CA2460432A1 - Process for the preparation of torsemide and related intermediates - Google Patents

Process for the preparation of torsemide and related intermediates Download PDF

Info

Publication number
CA2460432A1
CA2460432A1 CA002460432A CA2460432A CA2460432A1 CA 2460432 A1 CA2460432 A1 CA 2460432A1 CA 002460432 A CA002460432 A CA 002460432A CA 2460432 A CA2460432 A CA 2460432A CA 2460432 A1 CA2460432 A1 CA 2460432A1
Authority
CA
Canada
Prior art keywords
torsemide
alkali
mixture
bicarbonate
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002460432A
Other languages
French (fr)
Inventor
Daqing Che
Bhaskar Reddy Guntoori
Sammy Chris Duncan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apotex Pharmachem Inc
Original Assignee
Apotex Pharmachem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apotex Pharmachem Inc filed Critical Apotex Pharmachem Inc
Priority to CA002460432A priority Critical patent/CA2460432A1/en
Publication of CA2460432A1 publication Critical patent/CA2460432A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)

Abstract

A process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.

Description

TITLE OF INVENTION
Process for the Preparation of Torsemide and Related Intermediates.
FIELD OF INVENTION
The present invention relates to an improved process for making torsemide and intermediates useful in the preparation of torsemide.
BACKGROUND OF THE INVENTION
Torsemide, chemically named N-[[(1-methylethyl)amino]carbonyl]-4-[(3-methylphenyl)amino]-3-pyridinesulfonamide III, is a loop diuretic which has been found to be particularly effective for the treatment of edema associated with chronic renal failure.
The synthesis of torsemide is described in prior art documents including:
Delarge et al, Ann. Pharm. Fr. 31, 467-474 (1973); Delarge et al, Mem. Aced. R. Med. Bel~., 47(3), 131-210 (1994); US 2,516,025; US 4,244,950; US 6,674,794; US RE 30,633; and WO
03/097603 all of which are incorporated herein by reference.
A common process for the preparation of the torsemide III from 4-chloro-3-pyridinesulfonamide I, via intermediate 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II is depicted in scheme 1 below.
Scheme 1 w CI O ~ I I i H
g--NH2 N' O 'N' p H H
NH2 / S~ H2 I ~ I 'O O
V
2 US RE 30,633 (1981, A. Christiaens Societe Anonyme, Belgium) disclose such a synthetic route to torsemide III and an intermediate II. For the preparation of II, the reaction is carried out in the presence of copper powder and at elevated temperature. The purification procedure of II is laborious as well in United States RE 30,633. Generally, it is disadvantageous to employ a heavy metal (such as copper) in the later stages of active pharmaceutical ingredient (API) production. Additional purification steps may be required to remove residual traces of the heavy metal from the API or its precursor.
US RE 30,633 further provides for the preparation of torsemide III by the subsequent reaction of 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II with isopropyl isocyanate in the presence of triethylamine. The solvent system used in RE 30,633 is dichloromethane, dioxane or neat (i.e. no solvent added). After evaporative removal of the solvent, the mixture is clarified in aqueous sodium carbonate and further addition of acetic acid to furnish torsemide III.
Under such conditions the desired product, torsemide III is isolated in low yields with a high percentage of impurities, thus requiring additional purification steps.
US 6,635,765 (Teva, 2001 ) discloses a process for preparing torsemide III
comprising the step of reacting 3-sulfonamide-4-(3'-methylphenyl)aminopyridine II with isopropyl isocyanate in the presence of triethylamine in a solvent selected from the group consisting of acetonitrile, acetone, ethyl acetate, butyl acetate and mixtures thereof. Upon reaction completion, the pH is adjusted to 4.3 using aqueous hydrogen chloride solution and the precipitated product is isolated by filtration. It is then further purified by trituration in a mixture of acetonitrile and water. Thus, crude torsemide III is obtained with a purity of more than 98%
and a chemical yield of 81.5%. In this process, once acidified, a large amount of water has to be
3 added to precipitate the product III. However, many other organic impurities, including the toxic and difficult to remove N,N'-isopropyl urea (from the isopropyl isocyanate), precipitate out as well.
WO 031097603 (Finetech Laboratories Ltd., 2003) discloses a process for manufacturing torsemide III. However, the process includes the use of isopropyl carbamate.
This is not a commercially available compound and is prepared from the toxic and difficult to handle reagent, phenylchloroformate.
Furthermore, excessive exposure to carbarnates has been shown to cause fatigue, joint and muscle pain and headaches. Additionally, laboratory experiments indicate that some carbamates have mutagenic or carcinogenic properties.
Furthermore, although WO 03/097603 describes a synthesis for the manufacture of the intermediate II where copper is absent, based on Example 11 the solvent used is methyl ethyl ketone and the reaction does not go to completion. The yield is 91.4% and the purity is only 99.0%, with 0.5% of the 4-chloro-3-pyridine sulfonamide starting material still present.
1 S Once again, the torsemide III is isolated in low yields with an impurity level of toxic material that is difficult to remove.
Tn summary, some of the disadvantages of the prior art processes include:
i) the purity of the isolated torsemide is low thereby requiring additional steps to obtain pharmaceutically acceptable substance;
ii) the chemical yield of 81.5% for the crude torsemide is low;
iii) because water is introduced to isolate the torsemide during the acidification step, the torsemide is contaminated with N,N'-isopropyl urea;
4 iv) potential carcinogenic or mutagenic isocarbamate is used;
v) heavy metal usage requires removal thereof, which is difficult.
The yields of the prior art processes are low, highly variable and are unsuitable when transiting to commercial production.
It is therefore necessary to overcome the deficiencies of the prior art and to develop a cost-effective, robust and scalable process to manufacture both torsemide III
and torsemide intermediate II. A further objective is to develop a process for making torsemide III meeting the high purity specifications required for an API.
Further and other objects of the invention will become apparent to a person skilled in the art when reading the following.
SUMMARY OF THE INVENTION
It has been unexpectedly and surprisingly found that the torsemide intermediate II can be prepared by a method that, relative to the processes of the prior art, is facile and straightforward.
We have found unexpectedly that by heating 4-chloro-3-pyridinesulfonamide I
and m-toluidine in n-butanol, in the absence of any copper catalyst, it is possible to generate torsemide intermediate II as its hydrochloride salt in a very high yield (>98 %). Even more conveniently, the product can be easily filtered. The fact that this coupling can be accomplished in the absence of copper is highly desirable in that it avoids any possibility of contamination of torsemide intermediate II and, similarly, torsemide III with a heavy metal such as copper.
In another aspect of this invention, it has been surprisingly found that highly pure torsemide can be prepared in one-step and without the need for additional purification when an inorganic base such as an alkali carbonate or alkali bicarbonate is used in the reaction of 3-sulfonamide-4-(3'-methylphenyl)aminopyridine and isopropyl isocyanate.
Examples include sodium carbonate, lithium carbonate or potassium carbonate. Moreover, we have found that when the above reaction goes to completion, it produces an alkali torsemide mixture that is essentially insoluble in solvents such as acetone or ethyl acetate. This insolubility allows, upon
5 cooling, convenient isolation by filtration of the alkali torsemide mixture largely free of organic impurities (generally over 99.5% by HPLC), including N,N'-isopropyl urea. The torsemide is then easily obtained by acidification of the alkali torsemide mixture in a water-based media using a water-soluble acid, such as acetic acid. Fortunately, the isolated torsemide retains the high purity of the alkali torsemide precursor. One skilled in the art will recognize that this process can be used to prepare the various known forms of torsemide known in the prior art under the appropriate conditions.
In another aspect of the invention, it has been found that torsemide can be made in the absence of triethylamine. Triethylamine is a hazardous compound with known short-term and long-term health effects. Thus, avoidance of this compound is beneficial as well.
According to one aspect of the invention, there is provided a process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent, preferably in the absence of triethylamine to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
6 Preferably, the alkali carbonate is sodium carbonate, potassium carbonate, or lithium carbonate.
Preferably, the alkali bicarbonate is sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate.
Preferably, the organic solvent is selected from the group consisting of acetone, ethyl acetate, acetonitrile, methyl isobutyl ketone and mixtures thereof.
Preferably, the alkali torsemide mixture is converted to torsemide by dissolving in water followed by acidification.
Preferably, the acid used for acidification is a water soluble acid, preferably acetic acid.
According to another aspect of the invention, there is provided a process for preparing II
comprising reacting I with m-toluidine in an organic solvent to form II, wherein said process is carried out in the absence of at least one of the following:
i) a copper catalyst; and/or ii) triethylamine.
1 S Preferably, the organic solvent is a CI-C6 alcohol, preferably n-butanol.
DETAILED DESCRIPTION OF THE INVENTION
Example I, Preparation of 4-((3-methylphenyl)aminoJ-3 pyridinesulfonamide hydrochloride (II):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-chloro-3-pyridinesulfonamide I (300.0 g, 1.56 mol), m-toluidine (200.3 g, 1.87 moI) and 1200 mL n-butanol. The reaction mixture was heated for 2-4 hours and then cooled to room temperature. The solid was filtered and washed with n-butanol.
After drying, 4-
7 [(3-methylphenyl)amino]-3-pyridinesulfonamide hydrochloride (457.1 g, 98%) was obtained a's pale-yellow solid having a purity of 99.96 % by HPLC.
Example 2, Preparation of N f~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 2-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (100.0 g, 0.38 mol), sodium carbonate (40.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1-L).
The reaction mixture was heated at reflex until reaction completion (monitored by TLC or 1H-NMR, generally 820 h). The reaction mixture was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL
acetone to afford sodium torsemide mixture as a white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50°C for I2~16 h to yield 116.6 g torsemide as white solid (117.8 g, 89% yield, purity of 99.54% by HPLC).
Example 3, Preparation of N ~~(1-Methylethyl)aminoJcarbonylJ-4-~(3-methylphenyl)aminoJ-3 pyridinesulfonamide (torsemide, III):
A 3-L, three-necked flask equipped with mechanical stirrer, thermometer and condenser was charged with 4-[(3-methylphenyl)amino]-3-pyridinesulfonamide II (I00.0 g, 0.38 mol), potassium carbonate (52.4.3 g, 0.38 mol), isopropyl isocyanate (35.6 g, 0.42 mol) and acetone (1.8 L). The reaction mixture was heated at reflex until reaction completion (monitored by TLC
or'H-NMR, generally 820 h) whereupon it was cooled to room temperature and the solid was isolated by Buchner filtration. The filter cake was washed with 250 mL acetone to afford potassium torsemide mixture as white solid. The filter cake was dissolved in 800 mL water and acetic acid (45.5 g, 0.76 mol) was added slowly. The resulting suspension was stirred for 2 h and the solid was filtered, washed with 250 mL water, and dried under vacuum at 50 degree for 1216 h to yield 116.6 g torsemide as white solid (I 16.3 g, 88% yield, purity of 99.61% by HPLC).
While the foregoing provides a detailed description of a preferred embodiment of the invention, it is to be understood that this description is illustrative only of the principles of the invention and not limitative. Furthermore, as many changes can be made to the invention without departing from the scope of the invention, it is intended that all material contained herein I O be interpreted as illustrative of the invention and not in a limiting sense.

Claims (14)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE AS FOLLOWS:
1. A process for preparing torsemide or salts thereof comprising:
a) reacting II with isopropyl isocyanate in the presence of an alkali carbonate or bicarbonate and an organic solvent to form an alkali torsemide mixture, b) recovering the alkali torsemide mixture, and c) if desired, recovering the torsemide by acidification of the alkali torsemide mixture.
2. The process of claim 1 wherein said process is earned out in the absence of triethylamine.
3. A process for preparing II comprising reacting I with m-toluidine in an organic solvent to form II, wherein said process is carried out in the absence of at least one of the following:
i) a copper catalyst; and/or ii) triethylamine.
4. The process of claim 3 wherein the organic solvent is a C1 to C6 alcohol.
5. The process of claim 3 or 4 wherein the organic solvent is n-butanol.
6. The process of claim 1 or 2 wherein the alkali carbonate is sodium carbonate, potassium carbonate, or lithium carbonate.
7. The process of claim 1 or 2 wherein the alkali bicarbonate is sodium bicarbonate, potassium bicarbonate, or lithium bicarbonate.
8. The process of claim 1 or 2 wherein the organic solvent selected from the group consisting of acetone, ethyl acetate, acetonitrile, methyl isobutyl ketone and mixtures thereof.
9. The process of claim 1 or 2 wherein the alkali torsemide mixture is converted to torsemide by dissolving in water followed by acidification.
10. The process of claim 1 or 2 wherein the acid used for acidification is a water soluble acid.
11. The process of claim 1 or 2 wherein the acid used for acidification is acetic acid.
12. The process of claim 1 or 2 wherein the purity of the torsemide is at least about 99.5%.
13. The process of claim 1 or 2 wherein the purity of torsemide is at least 98%.
14. The process of claims 1 or 2 wherein the known polymorphs of torsemide are produced.
CA002460432A 2004-03-10 2004-03-10 Process for the preparation of torsemide and related intermediates Abandoned CA2460432A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002460432A CA2460432A1 (en) 2004-03-10 2004-03-10 Process for the preparation of torsemide and related intermediates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA002460432A CA2460432A1 (en) 2004-03-10 2004-03-10 Process for the preparation of torsemide and related intermediates

Publications (1)

Publication Number Publication Date
CA2460432A1 true CA2460432A1 (en) 2005-09-10

Family

ID=34976957

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002460432A Abandoned CA2460432A1 (en) 2004-03-10 2004-03-10 Process for the preparation of torsemide and related intermediates

Country Status (1)

Country Link
CA (1) CA2460432A1 (en)

Similar Documents

Publication Publication Date Title
DE602004010848T2 (en) DERIVATIVES OF 1-PIPERAZINE AND 1-HOMOPIPERAZINE CARBOXYLATES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS INHIBITORS OF THE FAAH ENZYME
CA2583920C (en) Non-peptide bradykinin antagonists and pharmaceutical compositions therefrom
JPS6327471A (en) Production of optically active benzenesulfonamide derivative
CA2568700A1 (en) Process for preparing 2-oxo-1-pyrrolidine derivatives by intramolecular allylation
AU2001247592B2 (en) Novel processes for preparing torsemide intermediate
US7378527B2 (en) Process for the preparation of torsemide and related intermediates
AU2001247592A1 (en) Novel processes for preparing torsemide intermediate
US20090253913A1 (en) Process for the preparation of sorafenib and salts thereof
JPH03153689A (en) Preparation of aqueous solution of 5-methyl- n-(aryl)-1, 2, 4-triazol (1, 5-a) pyrimidine- 2-sulfonamide
CA2460432A1 (en) Process for the preparation of torsemide and related intermediates
JP4097291B2 (en) Method for producing substituted valinamide derivative
EP0976742A1 (en) A synthesis of furan sulfonamide compounds useful in the synthesis of IL-1 inhibitors
NZ270499A (en) 1-(hetero)aryl substituted imidazolin-5-one derivatives substituted in position-4 by an (hetero)aryl-containing group; preparation and fungicidal compositions
CA2504796A1 (en) Polymorphs of pantoprazole sodium salt and process for the preparation thereof
JP2000507916A (en) Process for producing aminophenylsulfonylurea and intermediates for the process
JP2006512305A (en) Process for producing 2-amino-4-chloro-6-alkoxypyrimidine
JP2009221185A (en) Method for producing toluidine compound
JPH04234372A (en) Process for producing n-alkylsulfonylamino- sulfonylurea
JP3523661B2 (en) Method for purifying 2-alkyl-4-halogeno-5-formylimidazole
EP0754686B1 (en) 2-cyanopiperazine and use thereof for the synthesis of biologically active substances
JPH04139170A (en) Substituted pyridinesufonylcarbamate-based compound, its production and production of substituted pyridinesulfonamide-based compound
KR100310936B1 (en) A process for preparing N-(4-methylbenzenesulfonyl)-N'-(3-azabicyclo[3,3,0]octane)urea
JPS6270344A (en) Production of nitrophenoxyamine
JPS6248667A (en) Production of thiocarbamate derivative
HU204032B (en) New process for produicng substituted anilines

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead

Effective date: 20150310