an embodiment of a robotic movement aspect of one embodiment of the invention.
Figures 4 A-D are views of embodiments of sample carrier retainment assembly aspects of one embodiment of the invention.
Figures 5 A-B are views of embodiments of temperature control aspects of one embodiment of the invention.
Figures 6 A-C are additional views of embodiments of temperature control aspects of one embodiment of the invention.
Figure 7 is a flow chart of some representative process steps of an embodiment of the invention.
Figure 8 is a chart providing description of representative deparaf~nization, target retrieval and other steps of an embodiment of the invention.
Figure 9 is a depiction of a networked embodiment connecting one stainer with one manager and one label printer.

8 Figure 10 is a depiction of an embodiment for processing a collection of samples with a collection of reagents according to the invention.
Figure 11 is a block diagram of a temperature regulation design according to an embodiment of the invention.
Figure 12 is a comparison chart of exemplary temperature changes for an embodiment of the present invention and potential temperature changes of a traditional system in relation to a protocol temperature target, wherein ambient system and sample carrier temperatures may be initially above the protocol temperature target.
Figure 13 is a comparison chart of exemplary temperature changes for an embodiment of the present invention and potential temperature changes of a traditional system in relation to a protocol temperature target, wherein sample carrier temperature may be initially above the protocol temperature target and ambient system temperature may be below the protocol temperature target.
Figure 14 is an isometric perspective view of an embodiment of reagent container temperature control aspects of an embodiment of the invention.
MODES FOR CARRYING OUT THE INVENTION
The following descriptions are provided to describe various embodiments of the present invention to facilitate an understanding of the invention. The variously described embodiments should not be construed to limit the present invention to only explicitly described embodiments. Those embodiments and combinations of features inherent in this disclosure or otherwise known to one skilled in the art are also disclosed as the present invention. This description may further be understood to disclose the variously described embodiments of systems, methods, techniques, and applications, both singularly and in various combinations, consistent with the various features of the present invention. Accordingly, the following -is a detailed description of a number of specific embodiments of the invention.

9 Figures 1 and 10 show embodiments of a sample processing system 1 in accordance with the present invention. Cabinet sections ~ 2 form outer portions of the system and serve to address general structural considerations of the system (a top cabinet section is not shown in Figure 1). The sample processing system may comprise a plurality of drawers 4 used for the handling and processing of samples and sample Garners such as slides, potentially microscope slides. Other sample carriers may be accommodated consistent with the present invention. Each drawer may be configured to accommodate sample Garner retainment assemblies, such as slide retainment assemblies, carrier racks, modules, or magazines.
One embodiment of a sample carrier retainment assembly may comprise a slide retainment assembly 6 as shown in Figure 2. The slide retainment assembly may comprise a slide rack, module, or magazine. Slide retainment assembly 6 is configured to accommodate a plurality of slides (only one is shown) in at least one configuration in corresponding sample carrier retention devices 8. The sample Garner retainment assemblies are utilized in the processing of samples as further described below. It should be further noted that the sample carrier retainment assembly can be removably configured with the drawers 4, and may be stackable or nested within other retainment assemblies.
One or more drawers 10 as shown in Figure 1 may be provided to accommodate processing materials such as reagent containers for sample processing. A
processing material retainment assembly, such as a container rack 11, shown in Figure 1, for example, may be utilized to accommodate reagent containers or other processing materials within each of drawers 10. Bottle inserts may be preferably configured with the retainment assembly to ensure proper processing material positioning within the processing material retainment assembly and the drawer.
Multiple drawers 4 as shown in Figure 1, allow for one or a plurality of sample processing protocols to be performed by the system 1. Past efforts at sample processing may have been limited to processing sequences for an entire batch of Garners within the system. The present invention, however, in part by providing a plurality of drawers and Garner retainment assemblies, may allow for multiple batch processing, including real-time alteration capabilities for multiple batch processing, as further described below.

Embodiments of the present invention may further comprise an arm 20, shown in Figure 3, utilized in sample processing, potentially having robotic movement, and in some embodiments, Cartesian movement. The arm 20 may comprise one or more elements, such as an actuator probe 22, a probe such as a syringe 24, a sensor element, an optical sensor 86 (including but not limited to a camera or a CCD device), and even a non-discrete volume fluid and/or air applicator. The optical sensor may even be configured to sense temperature such as through IR detection or the like.
In accomplishing a processing sequence, and in some preferred embodiments of the present invention, slides may be configurable in both vertical and horizontal positions such as for the pretreatment and/or staining processes, as shown in Figures 4A-4D. This may allow for the automation of the pretreatment and staining of slides in various manners. The slides may be initially loaded onto the carrier retention assemblies, such as slide racks, and drawers in the horizontal position. The slides may be horizontally supported by adjustable carrier supports. If ~ pretreatment is required, such as deparaffmization, the system may rotate the slide into the vertical position and may lower these samples into a processing tank which may be maintained at a desired temperature such as perhaps 95 degrees C and may be filled with the required fluids. In some embodiments, the slide rack may be lowered to affect lowering of the slides.
To perform a staining process on the slides, as described below and in some embodiments, the system may rotate the slide to the horizontal position and a syringe or probe may apply fluid to the sample, providing a horizontal staining of the sample. Each slide can be rotated independently allowing for the independent processing of different samples with different requirements.
The sample processing system may further have the ability to maintain and regulate the internal temperature of the system, including maintaining and regulating the temperature of samples and sample earners, to specified temperatures, and even within temperature tolerances of certain sample protocols. Controlling temperature can avoid a need to alter protocols for seasonal or other non-optimal temperature variations. Thermal control may be needed for several heat sources within the system and for temperature effects from outside the system, as well as ambient temperature control of the internal environment of the system. In some preferred embodiments, the internal ambient temperature may be maintained at a set point, perhaps about 24° C, and perhaps ~2° C or ~1 ° C; in other embodiments the sample or reagent temperature may be maintained at about a set point, perhaps about 24° C, and perhaps ~2° C or ~1° C, at about an incremental range, and in some embodiments a non-integer incremental range.
Reagents used in the sample processing system can be optimized to operate at a thermal set point for a substance such as a reagent or sample or for the system in general, and in some embodiments, may be optimized for temperature maintenance at less than about the ambient temperature of the system.
As previously mentioned, reagents may play a vital role in the staining sequence of many processing protocols. The quality of the reagents, therefore, may be important for adequate sample processing. In order to maintain shelf life of the reagents of the sample processing system, the reagent temperatures may also be controlled such as by a reagent temperature control element to maintain desirable temperatures, especially respective of typical ambient temperatures of the processing system and temperature effects from outside environments such as typical laboratories environments that may lack appropriate temperature control for the processing system. This may include maintaining the reagent at a temperature specified by the manufacturer, such as between about 2 and about 8 degrees C, so that the manufacturer shelf life is fully maintained and not shortened.
Accordingly, the present invention may comprise an automated sample processing system comprising a temperature regulation system or a temperature regulation device and a sample processing control system to which the temperature regulation system is responsive with perhaps active temperature regulation (e.g., temperature control with both heating and cooling) and even within certain tolerances. It may also be adaptive as mentioned above.
Configurations of the temperature regulation system may include a Peltier device or Peltier temperature control, and in configurations such as shown in Figure 6, a heat sink/fan pair 80a on the inside of the system's temperature-controlled interior volume.
The other heat sink/fan of the pair 80b may be on the outside of the controlled volume, where it is exposed to the ambient environment of the laboratory. One or more thermoelectric devices (TEDs) 81 perhaps including the electrical junctions themselves may be located on the boundary between the interior and exterior. The TED or TEDs may generate a hot portion and a cold portion and may aid in moving heat into or out of the desired location. The "hot" portion may be configured to distribute heat from the exterior of the controlled interior volume. If the temperature of the "hot"
portion of the TED is controlled to maintain a low temperature, such as with a controlled paired heat sink/fan, the corresponding "cold" portion of the TED, may be configured within the controlled interior volume, may be colder by a corresponding amount, and may act in conjunction with a paired heat sink/fan as a controlled refrigerator, and may even actively reduce the temperature of the interior volume, or may achieve protocol tolerances as further described below. Such an item may serve as a temperature reduction element for various locations or purposes as described below.
As mentioned above, the internal temperature of the system may be controlled by an adaptive sample processing control system. Some applications may provide temperatures at 24°C ~2°C; in other embodiments the internal ambient temperature may be maintained at about 24°C comprises ~ an incremental range, such as a non-integer incremental range. One temperature regulation system of the present invention may comprise one or more heat pumps, and in some preferred embodiments two thermoelectric heat pumps (heat pump 80 shown in Figures 6A and 6C). The temperature regulation system may feature each heat pump module having a heat sink and fan on either side of the TED.
Embodiments of the invention may comprise sample carrier temperature regulation systems, in some embodiments sample Garner temperature regulation systems configurable with one or a plurality of sample carrier supports, and corresponding methods of sample carrier temperature regulation. Some embodiments may comprises a Peltier grid, such as grid 60 shown in Figures 5, that may be used to heat or cool the slides during processing of the samples. Thermal elements 62 may heat the slides, in some embodiments from ambient to about 120° C comprises in about 3 minutes. Sample Garner temperature regulation systems may comprise, in some embodiments, one or more sample Garner supports such as a slide support plate 90 as shown in Figure 11, configured with temperature regulation elements, such as one or more temperature regulation elements, and in some embodiments a laminated thermal element 92 as shown in Figure 11, and a cold plate 94 shown in Figure 11.
The sample carrier temperature regulation system may reach target temperature even when ambient temperature is about or greater than target temperature, or about or less than target temperature.
The various embodiments of the disclosed temperature regulation system and the sample processing control system feature the capability to control system temperature, and in some embodiments, slide temperature and reagent temperature. The combination of features may allow active heating and cooling of sample carriers, and in some embodiments potentially utilizing a controlled Peltier device or temperature control, a conductive device or temperature control, or a combination of temperature control features. One preferred temperature control sequence may allow a controlled (e.g., adjustment or maintenance within a particular set parameters such as rate of change or the like) or even accelerated increase and/or decrease in slide temperature, perhaps including independently a ramping up and/or down of the temperature. The system may be considered as including a controlled temperature element or a controlled active temperature element, such as a controlled active temperature reduction element or the like. Another example of a controlled temperature sequence is shown in Figures 12 and 13. These figures generally illustrate and compare temperature changes of the present invention and a type of traditional system. They illustrate target temperature tolerance, the time necessary to reach values, and ~ ambient temperature aspects. In some embodiments, energy may be delivered at the same or about the same rate by the temperature regulation system as a traditional system. Energy may also, however, be removed or added, and perhaps even removed or added faster or slower than a traditional system, as traditional systems may dissipate energy to the ambient. A shorter or longer period for temperature effects, such as sample carrier cooling, may result.
Active temperature regulation, in some embodiments heating and cooling, may be provided in some embodiments to provide such results.
In some embodiments, when a temperature disturbance greater than the target temperature occurs, such as by the effect of warm sample carriers, the present invention may rely on a conductive temperature regulation system, such as a substrate temperature regulation device, so as to dissipate excess energy, as previously described.
The temperature may be controlled within the required temperature tolerance for the sequence and controlled to maintain lesser values of rates of temperature change (dT/dt) during the sequence. The temperature range for a slide processed in accordance with conventional processing may exhibit greater values of rates of temperature change and may have temperatures beyond required tolerances for a significant portion of a sequence. As a result, the uncontrolled temperatures may be detrimental to the outcome for a protocol, such as the staining example previously described in relation to traditional technologies. An excessive low or high ambient temperature, and particularly an uncontrolled temperature, may cause a slower rate of temperature change and therefore may require a longer time to reach a desired temperature value as may be required by the protocol.
The various embodiments of the disclosed temperature regulation system may feature the capability of controlling reagent temperature alone or in addition to sample temperature. One embodiment of a reagent temperature regulation system is shown in Figure 14 and may include a conduction temperature regulation system. A
reagent temperature regulation system may have conductive regulation elements 100 perhaps mounted below the reagent tray. The conductive regulation elements may feature thermoelectric regulation features such as Peltier-type temperature regulation. Naturally, a sensing element may be provided as part of arm 20 or in another sample processing configuration, may be incorporated to sense temperature, perhaps instantaneously. This may assist in maintaining temperature tolerances and in controlling rates of temperature change. Photodiode devices, electric conductivity devices, IR sensors, sensors acting through septa of a container, or other sensors may be included to sense values such as reagent containers or slides collectively or individually.
Temperature control of the temperature regulation system may be provided to take advantage of the active heating and cooling capability of the above described temperature regulation system. Accordingly, in some embodiments temperature control may be provided to at least actively regulate temperature within protocol tolerances.
The temperature regulation system of the present invention previously described may be accordingly configured to increase or reduce temperature, and in some embodiments actively increase or reduce temperature. The adaptive sample processing control system may provide a corresponding controlled increase or reduction of temperature, and in some embodiments actively controlled increase or reduction of temperature. It may also reduce the rate of an increase or decrease in temperature change (as compared to the often-used maximum power type of approach) such as by intermittently powering or lower powering the device or the like and may thus provide a reduced rate of temperature change element.
Corresponding methods of the invention may comprise methods of temperature control of sample processing systems, comprising the step of regulating temperature within protocol tolerances, and in some embodiments, actively regulating temperature. Further methods of temperature control of sample processing systems are disclosed comprising one or more steps of actively increasing temperature, actively reducing temperature, or a combination of such steps. A method of temperature control of sample processing systems is further disclosed comprising the step of controlling increase of temperature, controlling reduction of temperature, or a combination of such steps.
Corresponding methods of the invention relate to temperature control of samples, sample carriers, and reagents.
The processing of samples may be accomplished according to sequences perhaps such as shown in Figures 7 and 8. These are but one example, and of course, variants of these protocols and processing steps will exist for any given sample. One processing sequence may broadly comprise the pre-processing of a sample, if needed, such as deparaffinization (as previously described), and may further comprise target retrieval (as previously described), and sample staining.
As shown in Figure 9, control of the processing samples may be accomplished with a sample processing system manager 500, such as a computer server connected with one or more sample processing systems. Connection among perhaps a number of process systems and perhaps a number of computers, such as workstations and a server (the latter residing either separately or as part of a workstation), may be achieved by use of a local area network (LAN), such as a group of computers and associated devices that share a common communications line or perhaps wireless link and may even share the resources of a single processor, memory, or server within a small geographic area (for example, within an office building or complex). Connection may also be established to a laboratory network, facilities intranet system, or even a laboratory information system such as through a bridge. Temperature values, historical actions, and particular timing activities may be captured and stored for local or remote access through the use of such a system.
In some embodiments, specifics of in-situ hybridization (ISH) may be addressed.
Embodiments of ISH may require a small volume of agent, such as 15 micro liters, to be placed on the sample. Heat control may be maintained between about 95-100°C
comprises and kept constant for a period of time. Temperature may then be lowered in a controlled manner.
As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both sample processing techniques as well as various systems, assemblies, and devices to accomplish sample processing and other functions. In this application, the sample processing techniques are also disclosed as part of the results shown to be achieved by the various systems, assemblies, and devices described and as steps which are inherent to utilization. They should be understood to be the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways.
Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.
Further, each of the various elements and features of the invention and claim may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms -- even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a "retention element" should be understood to encompass disclosure of the act of "retaining" -- whether explicitly discussed or not -- and, conversely, were there effectively disclosure of the act of "retaining", such a disclosure should be understood to encompass disclosure of a "retention element" and even a "means for retaining". It should also be understood that in jurisdictions where specific language may be construed as limiting, as but one example in the United States where some interpretations of "means for" elements can be construed narrowly, broader equivalent language (such as "
element" or the like) may be used and should be understood as encompassed by this specification. Such changes and alternative terms are to be understood to be explicitly included in the description.
Any acts of patents, patent applications, publications, or other references mentioned in this application for patent are hereby incorporated by reference.
In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. Finally, any priority case for this application is hereby appended and hereby incorporated by reference.
Further, if or when used, the use of the transitional phrase "comprising" or the like is used to maintain the "open-end" claim herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term "comprise" or variations such as "comprises" or "comprising" or the like, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible.
Any claim set forth at any time are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claim as additional description to support any of or all of the claim or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claim or any element or component thereof from the description into the claim or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.

Claims (95)

What is claimed is:
1. A method of automated sample processing, comprising the steps of:
providing at least one sample;
determining a processing sequence for at least one sample;
actively regulating temperature of said sample; and automatically processing said sample.
2. A method of automated sample processing as described in claim 1 wherein said step of actively regulating temperature comprises the step of reducing temperature of said sample.
3. A method of automated sample processing as described in claim 2 and further comprising the step of controlling a reduction in temperature.
4. A method of automated sample processing as described in claim 2 wherein said step of actively regulating temperature comprises the step of maintaining sample temperature at less than about ambient temperature of said sample processing system.
5. A method of automated sample processing as described in claim 1 wherein said step of corresponding to at least one temperature tolerance.
6. A method of automated sample processing as described in claim 1 wherein said step of actively regulating temperature of said sample comprises the step of actively regulating temperature of said sample to at least one tolerance.
7. A method of automated sample processing as described in claim 1 wherein said step of actively regulating temperature of said sample comprises the step of actively maintaining a temperature of about a sample set point.
8. A method of automated sample processing as described in claim 1 wherein said step of actively maintaining a temperature of about a sample set point comprises the step of actively maintaining temperature within a range of about 1 degrees above and 1 degrees below said sample set point.
9. A method of automated sample processing as described in claim 1 wherein said step of actively regulating temperature of said sample comprises the step of regulating a ramped increase in temperature.
10. A method of automated sample processing as described in claim 1 wherein said step of actively regulating temperature of said sample comprises the step of regulating a ramped decrease in temperature.
11. A method of automated sample processing as described in claim 9 or 10 wherein said step of actively regulating temperature of said sample comprises the step of regulating a reduced rate of temperature change.
12. A method of automated sample processing as described in claim 1 and further comprising the step of regulating a temperature of a reagent.
13. A method of automated sample processing as described in claim 12 wherein said step of regulating a temperature of a reagent comprises the step of actively regulating a temperature of a reagent.
14. A method of automated sample processing as described in claim 13 wherein said step of actively regulating a temperature of a reagent comprises the step of optimizing reagent temperature at a thermal set point.
15. A method of automated sample processing as described in claim 14 wherein said step of optimizing reagent temperature at a thermal set point comprises the step of actively maintaining reagent temperature at less than about an ambient temperature of a sample processing system.
16. A method of automated sample processing as described in-claim 13 wherein said step of actively regulating a temperature of a reagent comprises the step of maintaining reagent shelf life.
17. A method of automated sample processing as described in claim 1, 4, 12, 13, or 15 wherein said step of actively regulating temperature of said sample comprises the step of adaptively regulating temperature of said sample.
18. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of adaptively regulating temperature corresponding to at least one sample carrier.
19. A method of automated sample processing as described in claim 1, 4, 13, 15, or 17 wherein said step of actively regulating temperature of said sample comprises the step of utilizing a Peltier device.
20. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of regulating temperature with a Peltier grid.
21. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of utilizing a conductive device.
22. A method of automated sample processing as described in claim 20 wherein said step of regulating temperature with a Peltier grid comprises the step of regulating temperature with a plurality of thermal elements each corresponding to a sample Garner support.
23. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of adaptively decreasing temperature from ambient temperature to a target temperature, wherein said ambient temperature is greater than said target temperature.
24. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of providing a controlled increase in temperature.
25. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of decreasing temperature.
26. A method of automated sample processing as described in claim 25 wherein said step of adaptively regulating temperature of said sample comprises the step of providing a controlled decrease in temperature.
27. A method of automated sample processing as described in claim 26 wherein said step of adaptively regulating temperature of said sample comprises the steps of determining at least one desired sample temperature; and decreasing temperature of said sample to said desired sample temperature.
28. A method of automated sample processing as described in claim 27 wherein said step of adaptively regulating temperature of said sample further comprises the steps of:
determining a sample temperature tolerance; and maintaining said sample temperature within said sample temperature tolerance.
29. A method of automated sample processing as described in claim 27 wherein an ambient system temperature is above said temperature of said sample.
30. A method of automated sample processing as described in claim 1 or 18 wherein said step of actively regulating temperature of said sample comprises the step of reducing a rate of temperature change.
31. A method of automated sample processing as described in claim 1 or 18 wherein said step of actively regulating temperature of said sample comprises the step of maintaining at least one temperature tolerance corresponding to at least one sample carrier.
32. A method of automated sample processing as described in claim 13 wherein said step of actively regulating a temperature of a reagent comprises the step of optimizing reagent temperature at a thermal set point.
33. A method of automated sample processing as described in claim 32 wherein said step of optimizing reagent temperature at a thermal set point comprises the step of maintaining reagent temperature at less than about ambient temperature of said sample processing system.
34. A method of automated sample processing as described in claim 13 wherein said step of actively regulating a temperature of a reagent comprises the step of maintaining reagent shelf life.
35. A method of automated sample processing as described in claim 19 wherein said step of actively regulating temperature of said sample comprises the step of maintaining a temperature of between about 2 and about 8 degrees Celsius.
36. A method of automated sample processing as described in claim 19 wherein said step of actively regulating temperature of said sample comprises the step of maintaining a temperature within a range of about 2 degrees above and 2 degrees below 24 degrees Celsius.
37. A method of automated sample processing as described in claim 1 wherein said step of providing at least one sample comprises the step of providing at least one batch of samples.
38. A method of automated sample processing as described in claim 1 and further comprising the step of determining at least one temperature tolerance for at least one component of said sample processing system.
39. A method of automated sample processing as described in claim 38 wherein said step of determining at least one temperature tolerance for at least one component of said sample processing system comprises the step of determining at least one tolerance corresponding to at least one sample carrier.
40. A method of automated sample processing as described in claim 38, wherein said step of determining at least one tolerance for at least one component of said sample processing system comprises the step of determining at least one tolerance corresponding to at least one reagent.
41. A method of automated sample processing as described in claim 1 wherein said step of determining a processing sequence for at least one sample comprises the step of determining an immunohistochemistry processing sequence.
42. A method of automated sample processing as described in claim 1 wherein said step of determining a processing sequence for at least one sample comprises the step of determining an in-situ hybridization processing sequence.
43. A method of automated sample processing as described in claim 1 wherein said step of determining a processing sequence for at least one sample comprises the step of determining an fluorescent in-situ hybridization processing sequence.
44. A method of automated sample processing as described in claim 1 wherein said step of determining a processing sequence for at least one sample comprises the step of determining a microarray processing sequence.
45. A method of automated sample processing as described in claim 1 wherein said step of determining a processing sequence for at least one sample comprises the step of determining a target retrieval processing sequence.
46. A method of automated sample processing as described in claim 1 wherein said step of determining. a processing sequence for at least one sample comprises the step of determining a sample staining processing sequence.
47. A method of automated sample processing as described in claim 17 wherein said step of adaptively regulating temperature of said sample comprises the step of adaptively reducing rates of temperature change.
48. An automated sample processing system comprising:
at least one sample;
an automated sample processing system; and a Peltier device to which said sample is responsive.
49. A automated sample processing system as described in claim 48 wherein said Peltier device comprises a plurality of heat pumps.
50. A automated sample processing system as described in claim 48 wherein said Peltier device comprises:
a first heat sink a first fan configured to be interior of an interior volume of a sample processing system;
a second heat sink; and a second fan configured to be exterior of an interior volume of a sample processing system.
51. A automated sample processing system as described in claim 48 wherein said Peltier device comprises at least one thermoelectric device.
52. A automated sample processing system as described in claim 51 wherein said at least one thermoelectric device comprises a plurality of electrical junctions configured to be within an enclosure of a sample processing system.
53. A automated sample processing system as described in claim 51 wherein said at least one thermoelectric device comprises a plurality of electrical junctions configured to be at a boundary of an interior volume of a sample processing system.
54. A automated sample processing system as described in claim 48 wherein said Peltier device is configured to reduce a temperature.
55. An automated sample processing system as described in claim 48 wherein said Peltier device comprises a Peltier grid.
56. An automated sample processing system as described in claim 55 and further comprising a carrier support to which said at least one sample is responsive and wherein said Peltier device comprises at least one temperature regulation element configured to said sample Garner support.
57. An automated sample processing system as described in claim 56 wherein said at least one temperature regulation element comprises a laminated thermal element.
58. An automated sample processing system as described in claim 56 wherein said at least one temperature regulation element comprises a cold plate.
59. A method of automated sample processing, comprising the steps of providing at least one sample;
providing at least one reagent;
determining a processing sequence for at least one sample;
regulating a temperature of said reagent; and automatically processing said sample.
60. A method of automated sample processing as described in claim 59 wherein said step of regulating a temperature of said reagent comprises the step of actively regulating reagent temperature.
61. A method of automated sample processing as described in claim 60 wherein said step of actively regulating reagent temperature comprises the step of optimizing reagent temperature at a thermal set point.
62. A method of automated sample processing as described in claim 61 wherein said step of optimizing reagent temperature at a thermal set point comprises the step of maintaining reagent temperature at less than about ambient temperature of said sample processing system.
63. A method of automated sample processing as described in claim 62 wherein said step of actively regulating reagent temperature comprises the step of maintaining reagent shelf life.
64. An automated sample processing system comprising:
at least one sample;
at least one reagent;
an automated sample processing system to which said sample is responsive; and a reagent temperature control element to which said reagent is responsive.
65. An automated sample processing system as described in claim 64 wherein said reagent temperature control element comprises a reagent temperature control element configured to reduce a temperature of said reagent.
66. An automated sample processing system as described in claim 64 wherein said reagent temperature control element comprises a reagent temperature control element configured to reduce a rate of temperature change.
67. An automated sample processing system as described in claim 64 wherein said reagent temperature control element comprises a reagent temperature control element configured to regulate temperature of a plurality of reagents.
68. An automated sample processing system as described in claim 64 wherein said reagent temperature control element comprises an adaptive temperature regulation element.
69. An automated sample processing system as described in claim 64 wherein said reagent temperature control element comprises a Peltier device.
70. An automated sample processing system as described in claim 69 wherein said Peltier device comprises at least one conductive regulation element.
71. An automated sample processing system as described in claim 70 wherein said at least one conductive regulation element comprises a conductive regulation element configurable with a reagent tray.
72. A reagent temperature regulation device as described in claim 69 wherein said Peltier device comprises at least one conductive regulation element.
73. A method of automated sample processing comprising the steps of:
acquiring at least one temperature tolerance for at least one protocol;
transmitting said at least one temperature tolerance to at least one sample processing system;
adaptively processing at least one sample with said at least one sample processing system in accordance with said at least one temperature tolerance;
and acquiring sample processing information from said at least one sample processing system.
74. A method of automated sample processing as described in claim 73 wherein said step of acquiring sample processing information comprises the step of acquiring at least one processing temperature.
75. An automated sample processing system comprising:
at least one sample;
an automated sample processing system to which said sample is responsive; and an active temperature regulation element to which said sample is responsive.
76. An automated sample processing system as described in claim 75 wherein said active temperature regulation element to which said sample is responsive comprises a temperature reduction element.
77. An automated sample processing system as described in claim 76 wherein said temperature reduction element comprises a controlled active temperature reduction element.
78. An automated sample processing system as described in claim 76 wherein said temperature reduction element maintains said sample at less than an ambient temperature.
79. An automated sample processing system as described in claim 75 wherein said active temperature regulation element to which said sample is responsive comprises a temperature ramp up element.
80. An automated sample processing system as described in claim 75 wherein said active temperature regulation element to which said sample is responsive comprises a temperature ramp down element.
81. An automated sample processing system as described in claim 79 or 80 wherein said active temperature regulation element to which said sample is responsive comprises a reduced rate of temperature change element.
82. An automated sample processing system as described in claim 75 and further comprising a reagent temperature control.
83. An automated sample processing system as described in claim 75, 78, or 82 wherein said active temperature regulation element to which said sample is responsive comprises an adaptive temperature regulation element.
84. An automated sample processing system as described in claim 83 wherein said adaptive temperature regulation element comprises a carrier temperature regulation element.
85. An automated sample processing system as described in claim 75, 78, 82, or wherein said active temperature regulation element to which said sample is responsive comprises a Peltier device.
86. An automated sample processing system as described in claim 75, 78, 82, or wherein said active temperature regulation element to which said sample is responsive comprises a Peltier grid.
87. An automated sample processing system as described in claim 75, 78, 82, or wherein said active temperature regulation element to which said sample is responsive comprises a conductive device.
88. An automated sample processing system as described in claim 75, 78, 82, or wherein said active temperature regulation element comprises a plurality of thermal elements each corresponding to a sample carrier support.
89. An automated sample processing system as described in claim 75, 78, 82, or wherein said sample comprises a batch of samples.
90. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated immunohistochemistry processing system.
91. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated in-situ hybridization processing system.
92. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated fluorescent in-situ hybridization processing system.
93. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated microarray processing system.
94. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated target retrieval processing system.
95. An automated sample processing system as described in claim 75, 78, 82, or wherein said automated sample processing system comprises an automated stainer processing system.
CA 2508001 2002-12-20 2003-12-22 Systems and methods of sample processing and temperature control Pending CA2508001A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US43560102 true 2002-12-20 2002-12-20
US60/435,601 2002-12-20
PCT/US2003/040880 WO2004059287A3 (en) 2002-12-20 2003-12-22 Systems and methods of sample processing and temperature control

Publications (1)

Publication Number Publication Date
CA2508001A1 true true CA2508001A1 (en) 2004-07-15

Family

ID=32682266

Family Applications (9)

Application Number Title Priority Date Filing Date
CA 2508323 Active CA2508323C (en) 2002-12-20 2003-12-15 Method and apparatus for pretreatment of biological samples
CA 2507960 Active CA2507960C (en) 2002-12-20 2003-12-19 A method and apparatus for automatic staining of tissue samples
CA 2508113 Active CA2508113C (en) 2002-12-20 2003-12-19 Information notification sample processing system and methods of biological slide processing
CA 2974221 Pending CA2974221A1 (en) 2002-12-20 2003-12-19 Information notification sample processing system and methods of biological slide processing
CA 2508370 Abandoned CA2508370A1 (en) 2002-12-20 2003-12-19 Advanced programmed sample processing system and methods of biological slide processing
CA 2508000 Abandoned CA2508000A1 (en) 2002-12-20 2003-12-19 Enhanced scheduling sample processing system and methods of biological slide processing
CA 2511032 Abandoned CA2511032A1 (en) 2002-12-20 2003-12-19 Apparatus for automated processing biological samples
CA 2508001 Pending CA2508001A1 (en) 2002-12-20 2003-12-22 Systems and methods of sample processing and temperature control
CA 2508070 Pending CA2508070A1 (en) 2002-12-20 2003-12-22 Isolated communication sample processing system and methods of biological slide processing

Family Applications Before (7)

Application Number Title Priority Date Filing Date
CA 2508323 Active CA2508323C (en) 2002-12-20 2003-12-15 Method and apparatus for pretreatment of biological samples
CA 2507960 Active CA2507960C (en) 2002-12-20 2003-12-19 A method and apparatus for automatic staining of tissue samples
CA 2508113 Active CA2508113C (en) 2002-12-20 2003-12-19 Information notification sample processing system and methods of biological slide processing
CA 2974221 Pending CA2974221A1 (en) 2002-12-20 2003-12-19 Information notification sample processing system and methods of biological slide processing
CA 2508370 Abandoned CA2508370A1 (en) 2002-12-20 2003-12-19 Advanced programmed sample processing system and methods of biological slide processing
CA 2508000 Abandoned CA2508000A1 (en) 2002-12-20 2003-12-19 Enhanced scheduling sample processing system and methods of biological slide processing
CA 2511032 Abandoned CA2511032A1 (en) 2002-12-20 2003-12-19 Apparatus for automated processing biological samples

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA 2508070 Pending CA2508070A1 (en) 2002-12-20 2003-12-22 Isolated communication sample processing system and methods of biological slide processing

Country Status (5)

Country Link
US (25) US7648678B2 (en)
EP (8) EP1573297A1 (en)
CN (3) CN100472197C (en)
CA (9) CA2508323C (en)
WO (8) WO2004057307A1 (en)

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183693B1 (en) * 1998-02-27 2001-02-06 Cytologix Corporation Random access slide stainer with independent slide heating regulation
US8298485B2 (en) * 1999-07-08 2012-10-30 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US7951612B2 (en) * 1999-07-08 2011-05-31 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
WO2003042788A3 (en) * 2001-11-13 2004-02-19 Chromavision Med Sys Inc A system for tracking biological samples
US7754155B2 (en) * 2002-03-15 2010-07-13 Ross Amelia A Devices and methods for isolating target cells
CA2695837C (en) * 2002-04-15 2015-12-29 Ventana Medical Systems, Inc. Automated high volume slide staining system
US7468161B2 (en) * 2002-04-15 2008-12-23 Ventana Medical Systems, Inc. Automated high volume slide processing system
EP2523003B1 (en) * 2002-06-20 2017-09-20 Leica Biosystems Melbourne Pty Ltd Biological reaction apparatus
KR20040023999A (en) * 2002-09-12 2004-03-20 엘지전자 주식회사 structure of motor shaft in clothes dryer
US7584019B2 (en) 2003-12-15 2009-09-01 Dako Denmark A/S Systems and methods for the automated pre-treatment and processing of biological samples
US7648678B2 (en) * 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
US7850912B2 (en) * 2003-05-14 2010-12-14 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
US7875245B2 (en) * 2003-05-14 2011-01-25 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
US7867443B2 (en) * 2004-07-23 2011-01-11 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
US20080235055A1 (en) * 2003-07-17 2008-09-25 Scott Mattingly Laboratory instrumentation information management and control network
US8719053B2 (en) * 2003-07-17 2014-05-06 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
US7860727B2 (en) 2003-07-17 2010-12-28 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
US7767152B2 (en) * 2003-08-11 2010-08-03 Sakura Finetek U.S.A., Inc. Reagent container and slide reaction retaining tray, and method of operation
US7501283B2 (en) * 2003-08-11 2009-03-10 Sakura Finetek U.S.A., Inc. Fluid dispensing apparatus
US7744817B2 (en) * 2003-08-11 2010-06-29 Sakura Finetek U.S.A., Inc. Manifold assembly
US9518899B2 (en) 2003-08-11 2016-12-13 Sakura Finetek U.S.A., Inc. Automated reagent dispensing system and method of operation
US7517498B2 (en) * 2003-08-19 2009-04-14 Agilent Technologies, Inc. Apparatus for substrate handling
EP1733240A4 (en) 2004-03-02 2007-08-22 Dako Denmark As Reagent delivery system, dispensing device and container for a biological staining apparatus
US7277223B2 (en) * 2004-07-26 2007-10-02 Meade Instruments Corporation Apparatus and methods for focusing and collimating telescopes
US7690275B1 (en) 2004-08-26 2010-04-06 Elemental Scientific, Inc. Automated sampling device
US7637175B1 (en) 2004-08-26 2009-12-29 Elemental Scientific, Inc. Automated sampling device
US7469606B1 (en) * 2004-08-26 2008-12-30 Elemental Scientific, Inc. Automated sampling device
JP4508790B2 (en) * 2004-09-08 2010-07-21 シスメックス株式会社 Sample preparation device
US20060073074A1 (en) * 2004-10-06 2006-04-06 Lars Winther Enhanced sample processing system and methods of biological slide processing
US8236255B2 (en) 2004-12-02 2012-08-07 Lab Vision Corporation Slide treatment apparatus and methods for use
JP4659483B2 (en) * 2005-02-25 2011-03-30 シスメックス株式会社 Control method and apparatus for measuring the measuring device
WO2006119585A1 (en) * 2005-05-13 2006-11-16 Vision Biosystems Limited Tissue sample identification system and apparatus
WO2006127852A8 (en) * 2005-05-24 2009-10-08 Angros Lee H In situ heat induced antigen recovery and staining apparatus and method
US7687243B1 (en) 2005-06-06 2010-03-30 Crook Tonia M Automated method for detecting apoptosis in cells
US20070020150A1 (en) * 2005-07-20 2007-01-25 Daquino Lawrence J Adjustment device for drop dispenser
WO2007053245A3 (en) 2005-09-20 2007-11-22 Immunivest Corp Methods and composition to generate unique sequence dna probes, iabeling of dna probes and the use of these probes
US9134237B2 (en) 2005-09-20 2015-09-15 Janssen Diagnotics, LLC High sensitivity multiparameter method for rare event analysis in a biological sample
JP4674150B2 (en) * 2005-11-14 2011-04-20 サクラ精機株式会社 Staining sticking system
WO2007059779A3 (en) 2005-11-28 2008-06-19 Dako Denmark As Cyanine dyes and methods for detecting a target using said dyes
US20070136099A1 (en) * 2005-12-13 2007-06-14 Gordon Neligh Distributed medicine system
JP4808492B2 (en) * 2005-12-28 2011-11-02 シスメックス株式会社 Sample image obtaining apparatus, the sample image capturing system and the specimen slide feeder
US7835823B2 (en) * 2006-01-05 2010-11-16 Intuitive Surgical Operations, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
US7657070B2 (en) * 2006-01-20 2010-02-02 Sakura Finetek U.S.A., Inc. Automated system of processing biological specimens and method
WO2007089155A1 (en) * 2006-02-02 2007-08-09 Ljungmann Oeystein An apparatus for execution of treatment operations in connection with colouring of tissue specimens on object glasses
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8459509B2 (en) * 2006-05-25 2013-06-11 Sakura Finetek U.S.A., Inc. Fluid dispensing apparatus
KR100759079B1 (en) 2006-07-13 2007-09-19 포항공과대학교 산학협력단 Medical automatic diagnosis equipment including robot arm
KR100874519B1 (en) * 2006-07-13 2008-12-16 포항공과대학교 산학협력단 Mobile robots and clinical testing apparatus using the same
GB2474611B (en) 2006-09-08 2011-09-07 Thermo Shandon Ltd Image based detector for slides or baskets for use in a slide processing apparatus
US7875242B2 (en) * 2006-10-17 2011-01-25 Preyas Sarabhai Shah Slide stainer with multiple heater stations
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
JP5192168B2 (en) * 2007-03-30 2013-05-08 シスメックス株式会社 Configuration information management system, the setting information management method, a backup program, and storage medium
JP5425762B2 (en) 2007-05-14 2014-02-26 ヒストロックス,インコーポレイテッド.Historx,Inc. Compartments separated by pixel evaluation using image data clustering
EP2362228B1 (en) * 2007-07-10 2013-09-18 Ventana Medical Systems, Inc. Apparatus and method for biological sample processing
US8182763B2 (en) * 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
CA2604317C (en) 2007-08-06 2017-02-28 Historx, Inc. Methods and system for validating sample images for quantitative immunoassays
DE102007044116A1 (en) 2007-09-16 2009-04-02 Leica Biosystems Nussloch Gmbh Tissue infiltration device
US8020571B2 (en) * 2007-10-17 2011-09-20 Aushon Biosystems Continual flow pin washer
GB0722226D0 (en) * 2007-11-13 2007-12-27 Ruskinn Life Sciences Ltd Gas mixer
WO2009099872A3 (en) * 2008-01-31 2009-10-01 Kacey Med-Vet, Inc. Automated stainer having stain level detection
CA2714600A1 (en) 2008-02-29 2009-09-03 Dako Denmark A/S Systems and methods for tracking and providing workflow information
US20090253163A1 (en) * 2008-04-02 2009-10-08 General Electric Company Iterative staining of biological samples
US8486335B2 (en) * 2008-08-29 2013-07-16 Lee H. Angros In situ heat induced antigen recovery and staining apparatus and method
WO2010033508A1 (en) 2008-09-16 2010-03-25 Historx, Inc. Reproducible quantification of biomarker expression
EP2172780A1 (en) * 2008-10-01 2010-04-07 Bayer Technology Services GmbH Apparatus for automatically performing analyses
EP2347011B1 (en) * 2008-10-27 2017-01-18 QIAGEN Gaithersburg, Inc. Fast results hybrid capture assay and system
DE102008054066B4 (en) 2008-10-31 2015-03-19 Leica Biosystems Nussloch Gmbh A method of processing tissue samples using a sensor
DE102008054071B4 (en) 2008-10-31 2014-02-20 Leica Biosystems Nussloch Gmbh Method of operating a tissue processor and tissue processor
WO2010103389A1 (en) 2009-03-11 2010-09-16 Sensovation Ag Autofocus method and autofocus device
US8489545B2 (en) * 2009-03-18 2013-07-16 Norman Ritchie System and method for creating and maintaining pre-task planning documents
DE102009015596A1 (en) 2009-03-30 2010-10-21 Dcs Innovative Diagnostik-Systeme Dr. Christian Sartori Gmbh & Co. Kg Method and device for treatment of material trägerfixiertem
BE1018828A3 (en) * 2009-07-16 2011-09-06 Praet Peter Van Intelligent specimen rack for tubes and process to load the tubes in the rack.
US8407011B2 (en) * 2009-08-03 2013-03-26 Empire Technology Development Llc Mobile sampling of target substances
JP5275182B2 (en) * 2009-09-11 2013-08-28 株式会社日立ハイテクノロジーズ The dispensing apparatus and analysis apparatus
DE102009049375B4 (en) * 2009-10-14 2014-07-24 Leica Instruments (Singapore) Pte. Ltd. Apparatus for processing tissue samples
US8524450B2 (en) 2009-10-30 2013-09-03 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US8765476B2 (en) * 2009-12-22 2014-07-01 Biocare Medical, Llc Methods and systems for efficient automatic slide staining in immunohistochemistry sample processing
US8986614B2 (en) * 2010-02-23 2015-03-24 Rheonix, Inc. Self-contained biological assay apparatus, methods, and applications
US9102979B2 (en) 2010-02-23 2015-08-11 Rheonix, Inc. Self-contained biological assay apparatus, methods, and applications
DE102010036317A1 (en) * 2010-07-09 2012-01-12 Leica Biosystems Nussloch Gmbh Automatic adjustment of a dyeing device
CA2851101C (en) 2010-10-06 2017-02-14 Biocare Medical, Llc Methods and systems for efficient processing of biological samples
US9121795B2 (en) * 2010-10-29 2015-09-01 Feng Tian Apparatus for processing biological samples and method thereof
WO2012064940A8 (en) 2010-11-12 2012-12-20 Gen-Probe Incorporated System and method for tracking items during a process
DE102010054360A1 (en) * 2010-12-13 2012-06-14 Leica Biosystems Nussloch Gmbh Apparatus and method for turning of racks
CN102081414B (en) * 2010-12-21 2013-08-28 北京赛科希德科技发展有限公司 Method and system for controlling temperature of sample adding needle
US8388891B2 (en) * 2010-12-28 2013-03-05 Sakura Finetek U.S.A., Inc. Automated system and method of processing biological specimens
US8572556B2 (en) 2010-12-31 2013-10-29 Starlims Corporation Graphically based method for developing connectivity drivers
CN102175498B (en) * 2011-01-31 2012-11-14 浙江世纪康大医疗科技有限公司 Tube-taking and liquid-adding device of dyeing instrument
US8752732B2 (en) 2011-02-01 2014-06-17 Sakura Finetek U.S.A., Inc. Fluid dispensing system
DE102011011360A1 (en) * 2011-02-16 2012-08-16 Steinbichler Optotechnik Gmbh Apparatus and method for determining the 3-D coordinates of an object and for calibration of an industrial robot
US9140666B2 (en) * 2012-03-15 2015-09-22 Advanced Analytical Technologies, Inc. Capillary electrophoresis system
CN102735518A (en) * 2011-04-13 2012-10-17 苏州卫生职业技术学院 Bacterial examination staining rack used for teaching
CA2833262A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9123002B2 (en) 2011-05-27 2015-09-01 Abbott Informatics Corporation Graphically based method for developing rules for managing a laboratory workflow
US9665956B2 (en) 2011-05-27 2017-05-30 Abbott Informatics Corporation Graphically based method for displaying information generated by an instrument
CN103827655A (en) * 2011-07-22 2014-05-28 罗氏血液诊断股份有限公司 Sample transport systems and methods
WO2013033312A1 (en) * 2011-09-02 2013-03-07 Sigma-Aldrich Co. Llc. Systems and methods for validating and customizing oligonucleotides sequences
US8932543B2 (en) 2011-09-21 2015-01-13 Sakura Finetek U.S.A., Inc. Automated staining system and reaction chamber
JP5686710B2 (en) * 2011-09-21 2015-03-18 株式会社日立ハイテクノロジーズ Automatic analyzer
US8580568B2 (en) 2011-09-21 2013-11-12 Sakura Finetek U.S.A., Inc. Traceability for automated staining system
EP2956754A4 (en) * 2013-02-18 2016-10-26 Theranos Inc Systems and methods for multi-analysis
EP2761593A1 (en) 2011-09-30 2014-08-06 Life Technologies Corporation Methods and systems for background subtraction in an image
CN104395759B (en) * 2011-09-30 2017-10-13 生命技术公司 Method and system for image recognition analysis
DK2761305T3 (en) 2011-09-30 2017-11-20 Becton Dickinson Co united reagent strip
JP5805486B2 (en) * 2011-09-30 2015-11-04 シスメックス株式会社 Sample analyzer
EP2769197A1 (en) * 2011-10-17 2014-08-27 Victorious Medical Systems ApS Method, apparatus and system for staining of biological samples
CN102519775A (en) * 2011-11-15 2012-06-27 深圳市科软科技有限公司 Automatic slide stainer
CN104053995B (en) * 2011-11-16 2017-06-13 莱卡生物系统墨尔本私人有限公司 Automatic system and method for processing a tissue sample on the slide
WO2013071358A3 (en) * 2011-11-16 2013-07-18 Leica Biosystems Melbourne Pty Ltd Biological sample treatment apparatus
US20130137136A1 (en) * 2011-11-30 2013-05-30 Dako Denmark A/S Method and system for automated deparaffinization and non-immunohistochemical special staining of tissue samples
US9268619B2 (en) 2011-12-02 2016-02-23 Abbott Informatics Corporation System for communicating between a plurality of remote analytical instruments
CN103245547A (en) * 2012-02-12 2013-08-14 高新春 Glass biological-sample section-staining support
US9817221B2 (en) 2012-06-29 2017-11-14 General Electric Company Systems and methods for processing and imaging of biological samples
WO2014001531A3 (en) * 2012-06-29 2014-02-27 Victorious Medical Systems Aps A system and a dip tank for washing and target retrieval of tissue samples mounted on microscope slides
US9164015B2 (en) * 2012-06-29 2015-10-20 General Electric Company Systems and methods for processing and imaging of biological samples
EP2693218B1 (en) 2012-07-31 2016-08-31 Tecan Trading AG Process und Apparatus for determining and testing an arrangement of laboratory articles on a work bench of a laboratory work station
US9530053B2 (en) * 2012-07-31 2016-12-27 Tecan Trading Ag Method and apparatus for detecting or checking an arrangement of laboratory articles on a work area of a laboratory work station
JP6289473B2 (en) * 2012-09-05 2018-03-07 セファイド Universal docking bay and data door in the fluid analysis system
US9341229B1 (en) 2012-09-10 2016-05-17 Elemental Scientific, Inc. Automated sampling device
CN102854050A (en) * 2012-09-29 2013-01-02 梁建中 Fully-automatic double-rail staining instrument for frozen sections
WO2014075693A1 (en) * 2012-11-16 2014-05-22 Dako Denmark A/S Method and apparatus for reagent validation in automated sample processing
EP2925450B1 (en) * 2012-12-03 2017-09-13 Leica Biosystems Melbourne Pty Ltd Thermal module for a sample processing assembly
EP2938998B1 (en) * 2012-12-26 2017-05-17 Ventana Medical Systems, Inc. Specimen processing systems and methods for preparing reagents
GB2510466B (en) * 2012-12-28 2015-05-06 Leica Biosystems Nussloch Gmbh Processor for processing histological samples
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
WO2014144759A9 (en) 2013-03-15 2014-11-06 Abbott Laboratories Linear track diagnostic analyzer
WO2014144870A3 (en) 2013-03-15 2015-11-26 Abbott Laboratories Light-blocking system for a diagnostic analyzer
CN103398890B (en) * 2013-08-22 2015-11-11 麦克奥迪(厦门)医疗诊断系统有限公司 One kind of liquid based cell production system and production method
US20150095058A1 (en) * 2013-10-02 2015-04-02 Health Diagnostic Laboratory, Inc. Methods for laboratory sample tracking and devices thereof
CN104630055A (en) * 2013-11-08 2015-05-20 西安科技大学 Main control board of in-situ hybridization system
USD761439S1 (en) * 2013-11-18 2016-07-12 Especialidades Médicas Myr, S.L. Apparatus and equipment for doctors, hospitals and laboratories
KR20150086115A (en) * 2014-01-17 2015-07-27 케이맥(주) Auto analysis system for strip
US9347965B1 (en) * 2014-03-13 2016-05-24 EST Analytical, Inc. Autosampler with enhanced expansion capability
CN104148265B (en) * 2014-06-16 2015-09-23 来安县新元机电设备设计有限公司 Automation for powder coating workpieces before processing device
CN104089804A (en) * 2014-07-02 2014-10-08 上海乐辰生物科技有限公司 Biological sample processing system
CN104122127A (en) * 2014-07-18 2014-10-29 东南大学 Biological sample treatment device
CN104101529B (en) * 2014-07-27 2016-07-20 李强 Pathological evaluation means
JP6278199B2 (en) * 2014-08-20 2018-02-14 株式会社島津製作所 Analysis device management system
WO2016064760A1 (en) * 2014-10-19 2016-04-28 Peddinti Kamal Prasad Automated batch stainer for immunohistochemistry
CN104849121A (en) * 2015-02-06 2015-08-19 上海乐辰生物科技有限公司 Biological sample treating instrument
CN104777027B (en) * 2015-03-25 2017-03-22 江苏硕世生物科技有限公司 Multi-functional automatic Gram staining instrument
CN107847936A (en) * 2015-05-29 2018-03-27 亿明达股份有限公司 Measurement system and the sample carrier for a specified reaction
CN105676907A (en) * 2016-03-25 2016-06-15 丁鸿 Temperature control device and thermostatic control method
CN105903500A (en) * 2016-04-18 2016-08-31 佛山盈诺科创投资咨询中心(有限合伙) Reagent row-type adding device
WO2017190075A1 (en) * 2016-04-29 2017-11-02 Biocare Medical, Llc Biological sample processing systems and methods
CN106782464A (en) * 2016-12-01 2017-05-31 北京银河润泰科技有限公司 Keyboard action detection method and device

Family Cites Families (492)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US159875A (en) * 1875-02-16 Improvement in harvester-droppers
US495710A (en) * 1893-04-18 Territory
US1829341A (en) * 1930-01-11 1931-10-27 William C Denison Air conditioning device
US3219416A (en) 1962-10-30 1965-11-23 Scientific Industries Apparatus for the automatic chemical sequential treatment and analysis of small quantities of material
US3398935A (en) 1964-03-25 1968-08-27 Bausch & Lomb Mixing means
US4018556A (en) * 1965-12-03 1977-04-19 Societe Anonyme Dite: L'oreal Hair dye compounds
US3482082A (en) 1966-03-18 1969-12-02 Techicon Corp Sample identification apparatus
US4066412A (en) * 1966-04-26 1978-01-03 E. I. Du Pont De Nemours And Company Automatic clinical analyzer
US3513320A (en) 1966-10-31 1970-05-19 Markstems Inc Article identification system detecting plurality of colors disposed on article
US3574064A (en) 1968-05-09 1971-04-06 Aerojet General Co Automated biological reaction instrument
US3547064A (en) 1968-08-21 1970-12-15 Cava Ind Planing step
FR2026808A1 (en) 1968-12-21 1970-09-18 Olympus Optical Co
US3553438A (en) 1969-07-18 1971-01-05 Sylvania Electric Prod Mark sensing system
GB1326249A (en) 1969-08-28 1973-08-08 Greiner Electronic Ag Apparatus and method for carrying out chemical and or physical analyses on samples
US3644715A (en) 1969-09-22 1972-02-22 Becton Dickinson Co Machine readable label and sample identification system utilizing the same
US3600900A (en) 1969-11-03 1971-08-24 North American Rockwell Temperature controlled centrifuge
US3916157A (en) 1970-09-08 1975-10-28 Mmbi Inc Specimen carrier
US3680967A (en) 1970-09-14 1972-08-01 Technicon Instr Self-locating sample receptacle having integral identification label
US3772154A (en) 1971-05-03 1973-11-13 Technicon Instr Method and apparatus for automated antibiotic susceptibility analysis of bacteria samples
US3772164A (en) * 1971-08-16 1973-11-13 Micromatic Ind Inc Honing and plating apparatus and method embodying bore gauging means
US3971917A (en) 1971-08-27 1976-07-27 Maddox James A Labels and label readers
BE788877A (en) 1971-09-17 1973-01-02 Vickers Ltd Agitation of liquid samples to obtain homogeneous mixtures
US3861006A (en) * 1971-11-23 1975-01-21 Wellman Co Coupling device for a cutting machine
US3916160A (en) 1971-12-13 1975-10-28 Bendix Corp Coded label for automatic reading systems
US3876297A (en) 1972-06-06 1975-04-08 Minnesota Mining & Mfg Slide identification
US3807851A (en) 1972-06-06 1974-04-30 Minnesota Mining & Mfg Slide identification clip
US3801775A (en) 1972-08-07 1974-04-02 Scanner Method and apparatus for identifying objects
GB1409613A (en) * 1972-09-21 1975-10-08 Geimuplast Mundt Kg Peter Apparatus for welding together a base part and a cover part of a photographic slide frame
US3831006A (en) 1973-01-19 1974-08-20 Honeywell Inc Patient-specimen identification system using stored associated numbers
FR2239167A6 (en) 1973-07-26 1975-02-21 Ministere Agriculture Service Machine for carrying out laboratory analyses - has automatic sample transfer, reactant addition and washing of transfer pipettes
US3851972A (en) 1973-10-18 1974-12-03 Coulter Electronics Automatic method and system for analysis and review of a plurality of stored slides
US3853092A (en) 1973-10-25 1974-12-10 Corning Glass Works Apparatus for nutating and staining a microscope slide
USRE28585E (en) 1973-10-25 1975-10-28 Apparatus for nutating and staining a microscope slide
US3873079A (en) 1974-01-04 1975-03-25 Byron Jackson Inc Belleville spring cartridge
GB1453226A (en) 1974-01-30 1976-10-20 Newman Howells Associates Ltd Apparatus for the treatment or processing of histological and other specimens or apparatus
US3912456A (en) * 1974-03-04 1975-10-14 Anatronics Corp Apparatus and method for automatic chemical analysis
JPS5414287Y2 (en) 1974-05-08 1979-06-13
US3909203A (en) 1974-08-04 1975-09-30 Anatronics Corp Analysis system having random identification and labeling system
US4084541A (en) * 1975-04-22 1978-04-18 Olympus Optical Co., Ltd. Dyeing and decolorization apparatus for use in a blood serum analyzer of an electrophoretic type
USRE30730E (en) 1975-06-11 1981-09-01 National Research Development Corporation Apparatus for use in investigating specimens
US4013038A (en) * 1975-07-21 1977-03-22 Corning Glass Works Apparatus for controlling the temperature of a liquid body
US4013157A (en) * 1975-07-30 1977-03-22 Bally Manufacturing Corporation Bonus play machine
GB1506058A (en) 1975-08-13 1978-04-05 Secr Social Service Brit Liquid storage apparatus
US3994594A (en) 1975-08-27 1976-11-30 Technicon Instruments Corporation Cuvette and method of use
US4018565A (en) * 1975-10-17 1977-04-19 The Foxboro Company Automatic process titration system
JPS5295121A (en) 1976-02-06 1977-08-10 Hitachi Ltd Code plate
US4012038A (en) * 1976-03-03 1977-03-15 Brotz Gregory R Magnetic toy
GB1561061A (en) 1976-03-17 1980-02-13 Hycel Inc Reaction conveyor assembly in an automatic chemical testing apparatus
DE2642019C2 (en) * 1976-09-18 1982-06-03 Robert Bosch Gmbh, 7000 Stuttgart, De
US4159875A (en) 1976-10-21 1979-07-03 Abbott Laboratories Specimen holder
GB1595296A (en) 1976-12-03 1981-08-12 Nat Res Dev Automation of discrete analysis systems
US4298571A (en) 1976-12-17 1981-11-03 Eastman Kodak Company Incubator including cover means for an analysis slide
US4200056A (en) * 1977-01-21 1980-04-29 Miles Laboratories, Inc. Segmented platen for applying liquids to a flat surface
US4115861A (en) 1977-03-28 1978-09-19 Instrumentation Specialties Company Chemical analyzer
US4113038A (en) * 1977-04-18 1978-09-12 Clark George M Drilling jar
JPS5414287A (en) 1977-07-04 1979-02-02 Toshiba Corp Stress sensor using elastic surface wave elements
US4100309A (en) 1977-08-08 1978-07-11 Biosearch Medical Products, Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
US4092952A (en) 1977-08-19 1978-06-06 Wilkie Ronald N Automatic slide stainer
US4135883A (en) 1977-08-29 1979-01-23 Bio-Dynamics Inc. Blood analyzer system
US4133437A (en) * 1977-09-09 1979-01-09 Helper Industries, Inc. Wheel chair lift apparatus
FR2403465B2 (en) * 1977-09-16 1980-05-16 Valois Sa
JPS5473094A (en) * 1977-11-21 1979-06-12 Olympus Optical Co Ltd Automatic chemical analytical apparatus
US4227810A (en) 1978-01-26 1980-10-14 Technicon Instruments Corporation Cuvette and method of use
US4133642A (en) * 1978-03-10 1979-01-09 Terumo Corporation Pipetting apparatus for automatic analyzer
US4413584A (en) * 1978-04-19 1983-11-08 A.J.P. Scientific, Inc. Biological slide staining apparatus
JPS55107957U (en) 1979-01-25 1980-07-29
JPS55107957A (en) 1979-02-13 1980-08-19 Agency Of Ind Science & Technol Analyzing method of blood image
JPH0127390B2 (en) 1979-04-14 1989-05-29 Olympus Optical Co
JPS6321139B2 (en) 1979-04-14 1988-05-02 Olympus Optical Co
JPH0139067B2 (en) 1979-04-19 1989-08-17 Olympus Optical Co
JPS6125100B2 (en) * 1979-04-28 1986-06-13 Olympus Optical Co
US4281387A (en) 1979-05-21 1981-07-28 American Home Products Corp. Automatic chemical analysis apparatus and method
US4263504A (en) 1979-08-01 1981-04-21 Ncr Corporation High density matrix code
US4406547A (en) 1979-08-07 1983-09-27 Olympus Optical Company Limited Apparatus for effecting automatic analysis
US4346056A (en) 1979-08-15 1982-08-24 Olympus Optical Company Limited Automatic analyzing apparatus
US4318885A (en) * 1979-09-10 1982-03-09 Olympus Optical Co., Ltd. Liquid treating device for chemical analysis apparatus
US4331176A (en) * 1980-03-03 1982-05-25 American Standard Inc. Replaceable cartridge valve assembly
DE3035340C2 (en) 1980-09-19 1983-03-31 Boehringer Ingelheim Diagnostika Gmbh, 8046 Garching, De
US4323537A (en) 1980-10-20 1982-04-06 Instrumentation Laboratory Inc. Analysis system
JPH0147744B2 (en) * 1980-11-10 1989-10-16 Hitachi Ltd
JPH0217341Y2 (en) 1981-02-10 1990-05-15
US4404641A (en) 1981-02-17 1983-09-13 Dierckx Equipment Corporation Maintenance monitor
US4371498A (en) 1981-06-19 1983-02-01 Medical Laboratory Automation, Inc. Coded cuvette for use in testing apparatus
US4467603A (en) 1981-07-08 1984-08-28 Wilson William L Torque transfer apparatus
WO1983000296A1 (en) 1981-07-20 1983-02-03 American Hospital Supply Corp Cuvette system for automated chemical analyzer
JPH0216875B2 (en) * 1981-12-17 1990-04-18 Olympus Optical Co
US4447395A (en) * 1982-02-12 1984-05-08 The United States Of America As Represented By The Secretary Of The Army Sampling device
US5202252A (en) * 1982-03-05 1993-04-13 Houston Biotechnology Inc. Monoclonal antibodies against lens epithelial cells and methods for preventing proliferation of remnant lens epithelial cells after extracapsular extraction
GB2116711B (en) 1982-03-17 1985-07-31 Vickers Plc Automatic chemical analysis
US4571699A (en) 1982-06-03 1986-02-18 International Business Machines Corporation Optical mark recognition for controlling input devices, hosts, and output devices
US4539632A (en) 1982-09-28 1985-09-03 Borg-Warner Corporation Programmable maintenance timer system
US4467073A (en) 1982-10-20 1984-08-21 Hydromer, Inc. Transparent anti-fog coating compositions
US4488679A (en) 1982-11-01 1984-12-18 Western Publishing Company, Inc. Code and reading system
US4647432A (en) * 1982-11-30 1987-03-03 Japan Tectron Instruments Corporation Tokuyama Soda Kabushiki Kaisha Automatic analysis apparatus
US5175086A (en) 1983-01-24 1992-12-29 Olympus Optical Co., Ltd. Method for effecting heterogeneous immunological analysis
GB8302108D0 (en) 1983-01-26 1983-03-02 Ventana Ltd Ventilators
US4585622A (en) * 1983-02-02 1986-04-29 Ae/Cds, Autoclave, Inc. Chemical microreactor having close temperature control
EP0117262B1 (en) 1983-02-25 1988-04-20 Winfried Dr. med. Stöcker Processes and devices for examinations on immobilised biological material
US4538222A (en) * 1983-04-06 1985-08-27 Halliburton Company Apparatus and method for mixing a plurality of substances
US4510169A (en) * 1983-08-23 1985-04-09 The Board Of Regents, The University Of Texas Method and apparatus for cryopreparing biological tissue for ultrastructural analysis
US4634850A (en) 1983-10-12 1987-01-06 Drexler Technology Corporation Quad density optical data system
US4609017A (en) 1983-10-13 1986-09-02 Coulter Electronics, Inc. Method and apparatus for transporting carriers of sealed sample tubes and mixing the samples
US4683120A (en) 1983-10-28 1987-07-28 Gamma Biologicals, Inc. Biological fluid assay system
US4624588A (en) 1983-11-08 1986-11-25 Maverick Microsystems, Inc. Full field MICR encoder
JPS61501167A (en) 1984-02-01 1986-06-12
JPH0723895B2 (en) 1984-02-13 1995-03-15 オリンパス光学工業株式会社 Reagents amount management method for an automatic analyzer
DE3405292A1 (en) 1984-02-15 1985-09-05 Eppendorf Geraetebau Netheler A process for performing sample analyzes and rack for performing the method
US4961906A (en) 1984-04-12 1990-10-09 Fisher Scientific Company Liquid handling
JPS6126863A (en) * 1984-07-17 1986-02-06 Konishiroku Photo Ind Co Ltd Biochemical analysis instrument
US4567748A (en) * 1984-07-19 1986-02-04 Klass Carl S On-line linear tonometer
GB2163568B (en) 1984-08-23 1988-04-07 Australian Biomedical Sample handling apparatus
DE3434931C2 (en) * 1984-09-22 1987-10-08 Eppendorf Geraetebau Netheler + Hinz Gmbh, 2000 Hamburg, De
EP0197984B1 (en) 1984-10-01 1990-05-23 BAXTER INTERNATIONAL INC. (a Delaware corporation) Tablet dispensing
JPS61129561A (en) 1984-11-28 1986-06-17 Olympus Optical Co Ltd Electrophoresis device
US4675299A (en) 1984-12-12 1987-06-23 Becton, Dickinson And Company Self-contained reagent package device and an assay using same
US4764342A (en) 1985-02-27 1988-08-16 Fisher Scientific Company Reagent handling
US4708886A (en) 1985-02-27 1987-11-24 Fisher Scientific Company Analysis system
US5656493A (en) 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US4692603A (en) 1985-04-01 1987-09-08 Cauzin Systems, Incorporated Optical reader for printed bit-encoded data and method of reading same
US4782221A (en) 1985-04-01 1988-11-01 Cauzin Systems, Incorporated Printed data strip including bit-encoded information and scanner control
US4678894A (en) 1985-04-18 1987-07-07 Baxter Travenol Laboratories, Inc. Sample identification system
US4706207A (en) 1985-06-24 1987-11-10 Nova Celltrak, Inc. Count accuracy control means for a blood analyses system
EP0216026B1 (en) 1985-06-26 1992-01-22 Japan Tectron Instruments Corporation Automatic analysis apparatus
US4719087A (en) * 1985-07-01 1988-01-12 Baxter Travenol Laboratories, Inc. Tray for analyzing system
US4643879A (en) * 1985-07-01 1987-02-17 American Hospital Supply Corporation Tower for analyzing system
JPS63500117A (en) 1985-07-01 1988-01-14
US4681741A (en) 1985-07-01 1987-07-21 American Hospital Supply Corporation Reagent dispenser for an analyzing system
US4933147A (en) 1985-07-15 1990-06-12 Abbott Laboratories Unitized reagent containment system for clinical analyzer
US4729661A (en) * 1985-07-29 1988-03-08 Specialty Medical Industries, Inc. Asynchronous serial cuvette reader
JPH0640054B2 (en) * 1985-09-20 1994-05-25 株式会社千代田製作所 Electron microscope specimen created for embedded devices
US4797938A (en) 1985-10-15 1989-01-10 International Business Machines Corporation Method of identifying magnetic ink (MICR) characters
US4695430A (en) 1985-10-31 1987-09-22 Bio/Data Corporation Analytical apparatus
US4728783A (en) 1985-11-15 1988-03-01 Cauzin Systems, Incorporated Method and apparatus for transforming digitally encoded data into printed data strips
US4754127A (en) 1985-11-15 1988-06-28 Cauzin Systems, Incorporated Method and apparatus for transforming digitally encoded data into printed data strips
US4678752A (en) 1985-11-18 1987-07-07 Becton, Dickinson And Company Automatic random access analyzer
JPH0652263B2 (en) * 1985-12-10 1994-07-06 株式会社日立製作所 Cell analyzer
DE3786087D1 (en) 1986-02-07 1993-07-15 Fuji Photo Film Co Ltd Geraet for chemical analyzes.
JPH0690212B2 (en) * 1986-02-21 1994-11-14 株式会社東芝 Automated chemical analysis apparatus
US4651671A (en) * 1986-02-21 1987-03-24 Pedersen Anders N Continuous feed apparatus for staining specimens carried on slides
US4871682A (en) 1986-04-30 1989-10-03 Baxter Travenol Laboratories, Inc. Diluent carryover control
US4815978A (en) * 1986-04-30 1989-03-28 Baxter Travenol Laboratories, Inc. Clinical analysis methods and systems
WO1987006695A1 (en) 1986-04-30 1987-11-05 Baxter Travenol Laboratories, Inc. Diluent carryover control
JPS62299769A (en) 1986-06-20 1987-12-26 Fuji Photo Film Co Ltd Dispenser
US4824641A (en) * 1986-06-20 1989-04-25 Cetus Corporation Carousel and tip
EP0273934B1 (en) 1986-07-01 1990-09-05 Biotech Instruments Limited Apparatus for automatic chemical analysis
US4965049A (en) 1986-07-11 1990-10-23 Beckman Instruments, Inc. Modular analyzer system
US4900513A (en) * 1986-07-11 1990-02-13 Beckman Instruments, Inc. Sample loading apparatus
US4728959A (en) 1986-08-08 1988-03-01 Ventana Sciences Inc. Direction finding localization system
JPS6361956A (en) * 1986-09-03 1988-03-18 Fuji Photo Film Co Ltd Chemical analysis instrument
WO1988002120A1 (en) * 1986-09-16 1988-03-24 Nittec Co., Ltd Automatic analyzer
GB2196116B (en) 1986-10-07 1990-08-15 Weston Terence E Apparatus for chemical analysis.
DE3776894D1 (en) 1986-10-14 1992-04-02 Applied Research Systems Automatic analyzer for the measurement of antigens or antibodies in a biological fluid.
GB2196428B (en) * 1986-10-14 1990-05-23 Tiyoda Seisakusho Kk Apparatus for dyeing specimens automatically preparatory to microscopic examination
US4817916A (en) * 1987-03-09 1989-04-04 Jamesbury Corporation Butterfly valve
JPH087220B2 (en) * 1987-03-12 1996-01-29 富士写真フイルム株式会社 Analytical method using chemical analytical slides
US4986891A (en) * 1987-03-16 1991-01-22 Helena Laboratories Corporation Automatic electrophoresis apparatus and method
JPS63240688A (en) 1987-03-27 1988-10-06 Kajima Corp Circular code
US4855110A (en) 1987-05-06 1989-08-08 Abbott Laboratories Sample ring for clinical analyzer network
US4849177A (en) 1987-05-08 1989-07-18 Abbott Laboratories Reagent pack and carousel
US4847208A (en) 1987-07-29 1989-07-11 Bogen Steven A Apparatus for immunohistochemical staining and method of rinsing a plurality of slides
US4873877A (en) 1987-08-17 1989-10-17 Davis Meditech Precision liquid handling apparatus
US4868129A (en) 1987-08-27 1989-09-19 Biotrack Inc. Apparatus and method for dilution and mixing of liquid samples
US4854163A (en) 1987-09-28 1989-08-08 Amoco Corporation Beltless core conveyor system for wellsite analysis
GB8722902D0 (en) * 1987-09-30 1987-11-04 Shandon Southern Prod Tissue &c processing
US4794239A (en) 1987-10-13 1988-12-27 Intermec Corporation Multitrack bar code and associated decoding method
US4886590A (en) 1987-11-02 1989-12-12 Man-Gill Chemical Company Chemical process control system
EP0315757A3 (en) * 1987-11-12 1991-03-06 Oerlikon-Contraves AG Method and apparatus for storing and mixing blood samples
US5051238A (en) 1987-11-20 1991-09-24 Hitachi, Ltd. Automatic analyzing system
US4924078A (en) * 1987-11-25 1990-05-08 Sant Anselmo Carl Identification symbol, system and method
US4935875A (en) 1987-12-02 1990-06-19 Data Chem, Inc. Chemical analyzer
JPH076998B2 (en) 1987-12-04 1995-01-30 富士写真フイルム株式会社 Automatic dispensers and spotted way
JPH01187461A (en) 1988-01-22 1989-07-26 Toshiba Corp Automatic chemical analyzer
JPH01126474U (en) 1988-02-22 1989-08-29
US4795710A (en) * 1988-02-26 1989-01-03 Eastman Kodak Company Mounting of analyzer sample tray
US5681543A (en) 1988-02-29 1997-10-28 Shering Aktiengesellschaft Polymer-bonded complexing agents and pharmaceutical agents containing them for MRI
DE68916069D1 (en) 1988-03-11 1994-07-21 Takeda Chemical Industries Ltd Automatic synthesizer.
US5104527A (en) * 1988-03-24 1992-04-14 Ashland Oil, Inc. Automatic total reducers monitoring and adjustment system using titration
GB8807699D0 (en) 1988-03-31 1988-05-05 Microvol Ltd Improvements relating to chemical analysis
US4874936A (en) 1988-04-08 1989-10-17 United Parcel Service Of America, Inc. Hexagonal, information encoding article, process and system
US5544650A (en) 1988-04-08 1996-08-13 Neuromedical Systems, Inc. Automated specimen classification system and method
US4896029A (en) * 1988-04-08 1990-01-23 United Parcel Service Of America, Inc. Polygonal information encoding article, process and system
US4998010A (en) * 1988-04-08 1991-03-05 United Parcel Service Of America, Inc. Polygonal information encoding article, process and system
US4939674A (en) 1988-04-22 1990-07-03 Engineered Data Products, Inc. Label generation apparatus
US4967606A (en) 1988-04-29 1990-11-06 Caveo Scientific Instruments, Inc. Method and apparatus for pipetting liquids
US5053609A (en) 1988-05-05 1991-10-01 International Data Matrix, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
US4939354A (en) 1988-05-05 1990-07-03 Datacode International, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
US5124536A (en) 1988-05-05 1992-06-23 International Data Matrix, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
GB2218514B (en) 1988-05-12 1991-12-11 Gen Motors Corp Process evaluation by isotope enrichment
GB8816982D0 (en) 1988-07-16 1988-08-17 Probus Biomedical Ltd Bio-fluid assay apparatus
US5597733A (en) * 1988-07-25 1997-01-28 Precision Systems, Inc. Automatic multiple-sample multiple-reagent dispensing method in chemical analyzer
US5229074A (en) 1988-07-25 1993-07-20 Precision Systems, Inc. Automatic multiple-sample multiple-reagent chemical analyzer
ES2085854T3 (en) * 1988-08-02 1996-06-16 Abbott Lab Method and device production calibration data for analysis.
US5382511A (en) * 1988-08-02 1995-01-17 Gene Tec Corporation Method for studying nucleic acids within immobilized specimens
US5346672A (en) 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5281516A (en) * 1988-08-02 1994-01-25 Gene Tec Corporation Temperature control apparatus and method
US5031797A (en) 1988-11-18 1991-07-16 Beckman Instruments, Inc. Reagent storage and delivery system
US5439826A (en) 1988-12-02 1995-08-08 Bio-Tek Instruments, Inc. Method of distinguishing among strips for different assays in an automated instrument
US5059393A (en) 1989-01-05 1991-10-22 Eastman Kodak Company Analysis slide positioning apparatus and method for a chemical analyzer
US5106583A (en) * 1989-03-08 1992-04-21 Applied Biosystems, Inc. Automated protein hydrolysis system
US5180606A (en) * 1989-05-09 1993-01-19 Wescor, Inc. Apparatus for applying a controlled amount of reagent to a microscope slide or the like
US5695739A (en) 1989-06-30 1997-12-09 Schering Aktiengesellschaft Derivatized DTPA complexes, pharmaceutical agents containing these compounds, their use, and processes for their production
US4943415A (en) 1989-07-14 1990-07-24 Eastman Kodak Company Grooved cover for test elements
US5209903A (en) 1989-09-06 1993-05-11 Toa Medical Electronics, Co., Ltd. Synthetic apparatus for inspection of blood
DE3938992A1 (en) 1989-11-21 1991-05-23 Schering Ag Cascade polymer-bound complexing agent, the complex and conjugates, processes for their preparation and pharmaceutical compositions containing them
US5250262A (en) 1989-11-22 1993-10-05 Vettest S.A. Chemical analyzer
US5646046A (en) 1989-12-01 1997-07-08 Akzo Nobel N.V. Method and instrument for automatically performing analysis relating to thrombosis and hemostasis
JPH03209163A (en) 1990-01-11 1991-09-12 Chiyoda Seisakusho:Kk Method and device for extending chromosome on slide glass
US5355304A (en) 1990-01-30 1994-10-11 Demoranville Victoria E Clinical laboratory work-flow system which semi-automates validated immunoassay and electrophoresis protocols
US5225325A (en) 1990-03-02 1993-07-06 Ventana Medical Systems, Inc. Immunohistochemical staining method and reagents therefor
US6472217B1 (en) 1990-03-02 2002-10-29 Ventana Medical Systems, Inc. Slide aqueous volume controlling apparatus
ES2085471T3 (en) 1990-03-02 1996-06-01 Ventana Med Syst Inc Improved biological reaction platform.
US5595707A (en) * 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
US5075079A (en) 1990-05-21 1991-12-24 Technicon Instruments Corporation Slide analysis system
US5425918A (en) 1990-07-18 1995-06-20 Australian Biomedical Corporation Apparatus for automatic tissue staining for immunohistochemistry
EP0539379A4 (en) 1990-07-18 1993-06-02 Australian Biomedical Corporation Limited Automatic tissue staining for immunohistochemistry
US5118369A (en) 1990-08-23 1992-06-02 Colorcode Unlimited Corporation Microlabelling system and process for making microlabels
US5350697A (en) 1990-08-28 1994-09-27 Akzo N.V. Scattered light detection apparatus
GB9020352D0 (en) 1990-09-18 1990-10-31 Anagen Ltd Assay or reaction apparatus
US5920488A (en) * 1990-10-01 1999-07-06 American Auto-Matrix, Inc. Method and system for maintaining a desired air flow through a fume hood
US5428740A (en) 1990-10-18 1995-06-27 Ventana Systems, Inc. Applying successive data group operations to an active data group
DE4041905A1 (en) * 1990-12-27 1992-07-02 Boehringer Mannheim Gmbh Testtraeger-analysis system
US6498037B1 (en) 1991-03-04 2002-12-24 Bayer Corporation Method of handling reagents in a random access protocol
CA2384519C (en) * 1991-03-04 2006-08-15 Bayer Corporation Automated analyzer
EP0502838A1 (en) 1991-03-06 1992-09-09 Varta Batteri Aktiebolag Process for healing defects in a protective layer
DE4212821C2 (en) * 1991-04-19 1994-07-28 Olympus Optical Co A closure device from the opening a container for the removal and extraction of liquid content
US5202552A (en) 1991-04-22 1993-04-13 Macmillan Bloedel Limited Data with perimeter identification tag
DE4115789A1 (en) * 1991-05-10 1992-11-12 Schering Ag Macrocyclic chelating polymer whose complex, process for their preparation and pharmaceutical compositions containing them
DE4117833C2 (en) * 1991-05-29 1993-10-07 Medite Ges Fuer Medizintechnik Method and device for dyeing arranged on slides histological preparations
US5282149A (en) * 1991-06-03 1994-01-25 Abbott Laboratories Adaptive scheduling system and method for a biological analyzer with reproducible operation time periods
US5576215A (en) 1991-06-03 1996-11-19 Abbott Laboratories Adaptive scheduling system and method for operating a biological sample analyzer with variable interval periods
US5289385A (en) * 1991-06-03 1994-02-22 Abbott Laboratories Adaptive scheduling system and method for operating a biological sample analyzer with variable rinsing
JPH0510958A (en) * 1991-07-02 1993-01-19 Olympus Optical Co Ltd Analysis device
WO1993003347A1 (en) 1991-07-26 1993-02-18 Cirrus Diagnostics, Inc. Automated immunoassay analyzer
US5366896A (en) 1991-07-30 1994-11-22 University Of Virginia Alumni Patents Foundation Robotically operated laboratory system
US5355439A (en) 1991-08-05 1994-10-11 Bio Tek Instruments Method and apparatus for automated tissue assay
US5696887A (en) 1991-08-05 1997-12-09 Biotek Solutions, Incorporated Automated tissue assay using standardized chemicals and packages
US5930461A (en) 1994-03-24 1999-07-27 Bernstein; Steven A. Method and apparatus for automated tissue assay
US5232664A (en) 1991-09-18 1993-08-03 Ventana Medical Systems, Inc. Liquid dispenser
US5184834A (en) * 1991-10-01 1993-02-09 Yu Chung Hsiung Skate shoe having an adjustable plate mounted thereto
US5338356A (en) 1991-10-29 1994-08-16 Mitsubishi Materials Corporation Calcium phosphate granular cement and method for producing same
US5245606A (en) * 1992-01-02 1993-09-14 National Semiconductor Corporation Computer network bridge circuit
US5578452A (en) 1992-01-16 1996-11-26 Biogenex Laboratories Enhancement of immunochemical staining in aldehyde-fixed tissues
US5369261A (en) 1992-02-12 1994-11-29 Shamir; Harry Multi-color information encoding system
JP3382632B2 (en) 1992-03-13 2003-03-04 オリンパス光学工業株式会社 Measurement methods and reaction vessels used for its biological substance
US5646049A (en) 1992-03-27 1997-07-08 Abbott Laboratories Scheduling operation of an automated analytical system
DE69333230D1 (en) 1992-03-27 2003-11-06 Abbott Lab Automatic analysis system, continuous and random access and components for
JP3320444B2 (en) 1992-04-06 2002-09-03 株式会社千代田製作所 Dyeing apparatus for nozzle cleaning device
US5331176A (en) 1992-04-10 1994-07-19 Veritec Inc. Hand held two dimensional symbol reader with a symbol illumination window
JPH05288756A (en) 1992-04-13 1993-11-02 Hitachi Ltd Automatic analyzer and automatic analyzing system
JP3193443B2 (en) 1992-04-24 2001-07-30 オリンパス光学工業株式会社 Automatic analyzer
DE4313807C2 (en) 1992-04-28 1995-03-09 Olympus Optical Co Reagent container system for the immunological analysis of a sample in an automatic analyzer
US5645114A (en) 1992-05-11 1997-07-08 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
US6180061B1 (en) * 1992-05-11 2001-01-30 Cytologix Corporation Moving platform slide stainer with heating elements
US5316452A (en) * 1992-05-11 1994-05-31 Gilbert Corporation Dispensing assembly with interchangeable cartridge pumps
US6092695A (en) 1992-05-11 2000-07-25 Cytologix Corporation Interchangeable liquid dispensing cartridge pump
US5947167A (en) 1992-05-11 1999-09-07 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
EP0640209A4 (en) 1992-05-13 1995-10-25 Australian Biomedical Automatic staining apparatus for slide specimens.
ES2096320T3 (en) 1992-09-04 1997-03-01 Fault Tolerant Systems Communication control unit and method for the transmission of messages.
US5316319A (en) * 1992-09-22 1994-05-31 Rm Engineered Products, Inc. Liveload assembly for maintaining torque on bolts
US5355695A (en) 1992-11-30 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
US5395588A (en) * 1992-12-14 1995-03-07 Becton Dickinson And Company Control of flow cytometer having vacuum fluidics
US5439645A (en) 1993-01-25 1995-08-08 Coulter Corporation Apparatus for automatically, selectively handling multiple, randomly associated hematological samples
US5336620A (en) * 1993-01-27 1994-08-09 American Home Products Corporation Process for the production of an anticoagulant composition
WO1994016733A1 (en) 1993-01-29 1994-08-04 Chiesi Farmaceutici S.P.A. Highly soluble multicomponent inclusion complexes containing a base type drug, an acid and a cyclodextrin
US5965454A (en) 1993-02-03 1999-10-12 Histaggen Incorporated Automated histo-cytochemistry apparatus and encapsulation system for processing biological materials
JP3129015B2 (en) 1993-02-16 2001-01-29 株式会社日立製作所 Inspection method and apparatus of the stained particles
US5365595A (en) * 1993-02-19 1994-11-15 Motorola, Inc. Sealed microphone assembly
JPH06249857A (en) 1993-02-26 1994-09-09 Hitachi Ltd Automatic analyzing device
JPH06250906A (en) * 1993-02-26 1994-09-09 Fujitsu Ltd Backup/recovery system for data developed in main storage device
US5365614A (en) 1993-03-22 1994-11-22 The Orvis Company, Inc. Sports vest
US5446652A (en) 1993-04-27 1995-08-29 Ventana Systems, Inc. Constraint knowledge in simulation modeling
US5417213A (en) 1993-06-07 1995-05-23 Prince; Martin R. Magnetic resonance arteriography with dynamic intravenous contrast agents
US5587833A (en) * 1993-07-09 1996-12-24 Compucyte Corporation Computerized microscope specimen encoder
EP1443329B1 (en) 1993-09-24 2010-09-15 Abbott Laboratories A method for simultaneously performing a plurality of assays
US5416029A (en) 1993-09-27 1995-05-16 Shandon Inc. System for identifying tissue samples
US5439649A (en) 1993-09-29 1995-08-08 Biogenex Laboratories Automated staining apparatus
CA2132269C (en) 1993-10-12 2000-02-01 Rainer Hermann Doerrer Interactive automated cytology method and system
US5441580A (en) 1993-10-15 1995-08-15 Circle-Prosco, Inc. Hydrophilic coatings for aluminum
US5432056A (en) 1993-11-15 1995-07-11 Ventana Medical Systems, Inc. Bisulfite-based tissue fixative
US5552087A (en) 1993-11-15 1996-09-03 Ventana Medical Systems, Inc. High temperature evaporation inhibitor liquid
US5487975A (en) * 1993-11-15 1996-01-30 Ventana Medical Systems, Inc. Biotin/avidin formulation
DE69420581D1 (en) 1993-12-03 1999-10-14 Bracco Spa Paramagnetic chelates for magnetic kernresonant diagnostic
US6632598B1 (en) 1994-03-11 2003-10-14 Biogenex Laboratories Deparaffinization compositions and methods for their use
US6451551B1 (en) 1994-03-11 2002-09-17 Biogenex Laboratories Releasing embedding media from tissue specimens
US5582814A (en) 1994-04-15 1996-12-10 Metasyn, Inc. 1-(p-n-butylbenzyl) DTPA for magnetic resonance imaging
JPH10500310A (en) * 1994-05-19 1998-01-13 ダコ アクティーゼルスカブ pna probes for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis
US5649537A (en) 1994-05-26 1997-07-22 Dibra S.P.A. Paramagnetic metal icon chelates and use thereof as contrast agents in magnetic resonance imaging
US6387326B1 (en) 1994-07-19 2002-05-14 Fisher Scientific Company L.L.C. Automated slide staining system and method thereof
US5431455A (en) 1994-08-05 1995-07-11 Seely; Stanley W. Recreational vehicle sewer hose containment assembly
US5946221A (en) * 1994-09-07 1999-08-31 American Auto-Matrix, Inc. Method and system for maintaining a desired air flow through a fume hood
WO1996009598A1 (en) * 1994-09-20 1996-03-28 Neopath, Inc. Cytological slide scoring apparatus
US6097995A (en) 1994-11-30 2000-08-01 Chemmist Limited Partnership Hazardous materials and waste reduction management system
KR100235345B1 (en) 1994-12-29 1999-12-15 전주범 Moving picture estimation apparatus and method in divided region
US5578270A (en) * 1995-03-24 1996-11-26 Becton Dickinson And Company System for nucleic acid based diagnostic assay
GB9506312D0 (en) * 1995-03-28 1995-05-17 Medical Res Council Improvements in or relating to sample processing
US5676910A (en) 1995-06-07 1997-10-14 Alpha Scientific Corporation Automatic blood film preparation device
DE19525924A1 (en) 1995-07-04 1997-01-09 Schering Ag Cascade polymer complexes, process for their preparation and pharmaceutical compositions containing them
WO1997002761A1 (en) * 1995-07-11 1997-01-30 Nissho Iwai Corporation Edible prawn
JP2901521B2 (en) 1995-07-31 1999-06-07 アロカ株式会社 Processing unit of biological tissue
US5963368A (en) 1995-09-15 1999-10-05 Accumed International, Inc. Specimen management system
US6083490A (en) 1995-11-06 2000-07-04 M&J Consultants Pty Ltd UV absorbing compositions
US5888733A (en) * 1995-11-16 1999-03-30 Dako A/S In situ hybridization to detect specific nucleic acid sequences in eucaryotic samples
WO1997019379A1 (en) * 1995-11-17 1997-05-29 Torstein Ljungmann A staining apparatus for staining of tissue specimens on microscope slides
KR0168189B1 (en) 1995-12-01 1999-02-01 김광호 Control method and apparatus for recognition of robot environment
US5605444A (en) 1995-12-26 1997-02-25 Ingersoll-Dresser Pump Company Pump impeller having separate offset inlet vanes
EP0888554A1 (en) 1996-01-17 1999-01-07 Australian Biomedical Corporation Limited Specimen preparation
US5888876A (en) * 1996-04-09 1999-03-30 Kabushiki Kaisha Toshiba Deep trench filling method using silicon film deposition and silicon migration
US6020141A (en) * 1996-05-09 2000-02-01 3-Dimensional Pharmaceuticals, Inc. Microplate thermal shift assay for ligand development and multi-variable protein chemistry optimization
JP3682302B2 (en) * 1996-05-20 2005-08-10 プレシジョン・システム・サイエンス株式会社 Control method and apparatus of the magnetic particles by dispensing machine
DE19621179C2 (en) 1996-05-25 2000-09-07 Nonnenmacher Klaus Transport unit for samples
US5723092A (en) * 1996-06-28 1998-03-03 Dpc Cirrus Inc. Sample dilution system and dilution well insert therefor
US5885529A (en) * 1996-06-28 1999-03-23 Dpc Cirrus, Inc. Automated immunoassay analyzer
DE19633436A1 (en) 1996-08-20 1998-02-26 Boehringer Mannheim Gmbh A method for detecting nucleic acids by determining the mass
JPH1090145A (en) 1996-09-18 1998-04-10 Chiyoda Manufacturing Co Ltd Rinse method by automatic staining apparatus for microscopic sample
DE69735211T2 (en) * 1996-09-18 2006-08-17 Kabushiki Kaisha Tiyoda Seisakusho, Koushoku sample fluid processing apparatus for biological
US6735531B2 (en) 1996-10-07 2004-05-11 Lab Vision Corporation Method and apparatus for automatic tissue staining
US5839091A (en) 1996-10-07 1998-11-17 Lab Vision Corporation Method and apparatus for automatic tissue staining
US5945341A (en) 1996-10-21 1999-08-31 Bayer Corporation System for the optical identification of coding on a diagnostic test strip
US6110676A (en) 1996-12-04 2000-08-29 Boston Probes, Inc. Methods for suppressing the binding of detectable probes to non-target sequences in hybridization assays
US5968731A (en) * 1996-12-10 1999-10-19 The Regents Of The University Of California Apparatus for automated testing of biological specimens
US6444170B1 (en) 1997-12-17 2002-09-03 Microm Laborgeräte GmbH Apparatus for the treatment for specimens
US5937110A (en) * 1996-12-20 1999-08-10 Xerox Corporation Parallel propagating embedded binary sequences for characterizing objects in N-dimensional address space
US6327395B1 (en) 1996-12-20 2001-12-04 Xerox Parc Glyph address carpet methods and apparatus for providing location information in a multidimensional address space
US5958341A (en) 1996-12-23 1999-09-28 American Registry Of Pathology Apparatus for efficient processing of tissue samples on slides
US5948359A (en) 1997-03-21 1999-09-07 Biogenex Laboratories Automated staining apparatus
DE19712530A1 (en) 1997-03-25 1998-10-01 Boehringer Mannheim Gmbh New monomer to label peptide nucleic acids
JP3428426B2 (en) * 1997-03-26 2003-07-22 株式会社日立製作所 Sample analysis system
US5994071A (en) 1997-04-04 1999-11-30 Albany Medical College Assessment of prostate cancer
WO1998045679A1 (en) * 1997-04-08 1998-10-15 Akzo Nobel N.V. Method and apparatus for optimizing assay sequencing on a random access clinical laboratory instrument
US5900045A (en) * 1997-04-18 1999-05-04 Taiwan Semiconductor Manufacturing Co.Ltd. Method and apparatus for eliminating air bubbles from a liquid dispensing line
US5896486A (en) 1997-05-01 1999-04-20 Lucent Technologies Inc. Mass splice tray for optical fibers
DE69831113T2 (en) 1997-05-30 2006-05-24 Pna Diagnostics A/S peptide nucleic acids 2- or 3-dimensional geometric structure of
US6420916B1 (en) 1997-08-05 2002-07-16 Rockwell Collins, Inc. Phase locked loop filter utilizing a tuned filter
US20050135972A1 (en) * 1997-08-11 2005-06-23 Ventana Medical Systems, Inc. Method and apparatus for modifying pressure within a fluid dispenser
US20020110494A1 (en) 2000-01-14 2002-08-15 Ventana Medical Systems, Inc. Method and apparatus for modifying pressure within a fluid dispenser
US8137619B2 (en) * 1997-08-11 2012-03-20 Ventana Medical Systems, Inc. Memory management method and apparatus for automated biological reaction system
US6093574A (en) 1997-08-11 2000-07-25 Ventana Medical Systems Method and apparatus for rinsing a microscope slide
US6192945B1 (en) * 1997-08-11 2001-02-27 Ventana Medical Systems, Inc. Fluid dispenser
US6045759A (en) * 1997-08-11 2000-04-04 Ventana Medical Systems Fluid dispenser
US6436348B1 (en) * 1997-10-16 2002-08-20 Torstein Ljungmann Staining apparatus for preparation of tissue specimens placed on microscope slides
DE19849591C2 (en) * 1997-10-27 2001-07-19 Hitachi Ltd Automatic analyzer
CA2720326C (en) 1997-12-23 2014-11-25 Dako Denmark A/S Cartridge device for processing a sample mounted on a surface of a support member
US6358682B1 (en) 1998-01-26 2002-03-19 Ventana Medical Systems, Inc. Method and kit for the prognostication of breast cancer
US6699710B1 (en) * 1998-02-25 2004-03-02 The United States Of America As Represented By The Department Of Health And Human Services Tumor tissue microarrays for rapid molecular profiling
JP2002504694A (en) 1998-02-27 2002-02-12 ベンタナ・メデイカル・システムズ・インコーポレーテツド Aspirated reagent dispensing (aspiratinganddispensing) system and method
US6248590B1 (en) 1998-02-27 2001-06-19 Cytomation, Inc. Method and apparatus for flow cytometry
US6096271A (en) 1998-02-27 2000-08-01 Cytologix Corporation Random access slide stainer with liquid waste segregation
US6183693B1 (en) * 1998-02-27 2001-02-06 Cytologix Corporation Random access slide stainer with independent slide heating regulation
US6405609B1 (en) 1998-02-27 2002-06-18 Ventana Medical Systems, Inc. System and method of aspirating and dispensing reagent
US6582962B1 (en) * 1998-02-27 2003-06-24 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6855559B1 (en) * 1998-09-03 2005-02-15 Ventana Medical Systems, Inc. Removal of embedding media from biological samples and cell conditioning on automated staining instruments
JP2002507738A (en) 1998-03-24 2002-03-12 バイオジェネックス ラボラトリーズ Automatic coloring device
US6495106B1 (en) 1998-03-24 2002-12-17 Biogenex Laboratories Automated staining apparatus
US6594357B1 (en) * 1998-03-31 2003-07-15 British Telecommunications Public Limited Company System and method of registering the identity of a telephone terminal in association with the identity of a computer terminal
US6395562B1 (en) 1998-04-22 2002-05-28 The Regents Of The University Of California Diagnostic microarray apparatus
US6287772B1 (en) 1998-04-29 2001-09-11 Boston Probes, Inc. Methods, kits and compositions for detecting and quantitating target sequences
WO1999055916A1 (en) 1998-04-29 1999-11-04 Boston Probes, Inc. Methods, kits and compositions for detecting and quantitating target sequences
CA2737959A1 (en) * 1998-05-01 1999-11-11 Gen-Probe Incorporated Automated instrument and process for separating and amplifying a target nucleic acid sequence
CA2327542C (en) 1998-05-04 2011-11-22 Dako A/S Method and probes for the detection of chromosome aberrations
CN1702459A (en) * 1998-05-09 2005-11-30 伊康尼西斯公司 Method and apparatus for computer controlled rare cell, including fetal cell, based diagnosis
JPH11326155A (en) 1998-05-20 1999-11-26 Hitachi Ltd Cell fractionating device
WO1999067267A9 (en) * 1998-06-22 2000-03-30 Univ California Composition and methods for evaluating an organism's response to alcohol
WO2000002030A1 (en) 1998-06-30 2000-01-13 Vision Instruments Limited Laboratory sampling probe positioning apparatus
WO2000002660A1 (en) 1998-07-13 2000-01-20 Biogenex Laboratories Reagent vial for automated processing apparatus
US6486947B2 (en) 1998-07-22 2002-11-26 Ljl Biosystems, Inc. Devices and methods for sample analysis
JP2002522065A (en) * 1998-08-10 2002-07-23 ジェノミック ソリューションズ インコーポレイテッド Nucleic acid hybridizing heat and fluid circulation device
US6196979B1 (en) 1998-08-24 2001-03-06 Burstein Technologies, Inc. Cassette and applicator for biological and chemical sample collection
FR2782800B1 (en) * 1998-09-01 2000-10-20 Abx Sa Device for the automatic preparation of blood smears on slides
US6544798B1 (en) * 1999-02-26 2003-04-08 Ventana Medical Systems, Inc. Removal of embedding media from biological samples and cell conditioning on automated staining instruments
US6414133B1 (en) 1998-10-13 2002-07-02 Ventana Medical Systems, Inc. Multiple fusion probes
US6413780B1 (en) * 1998-10-14 2002-07-02 Abbott Laboratories Structure and method for performing a determination of an item of interest in a sample
EP1003121A3 (en) * 1998-10-30 2001-10-04 Becton, Dickinson and Company Medication and specimen management system
US6110425A (en) 1998-12-03 2000-08-29 Coulter International Corp. Blood smear slide outloader
US20010055799A1 (en) 1998-12-15 2001-12-27 David Baunoch Method and apparatus for automated reprocessing of tissue samples
US6890759B2 (en) 1998-12-30 2005-05-10 Becton, Dickinson And Company System and method for universal identification of biological samples
US20020017854A1 (en) 1999-03-08 2002-02-14 Paul Von Allmen Electron emissive surface and method of use
US6142292A (en) 1999-03-23 2000-11-07 Fmc Corporation Method and apparatus to prevent a bearing from rotating in a bearing housing
US20020176801A1 (en) 1999-03-23 2002-11-28 Giebeler Robert H. Fluid delivery and analysis systems
US6281004B1 (en) 1999-04-14 2001-08-28 Cytologix Corporation Quality control for cytochemical assays
DE19918442B4 (en) 1999-04-23 2005-04-14 Leica Microsystems Nussloch Gmbh Stainer for coloring objects for microscopic examination
US6192970B1 (en) 1999-04-28 2001-02-27 Rivindra V. Tilak Independently positioned graphite inserts in annular metal casting molds
ES2160486B1 (en) 1999-04-30 2002-05-16 Consejo Superior Investigacion Cell for holding of materials designated for transplants consists of a pressurized container housing the holder of the biological sample in physiological fluid
US6838051B2 (en) * 1999-05-03 2005-01-04 Ljl Biosystems, Inc. Integrated sample-processing system
US6335208B1 (en) * 1999-05-10 2002-01-01 Intersil Americas Inc. Laser decapsulation method
WO2000077592A9 (en) 1999-06-11 2002-07-04 Foxboro Co Control device providing a virtual machine environment and an ip network
US6104483A (en) 1999-06-18 2000-08-15 Lockheed Martin Tactical Defense Systems, Inc. Optical flow cell with references flange
EP1192464A1 (en) 1999-06-29 2002-04-03 Dako A/S Benzoate buffers for zone electrophoresis and immunofixation
WO2001002861A1 (en) 1999-06-29 2001-01-11 Dako A/S Detection using dendrimers bearing labels and probes
US6534008B1 (en) * 1999-07-08 2003-03-18 Lee Angros In situ heat induced antigen recovery and staining apparatus and method
JP2003504627A (en) * 1999-07-13 2003-02-04 クロマビジョン メディカル システムズ インコーポレイテッド Automatic detection of objects in a biological sample
DE19933153A1 (en) * 1999-07-20 2001-02-08 Byk Gulden Lomberg Chem Fab An apparatus for processing of analytes on solid phases
US6930292B1 (en) 1999-07-21 2005-08-16 Dako A/S Method of controlling the temperature of a specimen in or on a solid support member
WO2001020321A3 (en) 1999-09-16 2001-11-22 Shofner Engineering Associates Conditioning and testing cotton fiber
US6403036B1 (en) 1999-09-29 2002-06-11 Ventana Medical Systems, Inc. Temperature monitoring system for an automated biological reaction apparatus
US6403931B1 (en) 1999-10-07 2002-06-11 Ventana Medical Systems, Inc. Slide heater calibrator and temperature converter apparatus and method
EP1218547A4 (en) 1999-10-15 2005-04-20 Ventana Med Syst Inc Method of detecting single gene copies in-situ
EP1226546B1 (en) * 1999-10-29 2007-03-21 Cytyc Corporation Apparatus and methods for verifying the location of areas of interest within a sample in an imaging system
FI116487B (en) * 1999-11-15 2005-11-30 Thermo Electron Oy An arrangement and a method for treatment of the sample tubes in the laboratory
US20030215936A1 (en) * 2000-12-13 2003-11-20 Olli Kallioniemi High-throughput tissue microarray technology and applications
US6548822B1 (en) * 1999-12-30 2003-04-15 Curators Of University Of Missouri Method of performing analytical services
US6962789B2 (en) 2000-01-12 2005-11-08 Ventana Medical Systems, Inc. Method for quantitating a protein by image analysis
US7378058B2 (en) * 2002-01-30 2008-05-27 Ventana Medical Systems, Inc. Method and apparatus for modifying pressure within a fluid dispenser
US6746851B1 (en) 2000-01-14 2004-06-08 Lab Vision Corporation Method for automated staining of specimen slides
DE10002803A1 (en) 2000-01-24 2001-08-02 Conbio Lizenzverwertungsgesell System for internal qualitative and quantitative validation of marker indices
JP2004500567A (en) 2000-02-08 2004-01-08 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Protein separation and presentation
US6452672B1 (en) 2000-03-10 2002-09-17 Wyatt Technology Corporation Self cleaning optical flow cell
DE10012465A1 (en) 2000-03-15 2001-10-11 Jagenberg Papiertech Gmbh Assembly for coating the surfaces of a paper/cardboard web at the papermaking machine has a setting unit to act on the press rollers against their springs to give a low linear pressure in the press gap
WO2001068259A1 (en) 2000-03-16 2001-09-20 Biogenex Laboratories Automated specimen processing apparatus with fluid detection
US20030100043A1 (en) 2000-03-24 2003-05-29 Biogenex Laboratories, Inc. Device and methods for automated specimen processing
FR2806934B1 (en) * 2000-03-30 2003-04-18 Eisenmann France Sarl Device for control of a surface treatment installation, in particular for the automotive industry
US6615763B2 (en) 2000-05-12 2003-09-09 Innovative Science Limited Printing on microscope slides and histology cassettes
JP2003533682A (en) 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト Bidirectional flow centrifugal microfluidic device
GB0013619D0 (en) 2000-06-06 2000-07-26 Glaxo Group Ltd Sample container
US20030163031A1 (en) * 2000-06-26 2003-08-28 Adlabs, Inc. Method and system for providing centralized anatomic pathology services
US7396508B1 (en) 2000-07-12 2008-07-08 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US20020147512A1 (en) * 2000-07-25 2002-10-10 Affymetrix, Inc. System and method for management of microarray and laboratory information
DE10041230A1 (en) 2000-08-22 2002-03-07 Leica Microsystems Handling apparatus for cytological or histological preparations has feed stations and/or removal stations allocated to several processing stations
DE10041229A1 (en) * 2000-08-22 2002-03-07 Leica Microsystems Handling apparatus for cytological or histological preparations has region which receives modular processing stations
DE10041228A1 (en) * 2000-08-22 2002-03-07 Leica Microsystems Device for treatment of objects
DE10041231A1 (en) 2000-08-22 2002-03-07 Leica Microsystems Device for treatment of objects
DE10041226A1 (en) 2000-08-22 2002-03-07 Leica Microsystems Method for treatment of cytological and histological specimens, selects shortest paths for distributing specimens to group of treatment stations
US6735331B1 (en) * 2000-09-05 2004-05-11 Talia Technology Ltd. Method and apparatus for early detection and classification of retinal pathologies
US7011943B2 (en) 2000-09-06 2006-03-14 Transnetyx, Inc. Method for detecting a designated genetic sequence in murine genomic DNA
DE10052503A1 (en) 2000-10-23 2002-04-25 Leica Microsystems Object treatment device has insert that reduces maximum fill height of container, whereby rack for carrying objects for immersion in container matches residual volume
DE10052832A1 (en) 2000-10-24 2002-04-25 Leica Microsystems Laboratory assembly treating cytological or histological preparations has series of identical treatment stations for use as required
DE10052833A1 (en) * 2000-10-24 2002-04-25 Leica Microsystems Laboratory assembly to dye cytological or histological preparations monitors reagents over extended period
WO2002064812A3 (en) * 2000-10-30 2003-02-27 Christopher T Brovold High capacity microarray dispensing
US7113922B2 (en) 2000-11-02 2006-09-26 Living Naturally, Llc Electronic inventory movement and control device
US6844184B2 (en) * 2000-11-08 2005-01-18 Surface Logix, Inc. Device for arraying biomolecules and for monitoring cell motility in real-time
GB0030809D0 (en) 2000-12-16 2001-01-31 Schmidt Paul Sample tracking systems
WO2002052516A1 (en) * 2000-12-22 2002-07-04 Arkray, Inc. Measurement instrument
JP4322430B2 (en) * 2001-01-29 2009-09-02 エスアイアイ・ナノテクノロジー株式会社 A differential scanning calorimeter
US6855925B2 (en) * 2001-02-14 2005-02-15 Picoliter Inc. Methods, devices, and systems using acoustic ejection for depositing fluid droplets on a sample surface for analysis
DE10115065A1 (en) 2001-03-27 2002-10-02 Leica Microsystems Method and apparatus for printing on cassettes or slides for histological preparations
DE60139922D1 (en) 2001-04-05 2009-10-29 Inpeco Ip Ltd Method for managing work cell systems with an automation management system
US20030003537A1 (en) 2001-04-30 2003-01-02 Ventana Medical Systems, Inc. Method and composition of matter for enhancing staining of microorganisms
JP3603278B2 (en) * 2001-09-06 2004-12-22 理学電機工業株式会社 Fluorescent x-ray analysis system and a program for use therein
DE10144042B4 (en) 2001-09-07 2006-04-13 Leica Microsystems Nussloch Gmbh Processing apparatus for dyeing and coverslipping
JP5193408B2 (en) * 2001-09-13 2013-05-08 ベックマン コールター, インコーポレイテッド Automatic analyzer
US20030162221A1 (en) 2001-09-21 2003-08-28 Gary Bader Yeast proteome analysis
JP2005504323A (en) 2001-10-01 2005-02-10 ヴィジョン バイオシステムズ リミテッド Histological tissue specimen processing
WO2003034038A3 (en) 2001-10-19 2003-07-03 Monogen Inc Flow control metering system and method for controlling filtration of liquid-based specimens
KR100458148B1 (en) * 2001-10-29 2004-11-26 포라 가세이 고교 가부시키가이샤 A skin analysis system
US7270785B1 (en) 2001-11-02 2007-09-18 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having fixed slide platforms
DE10154843A1 (en) 2001-11-08 2003-05-28 Microm Int Gmbh Method and device for the identification of slides for microtomised tissue samples and their processing
DE20118271U1 (en) * 2001-11-09 2002-02-14 Rehau Ag & Co Windshield wiper fluid reservoir
WO2003042788A3 (en) 2001-11-13 2004-02-19 Chromavision Med Sys Inc A system for tracking biological samples
US20040033163A1 (en) * 2001-11-26 2004-02-19 Lab Vision Corporation Automated tissue staining system and reagent container
US6998270B2 (en) 2001-11-26 2006-02-14 Lab Vision Corporation Automated tissue staining system and reagent container
US7005110B2 (en) 2001-12-20 2006-02-28 Ventana Medical Systems, Inc. Method and apparatus for preparing tissue samples for sectioning
US8449822B2 (en) * 2002-01-18 2013-05-28 Sysmex Corporation Smear preparing apparatuses and methods of preparing sample smears
CA2695837C (en) * 2002-04-15 2015-12-29 Ventana Medical Systems, Inc. Automated high volume slide staining system
US7468161B2 (en) * 2002-04-15 2008-12-23 Ventana Medical Systems, Inc. Automated high volume slide processing system
US20030200111A1 (en) 2002-04-19 2003-10-23 Salim Damji Process for determining optimal packaging and shipping of goods
US7378055B2 (en) 2002-04-26 2008-05-27 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having fixed slide platforms
US20030215357A1 (en) 2002-05-13 2003-11-20 Nigel Malterer Automated processing system and method of using same
US6800249B2 (en) 2002-06-14 2004-10-05 Chromavision Medical Systems, Inc. Automated slide staining apparatus
CA2492064C (en) 2002-06-20 2016-03-15 Vision Biosystems Limited Biological reaction apparatus with draining mechanism
DE20210451U1 (en) * 2002-07-05 2002-10-17 Leica Microsystems Drive for an apparatus for coloring of objects
EP1313262A1 (en) * 2002-07-30 2003-05-21 Agilent Technologies Inc. a Delaware Corporation Integrating different naming conventions into a network management system
US6832904B2 (en) * 2002-08-15 2004-12-21 Wellman, Inc. Apparatus for cooling and finishing melt-spun filaments
US6872901B2 (en) * 2002-11-21 2005-03-29 Exon Science Inc. Automatic actuation of device according to UV intensity
WO2004059900A3 (en) 2002-12-17 2004-09-30 Evolution Robotics Inc Systems and methods for visual simultaneous localization and mapping
US20040122708A1 (en) 2002-12-18 2004-06-24 Avinash Gopal B. Medical data analysis method and apparatus incorporating in vitro test data
US7648678B2 (en) * 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
WO2004057308A1 (en) 2002-12-20 2004-07-08 Dakocytomation Denmark A/S An automated sample processing apparatus and a method of automated treating of samples and use of such apparatus
US7584019B2 (en) * 2003-12-15 2009-09-01 Dako Denmark A/S Systems and methods for the automated pre-treatment and processing of biological samples
US7850912B2 (en) 2003-05-14 2010-12-14 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
CN1774636A (en) 2003-02-21 2006-05-17 视觉生物体系有限公司 Analysis system and procedure
WO2004074847A1 (en) 2003-02-24 2004-09-02 Vision Biosystems Limited Method of scheduling
JP2004325117A (en) 2003-04-22 2004-11-18 Olympus Corp Liquid dispensing apparatus and method of washing dispensing head
US7867443B2 (en) * 2004-07-23 2011-01-11 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
US7875245B2 (en) 2003-05-14 2011-01-25 Dako Denmark A/S Method and apparatus for automated pre-treatment and processing of biological samples
US20040260721A1 (en) 2003-06-20 2004-12-23 Marie Coffin Methods and systems for creation of a coherence database
US8719053B2 (en) * 2003-07-17 2014-05-06 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
US7860727B2 (en) 2003-07-17 2010-12-28 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
US9518899B2 (en) * 2003-08-11 2016-12-13 Sakura Finetek U.S.A., Inc. Automated reagent dispensing system and method of operation
EP2275810B1 (en) * 2003-09-09 2016-11-02 BioGenex Laboratories Sample processing system
DE10342264C5 (en) * 2003-09-12 2012-10-31 Leica Biosystems Nussloch Gmbh System for uniquely associating histological cassettes and slides
EP1673608A4 (en) 2003-09-29 2008-05-07 Vision Biosystems Ltd System and method for histological tissue specimen processing
US7142852B2 (en) 2003-11-13 2006-11-28 Motorola, Inc. Method and gateway for controlling call routing
EP1733240A4 (en) 2004-03-02 2007-08-22 Dako Denmark As Reagent delivery system, dispensing device and container for a biological staining apparatus
DE202004006265U1 (en) 2004-04-21 2004-06-17 Leica Microsystems Nussloch Gmbh Mikrotem for the production of thin sections
JP4482371B2 (en) * 2004-05-12 2010-06-16 シスメックス株式会社 Clinical specimen processing system
JP4152351B2 (en) * 2004-06-17 2008-09-17 シスメックス株式会社 Clinical specimen processing apparatus and clinical specimen processing system
EP1771716A4 (en) * 2004-06-29 2012-04-25 Dako Denmark As Method of pre-treatment and staining of and support device for a biological sample
EP1612536A3 (en) * 2004-06-29 2007-03-07 Sysmex Corporation Clinical specimen processsing apparatus
CN1753432A (en) * 2004-09-22 2006-03-29 国际商业机器公司 Method and system for implementing personalized incoming notifying and terminal apparatus
US20060073074A1 (en) * 2004-10-06 2006-04-06 Lars Winther Enhanced sample processing system and methods of biological slide processing
US20060084088A1 (en) 2004-10-15 2006-04-20 Schultz Emily R Tracking biological samples and their processing history
JP4840763B2 (en) * 2006-01-18 2011-12-21 セイコーインスツル株式会社 Automatic sliced ​​piece fabricating apparatus and an automatic prepared slide fabricating apparatus
US8303915B2 (en) * 2006-10-30 2012-11-06 Ventana Medical Systems, Inc. Thin film apparatus and method

Also Published As

Publication number Publication date Type
US9229016B2 (en) 2016-01-05 grant
US8298815B2 (en) 2012-10-30 grant
US20130203103A1 (en) 2013-08-08 application
WO2004058404A3 (en) 2004-09-10 application
CN1726386A (en) 2006-01-25 application
US20060088940A1 (en) 2006-04-27 application
WO2004059288A3 (en) 2005-01-27 application
US8663978B2 (en) 2014-03-04 grant
US8788217B2 (en) 2014-07-22 grant
US8784735B2 (en) 2014-07-22 grant
WO2004059287A3 (en) 2005-01-27 application
CN100424166C (en) 2008-10-08 grant
EP1572979A4 (en) 2011-10-19 application
US20050064535A1 (en) 2005-03-24 application
EP1572979A1 (en) 2005-09-14 application
EP1573297A1 (en) 2005-09-14 application
US7648678B2 (en) 2010-01-19 grant
US7400983B2 (en) 2008-07-15 grant
US8394635B2 (en) 2013-03-12 grant
WO2004059288A2 (en) 2004-07-15 application
US20060172426A1 (en) 2006-08-03 application
EP1579194A4 (en) 2011-12-28 application
CA2508370A1 (en) 2004-07-15 application
US20110269238A1 (en) 2011-11-03 application
US9778273B2 (en) 2017-10-03 grant
US20130330252A1 (en) 2013-12-12 application
WO2004058950A1 (en) 2004-07-15 application
US20160084862A1 (en) 2016-03-24 application
CA2974221A1 (en) 2004-07-15 application
US8257968B2 (en) 2012-09-04 grant
US7960178B2 (en) 2011-06-14 grant
WO2004059297A1 (en) 2004-07-15 application
US20110167930A1 (en) 2011-07-14 application
US20060046298A1 (en) 2006-03-02 application
EP1573312A2 (en) 2005-09-14 application
US20140356935A1 (en) 2014-12-04 application
US20130029409A1 (en) 2013-01-31 application
US8673642B2 (en) 2014-03-18 grant
CA2508000A1 (en) 2004-07-15 application
CA2508113C (en) 2017-10-31 grant
US20060045806A1 (en) 2006-03-02 application
CN100472197C (en) 2009-03-25 grant
EP1576376A4 (en) 2011-12-28 application
US20130084567A1 (en) 2013-04-04 application
US8386195B2 (en) 2013-02-26 grant
US20100081167A1 (en) 2010-04-01 application
US8969086B2 (en) 2015-03-03 grant
WO2004059441A3 (en) 2005-01-20 application
CA2508323C (en) 2017-05-30 grant
US20080241876A1 (en) 2008-10-02 application
US20140038232A1 (en) 2014-02-06 application
CA2507960C (en) 2017-02-07 grant
EP1579190A1 (en) 2005-09-28 application
EP1573408A2 (en) 2005-09-14 application
CA2508070A1 (en) 2004-07-15 application
WO2004057307A1 (en) 2004-07-08 application
US20060088928A1 (en) 2006-04-27 application
EP1576376A2 (en) 2005-09-21 application
WO2004059287A2 (en) 2004-07-15 application
WO2004059284A3 (en) 2004-11-25 application
US7758809B2 (en) 2010-07-20 grant
EP1579194A2 (en) 2005-09-28 application
US7937228B2 (en) 2011-05-03 grant
EP1573311A4 (en) 2011-12-28 application
EP1579190A4 (en) 2011-12-28 application
US20130217108A1 (en) 2013-08-22 application
WO2004059441A2 (en) 2004-07-15 application
EP1573311A2 (en) 2005-09-14 application
US20060085140A1 (en) 2006-04-20 application
US20140286838A1 (en) 2014-09-25 application
CA2507960A1 (en) 2004-07-15 application
WO2004058404A2 (en) 2004-07-15 application
US8216512B2 (en) 2012-07-10 grant
CA2508113A1 (en) 2004-07-15 application
EP1573312A4 (en) 2011-10-12 application
US20040266015A1 (en) 2004-12-30 application
CN1955711A (en) 2007-05-02 application
US9599630B2 (en) 2017-03-21 grant
WO2004059284A2 (en) 2004-07-15 application
US20140186218A1 (en) 2014-07-03 application
CA2508323A1 (en) 2004-07-08 application
US9040284B2 (en) 2015-05-26 grant
US8529836B2 (en) 2013-09-10 grant
EP1573408A4 (en) 2011-10-12 application
US20140234170A1 (en) 2014-08-21 application
US20060063265A1 (en) 2006-03-23 application
US20120310422A1 (en) 2012-12-06 application
CN1726275A (en) 2006-01-25 application
CA2511032A1 (en) 2004-07-15 application

Similar Documents

Publication Publication Date Title
Cohen et al. An automated system to mount cryo-cooled protein crystals on a synchrotron beamline, using compact sample cassettes and a small-scale robot
McDonald High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling
US4839194A (en) Methods of preparing tissue samples
US5073504A (en) Apparatus and method for immunohistochemical staining
US6673620B1 (en) Fluid exchange in a chamber on a microscope slide
US6691748B1 (en) Container transfer and processing system
US5830413A (en) Device for processing slide-mounted samples
US6586713B2 (en) Apparatus for high quality, continuous throughput, tissue fixation-dehydration-fat removal-impregnation
US4531373A (en) Directional solidification for the controlled freezing of biomaterials
US7395133B2 (en) Environmentally controllable storage system
US6533255B1 (en) Liquid metal-heating apparatus for biological/chemical sample
Snell et al. Automated sample mounting and alignment system for biological crystallography at a synchrotron source
US4745771A (en) Apparatus and method for cryopreparing biological tissue for ultrastructural analysis
US20060081539A1 (en) Structure and method for handling magnetic particles in biological assays
Schwartz et al. Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching
Stumpf Techniques for the autoradiography of diffusible compounds
EP0310399A2 (en) Tissue and like processing
US5231029A (en) Apparatus for the in situ hybridization of slide-mounted cell samples
US6793890B2 (en) Rapid tissue processor
Stock et al. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology
US5958760A (en) Sample processing device with a chamber forming member
Ziese et al. Automated high‐throughput electron tomography by pre‐calibration of image shifts
US20060088928A1 (en) Method and apparatus for automatic staining of tissue samples
US6592824B2 (en) High density protein crystal growth
US6432696B2 (en) Thermal and fluidic cycling device for nucleic acid hybridization

Legal Events

Date Code Title Description
EEER Examination request