Connect public, paid and private patent data with Google Patents Public Datasets

Method of determining formation anisotropy in deviated wells using separation of induction mode

Info

Publication number
CA2457117A1
CA2457117A1 CA 2457117 CA2457117A CA2457117A1 CA 2457117 A1 CA2457117 A1 CA 2457117A1 CA 2457117 CA2457117 CA 2457117 CA 2457117 A CA2457117 A CA 2457117A CA 2457117 A1 CA2457117 A1 CA 2457117A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
layers
conductivity
plurality
measurements
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA 2457117
Other languages
French (fr)
Other versions
CA2457117C (en )
Inventor
Leonty A. Tabarovsky
Mikhail Epov
Michael B. Rabinovich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Inc
Original Assignee
Baker Hughes Incorporated
Leonty A. Tabarovsky
Mikhail Epov
Michael B. Rabinovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • G01V3/28Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils

Abstract

Measurements are made with a multicomponent induction logging tool (10) in earth formations (201) in a borehole (202) inclined to earth formations (201).
A combination of principal component measurements (301) is used to determine the horizontal resistivity (305) of the earth formations (201). The determined horizontal resistivities are used in a model for inversion of other components of the data to obtain the vertical formations resistivities (309). When multifrequency measurements are available, frequency focusing (301) is used.

Claims (10)

1. A method of logging a subsurface formation comprising a plurality of layers each having a horizontal conductivity and a vertical conductivity, the method comprising:
(a) conveying an electromagnetic logging tool into a borehole in the subsurface formation, said logging tool including a plurality of transmitters and a plurality of receivers at least one of said transmitters and at least one of said receivers inclined to an axis of the tool, said borehole having an axis inclined at a nonzero angle to a normal to said layers;
(b) using said electromagnetic logging tool for obtaining a plurality of measurements with a plurality of pairs of said transmitters and receivers;
(c) using a first subset of said plurality of measurements for determining a horizontal conductivity associated with each of said layers; and (d) using determined horizontal conductivities and a second subset of said plurality of measurements for determining a vertical conductivity associated with each of said layers.
2. The method of claim 1 wherein said plurality of transmitters comprise x-, y-and z-transmitters and the plurality of receivers comprise x-, y- and z-receivers.
3. The method of claim 1 wherein determining the horizontal conductivity associated with each of said layers further comprises applying frequency focusing to said first subset of measurements and obtaining therefrom a first frequency focused set of measurements.
4. The method of claim 2 wherein determining the horizontal conductivity associated with each of said layers further comprises applying frequency focusing to said first subset of measurements and obtaining therefrom a second frequency focused set of measurements.
5. The method of claim 3 wherein determining the horizontal conductivity associated with each of said layers further comprises determining a set of weights such that a weighted sum of the first frequency focused set of measurements is substantially independent of the vertical conductivity associated with each of the plurality of layers.
6. The method of claim 4 wherein determining the horizontal conductivity associated with each of said layers further comprises determining a set of weights such that a weighted sum of the first frequency focused set of measurements is substantially independent of the vertical conductivity associated with each of the plurality of layers.
7. The method of claim 2 wherein said first subset of measurements consist of principal component measurements.
8. The method of claim 5 wherein determining the vertical conductivity associated with each of said layers further comprises inverting the second frequency focused set of measurements using a model including said horizontal and the vertical conductivity associated with each of said plurality of layers.
9. The method of claim 6 wherein determining the vertical conductivity associated with each of said layers further comprises inverting the second frequency focused set of measurements using a model including said horizontal and vertical conductivity associated with each of said plurality of layers.
10. The method of claim 1 wherein determining the horizontal conductivity and the vertical conductivity associated with each of the plurality of layers further comprises obtaining a tool rotation angle, formation azimuth, and an angle of inclination of said borehole to the normal to the plurality of layers.

12. The method of claim 2 wherein determining the horizontal conductivity and the vertical conductivity associated with each of the plurality of layers further comprises obtaining a tool rotation angle, formation azimuth, and an angle of inclination of said borehole to the normal to the plurality of layers.

13. The method of claim 1 further comprising repeating steps (a) - (d) and iteratively updating an estimate of said non zero angle until a difference between said measurements and a model output obtained using said horizontal and vertical conductivities is less than a predetermined threshold.

14. The method of claim 1 wherein determining said horizontal conductivity associated with each of said layers further comprises performing an inversion.

15. The method of claim 2 wherein said subsurface formation further comprises a uniform formation, and the plurality of measurements further comprises at least one measurement selected from (i) a h xz measurement, (ii) a h xy measurement, (iii) a h zx measurement, (iv) a h zy measurement, (v) a h yx measurement, and, (vi) a h yz measurement.
CA 2457117 2001-04-03 2002-08-14 Method of determining formation anisotropy in deviated wells using separation of induction mode Expired - Fee Related CA2457117C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US31265501 true 2001-08-15 2001-08-15
US60/312,655 2001-08-15
US10072173 US6636045B2 (en) 2001-04-03 2002-02-07 Method of determining formation anisotropy in deviated wells using separation of induction mode
US10/072,173 2002-02-07
PCT/US2002/025787 WO2003016950A1 (en) 2001-08-15 2002-08-14 Method of determining formation anisotropy in deviated wells using separation of induction mode

Publications (2)

Publication Number Publication Date
CA2457117A1 true true CA2457117A1 (en) 2003-02-27
CA2457117C CA2457117C (en) 2010-10-19

Family

ID=26753071

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2457117 Expired - Fee Related CA2457117C (en) 2001-04-03 2002-08-14 Method of determining formation anisotropy in deviated wells using separation of induction mode

Country Status (5)

Country Link
US (1) US6636045B2 (en)
CA (1) CA2457117C (en)
EP (1) EP1425611A4 (en)
GB (1) GB2400672B (en)
WO (1) WO2003016950A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2836557B1 (en) * 2002-02-28 2004-05-28 Schlumberger Services Petrol Method and geophysical prospecting device of a porous earth formation containing at least one fluid add electrolytes
US6998844B2 (en) * 2002-04-19 2006-02-14 Schlumberger Technology Corporation Propagation based electromagnetic measurement of anisotropy using transverse or tilted magnetic dipoles
US7038457B2 (en) * 2002-07-29 2006-05-02 Schlumberger Technology Corporation Constructing co-located antennas by winding a wire through an opening in the support
US7286091B2 (en) 2003-06-13 2007-10-23 Schlumberger Technology Corporation Co-located antennas
GB2410336B (en) * 2002-09-27 2006-03-08 Baker Hughes Inc A method for resistivity anisotropy determination in conductive borehole environments
CA2500337A1 (en) * 2002-09-27 2004-04-08 Baker Hughes Incorporated A method for resistivity anisotropy determination in near vertical wells
US7436183B2 (en) * 2002-09-30 2008-10-14 Schlumberger Technology Corporation Replaceable antennas for wellbore apparatus
US7031839B2 (en) * 2002-11-15 2006-04-18 Baker Hughes Incorporated Multi-frequency focusing for MWD resistivity tools
US7274991B2 (en) * 2004-06-15 2007-09-25 Baker Hughes Incorporated Geosteering in anisotropic formations using multicomponent induction measurements
US7269515B2 (en) * 2004-06-15 2007-09-11 Baker Hughes Incorporated Geosteering in anisotropic formations using multicomponent induction measurements
US6819111B2 (en) * 2002-11-22 2004-11-16 Baker Hughes Incorporated Method of determining vertical and horizontal resistivity, and relative dip in anisotropic earth formations having an arbitrary electro-magnetic antenna combination and orientation with additional rotation and position measurements
US7382135B2 (en) * 2003-05-22 2008-06-03 Schlumberger Technology Corporation Directional electromagnetic wave resistivity apparatus and method
US7027922B2 (en) * 2003-08-25 2006-04-11 Baker Hughes Incorporated Deep resistivity transient method for MWD applications using asymptotic filtering
US7043370B2 (en) * 2003-08-29 2006-05-09 Baker Hughes Incorporated Real time processing of multicomponent induction tool data in highly deviated and horizontal wells
US7737697B2 (en) 2003-12-03 2010-06-15 Baker Hughes Incorporated Method and apparatus for use of the real component of a magnetic field of multicomponent resistivity measurements
US7336080B2 (en) * 2003-12-03 2008-02-26 Baker Hughes Incorporated Method and apparatus for use of the real component of a magnetic field of multicomponent resistivity measurements
US8112227B2 (en) * 2004-06-15 2012-02-07 Baker Hughes Incorporated Processing of multi-component induction measurements in a biaxially anisotropic formation
US7392137B2 (en) * 2004-06-15 2008-06-24 Baker Hughes Incorporated Determination of formation anistrophy, dip and azimuth
CA2586680A1 (en) * 2004-11-04 2006-05-18 Baker Hughes Incorporated Multiscale multidimensional well log data inversion and deep formation imaging method
US7496451B2 (en) * 2006-03-06 2009-02-24 Baker Hughes Incorporated Real time data quality control and determination of formation angles from multicomponent induction measurements using neural networks
US7268555B1 (en) 2006-04-06 2007-09-11 Baker Hughes Incorporated Correction of cross-component induction measurements for misalignment using comparison of the XY formation response
US7333891B2 (en) * 2006-04-06 2008-02-19 Baker Hughes Incorporated Correction of cross-component induction measurements for misalignment using comparison of the XY formation response
WO2007117631A3 (en) 2006-04-06 2008-05-02 Baker Hughes Inc Correction of cross-component induction measurements for misalignment using comparison of the xy formation response
US7379818B2 (en) * 2006-04-06 2008-05-27 Baker Hughes Incorporated Correction of cross-component induction measurements for misalignment using comparison of the XY formation response
US8931335B2 (en) 2006-04-07 2015-01-13 Baker Hughes Incorporation Processing of multi-component induction data in the presence of borehole abnormalities
US7629791B2 (en) * 2006-08-01 2009-12-08 Baker Hughes Incorporated Method and apparatus for making multi-component measurements in deviated wells
US7778778B2 (en) * 2006-08-01 2010-08-17 Baker Hughes Incorporated Correction of multi-component measurements for tool eccentricity in deviated wells
US20080224706A1 (en) * 2006-11-13 2008-09-18 Baker Hughes Incorporated Use of Electrodes and Multi-Frequency Focusing to Correct Eccentricity and Misalignment Effects on Transversal Induction Measurements
US7554328B2 (en) * 2006-11-13 2009-06-30 Baker Hughes Incorporated Method and apparatus for reducing borehole and eccentricity effects in multicomponent induction logging
KR100837910B1 (en) * 2006-12-05 2008-06-13 현대자동차주식회사 A device maintaining height of an active headrest
US7898260B2 (en) * 2007-04-10 2011-03-01 Baker Hughes Incorporated Method and apparatus for detecting borehole effects due to eccentricity of induction instruments
US8046170B2 (en) * 2008-09-03 2011-10-25 Baker Hughes Incorporated Apparatus and method for estimating eccentricity effects in resistivity measurements
US8614578B2 (en) * 2009-06-18 2013-12-24 Schlumberger Technology Corporation Attenuation of electromagnetic signals passing through conductive material
US20110051552A1 (en) * 2009-08-25 2011-03-03 Schlumberger Technology Corporation Methods and apparatus to calculate a distance from a borehole to a boundary of an anisotropic subterranean rock layer
US9229125B2 (en) * 2009-09-17 2016-01-05 Baker Hughes Incorporated TDEM forward focusing system for downhole use
US8466682B2 (en) * 2009-09-29 2013-06-18 Schlumberger Technology Corporation Apparatus and method for downhole electromagnetic measurement while drilling
WO2014098838A1 (en) * 2012-12-19 2014-06-26 Halliburton Energy Services, Inc. Method and apparatus for optimizing deep resistivity measurements with multi-component antennas
WO2014143015A1 (en) * 2013-03-15 2014-09-18 Halliburton Energy Services Inc. Dip correction for array induction tool data
EP3063569A1 (en) * 2013-10-30 2016-09-07 Halliburton Energy Services, Inc. Apparatus and method of processing multi-component induction data
CN104597510B (en) * 2015-01-29 2017-03-08 中国科学院电子学研究所 A method for obtaining a frequency-domain electromagnetic system tensor rotational invariants

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4531187A (en) * 1982-10-21 1985-07-23 Uhland Joseph C Game monitoring apparatus
DE3505793A1 (en) * 1984-02-21 1985-08-22 Komatsu Mfg Co Ltd Object identification method
JPS62126487A (en) * 1985-11-27 1987-06-08 Shinko Electric Co Ltd Edge detecting circuit for binary image
DE3542484C2 (en) * 1985-11-30 1987-09-24 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
JP2556484B2 (en) * 1986-10-20 1996-11-20 キヤノン株式会社 Graphic contour extracting device
US4725879A (en) * 1987-03-27 1988-02-16 Honeywell Inc. Chroma responsive inspection apparatus selectively producing analog voltage levels based on the luminance, the phase of the chrominance subcarrier, or the amplitude of the chrominance subcarrier
US5115477A (en) * 1988-03-31 1992-05-19 Honeywell Inc. Image recognition edge detection method and system
US4969202A (en) * 1988-03-31 1990-11-06 Honeywell Inc. Image recognition edge detection method and system
CA1338342C (en) * 1988-06-08 1996-05-21 Mitsuru Kurita Image processing apparatus
US4991223A (en) * 1988-06-30 1991-02-05 American Innovision, Inc. Apparatus and method for recognizing image features using color elements
US5216498A (en) * 1989-03-22 1993-06-01 Konica Corporation Image processing apparatus capable of detecting marked region
JPH0372778A (en) * 1989-08-11 1991-03-27 Fuji Xerox Co Ltd Area identification system for picture processing unit
JPH07106646B2 (en) * 1989-12-25 1995-11-15 富士ゼロックス株式会社 Image processing apparatus
US5227871A (en) * 1990-11-30 1993-07-13 Canon Kabushiki Kaisha Image processing apparatus capable of discriminating a predetermined image
US5258837A (en) * 1991-01-07 1993-11-02 Zandar Research Limited Multiple security video display
JP2585874B2 (en) * 1991-03-18 1997-02-26 富士通株式会社 Color image of the edge detection method
US5329448A (en) 1991-08-07 1994-07-12 Schlumberger Technology Corporation Method and apparatus for determining horizontal conductivity and vertical conductivity of earth formations
US5375177A (en) * 1991-09-27 1994-12-20 E. I. Du Pont De Nemours And Company Method of identifying and characterizing a valid object by color
JP3073599B2 (en) * 1992-04-22 2000-08-07 本田技研工業株式会社 Image edge detection device
US5343538A (en) * 1992-10-02 1994-08-30 International Remote Imaging Systems, Inc. Method and an apparatus for identifying an object using quantile partitions
US5757191A (en) * 1994-12-09 1998-05-26 Halliburton Energy Services, Inc. Virtual induction sonde for steering transmitted and received signals
US5656930A (en) 1995-02-06 1997-08-12 Halliburton Company Method for determining the anisotropic properties of a subterranean formation consisting of a thinly laminated sand/shale sequence using an induction type logging tool
US5703773A (en) 1996-02-08 1997-12-30 Western Atlas International, Inc. Real-time 2-dimensional inversion process and its application to induction resistivity well logging
US5666057A (en) 1996-02-29 1997-09-09 Western Atlas International, Inc. Method of skin effect correction and data quality verification for a multi-frequency induction well logging instrument
WO1998000733A1 (en) 1996-07-01 1998-01-08 Shell Internationale Research Maatschappij B.V. Electrical logging of a laminated earth formation
US6044325A (en) * 1998-03-17 2000-03-28 Western Atlas International, Inc. Conductivity anisotropy estimation method for inversion processing of measurements made by a transverse electromagnetic induction logging instrument
US5781436A (en) 1996-07-26 1998-07-14 Western Atlas International, Inc. Method and apparatus for transverse electromagnetic induction well logging
US5884227A (en) 1997-04-01 1999-03-16 Western Atlas International, Inc. Method for interpreting induction logs in high resistivity contrast earth formations
US6092024A (en) 1997-04-03 2000-07-18 Baker Hughes Incorporated Method and apparatus for determining resistivity and dielectric anisotropy parameters of earth formations by using multifrequency and/or multispacing measurements
US6466872B1 (en) * 1999-11-08 2002-10-15 Baker Hughes Incorporated Method for determination of apparent resistivities of anisotropic reservoirs
US6502036B2 (en) * 2000-09-29 2002-12-31 Baker Hughes Incorporated 2-D inversion of multi-component induction logging data to resolve anisotropic resistivity structure
US6584408B2 (en) 2001-06-26 2003-06-24 Schlumberger Technology Corporation Subsurface formation parameters from tri-axial measurements

Also Published As

Publication number Publication date Type
EP1425611A1 (en) 2004-06-09 application
EP1425611A4 (en) 2012-11-21 application
CA2457117C (en) 2010-10-19 grant
US6636045B2 (en) 2003-10-21 grant
WO2003016950A1 (en) 2003-02-27 application
US20020186013A1 (en) 2002-12-12 application
GB2400672B (en) 2005-06-22 grant
GB0403497D0 (en) 2004-03-24 grant
GB2400672A (en) 2004-10-20 application

Similar Documents

Publication Publication Date Title
Zemanek et al. The Borehole TeleviewerA New Logging Concept for Fracture Location and Other Types of Borehole Inspection
US5411104A (en) Coalbed methane drilling
US4593770A (en) Method for preventing the drilling of a new well into one of a plurality of production wells
US5550473A (en) Method for locating thin bed hydrocarbon reserves utilizing electrical anisotropy
US20070285274A1 (en) Multi-Physics Inversion Processing to Predict Pore Pressure ahead of the Drill Bit
US4977961A (en) Method to create parallel vertical fractures in inclined wellbores
EP0527089A2 (en) Method and apparatus for determining horizontal conductivity and vertical conductivity of earth formations
Cipolla et al. Diagnostic techniques to understand hydraulic fracturing: what? why? and how?
US7427863B2 (en) Method and system for calculating resistivity of an earth formation
US7546209B2 (en) Formation dip geo-steering method
US4945994A (en) Inverted wellbore completion
US5241273A (en) Method for controlling directional drilling in response to horns detected by electromagnetic energy propagation resistivity measurements
US20110308794A1 (en) Real Time Determination of Casing Location and Distance with Tilted Antenna Measurement
US6978672B1 (en) Wireline apparatus for measuring steaming potentials and determining earth formation characteristics
US20030197510A1 (en) Galvanic method of measuring electrical anisotropy
US5431225A (en) Sand control well completion methods for poorly consolidated formations
US20090309600A1 (en) Measurement of formation parameters using rotating directional em antenna
Brie et al. New directions in sonic logging
US20030023381A1 (en) Virtual steering of induction tool attenuation and phase difference measurements
US5495174A (en) Method and apparatus for detecting boundary stratum and adjusting the direction of drilling to maintain the drill string within a bed of interest
US20040004553A1 (en) Low frequency electromagnetic telemetry system employing high cardinality phase shift keying
US20050280419A1 (en) While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics
US4194580A (en) Drilling technique
Wright et al. Downhole tiltmeter fracture mapping: finally measuring hydraulic fracture dimensions
Williams et al. The long spaced acoustic logging tool

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20160815