CA2473681C - Device of miniaturised construction for producing high pressure in a fluid to be atomised - Google Patents
Device of miniaturised construction for producing high pressure in a fluid to be atomisedInfo
- Publication number
- CA2473681C CA2473681C CA 2473681 CA2473681A CA2473681C CA 2473681 C CA2473681 C CA 2473681C CA 2473681 CA2473681 CA 2473681 CA 2473681 A CA2473681 A CA 2473681A CA 2473681 C CA2473681 C CA 2473681C
- Authority
- CA
- Grant status
- Grant
- Patent type
- Prior art keywords
- valve
- piston
- hollow
- member
- end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
- A61M15/0068—Indicating or counting the number of dispensed doses or of remaining doses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
- A61M15/0068—Indicating or counting the number of dispensed doses or of remaining doses
- A61M15/0081—Locking means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/30—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
- B05B11/3001—Piston pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/30—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
- B05B11/3042—Components or details
- B05B11/3066—Pump inlet valves
- B05B11/3067—Pump inlet valves actuated by pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/30—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
- B05B11/3042—Components or details
- B05B11/308—Means for counting the number of dispensing strokes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/30—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
- B05B11/309—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump the dispensing stroke being effected by the stored energy of a spring
- B05B11/3091—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump the dispensing stroke being effected by the stored energy of a spring being first hold in a loaded state by locking means or the like, then released
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
- F04B53/12—Valves; Arrangement of valves arranged in or on pistons
- F04B53/125—Reciprocating valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0065—Inhalators with dosage or measuring devices
- A61M15/0068—Indicating or counting the number of dispensed doses or of remaining doses
- A61M15/007—Mechanical counters
- A61M15/0071—Mechanical counters having a display or indicator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/75—General characteristics of the apparatus with filters
- A61M2205/7545—General characteristics of the apparatus with filters for solid matter, e.g. microaggregates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/0005—Components or details
- B05B11/0037—Containers
- B05B11/004—Containers with means for compensating for the underpressure created by evacuating the container
- B05B11/0043—Containers with means for compensating for the underpressure created by evacuating the container the container being a collapsible or foldable bag
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B11/00—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
- B05B11/30—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
- B05B11/309—Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump the dispensing stroke being effected by the stored energy of a spring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7908—Weight biased
- Y10T137/7909—Valve body is the weight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7908—Weight biased
- Y10T137/7909—Valve body is the weight
- Y10T137/7913—Guided head
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7904—Reciprocating valves
- Y10T137/7908—Weight biased
- Y10T137/7909—Valve body is the weight
- Y10T137/7913—Guided head
- Y10T137/7915—Guide stem
- Y10T137/7916—With closing stop
Abstract
Description
DEVICE OF MINIATURISED CONSTRUCTION FOR PRODUCING HIGH PRESSURE IN A'FLUID
TO BE ATOMISED.' The invention relates to a device for producing high pressure in a fluid.
It comprises a piston which is movable in a cylinder, and a valve. both preferably of miniaturised construction. The invention further relates to a' high pressure atomiser which contains this device, and the use thereof.
preferably for medicinal purposes.
One aim of the invention is to enable a device of this kind and the atomiser containing the device to be made simpler in design and cheaper to produce and suited to its function.
In liquid chromatography (HPLC), for example.. generally relatively small quantities of liquid are conveyed at high pressure through the separating column. Moreover, in medicinal aerosol therapy, aerosols are obtained. by atomising or nebulising liquid drugs for treating diseases of the respiratory tract in humans or for treating asthmatic conditions. Here again, a high pressure is required in a, generally relatively small, quantity of fluid in order to produce the small droplet size needed for the aerosol. In the metered dose inhaler according to US Patent 5497944, a predetermined volume ofa fluid is sprayed through a nozzle with a small aperture under a pressure of between and 40 MPa (about 50 to 400 bar) to produce an aerosol. The present invention is particularly applicable to such metered dose inhalers and similar devices.
According to one aspect of the invention there is provideda device.
preferably of miniaturised construction, for producing high pressure in a fluid.
comprising a piston which is movable, in a cylinder, a high pressure chamber which is located in front of the piston inside the cylinder, and a valve, which device includes a cylindrical hollow piston, a valve member which is guided by the hollow piston and is mounted so as to be axially movable against the hollow piston, a stop means on the hollow piston which holds the valve member to the hollow piston and a defined (predetermined) sealing surface at the inlet end of the valve member, the valve member generally being restrained from rotation about any axis transverse to the piston axis.
According to another aspect of the invention, there is provided a device for producing high pressure in a fluid, preferably of miniaturised construction, comprising a cylinder, a hollow cylindrical piston which is movable in the cylinder and provides a path for fluid therethrough, a high pressure chamber which is located in front of the piston inside the cylinder and which is supplied with fluid through said path, and an inlet valve in said fluid path which moves with the piston but is also capable of limited guided movement along the piston axis between a closed position in contact with a valve seat provided by the piston and an open position spaced from the valve seat, the valve member being so shaped and guided that it cannot rotate about any axis transverse to the piston axis such that a predetermined surface thereof engages the seat.
in US Patent 5497944, there is described and shown a similar device in which the check valve member is a ball. With such an arrangement, the ball can rotate during multiple operations. It has been found that wear and distortion under the high pressure involved can permanently deform the ball so that if a different part of its surface is used during sequential closing and sealing operations (because the ball is free to rotate about a transverse axis) there is a tendency for leakage to occur. This can be avoided by using the same surface of the valve member each, time thus allowing bedding down to ensure the desired seal. In the preferred arrangement according to the invention. at least a major part of the valve member is cylindrical and is guided in a chamber (which may, for example. be the pump chamber itself or may be part of the interior of the piston) and the valve member cylinder has an end surface which co-operates with the valve seal provided by the piston.
Another disadvantage of a ball valve which can be avoided using the invention is that that transverse area of the valve is necessarily considerably smaller than the diameter of the ball and thus the guide cylinder in which it moves: this leads to a reduction in the force applied by the valve member to the valve seat arising from fluid pressure generated during the pressure stroke (forward movement) of the piston. A high application force of the valve member is desirable to slightly elastically deform the valve member and and/or the valve seat to close any slight gaps between them.
In the specification which follows, the terms inlet and outlet side or inlet and outlet end are used in relation to the main direction of flow of the fluid within the device. The term fluid includes both gases and liquids but the present invention is mainly concerned with liquids.
The valve member is somewhat displaceable against the hollow piston but it moves substantially with the hollow piston.
The valve member is preferably uniaxially rotationally symmetrical in shape. e.g. it is a circular cylinder or a frustum. Its cross-section is somewhat smaller than the cross-section of the chamber in which the valve member is movably mounted. This is achieved by means of one or more channels preferably extending in the outer surface of the cylindrical valve member, or by a somewhat smaller diameter of the valve member in relation to the diameter of the chamber in which the, valve member is movably mounted.
The valve member is guided in the chamber in which it is movably mounted: a cylindrical valve member can rotate about its axis as required, but its axis always remains parallel to the axis of the hollow piston. This produces a defined sealing surface at the inlet end of the valve member.
The distance over which the valve member can travel relative to the hollow piston is limited by a stop or stop means which holds the movable valve member together with the hollow piston.
In some embodiments of the invention wherein the stop is beyond the outlet end of the valve member. there may need to be at least one recess in the region of the outlet end of the valve member to enable the fluid to flow through between the stop and the valve member when the valve is open. The or each recess is located either in the valve member at the outlet end thereof or in the stop in the hollow piston.
In the position where the valve member abuts on the stop of the hollow piston, the valve is opened. In the position where the valve member abuts on the defined sealing surface, the valve is closed. .
A valve member arranged inside the hollow piston has virtually no friction against the inner wall of the hollow piston. A valve member arranged directly in front of the end of the hollow piston may possibly rub against the wall of the main pump cylinder of the device. In this case, the valve is actively closed and opened as the hollow piston moves, on account of the.
friction between the valve member and the cylinder wall.
The cylinder preferably consists of plastics and the hollow piston of metal or plastics. The material for the valve member is selected, in terms of its hardness, to complement the hardness of the material for the hollow piston and may be metal, ceramics, glass, gemstone, plastics or elastomer. The valve member is preferably manufactured in one'piece.
When the fluid is sucked in, the high pressure chamber is connected' to the fluid supply by means of the hollow piston. During the intake stroke of the hollow piston the fluid flows through the. hollow piston and past the valve member into the high pressure chamber of the cylinder.. During ' the exhaust stroke of the hollow piston the valve seat is sealed in high pressure tight manner against the defined sealing surface of the valve member.
The device according to the invention for producing high pressure in a fluid is connected to the fluid supply at its inlet end. The high pressure chamber is connected to another device into which or through which the fluid is conveyed under high pressure. The hollow piston or the cylinder is attached to a drive which brings about relative movement between the hollow piston and cylinder and which applies the force required to generate the high pressure.
In the first embodiment, the cylindrical valve member may be guided.
and mounted in axially movable manner directly in front of the end of the hollow piston, the diameter of the valve member being substantially equal to the internal diameter of the cylinder. On the outside, near its outlet end.
the hollow piston has an encircling, preferably turned or shaped groove as a stop member, into which a plurality of snap hooks on the valve member engage.
Instead of the groove, the hollow piston may have at its outlet end a shaped taper with an encircling, outwardly funnel-shaped edge. The outer diameter of the hollow piston at its outlet end is greater than the base diameter of the groove and less than the diameter of the cylinder. Instead of the encircling groove, the outlet end of the hollow piston may be provided on the outside, at several, preferably 2 diametrically opposed points, with flattened areas which form a step to act as a stop means. The flat end of the hollow piston provides a valve seat cooperating with a defined flat sealing surface on the inlet side of the valve member. The outer edge at the end of the hollow piston may be chamfered.
In the second embodiment, the cylindrical valve member may be guided and movably mounted directly in front of the end of the hollow piston, the diameter of the valve member being substantially equal to the internal diameter of the cylinder. The end of the hollow piston is shaped inwardly to provide an inturned lip and acts as a stop means. On the valve member,is mounted a coaxial, undercut, mushroom-shaped peg the snap hooks of which engage behind the shaped edge of the hollow. piston. The defined sealing surface which extends around the peg rests on the outlet end of the piston on the edge of the lip.
In the third embodiment, the preferably cylindrical valve member may be mounted so as to be fully movable inside the hollow piston. The outlet end of the hollow piston has an internal diameter greater. than the internal diameter of the remainder of the hollow piston. The length of this widened portion of the hollow piston is somewhat greater than the length of the valve membei.
The diameter of the valve member is substantially equal to the inner diameter at the widened end of the hollow piston. The outlet end of the hollow piston is shaped inwardly to form a lip either over its entire periphery or over a part of its periphery and acts as a stop which holds the valve member inside the hollow piston. The base of the widened portion which forms the valve seat may be flat or conical. A fluid flow recess in the outlet side the valve member may, for example, take the form of a stepped channel. A fluid flow recess in the stop may be constructed, for example. as an indentation in the Iip edge.
In a variant of this embodiment, the valve member may be arranged totally inside the hollow piston at the inlet end thereof. The stop will then be located at the outlet end of the widened portion and the defined sealing surface will then be on the shaped edge at the inlet end of the hollow piston.
In the fourth embodiment. the hollow piston consists of a thin-walled tube which is shaped at its end projecting into the cylinder and is provided with an encircling constriction at the end of the space allowed for the valve member. The cylindrical valve member is guided and movably mounted in the space between the shaped edge and the encircling constriction. Another thick-walled tube may be pushed into the inlet end of the hollow piston, its outer diameter being equal to the inner diameter of the hollow piston, and this thick-walled tube further being fixedly. connected to the hollow piston and preferably extending approximately up to the encircling constriction in the hollow piston. The thick-walled tube acts as a displacement. member and makes it easier for the fluid to be sucked into the high pressure chamber virtually without pressure being applied. The thick-walled tube, is preferably made of plastics.
In a variant of this embodiment, the valve member may be mounted fully inside the hollow piston at the inlet end thereof. The stop is then located at the encircling constriction and the defined sealing surface is located at the shaped edge at the inlet end of the hollow piston.
In the fifth embodiment, the hollow piston comprises a thin-walled tube which contains a thick-walled tube the outer diameter of which is equal to the inner diameter of the hollow piston, and which is fixedly connected to the hollow piston. The thick-walled tube functions as a displacement body and makes it easier for the fluid to be sucked in virtually without pressure being applied.
The inlet end of the hollow piston is widened. At the widened -end. the hollow piston is fixedly connected to a closure member the outer diameter of which is greater than the outer diameter of the widened inlet end of the hollow piston. The closure member contains a depression which is open on its side _8_ facing the widened end of the hollow piston. In,the base of the depression is an opening acting as an inlet for the fluid. The base of the depression may be conical or flat; it forms the defined sealing surface.
The valve member is arranged in the depression in the closure member. it is guided so as to be axially movable 'in the depression. The external diameter of the valve member is smaller than the internal diameter of the depression, but preferably greater than the internal diameter of the hollow piston in that part of it which projects into the cylinder. The valve member may contain, at its outlet end, at least one recess through which the fluid flows into the high pressure chamber during the intake stroke of the hollow piston.
The stop for the valve member is preferably the end of the displacement body which projects into the widened portion of the hollo=.v piston, or - if the end ' of the displacement body is located in the unwidened portion of the, hollow piston - the transition from the unwidened portion of the hollow piston into the widened inlet end thereof.
The hollow piston with the widened inlet end preferably consists of metal. The displacement body and closure member are preferably made of plastics. The valve member may be made of plastics or metal.
Of particular significance is the use of the device according to the invention for producing high pressure in a fluid in an atomiser (nebulizer) for propellant-free spraying of the fluid.
According to another aspect of the invention, there is provided an atomiser for spraying a fluid, consisting of an upper housing part, a pump housing, a nozzle, a blocking mechanism, a spring housing, a spring and a supply container. characterised by a pump housing fixed in the upper housing part which has at one end a nozzle member with the nozzle.
a. hollow piston with valve member, a drive flange in which the hollow piston ',is secured and which is located in the upper housing part, a blocking mechanism located in the upper housing part.
a spring housing with the spring located therein, which is rotatably mounted by means of a rotary bearing on the upper housing part.
a lower housing part which is fitted onto the spring housing in the axial direction.
Further preferred features of the atomiser will now be described. The atomiser is preferably a metered dose inhaler.
The hollow piston with valve member preferably corresponds to one of the devices according to the invention mentioned hereinbefore. It.-projects partially into the cylinder of the pump housing and is mounted in axially movable manner in the cylinder. The hollow piston with valve member exerts a pressure of 5 to 60 MPa (about 50 to 600 bar), preferably 10 to 60 M.Pa (about 100 to 600 bar) on the fluid at its high pressure end at the moment of release of the spring.
The nozzle in the nozzle member is preferably microstrucwred, ie.
produced by microtechnology. Microstructured nozzle members are disclosed.
for example, in US Patent 5472143.
The nozzle member consists, for example. of two plates of glass and/or , silicon firmly joined together, of which at least one plate has one or more microstructured channels which connect the nozzle inlet end to the nozzle outlet end. At the nozzle outlet end is at least one circular or non-circular opening less than or equal to 10 m in size. Size in this connection refers to hydraulic diameter. Hydraulic diameters in this type of apparatus are generally less than 100 micrometres preferably 1-20 micrometres.
The directions of spraying of the nozzles in the nozzle member may run parallel to one another or may be inclined relative to one another. In a nozzle member having at least two nozzle openings at the outlet end. the directions of spray may be inclined relative to one another at an angle from 20 to 160*, preferably at an angle from 60 to 150'. The directions of spraying meet in the vicinity of the nozzle openings.
In the pump housing, a non-return valve with or without spring bias may be provided between the nozzle opening and the high pressure chamber of the cylinder. This non-return valve closes off the high pressure chamber in the resting state of the atomiser, protects the fluid from the entrance of air and may if necessary prevent volatile components of the fluid from evaporating out of the pump housing. The non-return valve opens automatically as soon as the pressure of the fluid in the high pressure chamber exceeds a minimum value and the current of fluid is created. it closes automatically as soon as the current of fluid is exhausted. The non-return valve may be, for example, a ball valve. It may also consist of a flexible plate which is clamped on one side and rests like a flap on the outlet end of the high pressure chamber. In another embodiment it may consist of a disk of preferably flexible material, clamped all the way round, pierced by a pin.
The pierced hole allows the current of fluid to pass through to the nozzle as soon as the pressure in the fluid exceeds a minimum value. After the current of fluid is exhausted, the pin hole closes up again.
The valve member is preferably mounted at the end of the cylinder facing the nozzle member.
-li-The blocking or latching mechanism has a spring, preferably a cylindrical helical compression spring, as a store for mechanical energy. The spring acts on the driven flange as a jumping member the movement of which is determined by the position of a blocking member. The path of travel, of the driven flange is precisely defined by an upper and lower stop:. The spring is preferably tensioned by an external torque via a force stepping-up, device. -eg.
a helical sawtooth thrust cam, the force being generated as the. upper housing part rotates counter to the spring housing in the lower housing part. In this case. the upper housing part and the driven flange comprise a single or multiple sawtooth wedge arrangement.
Mechanisms of this general type are disclosed. in US Patent 4260082 and GB Application 2291135.
The blocking member with engaging blocking surfaces is arranged in, an annular configuration around the driven flange. It consists. for example.
of a plastics or metal ring which in one form is inherently radially resiliently deformable. The ring is arranged in a plane at right angles to the atomiser axis. After the biassing of the spring, the blocking surfaces of the blocking member move into the path of the driven flange and prevent the spring from being released. The blocking member is actuated by a button. The actuating button is connected or coupled to the blocking member. In order to actuate the blocking mechanism the actuating button is pushed parallel to the plane of the ring. preferably into the atomiser; the deformable ring is thereby deformed in the plane of the ring to release the flange for movement by the spring.
The preferred blocking member and spring are described and shown in German Patent No. 195452267 in the name of Boehringer Ingelheim International GmbH.
The atomiser optionally contains a mechanical counter comprising a screw threaded spindle which is mounted on the spring housing. The axis of the spindle extends in the region of the outer surface parallel to the axis of the atomiser. The spindle is mounted, in the region of its ends, by means of a rotary bearing on the spring housing. The spindle has teeth at the end,closest to the upper housing part. On the edge of the upper housing part is at least one cam which engages in the teeth at the end of the spindle when the two housing parts are rotated relative to one another. A slider with rotation prevention means is mounted on the spindle and engages its threads.
The preferred counter is described and ' shown in German .Patent No. 19549033 in the name of Boehringer Ingelheim International GmbH.
The lower housing part is pushed axially over the spring housing and covers the mounting, the drive of the spindle and the storage container for the fluid. The position of the slider is visible through a recess in the lower housing part and can be read off on a scale, eg. on the lower housing part..
When the atomiser is actuated the upper housing part is rotated relative to the lower housing part. the lower housing part carrying the spring housing with it. The spring meanwhile is compressed and biassed by means of the helical thrust cam, and the blocking mechanism engages automatically. The angle of rotation is preferably a whole-number fraction of 360 , eg. 180 .
At the same time as the spring is biassed, the driven pan in the upper housing part is moved a certain distance, the hollow piston is retracted inside the cylinder in the pump housing, as a result of which some of the fluid is sucked out of the storage container into the high pressure chamber in front of the nozzle.
By means of the gears, which consist of a piston on one end of the spindle and a rack or racks on the edge of the upper housing part. the relative movement of the two housing parts is picked up 'and converted into a rotary movement of the spindle and displacement of the slider on the spindle. On each actuation of the atomiser, the slider is moved a certain distance along the spindle.
The position of the slider indicates what proportion of. the fluid to' be atomised has already been taken from the storage container and how much is still available. The slider on the spindle can be reset if necessary by means of a resetting lug.
If desired, a plurality of (preferably collapsible) replaceable storage containers holding the fluid which is to be atomised can be inserted into the atomiser one after another and used. The storage container is not pressurised or substantially not pressurised. The pressure ' of the fluid in the storage container is in any case substantially lower than the pressure generated in the high pressure chamber by the mechanically operated atomiser.; The storage container contains, for example, a fluid containing a drug.
A suitable container with a dimensionally stable outer part and an inner part collapsible as the liquid therein is removed as disclosed in US Patent 5316135.
The atomising process is started by gently pressing the actuating button. The blocking mechanism then opens up a path for the driven part to move. The biassed spring pushes the piston into the cylinder of the pump housing. The. fluid leaves the nozzle of the atomiser in spray form.
The components of the atomiser are made of a material which is suitable for the function. The housing of the atomiser and. insofar as function allows, other parts are preferably made of plastics, eg. by injection moulding.
For medicinal purposes, physiologically acceptable materials are used.
The. atomiser according to the invention is used, for example. for propellant-free production of medicinal aerosols. An inhalable aerosol with a mass average particle (droplet) size of about 5 um can be produced thereby.
These small particles (average size less . than 12 m) are necessary for penetration right down into the lungs. The amount discharged is preferably about 15 microlitres.
The following active substances are mentioned by way of example of pharmaceutical compositions in the form of aqueous or ethanolic solutions, depending on the solubility of the active substance: berotec. berodual, tiunisolide. atrovent, salbutamol, budesonide, combivent. tiotropium. oxivent and suitable peptides.
The solutions may also contain pharmaceutically acceptable excipients.
The preferred device according to the invention for producing high pressure in a fluid and the preferred atomiser containing this device have the following advantages:
The device contains a valve which operates without any auxiliary force (produced by a spring) and closes as a result of the flow resistance of the fluid on the valve member or as a result of the friction on the cylinder wall.
- The valve is tight against a pressure generally above 3 MPa (30 bar).
The valve member is made in one piece: it is easy to manufacture and assemble.
The valve closes very rapidly owing to the short distance travelled by the valve member to reach the defined sealing surface.
The valve has a high sealing action.
As a result of the guiding of the uniaxially rotationally symmetrical valve member, a defined sealing surface is produced which is high pressure tight through a very large number of cycles of movement of the hollow piston.
The dead space of the high pressure chamber can be kept extremely small.
The atomiser can be operated safely and easily even by untrained persons, both to bias the spring and to actuate the atomising process.
- The atomiser works without propellant' gas and Js therefore environmentally friendly.
The storage container for the fluid is not pressurised or substantially not pressurised.
The movement of the blocking member is automatically coupled. by a simple method, to the rotary movement for biassing the spring.
In a preferred embodiment the atomiser .consists of low-wear purely mechanical components and operates reliably over long periods.
Owing to the defined abutments for the driven part the metering of the fluid is very accurate.
The atomiser can be manufactured cheaply and assembled easily.
The mechanical counter is automatically advanced as the atomiser is actuated: it is uncritical of tolerance. easy to assemble and operates safely and reliably.
= The counter is inaccessible when the atomiser is used properly and cannot be falsified by accident.
The counter can be adapted to any number of releases of fluid from the storage container and to different overall numbers of storage containers to be used with one atomiser.
The counter is integrated..in the atomiser and does not take up any additional space.
No substances can pass from the counter into the substance which is to be atomised.
- 15a -In accordance with a further aspect of the present invention, there is provided a device for pressurizing fluid, comprising: a cylinder; a cylindrical hollow piston movable in said cylinder and providing a path for fluid therethrough, wherein an inlet end or an outlet end of said hollow piston includes a widened portion, an inner diameter of said widened portion being greater than the inner diameter of the remainder of said hollow piston, and wherein said inlet end or said outlet end includes an inwardly shaped edge; a valve seal provided by said piston; a high pressure chamber inside said cylinder; and a valve operating without any auxiliary force, said valve including, a uniaxially rotationally symmetrical valve member including a sealing surface at an inlet end of said valve member to cooperate with said valve seal, said valve member being guided inside said widened portion of said hollow piston, wherein the diameter of said valve member is less than said inner diameter of said widened portion and is greater than said inner diameter of the remainder of said hollow piston, such that said valve member does not extend into the remainder of said hollow piston, stop means provided at an outlet end of said widened portion to hold said valve member inside said hollow piston, a recess in said stop means or a recess or radially extending indentation in said valve member at an outlet end thereof, wherein said valve is closed when said valve member abuts said valve seal and said valve is open when said valve member abuts said stop means.
Preferred embodiments of the invention will now be described by way of example with reference to the drawings in which:-Figs la, lb and Ic are respectively a long .itudin'l section of a first embodiment of a pump for producing high pressure in a fluid according to the invention, an oblique view of its hollow piston and an oblique view of its valve member;
Figs 2a, 2b and 2c are similar views of a second embodiment;
Figs 3a. 3b and 3c are similar views of a third embodiment;
Figs 4a, 4b and 4c are similar views of a fourth embodiment;
Figs 4d, 4e and 4f are similar views of a modification of the fourth embodiment;
Fig 5 is a longitudinal section of a fifth embodiment; and Figs 6a and 6b are longitudinal cross-sections of a metered dose inhaler according to the invention in different operative conditions.
The various embodiments of the pump device have already been described above in general terms but these descriptions will now be supplemented with further description with reference to the drawings.
Figure la shows a longitudinal section, viewed obliquely, through the first embodiment of the device according to the invention for producing high pressure in a fluid. In the cylinder (1) is the hollow piston (2) with the coaxial bore (7) and the valve member (3) in the partly open position of the valve. Between the bottom of the valve member (3) and the end of the cylinder is the high pressure chamber (4). The high pressure chamber is closed off by another component (not shown). Mounted on the hollow piston, outside the cylinder, is a device (not shown) by means of which the hollow piston can be displaced inside the cylinder.
Figure lb shows the hollow piston (2) viewed obliquely. The end of the hollow piston facing the valve member is provided with a groove (5) which is bounded, at its end facing the valve member, by a rectangular section annular land forming a step (8) the diameter of which is less than the external diameter of the hollow piston (2) and greater than the base diameter of the groove. The front edge at the end of the hollow piston may be chamfered.
Figure lc shows the valve member (3) viewed obliquely. It has. for example, three channels (9) on its outer surface to facilitate fluid flow when the valve is open. Mounted on the valve member (3), on its side facing the hollow piston, are, for example, three snap hooks (6) the width of which, in the direction of the circumference of the valve member, is less than a third of this circumference. The snap hooks (6) are shorten in the axial direction than the length of the, for example, grooved end of the hollow piston.
During assembly, the valve member (3) is placed on the end of the hollow piston (2), and the ends (10) of hooks (6) slide into the groove. The hollow piston together with the valve member is then pushed into the cylinder.
When the valve is open, the inner edge of the hooks (10) abut on the step (8). When the valve is closed, the base of the valve member (3) facing the hollow piston fits tightly on the end of the hollow piston (2) which acts as the defined sealing surface.
In order to take in the fluid, the hollow piston is lifted partly out of the cylinder, whereupon the valve automatically opens. The fluid flows through the bore (7) in the hollow piston and past the valve member into the high pressure chamber (4). In order to expel the fluid, the hollow piston (2) is pushed into the cylinder (1), whereupon the valve closes automatically.
virtually instantly, and high pressure is generated in the fluid.
Figure 2a shows the second embodiment of the device according to the invention for producing high pressure ' in a fluid as a longitudinal section viewed obliquely. In the cylinder (1) is the hollow piston (11) and the valve member (13) in the partly open position of the valve.
Figure 2b shows a longitudinal section through the hollow piston (11) with the shaped outlet end (12) of the hollow piston. A displacement body (26) may be fixedly located in the hollow piston.
Figure 2c shows the valve member (13) as a longitudinal section viewed obliquely. Mounted on the valve member is a coaxial, undercut peg (14) the projecting end of which engages behind the shaped edge (12) of the hollow piston. The end (15) of the peg facing the hollow piston may be chamfered. The peg may have an indentation or bore (16) extending in the axial direction and possibly longitudinal slots extending upwards from the end (15) thus forming snap hooks so that the peg can be pushed into the shaped end of the hollow piston, thereby engaging behind the shaped edge.
Figure 3a shows the third embodiment of the device according to the invention for producing high pressure in a fluid in longitudinal section viewed obliquely. In the cylinder (1) is the hollow piston (17) and the valve member (18) in the closed position of the valve.
Figure 3b shows a longitudinal section viewed obliquely through the hollow piston (17) with the shaped end (19). At the outlet end of the hollow piston is the widened portion or hollow chamber (20) in which the valve member (18) is guided and mounted in axially movable manner. The inlet end of the widened portion (20) is chamfered or flat.
Figure 3c shows the cylindrical valve member (18) in longitudinal section viewed obliquely. Both ends of the valve member are planar and are located perpendicularly to the axis of the valve member. The valve member (18) contains, for example. four stepped channels or flats (21) on its outer surface to facilitate fluid flow past the shaped end (19), i.e. the inturned lip, when the valve is open, the ends of the channels (21) being radially inward of the lip. The edge of the valve member (18) which abuts on the inclined base of the hollow chamber (20) may be chamfered.
The diameter of the valve member (18) is less than the diameter of the widened portion (20) so that the valve member (18), can move virtually without friction in the widened portion (20).
For assembly, the valve member (18) is pushed into the widened portion (20) before the outlet end (19) of the hollow piston is shaped.
Figure 4a shows the fourth embodiment of the device according to the invention for producing high pressure in a fluid in longitudinal section viewed obliquely. In the cylinder (1) are the hollow piston (22) and the valve member (23) in the closed position of the valve. The diameter of the valve member is less than the inner diameter of the hollow piston.
Figure 4b shows a longitudinal section. viewed obliquely, through the hollow piston (22) with the shaped outlet end (24) forming an inturned lip and the encircling constriction (25). The thick-walled tube (26) acting as the displacement body may be pushed into the hollow piston (22) and secured therein.
Figure 4c shows the valve member (23) in oblique view. At the outlet end of the valve member is a radially extending indentation (27) in the form of a transverse slot to facilitate fluid flow when the valve is open.
Figure 4d shows an alternative to the fourth embodiment in longitudinal section, viewed obliquely. In the cylinder (1) is the hollow piston (28), optionally with the displacement body (26), with the valve in the closed position. The diameter of the valve member (29) is less than the internal diameter of the hollow piston.
Figure 4e shows a longitudinal section, viewed obliquely, through the hollow piston (28) with the shaped outlet end (24) and the encircling constriction (25). At least one indentation (30) in the form of a recess or notch is provided on the shaped outlet end (24) to facilitate fluid flow when the valve is open. Instead of the indentation there may be a convexity.
Figure 4f shows the valve member (29) in oblique view. In,this case, the valve member is a straight cylinder with no recesses.
Figure 5 shows the fifth embodiment of the device according to the invention for producing high pressure in a fluid, in longitudinal section and viewed .obliquely. In the cylinder (1) is the hollow piston (31) which contains the displacement body (32). Mounted on the cylindrically widened inlet end (33) of the hollow piston is the closure member (34) with the depression (35) and bore (36). - In the indentation is the guided, axially movable valve member (37) which may be provided at its outlet end with a slot (38) as recess.
The embodiments of the device according to the invention for producing high pressure in a fluid shown in Figures 2a to 5 work in.the same way as has already been explained with reference to Figure Ia.
Figure 6a shows a longitudinal section through the preferred atomiser described in detail above with the spring biassed and Figures 6b. shows a longitudinal section through the atomiser with the spring released:
The upper housing part (51) contains the pump housing (52) on the end of which is mounted the holder (53) for the atomiser nozzle. This holder is preferably as described in German Patent No. 19536903.
In the holder is the nozzle member (54) and a filter (55). The hollow piston (57) fixed in the cup-shaped drive flange (56) of the blocking mechanism (62) partly projects into the cylinder of the pump housing. At its end the hollow piston carries the valve member (58). The hollow piston is sealed off by the seal (59). Inside the upper housing part is the annular abutment (opposite annular ridge (60) on the flange) on which the flange rests when the spring is released. On the axial end of the cup-shaped driven flange is the abutment (61) by which the driven flange is- held when the spring is biased. After the biassing of the spring, the generally annular blocking member (62) moves between the abutment (61) and a support (63) in the upper housing part, either because of its own elasticity or (when it is more rigid) by virtue of an external spring (not shown). The actuating button (64) is connected to the blocking member and can either move it bodily or deform it.
so that it releases the abutment (61). The upper housing part terminates in the mouth piece (65) and is closed off by the protective cap (66) which can be fitted thereon.
The spring housing (67) with compression spring (68) is rotatably mounted on the upper housing part by means of the snapping lug (69) and rotary bearing. The lower housing part (70) is pushed over the spring housing and rotates with it to operate the helical sawtooth cam drive (not shown) for cocking the atomiser (moving it from the Fig 6b 'position to the Fig 6a condition). Inside the spring housing is the replaceable storage container (71) for the fluid (72) which is to be atomised. The storage container is fitted with a stopper (73) through which the hollow piston projects into the storage container and dips its end into the fluid.
Mounted in the outer surface of the spring housing is the spindle (74) for the mechanical counter. At the end of the spindle facing the upper housing part is the drive pinion (75). The slider (76) sits on the spindle.
The embodiments shown in the drawings may be varied further. The components may be used together in a manner other than that shown in the drawings.
Example 1: Miniaturised device for producing high pressure for a medicinal atomiser The valve area of a medicinal atomiser according to Figure la consists of a cylinder made of polybutylene- terephthalate with an internal diameter of 1.6 mm and an external diameter of 5 mm. The high pressure chamber is closed off by a nozzle carrier plate. In this plate is a nozzle -20 m in diameter and the nozzle channel is 2 mm long.
A metal hollow piston with an external diameter of 1.59 mm and a bore 0.35 mm in diameter is pushed into the cylinder. The hollow piston can be pushed 50 mm into the cylinder and its stroke is 12 mm long. The hollow piston has an encircling turned groove 4 mm wide with a base diameter of 0.75 mm. The groove is bounded by a 4.0 mm long step with a diameter, , 1. 15 mm. The outer edge of the turned end of the hollow piston is chamfered.
The valve member made of polybutyleneterephthalate consists of a 2 mm thick disk 1.59 mm in diameter and 3 snap hooks. Three semi-cylindrical channels 0.4 mm in diameter are provided as recesses on the outer surface of the disk. The snap hooks project 6 mm from the disk and the inner edge of the hooks is 4.2 mm away from the disk. The valve member may thus be moved axially 0.2 mm relative to the hollow piston.
The delivery volume is 23.4 mm3. The pressure in the fluid is about 32 MPa (320 bar).
This atomiser is used to atomise or nebulize liquid pharmaceuticals for medicinal aerosol therapy. The atomiser delivers the drug in the required dose on each actuation.
Example 2: Miniaturised device for producing high pressure for a cosmetic atomiser The valve area of a cosmetic atomiser corresponding to Figure 3a consists of a cylinder of polyetherether-ketone with an internal diameter of 2.5 mm and an outer diameter of 8 mm. The high pressure chamber is closed off by a nozzle carrier plate. In this plate is a nozzle 25 ;cm in diameter with a nozzle channel 2 mm long.
A hollow piston of reinforced plastics with an external diameter of 2.48 mm and a bore 0.5 mm in diameter is pushed into the cylinder. , The hollow piston can be pushed 45 mm into the cylinder and its stroke is 24 mm.
The hollow piston is drilled out to an internal diameter of 1.85 mm over a length of 5.0 mm at its outlet end. The base of the drilled-out chamber in the hollow piston is chamfered. The outlet end of the hollow piston is thermally deformed.
The valve member is a cylinder of polypropylene which is 3.0 mm high and 1.6 mm in diameter. Four stepped channels are provided as recesses in the outer surface. The valve member can be displaced axially about 0.5 mm inside the hollow piston.
The delivery volume is about 116 mm'. The pressure in the fluid is about 3 MPa (30 bar).
This atomiser is used to, atomise a hair spray.
Claims (15)
a cylinder;
a cylindrical hollow piston movable in said cylinder and providing a path for fluid therethrough, wherein an inlet end or an outlet end of said hollow piston includes a widened portion, an inner diameter of said widened portion being greater than the inner diameter of the remainder of said hollow piston, and wherein said inlet end or said outlet end includes an inwardly shaped edge;
a valve seal provided by said piston;
a high pressure chamber inside said cylinder; and a valve operating without any auxiliary force, said valve including, a uniaxially rotationally symmetrical valve member including a sealing surface at an inlet end of said valve member to cooperate with said valve seal, said valve member being guided inside said widened portion of said hollow piston, wherein the diameter of said valve member is less than said inner diameter of said widened portion and is greater than said inner diameter of the remainder of said hollow piston, such that said valve member does not extend into the remainder of said hollow piston, stop means provided at an outlet end of said widened portion to hold said valve member inside said hollow piston, a recess in said stop means or a recess or radially extending indentation in said valve member at an outlet end thereof, wherein said valve is closed when said valve member abuts said valve seal and said valve is open when said valve member abuts said stop means.
an encircling constriction near said inwardly shaped edge of said hollow piston, wherein said valve member is guided and mounted in an axially movable manner inside said hollow piston between said inwardly shaped edge and said encircling constriction; and a recess in the region of said outlet end of said valve member.
a tube disposed in a portion of said hollow piston other than said widened portion, a closure member disposed at said widened portion, said closure member being connected to said widened portion and containing a flat or conical depression with a bore, and a slot provided at said outlet end of said valve member as a recess or a notch.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995136902 DE19536902A1 (en) | 1995-10-04 | 1995-10-04 | Apparatus for generating high pressure in a fluid in miniature version |
DE19536902.5 | 1995-10-04 | ||
CA 2232151 CA2232151C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2473681A1 true CA2473681A1 (en) | 1997-04-10 |
CA2473681C true CA2473681C (en) | 2010-12-14 |
Family
ID=7773961
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2551891 Expired - Lifetime CA2551891C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
CA 2551999 Expired - Lifetime CA2551999C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
CA 2232151 Expired - Lifetime CA2232151C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
CA 2473681 Expired - Lifetime CA2473681C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2551891 Expired - Lifetime CA2551891C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
CA 2551999 Expired - Lifetime CA2551999C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
CA 2232151 Expired - Lifetime CA2232151C (en) | 1995-10-04 | 1996-10-04 | Device of miniaturised construction for producing high pressure in a fluid to be atomised |
Country Status (11)
Country | Link |
---|---|
US (7) | US5964416A (en) |
EP (2) | EP1214985B1 (en) |
JP (5) | JP3488717B2 (en) |
KR (1) | KR100431011B1 (en) |
CN (1) | CN1091660C (en) |
CA (4) | CA2551891C (en) |
DE (5) | DE19536902A1 (en) |
DK (2) | DK0853501T3 (en) |
ES (2) | ES2201204T3 (en) |
RU (1) | RU2179075C2 (en) |
WO (1) | WO1997012687A1 (en) |
Families Citing this family (227)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051256A (en) | 1994-03-07 | 2000-04-18 | Inhale Therapeutic Systems | Dispersible macromolecule compositions and methods for their preparation and use |
DE19536902A1 (en) * | 1995-10-04 | 1997-04-10 | Boehringer Ingelheim Int | Apparatus for generating high pressure in a fluid in miniature version |
DE19545226C1 (en) | 1995-12-05 | 1997-06-19 | Boehringer Ingelheim Int | Locking stressing mechanism for a spring actuated output drive |
US20030215396A1 (en) * | 1999-09-15 | 2003-11-20 | Boehringer Ingelheim Pharma Kg | Method for the production of propellant gas-free aerosols from aqueous medicament preparations |
DE19653969A1 (en) * | 1996-12-20 | 1998-06-25 | Boehringer Ingelheim Kg | New aqueous pharmaceutical preparation for producing propellant-free aerosols |
US20030203036A1 (en) | 2000-03-17 | 2003-10-30 | Gordon Marc S. | Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients |
DE19708143A1 (en) * | 1997-02-28 | 1998-09-03 | Itt Mfg Enterprises Inc | Piston for radial pump for motor vehicle brake system |
DE19733651A1 (en) * | 1997-08-04 | 1999-02-18 | Boehringer Ingelheim Pharma | Aqueous aerosol preparations containing biologically active macromolecules and methods for producing corresponding aerosols |
US20060239930A1 (en) * | 1997-08-04 | 2006-10-26 | Herbert Lamche | Process for nebulizing aqueous compositions containing highly concentrated insulin |
DE19742439C1 (en) | 1997-09-26 | 1998-10-22 | Boehringer Ingelheim Int | Fluid micro-filter |
US7963955B2 (en) * | 1998-02-27 | 2011-06-21 | Boehringer Ingelheim International Gmbh | Container for a medicinal liquid |
DE19808295A1 (en) | 1998-02-27 | 1999-11-11 | Boehringer Ingelheim Int | Container for a medical liquid |
DE19847968A1 (en) | 1998-10-17 | 2000-04-20 | Boehringer Ingelheim Pharma | Separate storage of an active material and a solvent comprises a closure cap and a container, with a chamber attached to the unit. |
DE19851404A1 (en) | 1998-11-07 | 2000-05-11 | Boehringer Ingelheim Int | Pressure relief device for a double container |
DE19940713A1 (en) | 1999-02-23 | 2001-03-01 | Boehringer Ingelheim Int | Diffusion resistant cartridge for storing and dosing liquids, especially for producing drug-containing inhalable aerosols, has three-shell structure with collapsible bag, container and rigid housing |
ES2165768B1 (en) | 1999-07-14 | 2003-04-01 | Almirall Prodesfarma Sa | New quinuclidine derivatives and pharmaceutical compositions containing them. |
CN1161545C (en) * | 2000-02-17 | 2004-08-11 | Lg电子株式会社 | Lubricant supplying apparatus of reciprocating compressor |
DE10010123A1 (en) | 2000-03-03 | 2001-09-20 | Boehringer Ingelheim Int | Needle-less injector for liquids comprises a tensioning system, an energy storing spring, a hollow piston in a cylinder, and a nozzle |
US6689092B2 (en) | 2000-03-03 | 2004-02-10 | Boehringer International Gmbh | Needle-less injector of miniature type |
KR100777146B1 (en) | 2000-03-03 | 2007-11-19 | 베링거 인겔하임 인터내셔날 게엠베하 | Miniaturized needleless injector |
US7575761B2 (en) | 2000-06-30 | 2009-08-18 | Novartis Pharma Ag | Spray drying process control of drying kinetics |
GB0016123D0 (en) * | 2000-07-01 | 2000-08-23 | Glaxo Group Ltd | Valve for aerosol container |
WO2002009669A3 (en) * | 2000-08-01 | 2002-05-30 | Inhale Therapeutic Syst | Apparatus and process to produce particles having a narrow size distribution and particles made thereby |
US20020025827A1 (en) * | 2000-08-21 | 2002-02-28 | Song Chang June | Extendable antenna for wireless telephones |
US20020111363A1 (en) * | 2000-10-31 | 2002-08-15 | Karin Drechsel | Inhalable formulation of a solution containing a tiotropium salt |
US20020137764A1 (en) * | 2000-10-31 | 2002-09-26 | Karin Drechsel | Inhalable formulation of a solution containing a tiotropium salt |
DK1333819T3 (en) * | 2000-10-31 | 2007-12-03 | Boehringer Ingelheim Pharma | Inhalative oplösningsformulering with a tiotropium salt |
KR100906754B1 (en) * | 2001-06-15 | 2009-07-09 | 오츠카 세이야쿠 가부시키가이샤 | Dry powder inhalation device for transpulmonary administration |
DE10131178A1 (en) | 2001-06-29 | 2003-01-16 | Boehringer Ingelheim Pharma | Nebulizer for administration of fluids in the eye |
DE10136555A1 (en) | 2001-07-27 | 2003-02-13 | Boehringer Ingelheim Int | Method for determining the size distribution of particles in an aerosol, especially particles of a medicament involves mixing of a carrier medium with the medicament to produce an appropriately conditioned aerosol |
DE10143350A1 (en) * | 2001-09-04 | 2003-03-20 | Boehringer Ingelheim Int | Locking mechanism for a miniaturized high-pressure generator |
US6945472B2 (en) | 2001-09-04 | 2005-09-20 | Boehringer Ingelheim International Gmbh | Locking-stressing mechanism for a miniaturised high pressuriser |
EP1446104B2 (en) | 2001-11-01 | 2011-08-03 | Novartis AG | Spray drying methods |
DE10154237A1 (en) | 2001-11-07 | 2003-05-15 | Steag Microparts Gmbh | Manual sputterer, to spray liquid droplets on to a surface, has a spring acting on a piston with a manual release, to spray a portion of the stored liquid with a controlled droplet size |
US20030225089A1 (en) * | 2002-04-10 | 2003-12-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Pharmaceutical compositions based on anticholinergics and p38 kinase inhibitors |
DE10216036A1 (en) | 2002-04-11 | 2003-10-23 | Boehringer Ingelheim Pharma | An aerosol formulation for inhalation containing a tiotropium salt |
DE10216429A1 (en) | 2002-04-12 | 2003-10-23 | Boehringer Ingelheim Pharma | Synergistic medicaments for treating inflammatory or obstructive respiratory tract diseases, containing quaternized scopine ester anticholinergic agent and steroid, e.g. budesonide |
US9339459B2 (en) | 2003-04-24 | 2016-05-17 | Nektar Therapeutics | Particulate materials |
GB0216562D0 (en) | 2002-04-25 | 2002-08-28 | Bradford Particle Design Ltd | Particulate materials |
EP1509266B1 (en) * | 2002-05-16 | 2009-07-01 | Boehringer Ingelheim International GmbH | System comprising a nozzle and a fixing system |
DE10225470A1 (en) | 2002-06-08 | 2003-12-18 | Boehringer Ingelheim Int | Mechanical memory aid for marking specified events comprises joinable base and setting elements which are movable relative to one another and are provided with their respective markings |
DE10230751A1 (en) | 2002-07-09 | 2004-01-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New pharmaceutical compositions based on novel anticholinergics and EGFR kinase inhibitors |
CA2492033A1 (en) | 2002-07-09 | 2004-01-15 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases |
US20040166065A1 (en) | 2002-08-14 | 2004-08-26 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Aerosol formulation for inhalation comprising an anticholinergic |
DE10239443A1 (en) * | 2002-08-28 | 2004-03-11 | Boehringer Ingelheim International Gmbh | Mechanism comprising a bent leaf spring, is useful for blocking further operation of a device after a specified number of relative rotations of parts of this device |
US7396341B2 (en) | 2002-08-28 | 2008-07-08 | Boehringer Ingelheim International Gmbh | Blocking device for a locking stressing mechanism having a spring-actuated output drive device |
US7699052B2 (en) * | 2002-09-05 | 2010-04-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Apparatus for the dispensing of liquids, container cartridge suitable for this, and system comprising the apparatus for the dispensing of liquids, and the container cartridge |
JP2005537834A (en) * | 2002-09-05 | 2005-12-15 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Liquid dispensing device, and a container cartridge and a liquid dispensing device and the container cartridge suitable for this system |
DE10243255A1 (en) | 2002-09-17 | 2004-03-25 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Leak testing for pharmaceutical package, e.g. blister pack, involves exposing it to test gas, opening the package and analyzing for the gas |
US7056916B2 (en) * | 2002-11-15 | 2006-06-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Medicaments for the treatment of chronic obstructive pulmonary disease |
JP4562528B2 (en) * | 2002-12-13 | 2010-10-13 | 大塚製薬株式会社 | Inhalation device for pulmonary administration |
EP1578536B1 (en) | 2002-12-30 | 2017-02-08 | Novartis AG | Prefilming atomizer |
US7621266B2 (en) * | 2003-01-14 | 2009-11-24 | Boehringer Ingelheim International Gmbh | Nozzle-system for a dispenser for fluids consisting of a nozzle and a nozzle-holder and/or screw cap |
DE10300983A1 (en) | 2003-01-14 | 2004-07-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Jet system for an inhaler, to deliver a mist of fluid droplets, has inner surfaces with micro- or nano-structures on the surfaces in contact with the aerosol flow to reduce precipitation |
GB0300939D0 (en) * | 2003-01-16 | 2003-02-12 | Unilever Plc | Method of creating a cosmetic spray |
JP4555283B2 (en) | 2003-02-14 | 2010-09-29 | セラヴァンス, インコーポレーテッド | β2 adrenergic receptor agonist activity and biphenyl derivatives having muscarinic receptor antagonist activity |
EP1449595B1 (en) * | 2003-02-21 | 2007-03-21 | Boehringer Ingelheim microParts GmbH | Dispenser for dispensing fluid or pasty mediums |
US7683029B2 (en) * | 2003-05-07 | 2010-03-23 | Philip Morris Usa Inc. | Liquid aerosol formulations containing insulin and aerosol generating devices and methods for generating aerosolized insulin |
DE10330370A1 (en) | 2003-06-30 | 2005-01-20 | Boehringer Ingelheim International Gmbh | Microstructured filter with anti-evaporation device |
ES2276327T3 (en) | 2003-07-16 | 2007-06-16 | BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG | Process for producing microfluidic arrangements from a plate-shaped composite structure. |
US20050017089A1 (en) * | 2003-07-21 | 2005-01-27 | Marc Rohrschneider | Finger operated spray pump |
US20050026948A1 (en) * | 2003-07-29 | 2005-02-03 | Boehringer Ingelheim International Gmbh | Medicaments for inhalation comprising an anticholinergic and a betamimetic |
DE602004005462T2 (en) | 2003-07-29 | 2007-07-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Drugs for inhalation with betamimetics and an anticholinergic |
KR101152690B1 (en) | 2003-09-24 | 2012-07-05 | 베링거 인겔하임 파마슈티칼즈, 인코포레이티드 | 1,1,1-Trifluoro-4-phenyl-4-methyl-2-1H-pyrrolo[2,3-C]pyridin-2-ylmethylpentan-2-ol derivatives and related compounds as glucocorticoid ligands for the treatment of inflammatory diseases and diabetes |
KR20060117334A (en) | 2003-11-03 | 2006-11-16 | 베링거 인겔하임 인터내셔날 게엠베하 | Method for producing tiotropium salts, tiotropium salts and pharmaceutical formulations, containing the same |
CA2544357A1 (en) | 2003-11-03 | 2005-05-12 | Boehringer Ingelheim International Gmbh | Tiotropium salts, methods for the production thereof, and pharmaceutical formulations containing the same |
DE102004001451A1 (en) * | 2004-01-08 | 2005-08-11 | Boehringer Ingelheim International Gmbh | A device for clamping a fluidic component |
DE102004009434A1 (en) | 2004-02-24 | 2005-12-15 | Boehringer Ingelheim International Gmbh | atomizer |
DE102004009436A1 (en) * | 2004-02-24 | 2005-10-13 | Boehringer Ingelheim International Gmbh | atomizer |
DE102004009435A1 (en) * | 2004-02-24 | 2005-12-08 | Boehringer Ingelheim International Gmbh | atomizer |
JP2007522902A (en) | 2004-02-24 | 2007-08-16 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Nebulizer |
ES2380370T3 (en) | 2004-04-22 | 2012-05-11 | Boehringer Ingelheim International Gmbh | drug combinations containing benzoxazine for treating diseases of the airways |
US20050272726A1 (en) * | 2004-04-22 | 2005-12-08 | Boehringer Ingelheim International Gmbh | Novel medicaments for the treatment of respiratory diseases |
DE102004021789A1 (en) * | 2004-05-03 | 2006-04-27 | Boehringer Ingelheim International Gmbh | Atomizer for dispensing liquids for medical purposes |
US7727962B2 (en) | 2004-05-10 | 2010-06-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Powder comprising new compositions of oligosaccharides and methods for their preparation |
US7611709B2 (en) | 2004-05-10 | 2009-11-03 | Boehringer Ingelheim Pharma Gmbh And Co. Kg | 1,4 O-linked saccharose derivatives for stabilization of antibodies or antibody derivatives |
US7723306B2 (en) | 2004-05-10 | 2010-05-25 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Spray-dried powder comprising at least one 1,4 O-linked saccharose-derivative and methods for their preparation |
US7220742B2 (en) | 2004-05-14 | 2007-05-22 | Boehringer Ingelheim International Gmbh | Enantiomerically pure beta agonists, process for the manufacture thereof and use thereof as medicaments |
US20050256115A1 (en) * | 2004-05-14 | 2005-11-17 | Boehringer Ingelheim International Gmbh | Aerosol formulation for the inhalation of beta-agonists |
US20050255050A1 (en) * | 2004-05-14 | 2005-11-17 | Boehringer Ingelheim International Gmbh | Powder formulations for inhalation, comprising enantiomerically pure beta agonists |
ES2257152B1 (en) | 2004-05-31 | 2007-07-01 | Laboratorios Almirall S.A. | Antimuscarinics and combinations comprising beta-adrenergic agents agonists. |
EP1761279A1 (en) | 2004-05-31 | 2007-03-14 | Laboratorios Almirall, S.A. | Combinations comprising antimuscarinic agents and pde4 inhibitors |
US20060035893A1 (en) | 2004-08-07 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions for treatment of respiratory and gastrointestinal disorders |
US20060081242A1 (en) * | 2004-09-15 | 2006-04-20 | Tai-Kang Han | Portable air pre-treating device for medical treatment |
US8758816B2 (en) | 2004-11-24 | 2014-06-24 | Meda Pharmaceuticals Inc. | Compositions comprising azelastine and methods of use thereof |
US20070020330A1 (en) * | 2004-11-24 | 2007-01-25 | Medpointe Healthcare Inc. | Compositions comprising azelastine and methods of use thereof |
EP2486942A1 (en) | 2004-11-24 | 2012-08-15 | Meda Pharmaceuticals Inc. | Compositions comprising azelastine and methods of use thereof |
US20080166207A1 (en) * | 2005-03-30 | 2008-07-10 | Sogno Ag | Adhesive Application Station for Binding Printed Material |
US20070083677A1 (en) | 2005-05-18 | 2007-04-12 | Nektar Therapeutics | Valves, devices, and methods for endobronchial therapy |
ES2265276B1 (en) | 2005-05-20 | 2008-02-01 | Laboratorios Almirall S.A. | Derivatives of 4- (2-amino-1-hydroxyethyl) phenol as beta2 adrenergic receptor agonists. |
DE102005024439A1 (en) | 2005-05-24 | 2006-12-07 | Boehringer Ingelheim International Gmbh | atomizer |
WO2006134022A1 (en) * | 2005-06-17 | 2006-12-21 | Boehringer Ingelheim International Gmbh | Mrp iv inhibitors for the treatment of respiratory diseases |
FR2887232B1 (en) * | 2005-06-21 | 2010-11-05 | Rexam Dispensing Sys | pusher tip for a liquid product dispenser |
DE102005029746B4 (en) | 2005-06-24 | 2017-10-26 | Boehringer Ingelheim International Gmbh | atomizer |
WO2007000330A3 (en) | 2005-06-29 | 2007-05-10 | Boehringer Ingelheim Int | Method and device for atomising liquid |
DE102005030733A1 (en) | 2005-07-01 | 2007-01-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New drug combinations for the treatment of respiratory diseases including long-acting beta-2 agonist and at least one other active substance |
DE102005035715A1 (en) | 2005-07-27 | 2007-02-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | A process for checking the permeability rate of a closed container |
RU2412176C2 (en) | 2005-08-15 | 2011-02-20 | Бёрингер Ингельхайм Интернациональ Гмбх | Method of producing betamimetics |
EP2436453B1 (en) | 2005-08-24 | 2013-10-02 | Boehringer Ingelheim International Gmbh | Atomiser comprising a counter and an end of operation lock |
US20070086957A1 (en) | 2005-10-10 | 2007-04-19 | Thierry Bouyssou | Combination of medicaments for the treatment of respiratory diseases |
DE102005052898A1 (en) * | 2005-11-03 | 2007-05-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Method and apparatus for dosing of drugs, |
US7423146B2 (en) | 2005-11-09 | 2008-09-09 | Boehringer Ingelheim International Gmbh | Process for the manufacturing of pharmaceutically active 3,1-benzoxazine-2-ones |
EP1792660A1 (en) | 2005-12-02 | 2007-06-06 | Boehringer Ingelheim Pharma GmbH & Co. KG | Dispensing device |
EP1818109B1 (en) * | 2006-01-25 | 2010-03-17 | Technical Concepts Bentfield B.V. | Fluid product dispenser and pump with constantly open inlet valve |
DE102006022002A1 (en) * | 2006-05-10 | 2007-11-15 | Boehringer Ingelheim International Gmbh | Atomizer and method for atomizing fluid |
CA2652699C (en) | 2006-05-19 | 2014-11-04 | Boehringer Ingelheim International Gmbh | Propellant-free inhalation aerosol formulation containing ipratropium bromide and salbutamol sulfate |
US8061350B2 (en) * | 2006-06-02 | 2011-11-22 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process and device for dosing pharmaceutical agents |
EP2044352A4 (en) * | 2006-07-25 | 2013-01-23 | Waters Technologies Corp | Compliant-seal check valve |
WO2008014199A3 (en) | 2006-07-28 | 2008-04-03 | Boehringer Ingelheim Int | Sulfonyl compounds which modulate the cb2 receptor |
CA2660186A1 (en) | 2006-08-07 | 2008-02-14 | Boehringer Ingelheim International Gmbh | Pharmaceutical combinations for the treatment of respiratory diseases |
CA2661143A1 (en) | 2006-08-22 | 2008-02-28 | Boehringer Ingelheim International Gmbh | Enantiomerically pure beta agonists, manufacturing and use thereof |
KR20090069318A (en) | 2006-09-25 | 2009-06-30 | 베링거 인겔하임 인터내셔날 게엠베하 | Compounds which modulate the cb2 receptor |
DE102006049185A1 (en) | 2006-10-18 | 2008-04-24 | Bayerl, Thomas M., Prof. Dr. | Use of deuterium in the treatment of hyperproliferative skin disorders |
JP4614978B2 (en) | 2007-02-08 | 2011-01-19 | トヨタ自動車株式会社 | High-pressure hydrogen container sealing material and a high-pressure hydrogen container |
ES2306595B1 (en) | 2007-02-09 | 2009-09-11 | Laboratorios Almirall S.A. | Napadisylate salt of 5- (2 - ((6- (2,2-difluoro-2-phenylethoxy) hexyl) amino) -1-hydroxyethyl) -8-hydroxyquinolin-2 (1H) -one as beta2 adrenergic receptor agonist . |
ES2320955B1 (en) | 2007-03-02 | 2010-03-16 | Laboratorios Almirall S.A. | New 3 - ((1,2,4) triazolo (4,3-a) pyridin-7-yl) benzamide. |
DE102007020578A1 (en) | 2007-05-02 | 2008-11-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Aqueous aerosol preparations containing therapeutically effective microorganisms or parts of microorganisms and methods for producing corresponding aerosols |
DE102007023012A1 (en) | 2007-05-15 | 2008-11-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Atomizer and filters |
EP2676694B1 (en) | 2007-06-15 | 2017-04-26 | Boehringer Ingelheim International GmbH | Inhaler |
DE102007031397A1 (en) | 2007-07-05 | 2009-01-08 | D2O Bioscience Group Ltd. | Use of deuterium oxide for the treatment of virus-based diseases of the skin |
EP2044967A1 (en) * | 2007-10-01 | 2009-04-08 | Boehringer Ingelheim Pharma GmbH & Co. KG | Atomiser |
ES2320961B1 (en) | 2007-11-28 | 2010-03-17 | Laboratorios Almirall, S.A. | Derivatives of 4- (2-amino-1-hydroxyethyl) phenol as beta2 adrenergic receptor agonists. |
ES2441809T3 (en) | 2007-11-29 | 2014-02-06 | Glaxo Group Limited | Dispensing device |
KR101199638B1 (en) | 2007-11-30 | 2012-11-08 | 니뽄 다바코 산교 가부시키가이샤 | Aerosol-generating solution for aerosol aspirator |
DE102008003542A1 (en) * | 2008-01-08 | 2009-07-09 | Franz Und Peter Brunner Gbr (Vertretungsberechtigte Gesellschafter: Franz Brunner | Apparatus for atomizing of at least two different fluids |
EP2093219A1 (en) | 2008-02-22 | 2009-08-26 | Boehringer Ingelheim International Gmbh | Crystalline enantiomer free salt form of a betamimetic and its use as medicine |
EP2096105A1 (en) | 2008-02-28 | 2009-09-02 | Laboratorios Almirall, S.A. | Derivatives of 4-(2-amino-1-hydroxyethyl)phenol as agonists of the b2 adrenergic receptor |
EP2100598A1 (en) | 2008-03-13 | 2009-09-16 | Laboratorios Almirall, S.A. | Inhalation composition containing aclidinium for treatment of asthma and chronic obstructive pulmonary disease |
EP2108641A1 (en) | 2008-04-11 | 2009-10-14 | Laboratorios Almirall, S.A. | New substituted spiro[cycloalkyl-1,3'-indo]-2'(1'H)-one derivatives and their use as p38 mitogen-activated kinase inhibitors |
EP2110132B1 (en) | 2008-04-20 | 2014-01-22 | D2 Bioscience Group Ltd | Use of deuterium oxide as elastase inhibitor |
EP2113503A1 (en) | 2008-04-28 | 2009-11-04 | Laboratorios Almirall, S.A. | New substituted indolin-2-one derivatives and their use as p39 mitogen-activated kinase inhibitors |
ES2609294T3 (en) * | 2008-06-10 | 2017-04-19 | Meadwestvaco Calmar Gmbh | Fluid discharge head |
EP2135632A1 (en) * | 2008-06-20 | 2009-12-23 | Boehringer Ingelheim International Gmbh | Inhalator |
CA2730037A1 (en) | 2008-07-10 | 2010-01-14 | Boehringer Ingelheim International Gmbh | Sulfone compounds which modulate the cb2 receptor |
EP2341942A1 (en) | 2008-09-19 | 2011-07-13 | Nektar Therapeutics | Polymer conjugates of therapeutic peptides |
JP5453437B2 (en) | 2008-09-25 | 2014-03-26 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cb2 selectively modulate sulfonyl compound receptor |
DE202008015493U1 (en) | 2008-11-21 | 2009-02-12 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | folding |
WO2010080357A1 (en) | 2008-12-18 | 2010-07-15 | Boehringer Ingelheim International Gmbh | Serotonin 5-ht2b receptor inhibitors |
US8563731B2 (en) | 2008-12-22 | 2013-10-22 | Almirall, S.A. | Mesylate salt of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]jamino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one as agonist of the β2 adrenergic receptor |
DE102009003992A1 (en) | 2009-01-07 | 2010-07-08 | D2O Biosience Group Ltd., Hamilton | Use of deuterium oxide for the treatment of virus-based diseases of the respiratory tract |
US8236862B2 (en) | 2009-02-06 | 2012-08-07 | University Of Southern California | Therapeutic compositions comprising monoterpenes |
JP2012517405A (en) | 2009-02-09 | 2012-08-02 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Novel pharmaceutical compositions for the treatment of respiratory and gastrointestinal disorders |
EP2221297A1 (en) | 2009-02-18 | 2010-08-25 | Almirall, S.A. | 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1h)-one and its use in the treatment of pulmonary diseases |
EP2221055A1 (en) | 2009-02-18 | 2010-08-25 | Almirall, S.A. | 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one for the treatment of lung function |
EP2226323A1 (en) | 2009-02-27 | 2010-09-08 | Almirall, S.A. | New tetrahydropyrazolo[3,4-c]isoquinolin-5-amine derivatives |
EP2228368A1 (en) | 2009-03-12 | 2010-09-15 | Almirall, S.A. | Process for manufacturing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy) hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one |
EP2405747A4 (en) * | 2009-03-13 | 2013-01-16 | Nucitec Sa De Cv | Compositions and methods for treatment and prevention of cardiovascular disease |
EP2236227B1 (en) | 2009-03-30 | 2013-12-18 | Boehringer Ingelheim International GmbH | Forming tool with a rotatable base body |
EP2236224B1 (en) | 2009-03-30 | 2013-03-06 | Boehringer Ingelheim International GmbH | Forming tool with a rotatable basis body for forming an inhalator cartridge and use of such a tool |
US20120138713A1 (en) | 2009-03-31 | 2012-06-07 | Boehringer Ingelheim International Gmbh | Method for coating a surface of a component |
WO2010124795A1 (en) | 2009-04-28 | 2010-11-04 | Boehringer Ingelheim International Gmbh | Inhalation device |
EP2432531A2 (en) | 2009-05-18 | 2012-03-28 | Boehringer Ingelheim International GmbH | Adapter, inhalation device, and atomizer |
US8299103B2 (en) | 2009-06-15 | 2012-10-30 | Boehringer Ingelheim International Gmbh | Compounds which selectively modulate the CB2 receptor |
US8383615B2 (en) | 2009-06-16 | 2013-02-26 | Boehringer Ingelheim International Gmbh | Azetidine 2-carboxamide derivatives which modulate the CB2 receptor |
DK2445558T3 (en) * | 2009-06-25 | 2016-09-19 | Boehringer Ingelheim Vetmedica Gmbh | inhaler |
EP2451787B1 (en) | 2009-07-06 | 2013-04-24 | Boehringer Ingelheim International GmbH | Polymorph of [4,6-bis(dimethylamino)-2-(4-{[4-(trifluoromethyl)benzoyl]amino}benzyl)pyrimidin-5-yl] |
JP2013505295A (en) | 2009-09-22 | 2013-02-14 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cb2 selectively modulating compounds receptor |
DE102009051570B3 (en) * | 2009-10-23 | 2011-06-22 | Ing. Erich Pfeiffer GmbH, 78315 | discharge |
EP2322176A1 (en) | 2009-11-11 | 2011-05-18 | Almirall, S.A. | New 7-phenyl-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives |
US20120302584A1 (en) | 2009-11-24 | 2012-11-29 | Boehringer Ingelheim International Gmbh | Novel salts forms of pyrimidin-5-yl acetic acid derivative |
CN102666499A (en) | 2009-11-24 | 2012-09-12 | 贝林格尔.英格海姆国际有限公司 | Process for preparing a polymorph of the choline salt of a pyrimidin-5-yl acetic acid derivative |
CA2781792A1 (en) | 2009-11-25 | 2011-06-03 | Boehringer Ingelheim International Gmbh | Nebulizer |
EP2523936A1 (en) | 2010-01-15 | 2012-11-21 | Boehringer Ingelheim International GmbH | Compounds which modulate the cb2 receptor |
EP2534069B1 (en) * | 2010-02-10 | 2015-08-26 | S.C. Johnson & Son, Inc. | Overcap for an aerosol container |
WO2011109324A1 (en) | 2010-03-05 | 2011-09-09 | Boehringer Ingelheim International Gmbh | Tetrazole compounds which selectively modulate the cb2 receptor |
EP2380890A1 (en) | 2010-04-23 | 2011-10-26 | Almirall, S.A. | New 7,8-dihydro-1,6-naphthyridin-5(6h)-one-derivatives as PDE4 inhibitors |
EP2381237A1 (en) | 2010-04-23 | 2011-10-26 | Boehringer Ingelheim microParts GmbH | Method for determining the operation of a metering device |
CN101839227B (en) * | 2010-04-30 | 2012-07-04 | 栾云堂 | Pump and portable water purifying equipment |
EP2386555A1 (en) | 2010-05-13 | 2011-11-16 | Almirall, S.A. | New cyclohexylamine derivatives having beta2 adrenergic agonist and m3 muscarinic antagonist activities |
EP2394998A1 (en) | 2010-05-31 | 2011-12-14 | Almirall, S.A. | 3-(5-Amino-6-oxo-1,6-dihydropyridazin-3-yl)-biphenyl derivatives as PDE4 inhibitors |
WO2011154295A4 (en) | 2010-06-08 | 2012-08-23 | Boehringer Ingelheim International Gmbh | Medical device having a counter having a preset counting range, device having counter variation |
CN103124541B (en) | 2010-07-15 | 2015-09-30 | 艾诺维亚股份有限公司 | Intraocular drug delivery |
WO2012009706A1 (en) | 2010-07-15 | 2012-01-19 | Corinthian Ophthalmic, Inc. | Drop generating device |
WO2012009702A1 (en) | 2010-07-15 | 2012-01-19 | Corinthian Ophthalmic, Inc. | Method and system for performing remote treatment and monitoring |
EP2593164B1 (en) | 2010-07-16 | 2017-03-22 | Boehringer Ingelheim International GmbH | Filter system for use in medical devices |
EP2595959B1 (en) | 2010-07-22 | 2015-11-04 | Boehringer Ingelheim International GmbH | Sulfonyl compounds which modulate the cb2 receptor |
EP2609064B1 (en) | 2010-08-27 | 2016-09-28 | Neonc Technologies Inc. | Pharmaceutical compositions comprising derivatives of perillyl alcohol |
DE102010045059A1 (en) * | 2010-09-10 | 2012-03-15 | F. Holzer Gmbh | metering |
EP2441755A1 (en) | 2010-09-30 | 2012-04-18 | Almirall, S.A. | Pyridine- and isoquinoline-derivatives as Syk and JAK kinase inhibitors |
DE102010048085A1 (en) * | 2010-10-04 | 2012-04-05 | Ing. Erich Pfeiffer Gmbh | discharge |
EP2447694B1 (en) | 2010-10-28 | 2014-05-21 | Boehringer Ingelheim Pharma GmbH & Co. KG | Test leak for inspecting leak measurement systems |
EP2638012A1 (en) | 2010-11-10 | 2013-09-18 | Boehringer Ingelheim International GmbH | Pyridyl ureas as mineralocorticoid receptor antagonists |
EP2457900A1 (en) | 2010-11-25 | 2012-05-30 | Almirall, S.A. | New pyrazole derivatives having CRTh2 antagonistic behaviour |
EP2463289A1 (en) | 2010-11-26 | 2012-06-13 | Almirall, S.A. | Imidazo[1,2-b]pyridazine derivatives as JAK inhibitors |
WO2012083178A1 (en) | 2010-12-17 | 2012-06-21 | Neo Oncology Inc. | Methods and devices for using isoperillyl alcohol |
EP2489663A1 (en) | 2011-02-16 | 2012-08-22 | Almirall, S.A. | Compounds as syk kinase inhibitors |
WO2012130757A1 (en) | 2011-04-01 | 2012-10-04 | Boehringer Ingelheim International Gmbh | Medical device comprising a container |
EP2510928A1 (en) | 2011-04-15 | 2012-10-17 | Almirall, S.A. | Aclidinium for use in improving the quality of sleep in respiratory patients |
EP2518070A1 (en) | 2011-04-29 | 2012-10-31 | Almirall, S.A. | Pyrrolotriazinone derivatives as PI3K inhibitors |
EP2518071A1 (en) | 2011-04-29 | 2012-10-31 | Almirall, S.A. | Imidazopyridine derivatives as PI3K inhibitors |
US8590614B2 (en) | 2011-05-03 | 2013-11-26 | Halliburton Energy Services, Inc. | High pressure stimulation pump |
US9827384B2 (en) | 2011-05-23 | 2017-11-28 | Boehringer Ingelheim International Gmbh | Nebulizer |
EP2527344A1 (en) | 2011-05-25 | 2012-11-28 | Almirall, S.A. | Pyridin-2(1H)-one derivatives useful as medicaments for the treatment of myeloproliferative disorders, transplant rejection, immune-mediated and inflammatory diseases |
EP2526945A1 (en) | 2011-05-25 | 2012-11-28 | Almirall, S.A. | New CRTH2 Antagonists |
EP2548876A1 (en) | 2011-07-18 | 2013-01-23 | Almirall, S.A. | New CRTh2 antagonists |
EP2548863A1 (en) | 2011-07-18 | 2013-01-23 | Almirall, S.A. | New CRTh2 antagonists. |
EP2554544A1 (en) | 2011-08-01 | 2013-02-06 | Almirall, S.A. | Pyridin-2(1h)-one derivatives as jak inhibitors |
EP2578570A1 (en) | 2011-10-07 | 2013-04-10 | Almirall, S.A. | Novel process for preparing 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1(r)-hydroxyethyl)-8-hydroxyquinolin-2(1h)-one via novel intermediates of synthesis. |
EP2592078A1 (en) | 2011-11-11 | 2013-05-15 | Almirall, S.A. | New cyclohexylamine derivatives having beta2 adrenergic agonist and M3 muscarinic antagonist activities |
EP2592077A1 (en) | 2011-11-11 | 2013-05-15 | Almirall, S.A. | New cyclohexylamine derivatives having beta2 adrenergic agonist and M3 muscarinic antagonist activities |
WO2013127738A1 (en) * | 2012-02-28 | 2013-09-06 | Boehringer Ingelheim International Gmbh | Novel propellant-gas-containing tiotropium formulation |
EP2846859B1 (en) * | 2012-03-09 | 2017-01-04 | Vectura GmbH | Mixing channel for an inhalation device and inhalation device |
EP2641900A1 (en) | 2012-03-20 | 2013-09-25 | Almirall, S.A. | Novel polymorphic Crystal forms of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy) hexyl]amino}-1-(R)-hydroxyethyl)-8-hydroxyquinolin-2(1h)-one, heminapadisylate as agonist of the ß2 adrenergic receptor. |
US9220852B2 (en) | 2012-04-10 | 2015-12-29 | Boehringer Ingelheim Microparts Gmbh | Method for producing trench-like depressions in the surface of a wafer |
WO2013152894A1 (en) | 2012-04-13 | 2013-10-17 | Boehringer Ingelheim International Gmbh | Atomiser with coding means |
WO2014060431A1 (en) | 2012-10-16 | 2014-04-24 | Almirall, S.A. | Pyrrolotriazinone derivatives as pi3k inhibitors |
EP2738172A1 (en) | 2012-11-28 | 2014-06-04 | Almirall, S.A. | New bicyclic compounds as crac channel modulators |
US9027852B2 (en) * | 2012-12-14 | 2015-05-12 | Micro Base Technology Corporation | Constant quantity control nebulization device |
KR20150096732A (en) | 2012-12-18 | 2015-08-25 | 알미랄, 에스.에이. | New cyclohexyl and quinuclidinyl carbamate derivatives having beta2 adrenergic agonist and m3 muscarinic antagonist activity |
US9205445B2 (en) * | 2012-12-21 | 2015-12-08 | Micro Base Technology Corporation | Rotary nebulization device |
US9918995B2 (en) | 2012-12-21 | 2018-03-20 | Boehringer Ingelheim Vetmedica Gmbh | Ciclesonide for the treatment of airway disease in horses |
WO2014124757A1 (en) | 2013-02-15 | 2014-08-21 | Almirall, S.A. | Pyrrolotriazine derivatives as pi3k inhibitors |
EP2803668A1 (en) | 2013-05-17 | 2014-11-19 | Boehringer Ingelheim International Gmbh | Novel (cyano-dimethyl-methyl)-isoxazoles and -[1,3,4]thiadiazoles |
EP2848615A1 (en) | 2013-07-03 | 2015-03-18 | Almirall, S.A. | New pyrazole derivatives as CRAC channel modulators |
EP2835146A1 (en) * | 2013-08-09 | 2015-02-11 | Boehringer Ingelheim International GmbH | Nebulizer with blocking mechanism |
WO2015018904A1 (en) | 2013-08-09 | 2015-02-12 | Boehringer Ingelheim International Gmbh | Nebulizer |
CA2913828A1 (en) | 2013-08-20 | 2015-02-26 | Boehringer Ingelheim Vetmedica Gmbh | Inhaler |
KR20160044476A (en) | 2013-08-20 | 2016-04-25 | 베링거잉겔하임베트메디카게엠베하 | Inhaler |
EP2893947A1 (en) | 2014-01-10 | 2015-07-15 | Boehringer Ingelheim International Gmbh | Nebulizer |
WO2015193213A1 (en) | 2014-06-18 | 2015-12-23 | Boehringer Ingelheim Vetmedica Gmbh | Muscarinic antagonists and combinations thereof for the treatment of airway disease in horses |
US20160051396A1 (en) * | 2014-08-21 | 2016-02-25 | Eliezer Nussbaum | Sleep apnea device to positively block exhaling and method of use |
EP3061501A1 (en) | 2015-02-27 | 2016-08-31 | Rottapharm Ltd. | Composition for the treatment of acne |
EP3286178A1 (en) | 2015-04-21 | 2018-02-28 | Almirall S.A. | Amino-substituted heterocyclic derivatives as sodium channel inhibitors |
WO2016202800A1 (en) | 2015-06-16 | 2016-12-22 | Almirall, S.A. | Pyrrolotriazinone derivatives as pi3k inhibitors |
EP3117825A1 (en) | 2015-07-16 | 2017-01-18 | Rottapharm S.p.A. | Oral formulation comprising berberine and morus alba extract |
WO2017095363A1 (en) * | 2015-11-30 | 2017-06-08 | Nifco America Corp. | A check valve structure |
EP3202709A1 (en) | 2016-02-04 | 2017-08-09 | Boehringer Ingelheim microParts GmbH | Microstructured nozzle and its production |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US362678A (en) * | 1887-05-10 | sutton | ||
US1035261A (en) * | 1912-02-16 | 1912-08-13 | Hermann Strumpf | Atomizer. |
GB224531A (en) * | 1923-11-08 | 1925-10-08 | Ludwig Le Bret | |
GB310818A (en) * | 1928-04-30 | 1930-06-19 | Charles Mayer | Piston pump more specially intended to medical purposes |
US2322913A (en) * | 1939-04-22 | 1943-06-29 | Frank C Best | Pump |
US2550840A (en) * | 1946-09-24 | 1951-05-01 | Universal Properties Inc | Valve control for pressure fluid containers |
NL296493A (en) * | 1962-08-14 | |||
GB1100024A (en) * | 1963-10-30 | 1968-01-24 | Janusz Gutkowski | Improvements in or relating to reciprocating pumps and compressors |
US3317002A (en) * | 1965-02-08 | 1967-05-02 | Walker Mfg Co | Fluid distributing system |
GB1140422A (en) * | 1965-03-26 | 1969-01-22 | Lucas Industries Ltd | Lubricating devices |
GB1131918A (en) * | 1965-05-06 | 1968-10-30 | Murray Budd Burgess | Jet injector |
US3319894A (en) * | 1965-08-10 | 1967-05-16 | Diamond Int Corp | Liquid dispenser |
DE1475174A1 (en) * | 1965-09-20 | 1969-01-16 | Afa Corp | Fluessigkeitssprayvorrichtung |
US3361069A (en) * | 1966-03-07 | 1968-01-02 | Conelec Inc | Electronically controlled electromagnetic pump system |
DE1503396A1 (en) * | 1966-11-26 | 1970-07-16 | Bosch Gmbh Robert | Air pump, in particular vacuum pump |
US3396874A (en) * | 1967-05-15 | 1968-08-13 | Afa Corp | Positive action dispensing valve |
DE1945257A1 (en) * | 1968-09-13 | 1970-03-19 | Armstrong Kropp Dev Corp | Inhalationsgeraet |
GB1239855A (en) * | 1969-01-30 | 1971-07-21 | Pye Ltd | Improvements in or relating to liquid injectors for medical respirators |
US3514017A (en) * | 1969-03-03 | 1970-05-26 | Afa Corp | Pressure regulating structure for piston pump |
US3575322A (en) * | 1969-03-21 | 1971-04-20 | Union Carbide Corp | Metering aerosol actuator with downstroke discharge |
US3605738A (en) * | 1969-06-20 | 1971-09-20 | Paul J Ciranna | Medicinal spray device |
US3647143A (en) * | 1970-04-06 | 1972-03-07 | Champion Spark Plug Co | Atomizer |
FR2106841A5 (en) * | 1970-09-25 | 1972-05-05 | Saporta Jose | |
US3718908A (en) * | 1970-11-30 | 1973-02-27 | R Bloomstein | Signature storage and retrieval system |
US3746251A (en) | 1971-04-27 | 1973-07-17 | Bernardi Brothers Inc | Load shifting apparatus |
JPS5425245B1 (en) * | 1971-05-08 | 1979-08-27 | ||
US3838686A (en) * | 1971-10-14 | 1974-10-01 | G Szekely | Aerosol apparatus for inhalation therapy |
BE792243A (en) * | 1971-12-23 | 1973-03-30 | Baxter Laboratories Inc | Bubble trap for removing bubbles from a biological fluid under conditions ensuring sterility |
BE795375A (en) * | 1972-02-14 | 1973-08-13 | Thiokol Chemical Corp | Atomizer |
CA1078796A (en) * | 1972-03-30 | 1980-06-03 | Takamitsu Nozawa | Liquid spraying device |
US3792800A (en) * | 1972-07-06 | 1974-02-19 | N Capra | Liquid dispenser |
US3901414A (en) * | 1972-07-06 | 1975-08-26 | Nicholas G Capra | Liquid dispenser |
US3818908A (en) * | 1972-08-07 | 1974-06-25 | Riker Laboratories Inc | Medicament dispenser |
JPS4955101U (en) * | 1972-08-21 | 1974-05-15 | ||
US3933279A (en) * | 1972-11-28 | 1976-01-20 | Ciba-Geigy Corporation | Aerosol dispenser for fluid products comprising a piston pump assembly for generating compressed air |
NL7414127A (en) * | 1973-10-31 | 1975-05-02 | Ciba Geigy | Aerorolspuitbus. |
US3878973A (en) * | 1973-10-31 | 1975-04-22 | Ciba Geigy Corp | Metered dose dispenser |
CA1008825A (en) * | 1974-03-28 | 1977-04-19 | William E. Warren | Pump assembly for an atomizing piston pump |
US3995772A (en) * | 1975-07-07 | 1976-12-07 | Liautaud James P | Non-pressurized fluid product dispenser |
CA1099674A (en) * | 1975-12-05 | 1981-04-21 | Gerald A. Rooney | Manually operated liquid dispensing device |
US4132359A (en) * | 1976-04-09 | 1979-01-02 | Yoshino Kogyosho Co., Ltd. | Manually operative atomizer |
US4138039A (en) * | 1976-10-04 | 1979-02-06 | Leeds And Micallef | Pump actuating system |
US4077569A (en) * | 1976-10-04 | 1978-03-07 | Teledyne Industries, Inc. | Fluid-flow pulsator |
CA1077001A (en) * | 1976-10-21 | 1980-05-06 | Winfried J. Werding | Appliance for discharging gaseous liquid or pasty product, and process of its manufacture |
US4131235A (en) * | 1976-11-01 | 1978-12-26 | Irrigation Specialties Company | Dual-function valve |
US4174055A (en) * | 1977-04-20 | 1979-11-13 | James D. Pauls & J. Claybrook Lewis & Associates, Ltd. | Non-aerosol pressure dispenser |
JPS53141907A (en) * | 1977-05-17 | 1978-12-11 | Jidosha Kiki Co Ltd | Electromagnetic pump |
US4183449A (en) * | 1978-01-09 | 1980-01-15 | The Afa Corporation | Manually operated miniature atomizer |
US4271875A (en) * | 1978-09-21 | 1981-06-09 | Philip Meshberg | Dispenser adapted for fast pressure filling |
US4345718A (en) * | 1979-04-23 | 1982-08-24 | William Horvath | Manually actuated trigger sprayer |
US4602726A (en) * | 1979-12-31 | 1986-07-29 | George Goda | Dispensing device |
US4402432A (en) * | 1980-02-13 | 1983-09-06 | Corsette Douglas Frank | Leak-proof dispensing pump |
DE3007512C2 (en) * | 1980-02-28 | 1982-04-29 | Fa. Hermann Heye, 3063 Obernkirchen, De | |
EP0045419B1 (en) * | 1980-08-04 | 1984-10-17 | FISONS plc | Inhalation device for administering medicaments |
US4441634A (en) * | 1982-01-13 | 1984-04-10 | Philip Meshberg | Dispenser adapted for fast pressure filling |
FR2521036B1 (en) * | 1982-02-05 | 1985-05-10 | Valois Sa | |
US4771769A (en) * | 1982-12-20 | 1988-09-20 | Schering Corporation | Hand held metered spray dispenser |
DE3339180C2 (en) * | 1983-10-28 | 1993-10-14 | Pfeiffer Erich Gmbh & Co Kg | Discharge for Media |
US4623337A (en) * | 1984-03-08 | 1986-11-18 | Alpha Group, Inc. | Liquid dispensing apparatus |
JPH0713390Y2 (en) * | 1984-08-29 | 1995-03-29 | 昭和電線電纜株式会社 | Ke - Bull anchor end |
US4693675A (en) * | 1986-01-16 | 1987-09-15 | The Pharmasol Corporation | Non-throttling discharge pump |
EP0282595B1 (en) | 1986-07-31 | 1991-04-03 | Pentel Kabushiki Kaisha | Fluid discharge mechanism |
US4819834A (en) * | 1986-09-09 | 1989-04-11 | Minnesota Mining And Manufacturing Company | Apparatus and methods for delivering a predetermined amount of a pressurized fluid |
GB8629982D0 (en) * | 1986-12-16 | 1987-01-28 | English Glass Co Ltd | Dispenser pump |
JPH01501294A (en) * | 1986-12-17 | 1989-05-11 | ||
US4896832A (en) * | 1987-09-07 | 1990-01-30 | Bespak Plc | Dispensing apparatus for metered quantities of pressurised fluid |
US4842198A (en) * | 1987-10-26 | 1989-06-27 | Chang Shih Chih | Device for damage protection against local flooding caused by sprinkler failure |
DE3803366C2 (en) * | 1988-02-05 | 1992-04-23 | Stella Kg Werner Deussen, 6228 Eltville, De | |
US4892232A (en) * | 1988-07-25 | 1990-01-09 | Martin James H | Unit dose dispenser |
DE3901032C1 (en) * | 1989-01-14 | 1990-02-08 | Danfoss A/S, Nordborg, Dk | |
EP0401060B1 (en) * | 1989-05-31 | 1993-06-30 | Conceptair Anstalt | Method and electrical, electronic and mechanical device for dispensing, metering or diffusing liquid or gaseous aromas, medicines and other liquid or viscous product |
DK0521061T3 (en) * | 1990-03-21 | 1998-03-30 | Dmw Tech Ltd | A method and apparatus for atomization |
GB2243880B (en) * | 1990-05-01 | 1994-03-16 | Bespak Plc | Dispensing device |
FR2663909B1 (en) * | 1990-06-27 | 1994-01-28 | Valois | A device for containing a liquid or pasty product to be distributed without air intake, and process for its manufacturing. |
US5161574A (en) * | 1990-08-20 | 1992-11-10 | Intevep, S.A. | Maximum operation angle single plug and puppet type retention valves |
DE9013630U1 (en) * | 1990-09-28 | 1991-01-31 | Speck-Kolbenpumpenfabrik Otto Speck Gmbh & Co. Kg, 8192 Geretsried, De | |
US5127579A (en) * | 1990-11-06 | 1992-07-07 | Mobacc B. V. | Low propellant aerosol spray head |
US5405084A (en) * | 1990-12-04 | 1995-04-11 | Dmw (Technology) Limited | Nozzle assembly for preventing back-flow |
CA2097701C (en) * | 1990-12-04 | 2002-02-12 | Stephen T. Dunne | Atomising nozzles |
DK0520571T3 (en) * | 1991-06-28 | 1999-06-07 | Weston Medical Ltd | atomizing nozzle |
GB9114080D0 (en) * | 1991-06-28 | 1991-08-14 | Weston Terence E | Atomising valve |
DE4139555C2 (en) * | 1991-09-18 | 1993-06-17 | Gaplast Gmbh, 8111 Saulgrub, De | |
DE69326158D1 (en) * | 1992-09-29 | 1999-09-30 | Boehringer Ingelheim Int | Atomizing nozzle, filter and atomizer |
FR2699390B1 (en) * | 1992-12-23 | 1995-02-10 | Sodex Hexotol Sa | Dispensing apparatus for liquid products. |
JPH07189922A (en) * | 1993-12-28 | 1995-07-28 | Seikosha Co Ltd | Ink suction pump for ink jet printer |
JPH07223689A (en) * | 1994-02-03 | 1995-08-22 | Hosokawa Yoko:Kk | Liquid content discharging container |
EP0688608A1 (en) * | 1994-03-25 | 1995-12-27 | GUALA S.p.A. | An atomizer device for manually operated pumps |
GB2291135B (en) * | 1994-07-06 | 1998-02-25 | Boehringer Ingelheim Kg | Device for dispensing fluid |
DE4428434A1 (en) * | 1994-08-11 | 1996-02-15 | Boehringer Ingelheim Kg | Closure cap and method for gas bubble-free filling of containers |
JP3224480B2 (en) * | 1994-09-30 | 2001-10-29 | キヤノン株式会社 | The color image processing apparatus |
US5503306A (en) * | 1994-10-19 | 1996-04-02 | Aptar Group, Inc. | Manually actuated pump |
US5505343A (en) * | 1994-10-19 | 1996-04-09 | Knickerbocker; Michael G. | Manually actuated pump |
DE19536902A1 (en) | 1995-10-04 | 1997-04-10 | Boehringer Ingelheim Int | Apparatus for generating high pressure in a fluid in miniature version |
Also Published As
Publication number | Publication date | Type |
---|---|---|
EP0853501B1 (en) | 2003-08-27 | grant |
DE69636875D1 (en) | 2007-03-15 | grant |
DK0853501T3 (en) | 2003-12-08 | grant |
CA2551999C (en) | 2010-12-14 | grant |
DE69636875T2 (en) | 2007-07-05 | grant |
CN1091660C (en) | 2002-10-02 | grant |
KR100431011B1 (en) | 2004-07-23 | grant |
US20060285987A1 (en) | 2006-12-21 | application |
JP2009019637A (en) | 2009-01-29 | application |
JP3488717B2 (en) | 2004-01-19 | grant |
DE69629708T2 (en) | 2004-06-17 | grant |
CA2473681A1 (en) | 1997-04-10 | application |
US5964416A (en) | 1999-10-12 | grant |
US6497373B2 (en) | 2002-12-24 | grant |
DE69629708D1 (en) | 2003-10-02 | grant |
US20040178227A1 (en) | 2004-09-16 | application |
CA2232151C (en) | 2007-09-11 | grant |
JP5015896B2 (en) | 2012-08-29 | grant |
US20020130195A1 (en) | 2002-09-19 | application |
US6726124B2 (en) | 2004-04-27 | grant |
JP2003056458A (en) | 2003-02-26 | application |
CA2551999A1 (en) | 1997-04-10 | application |
RU2179075C2 (en) | 2002-02-10 | grant |
US6918547B2 (en) | 2005-07-19 | grant |
EP1214985A3 (en) | 2002-07-24 | application |
US20050252990A1 (en) | 2005-11-17 | application |
JP2007092762A (en) | 2007-04-12 | application |
EP0853501A1 (en) | 1998-07-22 | application |
JP2010138913A (en) | 2010-06-24 | application |
DK853501T3 (en) | grant | |
DE19536902A1 (en) | 1997-04-10 | application |
EP1214985A2 (en) | 2002-06-19 | application |
ES2201204T3 (en) | 2004-03-16 | grant |
DK1214985T3 (en) | 2007-05-29 | grant |
US6402055B1 (en) | 2002-06-11 | grant |
EP1214985B1 (en) | 2007-01-24 | grant |
ES2280442T3 (en) | 2007-09-16 | grant |
US7104470B2 (en) | 2006-09-12 | grant |
CN1198689A (en) | 1998-11-11 | application |
JPH11512649A (en) | 1999-11-02 | application |
CA2551891C (en) | 2010-05-18 | grant |
US20030080210A1 (en) | 2003-05-01 | application |
CA2551891A1 (en) | 1997-04-10 | application |
CA2232151A1 (en) | 1997-04-10 | application |
WO1997012687A1 (en) | 1997-04-10 | application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6524287B1 (en) | Housing apparatus with rear activated return button for instilling a medication into an eye | |
US5507281A (en) | Device for initiating a mechanical switching operation in synchronism with the breathing | |
US6789750B1 (en) | Fluid product dispenser | |
US4771769A (en) | Hand held metered spray dispenser | |
US6029661A (en) | Powder dispenser | |
US5623920A (en) | Valve assemblies | |
US5826571A (en) | Device for use with metered dose inhalers (MDIS) | |
US6405727B1 (en) | Inhaler mechanism | |
US6223746B1 (en) | Metered dose inhaler pump | |
US5284132A (en) | Device for the transnasal or oral administration of drugs or the like | |
US5546932A (en) | Powder jet dispenser for medicament inhalation therapies | |
US5662271A (en) | Atomizing devices and methods | |
US6186141B1 (en) | Unit dose dispensing device | |
US20070131717A1 (en) | Fluid dispensing device | |
US5893484A (en) | Discharge device for fluid media, particularly for single-stroke only discharge | |
US6186364B1 (en) | Dosage control for dispenser with child-resistant feature | |
US20060231093A1 (en) | Pressurised inhalers | |
US20050183718A1 (en) | Nebulizer | |
US20070056585A1 (en) | Medicament dispenser | |
US6460537B1 (en) | Breath-actuated aerosol dispensers | |
US3900138A (en) | Medicament dispenser | |
US6453795B1 (en) | Locking mechanism for a spring-actuated device | |
US6533764B1 (en) | Twist housing apparatus for instilling a medication into an eye | |
US7819342B2 (en) | Atomizer for dispensing liquids for medical purposes | |
US6578741B2 (en) | Dispenser and method for discharging media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20161004 |