CA2391369A1 - Compositions and methods for the therapy and diagnosis of prostate cancer - Google Patents

Compositions and methods for the therapy and diagnosis of prostate cancer Download PDF

Info

Publication number
CA2391369A1
CA2391369A1 CA002391369A CA2391369A CA2391369A1 CA 2391369 A1 CA2391369 A1 CA 2391369A1 CA 002391369 A CA002391369 A CA 002391369A CA 2391369 A CA2391369 A CA 2391369A CA 2391369 A1 CA2391369 A1 CA 2391369A1
Authority
CA
Canada
Prior art keywords
seq
prostate
sequence
polynucleotide
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002391369A
Other languages
French (fr)
Inventor
Jiangchun Xu
Davin C. Dillon
Jennifer L. Mitcham
Susan L. Harlocker
Yuqiu Jiang
Steven G. Reed
Michael D. Kalos
Marc W. Retter
John A. Stolk
Craig H. Day
Yasir A.W. Skeiky
Aijun Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corixa Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/439,313 external-priority patent/US6329505B1/en
Application filed by Individual filed Critical Individual
Publication of CA2391369A1 publication Critical patent/CA2391369A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464493Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; Prostatic acid phosphatase [PAP]; Prostate-specific G-protein-coupled receptor [PSGR]
    • A61K39/464494Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer, are disclosed. Compositions may comprise one or more prosta te- specific proteins, immunogenic portions thereof, or polynucleotides that encode such portions. Alternatively, a therapeutic composition may comprise an antigen presenting cell that expresses a prostate-specific protein, or a T cell that is specific for cells expressing such a protein. Such compositions may be used, for example, for the prevention and treatment of diseases such as prostate cancer. Diagnostic methods based on detecting a prostate-specific protein, or mRNA encoding such a protein, in a sample are also provided.</SD OAB>

Description

COMPOSITIONS AND METHODS FOR THE THERAPY AND
DIAGNOSIS OF PROSTATE CANCER
s TECHNICAL FIELD
The present invention relates generally to therapy and diagnosis of cancer, such as prostate cancer. The invention is more specifically related to polypeptides comprising at least a portion of a prostate-specific protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides may be used in vaccines and pharmaceutical compositions for l0 prevention and treatment of prostate cancer, and for the diagnosis and monitoring of such cancers.
BACKGROUND OF THE INVENTION
Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress 1 s inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.
In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, 'but 20 these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) -have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA
measurements correlate 2s with prostate volume, and do not indicate the level of metastasis.
In spite of considerable research into therapies for these and other cancers, prostate cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.
3o SUMMARY OF THE INVENTION
Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer, such as prostate cancer. In one aspect, the present invention provides polypeptides comprising at least a portion of a prostate-specific protein, or a variant thereof. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises at least an immunogenic portion of a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in any one of SEQ ID NOs:I-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382,384-476, 524, 526, 530, 531, 533, 535 and 536; (b) sequences that hybridize to any of the to foregoing sequences under moderately stringent conditions; and (c) complements of any of the sequence of (a) or (b). In certain specific embodiments, such a polypeptide comprises at least a portion, or variant thereof, of a protein that includes an amino acid sequence selected from the group consisting of sequences recited in any one of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-550.
The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a prostate-specific protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.
Within other aspects, the present invention provides pharmaceutical compositions 2o comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.
Within a related aspect of the present invention, vaccines for prophylactic or therapeutic use are provided. Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.
The present invention further provides pharmaceutical compositions that comprise:
(a) an antibody or antigen-binding fragment thereof that specifically binds to a prostate-specific protein; and (b) a physiologically acceptable carrier. In certain embodiments, the present invention provides monoclonal antibodies that specifically bind to an amino acid sequence selected from the group consisting of SEQ ID NO: 496, 504, 505, 509-517, 522 and 541-550, together with 3o monoclonal antibodies comprising a complementarity determining region selected from the group consisting of SEQ ID NO: 502, 503 and 506-508.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.
s Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.
The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.
Within related aspects, pharmaceutical compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.
Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.
Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.
The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate-specific protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.
Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.
Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a prostate-specific protein, comprising contacting T
cells with one or more of:
(i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T
cell populations comprising T cells prepared as described above are also provided.
Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.
The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4+ and/or CD8+
T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of a prostate-specific protein; (ii) a polynucleotide encoding such a polypeptide;
and (iii) an antigen presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.
to Proliferated cells may, but need not, be cloned prior to administration to the patient.
Within further aspects, the present invention provides methods for determining the presence or absence of a cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody. The cancer may be prostate cancer.
The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of:
(a) contacting a 2o biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.
In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein; (b) 1o detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
Within further aspects, the present invention provides antibodies, such as t 5 monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.
These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed 2o herein are hereby incorporated by reference in their entirety as if each was incorporated individually.
BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS
Figure 1 illustrates the ability of T cells to kill fibroblasts expressing the representative prostate-specific polypeptide P502S, as compared to control fibroblasts. The 25 percentage lysis is shown as a series of effectoraarget ratios, as indicated.
Figures 2A and 2B illustrate the ability of T cells to recognize cells expressing the representative prostate-specific polypeptide P502S. In each case, the number of y-interferon spots is shown for different numbers of responders. In Figure 2A, data is presented for fibroblasts pulsed with the P2S-12 peptide, as compared to fibroblasts pulsed with a control E75 peptide. In Figure 3o 2B, data is presented for fibroblasts expressing P502S, as compared to fibroblasts expressing HER-2/neu.
Figure 3 represents a peptide competition binding assay showing that the P1S#10 peptide, derived from P501 S, binds HLA-A2. Peptide P 1 S# 10 inhibits HLA-A2 restricted presentation of fluM58 peptide to CTL clone D150M58 in TNF release bioassay.
D150M58 CTL is specific for the HLA-A2 binding influenza matrix peptide fluM58.
Figure 4 illustrates the ability of T cell lines generated from P 1 S# 10 immunized mice to specifically lyse P 1 S# 10-pulsed Jurkat A2Kb targets and P501 S-transduced Jurkat A2Kb targets, , as compared to EGFP-transduced Jurkat A2Kb. The percent lysis is shown as a series of effector to target ratios, as indicated.
Figure 5 illustrates the ability of a T cell clone to recognize and specifically lyse Jurkat A2Kb cells expressing the representative prostate-specific polypeptide P501 S, thereby demonstrating that the P 1 S# 10 peptide may be a naturally processed epitope of the P501 S
polypeptide.
Figures 6A and 6B are graphs illustrating the specificity of a CD8+ cell line (3A-1) for a representative prostate-specific antigen (PSO1S). Figure 6A shows the results of a 5'Cr release assay. The percent specific lysis is shown as a series of effectoraarget ratios, as indicated. Figure 6B shows the production of interferon-gamma by 3A-1 cells stimulated with autologous B-LCL
transduced with P501 S, at varying effectoraarget rations as indicated.
Figure 7 is a Western blot showing the expression of P501 S in baculovirus.
Figure 8 illustrates the results of epitope mapping studies on P501 S.
Figure 9 is a schematic representation of the P501 S protein showing the location of transmembrane domains and predicted intracellular and extracellular domains.
Figure 10 is a genomic map showing the location of the prostate genes P775P, P704P, B305D, P712P and P774P within the Cat Eye Syndrome region of chromosome 22q11.2 Figure 11 shows the results of an ELISA assay of antibody specificity to P501 S
peptides.
SEQ ID NO: 1 is the determined cDNA sequence for F1-13 SEQ ID NO: 2 is the determined 3' cDNA sequence for F1-12 SEQ ID NO: 3 is the determined 5' cDNA sequence for F1-12 SEQ ID NO: 4 is the determined 3' cDNA sequence for F1-16 SEQ ID NO: 5 is the determined 3' cDNA sequence for H1-1 SEQ ID NO: 6 is the determined 3' cDNA sequence for Hl-9 SEQ ID NO: 7 is the determined 3' cDNA sequence for H1-4 SEQ ID NO: 8 is the determined 3' cDNA sequence for J1-17 SEQ ID NO: 9 is the determined 5' cDNA sequence for J1-17 SEQ ID NO: 10 is the determined 3' cDNA sequence for L1-12 SEQ ID NO: 11 is the determined 5' cDNA sequence for L1-12 SEQ ID NO: 12 is the determined 3' cDNA sequence for N1-1862 SEQ ID NO: 13 is the determinedcDNA sequence for 5' N1-1862 SEQ ID NO: 14 is the determinedcDNA sequence for 3' J1-13 SEQ ID NO: 15 is the determinedcDNA sequence for 5' J1-13 SEQ ID NO: 16 is the determinedcDNA sequence for 3' J1-19 1o SEQ ID NO: 17 is the determinedcDNA sequence for 5' J1-19 SEQ ID NO: 18 is the determinedcDNA sequence for 3' J1-25 SEQ ID NO: 19 is the determinedcDNA sequence for 5' J1-25 SEQ ID NO: 20 is the determinedcDNA sequence for 5' J 1-24 SEQ ID NO: 21 is the determinedcDNA sequence for 3' J1-24 SEQ ID NO: 22 is the determinedcDNA sequence for 5' Kl-58 SEQ ID NO: 23 is the determinedcDNA sequence for 3' K1-58 SEQ ID NO: 24 is the determinedcDNA sequence for 5' K1-63 SEQ ID NO: 25 is the determinedcDNA sequence for 3' K1-63 SEQ ID NO: 26 is the determinedcDNA sequence for 5' L1-4 2o SEQ ID NO: 27 is the determinedcDNA sequence for 3' L1-4 SEQ ID NO: 28 is the determinedcDNA sequence for 5' L1-14 SEQ ID NO: 29 is the determinedcDNA sequence for 3' L1-14 SEQ ID NO: 30 is the determinedcDNA sequence for 3' J1-12 SEQ ID NO: 31 is the determinedcDNA sequence for 3' J1-16 SEQ ID NO: 32 is the determinedcDNA sequence for 3' J1-21 SEQ ID NO: 33 is the determinedcDNA sequence for 3' K1-48 SEQ ID NO: 34 is the determinedcDNA sequence for 3' K1-55 SEQ ID NO: 35 is the determinedcDNA sequence for 3' L1-2 SEQ ID NO: 36 is the determinedcDNA sequence for 3' L1-6 3o SEQ ID NO: 37 is the determinedcDNA sequence for 3' N1-1858 SEQ ID NO: 38 is the determinedcDNA sequence for 3' N1-1860 SEQ ID NO: 39 is the determinedcDNA sequence for 3' Nl-1861 SEQ ID NO: 40 is the determined 3' cDNA sequence for N1-1864 SEQ ID NO: 41 is the determined cDNA sequence for PS
SEQ ID NO: 42 is the determined cDNA sequence for P8 SEQ ID NO: 43 is the determined cDNA sequence for P9 SEQ ID NO: 44 is the determined cDNA sequence for P 18 SEQ ID NO: 45 is the determined cDNA sequence for P20 SEQ ID NO: 46 is the determined cDNA sequence for P29 SEQ ID NO: 47 is the determined cDNA sequence for P30 SEQ ID NO: 48 is the determined cDNA sequence for P34 1o SEQ ID NO: 49 is the determined cDNA sequence for P36 SEQ ID NO: 50 is the determined cDNA sequence for P38 SEQ ID NO: S 1 is the determined cDNA sequence for P39 SEQ ID NO: 52 is the determined cDNA sequence for P42 SEQ ID NO: 53 is the determined cDNA sequence for P47 SEQ ID NO: 54 is the determined cDNA sequence for P49 SEQ ID NO: 55 is the determined cDNA sequence for P50 SEQ ID NO: 56 is the determined cDNA sequence for P53 SEQ ID NO: 57 is the determined cDNA sequence for P55 SEQ ID NO: 58 is the determined cDNA sequence for P60 2o SEQ ID NO: 59 is the determined cDNA sequence for P64 SEQ ID NO: 60 is the determined cDNA sequence for P65 SEQ ID NO: 61 is the determined cDNA sequence for P73 SEQ ID NO: 62 is the determined cDNA sequence for P75 SEQ ID NO: 63 is the determined cDNA sequence for P76 SEQ ID NO: 64 is the determined cDNA sequence for P79 SEQ ID NO: 65 is the determined cDNA sequence for P84 SEQ ID NO: 66 is the determined cDNA sequence for P68 SEQ ID NO: 67 is the determined cDNA sequence for P80 SEQ ID NO: 68 is the determined cDNA sequence for P82 3o SEQ ID NO: 69 is the determined cDNA sequence for U1-3064 SEQ ID NO: 70 is the determined cDNA sequence for U1-3065 SEQ ID NO: 71 is the determined cDNA sequence for V 1-3692 SEQ ID NO: 72 is the determined cDNA sequence for 1A-3905 SEQ ID NO: 73 is the determined cDNA sequence for V1-3686 SEQ ID NO: 74 is the determined cDNA sequence for R1-2330 SEQ ID NO: 75 is the determined cDNA sequence for 1B-3976 SEQ ID NO: 76 is the determined cDNA sequence for Vl-3679 SEQ ID NO: 77 is the determined cDNA sequence forlG-4736 SEQ ID NO: 78 is the determined cDNA sequence for 1G-4738 SEQ ID NO: 79 is the determined cDNA sequence for 1 G-4741 SEQ ID NO: 80 is the determined cDNA sequence for 1 G-4744 l0 SEQ ID NO: 81 is the determined cDNA sequence for 1 G-4734 SEQ ID NO: 82 is the determined cDNA sequence for 1H-4774 SEQ ID NO: 83 is the determined cDNA sequence for 1H-4781 SEQ ID NO: 84 is the determined cDNA sequence for 1H-4785 SEQ ID NO: 85 is the determined cDNA sequence for 1H-4787 is SEQ ID NO: 86 is the determined cDNA sequence for 1H-4796 SEQ ID NO: 87 is the determined cDNA sequence for 1I-4807 SEQ ID NO: 88 is the determined cDNA sequence for 1I-4810 SEQ ID NO: 89 is the determined cDNA sequence for 1I-4811 SEQ ID NO: 90 is the determined cDNA sequence for 1J-4876 2o SEQ ID NO: 91 is the determined cDNA sequence for 1K-4884 SEQ ID NO: 92 is the determined cDNA sequence for 1K-4896 SEQ ID NO: 93 is the determined cDNA sequence for 1 G-4761 SEQ ID NO: 94 is the determined cDNA sequence for 1 G-4762 SEQ ID NO: 95 is the determined cDNA sequence for 1 H-4766 25 SEQ ID NO: 96 is the determined cDNA sequence for 1H-4770 SEQ ID NO: 97 is the determined cDNA sequence for 1H-4771 SEQ ID NO: 98 is the determined cDNA sequence for 1 H-4772 SEQ ID NO: 99 is the determined cDNA sequence for 1 D-4297 SEQ ID NO: 100 is the determined cDNA sequence for 1D-4309 3o SEQ ID NO: 101 is the determined cDNA sequence for 1D.1-4278 SEQ ID NO: 102 is the determined cDNA sequence for 1 D-4288 SEQ ID NO: 103 is the determined cDNA sequence for 1D-4283 SEQ ID NO: 104 is the determined cDNA sequence for 1D-4304 SEQ ID NO: 105 is the determined cDNA sequence for 1D-4296 SEQ ID NO: 106 is the determined cDNA sequence for 1D-4280 SEQ ID NO: 107 is the determined full length cDNA sequence for F1-12 (also referred to as P504S) SEQ ID NO: 108 is the predicted amino acid sequence for F1-12 SEQ ID NO: 109 is the determined full length cDNA sequence for J1-17 SEQ ID NO: 110 is the determined full length cDNA sequence for L1-12 (also referred to as P501 S) SEQ ID NO: 111 is the determined full length cDNA sequence for N1-1862 (also referred to as to P503S) SEQ ID NO: 112 is the predicted amino acid sequence for J1-17 SEQ ID NO: 113 is the predicted amino acid sequence for L1-12 (also referred to as P501 S) SEQ ID NO: 114 is the predicted amino acid sequence for N1-1862 (also referred to as P503S) SEQ ID NO: 115 is the determined cDNA sequence for P89 1 s SEQ ID NO: 116 is the determined cDNA sequence for P90 SEQ ID NO: 117 is the determined cDNA sequence for P92 SEQ ID NO: 118 is the determined cDNA sequence for P95 SEQ ID NO: 119 is the determined cDNA sequence for P98 SEQ ID NO: 120 is the determined cDNA sequence for P 102 20 SEQ ID NO: 121 is the determined cDNA sequence for P110 SEQ ID NO: 122 is the determined cDNA sequence for P111 SEQ ID NO: 123 is the determined cDNA sequence for P114 SEQ ID NO: 124 is the determined cDNA sequence for P 115 SEQ ID NO: 125 is the determined cDNA sequence for Pl 16 2s SEQ ID NO: 126 is the determined cDNA sequence for P 124 SEQ ID NO: 127 is the determined cDNA sequence for P 126 SEQ ID NO: 128 is the determined cDNA sequence for P130 SEQ ID NO: 129 is the determined cDNA sequence for P133 SEQ ID NO: 130 is the determined cDNA sequence for P138 3o SEQ ID NO: 131 is the determined cDNA sequence for P143 SEQ ID NO: 132 is the determined cDNA sequence for P151 SEQ ID NO: 133 is the determined cDNA sequence for P156 to SEQ ID NO: 134 is the determined cDNA sequence for P157 SEQ ID NO: 135 is the determined cDNA sequence for P166 SEQ ID NO: 136 is the determined cDNA sequence for P176 SEQ ID NO: 137 is the determined cDNA sequence for P178 SEQ ID NO: 138 is the determined cDNA sequence for P179 SEQ ID NO: 139 is the determined cDNA sequence for P185 SEQ ID NO: 140 is the determined cDNA sequence for P 192 SEQ ID NO: 141 is the determined cDNA sequence for P201 SEQ ID NO: 142 is the determined cDNA sequence for P204 to SEQ ID NO: 143 is the determined cDNA sequence for P208 SEQ ID NO: 144 is the determined cDNA sequence for P211 SEQ ID NO: 145 is the determined cDNA sequence for P213 SEQ ID NO: 146 is the determined cDNA sequence for P219 SEQ ID NO: 147 is the determined cDNA sequence for P237 SEQ ID NO: 148 is the determined cDNA sequence for P239 SEQ ID NO: 149 is the determined cDNA sequence for P248 SEQ ID NO: 150 is the determined cDNA sequence for P251 SEQ ID NO: 151 is the determined cDNA sequence for P255 SEQ ID NO: 152 is the determined cDNA sequence for P256 2o SEQ ID NO: 153 is the determined cDNA sequence for P259 SEQ ID NO: 154 is the determined cDNA sequence for P260 SEQ ID NO: 155 is the determined cDNA sequence for P263 SEQ ID NO: 156 is the determined cDNA sequence for P264 SEQ ID NO: 157 is the determined cDNA sequence for P266 SEQ ID NO: 158 is the determined cDNA sequence for P270 SEQ ID NO: 159 is the determined cDNA sequence for P272 SEQ ID NO: 160 is the determined cDNA sequence for P278 SEQ ID NO: 161 is the determined cDNA sequence for P105 SEQ ID NO: 162 is the determined cDNA sequence for P 107 3o SEQ ID NO: 163 is the determined cDNA sequence for P137 SEQ ID NO: 164 is the determined cDNA sequence for P 194 SEQ ID NO: 165 is the determined cDNA sequence for P195 SEQ ID NO: 166 is the determined cDNA sequence for P196 SEQ ID NO: 167 is the determined cDNA sequence for P220 SEQ ID NO: 168 is the determined cDNA sequence for P234 SEQ ID NO: 169 is the determined cDNA sequence for P235 SEQ ID NO: 170 is the determined cDNA sequence for P243 SEQ ID NO: 171 is the determined cDNA sequence for P703P-DE1 SEQ ID NO: 172 is the predicted amino acid sequence for P703P-DE1 SEQ ID NO: 173 is the determined cDNA sequence for P703P-DE2 SEQ ID NO: 174 is the determined cDNA sequence for P703P-DE6 SEQ ID NO: 175 is the determined cDNA sequence for P703P-DE13 SEQ ID NO: 176 is the predicted amino acid sequence for P703P-DE13 SEQ ID NO: 177 is the determined cDNA sequence for P703P-DE14 SEQ ID NO: 178 is the predicted amino acid sequence for P703P-DE14 SEQ ID NO: 179 is the determined extended cDNA sequence for 1G-4736 SEQ ID NO: 180 is the determined extended cDNA sequence for 1G-4738 SEQ ID NO: 181 is the determined extended cDNA sequence for 1 G-4741 SEQ ID NO: 182 is the determined extended cDNA sequence for 1 G-4744 SEQ ID NO: 183 is the determined extended cDNA sequence for 1H-4774 SEQ ID NO: 184 is the determined extended cDNA sequence for 1H-4781 SEQ ID NO: 185 is the determined extended cDNA sequence for 1H-4785 SEQ ID NO: 186 is the determined extended cDNA sequence for 1 H-4787 SEQ ID NO: 187 is the determined extended cDNA sequence for 1H-4796 SEQ ID NO: 188 is the determined extended cDNA sequence for 1I-4807 SEQ ID NO: 189 is the determined 3' cDNA sequence for 1I-4810 SEQ ID NO: 190 is the determined 3' cDNA sequence for l I-4811 SEQ ID NO: 191 is the determined extended cDNA sequence for 1 J-4876 SEQ ID NO: 192 is the determined extended cDNA sequence for 1K-4884 SEQ ID NO: 193 is the determined extended cDNA sequence for 1K-4896 SEQ ID NO: 194 is the determined extended cDNA sequence for 1 G-4761 SEQ ID NO: 195 is the determined extended cDNA sequence for 1 G-4762 SEQ ID NO: 196 is the determined extended cDNA sequence for 1H-4766 SEQ ID NO: 197 is the determined 3' cDNA sequence for 1 H-4770 SEQ ID NO: 198 is the determined 3' cDNA sequence for 1 H-4771 SEQ ID NO: 199 is the determined extended cDNA sequence for 1 H-4772 SEQ ID NO: 200 is the determined extended cDNA sequence for 1D-4309 SEQ ID NO: 201 is the determined extended cDNA sequence for 1D.1-4278 SEQ ID NO: 202 is the determined extended cDNA sequence for 1D-4288 SEQ ID NO: 203 is the determined extended cDNA sequence for 1D-4283 SEQ ID NO: 204 is the determined extended cDNA sequence for 1D-4304 SEQ ID NO: 205 is the determined extended cDNA sequence for 1 D-4296 SEQ ID NO: 206 is the determined extended cDNA sequence for 1D-4280 t o SEQ ID NO: 207 is the determined cDNA sequence for 10-d8fwd SEQ ID NO: 208 is the determined cDNA sequence for 10-HlOcon SEQ ID NO: 209 is the determined cDNA sequence for 11-CBrev SEQ ID NO: 210 is the determined cDNA sequence for 7.g6fwd SEQ ID NO: 211 is the determined cDNA sequence for 7.g6rev t 5 SEQ ID NO: 212 is the determined cDNA sequence for 8-b5fwd SEQ ID NO: 213 is the determined cDNA sequence for 8-b5rev SEQ ID NO: 214 is the determined cDNA sequence for 8-b6fwd SEQ ID NO: 21 S is the determined cDNA sequence for 8-b6 rev SEQ ID NO: 216 is the determined cDNA sequence for 8-d4fwd 20 SEQ ID NO: 217 is the determined cDNA sequence for 8-d9rev SEQ ID NO: 218 is the determined cDNA sequence for 8-g3fwd SEQ ID NO: 219 is the determined cDNA sequence for 8-g3rev SEQ ID NO: 220 is the determined cDNA sequence for 8-h 11 rev SEQ ID NO: 221 is the determined cDNA sequence for g-fl2fwd 25 SEQ ID NO: 222 is the determined cDNA sequence for g-f3rev SEQ ID NO: 223 is the determined cDNA sequence for P509S
SEQ ID NO: 224 is the determined cDNA sequence for PS l OS
SEQ ID NO: 225 is the determined cDNA sequence for P703DE5 SEQ ID NO: 226 is the determined cDNA sequence for 9-A11 3o SEQ ID NO: 227 is the determined cDNA sequence for 8-C6 SEQ ID NO: 228 is the determined cDNA sequence for 8-H7 SEQ ID NO: 229 is the determined cDNA sequence for JPTPN13 SEQ ID NO: 230 is the determined cDNA sequence for JPTPN14 SEQ ID NO: 231 is the determined cDNA sequence for JPTPN23 SEQ ID NO: 232 is the determined cDNA sequence for JPTPN24 SEQ ID NO: 233 is the determined cDNA sequence for JPTPN25 SEQ ID NO: 234 is the determined cDNA sequence for JPTPN30 SEQ ID NO: 235 is the determined cDNA sequence for JPTPN34 SEQ ID NO: 236 is the determined cDNA sequence for PTPN35 SEQ ID NO: 237 is the determined cDNA sequence for JPTPN36 SEQ ID NO: 238 is the determined cDNA sequence for JPTPN38 to SEQ ID NO: 239 is the determined cDNA sequence for JPTPN39 SEQ ID NO: 240 is the determined cDNA sequence for JPTPN40 SEQ ID NO: 241 is the determined cDNA sequence for JPTPN41 SEQ ID NO: 242 is the determined cDNA sequence for JPTPN42 SEQ ID NO: 243 is the determined cDNA sequence for JPTPN45 SEQ ID NO: 244 is the determined cDNA sequence for JPTPN46 SEQ ID NO: 245 is the determined cDNA sequence for JPTPN51 SEQ ID NO: 246 is the determined cDNA sequence for JPTPN56 SEQ ID NO: 247 is the determined cDNA sequence for PTPN64 SEQ ID NO: 248 is the determined cDNA sequence for JPTPN65 SEQ ID NO: 249 is the determined cDNA sequence for JPTPN67 SEQ ID NO: 250 is the determined cDNA sequence for JPTPN76 SEQ ID NO: 251 is the determined cDNA sequence for JPTPN84 SEQ ID NO: 252 is the determined cDNA sequence for JPTPN85 SEQ ID NO: 253 is the determined cDNA sequence for JPTPN86 SEQ ID NO: 254 is the determined cDNA sequence for JPTPN87 SEQ ID NO: 255 is the determined cDNA sequence for JPTPN88 SEQ ID NO: 256 is the determined cDNA sequence for JP 1 F 1 SEQ ID NO: 257 is the determined cDNA sequence for JP1F2 SEQ ID NO: 258 is the determined cDNA sequence for JP 1 C2 3o SEQ ID NO: 259 is the determined cDNA sequence for JP1B1 SEQ ID NO: 260 is the determined cDNA sequence for JP 1 B2 SEQ ID NO: 261 is the determined cDNA sequence for JP1D3 SEQ ID NO: 262 is the determined cDNA sequence for JP1A4 SEQ ID NO: 263 is the determined cDNA sequence for JP1F5 SEQ ID NO: 264 is the determined cDNA sequence for JP1E6 SEQ ID NO: 265 is the determined cDNA sequence for JP 1 D6 SEQ ID NO: 266 is the determined cDNA sequence for JP 1 B 5 SEQ ID NO: 267 is the determined cDNA sequence for JP 1 A6 SEQ ID NO: 268 is the determined cDNA sequence for JP 1 E8 SEQ ID NO: 269 is the determined cDNA sequence for JP1D7 SEQ ID NO: 270 is the determined cDNA sequence for JP1D9 1 o SEQ ID NO: 271 is the determined cDNA sequence for JP 1 C 10 SEQ ID NO: 272 is the determined cDNA sequence for JP1A9 SEQ ID NO: 273 is the determined cDNA sequence for JP 1 F 12 SEQ ID NO: 274 is the determined cDNA sequence for JP 1 E 12 SEQ ID NO: 275 is the determined cDNA sequence for JP 1 D 11 SEQ ID NO: 276 is the determined cDNA sequence for JP 1 C 11 SEQ ID NO: 277 is the determined cDNA sequence for JP 1 C 12 SEQ ID NO: 278 is the determined cDNA sequence for JP 1 B 12 SEQ ID NO: 279 is the determined cDNA sequence for JP 1 A 12 SEQ ID NO: 280 is the determined cDNA sequence for JP8G2 SEQ ID NO: 281 is the determined cDNA sequence for JP8H1 SEQ ID NO: 282 is the determined cDNA sequence for JP8H2 -SEQ ID NO: 283 is the determined cDNA sequence for JP8A3 SEQ ID NO: 284 is the determined cDNA sequence for JP8A4 SEQ ID NO: 285 is the determined cDNA sequence for JP8C3 SEQ ID NO: 286 is the determined cDNA sequence for JP8G4 SEQ ID NO: 287 is the determined cDNA sequence for JP8B6 SEQ ID NO: 288 is the determined cDNA sequence for JP8D6 SEQ ID NO: 289 is the determined cDNA sequence for JP8F5 SEQ ID NO: 290 is the determined cDNA sequence for JP8A8 3o SEQ ID NO: 291 is the determined cDNA sequence for JP8C7 SEQ ID NO: 292 is the determined cDNA sequence for JP8D7 SEQ ID NO: 293 is the determined cDNA sequence for P8D8 SEQ ID NO: 294 is the determined cDNA sequence for JP8E7 SEQ ID NO: 295 is the determined cDNA sequence for JP8F8 SEQ ID NO: 296 is the determined cDNA sequence for JP8G8 SEQ ID NO: 297 is the determined cDNA sequence for JP8B10 SEQ ID NO: 298 is the determined cDNA sequence for JP8C10 SEQ ID NO: 299 is the determined cDNA sequence for JP8E9 SEQ ID NO: 300 is the determined cDNA sequence for JP8E10 SEQ ID NO: 301 is the determined cDNA sequence for JP8F9 SEQ ID NO: 302 is the determined cDNA sequence for JP8H9 l0 SEQ ID NO: 303 is the determined cDNA sequence for JP8C12 SEQ ID NO: 304 is the determined cDNA sequence for JP8E11 SEQ ID NO: 305 is the determined cDNA sequence for JP8E12 SEQ ID NO: 306 is the amino acid sequence for the peptide PS2#12 SEQ ID NO: 307 is the determined cDNA sequence for P711P
SEQ ID NO: 308 is the determined cDNA sequence for P712P
SEQ ID NO: 309 is the determined cDNA sequence for CLONE23 SEQ ID NO: 310 is the determined cDNA sequence for P774P
SEQ ID NO: 311 is the determined cDNA sequence for P775P
SEQ ID NO: 312 is the determined cDNA sequence for P715P
SEQ ID NO: 313 is the determined cDNA sequence for P714P
SEQ ID NO: 314 is the determined cDNA sequence for P767P
SEQ ID NO: 315 is the determined cDNA sequence for P768P
SEQ ID NO: 316-325 are the determined cDNA sequences of previously isolated genes SEQ ID NO: 326 is the determined cDNA sequence for P703PDE5 SEQ ID NO: 327 is the predicted amino acid sequence for P703PDE5 SEQ ID NO: 328 is the determined cDNA sequence for P703P6.26 SEQ ID NO: 329 is the predicted amino acid sequence for P703P6.26 SEQ ID NO: 330 is the determined cDNA sequence for P703PX-23 SEQ ID NO: 331 is the predicted amino acid sequence for P703PX-23 3o SEQ ID NO: 332 is the determined full length cDNA sequence for P509S
SEQ ID NO: 333 is the determined extended cDNA sequence for P707P (also referred to as 11-C9) SEQ ID NO: 334 is the determined cDNA sequence for P714P

SEQ ID NO: 335 is the determined cDNA sequence for P705P (also referred to as 9-F3) SEQ ID NO: 336 is the predicted amino acid sequence for P705P
SEQ ID NO: 337 is the amino acid sequence of the peptide P1S#10 SEQ ID NO: 338 is the amino acid sequence of the peptide p5 SEQ ID NO: 339 is the predicted amino acid sequence of P509S
SEQ ID NO: 340 is the determined cDNA sequence for P778P
SEQ ID NO: 341 is the determined cDNA sequence for P786P
SEQ ID NO: 342 is the determined cDNA sequence for P789P
SEQ ID NO: 343 is the determined cDNA sequence for a clone showing homology to Homo l0 sapiens MM46 mRNA
SEQ ID NO: 344 is the determined cDNA sequence for a clone showing homology to Homo Sapiens TNF-alpha stimulated ABC protein (ABC50) mRNA
SEQ ID NO: 345 is the determined cDNA sequence for a clone showing homology to Homo Sapiens mRNA for E-cadherin SEQ ID NO: 346 is the determined cDNA sequence for a clone showing homology to Human nuclear-encoded mitochondria) serine hydroxymethyltransferase (SHMT) SEQ ID NO: 347 is the determined cDNA sequence for a clone showing homology to Homo Sapiens natural resistance-associated macrophage protein2 (NRAMP2) SEQ ID NO: 348 is the determined cDNA sequence for a clone showing homology to Homo Sapiens phosphoglucomutase-related protein (PGMRP) SEQ ID NO: 349 is the determined cDNA sequence for a clone showing homology to Human mRNA for proteosome subunit p40 SEQ ID NO: 350 is the determined cDNA sequence for P777P
SEQ ID NO: 351 is the determined cDNA sequence for P779P
SEQ ID NO: 352 is the determined cDNA sequence for P790P
SEQ ID NO: 353 is the determined cDNA sequence for P784P
SEQ ID NO: 354 is the determined cDNA sequence for P776P
SEQ ID NO: 355 is the determined cDNA sequence for P780P
SEQ ID NO: 356 is the determined cDNA sequence for.P544S
SEQ ID NO: 357 is the determined cDNA sequence for P745S
SEQ ID NO: 358 is the determined cDNA sequence for P782P
SEQ ID NO: 359 is the determined cDNA sequence for P783P
m SEQ ID NO: 360 is the determined cDNA sequence for unknown 17984 SEQ ID NO: 361 is the determined cDNA sequence for P787P
SEQ ID NO: 362 is the determined cDNA sequence for P788P
SEQ ID NO: 363 is the determined cDNA sequence for unknown 17994 SEQ ID NO: 364 is the determined cDNA sequence for P781P
SEQ ID NO: 365 is the determined cDNA sequence for P785P
SEQ ID NO: 366-375 are the determined cDNA sequences for splice variants of B305D.
SEQ ID NO: 376 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
366.
SEQ ID NO: 377 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
372.
SEQ ID NO: 378 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
373.
SEQ ID NO: 379 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
374.
SEQ ID NO: 380 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
375.
SEQ ID NO: 381 is the determined cDNA sequence for B716P.
SEQ ID NO: 382 is the determined full-length cDNA sequence for P711P.
SEQ ID NO: 383 is the predicted amino acid sequence for P711P.
SEQ ID NO: 384 is the cDNA sequence for P1000C.
SEQ ID NO: 385 is the cDNA sequence for CGI-82.
SEQ ID N0:386 is the cDNA sequence for 23320.
SEQ ID N0:387 is the cDNA sequence for CGI-69.
SEQ ID N0:388 is the cDNA sequence for L-iditol-2-dehydrogenase.
SEQ ID N0:389 is the cDNA sequence for 23379.
SEQ ID N0:390 is the cDNA sequence for 23381.
SEQ ID N0:391 is the cDNA sequence for KIAA0122.
SEQ ID N0:392 is the cDNA sequence for 23399.
SEQ ID N0:393 is the cDNA sequence for a previously identified gene.
SEQ ID N0:394 is the cDNA sequence for HCLBP.
SEQ ID N0:395 is the cDNA sequence for transglutaminase.

SEQ ID N0:396 is the cDNA sequence for a previously identified gene.
SEQ ID N0:397 is the cDNA sequence for PAP.
SEQ ID N0:398 is the cDNA sequence for Ets transcription factor PDEF.
SEQ ID N0:399 is the cDNA sequence for hTGR.
SEQ ID N0:400 is the cDNA sequence for KIAA0295.
SEQ ID N0:401 is the cDNA sequence for 22545.
SEQ ID N0:402 is the cDNA sequence for 22547.
SEQ ID N0:403 is the cDNA sequence for 22548:
SEQ ID N0:404 is the cDNA sequence for 22550.
to SEQ ID N0:405 is the cDNA sequence for 22551.
SEQ ID N0:406 is the cDNA sequence for 22552.
SEQ ID N0:407 is the cDNA sequence for 22553.
SEQ ID N0:408 is the cDNA sequence for 22558.
SEQ ID N0:409 is the cDNA sequence for 22562.
SEQ ID N0:410 is the cDNA sequence for 22565.
SEQ ID N0:411 is the cDNA sequence for 22567.
SEQ ID N0:412 is the cDNA sequence for 22568.
SEQ ID N0:413 is the cDNA sequence for 22570.
SEQ ID N0:414 is the cDNA sequence for 22571.
2o SEQ ID N0:415 is the cDNA sequence for 22572.
SEQ ID N0:416 is the cDNA sequence for 22573.
SEQ ID N0:417 is the cDNA sequence for 22573.
SEQ ID N0:418 is the cDNA sequence for 22575.
SEQ ID N0:419 is the cDNA sequence for 22580.
SEQ ID N0:420 is the cDNA sequence for 22581.
SEQ ID N0:421 is the cDNA sequence for 22582.
SEQ ID N0:422 is the cDNA sequence for 22583.
SEQ ID N0:423 is the cDNA sequence for 22584.
SEQ ID N0:424 is the cDNA sequence for 22585.
3o SEQ ID N0:425 is the cDNA sequence for 22586.
SEQ ID N0:426 is the cDNA sequence for 22587.
SEQ ID N0:427 is the cDNA sequence for 22588.

SEQ ID N0:428 is the cDNA sequence for 22589.
SEQ ID N0:429 is the cDNA sequence for 22590.
SEQ ID N0:430 is the cDNA sequence for 22591.
SEQ ID N0:431 is the cDNA sequence for 22592.
SEQ ID N0:432 is the cDNA sequence for 22593.
SEQ ID N0:433 is the cDNA sequence for 22594.
SEQ ID N0:434 is the cDNA sequence for 22595.
SEQ ID N0:435 is the cDNA sequence for 22596.
SEQ ID N0:436 is the cDNA sequence for 22847.
1o SEQ ID N0:437 is the cDNA sequence for 22848.
SEQ ID N0:438 is the cDNA sequence for 22849.
SEQ ID N0:439 is the cDNA sequence for 22851.
SEQ ID N0:440 is the cDNA sequence for 22852.
SEQ ID N0:441 is the cDNA sequence for 22853.
SEQ ID N0:442 is the cDNA sequence for 22854.
SEQ ID N0:443 is the cDNA sequence for 22855.
SEQ ID N0:444 is the cDNA sequence for 22856.
SEQ ID N0:445 is the cDNA sequence for 22857.
SEQ ID N0:446 is the cDNA sequence for 23601.
2o SEQ ID N0:447 is the cDNA sequence for 23602.
SEQ ID N0:448 is the cDNA sequence for 23605.
SEQ ID N0:449 is the cDNA sequence for 23606.
SEQ ID N0:450 is the cDNA sequence for 23612.
SEQ ID N0:451 is the cDNA sequence for 23614.
SEQ ID N0:452 is the cDNA sequence for 23618.
SEQ ID N0:453 is the cDNA sequence for 23622.
SEQ ID N0:454 is the cDNA sequence for folate hydrolase.
SEQ ID N0:455 is the cDNA sequence for LIM protein.
SEQ ID N0:456 is the cDNA sequence for a known gene.
SEQ ID N0:457 is the cDNA sequence for a known gene.
SEQ ID N0:458 is the cDNA sequence for a previously identified gene.
SEQ ID N0:459 is the cDNA sequence for 23045.

SEQ ID N0:460 is the cDNA sequence for 23032.
SEQ ID N0:461 is the cDNA sequence for 23054.
SEQ ID N0:462-467 are cDNA sequences for known genes.
SEQ ID N0:468-471 are cDNA sequences for P710P.
SEQ ID N0:472 is a cDNA sequence for P 1001 C.
SEQ ID NO: 473 is the determined cDNA sequence for a first splice variant of P775P (referred to as 27505).
SEQ ID NO: 474 is the determined cDNA sequence for a second splice variant of P775P (referred to as 19947).
SEQ ID NO: 475 is the determined cDNA sequence for a third splice variant of P775P (referred to as 19941 ).
SEQ ID NO: 476 is the determined cDNA sequence for a fourth splice variant of P775P (referred to as 19937).
SEQ ID NO: 477 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO:
t 5 474.
SEQ ID NO: 478 is a second predicted amino acid sequence encoded by the sequence of SEQ ID
NO: 474.
SEQ ID NO: 479 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO:
475.
2o SEQ ID NO: 480 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO:
473.
SEQ ID NO: 481 is a second predicted amino acid sequence encoded by the sequence of SEQ ID
NO: 473.
SEQ ID NO: 482 is a third predicted amino acid sequence encoded by the sequence of SEQ ID NO:
25 473.
SEQ ID NO: 483 is a fourth predicted amino acid sequence encoded by the sequence of SEQ ID
NO: 473.
SEQ ID NO: 484 is the first 30 amino acids of the M. tuberculosis antigen Ral2.
SEQ ID NO: 485 is the PCR primer AW025.
3o SEQ ID NO: 486 is the PCR primer AW003.
SEQ ID NO: 487 is the PCR primer AW027.
SEQ ID NO: 488 is the PCR primer AW026.

SEQ ID NO: 489-501 are peptides employed in epitope mapping studies.
SEQ ID NO: 502 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody 20D4.
SEQ ID NO: 503 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody JA1.
SEQ ID NO: 504 & 505 are peptides employed in epitope mapping studies.
SEQ ID NO: 506 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 8H2.
SEQ ID NO: 507 is the determined cDNA sequence of the complementarity determining region for to the anti-P703P monoclonal antibody 7H8.
SEQ ID NO: 508 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 2D4.
SEQ ID NO: 509-522 are peptides employed in epitope mapping studies.
SEQ ID NO: 523 is a mature form of P703P used to raise antibodies against P703P.SEQ ID NO:
524 is the putative full-length cDNA sequence of P703P.
SEQ ID NO: 525 is the predicted amino acid sequence encoded by SEQ ID NO: 524.
SEQ ID NO: 526 is the full-length cDNA sequence for P790P.
SEQ ID NO: 527 is the predicted amino acid sequence for P790P.
SEQ ID NO: 528 & 529 are PCR primers.
2o SEQ ID NO: 530 is the cDNA sequence of a splice variant of SEQ ID NO: 366.
SEQ ID NO: 531 is the cDNA sequence of the open reading frame of SEQ ID NO:
530.
SEQ ID NO: 532 is the predicted amino acid encoded by the sequence of SEQ ID
NO: 531.
SEQ ID NO: 533 is the DNA sequence of a putative ORF of P775P.
SEQ ID NO: 534 is the predicted amino acid sequence encoded by SEQ ID NO: 533.
SEQ ID NO: 535 is a first full-length cDNA sequence for P510S.
SEQ ID NO: 536 is a second full-length cDNA sequence for P510S.
SEQ ID NO: 537 is the predicted amino acid sequence encoded by SEQ ID NO: 535.
SEQ ID NO: 538 is the predicted amino acid sequence encoded by SEQ ID NO: 536.
SEQ ID NO: 539 is the peptide P501 S-370.
3o SEQ ID NO: 540 is the peptide P501 S-376.
SEQ ID NO: 541-550 are epitopes of P501 S.
SEQ ID NO: 551 corresponds to amino acids 543-553 of P501 S.

DETAILED DESCRIPTION OF THE INVENTION
As noted above, the present invention is generally directed to compositions and methods for the therapy and diagnosis of cancer, such as prostate cancer. The compositions described herein may include prostate-specific polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells). Polypeptides of the present invention generally comprise at least a portion (such as an immunogenic portion) of a prostate-specific protein or a variant thereof. A
"prostate-specific protein" is a protein that is expressed in normal prostate and/or prostate tumor cells at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in a non-prostate normal tissue, as determined using a representative assay provided herein. Certain prostate-specific proteins are proteins that react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera of a patient afflicted with prostate cancer.
Polynucleotides of the subject invention generally comprise a DNA or RNA
sequence that encodes ~ 5 all or a portion of such a polypeptide, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to a polypeptide as described above. Antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B-cells that express a polypeptide as described above. T cells that may be employed within such compositions are generally T cells that are specific for a polypeptide as 20 described above.
The present invention is based on the discovery of human prostate-specific proteins.
Sequences of polynucleotides encoding certain prostate-specific proteins, or portions thereof, are provided in SEQ ID NOs:l-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536. Sequences of polypeptides 25 comprising at least a portion of a prostate-specific protein are provided in SEQ ID NOs:l 12-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534 and 537-550.
PROSTATE-SPECIFIC PROTEIN POLYNUCLEOTIDES
30 Any polynucleotide that encodes a prostate-specific protein or a portion or other variant thereof as described herein is encompassed by the present invention.
Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides and more preferably at least 45 consecutive nucleotides, that encode a portion of a prostate-specific protein. More preferably, a polynucleotide encodes an immunogenic portion of a prostate-specific protein. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules.
RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA
molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the 1o present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.
Polynucleotides may comprise a native sequence (i. e., an endogenous sequence that encodes a prostate-specific protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native prostate-specific protein or a portion thereof. The 2o term "variants" also encompasses homologous genes of xenogenic origin.
Two polynucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
Optimal alignment of sequences for comparison may be conducted using the 3o Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp.
345-358; Hein J.
(1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol.
183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A.
and Sokal, R.R.
( 1973) Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad , Sci. USA 80:726-730.
Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i. e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of t 5 positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i. e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
Variants may also, or alternatively, be substantially homologous to a native gene, or 2o a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native prostate specific protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0);
hybridizing at 50°C
65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 25 O.SX and 0.2X SSC containing 0.1% SDS.
It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon 30 usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).
Polynucleotides may be prepared using any of a variety of techniques. For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (i. e., expression that is at least five fold greater in a prostate-specific than in normal tissue, as determined using a representative assay provided herein).
Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., Proc. Natl. Acid. Sci.
to USA 93:10614-10619, 1996 and Heller et al., Proc. Natl. Acid. Sci. USA
94:2150-2155, 1997).
Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as prostate-specific cells. Such polynucleotides may be amplified via polymerise chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.
An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a prostate-specific cDNA library) using well known techniques.
Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules.
Random primed libraries may also be preferred for identifying 5' and upstream regions of genes.
2o Genomic libraries are preferred for obtaining introns and extending 5' sequences.
For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with 32P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A
Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989).
Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The 3o complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments; using well known techniques.
Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art.
Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.
t o One such amplification technique is inverse PCR (see Triglia et al., Nucl.
Acids Res.
16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR
with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591.
Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the 2o use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence.
Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR
(Parker et al., Nucl. Acids. Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.
In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length DNA sequences may also be obtained by analysis of genomic fragments.
3o Certain nucleic acid sequences of cDNA molecules encoding at least a portion of a prostate-specific protein are provided in SEQ ID NO:1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536.

Isolation of these polynucleotides is described below. Each of. these prostate-specific proteins was overexpressed in prostate tumor tissue.
Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis.
Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., DNA
2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a prostate-specific protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain 1 o portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA
construct encoding a prostate-specific polypeptide, and administering the transfected cells to the patient).
A portion of a sequence complementary to a coding sequence (i.e., an antisense polynucleotide) may also be used as a probe or to modulate gene expression.
cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr, Molecular and Immunologic Approaches, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.
A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 3o nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.
Any polynucleotide may be further modified to increase stability in vivo.
Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.
Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors.
In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.
Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for ~ 5 therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). The polynucleotides may also be administered as naked plasmid vectors.
2o Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific.
Targeting may also be accomplished using an antibody, by methods known to those of ordinary 25 skill in the art.
Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A
preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.
e., an artificial membrane 3o vesicle). The preparation and use of such systems is well known in the art.

PROSTATE-SPECIFIC POLYPEPTIDES
Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of a prostate-specific protein or a variant thereof, as described herein. As noted above, a "prostate-specific protein" is a protein that is expressed by normal prostate and/or prostate tumor cells. Proteins that are prostate-specific proteins also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with prostate cancer. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.
. An "immunogenic portion," as used herein is a portion of a protein that is recognized (i. e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a prostate-specific protein or a variant thereof.
Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.
Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) 2o and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (i.
e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins).
Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native prostate-specific protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example,'ZSI-labeled Protein A.
As noted above, a composition may comprise a variant of a native prostate-specific protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native prostate-s specific protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed.
Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.
Polypeptide variants ~ 5 preferably exhibit at least about 70%, more preferably at least about 90%
and most preferably at least about 95% identity (determined as described above) to the identified polypeptides.
Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr;
(2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A
variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer.
Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.
As noted above, polypeptides may comprise a signal (or leader) sequence at the N
terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or.other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.
Polypeptides may be prepared using any of a variety of well known techniques.
1o Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, higher eukaryotic and plant cells.
Preferably, the host cells employed are E. coli, yeast or a mammalian cell line such as COS or CHO.
Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed 2o to further purify a recombinant polypeptide.
Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.
Within certain specific embodiments, a polypeptide may be a fusion protein that 3o comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known prostate-specific protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein.
Certain preferred fusion partners are both immunological and expression enhancing fusion partners.
Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.
Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system: Briefly, 1o DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA
sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.
A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be 2o chosen based on the following factors: (1) their ability to adopt a flexible extended conformation;
(2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl.
Acad. Sci. USA
83:8258-8262, 1986; U.S. Patent No.4,935,233 and U.S. Patent No.4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions 3o that can be used to separate the functional domains and prevent steric interference.
The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides.
Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA
sequence encoding the second polypeptide.
Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).
Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO
l0 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated.
Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS 1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.
In another embodiment, the immunological fusion partner is the protein known as 2o LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; Gene 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE.
This property has been exploited for the development of E. coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA
fragment at the amino terminus has been described (see Biotechnology 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion 3o incorporates residues 188-305.
In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.
BINDING AGENTS
The present invention further provides agents, such as antibodies and antigen binding fragments thereof, that specifically bind to a prostate-specific protein. As used herein, an to antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a prostate-specific protein if it reacts at a detectable level (within, for example, an ELISA) with a prostate-specific protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10' L/mol. The binding constant may be determined using methods well known in the art.
2o Binding agents may be further capable of differentiating between patients with and without a cancer, such as prostate cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a prostate-specific protein will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the 3o above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA
molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Most preferably, antibodies employed in the inventive methods have the ability to induce lysis of tumor cells by activation of complement and mediation of antibody-dependent cellular cytotoxicity (ADCC). Antibodies of different classes and subclasses differ in these properties. For example, mouse antibodies of the IgG2a and IgG3 classes are capable of activating serum complement upon binding to target cells which express the antigen against which the antibodies were raised, and can mediate ADCC.
l0 Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A
Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification.
Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.
Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J.
Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells.
A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide.
Hybridomas having high reactivity and specificity are preferred.
Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse.
l0 Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.
The preparation of mouse and rabbit monoclonal antibodies that specifically bind to polypeptides of the present invention is described in detail below. However, the antibodies of the present invention are not limited to those derived from mice. Human antibodies may also be employed in the inventive methods and may prove to be preferable. Such antibodies can be obtained using human hybridomas as described by Cote et al. (Monoclonal Antibodies and Cancer Therapy, Alan R. Lisa, p. 77, 1985). The present invention also encompasses antibodies made by recombinant means such as chimeric antibodies, wherein the variable region and constant region are derived from different species, and CDR-grafted antibodies, wherein the complementarity determining region is derived from a different species, as described in US
Patents 4,816,567 and 5,225,539. Chimeric antibodies may be prepared by splicing genes for a mouse antibody molecule having a desired antigen specificity together with genes for a human antibody molecule having the desired biological activity, such as activation of human complement and mediation of ADCC
(Morrison et al. Proc. Natl. Acad. Sci. USA 81:6851, 1984; Neuberger et al.
Nature 312:604, 1984;
Takeda et al. Nature 314:452, 1985).
Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, Antibodies: A
Laboratory Manual, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A
bead columns.
Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include 9°Y, 'z'h 'zsl, '3'I, 's6Re, 'g$Re, z"At, and z'zBi. Preferred drugs include methotrexate, and pyrimidine and purine analogs.
Preferred differentiation inducers include phorbol esters and butyric acid.
Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.
1o A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group).
A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulflrydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.
Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling 2o efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.
It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group.
Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S.
Patent No. 4,671,958, to Rodwell et al.
Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is 3o cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spider), by irradiation of a photolabile bond (e.g., U.S. Patent No.
4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No.
4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).
It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody.
Regardless of the particular embodiment, immunoconjugates with more than one agent may ,be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used.
Alternatively, a carrier can be used.
A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent t 5 No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos.
4,429,008 and 4,873,088).
Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating 2o compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No.
4,673,562, to Davison et al.
discloses representative chelating compounds and their synthesis.
A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of 25 a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.
T CELLS
30 Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for a prostate-specific protein. Such cells may generally be prepared in vitro or ex vivo, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the ISOLEXT"~ system, available from Nexell Therapeutics Inc., Irvine, CA (see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO
89/06280; WO
91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.
T cells may be stimulated with a prostate-specific polypeptide, polynucleotide encoding a prostate-specific polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide.
Preferably, a prostate-specific to polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.
T cells are considered to be specific for a prostate-specific polypeptide if the T cells specifically proliferate, secrete cytokines or kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Re.s. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques.
For example, T cell 2o proliferation can be detected by measuring an increased rate of DNA
synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a prostate-specific polypeptide (100 ng/ml - 100 ~g/ml, preferably 200 ng/ml - 25 ~g/ml) for 3 - 7 days should result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-y) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. l, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a prostate-specific polypeptide, polynucleotide or polypeptide-expressing APC may be CD4+ and/or CD8+. Prostate-specific protein-specific T cells may be expanded using 3o standard techniques. Within preferred embodiments, the T cells are derived from either a patient or a related, or unrelated, donor and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4+ or CD8+ T cells that proliferate in response to a prostate-specific polypeptide, polynucleotide or APC can be expanded in number either in vitro or in vivo. Proliferation of such T cells in vitro may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a prostate-specific polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a prostate-specific polypeptide. Alternatively, one or more T cells that proliferate in the presence of a prostate-specific protein can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.
PHARMACEUTICAL COMPOSITIONS AND VACCINES
Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (i. e., vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally 2o described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.
A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression 3o systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein.
Appropriate nucleic acid expression systems contain the necessary DNA
sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., Proc. Natl. Acad. Sci. USA 86:317-321, 1989; Flexner et al., Ann.
N. Y. Acad. Sci.
569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos.
4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP
0,345,242;
1o WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219, 1994; Kass-Eisler et al., Proc. Natl.
Acad. Sci. USA 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA
into such expression systems are well known to those of ordinary skill in the art. The DNA may also be 1s "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.
While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary 20 depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid 25 carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.
3o Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA

or glutathione, adjuvants (e.g., aluminum hydroxide) and/or preservatives.
Alternatively, compositions of the present invention may be formulated as a lyophilizate.
Compounds may also be encapsulated within liposomes using well known technology.
Any of a variety of immunostimulants may be employed in the vaccines of this s invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides;
polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quit A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.
Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Thl type. High levels of Thl-type cytokines (e.g., IFN-y, TNFa, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10 ) tend to favor the induction of humoral immune responses. Following application of a 2o vaccine as provided herein, a patient will support an immune response that includes Thl- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Thl-type, the level of Thl-type cytokines will increase to a greater extent than the level of Th2-type cytokines.
The levels of these cytokines may be readily assessed using standard assays.
For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.
Preferred adjuvants for use in eliciting a predominantly Thl-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT; see US Patent Nos.
4,436,727; 4,877,611;
4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG
dinucleotide is unmethylated) also induce a predominantly Thl response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO
96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A
particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.
The compositions described herein may be administered as part of a sustained release 1 o formulation (i. e., a formulation such as a capsule, sponge or gel (composed of polysaccharides for example) that effects a slow release of compound following administration).
Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane.
Carriers for use within such formulations are biocompatible, and may also be biodegradable;
preferably the formulation provides a relatively constant level of active component release.
The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.
2o Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs.
Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i. e., matched HLA haplotype).
APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.
Certain preferred embodiments of the present invention use dendritic cells or 3o progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, Nature 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, Ann. Rev. Med. 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take-up, process and present antigens with high efficiency, and their ability to activate naive T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., Nature Med. 4:594-600, 1998).
Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFa to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFa, CD40 ligand, LPS, flt3 ligand and/or other compounds) that induce differentiation, maturation and proliferation of dendritic cells.
Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes.
However, this 2o nomenclature should not be construed to exclude all possible intermediate stages of differentiation.
Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II
MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).
APCs may generally be transfected with a polynucleotide encoding a prostate-specific protein (or portion or other variant thereof) such that the prostate-specific polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex 3o vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO
97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997.
Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the prostate-specific polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an irrimunological partner that provides T cell help (e.g., a carrier molecule).
Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of to the polypeptide.
CANCER THERAPY
In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as prostate cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. A
cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor.
2o Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.
Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the in vivo stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).
Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not 3o necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8+ cytotoxic T lymphocytes and CD4+
T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.
Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in t o vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may 'be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system.
Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term in vivo. Studies 2o have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).
Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated ex vivo for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.
Routes and frequency of administration of the therapeutic compositions disclosed herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50%
above the basal (i. e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 ~g to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.
In general, an appropriate dosage and treatment regimen provides the active I5 compounds) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a prostate-specific protein generally correlate with an improved clinical outcome. Such immune responses may generally be 2o evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.
METHODS FOR DETECTING CANCER
In general, a cancer may be detected in a patient based on the presence of one or 25 more prostate-specific proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as prostate cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the 3o agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer.

In general, a prostate tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.
In a preferred embodiment, the assay involves the use of binding agent immobilized l0 on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be' detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length prostate-specific proteins and portions thereof to which the binding agent binds, as described above.
The solid support may be any material known to those of ordinary skill in the art to which the protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride.
The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which axe amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization"
refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time.
The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 fig, and preferably about 100 ng to about 1 fig, is sufficient to immobilize an adequate amount of binding agent.
Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the 1o binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).
In certain embodiments, the assay is a two-antibody sandwich assay. This assay may ~ s be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The 2o amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.
More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 2s 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation.
In general, an appropriate contact time (i.e., incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer.
3o Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by s0 assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.
Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.
The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of to time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.
To determine the presence or absence of a cancer, such as prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a 2o signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7.
Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest 3o to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.
In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described 1o above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent.
Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding 2o fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 fig, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.
Of course, numerous other assay protocols exist that are suitable for use with the proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use prostate-specific polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such prostate-specific protein specific antibodies may correlate with the presence of a cancer.
A cancer may also, or alternatively, be detected based on the presence of T
cells that 3o specifically react with a prostate-specific protein in a biological sample.
Within certain methods, a biological sample comprising CD4+ and/or CD8+ T cells isolated from a patient is incubated with a prostate-specific polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with prostate-specific polypeptide (e.g., 5 - 25 ~.g/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of prostate-specific polypeptide to serve as a control. For CD4+ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8+ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater to and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.
As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a prostate-specific protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a prostate-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (i. e., hybridizes to) a polynucleotide encoding the prostate-specific protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a prostate-specific protein may be used in a hybridization 2o assay to detect the presence of polynucleotide encoding the protein in a biological sample.
To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a prostate-specific protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above.
Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 3o contiguous nucleotides, of a DNA molecule having a sequence recited in SEQ
ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382, 384-476, 524, 526, 530, 531, 533, 535 and 536. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989).
One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or 1 o greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.
In another embodiment, the disclosed compositions may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.
2o Certain in vivo diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.
As noted above, to improve sensitivity, multiple prostate-specific protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or 3o alternatively, assays for proteins provided herein may be combined with assays for other known tumor antigens.

DIAGNOSTIC KITS
The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a prostate-specific protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or I o indirect detection of antibody binding.
Alternatively, a kit may be designed to detect the level of mRNA encoding a prostate-specific protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a prostate-specific protein. Such an oligonucleotide may be used, for example, within a PCR or ~ 5 hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a prostate-specific protein.
The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES
This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.
A human prostate tumor cDNA expression library was constructed from prostate tumor poly A+ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol.
Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A+ RNA was then purified using a Qiagen oligotex spin column mRNA
purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the NotI/Oligo-dTl8 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with NotI. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA), the cDNA was ligated into the EcoRI/NotI site of pCDNA3.1 (Invitrogen) and transformed into 2o ElectroMax E. coli DH10B cells (BRL Life Technologies) by electroporation.
Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor library contained 1.64 x 10' independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3 x 106 independent colonies, with 69%
of clones having inserts and the average insert size being 1120 base pairs.
For both libraries, sequence analysis showed that the majority of clones had a full length cDNA
sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA.contamination.
3o cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara et al. (Blood, 84:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 fig) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerise Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 p1 of HZO, heat-denatured and mixed with 100 p1 (100 fig) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 ~1) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 ~1 HZO to form the driver DNA.
To form the tracer DNA, 10 ~g prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 p1 HzO. Tracer DNA was mixed with 15 ~1 driver DNA and 20 ~1 of 2 x hybridization buffer (1.5 M NaCI/10 mM
EDTA/SO mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 ~1 H20, mixed with 8 p.1 driver DNA and 20 p1 of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA
was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK+
(Stratagene, La Jolla, CA
92037) and transformed into ElectroMax E coli DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (referred to as "prostate subtraction 1 ").
To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA
sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A
(Foster City, CA). Six cDNA clones, hereinafter referred to as Fl-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA
library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ
ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, Hl-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.
Subsequent studies led to the isolation of a full-length cDNA sequence for Fl-12.
This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid l0 sequence being provided in SEQ ID NO: 108.
To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 p.g each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA
library with spike".
2o Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as Jl-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and Ll-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, Kl-55, Ll-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS:
30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID N0:30) was found to be identical to the previously identified 3o human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID
N0:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA
epimerase.
Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA

library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID
NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).
Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid 1o sequences are provided in SEQ ID NOS: 112-114. L1-12 is also referred to as PSO1S.
In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (referred to as "prostate subtraction 2"). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.
A second subtraction with spike (referred to as "prostate subtraction spike 2") was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, 2o mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID N0:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V 1-3686 and R1-2330.
Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in 3o SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1 G-4736, 1 G-4738, 1 G-4741, 1 6 4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID
NOS: 189 and 190, respectively.
Additional studies with prostate subtraction spike 2 resulted in the isolation of three more clones. Their sequences were determined as described above and compared to the most recent GenBank. All three clones were found to have homology to known genes, which are Cysteine-rich protein, KIAA0242, and KIAA0280 (SEQ ID NO: 317, 319, and 320, respectively).
Further 1 o analysis of these clones by Synteni microarray (Synteni, Palo Alto, CA) demonstrated that all three clones were over-expressed in most prostate tumors and prostate BPH, as well as in the majority of normal prostate tissues tested, but low expression in all other normal tissues.
An additional subtraction was performed by subtracting a normal prostate cDNA
library with normal pancreas cDNA (referred to as "prostate subtraction 3").
This led to the ~ 5 identification of six additional clones referred to as 1 G-4761, 1 G-4762, 1 H-4766, 1 H-4770, 1 H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA
sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS:
194-196 and 20 199, respectively, and to the determination of additional partial cDNA
sequences for 1 H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.
Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+
RNA
from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4288, 1D-25 4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.
3o cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two clones (referred to as P509S and PS l OS) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and to PS l OS are provided in SEQ ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.
Additional, studies led to the isolation of the full-length cDNA sequence for P509S.
This sequence is provided in SEQ ID NO: 332, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 339. Two variant full-length cDNA
sequences for PS l OS
are provided in SEQ ID NO: 535 and 536, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 537 and 538, respectively.

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE-SPECIFIC POLYPEPTIDES
Using gene specific primers, mRNA expression levels for the representative prostate-specific polypeptides F1-16, H1-1, J1-17 (also referred to as P502S), L1-12 (also referred to as PSO1S), F1-12 (also referred to as P504S) and N1-1862 (also referred to as P503S) were examined in a variety of normal and tumor tissues using RT-PCR.
Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 ~g of total RNA
with Superscript II reverse transcriptase (BRL Life Technologies) at 42 °C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, ~3-actin was used as an internal control for each of the tissues examined.
First, serial dilutions of the first strand cDNAs were prepared and RT-PCR
assays were performed 3o using (3-actin specific primers. A dilution was then chosen that enabled the linear range amplification of the ~3-actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the (3-actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA
that was prepared without adding reverse transcriptase.
mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. Fl-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found 1o to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 (P502S) and L1-12 (P501 S) appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 (P503S) was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17 (P502S), N1-1862 (P503S) and L1-12 (PSO1S) are either prostate specific or are expressed at significantly elevated levels in prostate.
Further RT-PCR studies showed that F1-12 (P504S) is over-expressed in 60% of 2o prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.
RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.
Northern analysis with four prostate tumors, two normal prostate samples, two BPH
prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 (PSO1S) is over-expressed in prostate tumors 3o and normal prostate, while being undetectable in other normal tissues tested. J1-17 (P502S) was detected in two prostate tumors and not in the other tissues tested. N1-1862 (P503S) was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 (P504S) was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.
The microarray technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon.
L1-12 (P501S) was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 (P504S) were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 (P503S) was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1 D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.
Further microarray analysis to specifically address the extent to which P501 S
(SEQ
ID NO: 110) was expressed in breast tumor revealed moderate over-expression not only in breast tumor, but also in metastatic breast tumor (2/31 ), with negligible to low expression in normal tissues. This data suggests that P501 S may be over-expressed in various breast tumors as well as in 2o prostate tumors.
The expression levels of 32 ESTs (expressed sequence tags) described by Vasmatzis et al. (Proc. Natl. Acad. Sci. USA 95:300-304, 1998) in a variety of tumor and normal tissues were examined by microarray technology as described above. Two of these clones (referred to as P 1 OOOC and P 1001 C) were found to be over-expressed in prostate tumor and normal prostate, and expressed at low to undetectable levels in all other tissues tested (normal aorta, thymus, resting and activated PBMC, epithelial cells, spinal cord, adrenal gland, fetal tissues, skin, salivary gland, large intestine, bone marrow, liver, lung, dendritic cells, stomach, lymph nodes, brain, heart, small intestine, skeletal muscle, colon and kidney. The determined cDNA sequences for P 1 OOOC and P 1001 C are provided in SEQ ID NO: 3 84 and 472, respectively. The sequence of P 1001 C was 3o found to show some homology to the previously isolated Human mRNA for JM27 protein. No significant homologies were found to the sequence of P 1000C.

The expression of the polypeptide encoded by the full length cDNA sequence for 12 (also referred to as P504S; SEQ ID NO: 108) was investigated by immunohistochemical analysis. Rabbit-anti-P504S polyclonal antibodies were generated against the full length P504S
protein by standard techniques. Subsequent isolation and characterization of the polyclonal antibodies were also performed by techniques well known in the art.
Immunohistochemical analysis showed that the P504S polypeptide was expressed in 100% of prostate carcinoma samples tested (n=5).
The rabbit-anti-P504S polyclonal antibody did not appear to label benign prostate cells with the same cytoplasmic granular staining, but rather with light nuclear staining. Analysis to of normal tissues revealed that the encoded polypeptide was found to be expressed in some, but not all normal human tissues. Positive cytoplasmic staining with rabbit-anti-P504S polyclonal antibody was found in normal human kidney, liver, brain, colon and lung-associated macrophages, whereas heart and bone marrow were negative.
This data indicates that the P504S polypeptide is present in prostate cancer tissues, and that there are qualitative and quantitative differences in the staining between benign prostatic hyperplasia tissues and prostate cancer tissues, suggesting that this polypeptide may be detected selectively in prostate tumors and therefore be useful in the diagnosis of prostate cancer.
2o EXAMPLE 3 ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES BY
PCR-BASED SUBTRACTION
A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' E. coli (Stratagene).
3o DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences s for these clones are provided in SEQ ID NO: 41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO: 46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.
Further studies using the PCR-based methodology described above resulted in the to isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. , An additional ten clones (SEQ ID NO: 161-15 170) were found to have some degree of homology to known genes. Larger cDNA
clones containing the P20 sequence represent splice variants of a gene referred to as P703P. The determined DNA sequence for the variants referred to as DE 1, DE 13 and DE 14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The determined cDNA
2o sequence for an extended spliced form of P703 is provided in SEQ ID NO:
225. The DNA
sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.
mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary 2s (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCR as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.
P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20, a 3o portion of the P703P gene, was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 6s 2). Increased expression of P 18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of PS
was observed in normal prostate compared to most other normal tissues.
However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to the majority of normal tissues. However, 1o substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.
Further studies resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-hl l, 9-f12 and 9-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-hll, 9-f12 and 9-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequence of 9-f3. The clones 10-d8, 11-c8 and 8-hl l were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and 9-f12 were found to show some homology to previously identified genes. Further characterization of 7-G6 and 8-G3 showed identity to the known genes PAP and PSA, respectively.
mRNA expression levels for these clones were determined using the micro-array technology described above. The clones 7-G6, 8-G3, 8-B5, 8-B6, 8-D4, 8-D9, 9-F3, 9-F12, 9-H3, 10-A2, 10-A4, 11-C9 and 11-F2 were found to be over-expressed in prostate tumor and normal prostate, with expression in other tissues tested being low or undetectable.
Increased expression of 8-F 11 was seen in prostate tumor and normal prostate, bladder, skeletal muscle and colon.
Increased expression of 10-H10 was seen in prostate tumor and normal prostate, bladder, lung, 3o colon, brain and large intestine. Increased expression of 9-B 1 was seen in prostate tumor, breast tumor, and normal prostate, salivary gland, large intestine and skin, with increased expression of 11-C8 being seen in prostate tumor, and normal prostate and large intestine.

An additional cDNA fragment derived from the PCR-based normal prostate subtraction, described above, was found to be prostate specific by both micro-array technology and RT-PCR. The determined cDNA sequence of this clone (referred to as 9-A11) is provided in SEQ
ID NO: 226. Comparison of this sequence with those in the public databases revealed 99% identity s to the known gene HOXB 13.
Further studies led to the isolation of the clones 8-C6 and 8-H7. The determined cDNA sequences for these clones are provided in SEQ ID NO: 227 and 228, respectively. These sequences were found to show some homology to previously isolated ESTs.
PCR and hybridization-based methodologies were employed to obtain longer cDNA
1o sequences for clone P20 (also referred to as P703P), yielding three additional cDNA fragments that progressively extend the 5' end of the gene. These fragments, referred to as P703PDE5, P703P6.26, and P703PX-23 (SEQ ID NO: 326, 328 and 330, with the predicted corresponding amino acid sequences being provided in SEQ ID NO: 327, 329 and 331, respectively) contain additional 5' sequence. P703PDE5 was recovered by screening of a cDNA library (#141-26) with a portion of 15 P703P as a probe. P703P6.26 was recovered from a mixture of three prostate tumor cDNAs and P703PX 23 was recovered from cDNA library (#438-48). Together, the additional sequences include all of the putative mature serine protease along with part of the putative signal sequence.
The putative full-length cDNA sequence for P703P is provided in SEQ ID NO:
524, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 525.
2o Further studies using a PCR-based subtraction library of a prostate tumor pool subtracted against a pool of normal tissues (referred to as JP: PCR
subtraction) resulted in the isolation of thirteen additional clones, seven of which did not share any significant homology to known GenBank sequences. The determined cDNA sequences for these seven clones (P711 P, P712P, novel 23, P774P, P775P, P710P and P768P) are provided in SEQ ID NO: 307-31 l, 313 and 25 315, respectively. The remaining six clones (SEQ ID NO: 316 and 321-325) were shown to share some homology to known genes. By microarray analysis, all thirteen clones showed three or more fold over-expression in prostate tissues, including prostate tumors, BPH and normal prostate as compared to normal non-prostate tissues. Clones P711P, P712P, novel 23 and P768P showed over-expression in most prostate tumors and BPH tissues tested (n=29), and in the majority of normal 3o prostate tissues (n=4), but background to low expression levels in all normal tissues. Clones P774P, P775P and P710P showed comparatively lower expression and expression in fewer prostate tumors and BPH samples, with negative to low expression in normal prostate.

The full-length cDNA for P711 P was obtained by employing the partial sequence of SEQ ID NO: 307 to screen a prostate cDNA library. Specifically, a directionally cloned prostate cDNA library was prepared using standard techniques. One million colonies of this library were plated onto LB/Amp plates. Nylon membrane filters were used to lift these colonies, and the cDNAs which were picked up by these filters were denatured and cross-linked to the filters by UV
light. The P711P cDNA fragment of SEQ ID NO: 307 was radio-labeled and used to hybridize with these filters. Positive clones were selected, and cDNAs were prepared and sequenced using an automatic Perkin Elmer/Applied Biosystems sequencer. The determined full-length sequence of P711P is provided in SEQ ID NO: 382, with the corresponding predicted amino acid sequence to being provided in SEQ ID NO: 383.
Using PCR and hybridization-based methodologies, additional cDNA sequence information was derived for two clones described above, 11-C9 and 9-F3, herein after referred to as P707P and P714P, respectively (SEQ ID NO: 333 and 334). After comparison with the most recent GenBank, P707P was found to be a splice variant of the known gene HoxB 13. In contrast, no significant homologies to P714P were found.
Clones 8-B3, P89, P98, P130 and P201 (as disclosed in U.S. Patent Application No.
09/020,956, filed February 9, 1998) were found to be contained within one contiguous sequence, referred to as P705P (SEQ ID NO: 335, with the predicted amino acid sequence provided in SEQ ID
NO: 336), which was determined to be a splice variant of the known gene NKX
3.1.
Further studies on P775P resulted in the isolation of four additional sequences (SEQ
ID NO: 473-476) which are all splice variants of the P775P gene. The sequence of SEQ ID NO:
474 was found to contain two open reading frames (ORFs). The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 477 and 478. The cDNA
sequence of SEQ ID
NO: 475 was found to contain an ORF which encodes the amino acid sequence of SEQ ID NO: 479.
The cDNA sequence of SEQ ID NO: 473 was found to contain four ORFs. The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 480-483.
Subsequent studies led to the identification of a genomic region on chromosome 22q11.2, known as the Cat Eye Syndrome region, that contains the five prostate genes P704P, P712P, P774P, P775P and B305D. The relative location of each of these five genes within the 3o genomic region is shown in Fig. 10. This region may therefore be associated with malignant tumors, and other potential tumor genes may be contained within this region.
These studies also led to the identification of a potential open reading frame (ORF) for P775P
(provided in SEQ ID NO:
533), which encodes the amino acid sequence of SEQ ID NO: 534.

SYNTHESIS OF POLYPEPTIDES
Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A
peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiolahioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1 % trifluoroacetic acid (TFA) and lyophilized prior to purification by C 18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1 % TFA) in water (containing 0.1 % TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

FURTHER ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC
POLYPEPTIDES BY PCR-BASED SUBTRACTION
A cDNA library generated from prostate primary tumor mRNA as described above was subtracted with cDNA from normal prostate. The subtraction was performed using a PCR-based protocol (Clontech), which was modified to generate larger fragments.
Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that 3o recognize six-nucleotide restriction sites (MIuI, MscI, PvuII, SaII and StuI). This digestion resulted in an average cDNA size of 600 bp, rather than the average size of 300 by that results from digestion with RsaI according to the Clontech protocol. This modification did not affect the subtraction efficiency. Two tester populations were then created with different adapters, and the driver library remained without adapters.
The tester and driver libraries were then hybridized using excess driver cDNA.
In the first hybridization step, driver was separately hybridized with each of the two tester cDNA
populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in t o which tester cDNA with one adapter hybridized to tester cDNA with the second adapter.
Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.
The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not hybridize to driver ~ 5 cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.
This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are overexpressed in prostate tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.
2o In addition to genes known to be overexpressed in prostate tumor, seventy-seven further clones were identified. Sequences of these partial cDNAs are provided in SEQ ID NO: 29 to 305. Most of these clones had no significant homology to database sequences.
Exceptions were JPTPN23 (SEQ ID NO: 231; similarity to pig valosin-containing protein), JPTPN30 (SEQ ID NO:
234; similarity to rat mRNA for proteasome subunit), JPTPN45 (SEQ ID NO: 243;
similarity to rat 25 norvegicus cytosolic NADP-dependent isocitrate dehydrogenase), JPTPN46 (SEQ
ID NO: 244;
similarity to human subclone H8 4 d4 DNA sequence), JP 1 D6 (SEQ ID NO: 265;
similarity to G.
gallus dynein light chain-A), JP8D6 (SEQ ID NO: 288; similarity to human BAC
clone RG016J04), JP8F5 (SEQ ID NO: 289; similarity to human subclone H8 3 b5 DNA sequence), and JP8E9 (SEQ
ID NO: 299; similarity to human Alu sequence).
3o Additional studies using the PCR-based subtraction library consisting of a prostate tumor pool subtracted against a normal prostate pool (referred to as PT-PN PCR
subtraction) yielded three additional clones. Comparison of the cDNA sequences of these clones with the most recent release of GenBank revealed no significant homologies to the two clones referred to as P715P and P767P (SEQ ID NO: 312 and 314). The remaining clone was found to show some homology to the known gene KIAA0056 (SEQ ID NO: 318). Using microarray analysis to measure mRNA expression levels in various tissues, all three clones were found to be over-expressed in prostate tumors and BPH tissues. Specifically, clone P715P was over-expressed in most prostate tumors and BPH tissues by a factor of three or greater, with elevated expression seen in the majority of normal prostate samples and in fetal tissue, but negative to low expression in all other normal tissues. Clone P767P was over-expressed in several prostate tumors and BPH
tissues, with moderate expression levels in half of the normal prostate samples, and background to low to expression in all other normal tissues tested.
Further analysis, by microarray as described above, of the PT-PN PCR
subtraction library and of a DNA subtraction library containing cDNA from prostate tumor subtracted with a pool of normal tissue cDNAs, led to the isolation of 27 additional clones (SEQ
ID NO: 340-365 and 381) which were determined to be over-expressed in prostate tumor. The clones of SEQ ID NO:
341, 342, 345, 347, 348, 349, 351, 355-359, 361, 362 and 364 were also found to be expressed in normal prostate. Expression of all 26 clones in a variety of normal tissues was found to be low or undetectable, with the exception of P544S (SEQ ID NO: 356) which was found to be expressed in small intestine. Of the 26 clones, 10 (SEQ ID NO: 340-349) were found to show some homology to previously identified sequences. No significant homologies were found to the clones of SEQ ID
2o NO: 350, 351 and 353-365.
Further studies on the clone of SEQ ID NO: 352 (referred to as P790P) led to the isolation of the full-length cDNA sequence of SEQ ID NO: 526. The corresponding predicted amino acid is provided in SEQ ID NO: 527. Data from two quantitative PCR
experiments indicated that P790P is over-expressed in 11/15 tested prostate tumor samples and is expressed at low levels in spinal cord, with no expression being seen in all other normal samples tested. Data from further PCR experiments and microarray experiments showed over-expression in normal prostate and prostate tumor with little or no expression in other tissues tested. P790P was subsequently found to show significant homology to a previously identified G-protein coupled prostate tissue receptor.

PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES
6.1. This Example illustrates the preparation of a CTL cell line specific for cells expressing the P502S gene.
Mice expressing the transgene for human HLA A2Kb (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with P2S#12 peptide (VLGWVAEL;
SEQ ID NO: 306), which is derived from the P502S gene (also referred to herein as J1-17, SEQ ID
1o NO: 8), as described by Theobald et al., Proc. Natl. Acad. Sci. USA
92:11993-11997, 1995 with the following modifications. Mice were immunized with 100pg of P2S#12 and 120p,g of an I-Ab binding peptide derived from hepatitis B Virus protein emulsified in incomplete Freund's adjuvant.
Three weeks later these mice were sacrificed and using a nylon mesh single cell suspensions prepared. Cells were then resuspended at 6 x 10G cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10-5 M 2-mercaptoethanol, SOU/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) P2S#12-pulsed (Smg/ml P2S#12 and lOmg/ml (32-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7pg/ml dextran sulfate and 25~g/ml LPS for 3 days). Six days later, cells (S x 105/m1) were restimulated with 2.5 x 106/m1 peptide pulsed irradiated (20,000 rads) EL4A2Kb cells (Sherman et al, Science 258:815-818, 1992) and 3 x 106/m1 A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20U/ml IL-2. Cells continued to be restimulated on a weekly basis as described, in preparation for cloning the line.
P2S#12 line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 104 cells/ well) as stimulators and A2 transgenic spleen cells as feeders ( 5 x 105 cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, clones that were growing were isolated and maintained in culture.
Several of these clones demonstrated significantly higher reactivity (lysis) against human fibroblasts (HLA A2Kb expressing) transduced with P502S than against control fibroblasts. An example is presented in 3o Figure 1.
This data indicates that P2S #12 represents a naturally processed epitope of the P502S protein that is expressed in the context of the human HLA A2Kb molecule.

6.2. This Example illustrates the preparation of murine CTL lines and CTL
clones specific for cells expressing the P501 S gene.
This series of experiments were performed similarly to that described above.
Mice s were immunized with the P1S#10 peptide (SEQ ID NO: 337), which is derived from the P501S
gene (also referred to herein as L1-12, SEQ ID NO: 110). The P1S#10 peptide was derived by analysis of the predicted polypeptide sequence for P501 S for potential HLA-A2 binding sequences as defined by published HLA-A2 binding motifs (Parker, KC, et al, J. Immunol., 152:163, 1994).
P1S#10 peptide was synthesized as described in Example 4, and empirically tested for HLA-A2 binding using a T cell based competition assay. Predicted A2 binding peptides were tested for their ability to compete HLA-A2 specific peptide presentation to an HLA-A2 restricted CTL clone (D150M58), which is specific for the HLA-A2 binding influenza matrix peptide fluM58. D150M58 CTL secretes TNF in response to self presentation of peptide fluM58. In the competition assay, test peptides at 100-200 ~g/ml were added to cultures of D150M58 CTL in order to bind HLA-A2 on the CTL. After thirty minutes, CTL cultured with test peptides, or control peptides, were tested for their antigen dose response to the fluM58 peptide in a standard TNF bioassay.
As shown in Figure 3, peptide P1S#10 competes HLA-A2 restricted presentation of fluM58, demonstrating that peptide P 1 S# 10 binds HLA-A2.
Mice expressing the transgene for human HLA A2Kb were immunized as described 2o by Theobald et al. (Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995) with the following modifications. Mice were immunized with 62.S~g of P1S #10 and 120pg of an I-Ab binding peptide derived from Hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared using a nylon mesh.
Cells were then resuspended at 6 x 106 cells/ml in complete media (as described above) and cultured 2s in the presence of irradiated (3000 rads) P1S#10-pulsed (2~g/ml P1S#10 and lOmg/ml (32-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7~g/ml dextran sulfate and 25p.g/ml LPS for 3 days). Six days later cells (5 x 105/m1) were restimulated with 2.5 x 106/m1 peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells, as described above, and 3 x 106/m1 A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20 U/ml IL-2. Cells were 3o restimulated on a weekly basis in preparation for cloning. After three rounds of in vitro stimulations, one line was generated that recognized P 1 S# 10-pulsed Jurkat A2Kb targets and P501 S-transduced Jurkat targets as shown in Figure 4.

A P 1 S# 10-specific CTL line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 104 cells/ well) as stimulators and A2 transgenic spleen cells as feeders ( 5 x 105 cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, viable clones were isolated and maintained in culture. As shown in Figure 5, five of these clones demonstrated specific cytolytic reactivity against P501 S-transduced Jurkat A2Kb targets. This data indicates that P1S#10 represents a naturally processed epitope of the P501 S protein that is expressed in the context of the human HLA-A2.1 molecule.

PRIMING OF CTL IN VIVO USING NAKED DNA IMMUNIZATION
WITH A PROSTATE ANTIGEN
The prostate-specific antigen Ll-12, as described above, is also referred to as PSO1S.
HLA A2Kb Tg mice (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with 100 ~g P501 S in the vector VR1012 either intramuscularly or intradermally.
The mice were immunized three times, with a two week interval between immunizations. Two weeks after the last immunization, immune spleen cells were cultured with Jurkat A2Kb-P501 S
transduced stimulator cells. CTL lines were stimulated weekly. After two weeks of in vitro stimulation, CTL activity was assessed against P501 S transduced targets. Two out of 8 mice developed strong anti-P501 S CTL responses. These results demonstrate that P501 S contains at least one naturally processed HLA-A2-restricted CTL epitope.

ABILITY OF HUMAN T CELLS TO RECOGNIZE PROSTATE-SPECIFIC POLYPEPTIDES
This Example illustrates the ability of T cells specific for a prostate tumor polypeptide to recognize human tumor.
Human CD8+ T cells were primed in vitro to the P2S-12 peptide (SEQ ID NO: 306) derived from P502S (also referred to as J1-17) using dendritic cells according to the protocol of Van Tsai et al. (Critical Reviews in Immunology 18:65-75, 1998). The resulting CD8+ T cell microcultures were tested for their ability to recognize the P2S-12 peptide presented by autologous fibroblasts or fibroblasts which were transduced to express the P502S gene in a r-interferon ELISPOT assay (see Lalvani et al., J. Exp. Med. 186:859-865, 1997). Briefly, titrating numbers of T cells were assayed in duplicate on 104 fibroblasts in the presence of 3 ~g/ml human p2-microglobulin and 1 ~g/ml P2S-12 peptide or control E75 peptide. In addition, T cells were simultaneously assayed on autologous fibroblasts transduced with the P502S
gene or as a control, fibroblasts transduced with HER-2/neu. Prior to the assay, the fibroblasts were treated with 10 ng/ml y-interferon for 48 hours to upregulate class I MHC expression. One of the microcultures (#5) demonstrated strong recognition of both peptide pulsed fibroblasts as well as transduced fibroblasts in a y-interferon ELISPOT assay. Figure 2A demonstrates that there was a strong increase in the number of y-interferon spots with increasing numbers of T
cells on fibroblasts pulsed to with the P2S-12 peptide (solid bars) but not with the control E75 peptide (open bars). This shows the ability of these T cells to specifically recognize the P2S-12 peptide. As shown in Figure 2B, this microculture also demonstrated an increase in the number of r-interferon spots with increasing numbers of T cells on fibroblasts transduced to express the P502S gene but not the HER-2/neu gene. These results provide additional confirmatory evidence that the P2S-12 peptide is a naturally processed epitope of the P502S protein. Furthermore, this also demonstrates that there exists in the human T cell repertoire, high affinity T cells which are capable of recognizing this epitope. These T
cells should also be capable of recognizing human tumors which express the P502S gene.
2o EXAMPLE 9 ELICITATION OF PROSTATE ANTIGEN-SPECIFIC CTL RESPONSES
IN HUMAN BLOOD
This Example illustrates the ability of a prostate-specific antigen to elicit a CTL
response in blood of normal humans.
Autologous dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal donors by growth for five days in RPMI medium containing 10% human serum, 50 ng/ml GMCSF and 30 ng/ml IL-4. Following culture, DC were infected overnight with recombinant P501 S-expressing vaccinia virus at an M.O.I. of 5 and matured for 8 hours by the 3o addition of 2 micrograms/ml CD40 ligand. Virus was inactivated by UV
irradiation, CD8+ cells were isolated by positive selection using magnetic beads, and priming cultures were initiated in 24-well plates. Following five stimulation cycles using autologous fibroblasts retrovirally transduced to express P501 S and CD80, CD8+ lines were identified that specifically produced interferon-gamma when stimulated with autologous P501 S-transduced fibroblasts. The P501 S-specific activity of cell line 3A-1 could be maintained following additional stimulation cycles on autologous B-LCL transduced with P501 S. Line 3A-1 was shown to specifically recognize autologous B-LCL
transduced to express P501 S, but not EGFP-transduced autologous B-LCL, as measured by cytotoxicity assays (5'Cr release) and interferon-gamma production (Interferon-gamma Elispot; see above and Lalvani et al., J. Exp. Med. 186:859-865, 1997). The results of these assays are presented in Figures 6A and 6B.
1o EXAMPLE 10 IDENTIFICATION OF A NATURALLY PROCESSED CTL EPITOPE CONTAINED WITHIN A
PROSTATE-SPECIFIC ANTIGEN
The 9-mer peptide p5 (SEQ ID NO: 338) was derived from the P703P antigen (also referred to as P20). The p5 peptide is immunogenic in human HLA-A2 donors and is a naturally processed epitope. Antigen specific human CD8+ T cells can be primed following repeated in vitro stimulations with monocytes pulsed with p5 peptide. These CTL specifically recognize p5-pulsed and P703P-transduced target cells in both ELISPOT (as described above) and chromium release assays. Additionally, immunization of HLA-A2Kb transgenic mice with p5 leads to the generation of CTL lines which recognize a variety of HLA-A2Kb or HLA-A2 transduced target cells expressing P703P.
Initial studies demonstrating that p5 is a naturally processed epitope were done using HLA-A2Kb transgenic mice. HLA-A2Kb transgenic mice were immunized subcutaneously in the footpad with 100 pg of p5 peptide together with 140 ~g of hepatitis B virus core peptide (a Th 2s peptide) in Freund's incomplete adjuvant. Three weeks post immunization, spleen cells from immunized mice were stimulated in vitro with peptide-pulsed LPS blasts. CTL
activity was assessed by chromium release assay five days after primary in vitro stimulation. Retrovirally transduced cells expressing the control antigen P703P and HLA-A2Kb were used as targets. CTL
lines that specifically recognized both p5-pulsed targets as well as P703P-expressing targets were 3o identified.
Human in vitro priming experiments demonstrated that the p5 peptide is immunogenic in humans. Dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by culturing for five days in RPMI medium containing 10%
human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, the DC
were pulsed with 1 ug/ml p5 peptide and cultured with CD8+ T cell enriched PBMC. CTL lines were restimulated on a weekly basis with p5-pulsed monocytes. Five to six weeks after initiation of the CTL cultures, CTL recognition of p5-pulsed target cells was demonstrated.
CTL were additionally shown to recognize human cells transduced to express P703P, demonstrating that p5 is a naturally processed epitope.

to EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN
IN PROSTATE
Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in t 5 SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively. In further studies, a splice variant of the cDNA sequence of SEQ ID NO: 366 was isolated which was found to contain an additional guanine residue at position 884 (SEQ ID NO:
530), leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF
is provided in 2o SEQ ID NO: 531. This frameshift generates a protein sequence (provided in SEQ ID NO: 532) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.
The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly 25 expressed in breast tumor, prostate tumor, normal prostate and normal testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach).

3o GENERATION OF HUMAN CTL IN VITRO USING WHOLE GENE PRIMING AND
STIMULATION TECHNIQUES WITH PROSTATE-SPECIFIC ANTIGEN

Using in vitro whole-gene priming with P501 S-vaccinia infected DC (see, for example, Yee et al, The Journal of Immunology, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501 S (also known as L1-12), as determined by interferon-y ELISPOT analysis as described above.
Using a panel of HLA-mismatched B-LCL lines transduced with P501 S, these CTL lines were shown to be likely restricted to HLAB class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI
medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4.
Following culture, DC were infected overnight with recombinant P501 S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 pg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and priming cultures were initiated using standard culture techniques.
Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501 S and CD80. Following four stimulation cycles, CD8+ T cell lines were identified that specifically produced interferon-y when stimulated with P501 S and CD80-transduced autologous fibroblasts. A panel of HLA-mismatched B-LCL lines transduced with P501 S were generated to define the restriction allele of the response. By measuring interferon-y in an ELISPOT assay, the PSO1 S specific response was shown to be likely restricted by HLA B alleles.
These results demonstrate that a CD8+ CTL response to P501 S can be elicited.
To identify the epitope(s) recognized, cDNA encoding P501 S was fragmented by various restriction digests, and sub-cloned into the retroviral expression vector pBIB-KS. Retroviral supernatants were generated by transfection of the helper packaging line Phoenix-Ampho.
Supernatants were then used to transduce Jurkat/A2Kb cells for CTL screening.
CTL were screened in IFN-gamma ELISPOT assays against these A2Kb targets transduced with the "library" of P501 S
fragments. Initial positive fragments P501 S/H3 and P501 S/F2 were sequenced and found to encode amino acids 106-553 and amino acids 136-547, respectively, of SEQ ID NO: 113.
A truncation of H3 was made to encode amino acid residues 106-351 of SEQ ID NO: 113, which was unable to stimulate the CTL, thus localizing the epitope to amino acid residues 351-547.
Additional fragments encoding amino acids 1-472 (Fragment A) and amino acids 1-351 (Fragment B) were 3o also constructed. Fragment A but not Fragment B stimulated the CTL thus localizing the epitope to amino acid residues 351-472. Overlapping 20-mer and 18-mer peptides representing this region were tested by pulsing Jurkat/A2Kb cells versus CTL in an IFN-gamma assay.
Only peptides P501 S-369(20) and P501 S-369(18) stimulated the CTL. Nine-mer and 10-mer peptides representing this region were synthesized and similarly tested. Peptide P501 S-370 (SEQ ID NO:
539) was the minimal 9-mer giving a strong response. Peptide P501 S-376 (SEQ
ID NO: 540) also gave a weak response, suggesting that it might represent a cross-reactive epitope.
In subsequent studies, the ability of primary human B cells transduced with P501 S to prime MHC class I-restricted, P501 S-specific, autologous CD8 T cells was examined. Primary B
cells were derived from PBMC of a homozygous HLA-A2 donor by culture in CD40 ligand and IL-4, transduced at high frequency with recombinant PSO1S in the vector pBIB, and selected with blastocidin-S. For in vitro priming, purified CD8+ T cells were cultured with autologous CD40 t o ligand + IL-4 derived, P501 S-transduced B cells in a 96-well microculture format. These CTL
microcultures were re-stimulated with P501 S-transduced B cells and then assayed for specificity.
Following this initial screen, microcultures with significant signal above background were cloned on autologous EBV-transformed B cells (BLCL), also transduced with PSO1S.
Using IFN-gamma ELISPOT for detection, several of these CD8 T cell clones were found to be specific for P501 S, as demonstrated by reactivity to BLCL/P501 S but not BLCL transduced with control antigen. It was further demonstrated that the anti-P501 S CD8 T cell specificity is HLA-A2-restricted. First, antibody blocking experiments with anti-HLA-A,B,C monoclonal antibody (W6.32), anti-HLA-B,C
monoclonal antibody (B 1.23.2) and a control monoclonal antibody showed that only the anti-HLA-A,B,C antibody blocked recognition of P501 S-expressing autologous BLCL.
Secondly, the anti-2o P501 S CTL also recognized an HLA-A2 matched, heterologous BLCL transduced with P501 S, but not the corresponding EGFP transduced control BLCL.

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS
BY MICROARRAY ANALYSIS
This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.
A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I
presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs:
393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.
Table I
Summary of Prostate Tumor Antigens Known Genes Previously IdentifiedNovel Genes Genes T-cell gamma chain P504S 23379 (SEQ ID
N0:389) Kallikrein P1000C 23399 (SEQ ID
N0:392) Vector P501 S 23320 (SEQ ID
N0:386) CGI-82 protein mRNA (23319; P503S 23381 (SEQ ID
SEQ ID N0:385) N0:390) Ald. 6 Dehyd. P784P

L-iditol-2 dehydrogenase (23376;P502S
SEQ ID N0:388) Ets transcription factor PDEF P706P
(22672; SEQ ID
N0:398) hTGR (22678; SEQ ID N0:399) 19142.2, bangur.seq (22621;
SEQ ID N0:396) KIAA0295(22685; SEQ ID N0:400) 5566.1 Wang (23404;
SEQ ID
N0:393) Prostatic Acid Phosphatase(22655;P712P
SEQ ID
N0:397) transglutaminase (22611; SEQ P778P
ID N0:395) HDLBP (23508; SEQ ID N0:394) CGI-69 Protein(23367; SEQ ID
N0:387) KIAA0122(23383; SEQ ID N0:391) TEEG

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25%
normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% prostate tumors, 25%
normal prostate and not detected in other normal tissues tested. hTGRI showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is 1o not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate tissues. Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested.
Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75%
normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. 5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It 3o was over-expressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 showed 4.86 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in 97%
8~

of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested.
Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and SO% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.
1 o EXAMPLE 14 IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS
BY ELECTRONIC SUBTRACTION
This Example describes the use of an electronic subtraction technique to identify prostate-specific antigens.
Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatizis et al., Proc. Natl. Acad.
Sci. USA 95:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST
2o sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence > 100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.
Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA
libraries were grouped into three groups: Plus (normal prostate and prostate tumor libraries, and breast cell line libraries, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (libraries from fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which expression was considered to be irrelevant). A summary of these library groups is presented in Table II.
Table II
Prostate cDNA Libraries and ESTs Library # of Libraries# of ESTs Plus 25 43,482 Normal 11 18,875 Tumor 11 21,769 Cell lines 3 2,838 Minus 166 Other 287 Each supercluster was analyzed in terms of the ESTs within the supercluster.
The tissue source of each EST clone was noted and used to classify the superclusters into four groups:
1o Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones derived from the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones derived from the Plus, Minus and Other group libraries, but the number of ESTs derived from the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones derived from Plus, Minus and Other group libraries, but the number derived from the Plus group is higher than the number derived from the Minus group. This analysis identified 4,345 breast clusters (see Table III).
From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

Table III
Prostate Cluster Summary # of # of ESTs Type SuperclustersOrdered Total 4345 3172 The EST clone inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high levels of tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as ~ o described by Schena et al., Proc. Natl. Acad. Sci. USA 93:10614-10619, 1996 and Heller et al., Proc. Natl. Acad. Sci. USA 94:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.
Clones with an expression ratio greater than 3 (i.e., the level in prostate tumor and normal prostate mRNA was at least three times the level in other normal tissue mRNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NO: 401-453, with certain novel sequences shown in SEQ ID
NO: 407, 413, 416-419, 422, 426, 427 and 450.

Table IV
Prostate-tumor ~ecific Clones SEQ ID NO. Sequence Comments Designation 401 22545 previously identified P1000C

402 22547 previously identified P704P

403 22548 known 404 22550 known 406 22552 prostate secretory protein 407 22553 novel 408 22558 previously identified P509S

409 22562 glandular kallikrein 410 22565 previously identified P1000C

412 22568 B1006C (breast tumor antigen) 413 22570 novel 415 22572 previously identified P706P

416 22573 novel 417 22574 novel 418 22575 novel 419 22580 novel 421 22582 prostatic secretory protein 422 22583 novel 423 22584 prostatic secretory protein 424 22585 prostatic secretory protein 425 22586 known 426 22587 novel 427 22588 novel 429 22590 known 431 22592 known 432 22593 Previously identified P777P

433 22594 T cell receptor gamma chain 434 22595 Previously identified P705P

435 22596 Previously identified P707P

437 22848 known 438 22849 prostatic secretory protein 442 22854 previously identified P509S

443 22855 previously identified P705P

444 22856 previously identified P774P

446 23601 previously identified P777P

450 23612 novel 452 23618 previously identified P1000C

453 23622 previously identified P705P

FURTHER IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY
ANALYSIS
This Example describes the isolation of additional prostate-specific polypeptides from a prostate tumor cDNA library.
A human prostate tumor cDNA expression library as described above was screened 1 o using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NO: 454-467. Of these sequences, SEQ ID NO: 459-461 represent novel genes. The others (SEQ ID NO: 454-458 and 461-467) correspond to known sequences.

2o This Example describes the full length cloning of P710P.
The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates.
Nylon membrane filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic Perkin Elmer/Applied Biosystems Division Sequencer. Four sequences were obtained, and are presented in SEQ ID NO: 468-471 These sequences appear to represent different splice variants of the P710P gene.

to This example describes the expression and purification of the prostate-specific antigen P501 S in E. coli, baculovirus and mammalian cells.
al Expression in E. coli Expression of the full-length form of P501 S was attempted by first cloning without the leader sequence (amino acids 36-553 of SEQ ID NO: 113) downstream of the first 30 amino acids of the M. tuberculosis antigen Ral2 (SEQ ID NO: 484) in pETl7b.
Specifically, P501 S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW003 (SEQ ID NO: 486). AW025 is a sense cloning primer that contains a HindIII
site. AW003 is an 2o antisense cloning primer that contains an EcoRI site. DNA amplification was performed using 5 ~l lOX Pfu buffer, 1 ~1 20 mM dNTPs, 1 ~.1 each of the PCR primers at 10 ~M
concentration, 40 ~1 water, 1 ~1 Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 ~,l DNA at 100 ng/~1.
Denaturation at 95°C was performed for 30 sec, followed by 10 cycles of 95°C for 30 sec, 60°C for 1 min and by 72°C for 3 min. 20 cycles of 95°C for 30 sec, 65°C for 1 min and by 72°C for 3 min, and lastly by 1 cycle of 72°C for 10 min. The PCR product was cloned to Ral2m/pETl7b using HindIII and EcoRI. The sequence of the resulting fusion construct (referred to as Ral2-P501 S-F) was confirmed by DNA sequencing.
The fusion construct was transformed into BL21(DE3)pLysE, pLysS and CodonPlus E. coli (Stratagene) and grown overnight in LB broth with kanamycin. The resulting culture was 3o induced with IPTG. Protein was transferred to PVDF membrane and blocked with 5% non-fat milk (in PBS-Tween buffer), washed three times and incubated with mouse anti-His tag antibody (Clontech) for 1 hour. The membrane was washed 3 times and probed with HRP-Protein A

(Zymed) for 30 min. Finally, the membrane was washed 3 times and developed with ECL
(Amersham). No expression was detected by Western blot. Similarly, no expression was detected by Western blot when the Ral2-P501S-F fusion was used for expression in BL2lCodonPlus by CE6 phage (Invitrogen).
An N-terminal fragment of P501 S (amino acids 36-325 of SEQ ID NO: 113) was cloned down-stream of the first 30 amino acids of the M. tuberculosis antigen Ral2 in pETl7b as follows. PSOIS DNA was used to perform PCR using the primers AW025 (SEQ ID NO:
485) and AW027 (SEQ ID NO: 487). AW027 is an antisense cloning primer that contains an EcoRI site and a stop codon. DNA amplification was performed essentially as described above.
The resulting PCR
1o product was cloned to Ral2 in pETl7b at the HindIII and EcoRI sites. The fusion construct (referred to as Ral2-P501S-N) was confirmed by DNA sequencing.
The Ral2-P501 S-N fusion construct was used for expression in BL21 (DE3)pLysE, pLysS and CodonPlus, essentially as described above. Using Western blot analysis, protein bands were observed at the expected molecular weight of 36 kDa. Some high molecular weight bands were also observed, probably due to aggregation of the recombinant protein. No expression was detected by Western blot when the Ral2-P501 S-F fusion was used for expression in BL21 CodonPlus by CE6 phage.
A fusion construct comprising a C-terminal portion of P501 S (amino acids 257-of SEQ ID NO: 113) located down-stream of the first 30 amino acids of the M.
tuberculosis antigen 2o Ral2 (SEQ ID NO: 484) was prepared as follows. P501 S DNA was used to perform PCR using the primers AW026 (SEQ ID NO: 488) and AW003 (SEQ ID NO: 486). AW026 is a sense cloning primer that contains a HindIII site. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ral2 in pETl7b at the HindIII
and EcoRI sites.
The sequence for the fusion construct (referred to as Ral2-P501 S-C) was confirmed.
The Ral2-PSO1S-C fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, as described above. A small amount of protein was detected by Western blot, with some molecular weight aggregates also being observed. Expression was also detected by Western blot when the Ral2-P501 S-C fusion was used for expression in BL21 CodonPlus induced by CE6 phage.

b~pression of P501 S in Baculovirus The Bac-to-Bac baculovirus expression system (BRL Life Technologies, Inc.) was used to express P501 S protein in insect cells. Full-length P501 S (SEQ ID NO:
113) was amplified s by PCR and cloned into the XbaI site of the donor plasmid pFastBacI. The recombinant bacmid and baculovirus were prepared according to the manufacturer's isntructions.
The recombinant baculovirus was amplified in S~ cells and the high titer viral stocks were utilized to infect High Five cells (Invitrogen) to make the recombinant protein. The identity of the full-length protein was confirmed by N-terminal sequencing of the recombinant protein and by Western blot analysis to (Figure 7). Specifically, 0.6 million High Five cells in 6-well plates were infected with either the unrelated control virus BV/ECD PD (lane 2), with recombinant baculovirus for P501 S at different amounts or MOIs (lanes 4-8), or were uninfected (lane 3). Cell lysates were run on SDS-PAGE
under reducing conditions and analyzed by Western blot with the anti-P501 S
monoclonal antibody P501 S-10E3-G4D3 (prepared as described below). Lane 1 is the biotinylated protein molecular 15 weight marker (BioLabs).
The localization of recombinant P501 S in the insect cells was investigated as follows. The insect cells overexpressing P501 S were fractionated into fractions of nucleus, mitochondria, membrane and cytosol. Equal amounts of protein from each fraction were analyzed by Western blot with a monoclonal antibody against P501 S. Due to the scheme of fractionation, 20 both nucleus and mitochondria fractions contain some plasma membrane components. However, the membrane fraction is basically free from mitochondria and nucleus. P501 S
was found to be present in all fractions that contain the membrane component, suggesting that PSO1S may be associated with plasma membrane of the insect cells expressing the recombinant protein.
25 c) Expression of P501 S in mammalian cells Full-length PSO1S (553AA) was cloned into various mammalian expression vectors, including pCEP4 (Invitrogen), pVR1012 (Vital, San Diego, CA) and a modified form of the retroviral vector pBMN, referred to as pBIB. Transfection of P501 S/pCEP4 and P501 S/pVR1012 into HEK293 fibroblasts was carried out using the Fugene transfection reagent (Boehringer 3o Mannheim). Briefly, 2 u1 of Fugene reagent was diluted into 100 u1 of serum-free media and incubated at room temperature for 5-10 min. This mixture was added to 1 ug of P501 S plasmid DNA, mixed briefly and incubated for 30 minutes at room temperature. The Fugene/DNA mixture s9 was added to cells and incubated for 24-48 hours. Expression of recombinant P501 S in transfected HEK293 fibroblasts was detected by means of Western blot employing a monoclonal antibody to P501 S.
Transfection of p501 S/pCEP4 into CHO-K cells (American Type Culture Collection, Rockville, MD) was carried out using GenePorter transfection reagent (Gene Therapy Systems, San Diego, CA). Briefly, 15 p1 of GenePorter was diluted in 500 p1 of serum-free media and incubated at room temperature for 10 min. The GenePorter/media mixture was added to 2 ~g of plasmid DNA that was diluted in S00 p1 of serum-free media, mixed briefly and incubated for 30 min at room temperature. CHO-K cells were rinsed in PBS to remove serum proteins, and the l0 GenePorter/DNA mix was added and incubated for 5 hours. The transfected cells were then fed an equal volume of 2x media and incubated for 24-48 hours.
FACS analysis of P501 S transiently infected CHO-K cells, demonstrated surface expression of P501 S. Expression was detected using rabbit polyclonal antisera raised against a P501 S peptide, as described below. Flow cytometric analysis was performed using a FaCScan I S (Becton Dickinson), and the data were analyzed using the Cell Quest program.

PREPARATION AND CHARACTERIZATION OF ANTIBODIES AGAINST PROSTATE-SPECIFIC POLYPEPTIDES
2o a) Preparation and Characterization of Antibodies against PSO1S
A murine monoclonal antibody directed against the carboxy-terminus of the prostate-specific antigen PSO1S was prepared as follows.
A truncated fragment of PSO1S (amino acids 355-526 of SEQ ID NO: 113) was generated and cloned into the pET28b vector (Novagen) and expressed in E. coli as a thioredoxin 25 fusion protein with a histidine tag. The trx-P501 S fusion protein was purified by nickel chromatography, digested with thrombin to remove the trx fragment and further purified by an acid precipitation procedure followed by reverse phase HPLC.
Mice were immunized with truncated P501 S protein. Serum bleeds from mice that potentially contained anti-P501 S polyclonal sera were tested for P501 S-specific reactivity using 30 ELISA assays with purified P501 S and trx-P501 S proteins. Serum bleeds that appeared to react specifically with P501 S were then screened for P501 S reactivity by Western analysis. Mice that contained a P501 S-specific antibody component were sacrificed and spleen cells were used to generate anti-P501 S antibody producing hybridomas using standard techniques.
Hybridoma supernatants were tested for P501 S-specific reactivity initially by ELISA, and subsequently by FAGS analysis of reactivity with P501 S transduced cells. Based on these results, a monoclonal hybridoma referred to as 10E3 was chosen for further subcloning. A number of subclones were generated, tested for specific reactivity to P501 S using ELISA and typed for IgG isotype. The results of this analysis are shown below in Table V. Of the 16 subclones tested, the monoclonal antibody 10E3-G4-D3 was selected for further study.
Table V
Isotype analysis of murine anti-P501 S monoclonal antibodies Hybridoma clone Isotype Estimated [Ig] in supernatant (~g/ml) 4D 11 IgG l 14.6 1G1 IgGI 0.6 4F6 IgGl 72 4H5 IgGI 13.8 4H5-E12 IgGI 10.7 4H5-EH2 IgGl 9.2 4H5-H2-A10 IgGl 10 4H5-H2-A3 IgGl 12.8 4H5-H2-Al 0-G6 IgGl 13.6 4H5-H2-B 11 IgG 1 12.3 10E3 IgG2a 3.4 10E3-D4 IgG2a 3.8 1 OE3-D4-G3 IgG2a 9.5 10E3-D4-G6 IgG2a 10.4 10E3-E7 IgG2a 6.5 8H12 IgG2a 0.6 The specificity of 10E3-G4-D3 for P501 S was examined by FACS analysis.
~ s Specifically, cells were fixed (2% formaldehyde, 10 minutes), permeabilized (0.1 % saponin, 10 minutes) and stained with 10E3-G4-D3 at 0.5 - 1 ~g/ml, followed by incubation with a secondary, FITC-conjugated goat anti-mouse Ig antibody (Pharmingen, San Diego, CA). Cells were then analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS
analysis of transduced cells, B-LCL were retrovirally transduced with P501 S.
For analysis of 20 infected cells, B-LCL were infected with a vaccinia vector that expresses P501 S. To demonstrate 9t specificity in these assays, B-LCL transduced with a different antigen (P703P) and uninfected B-LCL vectors were utilized. 10E3-G4-D3 was shown to bind with P501 S-transduced B-LCL and also with P501 S-infected B-LCL, but not with either uninfected cells or P703P-transduced cells.
To determine whether the epitope recognized by 10E3-G4-D3 was found on the surface or in an intracellular compartment of cells, B-LCL were transduced with PSO1S or HLA-B8 as a control antigen and either fixed and permeabilized as described above or directly stained with 10E3-G4-D3 and analyzed as above. Specific recognition of P501 S by 10E3-G4-D3 was found to require permeabilization, suggesting that the epitope recognized by this antibody is intracellular.
The reactivity of 10E3-G4-D3 with the three prostate tumor cell lines Lncap, to and DU-145, which are known to express high, medium and very low levels of P501 S, respectively, was examined by permeabilizing the cells and treating them as described above.
Higher reactivity of 10E3-G4-D3 was seen with Lncap than with PC-3, which in turn showed higher reactivity that DU-145. These results are in agreement with the real time PCR and demonstrate that the antibody specifically recognizes P501 S in these tumor cell lines and that the epitope recognized in prostate tumor cell lines is also intracellular.
Specificity of 10E3-G4-D3 for P501 S was also demonstrated by Western blot analysis. Lysates from the prostate tumor cell lines Lncap, DU-145 and PC-3, from P501 S-transiently transfected HEK293 cells, and from non-transfected HEK293 cells were generated.
Western blot analysis of these lysates with 10E3-G4-D3 revealed a 46 kDa immunoreactive band in 2o Lncap, PC-3 and P501 S-transfected HEK cells, but not in DU-145 cells or non-transfected HEK293 cells. P501 S mRNA expression is consistent with these results since semi-quantitative PCR
analysis revealed that P501 S mRNA is expressed in Lncap, to a lesser but detectable level in PC-3 and not at all in DU-145 cells. Bacterially expressed and purified recombinant P501 S (referred to as P501 SStr2) was recognized by 10E3-G4-D3 (24 kDa), as was full-length P501 S
that was transiently expressed in HEK293 cells using either the expression vector VR1012 or pCEP4.
Although the predicted molecular weight of P501 S is 60.5 kDa, both transfected and "native" P501 S run at a slightly lower mobility due to its hydrophobic nature.
Immunohistochemical analysis was performed on prostate tumor and a panel of normal tissue sections (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis).
Tissue samples were fixed in formalin solution for 24 hours and embedded in paraffin before being sliced into 10 micron sections. Tissue sections were permeabilized and incubated with 10E3-G4-D3 antibody for 1 hr.

HRP-labeled anti-mouse followed by incubation with DAB chromogen was used to visualize P501 S
immunoreactivity. P501 S was found to be highly expressed in both normal prostate and prostate tumor tissue but was not detected in any of the other tissues tested.
To identify the epitope recognized by 10E3-G4-D3, an epitope mapping approach was pursued. A series of 13 overlapping 20-21 mers (5 amino acid overlap; SEQ
ID NO: 489-501 ) was synthesized that spanned the fragment of P501 S used to generate 1 OE3-G4-D3. Flat bottom 96 well microtiter plates were coated with either the peptides or the P501 S
fragment used to immunize mice, at 1 microgram/ml for 2 hours at 37 °C. Wells were then aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature, and 1o subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified antibody 10E3-G4-D3 was added at 2 fold dilutions (1000 ng - 16 ng) in PBST and incubated for 30 minutes at room temperature. This was followed by washing 6 times with PBST and subsequently incubating with HRP-conjugated donkey anti-mouse IgG (H+L)Affinipure F(ab') fragment (Jackson Immunoresearch, West Grove, PA) at 1:20000 for 30 minutes. Plates were then washed and ~5 incubated for 15 minutes in tetramethyl benzidine. Reactions were stopped by the addition of 1N
sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 8, reactivity was seen with the peptide of SEQ ID NO: 496 (corresponding to amino acids 439-459 of P501 S) and with the P501 S fragment but not with the remaining peptides, demonstrating that the epitope recognized by 10E3-G4-D3 is localized to amino acids 439-459 of SEQ ID
NO: 113.
2o In order to further evaluate the tissue specificity of P501 S, multi-array immunohistochemical analysis was performed on approximately 4700 different human tissues encompassing all the major normal organs as well as neoplasias derived from these tissues. Sixty-five of these human tissue samples were of prostate origin. Tissue sections 0.6 mm in diameter were formalin-fixed and paraffin embedded. Samples were pretreated with HIER
using 10 mM
25 citrate buffer pH 6.0 and boiling for 10 min. Sections were stained with 10E3-G4-D3 and P501 S
immunoreactivity was visualized with HRP. All the 65 prostate tissues samples (5 normal, 55 untreated prostate tumors, 5 hormone refractory prostate tumors) were positive, showing distinct perinuclear staining. All other tissues examined were negative for P501 S
expression.
3o b) Preparation and Characterization of Antibodies against P503S
A fragment of P503S (amino acids 113-241 of SEQ ID NO: 114) was expressed and purified from bacteria essentially as described above for P501 S and used to immunize both rabbits and mice. Mouse monoclonal antibodies were isolated using standard hybridoma technology as described above. Rabbit monoclonal antibodies were isolated using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada).
Table VI, below, lists the monoclonal antibodies that were developed against P503S.
Table VI
Antibody Species 20D4 Rabbit JA 1 Rabbit 1 A4 Mouse 1 C3 Mouse 1 C9 Mouse 1 D 12 Mouse 2A 11 Mouse 2H9 Mouse 4H7 Mouse 8A8 Mouse 8D 10 Mouse 9C 12 Mouse 6D 12 Mouse The DNA sequences encoding the complementarity determining regions (CDRs) for to the rabbit monoclonal antibodies 20D4 and JA1 were determined and are provided in SEQ ID NO:
502 and 503, respectively.
In order to better define the epitope binding region of each of the antibodies, a series of overlapping peptides were generated that span amino acids 109-213 of SEQ ID
NO: 114. These peptides were used to epitope map the anti-P503S monoclonal antibodies by ELISA as follows.
The recombinant fragment of P503S that was employed as the immunogen was used as a positive control. Ninety-six well microtiter plates were coated with either peptide or recombinant antigen at ng/well overnight at 4 °C. Plates were aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature then washed in PBS
containing 0.1%
Tween 20 (PBST). Purified rabbit monoclonal antibodies diluted in PBST were added to the wells 2o and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST
and incubation with Protein-A HRP conjugate at a 1:2000 dilution for a further 30 min. Plates were washed six times in PBST and incubated with tetramethylbenzidine (TMB) substrate for a further 15 min. The reaction was stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using at ELISA plate reader. ELISA with the mouse monoclonal antibodies was performed with supernatants from tissue culture run neat in the assay.
All of the antibodies bound to the recombinant P503S fragment, with the exception of the negative control SP2 supernatant. 20D4, JA 1 and 1 D 12 bound strictly to peptide #21 O l (SEQ ID NO: 504), which corresponds to amino acids 151-169 of SEQ ID NO: 114.
1C3 bound to peptide #2102 (SEQ ID NO: 505), which corresponds to amino acids 165-184 of SEQ ID NO: 114.
9C12 bound to peptide #2099 (SEQ ID NO: 522), which corresponds to amino acids 120-139 of SEQ ID NO: 114. The other antibodies bind to regions that were not examined in these studies.
l0 Subsequent to epitope mapping, the antibodies were tested by FACS analysis on a cell line that stably expressed P503S to confirm that the antibodies bind to cell surface epitopes.
Cells stably transfected with a control plasmid were employed as a negative control. Cells were stained live with no fixative. 0.5 ug of anti-P503S monoclonal antibody was added and cells were incubated on ice for 30 min before being washed twice and incubated with a FITC-labelled goat anti-rabbit or mouse secondary antibody for 20 min. After being washed twice, cells were analyzed with an Excalibur fluorescent activated cell sorter. The monoclonal antibodies 1C3, 1D12, 9C12, 20D4 and JA1, but not 8D3, were found to bind to a cell surface epitope of P503S.
In order to determine which tissues express P503S, immunohistochemical analysis was performed, essentially as described above, on a panel of normal tissues (prostate, adrenal, 2o breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). HRP-labeled anti-mouse or anti-rabbit antibody followed by incubation with TMB was used to visualize P503S immunoreactivity. P503S was found to be highly expressed in prostate tissue, with lower levels of expression being observed in cervix, colon, ileum and kidney, and no expression being observed in adrenal, breast, duodenum, gall bladder, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis.
Western blot analysis was used to characterize anti-P503S monoclonal antibody specificity. SDS-PAGE was performed on recombinant (rec) P503S expressed in and purified from bacteria and on lysates from HEK293 cells transfected with full length P503S.
Protein was transferred to nitrocellulose and then Western blotted with each of the anti-P503 S monoclonal 3o antibodies (20D4, JA 1, 1 D 12, 6D 12 and 9C 12) at an antibody concentration of 1~ ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to either a goat anti-mouse monoclonal antibody or to protein A-sepharose. The monoclonal antibody 20D4 detected the appropriate molecular weight 14 kDa recombinant P503S (amino acids 113-241) and the 23.5 kDa species in the HEK293 cell lysates transfected with full length P503S. Other anti-P503S
monoclonal antibodies displayed similar specificity by Western blot.
c) Preparation and Characterization of Antibodies against P703P
Rabbits were immunized with either a truncated (P703Ptrl; SEQ ID NO: 172) or full-length mature form (P703Pfl; SEQ ID NO: 523) of recombinant P703P protein was expressed in and purified from bacteria as described above. Affinity purified polyclonal antibody was generated using immunogen P703Pfl or P703Ptrl attached to a solid support.
Rabbit monoclonal antibodies were isolated using SLAM technology at Immgenics Pharmaceuticals.
Table VII below lists both the polyclonal and monoclonal antibodies that were generated against P703P.
Table VII
Antibody Immunogen Species/type Aff. Purif. P703P (truncated);P703Ptr1 Rabbit polyclonal #2594 Af Purif. P703P (full length);P703Pfl Rabbit polyclonal #9245 2D4 P703Ptr1 Rabbit monoclonal 8H2 P703Ptr1 Rabbit monoclonal 7H8 P703Ptr1 Rabbit monoclonal The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 8H2, 7H8 and 2D4 were determined and are provided in SEQ ID
NO: 506-508, respectively.
Epitope mapping studies were performed as described above. Monoclonal antibodies 2D4 and 7H8 were found to specifically bind to the peptides of SEQ
ID NO: 509 (corresponding to amino acids 145-159 of SEQ ID NO: 172) and SEQ ID NO: 510 (corresponding to amino acids 11-25 of SEQ ID NO: 172), respectively. The polyclonal antibody 2594 was found to bind to the peptides of SEQ ID NO: 511-514, with the polyclonal antibody 9427 binding to the peptides of SEQ ID NO: 515-517.
The specificity of the anti-P703P antibodies was determined by Western blot analysis as follows. SDS-PAGE was performed on (1) bacterially expressed recombinant antigen;
(2) lysates of HEK293 cells and Ltk-/- cells either untransfected or transfected with a plasmid expressing full length P703P; and (3) supernatant isolated from these cell cultures. Protein was transferred to nitrocellulose and then Western blotted using the anti-P703P
polyclonal antibody #2594 at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to an anti-rabbit antibody. A 35 kDa immunoreactive band could be observed with recombinant P703P. Recombinant P703P runs at a slightly higher molecular weight since it is epitope tagged. In lysates and supernatants from cells transfected with full length P703P, a 30 kDa band corresponding to P703P was observed. To assure specificity, lysates from HEK293 cells stably transfected with a control plasmid were also tested and were negative for P703P expression.
Other anti-P703P antibodies showed similar results.
Immunohistochemical studies were performed as described above, using anti-monoclonal antibody. P703P was found to be expressed at high levels in normal prostate and prostate tumor tissue but was not detectable in all other tissues tested (breast tumor, lung tumor and normal kidney).

CHARACTERIZATION OF CELL SURFACE EXPRESSION AND CHROMOSOME

This example describes studies demonstrating that the prostate-specific antigen 2o P501 S is expressed on the surface of cells, together with studies to determine the probable chromosomal location of P501 S.
The protein P501 S (SEQ ID NO: 113) is predicted to have 11 transmembrane domains. Based on the discovery that the epitope recognized by the anti-P501 S
monoclonal antibody 10E3-G4-D3 (described above in Example 17) is intracellular, it was predicted that following transmembrane determinants would allow the prediction of extracellular domains of P501 S. Fig. 9 is a schematic representation of the P501 S protein showing the predicted location of the transmembrane domains and the intracellular epitope described in Example 17. Underlined sequence represents the predicted transmembrane domains, bold sequence represents the predicted extracellular domains, and italized sequence represents the predicted intracellular domains.
Sequence that is both bold and underlined represents sequence employed to generate polyclonal rabbit serum. The location of the transmembrane domains was predicted using HHMTOP as described by Tusnady and Simon (Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, J. Mol. Biol. 283:489-506, 1998).
Based on Fig. 9, the P501 S domain flanked by the transmembrane domains corresponding to amino acids 274-295 and 323-342 is predicted to be extracellular. The peptide of SEQ ID NO: 518 corresponds to amino acids 306-320 of P501 S and lies in the predicted extracellular domain. The peptide of SEQ ID NO: 519, which is identical to the peptide of SEQ ID
NO: 518 with the exception of the substitution of the histidine with an asparginine, was synthesized as described above. A Cys-Gly was added to the C-terminus of the peptide to facilitate conjugation to the carrier protein. Cleavage of the peptide from the solid support was carried out using the ~ o following cleavage mixture: trifluoroacetic acid:ethanediolahioanisol:water:phenol (40:1:2:2:3).
After cleaving for two hours, the peptide was precipitated in cold ether. The peptide pellet was then dissolved in 10% v/v acetic acid and lyophilized prior to purification by C 18 reverse phase hplc. A
gradient of 5-60% acetonitrile (containing 0.05% TFA) in water (containing 0:05% TFA) was used to elute the peptide. The purity of the peptide was verified by hplc and mass spectrometry, and was determined to be >95%. The purified peptide was used to generate rabbit polyclonal antisera as described above.
Surface expression of P501 S was examined by FACS analysis. Cells were stained with the polyclonal anti-P501 S peptide serum at 10 ~g/ml, washed, incubated with a secondary FITC-conjugated goat anti-rabbit Ig antibody (ICN), washed and analyzed for FITC fluorescence 2o using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-~LCL were retrovirally transduced with P501 S. To demonstrate specificity in these assays, B-LCL
transduced with an irrelevant antigen (P703P) or nontransduced were stained in parallel. For FACS
analysis of prostate tumor cell lines, Lncap, PC-3 and DU-145 were utilized.
Prostate tumor cell lines were dissociated from tissue culture plates using cell dissociation medium and stained as above. All samples were treated with propidium iodide (PI) prior to FACS
analysis, and data was obtained from PI-excluding (i.e. intact and non-permeabilized) cells. The rabbit polyclonal serum generated against the peptide of SEQ ID NO: S 19 was shown to specifically recognize the surface of cells transduced to express P501 S, demonstrating that the epitope recognized by the polyclonal serum is extracellular.
To determine biochemically if P501 S is expressed on the cell surface, peripheral membranes from Lncap cells were isolated and subjected to Western blot analysis. Specifically, Lncap cells were lysed using a dounce homogenizer in 5 ml of homogenization buffer (250 mM

sucrose, 10 mM HEPES, 1mM EDTA, pH 8.0, 1 complete protease inhibitor tablet (Boehringer Mannheim)). Lysate samples were spun at 1000 g for 5 min at 4 °C. The supernatant was then spun at 8000g for 10 min at 4 °C. Supernatant from the 8000g spin was recovered and subjected to a 100,000g spin for 30 min at 4 °C to recover peripheral membrane.
Samples were then separated by SDS-PAGE and Western blotted with the mouse monoclonal antibody 10E3-G4-D3 (described above in Example 17) using conditions described above. Recombinant purified P501 S, as well as HEK293 cells transfected with and over-expressing P501 S were included as positive controls for P501 S detection. LCL cell lysate was included as a negative control. P501 S
could be detected in Lncap total cell lysate, the 8000g (internal membrane) fraction and also in the 100,000g (plasma to membrane) fraction. These results indicate that PSO1S is expressed at, and localizes to, the peripheral membrane.
To demonstrate that the rabbit polyclonal antiserum generated to the peptide of SEQ
ID NO: 519 specifically recognizes this peptide as well as the corresponding native peptide of SEQ
ID NO: 518, ELISA analyses were performed. For these analyses, flat-bottomed 96 well microtiter ~ s plates were coated with either the peptide of SEQ ID NO: 519, the longer peptide of SEQ ID NO:
520 that spans the entire predicted extracellular domain, the peptide of SEQ
ID NO: 521 which represents the epitope recognized by the P501 S-specific antibody 10E3-G4-D3, or a P501 S
fragment (corresponding to amino acids 355-526 of SEQ ID NO: 113) that does not include the immunizing peptide sequence, at 1 ~g/ml for 2 hours at 37 °C. Wells were aspirated, blocked with 2o phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified anti-PSO1S polyclonal rabbit serum was added at 2 fold dilutions (1000 ng - 125 ng) in PBST and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubating with HRP-conjugated goat anti-rabbit IgG (H+L) Affinipure F(ab') fragment at 1:20000 for 30 min. Plates 2s were then washed and incubated for 1 S min in tetramethyl benzidine.
Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA
plate reader. As shown in Fig. 11, the anti-PSO1S polyclonal rabbit serum specifically recognized the peptide of SEQ ID NO: 519 used in the immunization as well as the longer peptide of SEQ
ID NO: 520, but did not recognize the irrelevant P501 S-derived peptides and fragments.
3o In further studies, rabbits were immunized with peptides derived from the sequence and predicted to be either extracellular or intracellular, as shown in Fig. 9. Polyclonal rabbit sera were isolated and polyclonal antibodies in the serum were purified, as described above.

To determine specific reactivity with P501 S, FACS analysis was employed, utilizing either B-LCL
transduced with P501 S or the irrelevant antigen P703P, of B-LCL infected with vaccinia virus-expressing P501 S. For surface expression, dead and non-intact cells were excluded from the analysis as described above. For intracellular staining, cells were fixed and permeabilized as described above. Rabbit polyclonal serum generated against the peptide of SEQ
ID NO: 548, which corresponds to amino acids 181-198 of PSO1S, was found to recognize a surface epitope of PSO1S.
Rabbit polyclonal serum generated against the peptide SEQ ID NO: 551, which corresponds to amino acids 543-553 of P501 S, was found to recognize an epitope that was either potentially extracellular or intracellular since in different experiments intact or permeabilized cells were to recognized by the polyclonal sera. Based on similar deductive reasoning, the sequences of SEQ ID
NO: 541-547, 549 and 550, which correspond to amino acids 109-122, 539-553, 509-520, 37-54, 342-359, 295-323, 217-274, 143-160 and 75-88, respectively, of P501 S, can be considered to be potential surface epitopes of P501 S recognized by antibodies.
The chromosomal location of P501 S was determined using the GeneBridge 4 Radiation Hybrid panel (Research Genetics). The PCR primers of SEQ ID NO: 528 and 529 were employed in PCR with DNA pools from the hybrid panel according to the manufacturer's directions. After 38 cycles of amplification, the reaction products were separated on a 1.2% agarose gel, and the results were analyzed through the Whitehead Institute/MIT Center for Genome Research web server (http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) to determine the 2o probable chromosomal location. Using this approach, P501 S was mapped to the long arm of chromosome 1 at WI-9641 between q32 and q42. This region of chromosome 1 has been linked to prostate cancer susceptibility in hereditary prostate cancer (Smith et al.
Science 274:1371-1374, 1996 and Berthon et al. Am. J. Hum. Genet. 62:1416-1424, 1998). These results suggest that PSO1S
may play a role in prostate cancer malignancy.
From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.
Accordingly, the present invention is not limited except as by the appended claims.

SEQUENCE LISTING
<110> Corixa Corporation Xu, Jiangchun Dillon, Davin C.
Mitcham, Jennifer L.
Harlocker, Susan Louise Jiang Yuqui Reed, Steven G.
Kalos, Michael Fanger, Gary Retter, Mark Solk, John Day, Craig Skeiky, Yasir A.W.
Wang, Aijun <120> COMPOSITIONS AND METHODS FOR THE THERAPY AND
DIAGNOSIS OF PROSTATE CANCER
<130> 210121.42720PC
<140> PCT
<141> 2000-11-09 <160> 551 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 814 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(814) <223> n = A,T,C or G
<400> 1 tttttttttttttttcacagtataacagctctttatttctgtgagttctactaggaaatc 60 atcaaatctgagggttgtctggaggacttcaatacacctccccccatagtgaatcagctt 120 ccagggggtccagtccctctccttacttcatccccatcccatgccaaaggaagaccctcc 180 ctccttggctcacagccttctctaggcttcccagtgcctccaggacagagtgggttatgt 240 tttcagctccatccttgctgtgagtgtctggtgcgttgtgcctccagcttctgctcagtg 300 cttcatggacagtgtccagcacatgtcactctccactctctcagtgtggatccactagtt 360 ctagagcggccgccaccgcggtggagctccagcttttgttccctttagtgagggttaatt 420 gcgcgcttggcgtaatcatggtcataactgtttcctgtgtgaaattgttatccgctcaca 480 attccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtg 540 anctaactcacattaattgcgttgcgctcactgnccgctttccagtcnggaaaactgtcg 600 tgccagctgcattaatgaatcggccaacgcncggggaaaagcggtttgcgttttgggggc 660 tcttccgcttctcgctcactnantcctgcgctcggtcnttcggctgcggggaacggtatc 720 actcctcaaaggnggtattacggttatccnnaaatcnggggatacccnggaaaaaanttt 780 aacaaaagggcancaaagggcngaaacgtaaaaa 814 <210> 2 <211> 816 <212> DNA

<213> Homo sapien <220>
<221> misc_feature <222> (1). .(816) <223> n = A,T,C or G
<400>

acagaaatgttggatggtggagcacctttctatacgacttacaggacagcagatggggaa 60 ttcatggctgttggagcaatagaaccccagttctacgagctgctgatcaaaggacttgga 120 ctaaagtctgatgaacttcccaatcagatgagcatggatgattggccagaaatgaagaag 180 aagtttgcagatgtatttgcaaagaagacgaaggcagagtggtgtcaaatctttgacggc 240 acagatgcctgtgtgactccggttctgacttttgaggaggttgttcatcatgatcacaac 300 aaggaacggggctcgtttatcaccagtgaggagcaggacgtgagcccccgccctgcacct 360 ctgctgttaaacaccccagccatcccttctttcaaaagggatccactagttctagaagcg 420 gccgccaccgcggtggagctccagcttttgttccctttagtgagggttaattgcgcgctt 480 ggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccccc 540 aacatacgagccggaacataaagtgttaagcctggggtgcctaatgantgagctaactcn 600 cattaattgcgttgcgctcactgcccgctttccagtcgggaaaactgtcgtgccactgcn 660 ttantgaatcngccaccccccgggaaaaggcggttgcnttttgggcctcttccgctttcc 720 tcgctcattgatcctngcncccggtcttcggctgcggngaacggttcactcctcaaaggc 780 ggtntnccggttatccccaaacnggggatacccnga 816 <210> 3 <211> 773 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(773) <223> n = A,T,C or G
<400>

cttttgaaagaagggatggctggggtgtttaacagcagaggtgcagggcgggggctcacg 60 tcctgctcctcactggtgataaacgagccccgttccttgttgtgatcatgatgaacaacc 120 tcctcaaaagtcagaaccggagtcacacaggcatctgtgccgtcaaagatttgacaccac 180 tctgccttcgtcttctttgcaaatacatctgcaaacttcttcttcatttctggccaatca 240 tccatgctcatctgattgggaagttcatcagactttagtccanntcctttgatcagcagc 300 tcgtagaactggggttctattgctccaacagccatgaattccccatctgctgtcctgtaa 360 gtcgtatagaaaggtgctccaccatccaacatgttctgtcctcgagggggggcccggtac 420 ccaattcgccctatantgagtcgtattacgcgcgctcactggccgtcgttttacaacgtc 480 gtgactgggaaaaccctgggcgttaccaacttaatcgccttgcagcacatccccctttcg 540 ccagctgggcgtaatancgaaaaggcccgcaccgatcgcccttccaacagttgcgcacct 600 gaatgggnaaatgggacccccctgttaccgcgcattnaacccccgcngggtttngttgtt 660 acccccacntnnaccgcttacactttgccagcgccttancgcccgctccctttcnccttt 720 cttcccttcctttcncnccnctttcccccggggtttcccccntcaaaccccna 773 <210> 4 <211> 828 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (828) <223> n = A,T,C or G

<400>

cctcctgagtcctactgacctgtgctttctggtgtggagtccagggctgctaggaaaagg 60 aatgggcagacacaggtgtatgccaatgtttctgaaatgggtataatttcgtcctctcct 120 tcggaacactggctgtctctgaagacttctcgctcagtttcagtgaggacacacacaaag 180 acgtgggtgaccatgttgtttgtggggtgcagagatgggaggggtggggcccaccctgga 240 agagtggacagtgacacaaggtggacactctctacagatcactgaggataagctggagcc 300 acaatgcatgaggcacacacacagcaaggatgacnctgtaaacatagcccacgctgtcct 360 gngggcactgggaagcctanatnaggccgtgagcanaaagaaggggaggatccactagtt 420 ctanagcggccgccaccgcggtgganctccancttttgttccctttagtgagggttaatt 480 gcgcgcttggcntaatcatggtcatanctntttcctgtgtgaaattgttatccgctcaca 540 attccacacaacatacganccggaaacataaantgtaaacctggggtgcctaatgantga 600 ctaactcacattaattgcgttgcgctcactgcccgctttccaatcnggaaacctgtcttg 660 ccncttgcattnatgaatcngccaacccccggggaaaagcgtttgcgttttgggcgctct 720 tccgcttcctcnctcanttantccctncnctcggtcattccggctgcngcaaaccggttc 780 accncctccaaagggggtattccggtttccccnaatccgggganancc 828 <210> 5 <211> 834 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(834) <223> n = A,T,C or G
<400> 5 tttttttttttttttactgatagatggaatttattaagcttttcacatgtgatagcacat 60 agttttaattgcatccaaagtactaacaaaaactctagcaatcaagaatggcagcatgtt 120 a.ttttataacaatcaacacctgtggcttttaaaatttggttttcataagataatttatac 180 tgaagtaaatctagccatgcttttaaaaaatgctttaggtcactccaagcttggcagtta 240 acatttggcataaacaataataaaacaatcacaatttaataaataacaaatacaacattg 300 taggccataatcatatacagtataaggaaaaggtggtagtgttgagtaagcagttattag 360 aatagaataccttggcctctatgcaaatatgtctagacactttgattcactcagccctga 420 cattcagttttcaaagtaggagacaggttctacagtatcattttacagtttccaacacat 480 tgaaaacaagtagaaaatgatgagttgatttttattaatgcattacatcctcaagagtta 540 tcaccaacccctcagttataaaaaattttcaagttatattagtcatataacttggtgtgc 600 ttattttaaattagtgctaaatggattaagtgaagacaacaatggtcccctaatgtgatt 660 gatattggtcatttttaccagcttctaaatctnaactttcaggcttttgaactggaacat 720 tgnatnacagtgttccanagttncaacctactggaacattacagtgtgcttgattcaaaa 780 tgttattttgttaaaaattaaattttaacctggtggaaaaataatttgaaatna 834 <210> 6 <211> 818 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(818) <223> n = A,T,C or G
<400> 6 ttttttttttttttttttttaagaccctcatcaatagatggagacatacagaaatagtca 60 aaccacatctacaaaatgccagtatcaggcggcggcttcgaagccaaagtgatgtttgga 120 tgtaaagtgaaatattagttggcggatgaagcagatagtgaggaaagttgagccaataat 180 gacgtgaagtccgtggaagcctgtggctacaaaaaatgttgagccgtagatgccgtcgga 240 aatggtgaagggagactcgaagtactctgaggcttgtaggagggtaaaatagagacccag 300 taaaattgtaataagcagtgcttgaattatttggtttcggttgttttctattagactatg 360 gtgagctcaggtgattgatactcctgatgcgagtaatacggatgtgtttaggagtgggac 420 ttctaggggatttagcggggtgatgcctgttgggggccagtgccctcctagttggggggt 480 aggggctaggctggagtggtaaaaggctcagaaaaatcctgcgaagaaaaaaacttctga 540 ggtaataaataggattatcccgtatcgaaggcctttttggacaggtggtgtgtggtggcc 600 ttggtatgtgctttctcgtgttacatcgcgccatcattggtatatggttagtgtgttggg 660 ttantanggcctantatgaagaacttttggantggaattaaatcaatngcttggccggaa 720 gtcattanganggctnaaaaggccctgttangggtctgggctnggttttacccnacccat 780 ggaatncnccccccggacnantgnatccctattcttaa 818 <210> 7 <211> 817 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (817) <223> n = A,T,C or G
<400>
tttttttttttttttttttttggctctagagggggtagagggggtgctatagggtaaata 60 cgggccctatttcaaagatttttaggggaattaattctaggacgatgggtatgaaactgt 120 ggtttgctccacagatttcagagcattgaccgtagtatacccccggtcgtgtagcggtga 180 aagtggtttggtttagacgtccgggaattgcatctgtttttaagcctaatgtggggacag 240 ctcatgagtgcaagacgtcttgtgatgtaattattatacnaatgggggcttcaatcggga 300 gtact.actcgattgtcaacgtcaaggagtcgcaggtcgcctggttctaggaataatgggg 360 gaagtatgtaggaattgaagattaatccgccgtagtcggtgttctcctaggttcaatacc 420 attggtggccaattgatttgatggtaaggggagggatcgttgaactcgtctgttatgtaa 480 aggatnccttngggatgggaaggcnatnaaggactanggatnaatggcgggcangatatt 540 tcaaacngtctctanttcctgaaacgtctgaaatgttaataanaattaantttngttatt 600 gaatnttnnggaaaagggcttacaggactagaaaccaaatangaaaantaatnntaangg 660 cnttatcntnaaaggtnataaccnctcctatnatcccacceaatngnattccccacncnn 720 acnattggat.nccccanttccanaaanggccnccccccggtgnannccnccttttgttcc .780 cttnantgar.ggttattcncccctngcnttatcancc 817 <210> 8 <211> 799 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (799) <223> n = A,T,C or G
<400>
catttccgggtttactttctaaggaaagccgagcggaagctgctaacgtgggaatcggtg 60 cataaggagaactttctgctggcacgcgctagggacaagcgggagagcgactccgagcgt 120 ctgaagcgcacgtcccagaaggtggacttggcactgaaacagctgggacacatccgcgag 180 tacgaacagcgcctgaaagtgctggagcgggaggtccagcagtgtagccgcgtcctgggg 240 tgggtggccgangcctganccgctctgccttgctgcccccangtgggccgccaccccctg 300 acctgcctgggtccaaacactgagccctgctggcggacttcaagganaacccccacangg 360 ggattttgctcctanantaaggctcatctgggcctcggcccccccacctggttggccttg 420 tctttgangtgagccccatgtccatctgggccactgtcnggaccacctttngggagtgtt 480 ctccttacaaccacannatgcccggctcctcccggaaaccantcccancctgngaaggat 540 caagncctgnatccactnntnctanaaccggccnccnccgcngtggaacccnccttntgt 600 tccttttcnttnagggttaatnncgccttggccttnccanngtcctncncnttttccnnt 660 gttnaaattg ttangcnccc nccnntcccn cnncnncnan cccgacccnn annttnnann 720 ncctgggggt nccnncngat tgacccnncc nccctntant tgcnttnggg nncnntgccc 780 ctttccctct nggganncg 799 <210> 9 <211> 801 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(801) <223> n = A,T,C or G
<400> 9 acgccttgatcctcccaggctgggactggttctgggaggagccgggcatgctgtggtttg 60 taangatgacactcccaaaggtggtcctgacagtggcccagatggacatggggctcacct 120 caaggacaaggccaccaggtgcgggggccgaagcccacatgatccttactctatgagcaa 180 aatcccctgtgggggcttctccttgaagtccgccancagggctcagtctttggacccang 240 caggtcatggggttgtngnccaactgggggccncaacgcaaaanggcncagggcctcngn 300 cacccatcccangacgcggctacactnctggacctcccnctccaccactttcatgcgctg 360 ttcntacccgcgnatntgtcccanctgtttcngtgccnactccancttctnggacgtgcg 420 ctacatacgcccggantcncnctcccgctttgtccctatccacgtnccancaacaaattt 480 cnccntantgcaccnattcccacntttnncagntttccncnncgngcttccttntaaaag 540 ggttganccccggaaaatnccccaaagggggggggccnggtacccaactnccccctnata 600 gctgaantccccatnaccnngnctcnatgganccntccnttttaannacnttctnaactt 660 gggaananccctcgnccntncccccnttaatcccnccttgcnangnncntcccccnntcc 720 ncccnnntnggcntntnanncnaaaaaggcccnnnancaatctcctnncncctcanttcg 780 ccanccctcgaaatcggccnc 801 <210> 10 <211> 789 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(789) <223> n = A,T,C or G
<400>

cagtctatntggccagtgtggcagctttccctgtggctgccggtgccacatgcctgtccc 60 acagtgtggccgtggtgacagcttcagccgccctcaccgggttcaccttctcagccctgc 120 agatcctgccctacacactggcctccctctaccaccgggagaagcaggtgttcctgccca 180 aataccgaggggacactggaggtgctagcagtgaggacagcctgatgaccagcttcctgc 240 caggccctaagcctggagctcccttccctaatggacacgtgggtgctggaggcagtggcc 300 tgctcccacctccacccgcgctctgcggggcctctgcctgtgatgtctccgtacgtgtgg 360 tggtgggtgagcccaccgangccagggtggttccgggccggggcatctgcctggacctcg 420 ccatcctggatagtgcttcctgctgtcccangtggccccatccctgtttatgggctccat 480 tgtccagctcagccagtctgtcactgcctatatggtgtctgccgcaggcctgggtctggt 540 cccatttactttgctacacaggtantatttgacaagaacganttggccaaatactcagcg 600 ttaaaaaattccagcaacattgggggtggaaggcctgcctcactgggtccaactccccgc 660 tcctgttaaccccatggggctgccggcttggccgccaatttctgttgctgccaaantnat 720 gtggctctctgctgccacctgttgctggctgaagtgcntacngcncanctnggggggtng 780 ggngttccc 789 <210> 11 <211> 772 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(772) <223> n = A,T,C or G
<400>

cccaccctacccaaatattagacaccaacacagaaaagctagcaatggattcccttctac 60 tttgttaaataaataagttaaatatttaaatgcctgtgtctctgtgatggcaacagaagg 120 accaacaggccacatcctgataaaaggtaagaggggggtggatcagcaaaaagacagtgc 180 tgtgggctgaggggacctggttcttgtgtgttgcccctcaggactcttcccctacaaata 240 actttcatatgttcaaatcccatggaggagtgtttcatcctagaaactcccatgcaagag 300 ctacattaaacgaagctgcaggttaaggggcttanagatgggaaaccaggtgactgagtt 360 tattcagctcccaaaaacccttctctaggtgtgtctcaactaggaggctagctgttaacc 420 ctgagcctgggtaatccacctgcagagtccccgcattccagtgcatggaacccttctggc 480 ctccctgtataagtccagactgaaacccccttggaaggnctccagtcaggcagccctana 540 aactggggaaaaaagaaaaggacgccccancccccagctgtgcanctacgcacctcaaca 600 gcacagggtggcagcaaaaaaaccactttactttggcacaaacaaaaactngggggggca 660 accccggcaccccnangggggttaacaggaancngggnaacntggaacccaattnaggca 720 ggcccnccaccccnaatnttgctgggaaatttttcctcccctaaattntttc 772 <210> 12 <211> 751 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(751) <223> n = A,T,C or G
<400> 12 gccccaattccagctgccacaccacccacggtgactgcattagttcggatgtcatacaaa 60 agctgattgaagcaaccctctactttttggtcgtgagccttttgcttggtgcaggtttca 120 ttggctgtgttggtgacgttgtcattgcaacagaatgggggaaaggcactgttctctttg 180 aagtanggtgagtcctcaaaatccgtatagttggtgaagccacagcacttgagccctttc 240 atggtggtgttccacacttgagtgaagtcttcctgggaaccataatctttcttgatggca 300 ggcactaccagcaacgtcagggaagtgctcagccattgtggtgtacaccaaggcgaccac 360 agcagctgcnacctcagcaatgaagatgangaggangatgaagaagaacgtcncgagggc 420 acacttgctctcagtcttancaccatancagcccntgaaaaccaanancaaagaccacna 480 cnccggctgcgatgaagaaatnaccccncgttgacaaacttgcatggcactggganccac 540 agtggcccnaaaaatcttcaaaaaggatgccccatcnattgaccccccaaatgcccactg 600 ccaacaggggctgccccacncncnnaacgatganccnattgnacaagatctncntggtct 660 tnatnaacntgaaccctgcntngtggctcctgttcaggnccnnggcctgacttctnaann 720 aangaactcngaagnccccacnggananncg 751 <210> 13 <211> 729 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (729) <223> n = A,T,C or G

<400> 13 gagccaggcgtccctctgcctgcccactcagtggcaacacccgggagctgttttgtcctt 60 tgtggancctcagcagtnccctctttcagaactcantgccaaganccctgaacaggagcc 120 accatgcagtgcttcagcttcattaagaccatgatgatcctcttcaatttgctcatcttt 180 ctgtgtggtgcagccctgttggcagtgggcatctgggtgtcaatcgatggggcatccttt 240 ctgaagatcttcgggccactgtcgtccagtgccatgcagtttgtcaacgtgggctacttc 300 ctcatcgcagccggcgttgtggtcttagctctaggtttcctgggctgctatggtgctaag 360 actgagagcaagtgtgccctcgtgacgttcttcttcatcctcctcctcatcttcattgct 420 gaggttgcaatgctgtggtcgccttggtgtacaccacaatggctgagcacttcctgacgt 480 tgctggtaatgcctgccatcaanaaaagattatgggttcccaggaanacttcactcaagt 540 gttggaacaccaccatgaaagggctcaagtgctgtggcttcnnccaactatacggatttt 600 gaagantcacctacttcaaagaaaanagtgcctttcccccatttctgttgcaattgacaa 660 acgtccccaacacagccaattgaaaacctgcacccaacccaaangggtccccaaccanaa 720 attnaaggg 729 <210> 14 <211> 816 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) : . (816) <223> n = A,T,C or G
<400>

tgctcttcctcaaagttgttcttgttgccataacaaccaccataggtaaagcgggcgcag 60 tgttcgctgaaggggttgtagtaccagcgcgggatgctctccttgcagagtcctgtgtct 120 ggcaggtccacgcagtgccctttgtcactggggaaatggatgcgctggagctcgtcaaag 180 ccactcgtgtatttttcacaggcagcctcgtccgacgcgtcggggcagttgggggtgtct 240 tcacactccaggaaactgtcnatgcagcagccattgctgcagcggaactgggtgggctga 300 cangtgccagagcacactggatggcgcctttccatgnnangggccctgngggaaagtccc 360 tganccccananctgcctctcaaangccccaccttgcacaccccgacaggctagaatgga 420 atcttcttcccgaaaggtagttnttcttgttgcccaanccanccccntaaacaaactctt 480 gcanatctgctccgngggggtcntantaccancgtgggaaaagaaccccaggcngcgaac 540 caancttgtttggatncgaagcnataatctnctnttctgcttggtggacagcaccantna 600 ctgtnnanctttagnccntggtcctcntgggttgnncttgaacctaatcnccnntcaact 660 gggacaaggtaantngccntcctttnaattcccnancntnccccctggtttggggttttn 720 cncnctcctaccccagaaannccgtgttcccccccaactaggggccnaaaccnnttnttc 780 cacaaccctnccccacccacgggttcngntggttng 816 <210> 15 <211> 783 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (783) <223> n = A,T,C or G
<400> 15 ccaaggcctgggcaggcatanacttgaaggtacaaccccaggaacccctggtgctgaagg 60 atgtggaaaacacagattggcgcctactgcggggtgacacggatgtcagggtagagagga 120 aagacccaaaccaggtggaactgtggggactcaaggaangcacctacctgttccagctga 180 cagtgactagctcagaccacccagaggacacggccaacgtcacagtcactgtgctgtcca 240 ccaagcagacagaagactactgcctcgcatccaacaangtgggtcgctgccggggctctt 300 tcccacgctggtactatgaccccacggagcagatctgcaagagtttcgtttatggaggct 360 gcttgggcaacaagaacaactaccttcgggaagaagagtgcattctancctgtcngggtg 420 tgcaaggtgggcctttganangcanctctggggctcangcgactttcccccagggcccct 480 ccatggaaaggcgccatccantgttctctggcacctgtcagcccacccagttccgctgca 540 ncaatggctgctgcatcnacantttcctngaattgtgacaacaccccccantgcccccaa 600 ccctcccaacaaagcttccctgttnaaaaatacnccanttggcttttnacaaacncccgg 660 cncctccnttttccccnntnaacaaagggcnctngcntttgaactgcccnaacccnggaa 720 tctnccnnggaaaaantnccccccctggttcctnnaancccctccncnaaanctnccccc 780 ccc 783 <210> 16 <211> SO1 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(801) <223> n = A,T,C or G
<400> 16 gccccaattccagctgccacaccacccacggtgactgcattagttcggatgtcatacaaa 60 agctgattgaagcaaccctctactttttggtcgtgagccttttgcttggtgcaggtttca 120 ttggctgtgttggtgacgttgtcattgcaacagaatgggggaaaggcactgttctctttg 180 aagtagggtgagtcctcaaaatccgtatagttggtgaagccacagcacttgagccctttc 240 atggtggtgttccacacttgagtgaagtcttcctgggaaccataatctttcttgatggca 300 ggcactaccagcaacgtcaggaagtgctcagccattgtggtgtacaccaaggcgaccaca 360 gcagctgcaacctcagcaatgaagatgaggaggaggatgaagaagaacgtcncgagggca 420 cacttgctctccgtcttagcaccatagcagcccangaaaccaagagcaaagaccacaacg 480 ~

ccngctgcgaatgaaagaaantacccacgttgacaaactgcatggccactggacgacagt 540 tggcccgaanatcttcagaaaagggatgccccatcgattgaacacccanatgcccactgc 600 cnacagggctgcnccncncngaaagaatgagccattgaagaaggatcntcntggtcttaa 660 tgaactgaaaccntgcatggtggcccctgttcagggctcttggcagtgaattctganaaa 720 aaggaacngcntnagcccccccaaanganaaaacacccccgggtgttgccctgaattggc 780 ggccaagganccctgccccng 801 <210> 17 <211> 740 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (740) <223> n = A,T,C or G
<400> 17 gtgagagccaggcgtccctctgcctgcccactcagtggcaacacccgggagctgttttgt 60 cctttgtggagcctcagcagttccctctttcagaactcactgccaagagccctgaacagg 120 agccaccatgcagtgcttcagcttcattaagaccatgatgatcctcttcaatttgctcat 180 ctttctgtgtggtgcagccctgttggcagtgggcatctgggtgtcaatcgatggggcatc 240 ctttctgaagatcttcgggccactgtcgtccagtgccatgcagtttgtcaacgtgggcta 300 cttcctcatcgcagccggcgttgtggtctttgctcttggtttcctgggctgctatggtgc 360 taagacggagagcaagtgtgccctcgtgacgttcttcttcatcctcctcctcatcttcat 420 tgctgaagttgcagctgctgtggtcgccttggtgtacaccacaatggctgaaccattcct 480 gacgttgctggtantgcctgccatcaanaaagattatgggttcccaggaaaaattcactc 540 aantntggaacaccnccatgaaaagggctccaatttctgntggcttccccaactataccg 600 gaattttgaaagantcnccctacttccaaaaaaaaananttgcctttncccccnttctgt 660 tgcaatgaaaacntcccaanacngccaatnaaaacctgcccnnncaaaaaggntcncaaa 720 caaaaaaant nnaagggttn 740 <210> 18 <211> 802 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(802) <223> n = A,T,C or G
<400>

ccgctggttgcgctggtccagngnagccacgaagcacgtcagcatacacagcctcaatca 60 caaggtcttccagctgccgcacattacgcagggcaagagcctccagcaacactgcatatg 120 ggatacactttactttagcagccagggtgacaactgagaggtgtcgaagcttattcttct 180 gagcctctgttagtggaggaagattccgggcttcagctaagtagtcagcgtatgtcccat 240 aagcaaacactgtgagcagccggaaggtagaggcaaagtcactctcagccagctctctaa 300 cattgggcatgtccagcagttctccaaacacgtagacaccagnggcctccagcacctgat 360 ggatgagtgtggccagcgctgcccccttggccgacttggctaggagcagaaattgctcct 420 ggttctgccctgtcaccttcacttccgcactcatcactgcactgagtgtgggggacttgg 480 gctcaggatgtccagagacgtggttccgccccctcncttaatgacaccgnccanncaacc 540 gtcggctcccgccgantgngttcgtcgtncctgggtcagggtctgctggccnctacttgc 600 aancttcgtcnggcccatggaattcaccncaccggaactngtangatccactnnttctat 660 aaccggncgccaccgcnnntggaactccactcttnttncctttacttgagggttaaggtc 720 acccttnncgttaccttggtccaaaccntnccntgtgtcganatngtnaatcnggnccna 780 tnccanccncatangaagccng 802 <210> 19 <211> 731.
<212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(731) <223> n = A,T,C or G
<400> 19 cnaagcttccaggtnacgggccgcnaancctgacccnaggtancanaangcagncngcgg 60 gagcccaccgtcacgnggnggngtctttatnggagggggcggagccacatcnctggacnt 120 cntgaccccaactccccnccncncantgcagtgatgagtgcagaactgaaggtnacgtgg 180 caggaaccaagancaaannctgctccnntccaagtcggcnnagggggcggggctggccac 240 gcncatccntcnagtgctgnaaagccccnncctgtctacttgtttggagaacngcnnnga 300 catgcccagngttanataacnggcngagagtnantttgcctctcccttccggctgcgcan 360 cgngtntgcttagnggacataacctgactacttaactgaacccnngaatctnccncccct 420 ccactaagctcagaacaaaaaacttcgacaccactcanttgtcacctgnctgctcaagta 480 aagtgtaccccatncccaatgtntgctngangctctgncctgcnttangttcggtcctgg 540 gaagacctatcaattnaagctatgtttctgactgcctcttgctccctgnaacaancnacc 600 cnncnntccaagggggggncggcccccaatccccccaaccntnaattnantttanccccn 660 cccccnggcccggccttttacnancntcnnnnacngggnaaaaccnnngctttncccaac 720 nnaatccncct 731 <210> 20 <211> 754 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(754) <223> n = A,T,C or G
<400>

,tttttttttttttttttttttaaaaaccccctccattnaatgnaaacttccgaaattgtc 60 caaccccctcntccaaatnnccntttccgggngggggttccaaacccaanttanntttgg 120 annttaaattaaatnttnnttggnggnnnaanccnaatgtnangaaagttnaacccanta 180 tnancttnaatncctggaaaccngtngnttccaaaaatntttaacccttaantccctccg 240 aaatngttnanggaaaacccaanttctcntaaggttgtttgaaggntnaatnaaaanccc 300 nnccaattgtttttngccacgcctgaattaattggnttccgntgttttccnttaaaanaa 360 ggnnanccccggttantnaatccccccnnccccaattataccgantttttttngaattgg 420 gancccncgggaattaacggggnnnntccctnttggggggcnggnnccccccccntcggg 480 ggttngggncaggncnnaattgtttaagggtccgaaaaatccctccnagaaaaaaanctc 540 ccaggntgagnntngggtttnccccccccccanggcccctctcgnanagttggggtttgg 600 ggggcctgggattttntttcccctnttncctcccccccccccnggganagaggttngngt 660 tttgntcnncggccccnccnaaganctttnccganttnanttaaatccntgcctnggcga 720 agtccnttgnagggntaaanggccccctnncggg 754 <210> 21 <211> 755 <212> DNA
<2-13> Homo sapien <220>
<221> misc_feature <222> (1). .(755) <223> n = A,T,C or G
<400> 21 atcancccatgaccccnaacnngggaccnctcanccggncnnncnaccnccggccnatca60 nngtnagnncactncnnttnnatcacnccccnccnactacgcccncnanccnacgcncta120 nncanatnccactganngcgcgangtnganngagaaanctnataccanagncaccanacn180 ccagctgtccnanaangcctnnnatacnggnnnatccaatntgnancctccnaagtattn240 nncnncanatgattttcctnanccgattacccntnccccctancccctcccccccaacna300 cgaaggcnctggnccnaaggnngcgncnccccgctagntccccnncaagtcncncnccta360 aactcanccnnattacncgcttcntgagtatcactccccgaatctcaccctactcaactc420 aaaaanatcngatacaaaataatncaagcctgnttatnacactntgactgggtctctatt480 ttagnggtccntnaancntcctaatacttccagtctnccttcnccaatttccnaanggct540 ctttcngacagcatnttttggttcccnnttgggttcttanngaattgcccttcntngaac600 gggctcntcttttccttcggttancctggnttcnnccggccagttattatttcccntttt660 aaattcntnccntttanttttggcnttcnaaacccccggccttgaaaacggccccctggt720 aaaaggttgttttganaaaatttttgttttgttcc 755 <210> 22 <211> 849 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (849) <223> n = A, T, C or G
<400> 22 tttttttttt tttttangtg tngtcgtgca ggtagaggct tactacaant gtgaanacgt 60 acgctnggan taangcgacc cganttctag ganncnccct aaaatcanac tgtgaagatn 120 atcctgnnnacggaanggtcaccggnngatnntgctagggtgnccnctcccannncnttn 180 cataactcngnggccctgcccaccaccttcggcggcccngngnccgggcccgggtcattn 240 gnnttaaccncactnngcnancggtttccnnccccnncngacccnggcgatccggggtnc 300 tctgtcttcccctgnagncnanaaantgggccncggncccctttacccctnnacaagcca 360 cngccntctanccncngccccccctccantnngggggactgccnanngctccgttnctng 420 nnaccccnnngggtncctcggttgtcgantcnaccgnangccanggattccnaaggaagg 480 tgcgttnttggcccctacccttcgctncggnncacccttcccgacnanganccgctcccg 540 cncnncgnngcctcncctcgcaacacccgcnctcntcngtncggnnncccccccacccgc 600 nccctcncncngncgnancnctccnccnccgtctcanncaccaccccgccccgccaggcc 660 ntcanccacnggnngacnngnagcncnntcgcnccgcgcngcgncnccctcgccncngaa 720 ctncntcnggccantnncgctcaanccnnacnaaacgccgctgcgcggcccgnagcgncc 780 ncctccncgagtcctcccgncttccnacccangnnttccncgaggacacnnnaccccgcc 840 nncangcgg 849 <210> 23 <211> 872 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(872) <223> n = A,T,C or G
<400>

gcgcaaactatacttcgctcgnactcgtgcgcctcgctnctcttttcctccgcaaccatg 60 tctgacnancccgattnggcngatatcnanaagntcgancagtccaaactgantaacaca 120 cacacncnanaganaaatccnctgccttccanagtanacnattgaacnngagaaccangc 180 nggcgaatcgtaatnaggcgtgcgccgccaatntgtcnccgtttattntnccagcntcnc 240 ctnccnaccctacntcttcnnagctgtcnnacccctngtncgnaccccccnaggtcggga 300 tcgggtttnnnntgaccgngcnncccctccccccntccatnacganccncccgcaccacc 360 nanngcncgcnccccgnnctcttcgccnccctgtcctntncccctgtngcctggcncngn 420 accgcattgaccctcgccnnctncnngaaancgnanacgtccgggttgnnannancgctg 480 tgggnnngcgtctgcnccgcgttccttccnncnncttccaccatcttcnttacngggtct 540 ccncgccntctcnnncacnccctgggacgctntcctntgccccccttnactccccccctt 600 cgncgtgncccgnccccaccntcatttncanacgntcttcacaannncctggntnnctcc 660 cnancngncngtcanccnagggaagggnggggnnccnntgnttgacgttgnggngangtc 720 cgaanantcctcnccntcancnctacccctcgggcgnnctctcngttnccaacttancaa 780 ntctcccccgngngcncntctcagcctcncccnccccnctctctgcantgtnctctgctc 840 tnaccnntacgantnttcgncnccctctttcc 872 <210> 24 <211> 815 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (815) <223 > n = A, T, C or G
<400>

gcatgcaagcttgagtattctatagngtcacctaaatancttggcntaatcatggtcnta 60 nctgncttcctgtgtcaaatgtatacnaantanatatgaatctnatntgacaaganngta 120 tcntncattagtaacaantgtnntgtccatcctgtcngancanattcccatnnattncgn 180 cgcattcncngcncantatntaatngggaantcnnntnnnncaccnncatctatcntncc 240 gcnccctgactggnagagatggatnanttctnntntgaccnacatgttcatcttggattn 300 aananccccccgcngnccaccggttngnngcnagccnntcccaagacctcctgtggaggt 360 aacctgcgtcaganncatcaaacntgggaaacccgcnnccangtnnaagtngnnncanan 420 gatcccgtccaggnttnaccatcccttcncagcgccccctttngtgccttanagngnagc 480 gtgtccnanccnctcaacatganacgcgccagnccanccgcaattnggcacaatgtcgnc 540 gaaccccctagggggantnatncaaanccccaggattgtccncncangaaatcccncanc 600 cccnccctacccnnctttgggacngtgaccaantcccggagtnccagtccggccngnctc 660 ccccaccggtnnccntgggggggtgaanctcngnntcanccngncgaggnntcgnaagga 720 accggncctnggncgaanngancnntcngaagngccncntcgtataaccccccctcncca 780 nccnacngntagntcccccccngggtncggaangg 815 <210> 25 <211> 775 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(775) <223> n = A,T,C or G
<400>

ccgagatgtctcgctccgtggccttagctgtgctcgcgctactctctctttctggcctgg 60 aggctatccagcgtactccaaagattcaggtttactcacgtcatccagcagagaatggaa 120 agtcaaatttcctgaattgctatgtgtctgggtttcatccatccgacattgaanttgact 180 tactgaagaatgganagagaattgaaaaagtggagcattcagacttgtctttcagcaagg 240 actggtctttctatctcntgtactacactgaattcacccccactgaaaaagatgagtatg 300 cctgccgtgtgaaccatgtgactttgtcacagcccaagatagttaagtgggatcgagaca 360 tgtaagcagncnncatggaagtttgaagatgccgcatttggattggatgaattccaaatt 420 ctgcttgcttgcnttttaatantgatatgcntatacaccctaccctttatgnccccaaat 480 tgtaggggttacatnantgttcncntnggacatgatcttcctttataantccnccnttcg 540 aattgcccgtcncccngttnngaatgtttccnnaaccacggttggctcccccaggtcncc 600 tcttacggaagggcctgggccnctttncaaggttgggggaaccnaaaatttcncttntgc 660 ccncccnccacnntcttgngnncncantttggaacccttccnattccccttggcctcnna 720 nccttnnctaanaaaacttnaaancgtngcnaaanntttnacttccccccttacc 775 <210> 26 <211> 820 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(820) <223> n = A,T,C or G
<400> 26 anattantacagtgtaatcttttcccagaggtgtgtanagggaacggggcctagaggcat 60 cccanagatancttatancaacagtgctttgaccaagagctgctgggcacatttcctgca 120 gaaaaggtggcggtccccatcactcctcctctcccatagccatcccagaggggtgagtag 180 ccatcangccttcggtgggagggagtcanggaaacaacanaccacagagcanacagacca 240 ntgatgaccatgggcgggagcgagcctcttccctgnaccggggtggcananganagccta 300 nctgaggggtcacactataaacgttaacgaccnagatnancacctgcttcaagtgcaccc 360 ttcctacctgacnaccagngaccnnnaactgcngcctggggacagcnctgggancagcta 420 acnnagcactcacctgcccccccatggccgtncgcntccctggtcctgncaagggaagct 480 ccctgttggaattncgggganaccaaggganccccctcctccanctgtgaaggaaaaann 540 gatggaattttncccttccggccnntcccctcttcctttacacgccccctnntactcntc 600 tccctctnttntcctgncncacttttnaccccnnnatttcccttnattgatcggannctn 660 ganattccactnncgcctnccntcnatcngnaanacnaaanactntctnacccnggggat 720 gggnncctcgntcatcctctctttttcnctaccnccnnttctttgcctctccttngatca 780 tccaaccntc gntggccntn cccccccnnn tcctttnccc 820 <210> 27 <211> 818 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(818) <223> n = A,T,C or G
<400> 27 tctgggtgatggcctcttcctcctcagggacctctgactgctctgggccaaagaatctct 60 tgtttcttctccgagccccaggcagcggtgattcagccctgcccaacctgattctgatga 120 ctgcggatgctgtgacggacccaaggggcaaatagggtcccagggtccagggaggggcgc 180 ctgctgagcacttccgcccctcaccctgcccagcccctgccatgagctctgggctgggtc 240 tccgcctccagggttctgctcttccangcangccancaagtggcgctgggccacactggc 300 ttcttcctgccccntccctggctctgantctctgtcttcctgtcctgtgcangcnccttg 360 gatctcagtttccctcnctcanngaactctgtttctganntcttcanttaactntgantt 420 tatnaccnantggnctgtnctgtcnnactttaatgggccngaccggctaatccctccctc 480 nctcccttccanttcnnnnaaccngcttnccntcntctccccntancccgccngggaanc 540 ctcctttgccctnaccangggccnnnaccgcccntnnctnggggggcnnggtnnctncnc 600 ctgntnnccccnctcncnnttncctcgtcccnncnncgcnnngcannttcncngtcccnn 660 tnnctcttcnngtntcgnaangntcncntntnnnnngncnngntnntncntccctctcnc 720 cnnntgnangtnnttnnnncncngnnccccnnnncnnnnnnggnnntnnntctncncngc 780 cccnncccccngnattaaggcctccnntctccggccnc 818 <210> 28 <211> 731 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (731) <223> n = A,T,C or G
<400>

aggaagggcggagggatattgtangggattgagggataggagnataangggggaggtgtg 60 tcccaacatganggtgnngttctcttttgaangagggttgngtttttannccnggtgggt 120 gattnaaccccattgtatggagnnaaaggntttnagggatttttcggctcttatcagtat 180 ntanattcctgtnaatcggaaaatnatntttcnncnggaaaatnttgctcccatccgnaa 240 attnctcccgggtagtgcatnttngggggncngccangtttcccaggctgctanaatcgt 300 actaaagnttnaagtgggantncaaatgaaaacctnncacagagnatccntacccgactg 360 tnnnttnccttcgccctntgactctgcnngagcccaatacccnngngnatgtcncccngn 420 nnngcgncnctgaaannnnctcgnggctnngancatcanggggtttcgcatcaaaagcnn 480 cgtttcncatnaaggcactttngcctcatccaaccnctngccctcnnccatttngccgtc 540 nggttcncctacgctnntngcncctnnntnganattttncccgcctngggnaancctcct 600 gnaatgggtagggncttntcttttnaccnngnggtntactaatcnnctncacgcntnctt 660 tctcnaccccccccctttttcaatcccancggcnaatggggtctccccnncgangggggg 720 nnncccanncc 731 <210> 29 <211> 822 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(822) <223> n = A,T,C or G
<400> 29 actagtccagtgtggtggaattccattgtgttggggncncttctatgantantnttagat 60 cgctcanacctcacancctcccnacnangcctataangaanannaataganctgtncnnt 120 atntntacnctcatanncctcnnnacccactccctcttaacccntactgtgcctatngcn 180 tnnctantctntgccgcctncnanccaccngtgggccnaccncnngnattctcnatctcc 240 tcnccatntngcctanantangtncataccctatacctacnccaatgctannnctaancn 300 tccatnanttannntaactaccactgacntngactttcncatnanctcctaatttgaatc 360 tactctgactcccacngcctannnattagcancntcccccnacnatntctcaaccaaatc 420 ntcaacaacctatctanctgttcnccaaccnttncctccgatccccnnacaacccccctc 480 ccaaatacccnccacctgacncctaacccncaccatcccggcaagccnanggncatttan 540 ccactggaatcacnatngganaaaaaaaacccnaactctctancncnnatctccctaana 600 aatnctcctnnaatttactnncantnccatcaancccacntgaaacnnaacccctgtttt 660 tanatcccttctttcgaaaaccnaccctttannncccaacctttngggcccccccnctnc 720 ccnaatgaaggncncccaatcnangaaacgnccntgaaaaancnaggcnaanannntccg 780 canatcctatcccttanttnggggncccttncccngggcccc 822 <210> 30 <211> 787 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(787) <223> n = A,T,C or G
<400>

cggccgcctgctctggcacatgcctcctgaatggcatcaaaagtgatggactgcccattg 60 ctagagaagaccttctctcctactgtcattatggagccctgcagactgagggctcccctt 120 gtctgcaggatttgatgtctgaagtcgtggagtgtggcttggagctcctcatctacatna 180 gctggaagccctggagggcctctctcgccagcctcccccttctctccacgctctccangg 240 acaccaggggctccaggcagcccattattcccagnangacatggtgtttctccacgcgga 300 cccatggggcctgnaaggccagggtctcctttgacaccatctctcccgtcctgcctggca 360 ggccgtgggatccactanttctanaacggncgccaccncggtgggagctccagcttttgt 420 tcccnttaatgaaggttaattgcncgcttggcgtaatcatnggtcanaactntttcctgt 480 gtgaaattgtttntcccctcncnattccncncnacatacnaacccggaancataaagtgt 540 taaagcctgggggtngcctnnngaatnaactnaactcaattaattgcgttggctcatggc 600 ccgctttccnttcnggaaaactgtcntcccctgcnttnntgaatcggccaccccccnggg 660 aaaagcggtttgcnttttngggggntccttccncttcccccctcnctaanccctncgcct 720 cggtcgttncnggtngcggggaangggnatnnnctcccncnaagggggngagnnngntat 780 ccccaaa 787 <210> 31 <211> 799 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(799) <223> n = A,T,C or G
<400> 31 tttttttttttttttttggcgatgctactgtttaattgcaggaggtgggggtgtgtgtac 60 catgtaccagggctattagaagcaagaaggaaggagggagggcagagcgccctgctgagc 120 aacaaaggactcctgcagccttctctgtctgtctcttggcgcaggcacatggggaggcct 180 cccgcagggtgggggccaccagtccaggggtgggagcactacanggggtgggagtgggtg 240 gtggctggtncnaatggcctgncacanatccctacgattcttgacacctggatttcacca 300 ggggaccttctgttctcccanggnaacttcntnnatctcnaaagaacacaactgtttctt 360 cngcanttctggctgttcatggaaagcacaggtgtccnatttnggctgggacttggtaca 420 tatggttccggcccacctctcccntcnaanaagtaattcacccccccccnccntctnttg 480 cctgggcccttaantacccacaccggaactcanttanttattcatcttnggntgggcttg 540 ntnatcnccncctgaangcgccaagttgaaaggccacgccgtncccnctccccatagnan 600 nttttnncntcanctaatgcccccccnggcaacnatccaatccccccccntgggggcccc 660 agcccanggcccccgnctcgggnnnccngncncgnantccccaggntctcccantcngnc 720 ccnnngcncccccgcacgcagaacanaaggntngagccnccgcannnnnnnggtnncnac 780 ctcgccccccccnncgnng 799 <210> 32 <211> 789 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (789) <223> n = A,T,C or G
<400>

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 60 ttttnccnagggcaggtttattgacaacctcncgggacacaancaggctggggacaggac 120 ggcaacaggctccggcggcggcggcggcggccctacctgcggtaccaaatntgcagcctc 180 cgctcccgcttgatnttcctctgcagctgcaggatgccntaaaacagggcctcggccntn 240 ggtgggcaccctgggatttnaatttccacgggcacaatgcggtcgcancccctcaccacc 300 nattaggaatagtggtnttacccnccnccgttggcncactccccntggaaaccacttntc 360 gcggctccggcatctggtcttaaaccttgcaaacnctggggccctctttttggttantnt 420 nccngccacaatcatnactcagactggcncgggctggccccaaaaaancnccccaaaacc 480 ggnccatgtcttnncggggttgctgcnatntncatcacctcccgggcncancaggncaac 540 ccaaaagttcttgnggcccncaaaaaanctccggggggncccagtttcaacaaagtcatc 600 ccccttggcccccaaatcctccccccgnttnctgggtttgggaacccacgcctctnnctt 660 tggnnggcaagntggntcccccttcgggcccccggtgggcccnnctctaangaaaacncc 720 ntcctnnncaccatccccccnngnnacgnctancaangnatccctttttttanaaacggg 780 ccccccncg 789 <210> 33 <211> 793 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(793) <223> n = A,T,C or G
<400> 33 gacagaacatgttggatggtggagcacctttctatacgacttacaggacagcagatgggg 60 aattcatggctgttggagcaatanaaccccagttctacgagctgctgatcaaaggacttg 120 gactaaagtctgatgaacttcccaatcagatgagcatggatgattggccagaaatgaana 180 agaagtttgcagatgtatttgcaaagaagacgaaggcagagtggtgtcaaatctttgacg 240 gcacagatgcctgtgtgactccggttctgacttttgaggaggttgttcatcatgatcaca 300 acaangaacggggctcgtttatcaccantgaggagcaggacgtgagcccccgccctgcac 360 ctctgctgttaaacaccccagccatcccttctttcaaaagggatccactacttctagagc 420 ggncgccaccgcggtggagctccagcttttgttccctttagtgagggttaattgcgcgct 480 tggcgtaatcatggtcatanctgtttcctgtgtgaaattgttatccgctcacaattccac 540 acaacatacganccggaagcatnaaattttaaagcctggnggtngcctaatgantgaact 600 nactcacattaattggctttgcgctcactgcccgctttccagtccggaaaacctgtcctt 660 gccagctgccnttaatgaatcnggccaccccccggggaaaaggcngtttgcttnttgggg 720 cgcncttcccgctttctcgcttcctgaantccttccccccggtctttcggcttgcggcna 780 acggtatcnacct 793 <210> 34 <211> 756 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (756) <223> n = A,T,C or G
<400>

gccgcgaccggcatgtacgagcaactcaagggcgagtggaaccgtaaaagccccaatctt 60 ancaagtgcggggaanagctgggtcgactcaagctagttcttctggagctcaacttcttg 120 ccaaccacagggaccaagctgaccaaacagcagctaattctggcccgtgacatactggag 180 atcggggcccaatggagcatcctacgcaangacatcccctccttcgagcgctacatggcc 240 cagctcaaatgctactactttgattacaangagcagctccccgagtcagcctatatgcac 300 cagctcttgggcctcaacctcctcttcctgctgtcccagaaccgggtggctgantnccac 360 acgganttggancggctgcctgcccaangacatacanaccaatgtctacatcnaccacca 420 gtgtcctggagcaatactgatgganggcagctaccncaaagtnttcctggccnagggtaa 480 catcccccgccgagagctacaccttcttcattgacatcctgctcgacactatcagggatg 540 aaaatcgcngggttgctccagaaaggctncaanaanatccttttcnctgaaggcccccgg 600 atncnctagtnctagaatcggcccgccatcgcggtggancctccaacctttcgttnccct 660 ttactgagggttnattgccgcccttggcgttatcatggtcacnccngttncctgtgttga 720 aattnttaaccccccacaattccacgccnacattng 756 <210> 35 <211> 834 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(834) <223> n = A,T,C or G
<400> 35 ggggatctctanatcnacctgnatgcatggttgtcggtgtggtcgctgtcgatgaanatg 60 aacaggatcttgcccttgaagctctcggctgctgtntttaagttgctcagtctgccgtca 120 tagtcagacacnctcttgggcaaaaaacancaggatntgagtcttgatttcacctccaat 180 aatcttcngggctgtctgctcggtgaactcgatgacnangggcagctggttgtgtntgat 240 aaantccancangttctccttggtgacctccccttcaaagttgttccggccttcatcaaa 300 cttctnnaanangannancccanctttgtcgagctggnatttgganaacacgtcactgtt 360 ggaaactgatcccaaatggtatgtcatccatcgcctctgctgcctgcaaaaaacttgctt 420 ggcncaaatccgactccccntccttgaaagaagccnatcacacccccctccctggactcc 480 nncaangactctnccgctnccccntccnngcagggttggtggcannccgggcccntgcgc 540 ttcttcagccagttcacnatnttcatcagcccctctgccagctgttntattccttggggg 600 ggaanccgtctctcccttcctgaannaactttgaccgtnggaatagccgcgcntcnccnt 660 acntnctgggccgggttcaaantccctccnttgncnntcncctcgggccattctggattt 720 nccnaactttttccttcccccnccccncggngtttggntttttcatngggccccaactct 780 gctnttggcc antcccctgg gggcntntan cnccccctnt ggtcccntng ggcc 834 <210> 36 <211> 814 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(814) <223> n = A,T,C or G
<400> 36 cggncgctttccngccgcgccccgtttccatgacnaaggctcccttcangttaaatacnn 60 cctagnaaacattaatgggttgctctactaatacatcatacnaaccagtaagcctgccca 120 naacgccaactcaggccattcctaccaaaggaagaaaggctggtctctccaccccctgta 180 ggaaaggcctgccttgtaagacaccacaatncggctgaatctnaagtcttgtgttttact 240 aatggaaaaaaaaaataaacaanaggttttgttctcatggctgcccaccgcagcctggca 300 ctaaaacancccagcgctcacttctgcttgganaaatattctttgctcttttggacatca 360 ggcttgatggtatcactgccacntttccacccagctgggcncccttcccccatntttgtc 420 antganctggaaggcctgaancttagtctccaaaagtctcngcccacaagaccggccacc 480 aggggangtcntttncagtggatctgccaaanantacccntatcatcnntgaataaaaag 540 gcccctgaacganatgcttccancancctttaagacccataatcctngaaccatggtgcc 600 cttccggtctgatccnaaaggaatgttcctgggtcccantccctcctttgttncttacgt 660 tgtnttggacccntgctngnatnacccaantganatccccngaagcaccctncccctggc 720 atttgantttcntaaattctctgccctacnnctgaaagcacnattccctnggcnccnaan 780 ggngaactcaagaaggtctnngaaaaaccacncn 814 <210> 37 <211> 760 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(760) <223> n = A,T,C or G
<400>

gcatgctgctcttcctcaaagttgttcttgttgccataacaaccaccataggtaaagcgg 60 gcgcagtgttcgctgaaggggttgtagtaccagcgcgggatgctctccttgcagagtcct 120 gtgtctggcaggtccacgcaatgccctttgtcactggggaaatggatgcgctggagctcg 180 tcnaanccactcgtgtatttttcacangcagcctcctccgaagcntccgggcagttgggg 240 gtgtcgtcacactccactaaactgtcgatncancagcccattgctgcagcggaactgggt 300 gggctgacaggtgccagaacacactggatnggcctttccatggaagggcctgggggaaat 360 cncctnancccaaactgcctctcaaaggccaccttgcacaccccgacaggctagaaatgc 420 actcttcttcccaaaggtagttgttcttgttgcccaagcancctccancaaaccaaaanc 480 ttgcaaaatctgctccgtgggggtcatnnntaccanggttggggaaanaaacccggcngn 540 ganccnccttgtttgaatgcnaaggnaataatcctcctgtcttgcttgggtggaanagca 600 caattgaactgttaacnttgggccgngttccnctngggtggtctgaaactaatcaccgtc 660 actggaaaaaggtangtgccttccttgaattcccaaanttcccctngntttgggtnnttt 720 ctcctctnccctaaaaatcgtnttccccccccntanggcg 760 <210> 38 <211> 724 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(724) <223> n = A,T,C or G
<400> 38 tttttttttttttttttttttttttttttttttttaaaaaccccctccattgaatgaaaa 60 cttccnaaattgtccaaccccctcnnccaaatnnccatttccgggggggggttccaaacc 120 caaattaattttggantttaaattaaatnttnattnggggaanaanccaaatgtnaagaa 180 aatttaacccattatnaacttaaatncctngaaacccntggnttccaaaaatttttaacc 240 cttaaatccctccgaaattgntaanggaaaaccaaattcncctaaggctntttgaaggtt 300 ngatttaaacccccttnanttnttttnacccnngnctnaantatttngnttccggtgttt 360 tcctnttaancntnggtaactcccgntaatgaannnccctaanccaattaaaccgaattt 420 tttttgaattggaaattccnngggaattnaccggggtttttcccntttgggggccatncc 480 cccnctttcggggtttgggnntaggttgaatttttnnangncccaaaaaancccccaana 540 aaaaaactcccaagnnttaattngaatntcccccttcccaggccttttgggaaaggnggg 600 ' tttntgggggccnggganttcnttcccccnttnccnccccccccccnggtaaanggttat 660 ngnntttggtttttgggccccttnanggaccttccggatngaaattaaatccccgggncg 720 gccg 724 <210> 39 <211> 751 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(751) <223> n = A,T,C or G
<400> 39 ttttttttttttt.ttctttgctcacatttaatttttattttgattttttttaatgctgca 60 caacacaatatttatttcatttgtttcttttatttcattttatttgtttgctgctgctgt 120 tttatttatttttactgaaagtgagagggaacttttgtggccttttttcctttttctgta 180 ggccgccttaagctttctaaatttggaacatctaagcaagctgaanggaaaagggggttt 240 cgcaaaatcactcgggggaanggaaaggttgctttgttaatcatgccctatggtgggtga 300 ttaactgcttgtacaattacntttcacttttaattaattgtgctnaangctttaattana 360 cttgggggttccctccccanaccaaccccnctgacaaaaagtgccngccctcaaatnatg 420 tcccggcnntcnttgaaacacacngcngaangttctcattntccccncnccaggtnaaaa 480 tgaagggttaccatntttaacnccacctccacntggcnnngcctgaatcctcnaaaancn 540 ccctcaancnaattnctnngccccggtcncgcntnngtcccncccgggctccgggaantn 600 cacccccngaanncnntnncnaacnaaattccgaaaatattcccnntcnctcaattcccc 660 cnnagactntcctcnncnancncaattttcttttnntcacgaacncgnnccnnaaaatgn 720 nnnncncctccnctngtccnnaatcnccanc 751 <210> 40 <211> 753 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(753) <223> n = A,T,C or G
<400> 40 gtggtatttt ctgtaagatc aggtgttcct ccctcgtagg tttagaggaa acaccctcat 60 agatgaaaac ccccccgaga cagcagcact gcaactgcca agcagccggg gtaggagggg 120 cgccctatgcacagctgggcccttgagacagcagggcttcgatgtcaggctcgatgtcaa 180 tggtctggaagcggcggctgtacctgcgtaggggcacaccgtcagggcccaccaggaact 240 tctcaaagttccaggcaacntcgttgcgacacaccggagaccaggtgatnagcttggggt 300 cggtcataancgcggtggcgtcgtcgctgggagctggcagggcctcccgcaggaaggcna 360 ataaaaggtgcgcccccgcaccgttcanctcgcacttctcnaanaccatgangttgggct 420 cnaacccaccaccannccggacttccttganggaattcccaaatctcttcgntcttgggc 480 ttctnctgatgccctanctggttgcccngnatgccaancanccccaanccccggggtcct 540 aaancacccncctcctcntttcatctgggttnttntccccggaccntggttcctctcaag 600 ggancccatatctcnaccantactcaccntncccccccntgnnacccanccttctanngn 660 ttcccncccgncctctggcccntcaaanangcttncacnacctgggtctgccttcccccc 720 tnccctatctgnaccccncntttgtctcantnt 753 <210> 41 <211> 341 <212> DNA
<213> Homo sapien <400> 41 actatatccatcacaacagacatgcttcatcccatagacttcttgacatagcttcaaatg 60 agtgaacccatccttgatttatatacatatatgttctcagtattttgggagcctttccac 120 ttctttaaaccttgttcattatgaacactgaaaataggaatttgtgaagagttaaaaagt 180 tatagcttgtttacgtagtaagtttttgaagtctacattcaatccagacacttagttgag 240 tgttaaactgtgatttttaaaaaatatcatttgagaatattctttcagaggtattttcat 300 ttttactttttgattaattgtgttttatatattagggtagt 341 <210> 42 <211> 101 <212> DNA
<213> Homo sapien <400> 42 acttactgaa tttagttctg tgctcttcct tatttagtgt tgtatcataa atactttgat 60 gtttcaaaca ttctaaataa ataattttca gtggcttcat a 101 <210> 43 <211> 305 <212> DNA
<213> Homo sapien <400> 43 acatctttgttacagtctaagatgtgttcttaaatcaccattccttcctggtcctcaccc 60 tccagggtggtctcacactgtaattagagctattgaggagtctttacagcaaattaagat 120 tcagatgccttgctaagtctagagttctagagttatgtttcagaaagtctaagaaaccca 180 cctcttgagaggtcagtaaagaggacttaatatttcatatctacaaaatgaccacaggat 240 tggatacagaacgagagttatcctggataactcagagctgagtacctgcccgggggccgc 300 tcgaa 305 <210> 44 <211> 852 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (852) <223> n = A,T,C or G
<400> 44 acataaatatcagagaaaagtagtctttgaaatatttacgtccaggagttctttgtttct 60 gattatttggtgtgtgttttggtttgtgtccaaagtattggcagcttcagttttcatttt 120 ctctccatcctcgggcattcttcccaaatttatataccagtcttcgtccatccacacgct 180 ccagaatttctcttttgtagtaatatctcatagctcggctgagcttttcataggtcatgc 240 tgctgttgttcttctttttaccccatagctgagccactgcctctgatttcaagaacctga 300 agacgccctcagatcggtcttcccattttattaatcctgggttcttgtctgggttcaaga 360 ggatgtcgcggatgaattcccataagtgagtccctctcgggttgtgctttttggtgtggc 420 acttggcaggggggtcttgctcctttttcatatcaggtgactctgcaacaggaaggtgac 480 tggtggttgtcatggagatctgagcccggcagaaagttttgctgtccaacaaatctactg 540 tgctaccatagttggtgtcatataaatagttctngtctttccaggtgttcatgatggaag 600 gctcagtttgttcagtcttgacaatgacattgtgtgtggactggaacaggtcactactgc 660 actggccgttccacttcagatgctgcaagttgctgtagaggagntgccccgccgtccctg 720 ccgcccgggtgaactcctgcaaactcatgctgcaaaggtgctcgccgttgatgtcgaact 780 cntggaaagggatacaattggcatccagctggttggtgtccaggaggtgatggagccact 840 cccacacctggt 852 <210> 45 <211> 234 <212> DNA
<213> Homo sapien <400> 45 acaacagacc cttgctcgct aacgacctca tgctcatcaa gttggacgaa tccgtgtccg 60 agtctgacac catccggagc atcagcattg cttcgcagtg ccctaccgcg gggaactctt 120 gcctcgtttc tggctggggt ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg 180 tgaacgtgtc ggtggtgtct gaggaggtct gcagtaagct ctatgacccg ctgt 234 <210> 46 <211> 590 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1)...(590) <223> n = A,T,C or G
<400>

actttttatttaaatgtttataaggcagatctatgagaatgatagaaaacatggtgtgta 60 atttgatagcaatattttggagattacagagttttagtaattaccaattacacagttaaa 120 aagaagataatatattccaagcanatacaaaatatctaatgaaagatcaaggcaggaaaa , tgantataactaattgacaatggaaaatcaattttaatgtgaattgcacattatccttta 240 aaagctttcaaaanaaanaattattgcagtctanttaattcaaacagtgttaaatggtat 300 caggataaanaactgaagggcanaaagaattaattttcacttcatgtaacncacccanat 360 ttacaatggcttaaatgcanggaaaaagcagtggaagtagggaagtantcaaggtctttc 420 tggtctctaatctgccttactctttgggtgtggctttgatcctctggagacagctgccag 480 ggctcctgttatatccacaatcccagcagcaagatgaagggatgaaaaaggacacatgct 540 gccttcctttgaggagacttcatctcactggccaacactcagtcacatgt 590 <210> 47 <211> 774 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(774) <223> n = A,T,C or G

<400>

acaagggggcataatgaaggagtgggganagattttaaagaaggaaaaaaaacgaggccc 60 tgaacagaattttcctgnacaacggggcttcaaaataattttcttggggaggttcaagac 120 gcttcactgcttgaaacttaaatggatgtgggacanaattttctgtaatgaccctgaggg 180 cattacagacgggactctgggaggaaggataaacagaaaggggacaaaggctaatcccaa 240 aacatcaaagaaaggaaggtggcgtcatacctcccagcctacacagttctccagggctct 300 cctcatccctggaggacgacagtggaggaacaactgaccatgtccccaggctcctgtgtg 360 ctggctcctggtcttcagcccccagctctggaagcccaccctctgctgatcctgcgtggc 420 ccacactccttgaacacacatccccaggttatattcctggacatggctgaacctcctatt 480 cctacttccgagatgccttgctccctgcagcctgtcaaaatcccactcaccctccaaacc 540 acggcatgggaagcctttctgacttgcctgattactccagcatcttggaacaatccctga 600 ttccccactccttagaggcaagatagggtggttaagagtagggctggaccacttggagcc 660 aggctgctggcttcaaattntggctcatttacgagctatgggaccttgggcaagtnatct 720 tcacttctatgggcntcattttgttctacctgcaaaatgggggataataatagt 774 <210> 48 <211> 124 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(124) <223> n = A,T,C or G
<400> 48 canaaattga aattttataa aaaggcattt ttctcttata tccataaaat gatataattt 60 ttgcaantat anaaatgtgt cataaattat aatgttcctt aattacagct caacgcaact 120 tggt 124 <210> 49 <211> 147 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(147) <223> n = A,T,C or G
<400> 49 gccgatgcta ctattttatt gcaggaggtg ggggtgtttt tattattctc tcaacagctt 60 tgtggctaca ggtggtgtct gactgcatna aaaanttttt tacgggtgat tgcaaaaatt 120 ttagggcacc catatcccaa gcantgt 147 <210> 50 <211> 107 <212> DNA
<213> Homo sapien <400> 50 acattaaatt aataaaagga ctgttggggt tctgctaaaa cacatggctt gatatattgc 60 ,atggtttgag gttaggagga gttaggcata tgttttggga gaggggt 107 <210> 51 <211> 204 <212> DNA

<213> Homo sapien <400> 51 gtcctaggaa gtctagggga cacacgactc tggggtcacg gggccgacac acttgcacgg 60 cgggaaggaa aggcagagaa gtgacaccgt cagggggaaa tgacagaaag gaaaatcaag 120 gccttgcaag gtcagaaagg ggactcaggg cttccaccac agccctgccc cacttggcca 180 cctccctttt gggaccagca atgt 204 <210> 52 <211> 491 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (491) <223> n = A,T,C or G
<400> 52 acaaagataacatttatcttataacaaaaatttgatagttttaaaggttagtattgtgta 60 gggtattttccaaaagactaaagagataactcaggtaaaaagttagaaatgtataaaaca 120 ccatcagacaggtttttaaaaaacaacatattacaaaattagacaatcatccttaaaaaa 180 aaaacttcttgtatcaatttcttttgttcaaaatgactgacttaantatttttaaatatt 240 tcanaaacacttcctcaaaaattttcaanatggtagctttcanatgtnccctcagtccca 300 atgttgctcagataaataaatctcgtgagaacttaccacccaccacaagctttctggggc 360 atgcaacagtgtcttttctttnctttttctttttttttttttacaggcacagaaactcat 420 caattttatttggataacaaagggtctccaaattatattgaaaaataaatccaagttaat 480 atcactcttgt 491 <210> 53 <211> 484 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (484) <223> n = A,T,C or G
<400> 53 acataatttagcagggctaattaccataagatgctatttattaanaggtntatgatctga 60 gtattaacagttgctgaagtttggtatttttatgcagcattttctttttgctttgataac 120 actacagaacccttaaggacactgaaaattagtaagtaaagttcagaaacattagctgct 180 caatcaaatctctacataacactatagtaattaaaacgttaaaaaaaagtgttgaaatct 240 gcactagtatanaccgctcctgtcaggataanactgctttggaacagaaagggaaaaanc 300 agctttgantttctttgtgctgatangaggaaaggctgaattaccttgttgcctctccct 360 aatgattggcaggtcnggtaaatnccaaaacatattccaactcaacacttcttttccncg 420 tancttgantctgtgtattccaggancaggcggatggaatgggccagcccncggatgttc 480 cant 484 <210> 54 <211> 151 <212> DNA
<213> Homo sapien <400> 54 actaaacctc gtgcttgtga actccataca gaaaacggtg ccatccctga acacggctgg 60 ccactgggta tactgctgac aaccgcaaca acaaaaacac aaatccttgg cactggctag 120 tctatgtcct ctcaagtgcc tttttgtttg t 151 <210> 55 <211> 91 <212> DNA
<213> Homo sapien <400> 55 acctggcttg tctccgggtg gttcccggcg ccccccacgg tccccagaac ggacactttc 60 gccctccagt ggatactcga gccaaagtgg t 91 <210> 56 <211> 133 <212> DNA
<213> Homo sapien <400> 56 ggcggatgtg cgttggttat atacaaatat gtcattttat gtaagggact tgagtatact 60 tggatttttg gtatctgtgg gttgggggga cggtccagga accaataccc catggatacc 120 aagggacaac tgt 133 <210> 57 <211> 147 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(147) <223> n = A, T, C or G
<400> 57 actctggaga acctgagccg ctgctccgcc tctgggatga ggtgatgcan gcngtggcgc 60 gactgggagc tgagcccttc cctttgcgcc tgcctcagag gattgttgcc gacntgcana 120 w tctcantggg ctggatncat gcagggt 147 <210> 58 <211> 198 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(198) <223> n = A,T,C or G
<400> 58 acagggatat aggtttnaag ttattgtnat tgtaaaatac attgaatttt ctgtatactc 60 tgattacata catttatcct ttaaaaaaga tgtaaatctt aatttttatg ccatctatta 120 atttaccaat gagttacctt gtaaatgaga agtcatgata gcactgaatt ttaactagtt 180 ttgacttcta agtttggt 198 <210> 59 <211> 330 <212> DNA
<213> Homo sapien <400> 59 acaacaaatgggttgtgaggaagtcttatcagcaaaactggtgatggctactgaaaagat 60 ccattgaaaattatcattaatgattttaaatgacaagttatcaaaaactcactcaatttt 120 cacctgtgctagcttgctaaaatgggagttaactctagagcaaatatagtatcttctgaa 180 tacagtcaataaatgacaaagccagggcctacaggtggtttccagactttccagacccag 240 cagaaggaatctattttatcacatggatctccgtctgtgctcaaaatacctaatgatatt 300 tttcgtctttattggacttctttgaagagt 330 <210> 60 <211> 175 <212> DNA
<213> Homo sapien <400> 60 accgtgggtg ccttctacat tcctgacggc tccttcacca acatctggtt ctacttcggc 60 gtcgtgggct ccttcctctt catcctcatc cagctggtgc tgctcatcga ctttgcgcac 120 tcctggaacc agcggtggct gggcaaggcc gaggagtgcg attcccgtgc ctggt 175 <210> 61 <211> 154 <212> DNA
<213> Homo sapien <400> 61 accccacttt tcctcctgtg agcagtctgg acttctcact gctacatgat gagggtgagt 60 ggttgttgct cttcaacagt atcctcccct ttccggatct gctgagccgg acagcagtgc 120 tggactgcac agccccgggg ctccacattg ctgt 154 <210> 62 <211> 30 <212> DNA
<213> Homo sapien <400> 62 cgctcgagcc ctatagtgag tcgtattaga 30 <210> 63 <211> 89 <212> DNA
<213> Homo sapien <400> 63 acaagtcatt tcagcaccct ttgctcttca aaactgacca tcttttatat ttaatgcttc 60 ctgtatgaat aaaaatggtt atgtcaagt 89 <210> 64 <211> 97 <212> DNA
<213> Homo sapien <400> 64 accggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa ggttctgcag 60 aatcagtgca tccaggattg gtccttggat ctggggt 97 <210> 65 <211> 377 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(377) <223> n = A,T,C or G
<400>

acaacaanaantcccttctttaggccactgatggaaacctggaacccccttttgatggca 60 ' gcatggcgtcctaggccttgacacagcggctggggtttgggctntcccaaaccgcacacc 120 ccaaccctggtctacccacanttctggctatgggctgtctctgccactgaacatcagggt 180 tcggtcataanatgaaatcccaanggggacagaggtcagtagaggaagctcaatgagaaa 240 ggtgctgtttgctcagccagaaaacagctgcctggcattcgccgctgaactatgaacccg 300 tgggggtgaactacccccangaggaatcatgcctgggcgatgcaanggtgccaacaggag 360 gggcgggaggagcatgt 377 <210> 66 <211> 305 <212> DNA
<213> Homo sapien <400> 66 acgcctttccctcagaattcagggaagagactgtcgcctgccttcctccgttgttgcgtg 60 agaacccgtgtgccccttcccaccatatccaccctcgctccatctttgaactcaaacacg 120 aggaactaactgcaccctggtcctctccccagtccccagttcaccctccatccctcacct 180 tcctccactctaagggatatcaacactgcccagcacaggggccctgaatttatgtggttt 240 ttatatattttttaataagatgcactttatgtcattttttaataaagtctgaagaattac 300 tgttt 305 <210> 67 <211> 385 <212> DNA
<213> Homo sapien <400> 67 actacacacactccacttgcccttgtgagacactttgtcccagcactttaggaatgctga 60 ggtcggaccagccacatctcatgtgcaagattgcccagcagacatcaggtctgagagttc 120 cccttttaaaaaaggggacttgcttaaaaaagaagtctagccacgattgtgtagagcagc 180 tgtgctgtgctggagattcacttttgagagagttctcctctgagacctgatctttagagg 240 ctgggcagtcttgcacatgagatggggctggtctgatctcagcactccttagtctgcttg 300 cctctcccagggccccagcctggccacacctgcttacagggcactctcagatgcccatac 360 catagtttctgtgctagtggaccgt 385 <210> 68 <211> 73 <212> DNA
<213> Homo sapien <400> 68 acttaaccag atatattttt accccagatg gggatattct ttgtaaaaaa tgaaaataaa 60 gtttttttaa tgg 73 <210> 69 <211> 536 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(536) <223> n = A,T,C or G
<400>

actagtccagtgtggtggaattccattgtgttgggggctctcaccctcctctcctgcagc 60 tccagctttgtgctctgcctctgaggagaccatggcccagcatctgagtaccctgctgct 120 cctgctggccaccctagctgtggccctggcctggagccccaaggaggaggataggataat 180 cccgggtggcatctataacgcagacctcaatgatgagtgggtacagcgtgcccttcactt 240 cgccatcagcgagtataacaaggccaccaaagatgactactacagacgtccgctgcgggt 300 actaagagccaggcaacagaccgttgggggggtgaattacttcttcgacgtagaggtggg 360 ccgaaccatatgtaccaagtcccagcccaacttggacacctgtgccttccatgaacagcc 420 agaactgcagaagaaacagttgtgctctttcgagatctacgaagttccctggggagaaca 480 gaangtccctgggtgaaatccaggtgtcaagaaatcctanggatctgttgccaggc 536 <210> 70 <211> 477 <212> DNA
<213> Homo sapien <400> 70 atgacccctaacaggggccctctcagccctcctaatgacctccggcctagccatgtgatt 60 tcacttccactccataacgctcctcatactaggcctactaaccaacacactaaccatata 120 ccaatgatggcgcgatgtaacacgagaaagcacataccaaggccaccacacaccacctgt 180 ccaaaaaggccttcgatacgggataatcctatttattacctcagaagtttttttcttcgc 240 agggatttttctgagccttttaccactccagcctagcccctaccccccaactaggagggc 300 actggcccccaacaggcatcaccccgctaaatcccctagaagtcccactcctaaacacat 360 ccgtattactcgcatcaggagtatcaatcacctgagctcaccatagtctaatagaaaaca 420 accgaaaccaaattattcaaagcactgcttattacaattttactgggtctctatttt 477.

<210> 71 <211> 533 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(533) <223> n = A,T,C or G
<400>

agagctataggtacagtgtgatctcagctttgcaaacacattttctacatagatagtact 60 aggtattaatagatatgtaaagaaagaaatcacaccattaataatggtaagattggttta 120 tgtgattttagtggtatttttggcacccttatatatgttttccaaactttcagcagtgat 180 attatttccataacttaaaaagtgagtttgaaaaagaaaatctccagcaagcatctcatt 240 taaataaaggtttgtcatctttaaaaatacagcaatatgtgactttttaaaaaagctgtc 300 aaataggtgtgaccctactaataattattagaaatacatttaaaaacatcgagtacctca 360 agtcagtttgccttgaaaaatatcaaatataactcttagagaaatgtacataaaagaatg 420 cttcgtaattttggagtangaggttccctcctcaattttgtatttttaaaaagtacatgg 480 taaaaaaaaaaattcacaacagtatataaggctgtaaaatgaagaattctgcc 533 <210> 72 <211> 511 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(511) <223> n = A,T,C or G

<400>

tattacggaaaaacacaccacataattcaactancaaagaanactgcttcagggcgtgta 60 aaatgaaaggcttccaggcagttatctgattaaagaacactaaaagagggacaaggctaa 120 aagccgcaggatgtctacactatancaggcgctatttgggttggctggaggagctgtgga 180 aaacatgganagattggtgctgganatcgccgtggctattcctcattgttattacanagt 240 gaggttctctgtgtgcccactggtttgaaaaccgttctncaataatgatagaatagtaca 300 cacatgagaactgaaatggcccaaacccagaaagaaagcccaactagatcctcagaanac 360 gcttctagggacaataaccgatgaagaaaagatggcctccttgtgcccccgtctgttatg 420 atttctctccattgcagcnanaaacccgttcttctaagcaaacncaggtgatgatggcna 480 aaatacaccccctcttgaagnaccnggagga 511 <210> 73 <211> 499 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(499) <223> n = A,T,C or G
<400> 73 cagtgccagcactggtgccagtaccagtaccaataacagtgccagtgccagtgccagcac 60 cagtggtggcttcagtgctggtgccagcctgaccgccactctcacatttgggctcttcgc 120 tggccttggtggagctggtgccagcaccagtggcagctctggtgcctgtggtttctccta 180 caagtgagattttagatattgttaatcctgccagtctttctcttcaagccagggtgcatc 240 ctcagaaacctactcaacacagcactctaggcagccactatcaatcaattgaagttgaca 300 ctctgcattaaatctatttgccatttctgaaaaaaaaaaaaaaaaaagggcggccgctcg 360 antctagagggcccgtttaaacccgctgatcagcctcgactgtgccttctanttgccagc 420 catctgttgtttgcccctcccccgntgccttccttgaccctggaaagtgccactcccact 480 gtcctttcctaantaaaat 499 <210> 74 <211> 537 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(537) <223> n = A,T,C or G
<400>

tttcataggagaacacactgaggagatacttgaagaatttggattcagccgcgaagagat 60 ttatcagcttaactcagataaaatcattgaaagtaataaggtaaaagctagtctctaact 120 tccaggcccacggctcaagtgaatttgaatactgcatttacagtgtagagtaacacataa 180 cattgtatgcatggaaacatggaggaacagtattacagtgtcctaccactctaatcaaga 240 aaagaattacagactctgattctacagtgatgattgaattctaaaaatggtaatcattag 300 ggcttttgatttataanactttgggtacttatactaaattatggtagttatactgccttc 360 cagtttgcttgatatatttgttgatattaagattcttgacttatattttgaatgggttct 420 actgaaaaangaatgatatattcttgaagacatcgatatacatttatttacactcttgat 480 tctacaatgtagaaaatgaaggaaatgccccaaattgtatggtgataaaagtcccgt 537 <210> 75 <211> 467 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(467) <223> n = A,T,C or G
<400> 75 caaanacaattgttcaaaagatgcaaatgatacactactgctgcagctcacaaacacctc 60 tgcatattacacgtacctcctcctgctcctcaagtagtgtggtctattttgccatcatca 120 cctgctgtctgcttagaagaacggctttctgctgcaanggagagaaatcataacagacgg 180 tggcacaaggaggccatcttttcctcatcggttattgtccctagaagcgtcttctgagga 240 tctagttgggctttctttctgggtttgggccatttcanttctcatgtgtgtactattcta 300 tcattattgtataacggttttcaaaccngtgggcacncagagaacctcactctgtaataa 360 caatgaggaatagccacggtgatctccagcaccaaatctctccatgttnttccagagctc 420 ctccagccaacccaaatagccgctgctatngtgtagaacatccctgn 467 <210> 76 <211> 400 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(400) <223> n = A,T,C or G
<400>

aagctgacagcattcgggccgagatgtctcgctccgtggccttagctgtgctcgcgctac 60 tctctctttctggcctggaggctatccagcgtactccaaagattcaggtttactcacgtc 120 atccagcagagaatggaaagtcaaatttcctgaattgctatgtgtctgggtttcatccat 180 ccgacattgaagttgacttactgaagaatggagagagaattgaaaaagtggagcattcag 240 acttgtctttcagcaaggactggtctttctatctcttgtactacactgaattcaccccca 300 ctgaaaaagatgagtatgcctgccgtgtgaaccatgtgactttgtcacagcccaagatng 360 ttnagtgggatcganacatgtaagcagcancatgggaggt 400 <210> 77 <211> 248 <212> DNA
<213> Homo sapien <400> 77 ctggagtgccttggtgtttcaagcccctgcaggaagcagaatgcaccttctgaggcacct 60 ccagctgccccggcgggggatgcgaggctcggagcacccttgcccggctgtgattgctgc 120 caggcactgttcatctcagcttttctgtccctttgctcccggcaagcgcttctgctgaaa 180 gttcatatctggagcctgatgtcttaacgaataaaggtcccatgctccacccgaaaaaaa 240 aaaaaaaa 248 <210> 78 <211> 201 <212> DNA
<213> Homo sapien <400> 78 actagtccag tgtggtggaa ttccattgtg ttgggcccaa cacaatggct acctttaaca 60 tcacccagac cccgccctgc ccgtgcccca cgctgctgct aacgacagta tgatgcttac 120 tctgctactc ggaaactatt tttatgtaat taatgtatgc tttcttgttt ataaatgcct 180 gatttaaaaa aaaaaaaaaa a 201 <210> 79 <211> 552 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(552) <223> n = A, T, C or G
<400>

tccttttgttaggtttttgagacaaccctagacctaaactgtgtcacagacttctgaatg 60 tttaggcagtgctagtaatttcctcgtaatgattctgttattactttcctattctttatt 120 cctctttcttctgaagattaatgaagttgaaaattgaggtggataaatacaaaaaggtag 180 tgtgatagtataagtatctaagtgcagatgaaagtgtgttatatatatccattcaaaatt 240 atgcaagttagtaattactcagggttaactaaattactttaatatgctgttgaacctact 300 ctgttccttggctagaaaaaattataaacaggactttgttagtttgggaagccaaattga 360 taatattctatgttctaaaagttgggctatacataaantatnaagaaatatggaatttta 420 ttcccaggaatatggggttcatttatgaatantacccggganagaagttttgantnaaac 480 cngttttggttaatacgttaatatgtcctnaatnaacaaggcntgacttatttccaaaaa 540 aaaaaaaaaaas 552 <210> 80 <211> 476 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (476) <223> n = A,T,C or G
<400> 80 acagggatttgagatgctaaggccccagagatcgtttgatccaaccctcttattttcaga 60 ggggaaaatggggcctagaagttacagagcatctagctggtgcgctggcacccctggcct 120 cacacagactcccgagtagctgggactacaggcacacagtcactgaagcaggccctgttt 180 gcaattcacgttgccacctccaacttaaacattcttcatatgtgatgtccttagtcacta 240 aggttaaactttcccacccagaaaaggcaacttagataaaatcttagagtactttcatac 300 tcttctaagtcctcttccagcctcactttgagtcctccttgggggttgataggaantntc 360 tcttggctttctcaataaaatctctatccatctcatgtttaatttggtacgcntaaaaat 420 gctgaaaaaattaaaatgttctggtttcnctttaaaaaaaaaaaaaaaaaaaaaaa 476 <210> 81 <211> 232 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(232) <223> n = A,T,C or G
<400> 81 tttttttttg tatgccntcn ctgtggngtt attgttgctg ccaccctgga ggagcccagt 60 ttcttctgta tctttctttt ctgggggatc ttcctggctc tgcccctcca ttcccagcct 120 ctcatcccca tcttgcactt ttgctagggt tggaggcgct ttcctggtag cccctcagag 180 actcagtcag cgggaataag tcctaggggt ggggggtgtg gcaagccggc ct 232 <210> 8z <211> 383 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (383) <223> n = A,T,C or G
<400>

aggcgggagcagaagctaaagccaaagcccaagaagagtggcagtgccagcactggtgcc 60 agtaccagtaccaataacatgccagtgccagtgccagcaccagtggtggcttcagtgctg 120 gtgccagcctgaccgccactctcacatttgggctcttcgctggccttggtggagctggtg 180 ccagcaccagtggcagctctggtgcctgtggtttctcctacaagtgagattttagatatt 240 gttaatcctgccagtctttctcttcaagccagggtgcatcctcagaaacctactcaacac 300 agcactctnggcagccactatcaatcaattgaagttgacactctgcattaaatctatttg 360 ccatttcaaaaaaaaaaaaaaaa 383 <210> 83 <211> 494 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (494) <223> n = A,T,C or G
<400> 83 accgaattgggaccgctggcttataagcgatcatgtcctccagtattacctcaacgagca 60 gggagatcgagtctatacgctgaagaaatttgacccgatgggacaacagacctgctcagc 120 ccatcctgctcggttctccccagatgacaaatactctcgacaccgaatcaccatcaagaa 180 acgcttcaaggtgctcatgacccagcaaccgcgccctgtcctctgagggtccttaaactg 240 atgtcttttctgccacctgttacccctcggagactccgtaaccaaactcttcggactgtg 300 agccctgatgcctttttgccagccatactctttggcntccagtctctcgtggcgattgat 360 tatgcttgtgtgaggcaatcatggtggcatcacccatnaagggaacacatttganttttt 420 tttcncatattttaaattacnaccagaatanttcagaataaatgaattgaaaaactctta 480 aaaaaaaaaaaaaa 494 <210> 84 <211> 380 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(380) <223> n = A,T,C or G
<400>

gctggtagcctatggcgtggccacggangggctcctgaggcacgggacagtgacttccca 60 agtatcctgcgccgcgtcttctaccgtccctacctgcagatcttcgggcagattccccag 120 gaggacatggacgtggccctcatggagcacagcaactgctcgtcggagcccggcttctgg 180 gcacaccctcctggggcccaggcgggcacctgcgtctcccagtatgccaactggctggtg 240 gtgctgctcctcgtcatcttcctgctcgtggccaacatcctgctggtcacttgctcattg 300 ccatgttcagttacacattcggcaaagtacagggcaacagcnatctctactgggaaggcc 360 agcgttnccgcctcatccgg 380 <210> 85 <211> 481 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (481) <223> n = A,T,C or G
<400> 85 gagttagctcctccacaaccttgatgaggtcgtctgcagtggcctctcgcttcataccgc 60 tnccatcgtcatactgtaggtttgccaccacctcctgcatcttggggcggctaatatcca 120 ggaaactctcaatcaagtcaccgtcnatnaaacctgtggctggttctgtcttccgctcgg 180 tgtgaaaggatctccagaaggagtgctcgatcttccccacacttttgatgactttattga 240 gtcgattctgcatgtccagcaggaggttgtaccagctctctgacagtgaggtcaccagcc 300 ctatcatgccnttgaacgtgccgaagaacaccgagccttgtgtggggggtgnagtctcac 360 ccagattctgcattaccaganagccgtggcaaaaganattgacaactcgcccaggnngaa 420 aaagaacacctcctggaagtgctngccgctcctcgtccnttggtggnngcgcntnccttt 480.

t 481 <210> 86 <211> 472 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (472) <223> n = A,T,C or G
<400>

aacatcttcctgtataatgctgtgtaatatcgatccgatnttgtctgctgagaattcatt 60 acttggaaaagcaacttnaagcctggacactggtattaaaattcacaatatgcaacactt 120 taaacagtgtgtcaatctgctcccttactttgtcatcaccagtctgggaataagggtatg 180 ccctattcacacctgttaaaagggcgctaagcatttttgattcaacatctttttttttga 240 cacaagtccgaaaaaagcaaaagtaaacagttnttaatttgttagccaattcactttctt 300 catgggacagagccatttgatttaaaaagcaaattgcataatattgagctttgggagctg 360 atatntgagcggaagantagcctttctacttcaccagacacaactcctttcatattggga 420 tgttnacnaaagttatgtctcttacagatgggatgcttttgtggcaattctg 472 <210> 87 <211> 413 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(413) <223> n = A,T,C or G
<400> 87 agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg 60 tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg 120 cctctttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct 180 ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt 240 tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc cttgactagg 300 ggggacaaag aaaagcanaa ctgaacatna gaaacaattn cctggtgaga aattncataa 360 acagaaattg ggtngtatat tgaaananng catcattnaa acgttttttt ttt 413 <210> 88 <211> 448 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(448) <223> n = A,T,C or G
<400>

cgcagcgggtcctctctatctagctccagcctctcgcctgccccactccccgcgtcccgc 60 gtcctagccnaccatggccgggcccctgcgcgccccgctgctcctgctggccatcctggc 120 cgtggccctggccgtgagccccgcggccggctccagtcccggcaagccgccgcgcctggt 180 gggaggcccatggaccccgcgtggaagaagaaggtgtgcggcgtgcactggactttgccg 240 tcggcnantacaacaaacccgcaacnacttttaccnagcncgcgctgcaggttgtgccgc 300 cccaancaaattgttactnggggtaantaattcttggaagttgaacctgggccaaacnng 360 tttaccagaaccnagccaattngaacaattncccctccataacagccccttttaaaaagg 420 gaancantcctgntcttttccaaatttt 448 <210> 89 <211> 463 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(463) <223> n = A,T,C or G
<400> 89 gaattttgtgcactggccactgtgatggaaccattgggccaggatgctttgagtttatca 60 gtagtgattctgccaaagttggtgttgtaacatgagtatgtaaaatgtcaaaaaattagc 120 agaggtctaggtctgcatatcagcagacagtttgtccgtgtattttgtagccttgaagtt 180 ctcagtgacaagttnnttctgatgcgaagttctnattccagtgttttagtcctttgcatc 240 tttnatgttnagacttgcctctntnaaattgcttttgtnttctgcaggtactatctgtgg 300 tttaacaaaatagaannacttctctgcttngaanatttgaatatcttacatctnaaaatn 360 aattctctccccatannaaaacccangcccttggganaatttgaaaaanggntccttcnn 420 aattcnnanaanttcagntntcatacaacanaacnggancccc 463 <210> 90 <211> 400 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(400) <223> n = A,T,C or G
<400> 90 agggattgaa ggtctnttnt actgtcggac tgttcancca ccaactctac aagttgctgt 60 cttccactca ctgtctgtaa gcntnttaac ccagactgta tcttcataaa tagaacaaat 120 tcttcaccag tcacatcttc taggaccttt ttggattcag ttagtataag ctcttccact 180 tcctttgtta agacttcatc tggtaaagtc ttaagttttg tagaaaggaa tttaattgct 240 cgttctctaa caatgtcctc tccttgaagt atttggctga acaacccacc tnaagtccct 300 ttgtgcatcc attttaaata tacttaatag ggcattggtn cactaggtta aattctgcaa 360 gagtcatctg tctgcaaaag ttgcgttagt atatctgcca 400 <210> 91 <211> 480 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (480) <223> n = A,T,C or G
<400> 91 gagctcggatccaataatctttgtctgagggcagcacacatatncagtgccatggnaact 60 ggtctaccccacatgggagcagcatgccgtagntatataaggtcattccctgagtcagac 120 atgcctctttgactaccgtgtgccagtgctggtgattctcacacacctccnnccgctctt 180 tgtggaaaaactggcacttgnctggaactagcaagacatcacttacaaattcacccacga 240 gacacttgaaaggtgtaacaaagcgactcttgcattgctttttgtccctccggcaccagt 300 tgtcaatactaacccgctggtttgcctccatcacatttgtgatctgtagctctggataca 360 tctcctgacagtactgaagaacttcttcttttgtttcaaaagcaactcttggtgcctgtt 420 ngatcaggttcccatttcccagtccgaatgttcacatggcatatnttacttcccacaaaa 480 <210> 92 <211> 477 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (477) <223> n = A,T,C or G
<400>

atacagcccanatcccaccacgaagatgcgcttgttgactgagaacctgatgcggtcact 60 ggtcccgctgtagccccagcgactctccacctgctggaagcggttgatgctgcactcctt 120 cccacgcaggcagcagcggggccggtcaatgaactccactcgtggcttggggttgacggt 180 taantgcaggaagaggctgaccacctcgcggtccaccaggatgcccgactgtgcgggacc 240 tgcagcgaaactcctcgatggtcatgagcgggaagcgaatgangcccagggccttgccca 300 gaaccttccgcctgttctctggcgtcacctgcagctgctgccgctnacactcggcctcgg 360 accagcggacaaacggcgttgaacagccgcacctcacggatgcccantgtgtcgcgctcc 420 aggaacggcnccagcgtgtccaggtcaatgtcggtgaancctccgcgggtaatggcg 477 <210> 93 <211> 377 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (377) <223> n = A,T,C or G
<400> 93 gaacggctgg accttgcctc gcattgtgct gctggcagga ataccttggc aagcagctcc 60 agtccgagca gccccagacc gctgccgccc gaagctaagc ctgcctctgg ccttcccctc 120 cgcctcaatg cagaaccant agtgggagca ctgtgtttag agttaagagt gaacactgtn 180 tgattttact tgggaatttc ctctgttata tagcttttcc caatgctaat ttccaaacaa 240 caacaacaaa ataacatgtt tgcctgttna gttgtataaa agtangtgat tctgtatnta 300 aagaaaatat tactgttaca tatactgctt gcaanttctg tatttattgg tnctctggaa 360 ataaatatat tattaaa 377 <210> 94 <211> 495 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(495) <223> n = A,T,C or G
<400> 94 ccctttgaggggttagggtccagttcccagtggaagaaacaggccaggagaantgcgtgc 60 cgagctgangcagatttcccacagtgaccccagagccctgggctatagtctctgacccct 120 ccaaggaaagaccaccttctggggacatgggctggagggcaggacctagaggcaccaagg 180 gaaggccccattccggggctgttccccgaggaggaagggaaggggctctgtgtgcccccc 240 acgaggaanaggccctgantcctgggatcanacaccccttcacgtgtatccccacacaaa 300 tgcaagctcaccaaggtcccctctcagtcccttccctacaccctgaacggncactggccc 360 acacccacccagancanccacccgccatggggaatgtnctcaaggaatcgcngggcaacg 420 tggactctngtcccnnaagggggcagaatctccaatagangganngaacccttgctnana 480 aaaaaaaanaaaaaa - 495 <210> 95 <211> 4'72 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (472) <223> n = A,T,C or G
<400>

ggttacttggtttcattgccaccacttagtggatgtcatttagaaccattttgtctgctc 60 cctctggaagccttgcgcagagcggactttgtaattgttggagaataactgctgaatttt 120 tagctgttttgagttgattcgcaccactgcaccacaactcaatatgaaaactatttnact 180 tatttattatcttgtgaaaagtatacaatgaaaattttgttcatactgtatttatcaagt 240 atgatgaaaagcaatagatatatattcttttattatgttnaattatgattgccattatta 300 atcggcaaaatgtggagtgtatgttcttttcacagtaatatatgccttttgtaacttcac 360 ttggttattttattgtaaatgaattacaaaattcttaatttaagaaaatggtangttata 420 tttanttcantaatttctttccttgtttacgttaattttgaaaagaatgcat 472 <210> 96 <211> 476 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(476) <223> n = A,T,C or G
<400> 96 ctgaagcatt tcttcaaact tntctacttt tgtcattgat acctgtagta agttgacaat 60 gtggtgaaatttcaaaattatatgtaacttctactagttttactttctcccccaagtctt 120 ttttaactcatgatttttacacacacaatccagaacttattatatagcctctaagtcttt 180 attcttcacagtagatgatgaaagagtcctccagtgtcttgngcanaatgttctagntat 240 agctggatacatacngtgggagttctataaactcatacctcagtgggactnaaccaaaat 300 tgtgttagtctcaattcctaccacactgagggagcctcccaaatcactatattcttatct 360 gcaggtactcctccagaaaaacngacagggcaggcttgcatgaaaaagtnacatctgcgt 420 tacaaagtctatcttcctcanangtctgtnaaggaacaatttaatcttctagcttt 476 <210> 97 <211> 479 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (479) <223> n = A,T,C or G
<400>

actctttctaatgctgatatgatcttgagtataagaatgcatatgtcactagaatggata 60 aaataatgctgcaaacttaatgttcttatgcaaaatggaacgctaatgaaacacagctta 120 caatcgcaaatcaaaactcacaagtgctcatctgttgtagatttagtgtaataagactta 180 gattgtgctccttcggatatgattgtttctcanatcttgggcaatnttccttagtcaaat 240 caggctactagaattctgttattggatatntgagagcatgaaatttttaanaatacactt 300 gtgattatnaaattaatcacaaatttcacttatacctgctatcagcagctagaaaaacat 360 ntnntttttanatcaaagtattttgtgtttggaantgtnnaaatgaaatctgaatgtggg 420 ttcnatcttattttttcccngacnactanttncttttttagggnctattctganccatc 479 <210> 98 <211> 461 <212> DNA
<213> Homo sapien <400> 98 agtgacttgtcctccaacaaaaccccttgatcaagtttgtggcactgacaatcagaccta 60 tgctagttcctgtcatctattcgctactaaatgcagactggaggggaccaaaaaggggca 120 tcaactccagctggattattttggagcctgcaaatctattcctacttgtacggactttga 180 agtgattcagtttcctctacggatgagagactggctcaagaatatcctcatgcagcttta 240 tgaagccactctgaacacgctggttatctagatgagaacagagaaataaagtcagaaaat 300 ttacctggagaaaagaggctttggctggggaccatcccattgaaccttctcttaaggact 360 ttaagaaaaactaccacatgttgtgtatcctggtgccggccgtttatgaactgaccaccc 420 tttggaataatcttgacgctcctgaacttgctcctctgcga 461 <210> 99 <211> 171 <212> DNA
<213> Homo sapien <400> 99 gtggccgcgc gcaggtgttt cctcgtaccg cagggccccc tcccttcccc aggcgtccct 60 cggcgcctct gcgggcccga ggaggagcgg ctggcgggtg gggggagtgt gacccaccct 120 cggtgagaaa agccttctct agcgatctga gaggcgtgcc ttgggggtac c 171 <210> 100 <211> 269 <212> DNA
<213> Homo sapien <400> loo cggccgcaag tgcaactcca gctggggccg tgcggacgaa gattctgcca gcagttggtc 60 cgactgcgac gacggcggcg gcgacagtcg caggtgcagc gcgggcgcct ggggtcttgc 120 aaggctgagc tgacgccgca gaggtcgtgt cacgtcccac gaccttgacg ccgtcgggga 180 cagccggaac agagcccggt gaagcgggag gcctcgggga gcccctcggg aagggcggcc 240 cgagagatac gcaggtgcag gtggccgcc 269 <210> 101 <211> 405 <212> DNA
<213> Homo sapien <400>

ttttttttttttttggaatctactgcgagcacagcaggtcagcaacaagtttattttgca 60 gctagcaaggtaacagggtagggcatggttacatgttcaggtcaacttcctttgtcgtgg 120 ttgattggtttgtctttatgggggcggggtggggtaggggaaacgaagcaaataacatgg 180 agtgggtgcaccctccctgtagaacctggttacaaagcttggggcagttcacctggtctg 240 tgaccgtcattttcttgacatcaatgttattagaagtcaggatatcttttagagagtcca 300 ctgttctggagggagattagggtttcttgccaaatccaacaaaatccactgaaaaagttg 360 gatgatcagtacgaataccgaggcatattctcatatcggtggcca 405 <210> 102 <211> 470 <212> DNA
<213> Homo sapien <400> 102 tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt 60 ggcacttaatccatttttatttcaaaatgtctacaaatttaatcccattatacggtattt 120 tcaaaatctaaattattcaaattagccaaatccttaccaaataatacccaaaaatcaaaa 180 atatacttctttcagcaaacttgttacataaattaaaaaaatatatacggctggtgtttt 240 caaagtacaattatcttaacactgcaaacattttaaggaactaaaataaaaaaaaacact 300 ccgcaaaggttaaagggaacaacaaattcttttacaacaccattataaaaatcatatctc 360 aaatcttaggggaatatatacttcacacgggatcttaacttttactcactttgtttattt 420 ttttaaaccattgtttgggcccaacacaatggaatcccccctggactagt 470 <210> 103 <211> 581 <212> DNA
<213> Homo sapien <400> 103 ttttttttttttttttttgacccccctcttataaaaaacaagttaccattttattttact 60 tacacatatttattttataattggtattagatattcaaaaggcagcttttaaaatcaaac 120 taaatggaaactgccttagatacataattcttaggaattagcttaaaatctgcctaaagt 180 gaaaatcttctctagctcttttgactgtaaatttttgactcttgtaaaacatccaaattc 240 atttttcttgtctttaaaattatctaatctttccattttttccctattccaagtcaattt 300 gcttctctagcctcatttcctagctcttatctactattagtaagtggcttttttcctaaa 360 agggaaaacaggaagagaaatggcacacaaaacaaacattttatattcatatttctacct 420 acgttaataaaatagcattttgtgaagccagctcaaaagaaggcttagatccttttatgt 480 ccattttagtcactaaacgatatcaaagtgccagaatgcaaaaggtttgtgaacatttat 540 tcaaaagctaatataagatatttcacatactcatctttctg 581 <210> 104 <211> 578 <212> DNA
<213> Homo sapien <400> 104 tttttttttttttttttttttttttctcttctttttttttgaaatgaggatcgagttttt 60 cactctctagatagggcatgaagaaaactcatctttccagctttaaaataacaatcaaat 120 ctcttatgctatatcatattttaagttaaactaatgagtcactggcttatcttctcctga 180 aggaaatctgttcattcttctcattcatatagttatatcaagtactaccttgcatattga 240 gaggtttttcttctctatttacacatatatttccatgtgaatttgtatcaaacctttatt 300 ttcatgcaaactagaaaataatgtttcttttgcataagagaagagaacaatatagcatta 360 caaaactgctcaaattgtttgttaagttatccattataattagttggcaggagctaatac 420 aaatcacatttacgacagcaataataaaactgaagtaccagttaaatatccaaaataatt 480 aaaggaacatttttagcctgggtataattagctaattcactttacaagcatttattagaa 540 tgaattcacatgttattattcctagcccaacacaatgg 578 <210> 105 <211> 538 <212> DNA
<213> Homo sapien <400>

tttttttttttttttcagtaataatcagaacaatatttatttttatatttaaaattcata 60 gaaaagtgccttacatttaataaaagtttgtttctcaaagtgatcagaggaattagatat 120 gtcttgaacaccaatattaatttgaggaaaatacaccaaaatacattaagtaaattattt 180 aagatcatagagcttgtaagtgaaaagataaaatttgacctcagaaactctgagcattaa 240 aaat.ccactattagcaaataaattactatggacttcttgctttaattttgtgatgaatat 300 ggggtgtcactggtaaaccaacacattctgaaggatacattacttagtgatagattctta~360 tgtactttgctaatacgtggatatgagttgacaagtttctctttcttcaatcttttaagg 420 ggcgagaaatgaggaagaaaagaaaaggattacgcatactgttctttctatggaaggatt 480 agatatgtttcctttgccaatattaaaaaaataataatgtttactactagtgaaaccc 538 .

<210> 106 <211> 473 <212> DNA
<213> Homo sapien <400> 106 ttttttttttttttttagtcaagtttctatttttattataattaaagtcttggtcatttc 60 atttattagctctgcaacttacatatttaaattaaagaaacgttttagacaactgtacaa 120 tttataaatgtaaggtgccattattgagtaatatattcctccaagagtggatgtgtccct 180 tctcccaccaactaatgaacagcaacattagtttaattttattagtagatatacactgct 240 gcaaacgctaattctcttctccatccccatgtgatattgtgtatatgtgtgagttggtag 300 aatgcatcacaatctacaatcaacagcaagatgaagctaggctgggctttcggtgaaaat 360 agactgtgtctgtctgaatcaaatgatctgacctatcctcggtggcaagaactcttcgaa 420 ccgcttcctcaaaggcgctgccacatttgtggctctttgcacttgtttcaaaa 473 <210> 107 <211> 1621 <212> DNA
<213> Homo sapien <400>

cgccatggcactgcagggcatctcggtcatggagctgtccggcctggccccgggcccgtt 60 ctgtgctatggtcctggctgacttcggggcgcgtgtggtacgcgtggaccggcccggctc 120 ccgctacgacgtgagccgcttgggccggggcaagcgctcgctagtgctggacctgaagca 180 gccgcggggagccgccgtgctgcggcgtctgtgcaagcggtcggatgtgctgctggagcc 240 cttccgccgcggtgtcatggagaaactccagctgggcccagagattctgcagcgggaaaa 300 tccaaggcttatttatgccaggctgagtggatttggccagtcaggaagcttctgccggtt 360 agctggccacgatatcaactatttggctttg~tcaggtgttctctcaaaaattggcagaag 420 tggtgagaatccgtatgccccgctgaatctcctggctgactttgctggtggtggccttat 480 gtgtgcactgggcattataatggctctttttgaccgcacacgcactgacaagggtcaggt 540 cattgatgcaaatatggtggaaggaacagcatatttaagttcttttctgtggaaaactca600 gaaatcgagtctgtgggaagcacctcgaggacagaacatgttggatggtggagcaccttt660 ctatacgacttacaggacagcagatggggaattcatggctgttggagcaatagaacccca720 gttctacgagctgctgatcaaaggacttggactaaagtctgatgaacttcccaatcagat780 gagcatggatgattggccagaaatgaagaagaagtttgcagatgtatttgcaaagaagac840 gaaggcagagtggtgtcaaatctttgacggcacagatgcctgtgtgactccggttctgac900 ttttgaggaggttgttcatcatgatcacaacaaggaacggggctcgtttatcaccagtga960 ggagcaggacgtgagcccccgccctgcacctctgctgttaaacaccccagccatcccttc1020 tttcaaaagggatcctttcataggagaacacactgaggagatacttgaagaatttggatt1080 cagccgcgaagagatttatcagcttaactcagataaaatcattgaaagtaataaggtaaa1140 agctagtctctaacttccaggcccacggctcaagtgaatttgaatactgcatttacagtg1200 tagagtaacacataacattgtatgcatggaaacatggaggaacagtattacagtgtccta1260 ccactctaatcaagaaaagaattacagactctgattctacagtgatgattgaattctaaa1320 aatggttatcattagggcttttgatttataaaactttgggtacttatactaaattatggt1380 agttattctgccttccagtttgcttgatatatttgttgatattaagattcttgacttata1440 ttttgaatgggttctagtgaaaaaggaatgatatattcttgaagacatcgatatacattt1500 atttacactcttgattctacaatgtagaaaatgaggaaatgccacaaattgtatggtgat1560 aaaagtcacgtgaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1620 a 1621 <210> 108 <211> 382 <212> PRT
<213> Homo-sapien <400> 108 Met Ala Leu Gln Gly Ile Ser Val Met Glu Leu Ser Gly Leu Ala Pro Gly Pro Phe Cys Ala Met Val Leu Ala Asp Phe Gly Ala Arg Val Val Arg Val Asp Arg Pro Gly Ser Arg Tyr Asp Val Ser Arg Leu Gly Arg Gly hys Arg Ser Leu Val Leu Asp Leu Lys Gln Pro Arg Gly Ala Ala Val Leu Arg Arg Leu Cys Lys Arg Ser Asp Val Leu Leu Glu Pro Phe Arg Arg Gly Val Met Glu Lys Leu Gln Leu Gly Pro Glu Ile Leu Gln Arg Glu Asn Pro Arg Leu Ile Tyr Ala Arg Leu Ser Gly Phe Gly Gln Ser Gly Ser Phe Cys Arg Leu Ala Gly His Asp Ile Asn Tyr Leu Ala Leu Ser Gly Val Leu Ser Lys Ile Gly Arg Ser Gly Glu Asn Pro Tyr Ala Pro Leu Asn Leu Leu Ala Asp Phe Ala Gly Gly Gly Leu Met Cys Ala Leu Gly Ile Ile Met Ala Leu Phe Asp Arg Thr Arg Thr Asp Lys Gly Gln Val Ile Asp Ala Asn Met Val Glu Gly Thr Ala Tyr Leu Ser Ser Phe Leu Trp Lys Thr Gln Lys Ser Ser Leu Trp Glu Ala Pro Arg Gly Gln Asn Met Leu Asp Gly Gly Aha Pro Phe Tyr Thr Thr Tyr Arg Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Lys Phe Ala Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val His His Asp His Asn Lys Glu Arg Gly Ser Phe Ile Thr Ser Glu Glu Gln Asp Val Ser Pro Arg Pro Ala Pro Leu Leu Leu Asn Thr Pro Ala Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu <210> 109 <211> 1524 <212> DNA
<213> Homo sapien <400>

ggcacgaggctgcgccagggcctgagcggaggcgggggcagcctcgccagcgggggcccc60 gggcctggccatgcctcactgagccagcgcctgcgcctctacctcgccgacagctggaac120 cagtgcgacctagtggctctcacctgcttcctcctgggcgtgggctgccggctgaccccg180 ggtttgtaccacctgggccgcactgtcctctgcatcgacttcatggttttcacggtgcgg240 ctgcttcacatcttcacggtcaacaaacagctggggcccaagatcgtcatcgtgagcaag300 atgatgaaggacgtgttcttcttcctcttcttcctcggcgtgtggctggtagcctatggc360 gtggccacggaggggctcctgaggccacgggacagtgacttcccaagtatcctgcgccgc420 gtcttctacc.gtccctacctgcagatcttcgggcagattccccaggaggacatggacgtg480 gccctcatggagcacagcaactgctcgtcggagcccggcttctgggcacaccctcctggg540 gcccaggcgggcacctgcgtctcccagtatgccaactggctggtggtgctgctcctcgtc600 atcttcctgctcgtggccaacatcctgctggtcaacttgctcattgccatgttcagttac660 acattcggcaaagtacagggcaacagcgatctctactggaaggcgcagcgttaccgcctc720 atccgggaattccactctcggcccgcgctggccccgccctttatcgtcatctcccacttg780 cgcctcctgctcaggcaattgtgcaggcgaccccggagcccccagccgtcctccccggcc840 ctcgagcatttccgggtttacctttctaaggaagccgagcggaagctgctaacgtgggaa900 tcggtgcataaggagaactttctgctggcacgcgctagggacaagcgggagagcgactcc960 gagcgtctgaagcgcacgtcccagaaggtggacttggcactgaaacagctgggacacatc1020 cgcgagtacgaacagcgcctgaaagtgctggagcgggaggtccagcagtgtagccgcgtc1080 ctggggtgggtggccgaggccctgagccgctctgccttgctgcccccaggtgggccgcca1140 ccccctgacctgcctgggtccaaagactgagccctgctggcggacttcaaggagaagccc1200 ccacaggggattttgctcctagagtaaggctcatctgggcctcggcccccgcacctggtg1260 gccttgtccttgaggtgagccccatgtccatctgggccactgtcaggaccacctttggga1320 gtgtcatccttacaaaccacagcatgcccggctcctcccagaaccagtcccagcctggga1380 ggatcaaggcctggatcccgggccgttatccatctggaggctgcagggtccttggggtaa1440 cagggaccacagacccctcaccactcacagattcctcacactggggaaataaagccattt1500 cagaggaaaaaaaaaaaaaaaaaa 1524 <210> 110 <211> 3410 <212> DNA
<213> Homo sapien <400> 110 gggaaccagc ctgcacgcgc tggctccggg tgacagccgc gcgcctcggc caggatctga 60 gtgatgagac gtgtccccac tgaggtgccc cacagcagca ggtgttgagc atgggctgag 120 aagctggaccggcaccaaagggctggcagaaatgggcgcctggctgattcctaggcagtt180 ggcggcagcaaggaggagaggccgcagcttctggagcagagccgagacgaagcagttctg240 gagtgcctgaacggccccctgagccctacccgcctggcccactatggtccagaggctgtg300 ggtgagccgcctgctgcggcaccggaaagcccagctcttgctggtcaacctgctaacctt360 tggcctggaggtgtgtttggccgcaggcatcacctatgtgccgcctctgctgctggaagt420 gggggtagaggagaagttcatgaccatggtgctgggcattggtccagtgctgggcctggt480 ctgtgtcccgctcctaggctcagccagtgaccactggcgtggacgctatggccgccgccg540 gcccttcatctgggcactgtccttgggcatcctgctgagcctctttctcatcccaagggc600 cggctggctagcagggctgctgtgcccggatcccaggcccctggagctggcactgctcat660 cctgggcgtggggctgctggacttctgtggccaggtgtgcttcactccactggaggccct720 gctctctgacctcttccgggacccggaccactgtcgccaggcctactctgtctatgcctt780 catgatcagtcttgggggctgcctgggctacctcctgcctgccattgactgggacaccag840 tgccctggccccctacctgggcacccaggaggagtgcctctttggcctgctcaccctcat900 cttcctcacctgcgtagcagccacactgctggtggctgaggaggcagcgctgggccccac960 cgagccagcagaagggctgtcggccccctccttgtcgccccactgctgtccatgccgggc1020 ccgcttggctttccggaacctgggcgccctgcttccccggctgcaccagctgtgctgccg1080 catgccccgcaccctgcgccggctcttcgtggctgagctgtgcagctggatggcactcat1140 gaccttcacgctgttttacacggatttcgtgggcgaggggctgtaccagggcgtgcccag1200 agctgagccgggcaccgaggcccggagacactatgatgaaggcgttcggatgggcagcct1260 ggggctgttcctgcagtgcgccatctccctggtcttctctctggtcatggaccggctggt1320 gcagcgattcggcactcgagcagtctatttggccagtgtggcagctttccctgtggctgc1380 cggtgccacatgcctgtcccacagtgtggccgtggtgacagcttcagccgccctcaccgg1440 gttcaccttctcagccctgcagatcctgccctacacactggcctccctctaccaccggga1500 gaagcaggtgttcctgcccaaataccgaggggacactggaggtgctagcagtgaggacag1560 cctgatgaccagcttcctgccaggccctaagcctggagctcccttccctaatggacacgt1620 .

gggtgctggaggcagtggcctgctcccacctccacccgcgctctgcggggcctctgcctg1680 tgatgtctccgtacgtgtggtggtgggtgagcccaccgaggccagggtggttccgggccg1740 gggcatctgcctggacctcgccatcctggatagtgccttcctgctgtcccaggtggcccc1800 .

atccctgtttatgggctccattgtccagctcagccagtctgtcactgcctatatggtgtc1860:

tgccgcaggcctgggtctggtcgccatttactttgctacacaggtagtatttgacaagag1920 cgacttggccaaatactcagcgtagaaaacttccagcacattggggtggagggcctgcct1980.

cactgggtcccagctccccgctcctgttagccccatggggctgccgggctggccgccagt2040 ttctgttgctgccaaagtaatgtggctctctgctgccaccctgtgctgctgaggtgcgta2100_ gctgcacagctgggggctggggcgtccctctcctctctccccagtctctagggctgcctg2160 actggaggccttccaagggggtttcagtctggacttatacagggaggccagaagggctcc2220 atgcactggaatgcggggactctgcaggtggattacccaggctcagggttaacagctagc2280 ctcctagttgagacacacctagagaagggtttttgggagctgaataaactcagtcacctg2340 gtttcccatctctaagccccttaacctgcagcttcgtttaatgtagctcttgcatgggag2400 tttctaggatgaaacactcctccatgggatttgaacatatgacttatttgtaggggaaga2460 gtcctgaggggcaacacacaagaaccaggtcccctcagcccacagcactgtctttttgct2520 gatccacccccctcttaccttttatcaggatgtggcctgttggtccttctgttgccatca2580 cagagacacaggcatttaaatatttaacttatttatttaacaaagtagaagggaatccat2640 tgctagcttttctgtgttggtgtctaatatttgggtagggtgggggatccccaacaatca2700 ggtcccctgagatagctggtcattgggctgatcattgccagaatcttcttctcctggggt2760 ctggccccccaaaatgcctaacccaggaccttggaaattctactcatcccaaatgataat2820 tccaaatgctgttacccaaggttagggtgttgaaggaaggtagagggtggggcttcaggt2880 ctcaacggcttccctaaccacccctcttctcttggcccagcctggttccccccacttcca2940 ctcccctctactctctctaggactgggctgatgaaggcactgcccaaaatttcccctacc3000 cccaactttcccctacccccaactttccccaccagctccacaaccctgtttggagctact3060 gcaggaccagaagcacaaagtgcggtttcccaagcctttgtccatctcagcccccagagt3120 atatctgtgcttggggaatctcacacagaaactcaggagcaccccctgcctgagctaagg3180 gaggtcttatctctcagggggggtttaagtgccgtttgcaataatgtcgtcttatttatt3240 tagcggggtgaatattttatactgtaagtgagcaatcagagtataatgtttatggtgaca3300 aaattaaaggctttcttatatgtttaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa3360 aaaaaaaaraaaaaaaaaaaaaaaaaaaaaaaaaaaataaaaaaaaaaaa 3410 <210> 111 <211> 1289 <212> DNA
<213> Homo sapien <400>

agccaggcgtccctctgcctgcccactcagtggcaacacccgggagctgttttgtccttt60 gtggagcctcagcagttccctctttcagaactcactgccaagagccctgaacaggagcca120 ccatgcagtgcttcagcttcattaagaccatgatgatcctcttcaatttgctcatctttc180 tgtgtggtgcagccctgttggcagtgggcatctgggtgtcaatcgatggggcatcctttc240 tgaagatcttcgggccactgtcgtccagtgccatgcagtttgtcaacgtgggctacttcc300 tcatcgcagccggcgttgtggtctttgctcttggtttcctgggctgctatggtgctaaga360 ctgagagcaagtgtgccctcgtgacgttcttcttcatcctcctcctcatcttcattgctg420 aggttgcagctgctgtggtcgccttggtgtacaccacaatggctgagcacttcctgacgt480 tgctggtagtgcctgccatcaagaaagattatggttcccaggaagacttcactcaagtgt540 ggaacaccaccatgaaagggctcaagtgctgtggcttcaccaactatacggattttgagg600 actcaccctacttcaaagagaacagtgcctttcccccattctgttgcaatgacaacgtca660 ccaacacagccaatgaaacctgcaccaagcaaaaggctcacgaccaaaaagtagagggtt720 gcttcaatcagcttttgtatgacatccgaactaatgcagtcaccgtgggtggtgtggcag780 ctggaattgggggcctcgagctggctgccatgattgtgtccatgtatctgtactgcaatc840 tacaataagtccacttctgcctctgccactactgctgccacatgggaactgtgaagaggc900 accctggcaagcagcagtgattgggggaggggacaggatctaacaatgtcacttgggcca960 gaatggacctgccctttctgctccagacttggggctagatagggaccactccttttagcg1020 atgcctgactttccttccattggtgggtggatgggtggggggcattccagagcctctaag1080 gtagccagttctgttgcccattcccccagtctattaaacccttgatatgccccctaggcc1140 tagtggtgatcccagtgctctactgggggatgagagaaaggcattttatagcctgggcat1200 aagtgaaatcagcagagcctctgggtggatgtgtagaaggcacttcaaaatgcataaacc1260 tgttacaatgttaaaaaaaaaaaaaaaaa 1289 <210> 112 <211> 315 <212> PRT
<213> Homo sapien <400> 112 Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Leu Val Ile Phe Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp <210> 113 <211> 553 <212> PRT
<213> Homo sapien <400> 113 Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala Gln Leu Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val Ser Val Arg Val Val Val Gly Glu Pro Thr Glu Ala Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala <210> 114 <211> 241 <212> PRT
<213> Homo sapien <400> 114 Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu Gln <210> 115 <211> 366 <212> DNA
<213> Homo sapien <400>

gctctttctctcccctcctctgaatttaattctttcaacttgcaatttgcaaggattaca 60 catttcactgtgatgtatattgtgttgcaaaaaaaaaaaagtgtctttgtttaaaattac 120 ttggtttgtgaatccatcttgctttttccccattggaactagtcattaacccatctctga 180 ~

actggtagaaaaacatctgaagagctagtctatcagcatctgacaggtgaattggatggt 240 tctcagaaccatttcacccagacagcctgtttctatcctgtttaataaattagtttgggt 300 tctctacatgcataacaaaccctgctccaatctgtcacataaaagtctgtgacttgaagt 360 ttagtc 366 <210> 116 <211> 282 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (282) <223> n = A,T,C or G
<400> 116 acaaagatgaaccatttcctatattatagcaaaattaaaatctacccgtattctaatatt 60 gagaaatgagatnaaacacaatnttataaagtctacttagagaagatcaagtgacctcaa 120 agactttactattttcatattttaagacacatgatttatcctattttagtaacctggttc 180 atacgttaaacaaaggataatgtgaacagcagagaggatttgttggcagaaaatctatgt 240 tcaatctngaactatctanatcacagacatttctattccttt 282 <210> 117 <211> 305 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(305) <223> n = A,T,C or G
<400> 117 acacatgtcgcttcactgccttcttagatgcttctggtcaacatanaggaacagggacca 60 tatttatcctccctcctgaaacaattgcaaaataanacaaaatatatgaaacaattgcaa 120 aataaggcaaaatatatgaaacaacaggtctcgagatattggaaatcagtcaatgaagga 180 tactgatccctgatcactgtcctaatgcaggatgtgggaaacagatgaggtcacctctgt 240 gactgccccagcttactgcctgtagagagtttctangctgcagttcagacagggagaaat 300 tgggt 305 <210> 118 <211> 71 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(71) <223> n = A,T,C or G
<400> 118 accaaggtgt ntgaatctct gacgtgggga tctctgattc ccgcacaatc tgagtggaaa 60 aantcctggg t 71 <210> 119 <211> 212 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (212) <223> n = A,T,C or G
<400> 119 actccggttg gtgtcagcag cacgtggcat tgaacatngc aatgtggagc ccaaaccaca 60 gaaaatgggg tgaaattggc caactttcta tnaacttatg ttggcaantt tgccaccaac 120 agtaagctgg cccttctaat aaaagaaaat tgaaaggttt ctcactaanc ggaattaant 180 aatggantca aganactccc aggcctcagc gt 212 <210> 120 <211> 90 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(90) <223> n = A,T,C or G
<400> 120 actcgttgca natcaggggc cccccagagt caccgttgca ggagtccttc tggtcttgcc 60 ctccgccggc gcagaacatg ctggggtggt 90 <210> 121 <211> 218 <212> DNA
<213> Homo sapien <220>
<221> misc feature <222> (1)...(218) <223> n = A,T,C or G
<400> 121 tgtancgtga anacgacaga nagggttgtc aaaaatggag aanccttgaa gtcattttga 60 gaataagatt tgctaaaaga tttggggcta aaacatggtt attgggagac atttctgaag 120 atatncangt aaattangga atgaattcat ggttcttttg ggaattcctt tacgatngcc 180 agcatanact tcatgtgggg atancagcta cccttgta 218 <210> 122 <211> 171 <212> DNA
<213> Homo sapien <400> 122 taggggtgta tgcaactgta aggacaaaaa ttgagactca actggcttaa ccaataaagg 60 catttgttag ctcatggaac aggaagtcgg atggtggggc atcttcagtg ctgcatgagt 120 caccaccccg gcggggtcat ctgtgccaca ggtccctgtt gacagtgcgg t 171 <210> 123 <211> 76 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (76) <223> n = A,T,C or G
<400> 123 tgtagcgtga agacnacaga atggtgtgtg ctgtgctatc caggaacaca tttattatca 60 ttatcaanta ttgtgt 76 <210> 124 <211> 131 <212> DNA
<213> Homo sapien <400> 124 acctttcccc aaggccaatg tcctgtgtgc taactggccg gctgcaggac agctgcaatt 60 caatgtgctg ggtcatatgg aggggaggag actctaaaat agccaatttt attctcttgg 120 ttaagatttg t 131 <210> 125 <211> 432 <212> DNA
<213> Homo sapien <400> 125 actttatctactggctatgaaatagatggtggaaaattgcgttaccaactataccactgg 60 cttgaaaaagaggtgatagctcttcagaggacttgtgacttttgctcagatgctgaagaa 120 ctacagtctgcatttggcagaaatgaagatgaatttggattaaatgaggatgctgaagat 180 ttgcctcaccaaacaaaagtgaaacaactgagagaaaattttcaggaaaaaagacagtgg 240 ctcttgaagtatcagtcacttttgagaatgtttcttagttactgcatacttcatggatcc 300 catggtgggggtcttgcatctgtaagaatggaattgattttgcttttgcaagaatctcag 360 ~

caggaaacatcagaaccactattttctagccctctgtcagagcaaacctcagtgcctctc 420 ctctttgcttgt , 432 <210> 126 <211> 112 <212> DNA
<213> Homo sapien <400> 126 acacaacttg aatagtaaaa tagaaactga gctgaaattt ctaattcact ttctaaccat 60 agtaagaatg atatttcccc ccagggatca ccaaatattt ataaaaattt gt 112 <210> 127 <211> 54 <212> DNA
<213> Homo sapien <400> 127 accacgaaac cacaaacaag atggaagcat caatccactt gccaagcaca gcag 54 <210> 128 <2.11> 323 <212> DNA
<213> Homo sapien <400>

acctcattagtaattgttttgttgtttcatttttttctaatgtctcccctctaccagctc 60 acctgagataacagaatgaaaatggaaggacagccagatttctcctttgctctctgctca 120 ttctctctgaagtctaggttacccattttggggacccattataggcaataaacacagttc 180 ccaaagcatttggacagtttcttgttgtgttttagaatggttttcctttttcttagcctt 240 ttcctgcaaaaggctcactcagtcccttgcttgctcagtggactgggctccccagggcct 300 aggctgccttcttttccatgtcc . 323 <210> 129 <211> 192 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(192) <223> n = A,T,C or G
<400> 129 acatacatgt gtgtatattt ttaaatatca cttttgtatc actctgactt tttagcatac 60 tgaaaacaca ctaacataat ttntgtgaac catgatcaga tacaacccaa atcattcatc 120 tagcacattc atctgtgata naaagatagg tgagtttcat ttccttcacg ttggccaatg 180 gataaacaaa gt 192 <210> 130 <211> 362 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (362) <223> n = A,T,C or G
<400> 130 ccctttttta tggaatgagt agactgtatg tttgaanatt tanccacaac ctctttgaca 60 tataatgacgcaacaaaaaggtgctgtttagtcctatggttcagtttatgcccctgacaa 120 gtttccattgtgttttgccgatcttctggctaatcgtggtatcctccatgttattagtaa 180 ttctgtattccattttgttaacgcctggtagatgtaacctgctangaggctaactttata 240 cttatttaaaagctcttattttgtggtcattaaaatggcaatttatgtgcagcactttat 300 tgcagcaggaagcacgtgtgggttggttgtaaagctctttgctaatcttaaaaagtaatg 360 gg 362 <210> 131 <211> 332 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(332) <223> n = A,T,C or G
<400> 131 ctttttgaaagatcgtgtccactcctgtggacatcttgttttaatggagtttcccatgca 60 gtangactggtatggttgcagctgtccagataaaaacatttgaagagctccaaaatgaga 120 gttctcccaggttcgccctgctgctccaagtctcagcagcagcctcttttaggaggcatc 180 ttctgaactagattaaggcagcttgtaaatctgatgtgatttggtttattatccaactaa 240 cttccatctgttatcactggagaaagcccagactccccangacnggtacggattgtgggc 300 atanaaggattgggtgaagctggcgttgtggt 332 <210> 132 <211> 322 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (322) <223> n = A,T,C or G
<400> 132 acttttgccattttgtatatataaacaatcttgggacattctcctgaaaactaggtgtcc 60 agtggctaagagaactcgatttcaagcaattctgaaaggaaaaccagcatgacacagaat 120 ctcaaattcccaaacaggggctctgtgggaaaaatgagggaggacctttgtatctcgggt 180 tttagcaagttaaaatgaanatgacaggaaaggcttatttatcaacaaagagaagagttg 240 ggatgcttctaaaaaaaactttggtagagaaaataggaatgctnaatcctagggaagcct 300 gtaacaatctacaattggtcca 322 <210> 133 <211> 278 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(278) <223> n = A,T,C or G
<400> 133 acaagccttc acaagtttaa ctaaattggg attaatcttt ctgtanttat ctgcataatt 60 cttgtttttc tttccatctg gctcctgggt tgacaatttg tggaaacaac tctattgcta 120 ctatttaaaa aaaatcacaa atctttccct ttaagctatg ttnaattcaa actattcctg 180 ctattcctgt tttgtcaaag aaattatatt tttcaaaata tgtntatttg tttgatgggt 240 cccacgaaac actaataaaa accacagaga ccagcctg 278 <210> 134 <211> 121 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(121) <223> n = A,.T,C or G
<400> 134 gtttanaaaa cttgtttagc tccatagagg aaagaatgtt aaactttgta ttttaaaaca 60 tgattctctg aggttaaact tggttttcaa atgttatttt tacttgtatt ttgcttttgg 120 t 121 <210> 135 <211> 350 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(350) <223> n = A,T,C or G
<400> 135 acttanaaccatgcctagcacatcagaatccctcaaagaacatcagtataatcctatacc 60 atancaagtggtgactggttaagcgtgcgacaaaggtcagctggcacattacttgtgtgc 120 aaacttgatacttttgttctaagtaggaactagtatacagtncctaggantggtactcca 180 gggtgccccccaactcctgcagccgctcctctgtgccagnccctgnaaggaactttcgct 240 ccacctcaatcaagccctgggccatgctacctgcaattggctgaacaaacgtttgctgag 300 ttcccaaggatgcaaagcctggtgctcaactcctggggcgtcaactcagt 350 <210> 136 <211> 399 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(399) <223> n = A,T,C or G
<400>

tgtaccgtgaagacgacagaagttgcatggcagggacagggcagggccgaggccagggtt 60 gctgtgattgtatccgaatantcctcgtgagaaaagataatgagatgacgtgagcagcct 120 gcagacttgtgtctgccttcaanaagccagacaggaaggccctgcctgccttggctctga 180 cctggcggccagccagccagccacaggtgggcttcttccttttgtggtgacaacnccaag 240 aaaactgcagaggcccagggtcaggtgtnagtgggtangtgaccataaaacaccaggtgc 300 tcccaggaacccgggcaaaggccatccccacctacagccagcatgcccactggcgtgatg 360 ggtgcaganggatgaagcagccagntgttctgctgtggt 399 <210> 137 <211> 165 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(165) <223> n = A,T,C or G
<400> 137 actggtgtgg tngggggtga tgctggtggt anaagttgan gtgacttcan gatggtgtgt 60 ggaggaagtg tgtgaacgta gggatgtaga ngttttggcc gtgctaaatg agcttcggga 120 ttggctggtc ccactggtgg tcactgtcat tggtggggtt cctgt 165 <210> 138 <211> 338 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(338) <223> n = A,T,C or G
<400>

actcactggaatgccacattcacaacagaatcagaggtctgtgaaaacattaatggctcc 60 ttaacttctccagtaagaatcagggacttgaaatggaaacgttaacagccacatgcccaa 120 tgctgggcagtctcccatgccttccacagtgaaagggcttgagaaaaatcacatccaatg 180 tcatgtgtttccagccacaccaaaaggtgcttggggtggagggctgggggcatananggt 240 cangcctcaggaagcctcaagttccattcagctttgccactgtacattccccatntttaa 300 aaaaactgatgccttttttttttttttttgtaaaattc 338 <210> 139 <211> 382 <212> DNA
<213> Homo sapien <400> 139 gggaatcttggtttttggcatctggtttgcctatagccgaggccactttgacagaacaaa 60 gaaagggacttcgagtaagaaggtgatttacagccagcctagtgcccgaagtgaaggaga 120 attcaaacagacctcgtcattcctggtgtgagcctggtcggctcaccgcctatcatctgc 180 atttgccttactcaggtgctaccggactctggcccctgatgtctgtagtttcacaggatg 240 ccttatttgtcttctacaccccacagggccccctacttcttcggatgtgtttttaataat 300 gtcagctatgtgccccatcctccttcatgccctccctccctttcctaccactgctgagtg 360 gcctggaacttgtttaaagtgt 382 <210> 140 <211> 200 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (200) <223> n = A,T,C or G
<400> 140 accaaanctt ctttctgttg tgttngattt tactataggg gtttngcttn ttctaaanat 60 acttttcatt taacancttt tgttaagtgt caggctgcac tttgctccat anaattattg 120 ttttcacatt tcaacttgta tgtgtttgtc tcttanagca ttggtgaaat cacatatttt 180 atattcagca taaaggagaa 200 <210> 141 <211> 335 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(335) <223> n = A,T,C or G
<400>

actttattttcaaaacactcatatgttgcaaaaaacacatagaaaaataaagtttggtgg 60 gggtgctgactaaacttcaagtcacagacttttatgtgacagattggagcagggtttgtt 120 atgcatgtagagaacccaaactaatttattaaacaggatagaaacaggctgtctgggtga 180 aatggttctgagaaccatccaattcacctgtcagatgctgatanactagctcttcagatg 240 tttttctaccagttcagagatnggttaatgactanttccaatggggaaaaagcaagatgg 300 attcacaaaccaagtaattttaaacaaagacactt 335 <210> 142 <211> 459 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(459) <223> n = A,T,C or G
<400> 142 accaggttaatattgccacatatatcctttccaattgcgggctaaacagacgtgtattta 60 gggttgtttaaagacaacccagcttaatatcaagagaaattgtgacctttcatggagtat 120 ctgatggagaaaacactgagttttgacaaatcttattttattcagatagcagtctgatca 180 ' cacatggtccaacaacactcaaataataaatcaaatatnatcagatgttaaagattggtc.240 ttcaaacatcatagccaatgatgccccgcttgcctataatctctccgacataaaaccaca 300 tcaacacctcagtggccaccaaaccattcagcacagcttccttaactgtgagctgtttga 360 agctaccagtctgagcactattgactatntttttcangctctgaatagctctagggatct 420 cagcangggtgggaggaaccagctcaaccttggcgtant 459 <210> 143 <211> 140 <212> DNA
<213> Homo sapien <400> 143 acatttcctt ccaccaagtc aggactcctg gcttctgtgg gagttcttat cacctgaggg 60 aaatccaaac agtctctcct agaaaggaat agtgtcacca accccaccca tctccctgag 120 accatccgac ttccctgtgt 140 <210> 144 <211> 164 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(164) <223> n = A,T,C or G

<400> 144 acttcagtaa caacatacaa taacaacatt aagtgtatat tgccatcttt gtcattttct 60 atctatacca ctctcccttc tgaaaacaan aatcactanc caatcactta tacaaatttg 120 aggcaattaa tccatatttg ttttcaataa ggaaaaaaag atgt 164 <210> 145 <211> 303 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(303) <223> n = A,T,C or G
<400>

acgtagaccatccaactttgtatttgtaatggcaaacatccagnagcaattcctaaacaa 60 actggagggtatttatacccaattatcccattcattaacatgccctcctcctcaggctat 120 gcaggacagctatcataagtcggcccaggcatccagatactaccatttgtataaacttca 180 gtaggggagtccatccaagtgacaggtctaatcaaaggaggaaatggaacataagcccag 240 tagtaaaatnttgcttagctgaaacagccacaaaagacttaccgccgtggtgattaccat 300 caa 303 <210> 146 <211> 327 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(327) <223> n = A,T,C or G
<400> 146 actgcagctcaattagaagtggtctctgactttcatcancttctccctgggctccatgac 60 actggcctggagtgactcattgctctggttggttgagagagctcctttgccaacaggcct 120 ccaagtcagggctgggatttgtttcctttccacattctagcaacaatatgctggccactt 180 cctgaacagggagggtgggaggagccagcatggaacaagctgccactttctaaagtagcc 240 agacttgcccctgggcctgtcacacctactgatgaccttctgtgcctgcaggatggaatg 300 taggggtgagctgtgtgactctatggt 327 <210> 147 <211> 173 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(173) <223> n = A,T,C or G
<400> 147 acattgtttt tttgagataa agcattgana gagctctcct taacgtgaca caatggaagg 60 actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt 120 atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gtt 173 <210> 148 <211> 477 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (477) <223> n = A,T,C or G
<400>

acaaccactttatctcatcgaatttttaacccaaactcactcactgtgcctttctatcct 60 atgggatatattatttgatgctccatttcatcacacatatatgaataatacactcatact 120 gccctactacctgctgcaataatcacattcccttcctgtcctgaccctgaagccattggg 180 gtggtcctagtggccatcagtccangcctgcaccttgagcccttgagctccattgctcac 240 nccancccacctcaccgaccccatcctcttacacagctacctccttgctctctaacccca 300 tagattatntccaaattcagtcaattaagttactattaacactctacccgacatgtccag 360 caccactggtaagccttctccagccaacacacacacacacacacncacacacacacatat 420 ccaggcacaggctacctcatcttcacaatcacccctttaattaccatgctatggtgg 477 <210> 149 <211> 207 <212> DNA
<213> Homo sapien <400> 149 acagttgtat tataatatca agaaataaac ttgcaatgag agcatttaag agggaagaac 60 taacgtattt tagagagcca aggaaggttt ctgtggggag tgggatgtaa ggtggggcct 120 gatgataaat aagagtcagc caggtaagtg ggtggtgtgg tatgggcaca gtgaagaaca 180 tttcaggcag agggaacagc agtgaaa 207 <210> 150 <211> 111 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(111) <223> n = A,T,C or G
<400> 150 accttgattt cattgctgct ctgatggaaa cccaactatc taatttagct aaaacatggg 60 cacttaaatg tggtcagtgt ttggacttgt taactantgg catctttggg t 111 <210> 151 <211> 196 <212> DNA
<213> Homo sapien <400> 151 agcgcggcag gtcatattga acattccaga tacctatcat tactcgatgc tgttgataac 60 agcaagatgg ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat 120 ggataccaac cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag 180 gtgcatccgg ctcagt 196 <210> 152 <211> 132 <212> DNA

taggggtgagctgtgtgactctatggt 327 <213> Homo sapien <400> 152 acagcacttt cacatgtaag aagggagaaa ttcctaaatg taggagaaag ataacagaac 60 cttccccttt tcatctagtg gtggaaacct gatgctttat gttgacagga atagaaccag 120 gagggagttt gt 132 <210> 153 <211> 285 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (285) <223> n = A,T,C or G
<400> 153 acaanacccanganaggccactggccgtggtgtcatggcctccaaacatgaaagtgtcag 60 cttctgctcttatgtcctcatctgacaactctttaccatttttatcctcgctcagcagga 120 gcacatcaataaagtccaaagtcttggacttggccttggcttggaggaagtcatcaacac 180 cctggctagtgagggtgcggcgccgctcctggatgacggcatctgtgaagtcgtgcacca 240 gtctgcaggccctgtggaagcgccgtccacacggagtnaggaatt 285 <210> 154 <211> 333 <212> DNA
<213> Homo sapien <400> 154 accacagtcctgttgggccagggcttcatgaccctttctgtgaaaagccatattatcacc 60 accccaaatttttccttaaatatctttaactgaaggggtcagcctcttgactgcaaagac 120 cctaagccggttacacagctaactcccactggccctgatttgtgaaattgctgctgcctg 180 attggcacaggagtcgaaggtgttcagctcccctcctccgtggaacgagactctgatttg 240 agtttcacaaattctcgggccacctcgtcattgctcctctgaaataaaatccggagaatg 300 gtcaggcctgtctcatccatatggatcttccgg 333 <210> 155 <211> 308 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(308) <223> n = A,T,C or G
<400>

actggaaataataaaacccacatcacagtgttgtgtcaaagatcatcagggcatggatgg 60 gaaagtgctttgggaactgtaaagtgcctaacacatgatcgatgatttttgttataatat 120 ttgaatcacggtgcatacaaactctcctgcctgctcctcctgggccccagccccagcccc 180 atcacagctcactgctctgttcatccaggcccagcatgtagtggctgattcttcttggct 240 gcttttagcctccanaagtttctctgaagccaaccaaacctctangtgtaaggcatgctg 300 gccctggt 308 <210> 156 <211> 295 <212> DNA

<213> Homo sapien <400> 156 accttgctcggtgcttggaacatattaggaactcaaaatatgagatgataacagtgccta 60 ttattgattactgagagaactgttagacatttagttgaagattttctacacaggaactga 120 gaataggagattatgtttggccctcatattctctcctatcctccttgcctcattctatgt 180 ctaatatattctcaatcaaataaggttagcataatcaggaaatcgaccaaataccaatat 240 aaaaccagatgtctatccttaagattttcaaatagaaaacaaattaacagactat 295 <210> 157 <211> 126 <212> DNA
<213> Homo sapien <400> 157 acaagtttaa atagtgctgt cactgtgcat gtgctgaaat gtgaaatcca ccacatttct 60 gaagagcaaa acaaattctg tcatgtaatc tctatcttgg gtcgtgggta tatctgtccc 120 cttagt 126 <210> 158 <211> 442 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(442) <223> n = A,T,C or G
<400>

acccactggtcttggaaacacccatccttaatacgatgatttttctgtcgtgtgaaaatg 60 aanccagcaggctgcccctagtcagtccttccttccagagaaaaagagatttgagaaagt 120 gcctgggtaattcaccattaatttcctcccccaaactctctgagtcttcccttaatattt 180 ctggtggttctgaccaaagcaggtcatggtttgttgagcatttgggatcccagtgaagta 240 natgtttgtagccttgcatacttagcccttcccacgcacaaacggagtggcagagtggtg 300 ccaaccctgttttcccagtccacgtagacagattcacagtgcggaattctggaagctgga 360 nacagacgggctctttgcagagccgggactctgaganggacatgagggcctctgcctctg 420 tgttcattctctgatgtcctgt 442 <210> 159 <211> 498 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(498) <223> n = A,T,C or~G
<400> 159 acttccaggtaacgttgttgtttccgttgagcctgaactgatgggtgacgttgtaggttc 60 tccaacaagaactgaggttgcagagcgggtagggaagagtgctgttccagttgcacctgg 120 gctgctgtggactgttgttgattcctcactacggcccaaggttgtggaactggcanaaag 180 gtgtgttgttgganttgagctcgggcggctgtggtaggttgtgggctcttcaacaggggc 240 tgctgtggtgccgggangtgaangtgttgtgtcacttgagcttggccagctctggaaagt 300 antanattcttcctgaaggccagcgcttgtggagctggcangggtcantgttgtgtgtaa 360 cgaaccagtgctgctgtgggtgggtgtanatcctccacaaagcctgaagttatggtgtcn 420 tcaggtaanaatgtggtttcagtgtccctgggcngctgtggaaggttgtanattgtcacc 480 aagggaataa gctgtggt 498 <210> 160 <211> 380 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(380) <223> n = A,T,C or G
<400>

acctgcatccagcttccctgccaaactcacaaggagacatcaacctctagacagggaaac 60 agcttcaggatacttccaggagacagagccaccagcagcaaaacaaatattcccatgcct 120 ggagcatggcatagaggaagctganaaatgtggggtctgaggaagccatttgagtctggc 180 cactagacatctcatcagccacttgtgtgaagagatgccccatgaccccagatgcctctc 240 ccacccttacctccatctcacacacttgagctttccactctgtataattctaacatcctg 300 gagaaaaatggcagtttgaccgaacctgttcacaacggtagaggctgatttctaacgaaa 360 cttgtagaatgaagcctgga 380 <210> 161 <211>-114 <212> DNA
<213> Homo sapien <400> 161 actccacatc ccctctgagc aggcggttgt cgttcaaggt gtatttggcc ttgcctgtca 60 cactgtccac tggcccctta tccacttggt gcttaatccc tcgaaagagc atgt 114 <210> 162 <211> 177 <212> DNA
<213> Homo sapien <400> 162 actttctgaa tcgaatcaaa tgatacttag tgtagtttta atatcctcat atatatcaaa 60 gttttactac tctgataatt ttgtaaacca ggtaaccaga acatccagtc atacagcttt 120 tggtgatata taacttggca ataacccagt ctggtgatac ataaaactac tcactgt 177 <210> 163 <211> 137 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(137) <223> n = A,T,C or G
<400> 163 catttataca gacaggcgtg aagacattca cgacaaaaac gcgaaattct atcccgtgac 60 canagaaggc agctacggct actcctacat cctggcgtgg gtggccttcg cctgcacctt 120 catcagcggc atgatgt 137 <210> 164 <211> 469 <212> DNA

<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (469) <223> n = A,T,C or G
<400> 164 cttatcacaatgaatgttctcctgggcagcgttgtgatctttgccaccttcgtgacttta 60 tgcaatgcatcatgctatttcatacctaatgagggagttccaggagattcaaccaggaaa 120 tgcatggatctcaaaggaaacaaacacccaataaactcggagtggcagactgacaactgt 180 gagacatgcacttgctacgaaacagaaatttcatgttgcacccttgtttctacacctgtg 240 ggttatgacaaagacaactgccaaagaatcttcaagaaggaggactgcaagtatatcgtg 300 gtggagaagaaggacccaaaaaagacctgttctgtcagtgaatggataatctaatgtgct 360 tctagtaggcacagggctcccaggccaggcctcattctcctctggcctctaatagtcaat 420 gattgtgtagccatgcctatcagtaaaaagatntttgagcaaacacttt 469 <210> 165 <211> 195 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(195) <223> n = A,T,C or G
<400> 165 acagtttttt atanatatcg acattgccgg cacttgtgtt cagtttcata aagctggtgg 60 atccgctgtc atccactatt ccttggctag agtaaaaatt attcttatag cccatgtccc 120 tgcaggccgc ccgcccgtag ttctcgttcc agtegtcttg gcacacaggg tgccaggact 180 tcctctgaga tgagt 195 <210> 166 <211> 383 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (383) <223> n = A,T,C or G
<400> 166 acatcttagtagtgtggcacatcagggggccatcagggtcacagtcactcatagcctcgc 60 cgaggtcggagtccacaccaccggtgtaggtgtgctcaatcttgggcttggcgcccacct 120 ttggagaagggatatgctgcacacacatgtccacaaagcctgtgaactcgccaaagaatt 180 tttgcagaccagcctgagcaaggggcggatgttcagcttcagctcctccttcgtcaggtg 240 gatgccaacctcgtctanggtccgtgggaagctggtgtccacntcacctacaacctgggc 300 gangatcttataaagaggctccnagataaactccacgaaacttctctgggagctgctagt 360 nggggcctttttggtgaactttc 383 <210> 167 <211> 247 <212> DNA
<213> Homo sapien <220>

<221> misc_feature <222> (1) . . (247) <223> n = A,T,C or G
<400> 167 acagagccagaccttggccataaatgaancagagattaagactaaaccccaagtcganat 60 tggagcagaaactggagcaagaagtgggcctggggctgaagtagagaccaaggccactgc 120 tatanccatacacagagccaactctcaggccaaggcnatggttggggcaganccagagac 180 tcaatctgantccaaagtggtggctggaacactggtcatgacanaggcagtgactctgac 240 tgangtc 247 <210> 168 <211> 273 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(273) <223> n = A,T,C or G
<400> 168 acttctaagttttctagaagtggaaggattgtantcatcctgaaaatgggtttacttcaa 60 aatccctcanccttgttcttcacnactgtctatactganagtgtcatgtttccacaaagg 120 gctgacacctgagcctgnattttcactcatccctgagaagccctttccagtagggtgggc 180 aattcccaacttccttgccacaagcttcccaggctttctcccctggaaaactccagcttg 240 agtcccagatacactcatgggctgccctgggca 273 <210> 169 <211> 431 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(431) <223> n = A,T,C or G
<400>

acagccttggcttccccaaactccacagtctcagtgcagaaagatcatcttccagcagtc 60 agctcagaccagggtcaaaggatgtgacatcaacagtttctggtttcagaacaggttcta 120 ctactgtcaaatgaccccccatacttcctcaaaggctgtggtaagttttgcacaggtgag 180 ggcagcagaaagggggtanttactgatggacaccatcttctctgtatactccacactgac 240 cttgccatgggcaaaggcccctaccacaaaaacaataggatcactgctgggcaccagctc 300 acgcacatcactgacaaccgggatggaaaaagaantgccaactttcatacatccaactgg 360 aaagtgatctgatactggattcttaattaccttcaaaagcttctgggggccatcagctgc 420 tcgaacactga 431 <210> 170 <211> 266 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(266) <223> n = A,T,C or G

<400> 170 acctgtgggctgggctgttatgcctgtgccggctgctgaaagggagttcagaggtggagc 60 tcaaggagctctgcaggcattttgccaancctctccanagcanagggagcaacctacact 120 ccccgctagaaagacaccagattggagtcctgggagggggagttggggtgggcatttgat 180 gtatacttg-tcacctgaatgaangagccagagaggaangagacgaanatganattggcct 240 tcaaagctaggggtctggcaggtgga 266 <210> 171 <211> 1248 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(1248) <223> n = A, T, C or G
<400> 171 ggcagccaaatcataaacggcgaggactgcagcccgcactcgcagccctggcaggcggca60 ctggtcatggaaaacgaattgttctgctcgggcgtcctggtgcatccgcagtgggtgctg120 tcagccgcacactgtttccagaagtgagtgcagagctcctacaccatcgggctgggcctg180 cacagtcttgaggccgaccaagagccagggagccagatggtggaggccagcctctccgta240 cggcacccagagtacaacagacccttgctcgctaacgacctcatgctcatcaagttggac300 gaatccgtgtccgagtctgacaccatccggagcatcagcattgcttcgcagtgccctacc360 gcggggaactcttgcctcgtttctggctggggtctgctggcgaacggcagaatgcctacc420 gtgctgcagtgcgtgaacgtgtcggtggtgtctgaggaggtctgcagtaagctctatgac480 ccgctgtaccaccccagcatgttctgcgccggcggagggcaagaccagaaggactcctgc540 aacggtgactctggggggcccctgatctgcaacgggtacttgcagggccttgtgtctttc600 ggaaaagccccgtgtggccaagttggcgtgccaggtgtctacaccaacctctgcaaattc660 actgagtggatagagaaaaccgtccaggccagttaactctggggactgggaacccatgaa720 attgacccccaaatacatcctgcggaaggaattcaggaatatctgttcccagcccctcct780 ccctcaggcccaggagtccaggcccccagcccctcctccctcaaaccaagggtacagatc840 cccagcccctcctccctcagacccaggagtccagaccccccagcccctcctccctcagac900 ccaggagtccagcccctcctccctcagacccaggagtccagaccccccagcccctcctcc960 ctcagacccaggggtccaggcccccaacccctcctccctcagactcagaggtccaagccc1020 ccaacccntcattccccagacccagaggtccaggtcccagcccctcntccctcagaccca1080 gcggtccaatgccacctagactntccctgtacacagtgcccccttgtggcacgttgaccc1140 aaccttaccagttggtttttcatttttngtccctttcccctagatccagaaataaagttt1200 aagagaagngcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1248 <210> 172 <211> 159 <212> PRT
<213> Homo sapien <220>
<221> VARIANT
<222> (1)...(159) <223> Xaa = Any Amino Acid <400> 172 Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210> 173 <211> 1265 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(1265) <223> n = A,T,C or G
<400>

ggcagcccgcactcgcagccctggcaggcggcactggtcatggaaaacgaattgttctgc60 tcgggcgtcctggtgcatccgcagtgggtgctgtcagccgcacactgtttccagaactcc120 tacaccatcgggctgggcctgcacagtcttgaggccgaccaagagccagggagccagatg180 gtggaggccagcctctccgtacggcacccagagtacaacagacccttgctcgctaacgac240 ctcatgctcatcaagttggacgaatccgtgtccgagtctgacaccatccggagcatcagc300 attgcttcgcagtgccctaccgcggggaactcttgcctcgtttctggctggggtctgctg360 gcgaacggtgagctcacgggtgtgtgtctgccctcttcaaggaggtcctctgcccagtcg420 cgggggctgacccagagctctgcgtcccaggcagaatgcctaccgtgctgcagtgcgtga480 acgtgtcggtggtgtctgaggaggtctgcagtaagctctatgacccgctgtaccacccca540 gcatgttctgcgccggcggagggcaagaccagaaggactcctgcaacggtgactctgggg600 ggcccctgatctgcaacgggtacttgcagggccttgtgtctttcggaaaagccccgtgtg660 gccaagttggcgtgccaggtgtctacaccaacctctgcaaattcactgagtggatagaga720 aaaccgtccaggccagttaactctggggactgggaacccatgaaattgacccccaaatac780 atcctgcggaaggaattcaggaatatctgttcccagcccctcctccctcaggcccaggag840 tccaggcccccagcccctcctccctcaaaccaagggtacagatccccagcccctcctccc900 tcagacccaggagtccagaccccccagcccctcctccctcagacccaggagtccagcccc960 tcctccntcagacccaggagtccagaccccccagcccctcctccctcagacccaggggtt1020 gaggcccccaacccctcctccttcagagtcagaggtccaagcccccaacccctcgttccc1080 cagacccagaggtnnaggtcccagcccctcttccntcagacccagnggtccaatgccacc1140 tagattttccctgnacacagtgcccccttgtggnangttgacccaaccttaccagttggt1200 ttttcatttttngtccctttcccctagatccagaaataaagtttaagagangngcaaaaa1260 aaaaa 1265 <210> 174 <211> 1459 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(1459) <223> n = A,T,C or G

<400>

ggtcagccgcacactgtttccagaagtgagtgcagagctcctacaccatcgggctgggcc 60 tgcacagtcttgaggccgaccaagagccagggagccagatggtggaggccagcctctccg 120 tacggcacccagagtacaacagacccttgctcgctaacgacctcatgctcatcaagttgg 180 acgaatccgtgtccgagtctgacaccatccggagcatcagcattgcttcgcagtgcccta 240 ccgcggggaactcttgcctcgtttctggctggggtctgctggcgaacggtgagctcacgg 300 gtgtgtgtctgccctcttcaaggaggtcctctgcccagtcgcgggggctgacccagagct 360 ctgcgtcccaggcagaatgcctaccgtgctgcagtgcgtgaacgtgtcggtggtgtctga 420 ngaggtctgcantaagctctatgacccgctgtaccaccccancatgttctgcgccggcgg 480 agggcaagaccagaaggactcctgcaacgtgagagaggggaaaggggagggcaggcgact 540 cagggaagggtggagaagggggagacagagacacacagggccgcatggcgagatgcagag 600 atggagagacacacagggagacagtgacaactagagagagaaactgagagaaacagagaa 660 ataaacacaggaataaagagaagcaaaggaagagagaaacagaaacagacatggggaggc 720 agaaacacacacacatagaaatgcagttgaccttccaacagcatggggcctgagggcggt 780 gacctccacccaatagaaaatcctcttataacttttgactccccaaaaacctgactagaa 840 atagcctactgttgacggggagccttaccaataacataaatagtcgatttatgcatacgt 900 tttatgcattcatgatatacctttgttggaattttttgatatttctaagctacacagttc 960 gtctgtgaatttttttaaattgttgcaactctcctaaaatttttctgatgtgtttattga 1020 aaaaatccaagtataagtggacttgtgcattcaaaccagggttgttcaagggtcaactgt 1080 gtacccagagggaaacagtgacacagattcatagaggtgaaacacgaagagaaacaggaa 1140 aaatcaagactctacaaagaggctgggcagggtggctcatgcctgtaatcccagcacttt 1200 gggaggcgaggcaggcagatcacttgaggtaaggagttcaagaccagcctggccaaaatg 1260 gtgaaatcctgtctgtactaaaaatacaaaagttagctggatatggtggcaggcgcctgt 1320 aatcccagctacttgggaggctgaggcaggagaattgcttgaatatgggaggcagaggtt 1380 gaagtgagttgagatcacaccactatactccagctggggcaacagagtaagactctgtct 1440 caaaaaaaaaaaaaaaaaa 1459 <210> 175 <21l> 1167 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(1167) <223> n = A,T,C or G
<400> 175 gcgcagccctggcaggcggcactggtcatggaaaacgaattgttctgctcgggcgtcctg60 gtgcatccgcagtgggtgctgtcagccgcacactgtttccagaactcctacaccatcggg120 ctgggcctgcacagtcttgaggccgaccaagagccagggagccagatggtggaggccagc180 ctctccgtacggcacccagagtacaacagactcttgctcgctaacgacctcatgctcatc240 aagttggacgaatccgtgtccgagtctgacaccatccggagcatcagcattgcttcgcag300 tgccctaccgcggggaactcttgcctcgtntctggctggggtctgctggcgaacggcaga360 atgcctaccgtgctgcactgcgtgaacgtgtcggtggtgtctgaggangtctgcagtaag420 ctctatgacccgctgtaccaccccagcatgttctgcgccggcggagggcaagaccagaag480 gactcctgcaacggtgactctggggggcccctgatctgcaacgggtacttgcagggcctt540 gtgtctttcggaaaagccccgtgtggccaacttggcgtgccaggtgtctacaccaacctc600 tgcaaattcactgagtggatagagaaaaccgtccagnccagttaactctggggactggga660 acccatgaaattgacccccaaatacatcctgcggaangaattcaggaatatctgttccca720 gcccctcctccctcaggcccaggagtccaggcccccagcccctcctccctcaaaccaagg780 gtacagatccccagcccctcctccctcagacccaggagtccagaccccccagcccctcnt840 ccntcagacccaggagtccagcccctcctccntcagacgcaggagtccagaccccccagc900 ccntcntccgtcagacccaggggtgcaggcccccaacccctcntccntcagagtcagagg960 tccaagcccccaacccctcgttccccagacccagaggtncaggtcccagcccctcctccc1020 tcagacccagcggtccaatgccacctagantntccctgtacacagtgcccccttgtggca1080 ngttgacccaaccttaccagttggtttttcattttttgtccctttcccctagatccagaa1140 ataaagtntaagagaagcgcaaaaaaa 1167 <210> 176 <211> 205 <212> PRT
<213> Homo sapien <220>
<221> VARIANT
<222> (1)...(205) <223> Xaa = Any Amino Acid <400> 176 Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Leu Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu His Cys Val Asn Val Ser Val Val Ser Glu Xaa Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gl.y Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Leu Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Xaa Ser <210> 177 <211> 1119 <212> DNA
<213> Homo sapien <400>

gcgcactcgcagccctggcaggcggcactggtcatggaaaacgaattgttctgctcgggc 60 gtcctggtgcatccgcagtgggtgctgtcagccgcacactgtttccagaactcctacacc 120 atcgggctgggcctgcacagtcttgaggccgaccaagagccagggagccagatggtggag 180 gccagcctctccgtacggcacccagagtacaacagacccttgctcgctaacgacctcatg 240 ctcatcaagttggacgaatccgtgtccgagtctgacaccatccggagcatcagcattgct 300 tcgcagtgccctaccgcggggaactcttgcctcgtttctggctggggtctgctggcgaac 360 gatgctgtgattgccatccagtcccagactgtgggaggctgggagtgtgagaagctttcc 420 caaccctggcagggttgtaccatttcggcaacttccagtgcaaggacgtcctgctgcatc 480 ctcactgggtgctcactactgctcactgcatcacccggaacactgtgatcaactagccag 540 caccatagttctccgaagtcagactatcatgattactgtgttgactgtgctgtctattgt 600 actaaccatgccgatgtttaggtgaaattagcgtcacttggcctcaaccatcttggtatc 660 cagttatcctcactgaattgagatttcctgcttcagtgtcagccattcccacataatttc 720 tgacctacagaggtgagggatcatatagctcttcaaggatgctggtactcccctcacaaa 780 ttcatttctcctgttgtagtgaaaggtgcgccctctggagcctcccagggtgggtgtgca 840 ggtcacaatgatgaatgtatgatcgtgttcccattacccaaagcctttaaatccctcatg 900 ctcagtacaccagggcaggtctagcatttcttcatttagtgtatgctgtccattcatgca 960 accacctcaggactcctggattctctgcctagttgagctcctgcatgctgcctccttggg 1020 gaggtgagggagagggcccatggttcaatgggatctgtgc.agttgtaacacattaggtgc 1080 ttaataaacagaagctgtgatgttaaaaaaaaaaaaaaa 1119 <210> 178 <211> 164 <212> PRT
<213> Homo sapien <220>
<221> VARIANT
<222> (1)...(164) <223> Xaa = Any Amino Acid <400> 178 Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val .

Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser Pro Gly Thr Leu <210> 179 <211> 250 <212> DNA
<213> Homo sapien <400> 179 ctggagtgccttggtgtttcaagcccctgcaggaagcagaatgcaccttctgaggcacct 60 ccagctgcccccggccgggggatgcgaggctcggagcacccttgcccggctgtgattgct 120 gccaggcactgttcatctcagcttttctgtccctttgctcccggcaagcgcttctgctga 180 aagttcatatctggagcctgatgtcttaacgaataaaggtcccatgctccacccgaaaaa 240 aaaaaaaaaa 250 <210> 180 <211> 202 <212> DNA
<213> Homo sapien <400> lso actagtccag tgtggtggaa ttccattgtg ttgggcccaa cacaatggct acctttaaca 60 tcacccagac cccgcccctg cccgtgcccc acgctgctgc taacgacagt atgatgctta 120 ctctgctact cggaaactat ttttatgtaa ttaatgtatg ctttcttgtt tataaatgcc 180 tgatttaaaa aaaaaaaaaa as 202 <210> 181 <211> 558 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(558) <223> n = A,T,C or G
<400>

tccytttgktnaggtttkkgagacamccckagacctwaanctgtgtcacagacttcyngg 60 aatgtttaggcagtgctagtaatttcytcgtaatgattctgttattactttcctnattct 120 ttattcctctttcttctgaagattaatgaagttgaaaattgaggtggataaatacaaaaa 180 ggtagtgtgatagtataagtatctaagtgcagatgaaagtgtgttatatatatccattca 240 aaattatgcaagttagtaattactcagggttaactaaattactttaatatgctgttgaac 300 ctactctgttccttggctagaaaaaattataaacaggactttgttagtttgggaagccaa 360 attgataatattctatgttctaaaagttgggctatacataaattattaagaaatatggaw 420 ttttattcccaggaatatggkgttcattttatgaatattacscrggatagawgtwtgagt 480 aaaaycagttttggtwaataygtwaatatgtcmtaaataaacaakgctttgacttatttc.540 caaaaaaaaaaaaaaaaa 558 <210> 182 <211> 479 <212> DNA
<213> Homo sapien.
<220>
<221> misc_feature <222> (1) . . (479) <223> n = A,T,C or G
<400> 182 acagggwttkgrggatgctaagsccccrgarwtygtttgatccaaccctggcttwttttc 60 agaggggaaaatggggcctagaagttacagmscatytagytggtgcgmtggcacccctgg 120 cstcacacagastcccgagtagctgggactacaggcacacagtcactgaagcaggccctg 180 ttwgcaattcacgttgccacctccaacttaaacattcttcatatgtgatgtccttagtca 240 ctaaggttaaactttcccacccagaaaaggcaacttagataaaatcttagagtactttca 300 tactmttctaagtcctcttccagcctcactkkgagtcctmcytgggggttgataggaant 360 ntctcttggctttctcaataaartctctatycatctcatgtttaatttggtacgcatara 420 awtgstgaraaaattaaaatgttctggttymactttaaaaaraaaaaaaaaaaaaaaaa 479 <210> 183 <211> 384 <212> DNA
<213> Homo sapien <400> 183 aggcgggagc agaagctaaa gccaaagccc aagaagagtg gcagtgccag cactggtgcc 60 agtaccagta ccaataacag tgccagtgcc agtgccagca ccagtggtgg cttcagtgct 120 ggtgccagcc tgaccgccac tctcacattt gggctcttcg ctggccttgg tggagctggt 180 gccagcacca gtggcagctc tggtgcctgt ggtttctcct acaagtgaga ttttagatat 240 tgttaatcct gccagtcttt ctcttcaagc cagggtgcat cctcagaaac ctactcaaca 300 cagcactcta ggcagccact atcaatcaat tgaagttgac actctgcatt aratctattt 360 gccatttcaa aaaaaaaaaa aaaa 384 <210> 184 <211> 496 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(496) <223> n = A,T,C or G
<400> 184 accgaattgggaccgctggcttataagcgatcatgtyyntccrgtatkacctcaacgagc 60 agggagatcgagtctatacgctgaagaaatttgacccgatgggacaacagacctgctcag 120 cccatcctgctcggttctccccagatgacaaatactctsgacaccgaatcaccatcaaga 180 aacgcttcaaggtgctcatgacccagcaaccgcgccctgtcctctgagggtcccttaaac 240 tgatgtcttttctgccacctgttacccctcggagactccgtaaccaaactcttcggactg 300 tgagccctgatgcctttttgccagccatactctttggcatccagtctctcgtggcgattg 360 attatgcttgtgtgaggcaatcatggtggcatcacccataaagggaacacatttgacttt 420 tttttctcatattttaaattactacmagawtattwmagawwaaatgawttgaaaaactst 480 taaaaaaaaaaaaaaa 496 <210> 185 <211> 384 <212> DNA
<213> Homo sapien <400> 185 gctggtagcctatggcgkggcccacggaggggctcctgaggccacggracagtgacttcc 60 caagtatcytgcgcsgcgtcttctaccgtccctacctgcagatcttcgggcagattcccc 120 aggaggacatggacgtggccctcatggagcacagcaactgytcgtcggagcccggcttct 180 gggcacaccctcctggggcccaggcgggcacctgcgtctcccagtatgccaactggctgg 240 tggtgctgctcctcgtcatcttcctgctcgtggccaacatcctgctggtcaacttgctca 300 ttgccatgttcagttacacattcggcaaagtacagggcaacagcgatctctactgggaag 360 gcgcagcgttaccgcctcatccgg 384 <210> 186 <211> 577 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (577) <223> n = A,T,C or G
<400>

gagttagctcctccacaaccttgatgaggtcgtctgcagtggcctctcgcttcataccgc 60 tnccatcgtcatactgtaggtttgccaccacytcctggcatcttggggcggcntaatatt 120 ccaggaaactctcaatcaagtcaccgtcgatgaaacctgtgggctggttctgtcttccgc 180 tcggtgtgaaaggatctcccagaaggagtgctcgatcttccccacacttttgatgacttt 240 attgagtcgattctgcatgtccagcaggaggttgtaccagctctctgacagtgaggtcac 300 cagccctatcatgccgttgamcgtgccgaagarcaccgagccttgtgtgggggkkgaagt 360 ctcacccagattctgcattaccagagagccgtggcaaaagacattgacaaactcgcccag 420 gtggaaaaagamcamctcctggargtgctngccgctcctcgtcmgttggtggcagcgctw 480 tccttttgac acacaaacaa gttaaaggca ttttcagccc ccagaaantt gtcatcatcc 540 aagatntcgc acagcactna tccagttggg attaaat 577 <210> 187 <211> 534 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (534) <223> n = A,T,C or G
<400>

aacatcttcctgtataatgctgtgtaatatcgatccgatnttgtctgstgagaatycatw 60 actkggaaaagmaacattaaagcctggacactggtattaaaattcacaatatgcaacact 120 ttaaacagtgtgtcaatctgctcccyynactttgtcatcaccagtctgggaakaagggta 180 tgccctattcacacctgttaaaagggcgctaagcatttttgattcaacatcttttttttt 240 gacacaagtccgaaaaaagcaaaagtaaacagttatyaatttgttagccaattcactttc 300 ttcatgggacagagccatytgatttaaaaagcaaattgcataatattgagcttygggagc 360 tgatatttgagcggaagagtagcctttctacttcaccagacacaactccctttcatattg 420 ggatgttnacnaaagtwatgtctctwacagatgggatgcttttgtggcaattctgttctg 480 aggatctcccagtttatttaccacttgcacaagaaggcgttttcttcctcaggc 534 <210> 188 <211> 761 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(761) <223> n = A,T,C or G
<400> 188 agaaaccagtatctctnaaaacaacctctcataccttgtggacctaattttgtgtgcgtg 60 tgtgtgtgcgcgcatattatatagacaggcacatcttttttacttttgtaaaagcttatg 120 cctctttggtatctatatctgtgaaagttttaatgatctgccataatgtcttggggacct 180 ttgtcttctgtgtaaatggtactagagaaaacacctatnttatgagtcaatctagttngt 240 tttattcgacatgaaggaaatttccagatnacaacactnacaaactctccctkgackarg 300 ggggacaaagaaaagcaaaactgamcataaraaacaatwacctggtgagaarttgcataa 360 acagaaatwrggtagtatattgaarnacagcatcattaaarmgttwtkttwttctccctt 420 gcaaaaaacatgtacngacttcccgttgagtaatgccaagttgttttttttatnataaaa 480 cttgcccttcattacatgtttnaaagtggtgtggtgggccaaaatattgaaatgatggaa 540 ctgactgataaagctgtacaaataagcagtgtgcctaacaagcaacacagtaatgttgac 600 atgcttaattcacaaatgctaatttcattataaatgtttgctaaaatacactttgaacta 660 tttttctgtnttcccagagctgagatnttagattttatgtagtatnaagtgaaaaantac 720 gaaaataataacattgaagaaaaananaaaaaanaaaaaaa 761 <210> 189 <211> 482 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(482) <223> n = A,T,C or G

<400>

tttttttttttttgccgatnctactattttattgcaggangtgggggtgtatgcaccgca 60 caccggggctatnagaagcaagaaggaaggagggagggcacagccccttgctgagcaaca 120 aagccgcctgctgccttctctgtctgtctcctggtgcaggcacatggggagaccttcccc 180 aaggcaggggccaccagtccaggggtgggaatacagggggtgggangtgtgcataagaag 240 tgataggcacaggccacccggtacagacccctcggctcctgacaggtngatttcgaccag 300 gtcattgtgccctgcccaggcacagcgtanatctggaaaagacagaatgctttccttttc 360 aaatttggctngtcatngaangggcanttttccaanttnggctnggtcttggtacncttg 420 gttcggcccagctccncgtccaaaaantattcacccnnctccnaattgcttgcnggnccc 480 cc 482 <210> 190 <211> 471 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (471) <223> n = A,T,C or G
<400>

ttttttttttttttaaaacagtttttcacaacaaaatttattagaagaatagtggttttg 60 aaaactctcgcatccagtgagaactaccatacaccacattacagctnggaatgtnctcca 120 aatgtctggtcaaatgatacaatggaaccatr_caatcttacacatgcacgaaagaacaag 180 cgcttttgaca.tacaatgcacaaaaaaaaaaggggggggggaccacatggattaaaattt 240 taagtactcatcacatacattaagacacagttctagtccagtcnaaaatcagaactgcnt 300 tgaaaaatttcatgtatgcaatccaaccaaagaacttnattggtgatcatgantnctcta 360 ctacatcnaccttgatcattgccaggaacnaaaagttnaaancacncngtacaaaaanaa 420 tctgtaattnanttcaacctccgtacngaaaaatnttnnttatacactccc 471 <210> 191 <211> 402 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (402) <223> n = A,T,C or G
<400> 191 gagggattgaaggtctgttctastgtcggmctgttcagccaccaactctaacaagttgct 60 gtcttccactcactgtctgtaagctttttaacccagacwgtatcttcataaatagaacaa 120 attcttcaccagtcacatcttctaggacctttttggattcagttagtataagctcttcca 180 cttcctttgttaagacttcatctggtaaagtcttaagttttgtagaaaggaattyaattg 240 ctcgttctctaacaatgtcctctccttgaagtatttggctgaacaacccacctaaagtcc 300 ctttgtgcatccattttaaatatacttaatagggcattgktncactaggttaaattctgc 360 aagagtcatctgtctgcaaaagttgcgttagtatatctgcca 402 <210> 192 <211> 601 <212> DNA
<213> Homo sapien <220>
<221> mist feature <222> (1)...(601) <223> n = A, T, C or G
<400>

gagctcggatccaataatctttgtctgagggcagcacacatatncagtgccatggnaact 60 ggtctaccccacatgggagcagcatgccgtagntatataaggtcattccctgagtcagac 120 atgcytytttgaytaccgtgtgccaagtgctggtgattctyaacacacytccatcccgyt 180 cttttgtggaaaaactggcacttktctggaactagcargacatcacttacaaattcaccc 240 acgagacacttgaaaggtgtaacaaagcgaytcttgcattgctttttgtccctccggcac 300 cagttgtcaatactaacccgctggtttgcctccatcacatttgtgatctgtagctctgga 360 tacatctcctgacagtactgaagaacttcttcttttgtttcaaaagcarctcttggtgcc 420 tgttggatcaggttcccatttcccagtcygaatgttcacatggcatatttwacttcccac 480 aaaacattgcgatttgaggctcagcaacagcaaatcctgttccggcattggctgcaagag 540 cctcgatgtagccggccagcgccaaggcaggcgccgtgagccccaccagcagcagaagca 600 g 601 <210> 193 <211> 608 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(608) <223> n = A,T,C or G
<400>

atacagcccanatcccaccacgaagatgcgcttgttgactgagaacctgatgcggtcact 60 ggtcccgctgtagccccagcgactctccacctgctggaagcggttgatgctgcactcytt 120 cccaacgcaggcagmagcgggsccggtcaatgaactccaytcgtggcttggggtkgacgg 180 tkaagtgcaggaagaggctgaccacctcgcggtccaccaggatgcccgactgtgcgggac 240 ctgcagcgaaactcctcgatggtcatgagcgggaagcgaatgaggcccagggccttgccc 300 agaaccttccgcctgttctctggcgtcacctgcagctgctgccgctgacactcggcctcg 360 gaccagcggacaaacggcrttgaacagccgcacctcacggatgcccagtgtgtcgcgctc 420 caggammgscaccagcgtgtccaggtcaatgtcggtgaagccctccgcgggtratggcgt 480 ctgcagtgtttttgtcgatgttctccaggcacaggctggccagctgcggttcatcgaaga 540 gtcgcgcctgcgtgagcagcatgaaggcgttgtcggctcgcagttcttcttcaggaactc 600 cacgcaat 608 <210> 194 <211> 392 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(392) <223> n = A,T,C or G
<400> 194 gaacggctggaccttgcctcgcattgtgcttgctggcagggaataccttggcaagcagyt 60 ccagtccgagcagccccagaccgctgccgcccgaagctaagcctgcctctggccttcccc 120 tccgcctcaatgcagaaccagtagtgggagcactgtgtttagagttaagagtgaacactg 180 tttgattttacttgggaatttcctctgttatatagcttttcccaatgctaatttccaaac 240 aacaacaacaaaataacatgtttgcctgttaagttgtataaaagtaggtgattctgtatt 300 taaagaaaatattactgttacatatactgcttgcaatttctgtatttattgktnctstgg 360 aaataaatatagttattaaaggttgtcantcc 392 <210> 195 <211> 502 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(502) <223> n = A,T,C or G
<400> 195 ccsttkgaggggtkaggkyccagttyccgagtggaagaaacaggccaggagaagtgcgtg 60 ccgagctgaggcagatgttcccacagtgacccccagagccstgggstatagtytctgacc 120 cctcncaaggaaagaccacsttctggggacatgggctggagggcaggacctagaggcacc 180 aagggaaggccccattccggggstgttccccgaggaggaagggaaggggctctgtgtgcc 240 ccccasgaggaagaggccctgagtcctgggatcagacaccccttcacgtgtatccccaca 300 caaatgcaagctcaccaaggtcccctctcagtccccttccstacaccctgamcggccact 360 gscscacacccacccagagcacgccacccgccatggggartgtgctcaaggartcgcngg 420 gcarcgtggacatctngtcccagaagggggcagaatctccaataganggactgarcmstt 480 gctnanaaaaaaaaanaaaaas 502 <210> 196 <211> 665 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(665) <223> n = A,T,C or G
<400>

ggttacttggtttcattgccaccacttagtggatgtcatttagaaccattttgtctgctc 60 cctctggaagccttgcgcagagcggactttgtaattgttggagaataactgctgaatttt 120 wagctgtttkgagttgattsgcaccactgcacccacaacttcaatatgaaaacyawttga 180 actwatttattatcttgtgaaaagtataacaatgaaaattttgttcatactgtattkatc 240 aagtatgatgaaaagcaawagatatatattcttttattatgttaaattatgattgccatt 300 attaatcggcaaaatgtggagtgtatgttcttttcacagtaatatatgccttttgtaact 360 tcacttggttattttattgtaaatgarttacaaaattcttaatttaagaraatggtatgt 420 watatttatttcattaatttctttcctkgtttacgtwaattttgaaaagawtgcatgatt 480 tcttgacagaaatcgatcttgatgctgtggaagtagtttgacccacatccctatgagttt 540 ttcttagaatgtataaaggttgtagcccatcnaacttcaaagaaaaaaatgaccacatac 600 tttgcaatcaggctgaaatgtggcatgctnttctaattccaactttataaactagcaaan 660 aagtg 665 <210> 197 <211> 492 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (492) <223> n = A,T,C or G
<400> 197 ttttnttttt ttttttttgc aggaaggatt ccatttattg tggatgcatt ttcacaatat 60 atgtttattg gagcgatcca ttatcagtga aaagtatcaa gtgtttataa natttttagg 120 7~
aaggcagattcacagaacatgctngtcngcttgcagttttacctcgtanagatnacagag 180 aattatagtcnaaccagtaaacnaggaatttacttttcaaaagattaaatccaaactgaa 240 caaaattctaccctgaaacttactccatccaaatattggaataanagtcagcagtgatac 300 attctcttctgaactttagattttctagaaaaatatgtaatagtgatcaggaagagctct 360 tgttcaaaagtacaacnaagcaatgttcccttaccataggccttaattcaaactttgatc 420 catttcactcccatcacgggagtcaatgctacctgggacacttgtattttgttcatnctg 480 ancntggcttas 492 <210> 198 <211> 478 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (478) <223> n = A,T,C or G
<400> 198 tttnttttgnatttcantctgtannaantattttcattatgtttattanaaaaatatnaa 60 tgtntccacnacaaatcatnttacntnagtaagaggccanctacattgtacaacatacac 120 tgagtatattttgaaaaggacaagtttaaagtanacncatattgccgancatancacatt 180 tatacatggcttgattgatatttagcacagcanaaactgagtgagttaccagaaanaaat 240 natatatgtcaatcngatttaagatacaaaacagatcctatggtacatancatcntgtag 300 gagttgtggctttatgtttactgaaagtcaatgcagttcctgtacaaagagatggccgta 360 agcattctagtacctctactccatggttaagaatcgtacacttatgtttacatatgtnca 420 gggtaagaattgr_gttaagtnaanttatggagaggtccangagaaaaatttgatncaa 478 <210> 199 <211> 482 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (482) <223> n = A,T,C or G
<400>

agtgacttgtcctccaacaaaaccccttgatcaagtttgtggcactgacaatcagaccta 60 ' tgctagttcctgtcatctattcgctactaaatgcagactggaggggaccaaaaaggggca 120 tcaactccagctggattattttggagcctgcaaatctattcctacttgtacggactttga 180 agtgattcagtttcctctacggatgagagactggctcaagaatatcctcatgcagcttta 240 tgaagccnactctgaacacgctggttatctnagatgagaancagagaaataaagtcnaga 300 aaatttacctggangaaaagaggctttnggctggggaccatcccattgaaccttctctta 360 anggactttaagaanaaactaccacatgtntgtngtatcctggtgccnggccgtttantg 420 aacntngacnncacccttntggaatanantcttgacngcntcctgaacttgctcctctgc 480 ga 482 <210> 200 <211> 270 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (270) <223> n = A,T,C or G

<400> 200 cggccgcaagtgcaactccagctggggccgtgcggacgaagattctgccagcagttggtc 60 cgactgcgacgacggcggcggcgacagtcgcaggtgcagcgcgggcgcctggggtcttgc 120 aaggctgagctgacgccgcagaggtcgtgtcacgtcccacgaccttgacgccgtcgggga 180 cagccggaacagagcccggtgaangcgggaggcctcggggagcccctcgggaagggcggc 240 ccgagagatacgcaggtgcaggtggccgcc 270 <210> 201 <211> 419 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (419) <223> n = A,T,C or G
<400>

ttttttttttttttggaatctactgcgagcacagcaggtcagcaacaagtttattttgca 60 gctagcaaggtaacagggtagggcatggttacatgttcaggtcaacttcctttgtcgtgg 120 ttgattggtttgtctttatgggggcggggtggggtaggggaaancgaagcanaantaaca 180 tggagtgggtgcaccctccctgtagaacctggttacnaaagcttggggcagttcacctgg 240 tctgtgaccgtcattttcttgacatcaatgttattagaagtcaggatatcttttagagag 300 tccactgtntctggagggagattagggtttcttgccaanatccaancaaaatccacntga 360 aaaagttggatgatncangtacngaataccganggcatanttctcatantcggtggcca 419 c210> 202 <211> 509 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(509) <223> n = A,T,C or G
<400> 202 tttntttttttttttttttttttttttttttttttttttttttttttttttttttttttt 60 tggcacttaatccatttttatttcaaaatgtctacaaantttnaatncnccattatacng 120 gtnattttncaaaatctaaannttattcaaatntnagccaaantccttacncaaatnnaa 180 tacncncaaaaatcaaaaatatacntntctttcagcaaacttngttacataaattaaaaa 240 aatatatacggctggtgttttcaaagtacaattatcttaacactgcaaacatntttnnaa 300 ggaactaaaataaaaaaaaacactnccgcaaaggttaaagggaacaacaaattcntttta 360 caacancnncnattataaaaatcatatctcaaatcttaggggaatatatacttcacacng 420 ggatcttaacttttactncactttgtttatttttttanaaccattgtnttgggcccaaca 480 caatggnaatnccnccncnctggactagt 509 <210> 203 <211> 583 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(583) <223> n = A,T,C or G

<400> 203 ttttttttttttttttttgacccccctcttataaaaaacaagttaccattttattttact 60 tacacatatttattttataattggtattagatattcaaaaggcagcttttaaaatcaaac 120 taaatggaaactgccttagatacataattcttaggaattagcttaaaatctgcctaaagt 180 gaaaatcttctctagctcttttgactgtaaatttttgactcttgtaaaacatccaaattc 240 atttttcttgtctttaaaattatctaatctttccattttttccctattccaagtcaattt 300 gcttctctagcctcatttcctagctcttatctactattagtaagtggcttttttcctaaa 360 agggaaaacaggaagaganaatggcacacaaaacaaacattttatattcatatttctacc 420 tacgttaataaaatagcattttgtgaagccagctcaaaagaaggcttagatccttttatg 480 tccattttagtcactaaacgatatcnaaagtgccagaatgcaaaaggtttgtgaacattt 540 attcaaaagctaatataagatatttcacatactcatctttctg 583 <210> 204 <211> 589 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (589) <223> n = A,T,C or G
<400> 204 ttttttttntttttttttttttttttnctcttctttttttttganaatgaggatcgagtt 60 tttcactctctagatagggcatgaagaaaactcatctttccagctttaaaataacaatca 120 aatctcttatgctatatcatattttaagttaaactaatgagtcactggcttatcttctcc 180 tgaaggaaatctgttcattcttctcattcatatagttatatcaagtactaccttgcatat 240 tgagaggtttttcttctctatttacacatatatttccatgtgaatttgtatcaaaccttt 300 attttcatgcaaactagaaaataatgtnttcttttgcataagagaagagaacaatatnag 360 cattacaaaactgctcaaattgtttgttaagnttatccattataattagttnggcaggag 420 ctaatacaaatcacatttacngacnagcaataataaaactgaagtaccagttaaatatcc 480 aaaataattaaaggaacatttttagcctgggtataattagctaattcactttacaagcat 540 ttattnagaatgaattcacatgttattattccntagcccaacacaatgg 589 <210> 205 <211> 545 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(545) <223> n = A,T,C or G
<400> 205 tttttnttttttttttcagtaataatcagaacaatatttatttttatatttaaaattcat 60 agaaaagtgccttacatttaataaaagtttgtttctcaaagtgatcagaggaattagata 120 tngtcttgaacaccaatattaatttgaggaaaatacaccaaaatacattaagtaaattat 180 ttaagatcatagagcttgtaagtgaaaagataaaatttgacctcagaaactctgagcatt 240 aaaaatccactattagcaaataaattactatggacttcttgctttaattttgtgatgaat 300 atggggtgtcactggtaaaccaacacattctgaaggatacattacttagtgatagattct 360 tatgtactttgctanatnacgtggatatgagttgacaagtttctctttcttcaatctttt 420 aaggggcngangaaatgaggaagaaaagaaaaggattacgcatactgttctttctatngg 480 aaggattagatatgtttcctttgccaatattaaaaaaataataatgtttactactagtga 540 aaccc 545 <210> 206 <211> 487 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(487) <223> n = A,T,C or G
<400>

ttttttttttttttttagtcaagtttctnatttttattataattaaagtcttggtcattt 60 catttattagctctgcaacttacatatttaaattaaagaaacgttnttagacaactgtna 120 caatttataaatgtaaggtgccattattgagtanatatattcctccaagagtggatgtgt 180 cccttctcccaccaactaatgaancagcaacattagtttaattttattagtagatnatac 240 actgctgcaaacgctaattctcttctccatccccatgtngatattgtgtatatgtgtgag 300 ttggtnagaatgcatcancaatctnacaatcaacagcaagatgaagctaggcntgggctt 360 tcggtgaaaatagactgtgtctgtctgaatcaaatgatctgacctatcctcggtggcaag 420 aactcttcgaaccgcttcctcaaaggcngctgccacatttgtggcntctnttgcacttgt 480 ttcaaaa 487 <210> 207 <211> 332 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(332) <223> n = A,T,C or G
<400> 207 tgaattggctaaaagactgcatttttanaactagcaactcttatttctttcctttaaaaa 60 tacatagcattaaatcccaaatcctatttaaagacctgacagcttgagaaggtcactact 120 gcatttataggaccttctggtggttct.gctgttacntttgaantctgacaatccttgana 180 atctttgcatgcagaggaggtaaaaggtattggattttcacagaggaanaacacagcgca 240 gaaatgaaggggccaggcttactgagcttgtccactggagggctcatgggtgggacatgg 300 aaaagaaggcagcctaggccctggggagccca 332 <210> 208 <211> 524 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(524) <223> n = A,T,C or G
<400> 208 agggcgtggtgcggagggcgttactgttttgtctcagtaacaataaatacaaaaagactg 60 gttgtgttccggccccatccaaccacgaagttgatttctcttgtgtgcagagtgactgat 120 tttaaaggacatggagcttgtcacaatgtcacaatgtcacagtgtgaagggcacactcac 180 tcccgcgtgattcacatttagcaaccaacaatagctcatgagtccatacttgtaaatact 240 tttggcagaatacttnttgaaacttgcagatgataactaagatccaagatatttcccaaa 300 gtaaatagaagtgggtcataatattaattacctgttcacatcagcttccatttacaagtc 360 atgagcccagacactgacatcaaactaagcccacttagactcctcaccaccagtctgtcc 420 tgtcatcagacaggaggctgtcaccttgaccaaattctcaccagtcaatcatctatccaa 480 aaaccattacctgatccacttccggtaatgcaccaccttggtga 524 <210> 209 <211> 159 <212> DNA
<213> Homo sapien <400> 209 ' gggtgaggaa atccagagtt gccatggaga aaattccagt gtcagcattc ttgctccttg 60 tggccctctc ctacactctg gccagagata ccacagtcaa acctggagcc aaaaaggaca 120 caaaggactc tcgacccaaa ctgccccaga ccctctcca 159 <210> 210 <211> 256 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(256) <223> n = A,T,C or G
<400>

actccctggcagacaaaggcagaggagagagctctgttagttctgtgttgttgaactgcc 60 actgaatttctttccacttggactattacatgccanttgagggactaatggaaaaacgta 120 tggggagattttanccaatttangtntgtaaatggggagactggggcaggcgggagagat 180 ttgcagggtgnaaatggganggctggtttgttanatgaacagggacataggaggtaggca 240 ccaggatgctaaatca 256 <210> 211 <211> 264 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(264) <223> n = A,T,C or G
<400> 211 acattgtttttttgagataaagcattgagagagctctccttaacgtgacacaatggaagg 60 actggaacacatacccacatctttgttctgagggataattttctgataaagtcttgctgt 120 atattcaagcacatatgttatatattattcagttccatgtttatagcctagttaaggaga 180 ggggagatacattcngaaagaggactgaaagaaatactcaagtnggaaaacagaaaaaga 240 aaaaaaggagcaaatgagaagcct 264 <210> 212 <211> 328 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(328) <223> n = A,T,C or G
<400> 212 acccaaaaat ccaatgctga atatttggct tcattattcc canattcttt gattgtcaaa 60 ggatttaatg ttgtctcagc ttgggcactt cagttaggac ctaaggatgc cagccggcag 120 gtttatatat gcagcaacaa tattcaagcg cgacaacagg ttattgaact tgcccgccag 180 ttnaatttca ttcccattga cttgggatcc ttatcatcag ccagagagat tgaaaattta 240 cccctacnac tctttactct ctgganaggg ccagtggtgg tagctataag cttggccaca 300 tttttttttc ctttattcct ttgtcaga 328 <210> 213 <211> 250 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (250) <223> n = A,T,C or G
<400> 213 acttatgagc agagcgacat atccnagtgt agactgaata aaactgaatt ctctccagtt 60 taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct 120 cattatgcca aagganatat acatttcaat tctccaaact tcttcctcat tccaagagtt 180 ttcaatattt gcatgaacct gctgataanc catgttaana aacaaatatc tctctnacct 240 tctcatcggt 250 <210> 214 <211> 444 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(444) <223> n = A,T,C or G
<400> 214 acccagaatccaatgctgaatatttggcttcattattcccagattctttgattgtcaaag 60 gatttaatgttgtctcagcttgggcacttcagttaggacctaaggatgccagccggcagg 120 tttatatatgcagcaacaatattcaagcgcgacaacaggttattgaacttgcccgccagt 180 tgaatttcattcccattgacttgggatccttatcatcagccanagagattgaaaatttac 240 ccctacgactctttactctctggagagggccagtggtggtagctataagcttggccacat 300 ttttttttcctttattcctttgtcagagatgcgattcatccatatgctanaaaccaacag 360 agtgacttttacaaaattcctataganattgtgaataaaaccttacctatagttgccatt 420 actttgctctccctaatatacctc 444 <210> 215 <211> 366 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (366) <223> n = A,T,C or G
<400>

acttatgagcagagcgacatatccaagtgtanactgaataaaactgaattctctccagtt 60 taaagcattgctcactgaagggatagaagtgactgccaggagggaaagtaagccaaggct 120 cattatgccaaagganatatacatttcaattctccaaacttcttcctcattccaagagtt 180 ttcaatatttgcatgaacctgctgataagccatgttgagaaacaaatatctctctgacct 240 tctcatcggtaagcagaggctgtaggcaacatggaccatagcgaanaaaaaacttagtaa 300 tccaagctgttttctacactgtaaccaggtttccaaccaaggtggaaatctcctatactt 360 ggtgcc 366 <210> 216 <211> 260 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(260) <223> n = A,T,C or G
<400> 216 ctgtataaacagaactccactgcangagggagggccgggccaggagaatctccgcttgtc 60 caagacaggggcctaaggagggtctccacactgctnntaagggctnttncatttttttat 120 taataaaaagtnnaaaaggcctcttctcaacttttttcccttnggctggaaaatttaaaa 180 atcaaaaatttcctnaagttntcaagctatcatatatactntatcctgaaaaagcaacat 240 aattcttccttccctccttt 260 <210> 217 <211> 262 <212> DNA
<213> Homo sapien <220>
<221> mi.sc_feature <222> (1). .(262) <223> n = A,T,C or G
<400> 217 acctacgtgggtaagtttanaaatgttataatttcaggaanaggaacgcatataattgta 60 tcttgcctataattttctattttaataaggaaatagcaaattggggtggggggaatgtag 120 ggcattctacagtttgagcaaaatgcaattaaatgtggaaggacagcactgaaaaatttt 180 atgaataatctgtatgattatatgtctctagagtagatttataattagccacttacccta 240 atatccttcatgcttgtaaagt 262 <210> 218 <211> 205 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(205) <223> n = A,T,C or G
<400> 218 accaaggtgg tgcattaccg gaantggatc aangacacca tcgtggccaa cccctgagca 60 cccctatcaa ctcccttttg tagtaaactt ggaaccttgg aaatgaccag gccaagactc 120 aggcctcccc agttctactg acctttgtcc ttangtntna ngtccagggt tgctaggaaa 180 anaaatcagc agacacaggt gtaaa 205 <210> 219 <211> 114 <212> DNA
<213> Homo sapien <400> 219 tactgttttg tctcagtaac aataaataca aaaagactgg ttgtgttccg gccccatcca 60 accacgaagt tgatttctct tgtgtgcaga gtgactgatt ttaaaggaca tgga 114 <210> 220 <211> 93 <212> DNA
<213> Homo sapien <400> 220 actagccagc acaaaaggca gggtagcctg aattgctttc tgctctttac atttctttta 60 aaataagcat ttagtgctca gtccctactg agt 93 <210> 221 <211> 167 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(167) <223> n = A,T,C or G
<400> 221 actangtgca ggtgcgcaca aatatttgtc gatattccct tcatcttgga ttccatgagg 60 tcttttgccc agcctgtggc tctactgtag taagtttctg ctgatgagga gccagnatgc 120 cccccactac cttccctgac gctccccana aatcacccaa cctctgt 167 <210> 222 <211> 351 <212> DNA
<213> Homo sapien <400> 222 agggcgtggtgcggagggcggtactgacctcattagtaggaggatgcattctggcacccc 60 gttcttcacctgtcccccaatccttaaaaggccatactgcataaagtcaacaacagataa 120 atgtttgctgaattaaaggatggatgaaaaaaattaataatgaatttttgcataatccaa 180 ttttctcttttatatttctagaagaagtttctttgagcctattagatcccgggaatcttt 240 taggtgagcatgattagagagcttgtaggttgcttttacatatatctggcatatttgagt 300 ctcgtatcaaaacaatagattggtaaaggtggtattattgtattgataagt 351 <210> 223 <211> 383 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(383) <223> n = A,T,C or G
<400> 223 aaaacaaacaaacaaaaaaaacaattcttcattcagaaaaattatcttagggactgatat 60 tggtaattatggtcaatttaatwrtrttktggggcatttccttacattgtcttgacaaga 120 ttaaaatgtctgtgccaaaattttgtattttatttggagacttcttatcaaaagtaatgc 180 tgccaaaggaagtctaaggaattagtagtgttcccmtcacttgtttggagtgtgctattc 240 taaaagattttgatttcctggaatgacaattatattttaactttggtgggggaaanagtt 300 ataggaccacagtcttcacttctgatacttgtaaattaatcttttattgcacttgttttg 360 accattaagctatatgtttaaaa 383 <210> 224 <211> 320 <212> DNA
<213> Homo sapien <400>

cccctgaaggcttcttgttagaaaatagtacagttacaaccaataggaacaacaaaaaga 60 aaaagtttgtgacattgtagtagggagtgtgtaccccttactccccatcaaaaaaaaaat 120 ggatacatggttaaaggataraagggcaatattttatcatatgttctaaaagagaaggaa 180 gagaaaatactactttctcraaatggaagcccttaaaggtgctttgatactgaaggacac 240 aaatgtggccgtccatcctcctttaragttgcatgacttggacacggtaactgttgcagt 300 tttaractcmgcattgtgac 320 <210> 225 <211> 1214 <212> DNA
<213> Homo sapien <400> 225 gaggactgcagcccgcactcgcagccctggcaggcggcactggtcatggaaaacgaattg60 ttctgctcgggcgtcctggtgcatccgcagtgggtgctgtcagccgcacactgtttccag120 aactcctacaccatcgggctgggcctgcacagtcttgaggccgaccaagagccagggagc180 cagatggtggaggccagcctctccgtacggcacccagagtacaacagacccttgctcgct240 aacgacctcatgctcatcaagttggacgaatccgtgtccgagtctgacaccatccggagc300 atcagcattgcttcgcagtgccctaccgcggggaactcttgcctcgtttctggctggggt360 ctgctggcgaacggcagaatgcctaccgtgctgcagtgcgtgaacgtgtcggtggtgtct420 gaggaggtctgcagtaagctctatgacccgctgtaccaccccagcatgttctgcgccggc480 ggagggcaagaccagaaggactcctgcaacggtgactctggggggcccctgatctgcaac540 gggtacttgcagggccttgtgtctttcggaaaagccccgtgtggccaagttggcgtgcca600 ggtgtctacaccaacctctgcaaattcactgagtggatagagaaaaccgtccaggccagt660 taactctggggactgggaacccatgaaattgacccccaaatacatcctgcggaaggaatt720 caggaatatctgttcccagcccctcctccctcaggcccaggagtccaggcccccagcccc780 tcctccctcaaaccaagggtacagatccccagcccctcctccctcagacccaggagtcca840 gaccccccagcccctcctccctcagacccaggagtccagcccctcctccctcagacccag900 gagtccagaccccccagcccctcctccctcagacccaggggtccaggcccccaacccctc960 ctccctcagactcagaggtccaagcccccaacccctccttccccagacccagaggtccag1020 gtcccagcccctcctccctcagacccagcggtccaatgccacctagactctccctgtaca1080 cagtgcccccttgtggcacgttgacccaaccttaccagttggtttttcattttttgtccc1140 tttcccctagatccagaaataaagtctaagagaagcgcaaaaaaaaaaaaaaaaaaaaaa1200 aaaaaaaaaaaaaa 1214 <210> 226 <211> 119 <212> DNA
<213> Homo sapien <400> 226 acccagtatg tgcagggaga cggaacccca tgtgacagcc cactccacca gggttcccaa 60 agaacctggc ccagtcataa tcattcatcc tgacagtggc aataatcacg ataaccagt 119 <210> 227 <211> 818 <212> DNA
<213> Homo sapien <400> 227 acaattcata gggacgacca atgaggacag ggaatgaacc cggctctccc ccagccctga 60 tttttgctacatatggggtcccttttcattctttgcaaaaacactgggttttctgagaac 120 acggacggttcttagcacaatttgtgaaatctgtgtaraaccgggctttgcaggggagat 180 aattttcctcctctggaggaaaggtggtgattgacaggcagggagacagtgacaaggcta 240 gagaaagccacgctcggccttctctgaaccaggatggaacggcagacccctgaaaacgaa 300 gcttgtccccttccaatcagccacttctgagaacccccatctaacttcctactggaaaag 360 agggcctcctcaggagcagtccaagagttttcaaagataacgtgacaactaccatctaga 420 ggaaagggtgcaccctcagcagagaagccgagagcttaactctggtcgtttccagagaca 480 acctgctggctgtcttgggatgcgcccagcctttgagaggccactaccccatgaacttct 540 gccatccactggacatgaagctgaggacactgggcttcaacactgagttgtcatgagagg 600 gacaggctctgccctcaagccggctgagggcagcaaccactctcctcccctttctcacgc 660 aaagccattcccacaaatccagaccataccatgaagcaacgagacccaaacagtttggct 720 caagaggatatgaggactgtctcagcctggctttgggctgacaccatgcacacacacaag 780 gtccacttctaggttttcagcctagatgggagtcgtgt 818 <210> 228 <211> 744 <212> DNA
<213> Homo sapien <400>

actggagacactgttgaacttgatcaagacccagaccaccccaggtctccttcgtgggat 60 gtcatgacgtttgacatacctttggaacgagcctcctccttggaagatggaagaccgtgt 120 tcgtggccgacctggcctctcctggcctgtttcttaagatgcggagtcacatttcaatgg 180 taggaaaagtggcttcgtaaaatagaagagcagtcactgtggaactaccaaatggcgaga 240 tgctcggtgcacattggggtgctttgggataaaagatttatgagccaactattctctggc 300 accagattctaggccagtttgttccactgaagcttttcccacagcagtccacctctgcag 360 gctggcagctgaatggcttgccggtggctctgtggcaagatcacactgagatcgatgggt 420 gagaaggctaggatgcttgtctagtgttcttagctgtcacgttggctccttccaggttgg 480 ccagacggtgttggccactcccttctaaaacacaggcgccctcctggtgacagtgacccg 540 ccgtggtatgccttggcccattccagcagtcccagttatgcatttcaagtttggggtttg 600 ttcttttcgttaatgttcctctgtgttgtcagctgtcttcatttcctgggctaagcagca 660 ttgggagat.gtggaccagagatccactccttaagaaccagtggcgaaagacactttcttt 720 cttcactctgaagtagctggtggt 744 <210> 229 <211> 300 <212> DNA
<213> Homo sapien <400> 229 cgagtctggg ttttgtctat aaagtttgat ccctcctttt ctcatccaaa tcatgtgaac 60 cattacacat cgaaataaaa gaaaggtggc agacttgccc aacgccaggc tgacatgtgc 120 tgcagggttg ttgtttttta attattattg ttagaaacgt cacccacagt ccctgttaat 180 ttgtatgtga cagccaactc tgagaaggtc ctatttttcc acctgcagag gatccagtct 240 cactaggctc ctccttgccc tcacactgga gtctccgcca gtgtgggtgc ccactgacat 300 <210> 230 <211> 301 <212> DNA
<213> Homo sapien <400> 230 cagcagaacaaatacaaatatgaagagtgcaaagatctcataaaatctatgctgaggaat 60 gagcgacagttcaaggaggagaagcttgcagagcagctcaagcaagctgaggagctcagg 120 caatataaagtcctggttcacactcaggaacgagagctgacccagttaagggagaagttg 180 cgggaagggagagatgcctccctctcattgaatgagcatctccaggccctcctcactccg 240 gatgaaccggacaagtcccaggggcaggacctccaagaaacagacctcggccgcgaccac 300 g 301 <210> 231 <211> 301 <212> DNA
<213> Homo sapien <400>

gcaagcacgctggcaaatctctgtcaggtcagctccagagaagccattagtcattttagc 60 caggaactccaagtccacatccttggcaactggggacttgcgcaggttagccttgaggat 120 ggcaacacgggacttctcatcaggaagtgggatgtagatgagctgatcaagacggccagg 180 tctgaggatggcaggatcaatgatgtcaggccggttggtaccgccaatgatgaacacatt 240 tttttttgtggacatgccatccatttctgtcaggatctggttgatgactcggtcagcagc 300 c 301 <210> 232 <211> 301 <212> DNA
<213> Homo sapien <400> 232 agtaggtatttcgtgagaagttcaacaccaaaactggaacatagttctccttcaagtgtt 60 ggcgacagcggggcttcctgattctggaatataactttgtgtaaattaacagccacctat 120 agaagagtccatctgctgtgaaggagagacagagaactctgggttccgtcgtcctgtcca 180 cgtgctgtaccaagtgctggtgccagcctgttacctgttctcactgaaaatctggctaat 240 gctcttgtgtatcacttctgattctgacaatcaatcaatcaatggcctagagcactgact 300 g 301 <210> 233 <211> 301 <212> DNA
<213> Homo sapien <400> 233 atgactgacttcccagtaaggctctctaaggggtaagtaggaggatccacaggatttgag 60 atgctaaggccccagagatcgtttgatccaaccctcttattttcagaggggaaaatgggg 120 cctagaagttacagagcatctagctggtgcgctggcacccctggcctcacacagactccc 180 gagtagctgggactacaggcacacagtcactgaagcaggccctgttagcaattctatgcg 240 tacaaattaacatgagatgagtagagactttattgagaaagcaagagaaaatcctatcaa 300 c 301 <210> 234 <211> 301 <212> DNA
<213> Homo sapien <400>

aggtcctacacatcgagactcatccatgattgatatgaatttaaaaattacaagcaaaga 60 cattttattcatcatgatgctttcttttgtttcttcttttcgttttcttctttttctttt 120 tcaatttcagcaacatacttctcaatttcttcaggatttaaaatcttgagggattgatct 180 cgcctcatgacagcaagttcaatgtttttgccacctgactgaaccacttccaggagtgcc 240 ttgatcaccagcttaatggtcagatcatctgcttcaatggcttcgtcagtatagttcttc 300 t 301 <210> 235 <211> 283 <212> DNA
<213> Homo sapien <400> 235 tggggctgtgcatcaggcgggtttgagaaatattcaattctcagcagaagccagaatttg 60 aattccctcatcttttagggaatcatttaccaggtttggagaggattcagacagctcagg 120 tgctttcactaatgtctctgaacttctgtccctctttgttcatggatagtccaataaata 180 atgttatctttgaactgatgctcataggagagaatataagaactctgagtgatatcaaca 240 ttagggattcaaagaaatattagatttaagctcacactggtca 283 <210> 236 <211> 301 <212> DNA
<213> Homo sapien <400>

aggtcctccaccaactgcctgaagcacggttaaaattgggaagaagtatagtgcagcata 60 aatacttttaaatcgatcagatttccctaacccacatgcaatcttcttcaccagaagagg 120 tcggagcagcatcattaataccaagcagaatgcgtaatagataaatacaatggtatatag 180 tgggtagacggcttcatgagtacagtgtactgtggtatcgtaatctggacttgggttgta 240 aagcatcgtgtaccagtcagaaagcatcaatactcgacatgaacgaatataaagaacacc 300 a 301 <210> 237 <211> 301 <212> DNA
<213> Homo sapien <400> 237 cagtggtagtggtggtggacgtggcgttggtcgtggtgccttttttggtgcccgtcacaa 60 actcaatttttgttcgctcctttttggccttttccaatttgtccatctcaattttctggg 120 ccttggctaatgcctcatagtaggagtcctcagaccagccatggggatcaaacatatcct 180 ttgggtagttggtgccaagctcgtcaatggcacagaatggatcagcttctcgtaaatcta 240 gggttccgaaattctttcttcctttggataatgtagttcatatccattccctcctttatc 300 t 301 <210> 238 <211> 301 <212> DNA
<213> Homo sapien <400> 238 gggcaggtttttttttttttttttttgatggtgcagacccttgctttatttgtctgactt 60 gttcacagttcagccccctgctcagaaaaccaacgggccagctaaggagaggaggaggca 120 ccttgagacttccggagtcgaggctctccagggttccccagcccatcaatcattttctgc 180 accccctgcctgggaagcagctccctggggggtgggaatgggtgactagaagggatttca 240 gtgtgggacccagggtctgttcttcacagtaggaggtggaagggatgactaatttcttta 300 t 301 <210> 239 <211> 239 <212> DNA
<213> Homo sapien <400> 239 ataagcagct agggaattct ttatttagta atgtcctaac ataaaagttc acataactgc 60 ttctgtcaaa ccatgatact gagctttgtg acaacccaga aataactaag agaaggcaaa 120 cataatacct tagagatcaa gaaacattta cacagttcaa ctgtttaaaa atagctcaac 180 attcagccag tgagtagagt gtgaatgcca gcatacacag tatacaggtc cttcaggga 239 <210> 240 <211> 300 <212> DNA
<213> Homo sapien <400> 240 ggtcctaatgaagcagcagcttccacattttaacgcaggtttacggtgatactgtccttt 60 gggatctgccctccagtggaaccttttaaggaagaagtgggcccaagctaagttccacat 120 gctgggtgagccagatgacttctgttccctggtcactttcttcaatggggcgaatggggg 180 ctgccaggtttttaaaatcatgcttcatcttgaagcacacggtcacttcaccctcctcac 240 gctgtgggtgtactttgatgaaaatacccactttgttggcctttctgaagctataatgtc 300 <210> 241 <211> 301 <212> DNA
<213> Homo sapien <400>

gaggtctggtgctgaggtctctgggctaggaagaggagttctgtggagctggaagccaga 60 cctctttggaggaaactccagcagctatgttggtgtctctgagggaatgcaacaaggctg 120 ctcctccatgtattggaaaactgcaaactggactcaactggaaggaagtgctgctgccag 180 tgtgaagaaccagcctgaggtgacagaaacggaagcaaacaggaacagccagtcttttct 240 tcctcctcctgtcatacggtctctctcaagcatcctttgttgtcaggggcctaaaaggga 300 g 301 <210> 242 <211> 301 <212> DNA
<213> Homo sapien <400>

ccgaggtcctgggatgcaaccaatcactctgtttcacgtgacttttatcaccatacaatt 60 tgtggcatttcctcattttctacattgtagaatcaagagtgtaaataaatgtatatcgat 120 gtcttcaagaatatatcattcctttttcactagaacccattcaaaatataagtcaagaat 180 cttaatatcaacaaatatatcaagcaaactggaaggcagaataactaccataatttagta 240 taagtacccaaagttttataaatcaaaagccctaatgataaccatttttagaattcaatc 300 a 301 <210> 243 <211> 301 <212> DNA
<213> Homo sapien <400> 243 aggtaagtcccagtttgaagctcaaaagatctggtatgagcataggctcatcgacgacat 60 ggtggcccaagctatgaaatcagagggaggcttcatctgggcctgtaaaaactatgatgg 120 tgacgtgcagtcggactctgtggcccaagggtatggctctctcggcatgatgaccagcgt 180 gctggtttgtccagatggcaagacagtagaagcagaggctgcccacgggactgtaacccg 240 tcactaccgcatgttccagaaaggacaggagacgtccaccaatcccattgcttccatttt 300 t 301 <210> 244 <211> 300 <212> DNA
<213> Homo sapien <400> 244 gctggtttgc aagaatgaaa tgaatgattc tacagctagg acttaacctt gaaatggaaa 60 gtcatgcaat cccatttgca ggatctgtct gtgcacatgc ctctgtagag agcagcattc 120 ccagggacct tggaaacagt tgacactgta aggtgcttgc tccccaagac acatcctaaa 180 aggtgttgta atggtgaaaa cgtcttcctt ctttattgcc ccttcttatt tatgtgaaca 240 actgtttgtc ttttgtgtat cttttttaaa ctgtaaagtt caattgtgaa aatgaatatc 300 <210> 245 <211> 301 <212> DNA
<213> Homo sapien <400> 245 gtctgagtatttaaaatgttattgaaattatccccaaccaatgttagaaaagaaagaggt 60 tatatacttagataaaaaatgaggtgaattactatccattgaaatcatgctcttagaatt 120 aaggccaggagatattgtcattaatgtaracttcaggacactagagtatagcagccctat 180 gttttcaaagagcagagatgcaattaaatattgtttagcatcaaaaaggccactcaatac 240 agctaataaaatgaaagacctaatttctaaagcaattctttataatttacaaagttttaa 300 g 301 <210> 246 <211> 301 <212> DNA
<213> Homo sapien <400> 246 ggtctgtcctacaatgcctgcttcttgaaagaagtcggcactttctagaatagctaaata 60 acctgggcttattttaaagaactatttgtagctcagattggttttcctatggctaaaata 120 agtgcttcttgtgaaaattaaataaaacagttaattcaaagccttgatatatgttaccac 180 taacaatcatactaaatatattttgaagtacaaagtttgacatgctctaaagtgacaacc 240 caaatgtgtcttacaaaacacgttcctaacaaggtatgctttacactaccaatgcagaaa 300 c 301 <210> 247 <211> 301 <212> DNA
<213> Homo sapien <400> 247 aggtcctttggcagggctcatggatcagagctcaaactggagggaaaggcatttcgggta 60 gcctaagagggcgactggcggcagcacaaccaaggaaggcaaggttgtttcccccacgct 120 gtgtcctgtgttcaggtgcgacacacaatcctcatgggaacaggatcacccatgcgctgc 180 ccttgatgatcaaggttggggcttaagtggattaagggaggcaagttctgggttccttgc 240 cttttcaaaccatgaagtcaggctctgtatccctccttttcctaactgatattctaacta 300 a 301 <210> 248 <211> 301 <212> DNA
<213> Homo sapien <400>

aggtccttggagatgccatttcagccgaaggactcttctwttcggaagtacaccctcact 60 attaggaagattcttaggggtaatttttctgaggaaggagaactagccaacttaagaatt 120 acaggaagaaagtggtttggaagacagccaaagaaataaaagcagattaaattgtatcag 180 gtacattccagcctgttggcaactccataaaaacatttcagattttaatcccgaatttag 240 ctaatgagactggatttttgttttttatgttgtgtgtcgcagagctaaaaactcagttcc 300 c 301 <210> 249 <211> 301 <212> DNA
<213> Homo sapien <400>

gtccagaggaagcacctggtgctgaactaggcttgccctgctgtgaacttgcacttggag 60 ccctgacgctgctgttctccccgaaaaacccgaccgacctccgcgatctccgtcccgccc 120 ccagggagacacagcagtgactcagagctggtcgcacactgtgcctccctcctcaccgcc 180 catcgtaatgaattattttgaaaattaattccaccatcctttcagattctggatggaaag 240 actgaatctttgactcagaattgtttgctgaaaagaatgatgtgactttcttagtcattt 300 a 301 <210> 250 <211> 301 <212> DNA
<213> Homo sapien <400>

ggtctgtgacaaggacttgcaggctgtgggaggcaagtgacccttaacactacacttctc 60 cttatctttattggcttgataaacataattatttctaacactagcttatttccagttgcc 120 cataagcacatcagtacttttctctggctggaatagtaaactaaagtatggtacatctac 180 ctaaaagactactatgtggaataatacatactaatgaagtattacatgatttaaagacta 240 caataaaaccaaacatgcttataacattaagaaaaacaataaagatacatgattgaaacc 300 a 301 <210> 251 <211> 301 <212> DNA
<213> Homo sapien <400> 251 gccgaggtcctacatttggcccagtttccccctgcatcctctccagggcccctgcctcat 60 agacaacctcatagagcataggagaactggttgccctgggggcagggggactgtctggat 120 ggcaggggtcctcaaaaatgccactgtcactgccaggaaatgcttctgagcagtacacct 180 cattgggatcaatgaaaagcttcaagaaatcttcaggctcactctcttgaaggcccggaa 240 cctctggaggggggcagtggaatcccagctccaggacggatcctgtcgaaaagatatcct 300 c 301 <210> 252 <211> 301 <212> DNA
<213> Homo sapien <400> 252 gcaaccaatcactctgtttcacgtgacttttatcaccatacaatttgtggcatttcctca 60 ttttctacattgtagaatcaagagtgtaaataaatgtatatcgatgtcttcaagaatata 120 tcattcctttttcactaggaacccattcaaaatataagtcaagaatcttaatatcaacaa 180 atatatcaagcaaactggaaggcagaataactaccataatttagtataagtacccaaagt 240 tttataaatcaaaagccctaatgataaccatttttagaattcaatcatcactgtagaatc 300 a 301 <210> 253 <211> 301 <212> DNA
<213> Homo sapien <400> 253 ttccctaaga agatgttatt ttgttgggtt ttgttccccc tccatctcga ttctcgtacc 60 caactaaaaa aaaaaaataa agaaaaaatg tgctgcgttc tgaaaaataa ctccttagct 120 tggtctgatt gttttcagac cttaaaatat aaacttgttt cacaagcttt aatccatgtg 180 gatttttttt cttagagaac cacaaaacat aaaaggagca agtcggactg aatacctgtt 240 tccatagtgc ccacagggta ttcctcacat tttctccata ggaaaatgct ttttcccaag 300 g 301 <210> 254 <211> 301 <212> DNA
<213> Homo sapien <400>

cgctgcgcctttcccttgggggaggggcaaggccagagggggtccaagtgcagcacgagg 60 aacttgaccaattcccttgaagcgggtgggttaaaccctgtaaatgggaacaaaatcccc 120 ccaaatctcttcatcttaccctggtggactcctgactgtagaattttttggttgaaacaa 180 gaaaaaaataaagctttggacttttcaaggttgcttaacaggtactgaaagactggcctc 240 acttaaactgagccaggaaaagctgcagatttattaatgggtgtgttagtgtgcagtgcc 300 t 301 <210> 255 <211> 302 <212> DNA
<213> Homo sapien <400> 255 agctttttttttttttttttttttttttttttcattaaaaaatagtgctctttattataa 60 attactgaaatgtttcttttctgaatataaatataaatatgtgcaaagtttgacttggat 120 tgggattttgttgagttcttcaagcatctcctaataccctcaagggcctgagtagggggg 180 aggaaaaaggactggaggtggaatctttataaaaaacaagagtgattgaggcagattgta 240 aacattattaaaaaacaagaaacaaacaaaaaaatagagaaaaaaaccaccccaacacac 300 as 302 <210> 256 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400> 256 gttccagaaaacattgaaggtggcttcccaaagtctaactagggataccccctctagcct 60 aggaccctcctccccacacctcaatccaccaaaccatccataatgcacccagataggccc 120 acccccaaaagcctggacaccttgagcacacagttatgaccaggacagactcatctctat 180 aggcaaatagctgctggcaaactggcattacctggtttgtggggatgggggggcaagtgt 240 gtggcctctcggcctggttagcaagaacattcagggtaggcctaagttantcgtgttagt 300 t 301 <210> 257 <211> 301 <212> DNA
<213> Homo sapien <400> 257 gttgtggagg aactctggct tgctcattaa gtcctactga ttttcactat cccctgaatt 60 tccccactta tttttgtctt tcactatcgc aggccttaga agaggtctac ctgcctccag 120 tcttacctag tccagtctac cccctggagt tagaatggcc atcctgaagt gaaaagtaat 180 gtcacattac tcccttcagt gatttcttgt agaagtgcca atccctgaat gccaccaaga 240 tcttaatctt cacatcttta atcttatctc tttgactcct ctttacaccg gagaaggctc 300 c 301 <210> 258 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400>

cagcagtagtagatgccgtatgccagcacgcccagcactcccaggatcagcaccagcacc 60 aggggcccagccaccaggcgcagaagcaagataaacagtaggctcaagaccagagccacc 120 cccagggcaacaagaatccaataccaggactgggcaaaatcttcaaagatcttaacactg 180 atgtctcgggcattgaggctgtcaataanacgctgatcccctgctgtatggtggtgtcat 240 tggtgatccctgggagcgccggtggagtaacgttggtccatggaaagcagcgcccacaac 300 t 301 <210> 259 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 259 tcatatatgcaaacaaatgcagactangcctcaggcagagactaaaggacatctcttggg 60 gtgtcctgaagtgatttggacccctgagggcagacacctaagtaggaatcccagtgggaa 120 gcaaagccataaggaagcccaggattccttgtgatcaggaagtgggccaggaaggtctgt 180 tccagctcacatctcatctgcatgcagcacggaccggatgcgcccactgggtcttggctt 240 ccctcccatcttctcaagcagtgtccttgttgagccatttgcatccttggctccaggtgg 300 c 301 <210> 260 <211> 301 <212> DNA
<213> Homo sapien <400> 260 ttttttttctccctaaggaaaaagaaggaacaagtctcataaaaccaaataagcaatggt 60 aaggtgtcttaacttgaaaaagattaggagtcactggtttacaagttataattgaatgaa 120 agaactgtaacagccacagttggccatttcatgccaatggcagcaaacaacaggattaac 180 tagggcaaaataaataagtgtgtggaagccctgataagtgcttaataaacagactgattc 240 actgagacatcagtacctgcccgggcggccgctcgagccgaattctgcagatatccatca 300 c 301 <210> 261 <211> 301 <212> DNA
<213> Homo sapien <400>

aaatattcgagcaaatcctgtaactaatgtgtctccataaaaggctttgaactcagtgaa 60 tctgcttccatccacgattctagcaatgacctctcggacatcaaagctcctcttaaggtt 120 agcaccaactattccatacaattcatcagcaggaaataaaggctcttcagaaggttcaat 180 ggtgacatccaatttcttctgataatttagattcctcacaaccttcctagttaagtgaag 240 ggcatgatgatcatccaaagcccagtggtcacttactccagactttctgcaatgaagatc 300 a 301 <210> 262 <211> 301 <212> DNA
<213> Homo sapien <400> 262 gaggagagcctgttacagcatttgtaagcacagaatactccaggagtatttgtaattgtc 60 tgtgagcttcttgccgcaagtctctcagaaatttaaaaagatgcaaatccctgagtcacc 120 cctagacttcctaaaccagatcctctggggctggaacctggcactctgcatttgtaatga 180 gggctttctggtgcacacctaattttgtgcatctttgccctaaatcctggattagtgccc 240 catcattacccccacattataatgggatagattcagagcagatactctccagcaaagaat 300 <210> 263 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 263 tttagcttgtggtaaatgactcacaaaactgattttaaaatcaagttaatgtgaattttg 60 aaaattactacttaatcctaattcacaataacaatggcattaaggtttgacttgagttgg 120 ttcttagtattatttatggtaaataggctcttaccacttgcaaataactggccacatcat 180 taatgactgacttcccagtaaggctctctaaggggtaagtangaggatccacaggatttg 240 agatgctaaggccccagagatcgtttgatccaaccctcttattttcagaggggaaaatgg 300 g 301 <210> 264 <211> 301 <212> DNA
<213> Homo sapien <400>

aaagacgttaaaccactctactaccacttgtggaactctcaaagggtaaatgacaaascc 60 aatgaatgactctaaaaacaatatttacatttaatggtttgtagacaataaaaaaacaag 120 gtggatagatctagaattgtaacattttaagaaaaccatascatttgacagatgagaaag 180 ctcaattatagatgcaaagttataactaaactactatagtagtaaagaaatacatttcac 240 acccttcatataaattcactatcttggcttgaggcactccataaaatgtatcacgtgcat 300 a 301 <210> 265 <211> 301 <212> DNA
<213> Homo sapien <400> 265 tgcccaagttatgtgtaagtgtatccgcacccagaggtaaaactacactgtcatctttgt 60 cttcttgtgacgcagtatttcttctctggggagaagccgggaagtcttctcctggctcta 120 catattcttggaagtctctaatcaacttttgttccatttgtttcatttcttcaggaggga 180 ttttcagtttgtcaacatgttctctaacaacacttgcccatttctgtaaagaatccaaag 240 cagtccaaggctttgacatgtcaacaaccagcataactagagtatccttcagagatacgg 300 c 301 <210> 266 <211> 301 <212> DNA
<213> Homo sapien <400> 266 taccgtctgcccttcctcccatccaggccatctgcgaatctacatgggtcctcctattcg 60 acaccagatcactctttcctctacccacaggcttgctatgagcaagagacacaacctcct 120 ctcttctgtgttccagcttcttttcctgttcttcccaccccttaagttctattcctgggg 180 atagagacaccaatacccataacctctctcctaagcctccttataacccagggtgcacag 240 cacagactcctgacaactggtaaggccaatgaactgggagctcacagctggctgtgcctg 300 a 301 <210> 267 <211> 301 <212> DNA
<213> Homo sapien <400> 267 aaagagcacaggccagctcagcctgccctggccatctagactcagcctggctccatgggg 60 gttctcagtgctgagtccatccaggaaaagctcacctagaccttctgaggctgaatcttc 120 atcctcacaggcagcttctgagagcctgatattcctagccttgatggtctggagtaaagc 180 ctcattctgattcctctccttcttttctttcaagttggctttcctcacatccctctgttc 240 aattcgcttcagcttgtctgctttagccctcatttccagaagcttcttctctttggcatc 300 t 301 <210> 268 <211> 301 <212> DNA
<213> Homo sapien <400>

aatgtctcactcaactacttcccagcctaccgtggcctaattctgggagttttcttctta 60 gatcttgggagagctggttcttctaaggagaaggaggaaggacagatgtaactttggatc 120 tcgaagaggaagtctaatggaagtaattagtcaacggt.ccttgtttagactcttggaata 180 tgctgggtggctcagtgagcccttttggagaaagcaagtattattcttaaggagtaacca 240 cttcccattgttctactttctaccatcatcaattgtatattatgtattctttggagaact 300 a 301 <210> 269 <211> 301 <212> DNA
<213> Homo sapien <400> 269 taacaatatacactagctatctttttaactgtccatcattagcaccaatgaagattcaat 60 aaaattacctttattcacacatctcaaaacaattctgcaaattcttagtgaagtttaact 120 atagtcacagaccttaaatattcacattgttttctatgtctactgaaaataagttcacta 180 cttttctggatattctttacaaaatcttattaaaattcctggtattatcacccccaatta 240 tacagtagcacaaccaccttatgtagtttttacatgatagctctgtagaagtttcacatc 300 t 301 <210> 270 <211> 301 <212> DNA
<213> Homo sapien <400>

cattgaagagcttttgcgaaacatcagaacacaagtgcttataaaattaattaagcctta 60 cacaagaatacatattccttttatttctaaggagttaaacatagatgtagctgatgtgga 120 gagcttgctggtgcagtgcatattggataacactattcatggccgaattgatcaagtcaa 180 ccaactccttgaactggatcatcagaagaagggtggtgcacgatatactgcactagataa 240 tggaccaaccaactaaattctctcaccaggctgtatcagtaaactggcttaacagaaaac 300 a 301 <210> 271 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 271 aaaaggttctcataagattaacaatttaaataaatatttgatagaacattctttctcatt 60 tttatagctcatctttagggttgatattcagttcatgcttcccttgctgttcttgatcca 120 gaaLtgcaatcacttcatcagcctgtattcgctccaattctctataaagtgggtccaagg 180 tgaaccacagagccacagcacacctctttcccttggtgactgccttcaccccatganggt 240 tctctcctccagatganaactgatcatgcgcccacattttgggttttatagaagcagtca 300 c 301 <210> 272 <211> 301 <212> DNA
<213> Homo sapien <400> 272 ~

taaattgctaagccacagataacaccaatcaaatggaacaaatcactgtcttcaaatgtc 60 ttatcagaaaaccaaatgagcctggaatcttcataatacctaaacatgccgtatttagga 120 tccaataattccctcatgatgagcaagaaaaattctttgcgcacccctcctgcatccaca 180 gcatcttctccaacaaatataaccttgagtggcttcttgtaatctatgttctttgttttc 240 ctaaggacttccattgcatctcctacaatattttctctacgcaccactagaattaagcag 300 g 301 <210> 273 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400> 273 acatgtgtgt atgtgtatct ttgggaaaan aanaagacat cttgtttayt atttttttgg 60 agagangctg ggacatggat aatcacwtaa tttgctayta tyactttaat ctgactygaa 120 gaaccgtcta aaaataaaat ttaccatgtc dtatattcct tatagtatgc ttatttcacc 180 ttytttctgt ccagagagag tatcagtgac ananatttma gggtgaamac atgmattggt 240 gggacttnty tttacngagm accctgcccg sgcgccctcg makcngantt ccgcsananc 300 t 301 <210> 274 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400>

cttatatactctttctcagaggcaaaagaggagatgggtaatgtagacaattctttgagg 60 aacagtaaatgattattagagagaangaatggaccaaggagacagaaattaacttgtaaa 120 tgattctctttggaatctgaatgagatcaagaggccagctttagcttgtggaaaagtcca 180 tctaggtatggttgcattctcgtcttcttttctgcagtagataatgaggtaaccgaaggc 240 aattgtgcttcttttgataagaagctttcttggtcatatcaggaaattccaganaaagtc 300 c 301 <210> 275 <211> 301 <2:12> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 275 tcggtgtcagcagcacgtggcattgaacattgcaatgtggagcccaaaccacagaaaatg 60 gggtgaaattggccaactttctattaacttatgttggcaattttgccaccaacagtaagc 120 tggcccttctaataaaagaaaattgaaaggtttctcactaaacggaattaagtagtggag 180 tcaagagactcccaggcctcagcgtacctgcccgggcggccgctcgaagccgaattctgc 240 agatatccatcacactggcggncgctcgancatgcatctagaaggnccaattcgccctat 300 a 301 <210> 276 <211> 301 <212> DNA
<213> Homo sapien <400> 276 tgtacacatactcaataaataaatgactgcattgtggtattattactatactgattatat 60 ttatcatgtgacttctaattagaaaatgtatccaaaagcaaaacagcagatatacaaaat 120 taaagagacagaagatagacattaacagataaggcaacttatacattgagaatccaaatc 180 caatacatttaaacatttgggaaatgagggggacaaatggaagccagatcaaatttgtgt 240 aaaactattcagtatgtttcccttgcttcatgtctgagaaggctctccttcaatggggat 300 g 301 <210> 277 <211> 301 <212> DNA
<213> Homo sapien <2zo>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400>

tttgttgatgtcagtattttattacttgcgttatgagtgctcacctgggaaattctaaag 60 atacagaggacttggaggaagcagagcaactgaatttaatttaaaagaaggaaaacattg 120 gaatcatggcactcctgatactttcccaaatcaacactctcaatgccccaccctcgtcct 180 caccatagtggggagactaaagtggccacggatttgccttangtgtgcagtgcgttctga 240 gttcnctgtcgattacatctgaccagtctcctttttccgaagtccntccgttcaatcttg 300 c 301 <210> 278 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 278 taccactacactccagcctgggcaacagagcaagacctgtctcaaagcataaaatggaat 60 aacatatcaaatgaaacagggaaaatgaagctgacaatttatggaagccagggcttgtca 120 cagtctctactgttattatgcattacctgggaatttatataagcccttaataataatgc~~180 aatgaacatctcatgtgtgctcacaatgttctggcactattataagtgcttcacaggttt 24U

tatgtgttcttcgtaactttatggantaggtactcggccgcgaacacgctaagccgaatt 300 c 301 <210> 279 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400> 279 aaagcaggaatgacaaagcttgcttttctggtatgttctaggtgtattgtgacttttact 60 gttatattaattgccaatataagtaaatatagattatatatgtatagtgtttcacaaagc 120 ttagacctttaccttccagccaccccacagtgcttgatatttcagagtcagtcattggtt 180 atacatgtgtagttccaaagcacataagctagaanaanaaatatttctagggagcactac 240 catctgttttcacatgaaatgccacacacatagaactccaacatcaatttcattgcacag 300 a 301 <210> 280 <211> 301 <212> DNA
<213> Homo sapien <400> 280 ggtactggag ttttcctccc ctgtgaaaac gtaactactg ttgggagtga attgaggatg 60 tagaaaggtg gtggaaccaa attgtggtca atggaaatag gagaatatgg ttctcactct 120 tgagaaaaaa acctaagatt agcccaggta gttgcctgta acttcagttt ttctgcctgg 180 gtttgatata gtttagggtt ggggttagat taagatctaa attacatcag gacaaagaga 240 cagactatta actccacagt taattaagga ggtatgttcc atgtttattt gttaaagcag 300 t 301 <210> 281 <211> 301 <212> DNA
<213> Homo sapien <400> 281 aggtacaagaaggggaatgggaaagagctgctgctgtggcattgttcaacttggatattc 60 gccgagcaatccaaatcctgaatgaaggggcatcttctgaaaaaggagatctgaatctca 120 atgtggtagcaatggctttatcgggttatacggatgagaagaactccctttggagagaaa 180 tgtgtagcacactgcgattacagctaaataacccgtatttgtgtgtcatgtttgcatttc 240 tgacaagtgaaacaggatcttacgatggagttttgtatgaaaacaaagttgcagtacctc 3.00 g 301 <210> 282 <211> 301 <212> DNA
<213> Homo sapien <400> 282 caggtactac agaattaaaa tactgacaag caagtagttt cttggcgtgc acgaattgca 60 tccagaaccc aaaaattaag aaattcaaaa agacattttg tgggcacctg ctagcacaga 120 agcgcagaag caaagcccag gcagaaccat gctaacctta cagctcagcc tgcacagaag 180 cgcagaagca aagcccaggc agaaccatgc taaccttaca gctcagcctg cacagaagcg 240 cagaagcaaa gcccaggcag aacatgctaa ccttacagct cagcctgcac agaagcacag 300 a 301 <210> 283 <211> 301 <212> DNA
<213> Homo sapien <400> 283 atctgtatacggcagacaaactttataragtgtagagaggtgagcgaaaggatgcaaaag 60 cactttgagggctttataataatatgctgcttgaaaaaaaaaatgtgtagttgatactca 120 gtgcatctccagacatagtaaggggttgctctgaccaatcaggtgatcattttttctatc 180 acttcccaggttttatgcaaaaattttgttaaattctataatggtgatatgcatctttta 240 ggaaacatatacatttttaaaaatctattttatgtaagaactgacagacgaatttgcttt 300 g 301 <210> 284 <211> 301 <212> DNA
<213> Homo sapien <400>

caggtacaaaacgctattaagtggcttagaatttgaacatttgtggtctttatttacttt 60 gcttcgtgtgtgggcaaagcaacatcttccctaaatatatattaccaagaaaagcaagaa 120 gcagattaggtttttgacaaaacaaacaggccaaaagggggctgacctggagcagagcat 180 ggtgagaggcaaggcatgagagggcaagtttgttgtggacagatctgtgcctactttatt 240 actggagtaaaagaaaacaaagttcattgatgtcgaaggatatatacagtgttagaaatt 300 a 301 <210> 285 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400> 285 acatcaccat gatcggatcc cccacccatt atacgttgta tgtttacata aatactcttc 60 aatgatcatt agtgttttaa aaaaaatact gaaaactcct tctgcatccc aatctctaac 120 caggaaagca aatgctattt acagacctgc aagccctccc tcaaacnaaa ctatttctgg 180 attaaatatg tctgacttct tttgaggtca cacgactagg caaatgctat ttacgatctg 240 caaaagctgt ttgaagagtc aaagccccca tgtgaacacg atttctggac cctgtaacag 300 t 301 <210> 286 <211> 301 <212> DNA
<213> Homo sapien <400>

taccactgcattccagcctgggtgacagagtgagactccgtctccaaaaaaaactttgct 60 tgtatattatttttgccttacagtggatcattctagtaggaaaggacagtaagatttttt 120 atcaaaatgtgtcatgccagtaagagatgttatattcttttctcatttcttccccaccca 180 aaaataagctaccatatagcttataagtctcaaatttttgccttttactaaaatgtgatt 240 gtttctgttcattgtgtatgcttcatcacctatattaggcaaattccattttttcccttg 300 t 301 <210> 287 <211> 301 <212> DNA
<213> Homo sapien <400> 287 tacagatctgggaactaaatattaaaaatgagtgtggctggatatatggagaatgttggg 60 cccagaaggaacgtagagatcagatattacaacagctttgttttgagggttagaaatatg 120 aaatgatttggttatgaacgcacagtttaggcagcagggccagaatcctgaccctctgcc 180 ccgtggttatctcctccccagcttggctgcctcatgttatcacagtattccattttgttt 240 gttgcatgtcttgtgaagccatcaagattttctcgtctgttttcctctcattggtaatgc 300 t 301 <210> 288 <211> 301 <212> DNA
<213> Homo sapien <400> 288 gtacacctaactgcaaggacagctgaggaatgtaatgggcagccgcttttaaagaagtag 60 agtcaataggaagacaaattccagttccagctcagtctgggtatctgcaaagctgcaaaa 120 gatctttaaagacaatttcaagagaatatttccttaaagttggcaatttggagatcatac 180 aaaagcatctgcttttgtgatttaatttagctcatctggccactggaagaatccaaacag 240 tctgccttaattttggatgaatgcatgatggaaattcaataatttagaaagttaaaaaaa 300 a 301 <210> 289 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400> 289 ggtacactgtttccatgttatgtttctacacattgctacctcagtgctcctggaaactta 60 gcttttgatgtctccaagtagtccaccttcatttaactctttgaaactgtatcatctttg 120 ccaagtaagagtggtggcctatttcagctgctttgacaaaatgactggctcctgacttaa 180 cgttctataaatgaatgtgctgaagcaaagtgcccatggtggcggcgaanaagagaaaga 240 tgtgttttgttttggactctctgtggtcccttccaatgctgtgggtttccaaccagngga 300 a 301 <210> 290 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400>

acactgagctcttcttgataaatatacagaatgcttggcatatacaagattctatactac 60 tgactgatctgttcatttctctcacagctcttacccccaaaagcttttccaccctaagtg 120 ttctgacctccttttctaatcacagtagggatagaggcaganccacctacaatgaacatg 180 gagttctatcaagaggcagaaacagcacagaatcccagttttaccattcgctagcagtgc 240 tgccttgaacaaaaacatttctccatgtctcattttcttcatgcctcaagtaacagtgag 300 a 301 <210> 291 <211> 301 <212> DNA
<213> Homo sapien <400> 291 caggtaccaatttcttctatcctagaaacatttcattttatgttgttgaaacataacaac 60 tatatcagctagattttttttctatgctttacctgctatggaaaatttgacacattctgc 120 tttactcttttgtttataggtgaatcacaaaatgtatttttatgtattctgtagttcaat 180 agccatggctgtttacttcatttaatttatttagcataaagacattatgaaaaggcctaa 240 acatgagcttcacttccccactaactaattagcatctgttatttcttaaccgtaatgcct 300 a 301 <210> 292 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400> 292 accttttagt agtaatgtct aataataaat aagaaatcaa ttttataagg tccatatagc 60 tgtattaaat aatttttaag tttaaaagat aaaataccat cattttaaat gttggtattc 120 aaaaccaaag natataaccg aaaggaaaaa cagatgagac ataaaatgat ttgcnagatg 180 ggaaatatag tasttyatga atgttnatta aattccagtt ataatagtgg ctacacactc 240 tcactacaca cacagacccc acagtcctat atgccacaaa cacatttcca taacttgaaa 300 a 301 <210> 293 <211> 301 <212> DNA
<213> Homo sapien <400> 293 ggtaccaagtgctggtgccagcctgttacctgttctcactgaaaagtctggctaatgctc 60 ttgtgtagtcacttctgattctgacaatcaatcaatcaatggcctagagcactgactgtt 120 aacacaaacgtcactagcaaagtagcaacagctttaagtctaaatacaaagctgttctgt 180 gtgagaattttttaaaaggctacttgtataataacccttgtcatttttaatgtacctcgg 240 ccgcgaccacgctaagccgaattctgcagatatccatcacactggcggccgctcgagcat 300 g 301 <210> 294 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1)...(301) <223> n = A,T,C or G
<400> 294 tgacccataacaatatacactagctatctttttaactgtccatcattagcaccaatgaag 60 attcaataaaattacctttattcacacatctcaaaacaattctgcaaattcttagtgaag 120 tttaactatagtcacagancttaaatattcacattgttttctatgtctactgaaaataag 180 ttcactacttttctgggatattctttacaaaatcttattaaaattcctggtattatcacc 240 cccaattatacagtagcacaaccaccttatgtagtttttacatgatagctctgtagaggt 300 t 301 <210> 295 <211> 305 <212> DNA
<213> Homo sapien <400> 295 gtactctttctctcccctcctctgaatttaattctttcaacttgcaatttgcaaggatta 60 cacatttcactgtgatgtatattgtgttgcaaaaaaaaaagtgtctttgtttaaaattac 120 ttggtttgtgaatccatcttgctttttccccattggaactagtcattaacccatctctga 180 actggtagaaaaacrtctgaagagctagtctatcagcatctgacaggtgaattggatggt 240 tctcagaaccatttcacccagacagcctgtttctatcctgtttaataaattagtttgggt 300 tctct 305 <210> 296 <211> 301 <212> DNA
<213> Homo sapien <400> 296 aggtactatg ggaagctgct aaaataatat ttgatagtaa aagtatgtaa tgtgctatct 60 cacctagtagtaaactaaaa ataaactgaaactttatggaatctgaagttattttccttg 120 attaaatagaattaataaac caatatgaggaaacatgaaaccatgcaatctactatcaac 180 tttgaaaaagtgattgaacg aaccacttagctttcagatgatgaacactgataagtcatt 240 tgtcattactataaatttta aaatctgttaataagatggcctatagggaggaaaaagggg 300 c 301 <210> 297 <211> 300 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(300) <223> n = A,T,C or G
<400> 297 actgagttttaactggacgccaagcaggcaaggctggaaggttttgctctctttgtgcta 60 aaggttttgaaaaccttgaaggagaatcattttgacaagaagtacttaagagtctagaga 120 acaaagangtgaaccagctgaaagctctcgggggaancttacatgtgttgttaggcctgt 180 tccatcattgggagtgcactggccatccctcaaaatttgtctgggctggcctgagtggtc 240 accgcacctcggccgcgaccacgctaagccgaattctgcagatatccatcacactggcgg .300 <210> 298 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(301) <223> n = A,T,C or G
<400>

tatggggtttgtcacccaaaagctgatgctgagaaaggcctccctggggcccctcccgcg 60 ggcatctgagagacctggtgttccagtgtttctggaaatgggtcccagtgccgccggctg 120 tgaagctctcagatcaatcacgggaagggcctggcggtggtggccacctggaaccaccct 180 gtcctgtctgtttacatttcactaycaggttttctctgggcattacnatttgttccccta 240 caacagtgacctgtgcattctgctgtggcctgctgtgtctgcaggtggctctcagcgagg 300 t 301 <210> 299 <211> 301 <212> DNA
<213> Homo sapien <400> 299 gttttgagacggagtttcactcttgttgcccagactggactgcaatggcagggtctctgc 60 tcactgcaccctctgcctcccaggttcgagcaattctcctgcctcagcctcccaggtagc 120 tgggattgcaggctcacgccaccatacccagctaatttttttgtatttttagtagagacg 180 gagtttcgccatgttggccagctggtctcaaactcctgacctcaagcgacctgcctgcct 240 cggcctcccaaagtgctggaattataggcatgagtcaacacgcccagcctaaagatattt 300 t 301 <210> 300 <211> 301 <212> DNA
<213> Homo sapien <400> 300 attcagttttatttgctgccccagtatctgtaaccaggagtgccacaaaatcttgccaga 60 tatgtcccacacccactgggaaaggctcccacctggctacttcctctatcagctgggtca 120 gctgcattccacaaggttctcagcctaatgagtttcactacctgccagtctcaaaactta 180 gtaaagcaagaccatgacattcccccacggaaatcagagtttgccccaccgtcttgttac 240 tataaagcctgcctctaacagtccttgcttcttcacaccaatcccgagcgcatcccccat 300 g 301 <210> 301 <211> 301 <212> DNA
<213> Homo sapien <400> 301 ttaaatttttgagaggataaaaaggacaaataatctagaaatgtgtcttcttcagtctgc 60 agaggaccccaggtctccaagcaaccacatggtcaagggcatgaataattaaaagttggt 120 gggaactcacaaagaccctcagagctgagacacccacaacagtgggagctcacaaagacc 180 ctcagagctgagacacccacaacagtgggagctcacaaagaccctcagagctgagacacc 240 cacaacagcacctcgttcagctgccacatgtgtgaataaggatgcaatgtccagaagtgt 300 t 301 <210> 302 <211> 301 <212> DNA
<213> Homo sapien <400> 302 aggtacacatttagcttgtggtaaatgactcacaaaactgattttaaaatcaagttaatg 60 tgaattttgaaaattactacttaatcctaattcacaataacaatggcattaaggtttgac 120 ttgagttggttcttagtattatttatggtaaataggctcttaccacttgcaaataactgg 180 ccacatcattaatgactgacttcccagtaaggctctctaaggggtaagtaggaggatcca 240 caggatttgagatgctaaggccccagagatcgtttgatccaaccctcttattttcagagg 300 .

g 301 <210> 303 <211> 301 <212> DNA
<213> Homo sapien <400>

aggtaccaactgtggaaataggtagaggatcattttttctttccatatcaactaagttgt 60 atattgttttttgacagtttaacacatcttcttctgtcagagattctttcacaatagcac 120 tggctaatggaactaccgcttgcatgttaaaaatggtggtttgtgaaatgatcataggcc 180 agtaacgggtatgtttttctaactgatcttttgctcgttccaaagggacctcaagacttc 240 catcgattttatatctggggtctagaaaaggagttaatctgttttccctcataaattcac 300 c 301 <210> 304 <211> 301 <212> DNA
<213> Homo sapien <400> 304 acatggatgt tattttgcag actgtcaacc tgaatttgta tttgcttgac attgcctaat 60 tattagtttc agtttcagct tacccacttt ttgtctgcaa catgcaraas agacagtgcc 120 ctttttagtg tatcatatca ggaatcatct cacattggtt tgtgccatta ctggtgcagt 180 gactttcagc cacttgggta aggtggagtt ggccatatgt ctccactgca aaattactga 240 ttttcctttt gtaattaata agtgtgtgtg tgaagattct ttgagatgag gtatatatct 300 c 301 <210> 305 <211> 301 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (301) <223> n = A,T,C or G
<400>

gangtacagcgtggtcaaggtaacaagaagaaaaaaatgtgagtggcatcctgggatgag 60 cagggggacagacctggacagacacgttgtcatttgctgctgtgggtaggaaaatgggcg 120 taaaggaggagaaacagatacaaaatctccaactcagtattaaggtattctcatgcctag 180 aatattggtagaaacaagaatacattcatatggcaaataactaaccatggtggaacaaaa 240 ttctgggatttaagttggataccaangaaattgtattaaaagagctgttcatggaataag 300 a 301 <210> 306 <211> 8 <212> PRT
<213> Homo sapien <400> 306 Val Leu Gly Trp Val Ala Glu Leu <210> 307 <211> 637 <212> DNA
<213> Homo sapien <400> 307 acagggratgaagggaaagggagaggatgaggaagcccccctggggatttggtttggtcc 60 ttgtgatcaggtggtctatggggcttatccctacaaagaagaatccagaaataggggcac 120 attgaggaatgatacttgagcccaaagagcattcaatcattgttttatttgccttmtttt 180 cacaccattggtgagggagggattaccaccctggggttatgaagatggttgaacacccca 240 cacatagcaccggagatatgagatcaacagtttcttagccatagagattcacagcccaga 300 gcaggaggacgcttgcacaccatgcaggatgacatgggggatgcgctcgggattggtgtg 360 aagaagcaaggactgttagaggcaggctttatagtaacaagacggtggggcaaactctga 420 tttccgtgggggaatgtcatggtcttgctttactaagttttgagactggcaggtagtgaa 480 actcattaggctgagaaccttgtggaatgcacttgacccasctgatagaggaagtagcca 540 ggtgggagcctttcccagtgggtgtgggacatatctggcaagattttgtggcactcctgg 600 ttacagatactggggcagcaaataaaactgaatcttg 637 <210> 308 <211> 647 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(647) <223> n = A,T,C or G

<400>

acgattttcattatcatgtaaatcgggtcactcaaggggccaaccacagctgggagccac 60 tgctcaggggaaggttcatatgggactttctactgcccaaggttctatacaggatataaa 120 ggngcctcacagtatagatctggtagcaaagaagaagaaacaaacactgatctctttctg 180 ccacccctctgaccctttggaactcctctgaccctttagaacaagcctacctaatatctg 240 ctagagaaaagaccaacaacggcctcaaaggatctcttaccatgaaggtctcagctaatt 300 cttggctaagatgtgggttccacattaggttctgaatatggggggaagggtcaatttgct 360 cattttgtgtgtggataaagtcaggatgcccaggggccagagcagggggctgcttgcttt 420 gggaacaatggctgagcatataaccataggttatggggaacaaaacaacatcaaagtcac 480 tgtatcaattgccatgaagacttgagggacctgaatctaccgattcatcttaaggcagca 540 ggaccagtttgagtggcaacaatgcagcagcagaatcaatggaaacaacagaatgattgc 600 aatgtccttttttttctcctgcttctgacttgataaaaggggaccgt 647 <210> 309 <211> 460 <212> DNA
<213> Homo sapien <400> 309 actttatagtttaggctggacattggaaaaaaaaaaaagccagaacaacatgtgatagat 60 aatatgattggctgcacacttccagactgatgaatgatgaacgtgatggactattgtatg 120 gagcacatcttcagcaagagggggaaatactcatcatttttggccagcagttgtttgatc 180 accaaacatcatgccagaatactcagcaaaccttcttagctcttgagaagtcaaagtccg 240 ggggaatttattcctggcaattttaattggactccttatgtgagagcagcggctacccag 300 ctggggtggtggagcgaacccgtcactagtggacatgcagtggcagagctcctggtaacc 360 acctagaggaatacacaggcacatgtgtgatgccaagcgtgacacctgtagcactcaaat 420 ttgtcttgtttttgtctttcggtgtgtaagattcttaagt 460 <210> 310 <211> 539 <212> DNA
<213> Homo sapien <400>

acgggacttatcaaataaagataggaaaagaagaaaactcaaatattataggcagaaatg 60 ctaaaggttttaaaatatgtcaggattggaagaaggcatggataaagaacaaagttcagt 120 taggaaagagaaacacagaaggaagagacacaataaaagtcattatgtattctgtgagaa 180 gtcagacagtaagatttgtgggaaatgggttggtttgttgtatggtatgtattttagcaa 240 taatctttatggcagagaaagctaaaatcctttagcttgcgtgaatgatcacttgctgaa 300 ttcctcaaggtaggcatgatgaaggagggtttagaggagacacagacacaatgaactgac 360 ctagatagaaagccttagtatactcagctaggaatagtgattctgagggcacactgtgac 420 atgattatgtcattacatgtatggtagtgatggggatgataggaaggaagaacttatggc 480 atattttcacccccacaaaagtcagttaaatattgggacactaaccatccaggtcaaga 539 <210> 311 <211> 526 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(526) <223> n = A,T,C or G
<400> 311 caaatttgag ccaatgacat agaattttac aaatcaagaa gcttattctg gggccatttc 60 ttttgacgtt ttctctaaac tactaaagag gcattaatga tccataaatt atattatcta 120 catttacagc atttaaaatg tgttcagcat gaaatattag ctacagggga agctaaataa 180 attaaacatggaataaagatttgtccttaaatataatctacaagaagactttgatatttg 240 tttttcacaagtgaagcattcttataaagtgtcataacctttttggggaaactatgggaa 300 aaaatggggaaactctgaagggttttaagtatcttacctgaagctacagactccataacc 360 tctctttacagggagctcctgcagcccctacagaaatgagtggctgagattcttgattgc 420 acagcaagagcttctcatctaaaccctttccctttttagtatctgtgtatcaagtataaa 480 agttctataaactgtagtntacttattttaatccccaaagcacagt 526 <210> 312 <211> 500 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (500) <223> n = A,T,C or G
<400> 312 cctctctctccccaccccctgactctagagaactgggttttctcccagtactccagcaat 60 tcatttctgaaagcagttgagccactttattccaaagtacactgcagatgttcaaactct 120 ccatttctctttcccttccacctgccagttttgctgactctcaacttgtcatgagtgtaa 180 gcattaaggacattatgcttcttcgattctgaagacaggccctgctcatggatgactctg 240 gcttcttaggaaaatatttttcttccaaaatcagtaggaaatctaaacttatcccctctt 300 tgcagatgtctagcagcttcagacatttggttaagaacccatgggaaaaaaaaaaatcct 360 tgctaatgtggtttcctttgtaaaccangattcttatttgnctggtatagaatatcagct 420 ctgaacgtgtggtaaagatttttgtgtttgaatataggagaaatcagtttgctgaaaagt 480 tagtcttaattatctattgg 50.0 <210> 313 <211> 718 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(718) <223> n = A,T,C or G
<400>

ggagatttgtgtggtttgcagccgagggagaccaggaagatctgcatggtgggaaggacc 60 tgatgatacagaggtgagaaataagaaaggctgctgactttaccatctgaggccacacat 120 ctgctgaaatggagataattaacatcactagaaacagcaagatgacaatataatgtctaa 180 gtagtgacatgtttttgcacatttccagcccttttaaatatccacacacacaggaagcac 240 aaaaggaagcacagagatccctgggagaaatgcccggccgccatcttgggtcatcgatga 300 gcctcgccctgtgcctgntcccgcttgtgagggaaggacattagaaaatgaattgatgtg 360 ttccttaaaggatggcaggaaaacagatcctgttgtggatatttatttgaacgggattac 420 agatttgaaatgaagtcacaaagtgagcattaccaatgagaggaaaacagacgagaaaat 480 cttgatggttcacaagacatgcaacaaacaaaatggaatactgtgatgacacgagcagcc 540 aactggggaggagataccacggggcagaggtcaggattctggccctgctgcctaactgtg 600 cgttataccaatcatttctatttctaccctcaaacaagctgtngaatatctgacttacgg 660 ttcttntggcccacattttcatnatccaccccntcnttttaannttantccaaantgt 718 <210> 314 <211> 358 <212> DNA
<213> Homo sapien <400> 314 gtttatttacattacagaaaaaacatcaagacaatgtatactatttcaaatatatccata 60 cataatcaaatatagctgtagtacatgttttcattggtgtagattaccacaaatgcaagg 120 caacatgtgtagatctcttgtcttattcttttgtctataatactgtattgtgtagtccaa 180 gctctcggtagtccagccactgtgaaacatgctccctttagattaacctcgtggacgctc 240 ttgttgtattgctgaactgtagtgccctgtattttgcttctgtctgtgaattctgttgct 300 tctggggcatttccttgtgatgcagaggaccaccacacagatgacagcaatctgaatt 358 <210> 315 <211> 341 <212> DNA
<213> Homo sapien <400> 315 taccacctccccgctggcactgatgagccgcatcaccatggtcaccagcaccatgaaggc 60 ataggtgatgatgaggacatggaatgggcccccaaggatggtctgtccaaagaagcgagt 120 gacccccattctgaagatgtctggaacctctaccagcaggatgatgatagccccaatgac 180 agtcaccagctccccgaccagccggatatcgtccttaggggtcatgtaggcttcctgaag 240 tagcttctgctgtaagagggtgttgtcccgggggctcgtgcggttattggtcctgggctt 300 gagggggcggtagatgcagcacatggtgaagcagatgatgt 341 <210> 316 <211> 151 <212> DNA
<213> Homo sapien <400> 316 agact.gggca agactcttac gccccacact gcaatttggt cttgttgccg tatccattta 60 tgtgggcctt tctcgagttt ctgattataa acaccactgg agcgatgtgt tgactggact 120 cattcaggga gctctggttg caatattagt t 151 <210> 317 <211> 151 <212> DNA
<213> Homo sapien <400> 317 agaactagtg gatcctaatg aaatacctga aacatatatt ggcatttatc aatggctcaa 60 atcttcattt atctctggcc ttaaccctgg ctcctgaggc tgcggccagc agatcccagg 120 ccagggctct gttcttgcca cacctgcttg a 151 <210> 318 <211> 151 <212> DNA
<213> Homo sapien <400> 318 actggtggga ggcgctgttt agttggctgt tttcagaggg gtctttcgga gggacctcct 60 gctgcaggct ggagtgtctt tattcctggc gggagaccgc acattccact gctgaggctg 120 tgggggcggt ttatcaggca gtgataaaca t 151 <210> 319 <211> 151 <212> DNA
<213> Homo sapien <400> 319 aactagtgga tccagagcta taggtacagt gtgatctcag ctttgcaaac acattttcta 60 catagatagt actaggtatt aatagatatg taaagaaaga aatcacacca ttaataatgg 120 taagattggg tttatgtgat tttagtgggt a 151 <210> 320 <211> 150 <212> DNA
<213> Homo sapien <400> 320 ' aactagtgga tccactagtc cagtgtggtg gaattccatt gtgttggggt tctagatcgc 60 gagcggctgc cctttttttt tttttttttg ggggggaatt tttttttttt aatagttatt 120 gagtgttcta cagcttacag taaataccat 150 <210> 321 <211> 151 <212> DNA
<213> Homo sapien <400> 321 agcaactttg tttttcatcc aggttatttt aggcttagga tttcctctca cactgcagtt 60 tagggtggca ttgtaaccag ctatggcata ggtgttaacc aaaggctgag taaacatggg 120 tgcctctgag aaatcaaagt cttcatacac t 151 <210> 322 <211> 151 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(151) <223> n = A,T,C or G
<400> 322 atccagcatc ttctcctgtt tcttgccttc ctttttcttc ttcttasatt ctgcttgagg 60 tttgggcttg gtcagtttgc cacagggctt ggagatggtg acagtcttct ggcattcggc 120 attgtgcagg gctcgcttca nacttccagt t 151 <210> 323 <211> 151 <212> DNA
'<213> Homo sapien <220>
<221> misc_feature <222> (1). .(151) <223> n = A,T,C or G
<400> 323 tgaggacttg tkttcttttt ctttattttt aatcctctta ckttgtaaat atattgccta 60 nagactcant tactacccag tttgtggttt twtgggagaa atgtaactgg acagttagct 120 gttcaatyaa aaagacactt ancccatgtg g 151 <210> 324 <211> 461 <212> DNA
<213> Homo sapien <220>

<221> misc_feature <222> (1). .(461) <223> n = A,T,C or G
<400>

acctgtgtggaatttcagctttcctcatgcaaaaggattttgtatccccggcctacttga 60 agaagtggtcagctaaaggaatccaggttgttggttggactgttaatacctttgatgaaa 120 agagttactacgaatcccatcttggttccagctatatcactgacagcatggtagaagact 180 gcgaacctcacttctagactttcacggtgggacgaaacgggttcagaaactgccaggggc 240 ctcatacagggatatcaaaataccctttgtgctacccaggccctggggaatcaggtgact 300 cacacaaatgcaatagttggtcactgcatttttacctgaaccaaagctaaacccggtgtt 360 gccaccatgcaccatggcatgccagagttcaacactgttgctcttgaaaattgggtctga 420 aaaaacgcacaagagcccctgccctgccctagctgangcac 461 <210> 325 <211> 400 <212> DNA
<213> Homo sapien <400> 325 acactgtttccatgttatgtttctacacattgctacctcagtgctcctggaaacttagct 60 tttgatgtctccaagtagtccaccttcatttaactctttgaaactgtatcatctttgcca 120 agtaagagtggtggcctatttcagctgctttgacaaaatgactggctcctgacttaacgt 180 tctataaatgaatgtgctgaagcaaagtgcccatggtggcggcgaagaagagaaagatgt 240 gttttgttttggactctctgtggtcccttccaatgctgtgggtttccaaccaggggaagg 300 gtcccttttgcattgccaagtgccataaccatgagcactacgctaccatggttctgcctc 360 ctggccaagcaggctggtttgcaagaatgaaatgaatgat 400 <210> 326 <211> 1215 <212> DNA
<213> Homo sapien <400>

ggaggactgcagcccgcactcgcagccctggcaggcggcactggtcatggaaaacgaatt60 gttctgctcgggcgtcctggtgcatccgcagtgggtgctgtcagccgcacactgtttcca120 gaactcctacaccatcgggctgggcctgcacagtcttgaggccgaccaagagccagggag180 ccagatggtggaggccagcctctccgtacggcacccagagtacaacagacccttgctcgc240 taacgacctcatgctcatcaagttggacgaatccgtgtccgagtctgacaccatccggag300 catcagcattgcttcgcagtgccctaccgcggggaactcttgcctcgtttctggctgggg360 tctgctggcgaacggcagaatgcctaccgtgctgcagtgcgtgaacgtgtcggtggtgtc420 tgaggaggtctgcagtaagctctatgacccgctgtaccaccccagcatgttctgcgccgg480 cggagggcaagaccagaaggactcctgcaacggtgactctggggggcccctgatctgcaa540 cgggtacttgcagggccttgtgtctttcggaaaagccccgtgtggccaagttggcgtgcc600 aggtgtctacaccaacctctgcaaattcactgagtggatagagaaaaccgtccaggccag660 ttaactctggggactgggaacccatgaaattgacccccaaatacatcctgcggaaggaat720 tcaggaatatctgttcccagcccctcctccctcaggcccaggagtccaggcccccagccc780 ctcctccctcaaaccaagggtacagatccccagcccctcctccctcagacccaggagtcc840 agaccccccagcccctcctccctcagacccaggagtccagcccctcctccctcagaccca900 ggagtccagaccccccagcccctcctccctcagacccaggggtccaggcccccaacccct960 cctccctcagactcagaggtccaagcccccaacccctccttccccagacccagaggtcca1020 ggtcccagcccctcctccctcagacccagcggtccaatgccacctagactctccctgtac1080 acagtgcccccttgtggcacgttgacccaaccttaccagttggtttttcattttttgtcc1140 ctttcccctagatccagaaataaagtctaagagaagcgcaaaaaaaaaaaaaaaaaaaaa1200 aaaaaaaaaaaaaaa 1215 <210> 327 <211> 220 <212> PRT
<213> Homo sapien <400> 327 Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210> 328 <211> 234 <212> DNA
<213> Homo sapien <400> 328 cgctcgtctc tggtagctgc agccaaatca taaacggcga ggactgcagc ccgcactcgc 60 agccctggca ggcggcactg gtcatggaaa acgaattgtt ctgctcgggc gtcctggtgc 120 atccgcagtg ggtgctgtca gccacacact gtttccagaa ctcctacacc atcgggctgg 180 gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag gcca 234 <210> 329 <211> 77 <212> PRT
<213> Homo sapien <400> 329 Leu Val Ser Gly Ser Cys Ser Gln Ile Ile Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Thr His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala <210> 330 <211> 70 <212> DNA
<213> Homo sapien <400> 330 cccaacacaa tggcccgatc ccatccctga ctccgccctc aggatcgctc gtctctggta 60 gctgcagcca 70 <210> 331 <211> 22 <212> PRT
<213> Homo sapien <400> 331 Gln His Asn Gly Pro Ile Pro Ser Leu Thr Pro Pro Ser Gly Ser Leu Val Ser Gly Ser Cys Ser <210> 332 <211> 2507 <212> DNA
<213> Homo sapien <400>

tggtgccgctgcagccggcagagatggttgagctcatgttcccgctgttgctcctccttc60 tgcccttccttctgtatatggctgcgccccaaatcaggaaaatgctgtccagtggggtgt120 gtacatcaactgttcagcttcctgggaaagtagttgtggtcacaggagctaatacaggta180 tcgggaaggagacagccaaagagctggctcagagaggagctcgagtatatttagcttgcc240 gggatgtggaaaagggggaattggtggccaaagagatccagaccacgacagggaaccagc300 aggtgttggtgcggaaactggacctgtctgatactaagtctattcgagcttttgctaagg360 gcttcttagctgaggaaaagcacctccacgttttgatcaacaatgcaggagtgatgatgt420 gtccgtactcgaagacagcagatggctttgagatgcacataggagtcaaccacttgggtc480 acttcctcctaacccatctgctgctagagaaactaaaggaatcagccccatcaaggatag540 taaatgtgtcttccctcgcacatcacctgggaaggatccacttccataacctgcagggcg600 agaaattctacaatgcaggcctggcctactgtcacagcaagctagccaacatcctcttca660 cccaggaactggcccggagactaaaaggctctggcgttacgacgtattctgtacaccctg720 gcacagtccaatctgaactggttcggcactcatctttcatgagatggatgtggtggcttt780 tctcctttttcatcaagactcctcagcagggagcccagaccagcctgcactgtgccttaa840 cagaaggtcttgagattctaagtgggaatcatttcagtgactgtcatgtggcatgggtct900 ctgcccaagctcgtaatgagactatagcaaggcggctgtgggacgtcagttgtgacctgc960 tgggcctcccaatagactaacaggcagtgccagttggacccaagagaagactgcagcaga1020 ctacacagtacttcttgtcaaaatgattctccttcaaggttttcaaaacctttagcacaa1080 agagagcaaaaccttccagccttgcctgcttggtgtccagttaaaactcagtgtactgcc1140 agattcgtctaaatgtctgtcatgtccagatttactttgcttctgttactgccagagtta1200 ctagagatatcataataggataagaagaccctcatatgacctgcacagctcattttcctt1260 ctgaaagaaactactacctaggagaatctaagctatagcagggatgatttatgcaaattt1320 gaactagcttctttgttcacaattcagttcctcccaaccaaccagtcttcacttcaagag1380 ggccacactgcaacctcagcttaacatgaataacaaagactggctcaggagcagggcttg1440 cccaggcatggtggatcaccggaggtcagtagttcaagaccagcctggccaacatggtga1500 aaccccacctctactaaaaattgtgtatatctttgtgtgtcttcctgtttatgtgtgcca1560 agggagtattttcacaaagttcaaaacagccacaataatcagagatggagcaaaccagtg1620 ccatccagtctttatgcaaatgaaatgctgcaaagggaagcagattctgtatatgttggt1680 aactacccaccaagagcacatgggtagcagggaagaagtaaaaaaagagaaggagaatac1740 tggaagataatgcacaaaatgaagggactagttaaggattaactagccctttaaggatta1800 actagttaaggattaatagcaaaagayattaaatatgctaacatagctatggaggaattg1860 agggcaagcacccaggactgatgaggtcttaacaaaaaccagtgtggcaaaaaaaaaaaa1920 aaaaaaaaaaaaaaatcctaaaaacaaacaaacaaaaaaaacaattcttcattcagaaaa1980 attatcttagggactgatattggtaattatggtcaatttaataatattttggggcatttc2040 cttacattgtcttgacaagattaaaatgtctgtgccaaaattttgtattttatttggaga2100 cttcttatcaaaagtaatgctgccaaaggaagtctaaggaattagtagtgttcccatcac2160 ttgtttggagtgtgctattctaaaagattttgatttcctggaatgacaattatattttaa2220 ctttggtgggggaaagagttataggaccacagtcttcacttctgatacttgtaaattaat2280 cttttattgcacttgttttgaccattaagctatatgtttagaaatggtcattttacggaa2340 aaattagaaaaattctgataatagtgcagaataaatgaattaatgttttacttaatttat2400 attgaactgtcaatgacaaataaaaattctttttgattattttttgttttcatttaccag2460 aataaaaacgtaagaattaaaagtttgattacaaaaaaaaaaaaaaa 2507 <210> 333 <211> 3030 <212> DNA
<213> Homo sapien <400>

gcaggcgacttgcgagctgggagcgatttaaaacgctttggattcccccggcctgggtgg60 ggagagcgagctgggtgccccctagattccccgcccccgcacctcatgagccgaccctcg120 gctccatggagcccggcaattatgccaccttggatggagccaaggatatcgaaggcttgc180 tgggagcgggaggggggcggaatctggtcgcccactcccctctgaccagccacccagcgg240 cgcctacgctgatgcctgctgtcaactatgcccccttggatctgccaggctcggcggagc300 cgccaaagcaatgccacccatgccctggggtgccccaggggacgtccccagctcccgtgc360 cttatggttactttggaggcgggtactactcctgccgagtgtcccggagctcgctgaaac420 cctgtgcccaggcagccaccctggccgcgtaccccgcggagactcccacggccggggaag480 agtaccccagycgccccactgagtttgccttctatccgggatatccgggaacctaccagc540 ctatggccagttacctggacgtgtctgtggtgcagactctgggtgctcctggagaaccgc600 gacatgactccctgttgcctgtggacagttaccagtcttgggctctcgctggtggctgga660 acagccagatgtgttgccagggagaacagaacccaccaggtcccttttggaaggcagcat720 ttgcagactccagcgggcagcaccctcctgacgcctgcgcctttcgtcgcggccgcaaga780 -aacgcattccgtacagcaaggggcagttgcgggagctggagcgggagtatgcggctaaca840 agttcatcaccaaggacaagaggcgcaagatctcggcagccaccagcctctcggagcgcc900 agattaccatctggtttcagaaccgccgggtcaaagagaagaaggttctcgccaaggtga960 agaacagcgctaccccttaagagatctccttgcctgggtgggaggagcgaaagtgggggt1020 gtcctggggagaccaggaacctgccaagcccaggctggggccaaggactctgctgagagg1080 cccctagagacaacacccttcccaggccactggctgctggactgttcctcaggagcggcc1140 tgggtacccagtatgtgcagggagacggaaccccatgtgacagcccactccaccagggtt1200 cccaaagaacctggcccagtcataatcattcatcctgacagtggcaataatcacgataac1260 cagtactagctgccatgatcgttagcctcatattttctatctagagctctgtagagcact1320 ttagaaaccgctttcatgaattgagctaattatgaataaatttggaaggcgatccctttg1380 cagggaagctttctctcagacccccttccattacacctctcaccctggtaacagcaggaa1440 gactgaggagaggggaacgggcagattcgttgtgtggctgtgatgtccgtttagcatttt1500 tctcagctgacagctgggtaggtggacaattgtagaggctgtctcttcctccctccttgt1560 ccaccccatagggtgtacccactggtcttggaagcacccatccttaatacgatgattttt1620 ctgtcgtgtgaaaatgaagccagcaggctgcccctagtcagtccttccttccagagaaaa1680 agagatttgagaaagtgcctgggtaattcaccattaatttcctcccccaaactctctgag1740 tcttcccttaatatttctggtggttctgaccaaagcaggtcatggtttgttgagcatttg1800 ggatcccagtgaagtagatgtttgtagccttgcatacttagcccttcccaggcacaaacg1860 gagtggcagagtggtgccaaccctgttttcccagtccacgtagacagattcacagtgcgg1920 aattctggaagctggagacagacgggctctttgcagagccgggactctgagagggacatg1980 agggcctctgcctctgtgttcattctctgatgtcctgtacctgggctcagtgcccggtgg2040 gactcatctcctggccgcgcagcaaagccagcgggttcgtgctggtccttcctgcacctt2100 aggctgggggtggggggcctgccggcgcattctccacgattgagcgcacaggcctgaagt2160 ctggacaacccgcagaaccgaagctccgagcagcgggtcggtggcgagtagtggggtcgg2220 tggcgagcagttggtggtgggccgcggccgccactacctcgaggacatttccctcccgga2280 gccagctctcctagaaaccccgcggcggccgccgcagccaagtgtttatggcccgcggtc 2340 gggtgggatcctagccctgtctcctctcctgggaaggagtgagggtgggacgtgacttag 2400 acacctacaaatctatttaccaaagaggagcccgggactgagggaaaaggccaaagagtg 2460 tgagtgcatgcggactgggggttcaggggaagaggacgaggaggaggaagatgaggtcga 2520 tttcctgatttaaaaaatcgtccaagccccgtggtccagcttaaggtcctcggttacatg 2580 cgccgctcagagcaggtcactttctgccttccacgtcctccttcaaggaagccccatgtg 2640 ggtagctttcaatatcgcaggttcttactcctctgcctctataagctcaaacccaccaac 2700 gatcgggcaagtaaaccccctccctcgccgacttcggaactggcgagagttcagcgcaga 2760 tgggcctgtggggagggggcaagatagatgagggggagcggcatggtgcggggtgacccc 2820 ttggagagaggaaaaaggccacaagaggggctgccaccgccactaacggagatggccctg 2880 gtagagacctttgggggtctggaacctctggactccccatgctctaactcccacactctg 2940 ctatcagaaacttaaacttgaggattttctctgtttttcactcgcaataaaytcagagca 3000 aacaaaaaaaaaaaaaaaaaaaaactcgag 3030 <210> 334 <211> 2417 <212> DNA
<213> Homo sapien <400>

ggcggccgctctagagctagtgggatcccccgggctgcacgaattcggcacgagtgagtt60 ggagttttacctgtattgttttaatttcaacaagcctgaggactagccacaaatgtaccc120 agtttacaaatgaggaaacaggtgcaaaaaggttgttacctgtcaaaggtcgtatgtggc180 agagccaagatttgagcccagttatgtctgatgaacttagcctatgctctttaaacttct240 gaatgctgaccattgaggatatctaaacttagatcaattgcattttccctccaagactat300 ttacttatcaatacaataataccacctttaccaatctattgttttgatac.gagactcaaa360 tatgccagatatatgtaaaagcaacctacaagctctctaatcatgctcacctaaaagatt420 cccgggatctaataggctcaaagaaacttcttctagaaatataaaagagaaaattggatt480 atgcaaaaattcattattaatttttttcatccatcctttaattcagcaaacatttatctg540 ttgttgactttatgcagtatggccttttaaggattgggggacaggtgaagaacggggtgc600 cagaatgcatcctcctactaatgaggtcagtacacatttgcattttaaaatgccctgtcc660 agctgggcatggtggatcatgcctgtaatctcaacattggaaggccaaggcaggaggatt720 gcttcagcccaggagttcaagaccagcctgggcaacatagaaagaccccatctctcaatc780 aatcaatcaatgccctgtctttgaaaataaaactctttaagaaaggtttaatgggcaggg840 tgtggtagctcatgcctataatacagcactttgggaggctgaggcaggaggatcacttta900 gcccagaagttcaagaccagcctgggcaacaagtgacacctcatctcaattttttaataa960 aatgaatacatacataaggaaagataaaaagaaaagtttaatgaaagaatacagtataaa1020 acaaatctcttggacctaaaagtatttttgttcaagccaaatattgtgaatcacctctct1080 gtgttgaggatacagaatatctaagcccaggaaactgagcagaaagttcatgtactaact1140 aatcaacccgaggcaaggcaaaaatgagactaactaatcaatccgaggcaaggggcaaat1200 tagacggaacctgactctggtctattaagcgacaactttccctctgttgtatttttcttt1260 tattcaatgtaaaaggataaaaactctctaaaactaaaaacaatgtttgtcaggagttac1320 aaaccatgaccaactaattatggggaatcataaaatatgactgtatgagatcttgatggt1380 ttacaaagtgtacccactgttaatcactttaaacattaatgaacttaaaaatgaatttac1440 ggagattggaatgtttctttcctgttgtattagttggctcaggctgccataacaaaatac1500 cacagactgggaggcttaagtaacagaaattcatttctcacagttctgggggctggaagt1560 ccacgatcaaggtgcaggaaaggcaggcttcattctgaggcccctctcttggctcacatg1620 tggccaccctcccactgcgtgctcacatgacctctttgtgctcctggaaagagggtgtgg1680 gggacagagggaaagagaaggagagggaactctctggtgtctcgtctttcaaggacccta1740 acctgggccactttggcccaggcactgtggggtggggggttgtggctgctctgctctgag1800 tggccaagataaagcaacagaaaaatgtccaaagctgtgcagcaaagacaagccaccgaa1860 cagggatctgctcatcagtgtggggacctccaagtcggccaccctggaggcaagccccca1920 cagagcccatgcaaggtggcagcagcagaagaagggaattgtccctgtccttggcacatt1980 cctcaccgacctggtgatgctggacactgcgatgaatggtaatgtggatgagaatatgat2040 ggactcccagaaaaggagacccagctgctcaggtggctgcaaatcattacagccttcatc2100 ctggggaggaactgggggcctggttctgggtcagagagcagcccagtgagggtgagagct2160 acagcctgtcctgccagctggatccccagtcccggtcaaccagtaatcaaggctgagcag2220 atcaggcttcccggagctggtcttgggaagccagccctggggtgagttggctcctgctgt2280 ggtactgaga caatattgtc ataaattcaa tgcgcccttg tatccctttt tcttttttat 2340 ctgtctacat ctataatcac tatgcatact agtctttgtt agtgtttcta ttcmacttaa 2400 tagagatatg ttatact 2417 <210> 335 <211> 2984 <212> DNA
<213> Homo sapien <400>

atccctccttccccactctcctttccagaaggcacttggggtcttatctgttggactctg 60 aaaacacttcaggcgcccttccaaggcttccccaaacccctaagcagccgcagaagcgct 120 cccgagctgccttctcccacactcaggtgatcgagttggagaggaagttcagccatcaga 180 agtacctgtcggcccctgaacgggcccacctggccaagaacctcaagctcacggagaccc 240 aagtgaagatatggttccagaacagacgctataagactaagcgaaagcagctctcctcgg 300 agctgggagacttggagaagcactcctctttgccggccctgaaagaggaggccttctccc 360 gggcctccctggtctccgtgtataacagctatccttactacccatacctgtactgcgtgg 420 gcagctggagcccagctttttggtaatgccagctcaggtgacaaccattatgatcaaaaa 480 ctgccttccccagggtgtctctatgaaaagcacaaggggccaaggtcagggagcaagagg 540 tgtgcacaccaaagctattggagatttgcgtggaaatctcasattcttcactggtgagac 600 aatgaaacaacagagacagtgaaagttttaatacctaagtcattcccccagtgcatactg 660 taggtcattttttttgcttctggctacctgtttgaaggggagagagggaaaatcaagtgg 720 tattttccagcactttgtatgattttggatgagctgtacacccaaggattctgttctgca 780 actccatcctcctgtgtcactgaatatcaactctgaaagagcaaacctaacaggagaaag 840 gacaaccaggatgaggatgtcaccaactgaattaaacttaagtccagaagcctcctgttg 900 gccttggaatatggccaaggctctctctgtccctgtaaaagagaggggcaaatagagagt 960 ctccaagagaacgccctcatgctcagcacatatttgcatgggagggggagatgggtggga 1020 ggagatgaaaatatcagcttttcttattcctttttattccttttaaaatggtatgccaac 1080 ttaagtatttacagggtggcccaaatagaacaagatgcactcgctgtgattttaagacaa 1140 gctgtataaacagaactccactgcaagagggggggccgggccaggagaatctccgcttgt 1200 ccaagacaggggcctaaggagggtctccacactgctgctaggggctgttgcattttttta 1260 ttagtagaaagtggaaaggcctcttctcaacttttttcccttgggctggagaatttagaa 1320 tcagaagtttcctggagttttcaggctatcatatatactgtatcctgaaaggcaacataa 1380 ttcttccttccctccttttaaaattttgtgttcctttttgcagcaattactcactaaagg 1440 gcttcattttagtccagatttttagtctggctgcacctaacttatgcctcgcttatttag 1500 cccgagatctggtctttttttttttttttttttttccgtctccccaaagctttatctgtc 1560 ttgactttttaaaaaagtttgggggcagattctgaattggctaaaagacatgcattttta 1620 aaactagcaactcttatttctttcctttaaaaatacatagcattaaatcccaaatcctat 1680 ttaaagacctgacagcttgagaaggtcactactgcatttataggaccttctggtggttct 1740 gctgttacgtttgaagtctgacaatccttgagaatctttgcatgcagaggaggtaagagg 1800 tattggattttcacagaggaagaacacagcgcagaatgaagggccaggcttactgagctg 1860 tccagtggagggctcatgggtgggacatggaaaagaaggcagcctaggccctggggagcc 1920 cagtccactgagcaagcaagggactgagtgagccttttgcaggaaaaggctaagaaaaag 1980 gaaaaccattctaaaacacaacaagaaactgtccaaatgctttgggaactgtgtttattg 2040 cctataatgggtccccaaaatgggtaacctagacttcagagagaatgagcagagagcaaa 2100 ggagaaatctggctgtccttccattttcattctgttatctcaggtgagctggtagagggg 2160 agacattagaaaaaaatgaaacaacaaaacaattactaatgaggtacgctgaggcctggg 2220 agtctcttgactccactacttaattccgtttagtgagaaacctttcaattttcttttatt 2280 agaagggccagcttactgttggtggcaaaattgccaacataagttaatagaaagttggcc 2340 aatttcaccccattttctgtggtttgggctccacattgcaatgttcaatgccacgtgctg 2400 ctgacaccgaccggagtactagccagcacaaaaggcagggtagcctgaattgctttctgc 2460 tctttacatttcttttaaaataagcatttagtgctcagtccctactgagtactctttctc 2520 tcccctcctctgaatttaattctttcaacttgcaatttgcaaggattacacatttcactg 2580 tgatgtatattgtgttgcaaaaaaaaaaaaaagtgtctttgtttaaaattacttggtttg 2640 tgaatccatcttgctttttccccattggaactagtcattaacccatctctgaactggtag 2700 aaaaacatctgaagagctagtctatcagcatctgacaggtgaattggatggttctcagaa 2760 ccatttcacccagacagcctgtttctatcctgtttaataaattagtttgggttctctaca 2820 tgcataacaaaccctgctccaatctgtcacataaaagtctgtgacttgaagtttagtcag 2880 cacccccacc aaactttatt tttctatgtg ttttttgcaa catatgagtg ttttgaaaat 2940 aaagtaccca tgtctttatt agaaaaaaaa aaaaaaaaaa aaaa 2984 <210> 336 <211> 147 <212> PRT
<213> Homo sapien <400> 336 Pro Ser Phe Pro Thr Leu Leu Ser Arg Arg His Leu Gly Ser Tyr Leu Leu Asp Ser Glu Asn Thr Ser Gly Ala Leu Pro Arg Leu Pro.Gln Thr Pro Lys Gln Pro Gln Lys Arg Ser Arg Ala Ala Phe Ser His Thr Gln Val Ile Glu Leu Glu Arg Lys Phe Ser His Gln Lys Tyr Leu Ser Ala Pro Glu Arg Ala His Leu Ala Lys Asn Leu Lys Leu Thr Glu Thr Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln Leu Ser Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala Leu Lys Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn Ser Tyr Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro Ala Phe Trp <210> 337 <211> 9 <212> PRT
<213> Homo sapien <400> 337 Ala Leu Thr Gly Phe Thr Phe Ser Ala <210> 338 <211> 9 <212> PRT
<213> Homo sapien <400> 338 Leu Leu Ala Asn Asp Leu Met Leu Ile <210> 339 <211> 318 <212> PRT
<213> Homo sapien <400> 339 Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Leu Pro Phe Leu Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Val Thr Gly Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu Val Ala Lys Glu Ile Gln Thr Thr Thr Gly Asn Gln Gln Val Leu Val Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu Leu Glu Lys Leu Lys Glu Ser Ala Pro Ser Arg Ile Val Asn Val Ser Ser Leu Ala His His Leu Gly Arg Ile His Phe His Asn Leu Gln Gly Glu Lys Phe Tyr Asn Ala Gly Leu Ala Tyr Cys His Ser Lys Leu Ala Asn Ile Leu Phe Thr Gln Glu Leu Ala Arg Arg Leu Lys Gly Ser Gly Val Thr Thr Tyr Ser Val His Pro Gly Thr Val Gln Ser Glu Leu Val Arg His Ser Ser Phe Met Arg Trp Met Trp Trp Leu Phe Ser Phe Phe Ile Lys Thr Pro Gln Gln Gly Ala Gln Thr Ser Leu His Cys Ala Leu Thr Glu Gly Leu Glu Ile Leu Ser Gly Asn His Phe Ser Asp Cys His Val Ala Trp Val Ser Ala Gln Ala Arg Asn Glu Thr Ile Ala Arg Arg Leu Trp Asp Val Ser Cys Asp Leu Leu Gly Leu Pro Ile Asp <210> 340 <211> 483 <212> DNA
<213> Homo sapien <400>

gccgaggtctgccttcacacggaggacacgagactgcttcctcaagggctcctgcctgcc 60 tggacactggtgggaggcgctgtttagttggctgttttcagaggggtctttcggagggac 120 ctcctgctgcaggctggagtgtctttattcctggcgggagaccgcacattccactgctga 180 ggttgtgggggcggtttatcaggcagtgataaacataagatgtcatttccttgactccgg 240 ccttcaattttctctttggctgacgacggagtccgtggtgtcccgatgtaactgacccct 300 gctccaaacgtgacatcactgatgctcttctcgggggtgctgatggcccgcttggtcacg 360 tgctcaatctcgccattcgactcttgctccaaactgtatgaagacacctgactgcacgtt 420 ttttctgggcttccagaatttaaagtgaaaggcagcactcctaagctccgactccgatgc 480 ctg 483 <210> 341 <211> 344 <212> DNA
<213> Homo sapien <400> 341 ctgctgctgagtcacagatttcattataaatagcctccctaaggaaaatacactgaatgc 60 tatttttactaaccattctatttttatagaaatagctgagagtttctaaaccaactctct 120 gctgccttacaagtattaaatattttacttctttccataaagagtagctcaaaatatgca 180 attaatttaataatttctgatgatggttttatctgcagtaatatgtatatcatctattag 240 aatttacttaatgaaaaactgaagagaacaaaatttgtaaccactagcacttaagtactc 300 ctgattcttaacattgtctttaatgaccacaagacaaccaacag 344 <210> 342 <211> 592 <212> DNA
<213> Homo sapien <400> 342 acagcaaaaaagaaactgagaagcccaatytgctttcttgttaacatccacttatccaac 60 caatgtggaaacttcttatacttggttccattatgaagttggacaattgctgctatcaca 120 cctggcaggtaaaccaatgccaagagagtgatggaaaccattggcaagactttgttgatg 180 accaggattggaattttataaaaatattgttgatgggaagttgctaaagggtgaattact 240 tccctcagaagagtgtaaagaaaagtcagagatgctataatagcagctattttaattggc 300 aagtgccactgtggaaagagttcctgtgtgtgctgaagttctgaagggcagtcaaattca 360 tcagcatgggctgtttggtgcaaatgcaaaagcacaggtctttttagcatgctggtctct 420 cccgtgtccttatgcaaataatcgtcttcttctaaatttctcctaggcttcattttccaa 480 agttcttcttggtttgtgatgtcttttctgctttccattaattctataaaatagtatggc 540 ttcagccacccactcttcgccttagcttgaccgtgagtctcggctgccgctg 592 <210> 343 <211> 382 <212> DNA
<213> Homo sapien <400>

ttcttgacctcctcctccttcaagctcaaacaccacctcccttattcaggaccggcactt 60 cttaatgtttgtggctttctctccagcctctcttaggaggggtaatggtggagttggcat 120 cttgtaactctcctttctcctttcttcccctttctctgcccgcctttcccatcctgctgt 180 agacttcttgattgtcagtctgtgtcacatccagtgattgttttggtttctgttcccttt 240 ctgactgcccaaggggctcagaaccccagcaatcccttcctttcactaccttcttttttg 300 ggggtagttggaagggactgaaattgtggggggaaggtaggaggcacatcaataaagagg 360 aaaccaccaagctgaaaaaaas 382 <210> 344 <211> 536 <212> DNA
<213> Homo sapien <400>

ctgggcctgaagctgtagggtaaatcagaggcaggcttctgagtgatgagagtcctgaga 60 caataggccacataaacttggctggatggaacctcacaataaggtggtcacctcttgttt 120 gtttagggggatgccaaggataaggccagctcagttatatgaagagaagcagaacaaaca 180 agtctttcagagaaatggatgcaatcagagtgggatcccggtcacatcaaggtcacactc 240 caccttcatgtgcctgaatggttgccaggtcagaaaaatccaccccttacgagtgcggct 300 tcgaccctatatcccccgcccgcgtccctttctccataaaattcttcttagtagctatta 360 ccttcttattatttgatctagaaattgccctccttttacccctaccatgagccctacaaa 420 caactaacctgccactaatagttatgtcatccctcttattaatcatcatcctagccctaa 480 gtctggcctatgagtgactacaaaaaggattagactgagccgaataacaaaaaaaa 536 <210> 345 <211> 251 <212> DNA
<213> Homo sapien <400> 345 accttttgaggtctctctcaccacctccacagccaccgtcaccgtgggatgtgctggatg 60 tgaatgaagcccccatctttgtgcctcctgaaaagagagtggaagtgtccgaggactttg 120 gcgtgggccaggaaatcacatcctacactgcccaggagccagacacatttatggaacaga 180 aaataacatatcggatttggagagacactgccaactggctggagattaatccggacactg 240 gtgccatttcc 251 <210> 346 <211> 282 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1) . . (282) <223> n = A,T,C or G
<400> 346 cgcgtctctg acactgtgat catgacaggg gttcaaacag aaagtgcctg ggccctcctt 60 ctaagtcttg ttaccaaaaa aaggaaaaag aaaagatctt ctcagttaca aattctggga 120 agggagacta tacctggctc ttgccctaag tgagaggtct tccctcccgc accaaaaaat 180 agaaaggctt tctatttcac tggcccaggt agggggaagg agagtaactt tgagtctgtg 240 ggtctcattt cccaaggtgc cttcaatgct catnaaaacc as 282 <210> 347 <211> 201 <212> DNA
<213> Homo sapien <220>
<221> misr__feature <222> (1). .(201) <223> n = A,T,C or G
<400> 347 acacacataa tattataaaa tgccatctaa ttggaaggag ctttctatca ttgcaagtca 60 taaatataac ttttaaaana ntactancag cttttaccta ngctcctaaa tgcttgtaaa 120 tctgagactg actggaccca cccagaccca gggcaaagat acatgttacc atatcatct.t 180 tataaagaat ttttttttgt c 201 <210> 348 <211> 251 <212> DNA
<213> Homo sapien <400>

ctgttaatcacaacatttgtgcatcacttgtgccaagtgagaaaatgttctaaaatcaca 60 agagagaacagtgccagaatgaaactgaccctaagtcccaggtgcccctgggcaggcaga 120 aggagacactcccagcatggaggagggtttatcttttcatcctaggtcaggtctacaatg 180 ggggaaggttttattatagaactcccaacagcccacctcactcctgccacccacccgatg 240 gccctgcctcc 251 <210> 349 <211> 251 <212> DNA

<213> Homo sapien <400> 349 taaaaatcaa gccatttaat tgtatctttg aaggtaaaca atatatggga gctggatcac 60 aacccctgag gatgccagag ctatgggtcc agaacatggt gtggtattat caacagagtt 120 cagaagggtc tgaactctac gtgttaccag agaacataat gcaattcatg cattccactt 180 agcaattttg taaaatacca gaaacagacc ccaagagtct ttcaagatga ggaaaattca 240 actcctggtt t 251 <210> 350 <211> 908 <212> DNA
<213> Homo sapien <400> 350 ctggacactttgcgagggcttttgctggctgctgctgctgcccgtcatgctactcatcgt 60 agcccgcccggtgaagctcgctgctttccctacctccttaagtgactgccaaacgcccac 120 cggctggaattgctctggttatgatgacagagaaaatgatctcttcctctgtgacaccaa 180 cacctgtaaatttgatggggaatgtttaagaattggagacactgtgacttgcgtctgtca 240 gttcaagtgcaacaatgactatgtgcctgtgtgtggctccaatggggagagctaccagaa 300 tgagtgttacctgcgacaggctgcatgcaaacagcagagtgagatacttgtggtgtcaga 360 aggatcatgtgccacagtccatgaaggctctggagaaactagtcaaaaggagacatccac 420 ctgtgatatttgccagtttggtgcagaatgtgacgaagatgccgaggatgtctggtgtgt 480 gtgtaatattgactgttctcaaaccaacttcaatcccctctgcgcttctgatgggaaatc 540 ttatgataatgcatgccaaatcaaagaagcatcgtgtcagaaacaggagaaaattgaagt 600 catgtctttgggtcgatgtcaagataacacaactacaactactaagtctgaagatgggca 660 ttatgcaagaacagattatgcagagaatgctaacaaattagaagaaagtgccagagaaca 720 ccacataccttgtccggaacattacaatggcttctgcatgcatgggaagtgtgagcattc 780 tatcaatatgcaggagccatcttgcaggtgtgatgctggttatactggacaacactgtga 840 aaaaaaggactacagtgttctatacgttgttcccggtcctgtacgatttcagtatgtctt 900 aatcgcag 908 <210> 351 <211> 472 <212> DNA
<213> Homo sapien <400> 351 ccagttatttgcaagtggtaagagcctatttaccataaataatactaagaaccaactcaa 60 gtcaaaccttaatgccattgttattgtgaattaggattaagtagtaattttcaaaattca 120 cattaacttgattttaaaatcagwtttgygagtcatttaccacaagctaaatgtgtacac 180 tatgataaaaacaaccattgtattcctgtttttctaaacagtcctaatttctaacactgt 240 atatatccttcgacatcaatgaactttgttttcttttactccagtaataaagtaggcaca 300 gatctgtccacaacaaacttgccctctcatgccttgcctctcaccatgctctgctccagg 360 tcagcccccttttggcctgtttgttttgtcaaaaacctaatctgcttcttgcttttcttg 420 gtaatatatatttagggaagatgttgctttgcccacacacgaagcaaagtas 472 <210> 352 <211> 251 <212> DNA
<213> Homo sapien <400>

ctcaaagctaatctctcgggaatcaaaccagaaaagggcaaggatcttaggcatggtgga 60 tgtggataaggccaggtcaatggctgcaagcatgcagagaaagaggtacatcggagcgtg 120 caggctgcgttccgtccttacgatgaagaccacgatgcagtttccaaacattgccactac 180 atacatggaaaggagggggaagccaacccagaaatgggctttctctaatcctgggatacc 240 aataagcacaa 251 <210> 353 <211> 436 <212> DNA
<213> Homo sapien <400> 353 ttttttttttttttttttttttttttacaacaatgcagtcatttatttattgagtatgtg 60 cacattatggtattattactatactgattatatttatcatgtgacttctaattaraaaat 120 gtatccaaaagcaaaacagcagatatacaaaattaaagagacagaagatagacattaaca 180 gataaggcaacttatacattgacaatccaaatccaatacatttaaacatttgggaaatga 240 gggggacaaatggaagccaratcaaatttgtgtaaaactattcagtatgtttcccttgct 300 tcatgtctgaraaggctctcccttcaatggggatgacaaactccaaatgccacacaaatg 360 ttaacagaatactagattcacactggaacgggggtaaagaagaaattattttctataaaa 420 gggctcctaatgtagt 436 <210> 354 <211> 854 <212> DNA
<213> Homo sapien <400>

ccttttctagttcaccagttttctgcaaggatgctggttagggagtgtctgcaggaggag 60 caagtctgaaaccaaatctaggaaacataggaaacgagccaggcacagggctggtgggcc 120 atcagggaccaccctttgggttgatattttgcttaatctgcatcttttgagtaagatcat 180 ctggcagtagaagctgttctccaggtacatttctctagctcatgtacaaaaacatcctga 240 aggactttgtcaggtgccttgctaaaagccagatgcgttcggcacttccttggtctgagg 300 ttaattgcacacctacaggcactgggctcatgctttcaagtattttgtcctcactttagg 360 gtgagtgaaagatccccattataggagcacttgggagagatcatataaaagctgactctt .
' 420 gagtacatgcagtaatggggtagatgtgtgtggtgtgtcttcattcctgcaagggtgctt 480 gttagggagtgtttccaggaggaacaagtctgaaaccaatcatgaaataaatggtaggtg 540 tgaactggaaaactaattcaaaagagagatcgtgatatcagtgtggttgatacaccttgg 600 caatatggaaggctctaatttgcccatatttgaaataataattcagctttttgtaataca 660 aaataacaaaggattgagaatcatggtgtctaatgtataaaagacccaggaaacataaat 720 atatcaactgcataaatgtaaaatgcatgtgacccaagaaggccccaaagtggcagacaa 780 cattgtacccattttcccttccaaaatgtgagcggcgggcctgctgctttcaaggctgtc 840 acacgggatgtcag 854 <210> 355 <211> 676 <212> DNA
<213> Homo sapien <400> 355 gaaattaagtatgagctaaattccctgttaaaacctctaggggtgacagatctcttcaac 60 caggtcaaagctgatctttctggaatgtcaccaaccaagggcctatatttatcaaaagcc 120 atccacaagtcatacctggatgtcagcgaagagggcacggaggcagcagcagccactggg 180 gacagcatcgctgtaaaaagcctaccaatgagagctcagttcaaggcgaaccaccccttc 240 ctgttctttataaggcacactcataccaacacgatcctattctgtggcaagcttgcctct 300 ccctaatcagatggggttgagtaaggctcagagttgcagatgaggtgcagagacaatcct 360 gtgactttcccacggccaaaaagctgttcacacctcacgcacctctgtgcctcagtttgc 420 tcatctgcaaaataggtctaggatttcttccaaccatttcatgagttgtgaagctaaggc 480 tttgttaatcatggaaaaaggtagacttatgcagaaagcctttctggctttcttatctgt 540 ggtgtctcatttgagtgctgtccagtgacatgatcaagtcaatgagtaaaattttaaggg 600 attagattttcttgacttgtatgtatctgtgagatcttgaataagtgacctgacatctct 660 gcttaaagaaaaccag 676 <210> 356 <211> 574 <212> DNA
<213> Homo sapien <400>

tttttttttttttttcaggaaaacattctcttactttatttgcatctcagcaaaggttct 60 catgtggcacctgactggcatcaaaccaaagttcgtaggccaacaaagatgggccactca 120 caagcttcccatttgtagatctcagtgcctatgagtatctgacacctgttcctctcttca 180 gtctcttagggaggcttaaatctgtctcaggtgtgctaagagtgccagcccaaggkggtc 240 aaaagtccacaaaactgcagtctttgctgggatagtaagccaagcagtgcctggacagca 300 gagttcttttcttgggcaacagataaccagacaggactctaatcgtgctcttattcaaca 360 ttcttctgtctctgcctagactggaataaaaagccaatctctctcgtggcacagggaagg 420 agatacaagctcgtttacatgtgatagatctaacaaaggcatctaccgaagtctggtctg 480 gatagacggcacagggagctcttaggtcagcgctgctggttggaggacattcctgagtcc 540 agctttgcagcctttgtgcaacagtactttccca 574 <210> 357 <211> 393 <212> DNA
<213> Homo sapien <400> 357 tttttttttttttttttttttttttttttttacagaatataratgctttatcactgkact 60 taatatggkgkcttgttcactatacttaaaaatgcaccactcataaatatttaattcagc ~

aagccacaaccaaracttgattttatcaacaaaaacccctaaatataaacggsaaaaaag 180 atagatataattattccagtttttttaaaacttaaaaratattccattgccgaattaara 240 araarataagtgttatatggaaagaagggcattcaagcacactaaaraaacctgaggkaa 300 gcataatctgtacaaaattaaactgtcctttttggcattttaacaaatttgcaacgktct 360 tttttr_tctttttctgtttttttttttttttac 393 <210> 358 <211> 630 <212> DNA
<213> Homo sapien <400>

acagggtaaacaggaggatccttgctctcacggagcttacattctagcaggaggacaata 60 ttaatgtttataggaaaatgatgagtttatgacaaaggaagtagatagtgttttacaaga 120 gcatagagtagggaagctaatccagcacagggaggtcacagagacatccctaaggaagtg 180 gagtttaaactgagagaagcaagtgcttaaactgaaggatgtgttgaagaagaagggaga 240 gtagaacaatttgggcagagggaaccttatagaccctaaggtgggaaggttcaaagaact 300 gaaagagagctagaacagctggagccgttctccggtgtaaagaggagtcaaagagataag 360 attaaagatgtgaagattaagatcttggtggcattcagggattggcacttctacaagaaa 420 tcactgaagggagtaatgtgacattacttttcacttcaggatggccattctaactccagg 480 gggtagactggactaggtaagactggaggcaggtagacctcttctaaggcctgcgatagt 540 gaaagacaaaaataagtggggaaattcaggggatagtgaaaatcagtaggacttaatgag 600 caagccagaggttcctccacaacaaccagt 630 <210> 359 <211> 620 <212> DNA
<213> Homo sapien <400> 359 acagcattcc aaaatataca tctagagact aarrgtaaat gctctatagt gaagaagtaa 60 taattaaaaa atgctactaa tatagaaaat ttataatcag aaaaataaat attcagggag 120 ctcaccagaa gaataaagtg ctctgccagt tattaaagga ttactgctgg tgaattaaat 180 atggcattcc ccaagggaaa tagagagatt cttctggatt atgttcaata tttatttcac 240 aggattaactgttttaggaacagatataaagcttcgccacggaagagatggacaaagcac 300 aaagacaacatgataccttaggaagcaacactaccctttcaggcataaaatttggagaaa 360 tgcaacattatgcttcatgaataatatgtagaaagaaggtctgatgaaaatgacatcctt 420 aatgtaagataactttataagaattctgggtcaaataaaattctttgaagaaaacatcca 480 aatgtcattgacttatcaaatactatcttggcatataacctatgaaggcaaaactaaaca 540 aacaaaaagctcacaccaaacaaaaccatcaacttattttgtattctataacatacgaga 600 ctgtaaagatgtgacagtgt 620 <210> 360 <211> 431 <212> DNA
<213> Homo sapien <400>

aaaaaaaaaaagccagaacaacatgtgatagataatatgattggctgcacacttccagac 60 tgatgaatgatgaacgtgatggactattgtatggagcacatcttcagcaagagggggaaa 120 tactcatcatttttggccagcagttgtttgatcaccaaacatcatgccagaatactcagc 180 aaaccttcttagctcttgagaagtcaaagtccgggggaatttattcctggcaattttaat 240 tggactccttatgtgagagcagcggctacccagctggggtggtggagcgaacccgtcact 300 agtggacatgcagtggcagagctcctggtaaccacctagaggaatacacaggcacatgtg 360 tgatgccaagcgtgacacctgtagcactcaaatttgtcttgtttttgtctttcggtgtgt 420 agattcttagt 431 <210> 361 <211> 351 <212> DNA
<213> Homo sapien <400> 361 acactgatttccgatcaaaagaatcatcatctttaccttgacttttcagggaattactga60 actttcttctcagaagatagggcacagccattgccttggcctcacttgaagggtctgcat120 ttgggtcctctggtctcttgccaagtttcccagccactcgagggagaaatatcgggaggt180 ttgacttcctccggggctttcccgagggcttcaccgtgagccctgcggccctcagggctg.240 caatcctggattcaatgtctgaaacctcgctctctgcctgctggacttctgaggccgtca'300 ctgccactctgtcctccagctctgacagctcctcatctgtggtcctgttgt 351 <210> 362 <211> 463 <212> DNA
<213> Homo sapien <400> 362 acttcatcaggccataatgggtgcctcccgtgagaatccaagcacctttggactgcgcga 60 tgtagatgagccggctgaagatcttgcgcatgcgcggcttcagggcgaagttcttggcgc 120 ccccggtcacagaaatgaccaggttgggtgttttcaggtgccagtgctgggtcagcagct 180 cgtaaaggatttccgcgtccgtgtcgcaggacagacgtatatacttccctttcttcccca 240 gtgtctcaaactgaatatccccaaaggcgtcggtaggaaattccttggtgtgtttcttgt 300 agttccatttctcactttggttgatctgggtgccttccatgtgctggctctgggcatagc 360 cacacttgcacacattctccctgataagcacgatggtgtggacaggaaggaaggatttca 420 ttgagcctgcttatggaaactggtattgttagcttaaatagac 463 <210> 363 <211> 653 <212> DNA
<213> Homo sapien <220>
<221> misc feature <222> (1)...(653) <223> n = A,T,C or G
<400> 363 acccccgagtncctgnctggcatactgngaacgaccaacgacacacccaagctcggcctc 60 ctcttggngattctgggtgacatcttcatgaatggcaaccgtgccagwgaggctgtcctc 120 tgggaggcactacgcaagatgggactgcgtcctggggtgagacatcctctccttggagat 180 ctaacgaaacttctcacctatgagttgtaaagcagaaatacctgnactacagacgagtgc 240 ccaacagcaaccccccggaagtatgagttcctctrgggcctccgttcctaccatgagasc 300 tagcaagatgnaagtgttgagantcattgcagaggttcagaaaagagacccntcgtgact 360 ggtctgcacagttcatggaggctgcagatgaggccttggatgctctggatgctgctgcag 420 ctgaggccgaagcccgggctgaagcaagaacccgcatgggaattggagatgaggctgtgt 480 ntgggccctggagctgggatgacattgagtttgagctgctgacctgggatgaggaaggag 540 attttggagatccntggtccagaattccatttaccttctgggccagataccaccagaatg 600 cccgctccagattccctcagacctttgccggtcccattattggtcstggtggt 653 <210> 364 <211> 401 <212> DNA
<213> Homo sapien <400>

actagaggaaagacgttaaaccactctactaccacttgtggaactctcaaagggtaaatg 60 acaaagccaatgaatgactctaaaaacaatatttacatttaatggtttgtagacaataaa 120 aaaacaaggtggatagatctagaattgtaacattttaagaaaaccatagcatttgacaga 180 tgagaaagctcaattatagatgcaaagttataactaaactactatagtagtaaagaaata 240 catttcacacccttcatataaattcactatcttggcttgaggcactccataaaatgtatc 300 acgtgcatagtaaatctttatatttgctatggcgttgcactagaggacttggactgcaac 360 aagtggatgcgcggaaaatgaaatcttcttcaatagcccag 401, <210> 365 <211> 356 <212> DNA
<213> Homo sapien <400>

ccagtgtcatatttgggcttaaaatttcaagaagggcacttcaaatggctttgcatttgc 60 atgtttcagtgctagagcgtaggaatagaccctggcgtccactgtgagatgttcttcagc 120 taccagagcatcaagtctctgcagcaggtcattcttgggtaaagaaatgacttccacaaa 180 ctctccatcccctggctttggcttcggccttgcgttttcggcatcatctccgttaatggt 240 gactgtcacgatgtgtatagtacagtttgacaagcctgggtccatacagaccgctggaga 300 acattcggcaatgtcccctttgtagccagtttcttcttcgagctcccggagagcag 356 <210> 366 <211> 1851 <212> DNA
<213> Homo sapien <400> 366 tcatcaccattgccagcagcggcaccgttagtcaggttttctgggaatcccacatgagta 60 cttccgtgttcttcattcttcttcaatagccataaatcttctagctctggctggctgttt 120 tcacttcctttaagcctttgtgactcttcctctgatgtcagctttaagtcttgttctgga 180 ttgctgttttcagaagagatttttaacatctgtttttctttgtagtcagaaagtaactgg 240 caaattacatgatgatgactagaaacagcatactctctggccgtctttccagatcttgag 300 aagatacatcaacattttgctcaagtagagggctgactatacttgctgatccacaacata 360 cagcaagtatgagagcagttcttccatatctatccagcgcatttaaattcgcttttttct 420 tgattaaaaatttcaccacttgctgtttttgctcatgtataccaagtagcagtggtgtga 480 ggccatgcttgttttttgattcgatatcagcaccgtataagagcagtgctttggccatta 540 atttatcttcattgtagacagcatagtgtagagtggtatttccatactcatctggaatat600 ttggatcagtgccatgttccagcaacattaacgcacattcatcttcctggcattgtacgg660 cctttgtcagagctgtcctctttttgttgtcaaggacattaagttgacatcgtctgtcca720 gcacgagttttactacttctgaattcccattggcagaggccagatgtagagcagtcctct780 tttgcttgtccctcttgttcacatccgtgtccctgagcatgacgatgagatcctttctgg840 ggactttaccccaccaggcagctctgtggagcttgtccagatcttctccatggacgtggt900 acctgggatccatgaaggcgctgtcatcgtagtctccccaagcgaccacgttgctcttgc960 cgctcccctgcagcaggggaagcagtggcagcaccacttgcacctcttgctcccaagcgt1020 cttcacagaggagtcgttgtggtctccagaagtgcccacgttgctcttgccgctccccct1080 gtccatccagggaggaagaaatgcaggaaatgaaagatgcatgcacgatggtatactcct1140 cagccatcaaacttctggacagcaggtcacttccagcaaggtggagaaagctgtccaccc1200 acagaggatgagatccagaaaccacaatatccattcacaaacaaacacttttcagccaga1260 cacaggtactgaaatcatgtcatctgcggcaacatggtggaacctacccaatcacacatc1320 aagagatgaagacactgcagtatatctgcacaacgtaatactcttcatccataacaaaat1380 aatataattttcctctggagccatatggatgaactatgaaggaagaactccccgaagaag1440 ccagtcgcagagaagccacactgaagctctgtcctcagccatcagcgccacggacaggar1500 tgtgtttcttccccagtgatgcagcctcaagttatcccgaagctgccgcagcacacggtg1560 gctcctgagaaacaccccagctcttccggtctaacacaggcaagtcaataaatgtgataa1620 tcacataaacagaattaaaagcaaagtcacataagcatctcaacagacacagaaaaggca1680 tttgacaaaatccagcatccttgtatttattgttgcagttctcagaggaaatgcttctaa1740 cttttccccatttagtattatgttggctgtgggcttgtcataggtggtttttattacttt1800 aaggtatgtcccttctatgcctgttttgctgagggttttaattctcgtgcc 1851 <210> 367 <211> 668 <212> DNA
<213> Homo sapien <400> 367 cttgagcttccaaatayggaagactggcccttacacasgtcaatgttaaaatgaatgcat 60 ttcagt.attttgaagataaaattrgtagatctataccttgttttttgattcgatatcagc 120.

accrtataagagcagtgctttggccattaatttatctttcattrtagacagcrtagtgya 180 gagtggtatttccatactcatctggaatatttggatcagtgccatgttccagcaacatta 240 acgcacattcatcttcctggcattgtacggcctgtcagtattagacccaaaaacaaatta 300 catatcttaggaattcaaaataacattccacagctttcaccaactagttatatttaaagg 360 agaaaactcatttttatgccatgtattgaaatcaaacccacctcatgctgatatagttgg 420 ctactgcatacctttatcagagctgtcctctttttgttgtcaaggacattaagttgacat 480 cgtctgtccagcaggagttttactacttctgaattcccattggcagaggccagatgtaga 540 gcagtcctatgagagtgagaagactttttaggaaattgtagtgcactagctacagccata 600 gcaatgattcatgtaactgcaaacactgaatagcctgctattactctgccttcaaaaaaa 660 aaaaaaaa 668 <210> 368 <211> 1512 <212> DNA
<213> Homo sapien <400>

gggtcgcccagggggsgcgtgggctttcctcgggtgggtgtgggttttccctgggtgggg 60 tgggctgggctrgaatcccctgctggggttggcaggttttggctgggattgacttttytc 120 ttcaaacagattggaaacccggagttacctgctagttggtgaaactggttggtagacgcg 180 atctgttggctactactggcttctcctggctgttaaaagcagatggtggttgaggttgat 240 tccatgccggctgcttcttctgtgaagaagccatttggtctcaggagcaagatgggcaag 300 tggtgctgccgttgcttcccctgctgcagggagagcggcaagagcaacgtgggcacttct 360 ggagaccacgacgactctgctatgaagacactcaggagcaagatgggcaagtggtgccgc 420 cactgcttcccctgctgcagggggagtggcaagagcaacgtgggcgcttctggagaccac 480 gacgaytctgctatgaagacactcaggaacaagatgggcaagtggtgctgccactgcttc 540 ccctgctgcagggggagcrgcaagagcaaggtgggcgcttggggagactacgatgacagt 600 gccttcatggagcccaggtaccacgtccgtggagaagatctggacaagctccacagagct 660 gcctggtggggtaaagtccccagaaaggatctcatcgtcatgctcagggacactgacgtg 720 aacaagaaggacaagcaaaagaggactgctctacatctggcctctgccaatgggaattca 780 gaagtagtaaaactcstgctggacagacgatgtcaacttaatgtccttgacaacaaaaag 840 aggacagctctgayaaaggccgtacaatgccaggaagatgaatgtgcgttaatgttgctg 900 gaacatggcactgatccaaatattccagatgagtatggaaataccactctrcactaygct 960 rtctayaatgaagataaattaatggccaaagcactgctcttatayggtgctgatatcgaa 1020 tcaaaaaacaaggtatagatctactaattttatcttcaaaatactgaaatgcattcattt 1080 taacattgacgtgtgtaagggccagtcttccgtatttggaagctcaagcataacttgaat 1140 gaaaatattttgaaatgacctaattatctmagactttattttaaatattgttattttcaa 1200 agaagcattagagggtacagttttttttttttaaatgcacttctggtaaatacttttgtt 1260 gaaaacactgaatttgtaaaaggtaatacttactatttttcaatttttccctcctaggat 1320 ttttttcccctaatgaatgtaagatggcaaaatttgccctgaaataggttttacatgaaa 1380 actccaagaaaagttaaacatgtttcagtgaatagagatcctgctcctttggcaagttcc 1440 taaaaaacagtaatagatacgaggtgatgcgcctgtcagtggcaaggtttaagatatttc 1500 tgatctcgtgcc 1512 <210> 369 <211> 1853 <212> DNA
<213> Homo sapien <400>

gggtcgcccagggggsgcgtgggctttcctcgggtgggtgtgggttttccctgggtgggg60 tgggctgggctrgaatcccctgctggggttggcaggttttggctgggattgacttttytc120 ttcaaacagattggaaacccggagttacctgctagttggtgaaactggttggtagacgcg180 atctgttggctactactggcttctcctggctgttaaaagcagatggtggttgaggttgat240 tccatgccggctgcttcttctgtgaagaagcr_atttggtctcaggagcaagatgggcaag300 tggtgctgccgttgcttcccctgctgcagggagagcggcaagagcaacgtgggcacttct360 ggagaccacgacgactctgctatgaagacactcaggagcaagatgggcaagtggtgccgc420 cactgcttcccctgctgcagggggagtggcaagagcaacgtgggcgcttctggagaccac480 gacgaytctgctatgaagacactcaggaacaagatgggcaagtggtgctgccactgcttc540 ccctgctgcagggggagcrgcaagagcaaggtgggcgcttggggagactacgatgacagy600 gccttcatggakcccaggtaccacgtccrtggagaagatctggacaagctccacagagct6'60 gcctggtggggtaaagtccccagaaaggatctcatcgtcatgctcagggacackgaygtg720 aacaagarggacaagcaaaagaggactgctctacatctggcctctgccaatgggaattca780 gaagtagtaaaactcstgctggacagacgatgtcaacttaatgtccttgacaacaaaaag840 aggacagctctgayaaaggccgtacaatgccaggaagatgaatgtgcgttaatgttgctg900 gaacatggcactgatccaaatattccagatgagtatggaaataccactctrcactaygct960 rtctayaatgaagataaattaatggccaaagcactgctcttatayggtgctgatatcgaa1020 tcaaaaaacaagcatggcctcacaccactgytacttggtrtacatgagcaaaaacagcaa1080 gtsgtgaaatttttaatyaagaaaaaagcgaatttaaaatgcrctggatagatatggaag1140 ractgctctcatacttgctgtatgttgtggatcagcaagtatagtcagccytctacttga1200 gcaaaatrttgatgtatcttctcaagatctggaaagacggccagagagtatgctgtttct1260 agtcatcatcatgtaatttgccagttactttctgactacaaagaaaaacagatgttaaaa1320 atctcttctgaaaacagcaatccagaacaagacttaaagctgacatcagaggaagagtca1380 caaaggcttaaaggaagtgaaaacagccagccagaggcatggaaacttttaaatttaaac1440 ttttggtttaatgttttttttttttgccttaataatattagatagtcccaaatgaaatwa1500 cctatgagactaggctttgagaatcaatagattctttttttaagaatcttttggctagga1560 gcggtgtctcacgcctgtaattccagcaccttgagaggctgaggtgggcagatcacgaga1620 tcaggagatcgagaccatcctggctaacacggtgaaaccccatctctactaaaaatacaa1680 aaacttagctgggtgtggtggcgggtgcctgtagtcccagctactcaggargctgaggca1740 ggagaatggcatgaacccgggaggtggaggttgcagtgagccgagatccgccactacact1800 ccagcctgggtgacagagcaagactctgtctcaaaaaaaaaaaaaaaaaaaaa 1853 <210> 370 <211> 2184 <212> DNA

<213> Homo sapien <400>

ggcacgagaattaaaaccctcagcaaaacaggcatagaagggacataccttaaagtaata60 aaaaccacctatgacaagcccacagccaacataatactaaatggggaaaagttagaagca120 tttcctctgagaactgcaacaataaatacaaggatgctggattttgtcaaatgccttttc180 tgtgtctgttgagatgcttatgtgactttgcttttaattctgtttatgtgattatcacat240 ttattgacttgcctgtgttagaccggaagagctggggtgtttctcaggagccaccgtgtg300 ctgcggcagcttcgggataacttgaggctgcatcactggggaagaaacacaytcctgtcc360 gtggcgctgatggctgaggacagagcttcagtgtggcttctctgcgactggcttcttcgg420 ggagttcttccttcatagttcatccatatggctccagaggaaaattatattattttgtta480 tggatgaagagtattacgttgtgcagatatactgcagtgtcttcatctcttgatgtgtga540 ttgggtaggttccaccatgttgccgcagatgacatgatttcagtacctgtgtctggctga600 aaagtgtttgtttgtgaatggatattgtggtttctggatctcatcctctgtgggtggaca660 gctttctccaccttgctggaagtgacctgctgtccagaagtttgatggctgaggagtata720 ccatcgtgcatgcatctttcatttcctgcatttcttcctccctggatggacagggggagc780 ggcaagagcaacgtgggcacttctggagaccacaacgactcctctgtgaagacgcttggg840 agcaagaggtgcaagtggtgctgccactgcttcccctgctgcaggggagcggcaagagca900 acgtggtcgcttggggagactacgatgacagcgccttcatggatcccaggtaccacgtcc960 atggagaagatctggacaagctccacagagctgcctggtggggtaaagtccccagaaagg1020 atctcatcgtcatgctcagggacacggatgtgaacaagagggacaagcaaaagaggactg1080 ctctacatctggcctctgccaatgggaattcagaagtagtaaaactcgtgctggacagac1140 gatgtcaacttaatgtccttgacaacaaaaagaggacagctctgacaaaggccgtacaat1200 gccaggaagatgaatgtgcgttaatgttgctggaacatggcactgatccaaatattccag1260 atgagtatggaaataccactctacactatgctgtctacaatgaagataaattaatggcca1320 aagcactgctcttatacggtgctgatatcgaatcaaaaaacaagcatggcctcacaccac1380 tgctacttggtatacatgagcaaaaacagcaagtggtgaaatttttaatcaagaaaaaag1440 cgaatttaaatgcgctggatagatatggaagaactgctctcatacttgctgtatgttgtg1500 gatcagcaagtatagtcagccctctacttgagcaaaatgttgatgtatcttctcaagatc1560 tggaaagacggccagagagtatgctgtttctagtcatcatcatgtaatttgccagttact1620 ttctgactacaaagaaaaacagatgttaaaaatctcttctgaaaacagcaatccagaaca1680 agacttaaagctgacatcagaggaagagtcacaaaggcttaaaggaagtgaaaacagcca1740 gccagaggcatggaaacttttaaatttaaacttttggtttaatgttttttttttttgcct1800 taataatattagatagtcccaaatgaaatwacctatgagactaggctttgagaatcaata1860 gattctttttttaagaatcttttggctaggagcggtgtctcacgcctgtaattccagcac1920 cttgagaggctgaggtgggcagatcacgagatcaggagatcgagaccatcctggctaaca1980 cggtgaaaccccatctctactaaaaatacaaaaacttagctgggtgtggtggcgggtgcc2040 tgtagtcccagctactcaggargctgaggcaggagaatggcatgaacccgggaggtggag2100 gttgcagtgagccgagatccgccactacactccagcctgggtgacagagcaagactctgt2160 ctcaaaaaaaaaaaaaaaaaaaaa 2184 <210> 371 <211> 1855 <212> DNA
<213> Homo sapien <220>
<221> misc_feature <222> (1). .(1855) <223> n = A,T,C or G
<400> 371 tgcacgcatcggccagtgtctgtgccacgtacactgacgccccctgagatgtgcacgccg 60 cacgcgcacgttgcacgcgcggcagcggcttggctggcttgtaacggcttgcacgcgcac 120 gccgcccccgcataaccgtcagactggcctgtaacggcttgcaggcgcacgccgcacgcg 180 cgtaacggcttggctgccctgtaacggcttgcacgtgcatgctgcacgcgcgttaacggc 240 ttggctggcatgtagccgcttggcttggctttgcattytttgctkggctkggcgttgkty 300 tcttggattgacgcttcctccttggatkgacgtttcctccttggatkgacgtttcytyty 360 tcgcgttcctttgctggacttgaccttttytctgctgggtttggcattcctttggggtgg420 gctgggtgttttctccgggggggktkgcccttcctggggtgggcgtgggkcgcccccagg480 gggcgtgggctttccccgggtgggtgtgggttttcctggggtggggtgggctgtgctggg540 atccccctgctggggttggcagggattgacttttttcttcaaacagattggaaacccgga600 gtaacntgctagttggtgaaactggttggtagacgcgatctgctggtactactgtttctc660 ctggctgttaaaagcagatggtggctgaggttgattcaatgccggctgcttcttctgtga720 agaagccatttggtctcaggagcaagatgggcaagtggtgcgccactgcttcccctgctg780 cagggggagcggcaagagcaacgtgggcacttctggagaccacaacgactcctctgtgaa840 gacgcttgggagcaagaggtgcaagtggtgctgcccactgcttcccctgctgcaggggag900 cggcaagagcaacgtggkcgcttggggagactacgatgacagcgccttcatggakcccag960 gtaccacgtccrtggagaagatctggacaagctccacagagctgcctggtggggtaaagt1020 ccccagaaaggatctcatcgtcatgctcagggacactgaygtgaacaagarggacaagca1080 aaagaggactgctctacatctggcctctgccaatgggaattcagaagtagtaaaactcgt1140 gctggacagacgatgtcaacttaatgtccttgacaacaaaaagaggacagctctgacaaa1200 ggccgtacaatgccaggaagatgaatgtgcgttaatgttgctggaacatggcactgatcc1260 aaatattccagatgagtatggaaataccactctacactatgctgtctacaatgaagataa1320 attaatggccaaagcactgctcttatacggtgctgatatcgaatcaaaaaacaaggtata1380 gatctactaattttatcttcaaaatactgaaatgcattcattttaacattgacgtgtgta1440 agggccagtcttccgtatttggaagctcaagcataacttgaatgaaaatattttgaaatg1500 acctaattatctaagactttattttaaatattgttattttcaaagaagcattagagggta1560 cagttttttttttttaaatgcacttctggtaaatacttttgttgaaaacactgaatttgt1620 aaaaggtaatacttactatttttcaatttttccctcctaggatttttttcccctaatgaa1680 tgtaagatggcaaaatttgccctgaaataggttttacatgaaaactccaagaaaagttaa1740 acatgtttcagtgaatagagatcctgctcctttggcaagttcctaaaaaacagtaataga1800 tacgaggtgatgcgcctgtcagtggcaaggtttaagatatttctgatctcgtgcc 1855 <210> 372 <211> 1059 <212> DNA
<213> Homo sapien <400> 372 gcaacgtgggcacttctggagaccacaacgactcctctgtgaagacgcttgggagcaaga60 ggtgcaagtggtgctgcccactgcttcccctgctgcaggggagcggcaagagcaacgtgg120 gcgcttgrggagactmcgatgacagygccttcatggagcccaggtaccacgtccgtggag180 aagatctggacaagctccacagagctgccctggtggggtaaagtccccagaaaggatctc240 atcgtcatgctcagggacactgaygtgaacaagarggacaagcaaaagaggactgctcta300 catctggcctctgccaatgggaattcagaagtagtaaaactcstgctggacagacgatgt360 caacttaatgtccttgacaacaaaaagaggacagctctgayaaaggccgtacaatgccag420 gaagatgaatgtgcgttaatgttgctggaacatggcactgatccaaatattccagatgag480 tatggaaataccactctrcactaygctrtctayaatgaagataaattaatggccaaagca540 ctgctcttatayggtgctgatatcgaatcaaaaaacaaggtatagatctactaattttat600 cttcaaaatactgaaatgcattcattttaacattgacgtgtgtaagggccagtcttccgt660 atttggaagctcaagcataacttgaatgaaaatattttgaaatgacctaattatctaaga720 ctttattttaaatattgttattttcaaagaagcattagagggtacagtttttttttttta780 aatgcacttctggtaaatacttttgttgaaaacactgaatttgtaaaaggtaatacttac840 tatttttcaatttttccctcctaggatttttttcccctaatgaatgtaagatggcaaaat900 ttgccctgaaataggttttacatgaaaactccaagaaaagttaaacatgtttcagtgaat960 agagatcctgctcctttggcaagttcctaaaaaacagtaatagatacgaggtgatgcgcc1020 tgtcagtggcaaggtttaagatatttctgatctcgtgcc 1059 <210> 373 <211> 1155 <212> DNA
<213> Homo sapien <400> 373 atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc 60 aggagcaagatgggcaagtggtgctgccgttgcttcccctgctgcagggagagcggcaag120 agcaacgtgggcacttctggagaccacgacgactctgctatgaagacactcaggagcaag180 atgggcaagtggtgccgccactgcttcccctgctgcagggggagtggcaagagcaacgtg240 ggcgcttctggagaccacgacgactctgctatgaagacactcaggaacaagatgggcaag300 tggtgctgccactgcttcccctgctgcagggggagcggcaagagcaaggtgggcgcttgg360 ggagactacgatgacagtgccttcatggagcccaggtaccacgtccgtggagaagatctg420 gacaagctccacagagctgcctggtggggtaaagtccccagaaaggatctcatcgtcatg480 ctcagggacactgacgtgaacaagaaggacaagcaaaagaggactgctctacatctggcc540 tctgccaatgggaattcagaagtagtaaaactcctgctggacagacgatgtcaacttaat600 gtccttgacaacaaaaagaggacagctctgataaaggccgtacaatgccaggaagatgaa660 tgtgcgttaatgttgctggaacatggcactgatccaaatattccagatgagtatggaaat720 accactctgcactacgctatctataatgaagataaattaatggccaaagcactgctctta780 tatggtgctgatatcgaatcaaaaaacaagcatggcctcacaccactgttacttggtgta840 catgagcaaaaacagcaagtcgtgaaattt~ttaatcaagaaaaaagcgaatttaaatgca900 ctggatagatatggaaggactgctctcatacttgctgtatgttgtggatcagcaagtata960 gtcagccttctacttgagcaaaatattgatgtatcttctcaagatctatctggacagacg1020 gccagagagtatgctgtttctagtcatcatcatgtaatttgccagttactttctgactac1080 aaagaaaaacagatgctaaaaatctcttctgaaaacagcaatccagaaaatgtctcaaga1140 accagaaataaataa 1155 <210> 374 <211> 2000 <212> DNA
<213> Homo sapien <400> 374 atggtggttgaggttgattccatgccggctgcctcttctgtgaagaagccatttggtctc60 aggagcaagatgggcaagtggtgctgccgttgcttcccctgctgcagggagagcggcaag120 agcaacgtgggcacttctggagaccacgacgactctgctatgaagacactcaggagcaag180 atgggcaagtggtgccgccactgcttcccctgctgcagggggagtggcaagagcaacgtg240 .

ggcgcttctggagaccacgacgactctgctatgaagacactcaggaacaagatgggcaag300 tggtgctgccactgcttcccctgctgcagggggagcggcaagagcaaggtgggcgcttgg360 ggagactacgatgacagtgccttcatggagcccaggtaccacgtccgtggagaagatctg420 gacaagctccacagagctgcctggtggggtaaagtccccagaaaggatctcatcgtcatg480 ctcagggacactgacgtgaacaagaaggacaagcaaaagaggactgctctacatctggcc540 tctgccaatgggaattcagaagtagtaaaactcctgctggacagacgatgtcaacttaat600 gtccttgacaacaaaaagaggacagctctgataaaggccgtacaatgccaggaagatgaa660 tgtgcgttaatgttgctggaacatggcactgatccaaatattccagatgagtatggaaat720 accactctgcactacgctatctataatgaagataaattaatggccaaagcactgctctta780 tatggtgctgatatcgaatcaaaaaacaagcatggcctcacaccactgttacttggtgta840 catgagcaaaaacagcaagtcgtgaaatttttaatcaagaaaaaagcgaatttaaatgca900 ctggatagatatggaaggactgctctcatacttgctgtatgttgtggatcagcaagtata960 gtcagccttctacttgagcaaaatattgatgtatcttctcaagatctatctggacagacg1020 gccagagagtatgctgtttctagtcatcatcatgtaatttgccagttactttctgactac1080 aaagaaaaacagatgctaaaaatctcttctgaaaacagcaatccagaacaagacttaaag1140 ctgacatcagaggaagagtcacaaaggttcaaaggcagtgaaaatagccagccagagaaa1200 atgtctcaagaaccagaaataaataaggatggtgatagagaggttgaagaagaaatgaag1260 aagcatgaaagtaataatgtgggattactagaaaacctgactaatggtgtcactgctggc1320 aatggtgataatggattaattcctcaaaggaagagcagaacacctgaaaatcagcaattt1380 cctgacaacgaaagtgaagagtatcacagaatttgcgaattagtttctgactacaaagaa1440 aaacagatgccaaaatactcttctgaaaacagcaacccagaacaagacttaaagctgaca1500 tcagaggaagagtcacaaaggcttgagggcagtgaaaatggccagccagagctagaaaat1560 tttatggctatcgaagaaatgaagaagcacggaagtactcatgtcggattcccagaaaac1620 ctgactaatggtgccactgctggcaatggtgatgatggattaattcctccaaggaagagc1680 agaacacctgaaagccagcaatttcctgacactgagaatgaagagtatcacagtgacgaa1740 caaaatgatactcagaagcaattttgtgaagaacagaacactggaatattacacgatgag1800 attctgattcatgaagaaaagcagatagaagtggttgaaaaaatgaattctgagctttct1860 cttagttgtaagaaagaaaaagacatcttgcatgaaaatagtacgttgcgggaagaaatt1920 gccatgctaa gactggagct agacacaatg aaacatcaga gccagctaaa aaaaaaaaaa 1980 aaaaaaaaaa aaaaaaaaaa 2000 <210> 375 <211> 2040 <212> DNA
<213> Homo sapien <400>

atggtggttgaggttgattccatgccggctgcctcttctgtgaagaagccatttggtctc60 aggagcaagatgggcaagtggtgctgccgttgcttcccctgctgcagggagagcggcaag120 agcaacgtgggcacttctggagaccacgacgactctgctatgaagacactcaggagcaag180 atgggcaagtggtgccgccactgcttcccctgctgcagggggagtggcaagagcaacgtg240 ggcgcttctggagaccacgacgactctgctatgaagacactcaggaacaagatgggcaag300 tggtgctgccactgcttcccctgctgcagggggagcggcaagagcaaggtgggcgcttgg360 ggagactacgatgacagtgccttcatggagcccaggtaccacgtccgtggagaagatctg420 gacaagctccacagagctgcctggtggggtaaagtccccagaaaggatctcatcgtcatg480 ctcagggacactgacgtgaacaagaaggacaagcaaaagaggactgctctacatctggcc540 tctgccaatgggaattcagaagtagtaaaactcctgctggacagacgatgtcaacttaat600 gtccttgacaacaaaaagaggacagctctgataaaggccgtacaatgccaggaagatgaa660 tgtgcgttaatgttgctggaacatggcactgatccaaatattccagatgagtatggaaat720 accactctgcactacgctatctataatgaagataaattaatggccaaagcactgctctta780 tatggtgctgatatcgaatcaaaaaacaagcatggcctcacaccactgttacttggtgta840 catgagcaaaaacagcaagtcgtgaaatttttaatcaagaaaaaagcgaatttaaatgca900 ctggatagatatggaaggactgctctcatacttgctgtatgttgtggatcagcaagtata960 .

gtcagccttctacttgagcaaaatattgatgtatcttctcaagatctatctggacagacg1020 gccagagagtatgctgtttctagtcatcatcatgtaatttgccagttactttctgactac1080 aaagaaaaacagatgctaaaaatctcttctgaaaacagcaatccagaacaagacttaaag1140 ctgacatcagaggaagagtcacaaaggttcaaaggcagtgaaaatagccagccagagaaa1200 atgtctcaagaaccagaaataaataaggatggtgatagagaggttgaagaagaaatgaag1260 aagcatgaaagtaataatgtgggattactagaaaacctgactaatggtgtcactgctggc1320 aatggtgataatggattaattcctcaaaggaagagcagaacacctgaaaatcagcaattt1380 ccrgacaacgaaagtgaagagtatcacagaatttgcgaattagtttctgactacaaagaa1440 ., aaacagatgccaaaatactcttctgaaaacagcaacccagaacaagacttaaagctgaca1500 , tcagaggaagagtcacaaaggcttgagggcagtgaaaatggccagccagagaaaagatct1560 caagaaccagaaataaataaggatggtgatagagagctagaaaattttatggctatcgaa1620 gaaatgaagaagcacggaagtactcatgtcggattcccagaaaacctgactaatggtgcc1680 actgctggcaatggtgatgatggattaattcctccaaggaagagcagaacacctgaaagc1740 cagcaatttcctgacactgagaatgaagagtatcacagtgacgaacaaaatgatactcag1800 aagcaattttgtgaagaacagaacactggaatattacacgatgagattctgattcatgaa1860 gaaaagcagatagaagtggttgaaaaaatgaattctgagctttctcttagttgtaagaaa1920 gaaaaagacatcttgcatgaaaatagtacgttgcgggaagaaattgccatgctaagactg1980 gagctagacacaatgaaacatcagagccagctaaaaaaaaaaaaaaaaaaaaaaaaaaaa2040 <210> 376 <211> 329 <212> PRT
<213> Homo sapien <400> 376 Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe 'Leu Val Ile Ile Met <210> 377 <211> 148 <212> PRT
<213> Homo sapien <220>
<221> VARIANT
<222> (1)...(148) <223> Xaa = Any Amino Acid <400> 377 Met Thr Xaa Pro Ser Trp Ser Pro Gly Thr Thr Ser Val Glu Lys Ile Trp Thr Ser Ser Thr Glu Leu Pro Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Xaa Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Xaa Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Xaa Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys Val <210> 378 <211> 1719 <212> PRT
<213> Homo sapien <400> 378 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn.Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Asn Val Ser Arg Thr Arg Asn Lys Pro Arg Thr His Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Tle Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu GIu Lys Gln Ile Glu Val Val Giu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr Met .Lys His Gln Ser Gln Leu, Pro Arg Thr His Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr,His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr .Asn ~~ly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe.Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu ..

Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu <210> 379 <211> 656 <212> PRT
<213> Homo sapien <400> 379 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu <210> 380 <211> 671 <212> PRT
<213> Homo sapien <400> 380 Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 65 ~ 70 75 80 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu <210> 381 <211> 251 <212> DNA
<213> Homo sapien <400> 381 ggagaagcgt ctgctggggc aggaaggggt ttccctgccc tctcacctgt ccctcaccaa 60 ggtaacatgc ttcccctaag ggtatcccaa cccaggggcc tcaccatgac ctctgagggg 120 ccaatatccc aggagaagca ttggggagtt gggggcaggt gaaggaccca ggactcacac 180 atcctgggcc tccaaggcag aggagagggt cctcaagaag gtcaggagga aaatccgtaa 240 caagcagtca g 251 <210> 382 <211> 3279 <212> DNA
<213> Homo Sapiens <400> 382 cttcctgcag cccccatgct ggtgaggggc acgggcagga acagtggacc caacatggaa 60 atgctggagg gtgtcaggaa gtgatcgggc tctggggcag ggaggagggg tggggagtgt 120 cactgggagg ggacatcctg cagaaggtag gagtgagcaa acacccgctg caggggaggg 180 gagagccctg cggcacctgg gggagcagag ggagcagcac ctgcccaggc ctgggaggag 240 gggcctggag ggcgtgagga ggagcgaggg ggctgcatgg ctggagtgag ggatcagggg 300 cagggcgcga gatggcctca cacagggaag agagggcccc tcctgcaggg cctcacctgg 360 gccacaggag gacactgctt ttcctctgag gagtcaggag ctgtggatgg tgctggacag 420 aagaaggaca gggcctggct caggtgtcca gaggctgtcg ctggcttccc tttgggatca 480 gactgcaggg agggagggcg gcagggttgt ggggggagtg acgatgagga tgacctgggg 540 gtggctccag gccttgcccc tgcctgggcc ctcacccagc ctccctcaca gtctcctggc 600 cctcagtctc tcccctccac tccatcctcc atctggcctc agtgggtcat tctgatcact 660 gaactgacca tacccagccc tgcccacggc cctccatggc tccccaatgc cctggagagg 720 ggacatctag tcagagagta gtcctgaaga ggtggcctct gcgatgtgcc tgtgggggca 780 gcatcctgca gatggtcccg gccctcatcc tgctgacctg tctgcaggga ctgtcctcct 840 ggaccttgcc ccttgtgcag gagctggacc ctgaagtccc ctccccatag gccaagactg 900 gagccttgtt ccctctgttg gactccctgc ccatattctt gtgggagtgg gttctggaga 960 catttctgtc tgttcctgag agctgggaat tgctctcagt catctgcctg cgcggttctg 1020 agagatggag ttgcctaggc agttattggg gccaatcttt ctcactgtgt ctctcctcct 1080 ttacccttag ggtgattctg ggggtccact tgtctgtaat ggtgtgcttc aaggtatcac 1140 atcatggggc cctgagccat gtgccctgcc tgaaaagcct gctgtgtaca ccaaggtggt 1200 gcattaccgg aagtggatca aggacaccat cgcagccaac ccctgagtgc ccctgtccca 1260 cccctacctc tagtaaattt aagtccacct cacgttctgg catcacttgg cctttctgga 1320 tgctggacac ctgaagcttg gaactcacct ggccgaagct cgagcctcct gagtcctact 1380 gacctgtgct ttctggtgtg gagtccaggg ctgctaggaa aaggaatggg cagacacagg 1440 tgtatgccaa tgtttctgaa atgggtataa tttcgtcctc tccttcggaa cactggctgt 1500 ctctgaagac ttctcgctca gtttcagtga ggacacacac aaagacgtgg gtgaccatgt 1560 tgtttgtggg gtgcagagat gggaggggtg gggcccaccc tggaagagtg gacagtgaca 1620 caaggtggac actctctaca gatcactgag gataagctgg agccacaatg catgaggcac 1680 acacacagca aggttgacgc tgtaaacata gcccacgctg tcctgggggc actgggaagc 1740 ctagataagg ccgtgagcag aaagaagggg aggatcctcc tatgttgttg aaggagggac 1800 tagggggaga aactgaaagc tgattaatta caggaggttt gttcaggtcc cccaaaccac 1860 cgtcagattt gatgatttcc tagcaggact tacagaaata aagagctatc atgctgtggt 1920 ttattatggt ttgttacatt gataggatac atactgaaat cagcaaacaa aacagatgta 1980 tagattagag tgtggagaaa acagaggaaa acttgcagtt acgaagactg gcaacttggc 2040 tttactaagt tttcagactg gcaggaagtc aaacctatta ggctgaggac cttgtggagt 2100 gtagctgatc cagctgatag aggaactagc caggtggggg cctttccctt tggatggggg 2160 gcatatccga cagttattct ctccaagtgg agacttacgg acagcatata attctccctg 2220 caaggatgta tgataatatg tacaaagtaa ttccaactga ggaagctcac ctgatcctta 2280 gtgtccaggg tttttactgg gggtctgtag gacgagtatg gagtacttga ataattgacc 2340 tgaagtcctc agacctgagg ttccctagag ttcaaacaga tacagcatgg tccagagtcc 2400 cagatgtaca aaaacaggga ttcatcacaa atcccatctt tagcatgaag ggtctggcat 2460 ggcccaaggc cccaagtata tcaaggcact tgggcagaac atgccaagga atcaaatgtc 2520 atctcccagg agttattcaa gggtgagccc tttacttggg atgtacaggc tttgagcagt 2580 gcagggctgc tgagtcaacc ttttattgta caggggatga gggaaaggga gaggatgagg 2640 aagcccccct ggggatttgg tttggtcttg tgatcaggtg gtctatgggg ctatccctac 2700 aaagaagaat ccagaaatag gggcacattg aggaatgata ctgagcccaa agagcattca 2760 atcattgttt tatttgcctt cttttcacac cattggtgag ggagggatta ccaccctggg 2820 gttatgaaga tggttgaaca ccccacacat agcaccggag atatgagatc aacagtttct 2880 tagccataga gattcacagc ccagagcagg aggacgctgc acaccatgca ggatgacatg 2940 ggggatgcgc tcgggattgg tgtgaagaag caaggactgt tagaggcagg ctttatagta 3000 acaagacggt ggggcaaact ctgatttccg tgggggaatg tcatggtctt gctttactaa 3060 gttttgagac tggcaggtag tgaaactcat taggctgaga accttgtgga atgcagctga 3120 cccagctgat agaggaagta gccaggtggg agcctttccc agtgggtgtg ggacatatct 3180 ggcaagattt tgtggcactc ctggttacag atactggggc agcaaataaa actgaatctt 3240 gttttcagac cttaaaaaaa aaaaaaaaaa aaaagtttt 3279 <210> 383 <211> 154 <212> PRT
<213> Homo Sapiens <400> 383 Met Ala Gly Val Arg Asp G1n Gly Gln Gly Ala Arg Trp Pro His Thr Gly Lys Arg Gly Pro Leu Leu Gln Gly Leu Thr Trp Ala Thr Gly Gly His Cys Phe Ser Ser Glu Glu Ser Gly Ala Val Asp Gly Ala Gly Gln Lys Lys Asp Arg Ala Trp Leu Arg Cys Pro Glu Ala Val Ala Gly Phe Pro Leu Gly Ser Asp Cys Arg Glu Gly Gly Arg Gln Gly Cys Gly Gly Ser Asp Asp Glu Asp Asp Leu Gly Val Ala Pro Gly Leu Ala Pro Ala Trp Ala Leu Thr Gln Pro Pro Ser Gln Ser Pro Gly Pro Gln Ser Leu Pro Ser Thr Pro Ser Ser Ile Trp Pro Gln Trp Val Ile Leu Ile Thr Glu Leu Thr Ile Pro Ser Pro Ala His Gly Pro Pro Trp Leu Pro Asn Ala Leu Glu Arg Gly His Leu Val Arg Glu i34 <210> 384 <211> 557 <212> DNA
<213> Homo sapiens <400> 384 ggatcctcta gagcggccgc ctactactac taaattcgcg gccgcgtcga cgaagaagag 60 aaagatgtgt tttgttttgg actctctgtg gtcccttcca atgctgtggg tttccaacca 120 ggggaagggt cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggt 180 tctgcctcct ggccaagcag gctggtttgc aagaatgaaa tgaatgattc tacagctagg 240 acttaacctt gaaatggaaa gtcttgcaat cccatttgca ggatccgtct gtgcacatgc 300 ctctgtagag agcagcattc ccagggacct tggaaacagt tggcactgta aggtgcttgc 360 tccccaagac acatcctaaa aggtgttgta atggtgaaaa cgtcttcctt ctttattgcc 420 ccttcttatt tatgtgaaca actgtttgtc tttttttgta tcttttttaa actgtaaagt 480 tcaattgtga aaatgaatat catgcaaata aattatgcga tttttttttc aaagtaaaaa 540 aaaaaaaaaa aaaaaaa 557 <210> 385 <211> 337 <212> DNA
<213> Homo sapiens <400> 385 ttcccaggtg atgtgcgagg gaagacacat ttactatcct tgatggggct gattccttta 60 gtttctctag cagcagatgg gttaggagga agtgacccaa. gtggttgact cctatgtgca 120 tctcaaagcc atctgctgtc ttcgagtacg gacacatcat cactcctgca ttgttgatca 180 aaacgtggag gtgcttttcc tcagctaaga agcccttagc aaaagctcga atagacttag 240 tatcagacag gtccagtttc cgcaccaaca cctgctggtt ccctgtcgtg gtctggatct 300 ctttggccac caattccccc ttttccacat cccggca 337 <210> 386 <211> 300 <212> DNA
<213> Homo sapiens <400> 386 gggcccgcta ccggcccagg ccccgcctcg cgagtcctcc tccccgggtg cctgcccgca 60 gcccgctcgg cccagagggt gggcgcgggg ctgcctctac cggctggcgg ctgtaactca 120 gcgaccttgg cccgaaggct ctagcaagga cccaccgacc ccagccgcgg cggcggcggc 180 gcggactttg cccggtgtgt ggggcggagc ggactgcgtg tccgcggacg ggcagcgaag 240 atgttagcct tcgctgccag gaccgtggac cgatcccagg gctgtggtgt aacctcagcc 300 <210> 387 <211> 537 <212> DNA
<213> Homo sapiens <400> 387 gggccgagtc gggcaccaag ggactctttg caggcttcct tcctcggatc atcaaggctg 60 ccccctcctg tgccatcatg atcagcacct atgagttcgg caaaagcttc ttccagaggc 120 tgaaccagga ccggcttctg ggcggctgaa aggggcaagg aggcaaggac cccgtctctc 180 ccacggatgg ggagagggca ggaggagacc cagccaagtg ccttttcctc agcactgagg 240 gagggggctt gtttcccttc cctcccggcg acaagctcca gggcagggct gtccctctgg 300 gcggcccagc acttcctcag acacaacttc ttcctgctgc tccagtcgtg gggatcatca 360 cttacccacc ccccaagttc aagaccaaat cttccagctg cccccttcgt gtttccctgt 420 gtttgctgta gctgggcatg tctccaggaa ccaagaagcc ctcagcctgg tgtagtctcc 480 ctgacccttg ttaattcctt aagtctaaag atgatgaact tcaaaaaaaa aaaaaaa 537 <210> 388 <211> 520 <212> DNA
<213> Homo Sapiens <400> 388 aggataattt ttaaaccaat caaatgaaaa aaacaaacaa acaaaaaagg aaatgtcatg 60 tgaggttaaa ccagtttgca ttcccctaat gtggaaaaag taagaggact actcagcact 120 gtttgaagat tgcctcttct acagcttctg agaattgtgt tatttcactt gccaagtgaa 180 ggaccccctc cccaacatgc cccagcccac ccctaagcat ggtcccttgt caccaggcaa 240 ccaggaaact gctacttgtg gacctcacca gagaccagga gggtttggtt agctcacagg 300 acttccccca ccccagaaga ttagcatccc atactagact catactcaac tcaactaggc 360 tcatactcaa ttgatggtta ttagacaatt ccatttcttt ctggttatta taaacagaaa 420 atctttcctc ttctcattac cagtaaaggc tcttggtatc tttctgttgg aatgatttct 480 atgaacttgt cttattttaa tggtgggttt tttttctggt 520 <210> 389 <211> 365 <212> DNA
<213> Homo Sapiens <400> 389 cgttgcccca gtttgacaga aggaaaggcg gagcttattc aaagtctaga gggagtggag 60 gagttaaggc tggatttcag atctgcctgg ttccagccgc agtgtgccct ctgctccccc 120 aacgactttc caaataatct caccagcgcc ttccagctca ggcgtcctag aagcgtcttg 180 aagcctatgg ccagctgtct ttgtgttccc tctcacccgc ctgtcctcac agctgagact 240 cccaggaaac cttcagacta cctt.cctctg ccttcagcaa ggggcgttgc ccacattctc 300 tgagggtcag tggaagaacc tagactccca ttgctagagg tagaaagggg aagggtgctg 360 gggag 365 <210> 390 <211> 221 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (221) <223> n = A,T,C or G
<400> 390 tgcctctcca tcctggcccc gacttctctg tcaggaaagt ggggatggac cccatctgca 60 tacacggntt ctcatgggtg tggaacatct ctgcttgcgg tttcaggaag gcctctggct 120 gctctangag tctgancnga ntcgttgccc cantntgaca naaggaaagg cggagcttat 180 tcaaagtcta gagggagtgg aggagttaag gctggatttc a 221 <210> 391 <211> 325 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(325) <223> n = A,T,C or G
<400> 391 tggagcaggt cccgaggcct ccctagagcc tggggccgac tctgtgncga tgcangcttt 60 ctctcgcgcc cagcctggag ctgctcctgg catctaccaa caatcagncg aggcgagcag 120 tagccagggc actgctgcca acagccagtc cnnataccat catgtnaccc ggtgngctct 180 naanttngat ntccanagcc ctacccatcn tagttctgct ctcccaccgg ntaccagccc 240 cactgcccag gaatcctaca gccagtaccc tgtcccgacg tctctaccta ccagtacgat 300 gagacctccg gctactacta tgacc 325 <210> 392 <211> 277 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (277) <223> n = A,T,C or G
<400> 392 atattgttta actccttcct ttatatcttt taacattttc atggngaaag gttcacatct 60 agtctcactt nggcnagngn ctcctacttg agtctcttcc ccggcctgnn ccagtngnaa 120 antaccanga accgncatgn cttaanaacn ncctggtttn tgggttnntc aatgactgca 180 tgcagtgcac caccctgtcc actacgtgat gctgtaggat taaagtctca cagtgggcgg 240 ctgaggatac agcgccgcgt cctgtgttgc tggggaa 277 <210> 393 <211> 566 <212> DNA
<213> Homo Sapiens <400> 333 actagtccag tgtggtggaa ttcgcggccg cgtcgacgga caggtcagct gtctggctca 60 gtgatctaca ttctgaagtt gtctgaaaat gtcttcatga ttaaattcag cctaaacgtt 120 ttgccgggaa cactgcagag acaatgctgt gagtttccaa ccttagccca tctgcgggca 180 gagaaggtct agtttgtcca tcagcattat catgatatca ggactggtta cttggttaag 240 gaggggtcta ggagatctgt cccttttaga gacaccttac ttataatgaa gtatttggga 300 gggtggtttt caaaagtaga aatgtcctgt attccgatga tcatcctgta aacattttat 360 catttattaa tcatccctgc ctgtgtctat tattatattc atatctctac gctggaaact 420 ttctgcrtca atgtttactg tgcctttgtt tttgctagtt tgtgttgttg aaaaaaaaaa 480 cattctctgc ctgagtttta atttttgtcc aaagttattt taatctatac aattaaaagc 540 ttttgcctat caaaaaaaaa aaaaaa 566 <210> 394 <211> 384 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(384) <223> n = A,T,C or G
<400> 394 gaacatacat gtcccggcac ctgagctgca gtctgacatc atcgccatca cgggcctcgc 60 tgcaaattng gaccgggcca aggctggact gctggagcgt gtgaaggagc tacaggccna 120 gcaggaggac cgggctttaa ggagttttaa gctgagtgtc actgtagacc ccaaatacca 180 tcccaagatt atcgggagaa agggggcagt aattacccaa atccggttgg agcatgacgt 240 gaacatccag tttcctgata aggacgatgg gaaccagccc caggaccaaa ttaccatcac 300 agggtacgaa aagaacacag aagctgccag ggatgctata ctgagaattg tgggtgaact 360 tgagcagatg gtttctgagg acgt 384 <210> 395 <211> 399 <212> DNA
<213> Homo Sapiens <400> 395 ggcaaaactg tgtgacctca ataagacctc gcagatccaa ggtcaagtat cagaagtgac 60 tctgaccttg gactccaaga cctacatcaa cagcctggct atattagatg atgagccagt 120 tatcagaggt ttcatcattg cggaaattgt ggagtctaag gaaatcatgg cctctgaagt 180 attcacgtct ttccagtacc ctgagttctc tatagagttg cctaacacag gcagaattgg 240 ccagctactt gtctgcaatt gtatcttcaa.gaataccctg gccatccctt tgactgacgt 300 caagttctct ttggaaagcc tgggcatctc ctcactacag acctctgacc atgggacggt 360 gcagcctggt gagaccatcc aatcccaaat aaaatgcac 399 <210> 396 <211> 403 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(403) <223> n = A,T,C or G
<400> 396 tggagttntc agtgcaaaca agccataaag cttcagtagc aaattactgt ctcacagaaa 60 gacattttca acttctgctc cagctgctga taaaacaaat catgtgttta gcttgactcc 120 agacaaggac aacctgttcc ttcat'aactc tctagagaaa aaaaggagtt gttagtagat 180 actaaaaaaa gtggatgaat aatctggata tttttcctaa aaagattcct tgaaacacat 240 taggaaaatg gagggcctta tgatcagaat gctagaatta gt.ccattgtg ctgaagcagg 300 gtttagggga gggagtgagg gataaaagaa ggaaaaaaag aagagtgaga aaacctattt 360 atcaaagcag gtgctatcac tcaatgttag gccctgctct ttt 403 <210> 397 <211> 100 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(100) <223> n = A,T,C or G
<400> 397 actagtncag tgtggtggaa ttcgcggccg cgtcgaccta naanccatct ctatagcaaa 60 tccatccccg ctcctggttg gtnacagaat gactgacaaa 100 <210> 398 <211> 278 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(278) <223> n = A,T,C or G

<400> 398 gcggccgcgt cgacagcagt tccgccagcg ctcgcccctg ggtggggatg tgctgcacgc 60 ccacctggac atctggaagt cagcggcctg gatgaaagag cggacttcac ctggggcgat 120 tcactactgt gcctcgacca gtgaggagag ctggaccgac agcgaggtgg actcatcatg 180 ctccgggcag cccatccacc tgtggcagtt cctcaaggag ttgctactca agccccacag 240 ctatggccgc ttcattangt ggctcaacaa ggagaagg 278 <210> 399 <211> 298 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(298) <223> n = A,T,C or G
<400> 399 acggaggtgg aggaagcgnc cctgggatcg anaggatggg tcctgncatt gaccncctcn 60 ggggtgccng catggagcgc atgggcgcgg gcctgggcca cggcatggat cgcgtgggct 120 ccgagatcga gcgcatgggc ctggtcatgg accgcatggg ctccgtggag cgcatgggct 180 ccggcattga gcgcatgggc ccgctgggcc tcgaccacat ggcctccanc attgancgca 240 tgggccagac catggagcgc attggctctg gcgtggagcn catgggtgcc ggcatggg 298 <210> 400 <211> 548 <212> DNA
<213> Homo Sapiens <400> 400 acatcaacta cttcctcatt ttaaggtatg gcagttccct tcatcccctt ttcctgcctt 60 gtacatgtac atgtatgaaa tttccttctc ttaccgaact ctctccacac atcacaaggt 120 caaagaacca cacgcttaga agggtaagag ggcaccctat gaaatgaaat ggtgatttct 180 tgagtctctt ttttccacgt ttaaggggcc atggcaggac ttagagttgc gagttaagac 240 tgcagagggc tagagaatta tttcatacag gctttgaggc cacccatgtc acttatcccg 300 tataccctct caccatcccc ttgtctactc tgatgccccc aagatgcaac tgggcagcta 360 gttggcccca taattctggg cctttgttgt ttgttttaat tacttgggca tcccaggaag 420 ctttccagtg atctcctacc atgggccccc ctcctgggat caagcccctc ccaggccctg 480 tccccagccc ctcctgcccc agcccacccg cttgccttgg tgctcagccc tcccattggg 540 agcaggtt 548 <210> 401 <211> 355 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(355) <223> n = A,T,C or G
<400> 401 actgtttcca tgttatgttt ctacacattg ctacctcagt gctcctggaa acttagcttt 60 tgatgtctcc aagtagtcca ccttcattta actctttgaa actgtatcat ctttgccaag 120 taagagtggt ggcctatttc agctgctttg acaaaatgac tggctcctga cttaacgttc 180 tataaatgaa tgtgctgaag caaagtgccc atggtggcgg cgaagaagan aaagatgtgt 240 tttgttttgg actctctgtg gtcccttcca atgctgnggg tttccaacca ggggaagggt 300 cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggn tctgc 355 <210> 402 <211> 407 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(407) <223> n = A,T,C or G
<400> 402 atggggcaag ctggataaag aaccaagacc cactggagta tgctgtcttc aagaaaccca 60 tctcacatgc ggtggcatac ataggctcaa aataaaggaa tggagaaaaa tatttcaagc 120 aaatggaaaa cagaaaaaag caggtgttgc actcctactt tctgacaaaa cagactatgc 180 gaataaagat aaaaaagaga aggacattac aaaggtggtc ctgacctttg ataaatctca 240 ttgcttgata ccaacctggg ctgttttaat tgcccaaacc aaaaggataa tttgctgagg 300 ttgtggagct tctcccctgc agagagtccc tgatctccca aaatttggtt gagatgtaag 360 gntgattttg ctgacaactc cttttctgaa gttttactca tttccaa 407 <210> 403 <211> 303 <2i2> DNA
<213> Homo Sapiens <220>
<221> misc feature <222> (1) .. (303) <223> n = A,T,C or G
<4U0> 403 cagtatttat agccnaactg aaaagctagt agcaggcaag~ tctcaaatcc aggcaccaaa 60 tcctaagcaa gagccatggc atggtgaaaa tgcaaaagga gagtctggcc aatctacaaa 120 .
tagagaacaa gacctactca gtcatgaaca aaaaggcaga caccaacatg gatctcatgg 180 gggattggat attgtaatta tagagcagga agatgacagt gatcgtcatt tggcacaaca 240 tcttaacaac gaccgaaacc cattatttac ataaacctcc attcggtaac catgttgaaa 300 gga 303 <210> 404 <211> 225 <212> DNA
<213> Homo Sapiens <400> 404 aagtgtaact tttaaaaatt tagtggattt tgaaaattct tagaggaaag taaaggaaaa 60 attgttaatg cactcattta cctttacatg gtgaaagttc tctcttgatc ctacaaacag 120 acattttcca ctcgtgtttc catagttgtt aagtgtatca gatgtgttgg gcatgtgaat 180 ctccaagtgc ctgtgtaata aataaagtat ctttatttca ttcat 225 <210> 405 <211> 334 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(334) <223> n = A,T,C or G
<400> 405 gagctgttat actgtgagtt ctactaggaa atcatcaaat ctgagggttg tctggaggac 60 ttcaatacac ctccccccat agtgaatcag cttccagggg gtccagtccc tctccttact 120 tcatccccat cccatgccaa aggaagaccc tccctccttg gctcacagcc ttctctaggc 180 ttcccagtgc ctccaggaca gagtgggtta tgttttcagc tccatccttg ctgtgagtgt 240 ctggtgcggt tgtgcctcca gcttctgctc agtgcttcat ggacagtgtc cagcccatgt 300 cactctccac tctctcanng tggatcccac ccct 334 <210> 406 <211> 216 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(216) <223> n = A,T,C or G
<400> 406 tttcatacct aatgagggag ttganatnac atnnaaccag gaaatgcatg gatctcaang 60 gaaacaaaca cccaataaac tcggagtggc agactgacaa ctgtgagaca tgcacttgct 120 acnaaacaca aatttnatgt tgcacccttg tttctacacc tgtgggttat gacaaagaca 180 actgccaaag aatnttcaag aaggaggact gccant 216 <210> 407 <211> 413 <212> DNA
<213> Homo sapiens <400> 407 gctgacttgc tagtatcatc tgcattcatt gaagcacaag aacttcatgc cttgactcat 60 gtaaatgcaa taggattaaa aaataaattt gatatcacat ggaaacagac aaaaaatatt 120 gtacaacatt gcacccagtg tcagattcta cacctggcca ctcaggaagc aagagttaat 180 cccagaggtc tatgtcctaa tgtgttatgg caaatggatg tcatgcacgt accttcattt 240 ggaaaattgt catttgtcca tgtgacagtt gatacttatt cacatttcat atgggcaacc 300 tgccagacag gagaaagtct tcccatgtta aaagacattt attatcttgt tttcctgtca 360 tgggagttcc agaaaaagtt aaaacagaca atgggccagg ttctgtagta aag 413 <210> 408 <211> 183 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(183) <223> n = A,T,C or G
<400> 408 ggagctngcc ctcaattcct ccatntctat gttancatat ttaatgtctt ttgnnattaa 60 tncttaacta gttaatcctt aaagggctan ntaatcctta actagtccct ccattgtgag 120 cattatcctt ccagtattcn ccttctnttt tatttactcc ttcctggcta cccatgtact 180 ntt 183 <210> 409 <211> 250 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(250) <223> n = A,T,C or G
<400> 409 cccacgcatg ataagctctt tatttctgta agtcctgcta ggaaatcatc aaatctgacg 60 gtggtttggg ggacctgaac aaacctcctg taattaatca gctttcagtt tctcccccta 120 gtccctcctt caacaacata ggaggatcct ccccttcttt ctgctcacgg ccttatctag 180 gcttcccagt gcccccagga cagcgtgggc tatgtttaca gcgcntcctt gctggggggg 240 ggccntatgc 250 <210> 410 <211> 306 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(306) <223> n = A,T,C or G
<400> 410 ggctggtttg caagaatgaa atgaatgatt ctacagctag gacttaacct tgaaatggaa 60 agtcttgcaa tcccatttgc aggatccgtc tgtgcacatg cctctgtaga gagcagcatt 120 cccagggacc ttggaaacag ttggcactgt aaggtgcttg ctccccaaga cacatcctaa 180 aaggtgttgt aatggtgaaa accgcttcct tctttattgc cccttcttat ttatgtgaac 240 nactggttgg ctttttttgn atctttttta aactggaaag ttcaattgng aaaatgaata 300 tcntgc 306 <210> 411 <211> 261 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(261) <223> n = A,T,C or G
<400> 411 agagatattn cttaggtnaa agttcataga gttcccatga actatatgac tggccacaca 60 ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120 tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180 aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttacccat cagttccagc 240 cttctctcaa ggngaggcaa a . 261 <210> 412 <211> 241 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(241) <223> n = A,T,C or G
<400> 412 gttcaatgtt acctgacatt tctacaacac cccactcacc gatgtattcg ttgcccagtg 60 ggaacatacc agcctgaatt tggaaaaaat aattgtgttt cttgcccagg aaatactacg 120 actgactttg atggctccac aaacataacc cagtgtaaaa acagaagatg tggaggggag 180 ctgggagatt tcactgggta cattgaattc ccaaactacc cangcaatta cccagccaac 240 a 241 <210> 413 <211> 231 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(231) <223> n = A,T,C or G
<400> 413 aactcttaca atccaagtga ctcatctgtg tgcttgaatc ctttccactg tctcatctcc 60 ctcatccaag tttctagtac cttctctttg ttgtgaagga taatcaaact gaacaacaaa 120 aagtttactc tcctcatttg gaacctaaaa actctcttct tcctgggtct gagggctcca 180 agaatccttg aatcanttct cagatcattg gggacaccan atcaggaacc t 231 <210> 414 <211> 234 <212> DNA
<213> Homo Sapiens <400> 414 actgtccatg aagcactgag cagaagctgg aggcacaacg caccagacac tcacagcaag 60 gatggagctg aaaacataac ccactctgtc ctggaggcac tgggaagcct agagaaggct 120 gtgagccaag gagggagggt cttcctttgg catgggatgg ggatgaagta aggagaggga 180 ctggaccccc tggaagctga ttcactatgg ggggaggtgt attgaagtcc tcca 234 <210> 415 <211> 217 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(217) <223> n = A,T,C or G
<400> 415 gcataggatt aagactgagt atcttttcta cattctttta actttctaag gggcacttct 60 caaaacacag accaggtagc aaatctccac tgctctaagg ntctcaccac cactttctca 120 cacctagcaa tagtagaatt cagtcctact tctgaggcca gaagaatggt tcagaaaaat 180 antggattat aaaaaataac aattaagaaa aataatc 217 <210> 416 <211> 213 <212> DNA
<213> Homo Sapiens <220>

<221> misc_feature <222> (1) . . (213) <223> n = A,T,C or G
<400> 416 atgcatatnt aaagganact gcctcgcttt tagaagacat ctggnctgct ctctgcatga 60 ggcacagcag taaagctctt tgattcccag aatcaagaac tctccccttc agactattac 120 cgaatgcaag gtggttaatt gaaggccact aattgatgct caaatagaag gatattgact 180 atattggaac agatggagtc tctactacaa aag 213 <210> 417 <211> 303 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (303) <223> n = A,T,C or G
<400> 417 nagtcttcag gcccatcagg gaagttcaca ctggagagaa gtcatacata tgtactgtat 60 gtgggaaagg ctttactctg agttcaaatc ttcaagccca tcagagagtc cacactggag 120 agaagccata caaatgcaat gagtgtggga agagcttcag gagggattcc cattatcaag 180 ttcatctagt ggtccacaca ggagagaaac cctataaatg tgagatatgt gggaagggct 240 tcantcaaag ttcgtatctt caaatccatc ngaaggncca cagtatanan aaacctttta 300 agt 303 <210> 418 <211> 328 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(328) <223> n = A,T,C or G
<400> 418 tttttggcgg tggtggggca gggacgggac angagtctca ctctgttgcc caggctggag 60 tgcacaggca tgatctcggc tcactacaac ccctgcctcc catgtccaag cgattcttgt 120 gcctcagcct tccctgtagc tagaattaca ggcacatgcc accacaccca gctagttttt 180 gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actcctnacc 240 tcagnggtca ggctggtctc aaactcctga cctcaagtga tctgcccacc tcagcctccc 300 aaagtgctan gattacaggc cgtgagcc 328 <210> 419 <211> 389 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (389) <223> n = A,T,C or G
<400> 419 cctcctcaag acggcctgtg gtccgcctcc cggcaaccaa gaagcctgca gtgccatatg 60 acccctgagc catggactgg agcctgaaag gcagcgtaca ccctgctcct gatcttgctg 120 cttgtttcct ctctgtggct ccattcatag cacagttgtt gcactgaggc ttgtgcaggc 180 cgagcaaggc caagctggct caaagagcaa ccagtcaact ctgccacggt gtgccaggca 240 ccggttctcc agccaccaac ctcactcgct cccgcaaatg gcacatcagt tcttctaccc 300 taaaggtagg accaaagggc atctgctttt ctgaagtcct ctgctctatc agccatcacg 360 tggcagccac tcnggctgtg tcgacgcgg 389 <210> 420 <211> 408 <212> DNA
<213> Homo sapiens <400> 420 gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60 tggccagggc agcaagcctt agccttggct tcttgtttct gctttttttc tggctagacc 120 gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180 gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240 gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300 gatatagaaa attcttgaat gagtcctata aacatgaaca ggtttatatt cgaagcacag 360 acgttgaccg gactttgatg aagtgctatg acaaacctgg caagcccg 408 <210> 421 <211> 352 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(352) <223> n = A,T,C or G
<400> 421 gctcaaaaat ctttttactg atnggcatgg ctacacaatc attgactatt acggaggcca 60 gaggagaatg aggcctggcc tgggagccct gtgcctacta naagcacatt agattatcca 120 ttcactgaca gaacaggtct tttttgggtc cttcttctcc accacnatat acttgcagtc 180 ctccttcttg aagattcttt ggcagttgtc tttgtcataa cccacaggtg tagaaacaag 240 ggtgcaacat gaaatttctg tttcgtagca agtgcatgtc tcacaagttg gcangtctgc 300 cactccgagt ttattgggtg tttgtttcct ttgagatcca tgcatttcct gg 352 <210> 422 <211> 337 <212> DNA
<213> Homo sapiens <400> 422 atgccaccat gctggcaatg cagcgggcgg tcgaaggcct gcatatccag cccaagctgg 60 cgatgatcga cggcaaccgt tgcccgaagt tgccgatgcc agccgaagcg gtggtcaagg 120 gcgatagcaa ggtgccggcg atcgcggcgg cgtcaatcct ggccaaggtc agccgtgatc 180 gtgaaatggc agctgtcgaa ttgatctacc cgggttatgg catcggcggg cataagggct 240 atccgacacc ggtgcacctg gaagccttgc agcggctggg gccgacgccg attcaccgac 300 gcttcttccg ccggtacggc tggcctatga aaattat 337 <210> 423 <211> 310 <212> DNA
<213> Homo sapiens <220>

<221> misc_feature <222> (1) . . (310) <223> n = A,T,C or G
<400> 423 gctcaaaaat ctttttactg atatggcatg gctacacaat cattgactat tagaggccag 60 aggagaatga ggcctggcct gggagccctg tgcctactan aagcncatta gattatccat 120 tcactgacag aacaggtctt ttttgggtcc ttcttctcca ccacgatata cttgcagtcc 180 tccttcttga agattctttg gcagttgtct ttgtcataac ccacaggtgt anaaacaagg 240 gtgcaacatg aaatttctgt ttcgtagcaa gtgcatgtct cacagttgtc aagtctgccc 300 tccgagttta 310 <210> 424 <211> 370 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(370) <223> n = A,T,C or G
<400> 424 gctcaaaaat ctttttactg ataggcatgg ctacacaatc attgactatt agaggccaga 60 ggagaatgag gcctggcctg ggagccctgt gcctactaga agcacattag attatccatt 120 cactgacaga acaggtcttt tttgggtcct tcttctccac cacgatatac ttgcagtcct 180 ccttcttgaa gattctttgg cagttgtctt tgtcataacc cacaggtgta gaaacatcct 240 ggttgaatct cctggaactc cctcattagg tatgaaatag catgatgcat tgcataaagt 300 cacgaaggtg gcaaagatca caacgctgcc cagganaaca ttcattgtga taagcaggac 360 tccgtcgacg 370 <210> 425 <211> 216 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(216) <223> n = A,T,C or G
<400> 425 aattgctatn ntttattttg ccactcaaaa taattaccaa aaaaaaaaaa tnttaaatga 60 taacaacnca acatcaaggn aaananaaca ggaatggntg actntgcata aatnggccga 120 anattatcca ttatnttaag ggttgacttc aggntacagc acacagacaa acatgcccag 180 gaggntntca ggaccgctcg atgtnttntg aggagg 216 <210> 426 <211> 596 <212> DNA
<213> Homo sapiens <400> 426 cttccagtga ggataaccct gttgccccgg gccgaggttc tccattaggc tctgattgat 60 tggcagtcag tgatggaagg gtgttctgat cattccgact gccccaaggg tcgctggcca 120 gctctctgtt ttgctgagtt ggcagtagga cctaatttgt taattaagag tagatggtga 180 gctgtccttg tattttgatt aacctaatgg ccttcccagc acgactcgga ttcagctgga 240 gacatcacgg caacttttaa tgaaatgatt tgaagggcca ttaagaggca cttcccgtta 300 ttaggcagtt catctgcact gataacttct tggcagctga gctggtcgga gctgtggccc 360 aaacgcacac ttggcttttg gttttgagat acaactctta atcttttagt catgcttgag 420 ggtggatggc cttttcagct ttaacccaat ttgcactgcc ttggaagtgt agccaggaga 480 atacactcat atactcgtgg gcttagaggc cacagcagat gtcattggtc tactgcctga 540 gtcccgctgg tcccatccca ggaccttcca tcggcgagta cctgggagcc cgtgct 596 <210> 427 <211> 107 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(107) <223> n = A,T,C or G
<400> 427 gaagaattca agttaggttt attcaaaggg cttacngaga atcctanacc caggncccag 60 cccgggagca gccttanaga gctcctgttt gactgcccgg ctcagng 107 <210> 428 <211> 38 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (38) <223> n = A,T,C or G
<400> 428 gaacttccna anaangactt tattcactat tttacatt 38 <210> 429 <211> 544 <212> DNA
<213> Homo Sapiens <400> 429 ctttgctgga cggaataaaa gtggacgcaa gcatgacctc ctgatgaggg cgctgcattt 60 attgaagagc ggctgcagcc ctgcggttca gattaaaatc cgagaattgt atagacgccg 120 atatccacga actcttgaag gactttctga tttatccaca atcaaatcat cggttttcag 180 tttggatggt ggctcatcac ctgtagaacc tgacttggcc gtggctggaa tccactcgtt 240 gccttccact tcagttacac ctcactcacc atcctctcct gttggttctg tgctgcttca 300 agatactaag cccacatttg agatgcagca gccatctccc ccaattcctc ctgtccatcc 360 tgatgtgcag ttaaaaaatc tgccctttta tgatgtcctt gatgttctca tcaagcccac 420 gagtttagtt caaagcagta ttcagcgatt tcaagagaag ttttttattt ttgctttgac 480 acctcaacaa gttagagaga tatgcatatc cagggatttt ttgccaggtg gtaggagaga 540 ttat 544 <210> 430 <211> 507 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(507) <223> n = A,T,C or G
<400> 430 cttatcncaa tggggctccc aaacttggct gtgcagtgga aactccgggg gaattttgaa 60 gaacactgac acccatcttc caccccgaca ctctgattta attgggctgc agtgagaaca 120 gagcatcaat ttaaaaagct gcccagaatg ttntcctggg cagcgttgtg atctttgccn 180 ccttcgtgac tttatgcaat gcatcatgct atttcatacc taatgaggga gttccaggag 240 attcaaccag gatgtttcta cncctgtggg ttatgacaaa gacaactgcc aaagaatntt 300 caagaaggag gactgcaagt atatcgtggt ggagaagaag gacccaaaaa agacctgttc 360 tgtcagtgaa tggataatct aatgtgcttc tagtaggcac agggctccca ggccaggcct 420 cattctcctc tggcctctaa tagtcaatga ttgtgtagcc atgcctatca gtaaaaagat 480 ttttgagcaa aaaaaaaaaa aaaaaaa 507 <210> 431 <211> 392 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (392) <223> n = A,T,C or G
<400> 431 gaaaattcag aatggataaa aacaaatgaa gtacaaaata tttcagattt acatagcgat 60 aaacaagaaa gcacttatca ggaggactta caaatggaag tacactctan aaccatcatc 120 tatcatggct aaar_gtgaga ttagcacagc tgtattattt gtacattgca aacacctaga 180 aagagatggg aaacaaaatc ccaggagttt tgtgtgtgga gtcctgggtt ttccaacaga 240 catcattcca gcattctgag attagggnga ttggggatca ttctggagtt ggaatgttca 300 acaaaagtga tgttgttagg taaaatgtac aacttctgga tctatgcaga cattgaaggt 360 gcaatgagtc tggcttttac tctgctgttt ct 392 <210> 432 <211> 387 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(387) <223> n = A,T,C or G
<400> 432 ggtatccnta cataatcaaa tatagctgta gtacatgttt tcattggngt agattaccac 60 aaatgcaagg caacatgtgt agatctcttg tcttattctt ttgtctataa tactgtattg 120 ngtagtccaa gctctcggna gtccagccac tgngaaacat gctcccttta gattaacctc 180 gtggacnctn ttgttgnatt gtctgaactg tagngccctg tattttgctt ctgtctgnga 240 attctgttgc ttctggggca tttccttgng atgcagagga ccaccacaca gatgacagca 300 atctgaattg ntccaatcac agctgcgatt aagacatact gaaatcgtac aggaccggga 360 acaacgtata gaacactgga gtccttt 387 <210> 433 <211> 281 <212> DNA
<213> Homo Sapiens <220>
<221> misc feature <222> (1)...(281) <223> n = A,T,C or G
<400> 433 ttcaactagc anagaanact gcttcagggn gtgtaaaatg aaaggcttcc acgcagttat 60 ctgattaaag aacactaaga gagggacaag gctagaagcc gcaggatgtc tacactatag 120 caggcnctat ttgggttggc tggaggagct gtggaaaaca tggagagatt ggcgctggag 180 atcgccgtgg ctattcctcn ttgntattac accagngagg ntctctgtnt gcccactggt 240 tnnaaaaccg ntatacaata atgatagaat aggacacaca t 281 <210> 434 <211> 484 <212> DNA
<213> Homo Sapiens <400> 434 ttttaaaata agcatttagt gctcagtccc tactgagtac tctttctctc ccctcctctg 60 aatttaattc tttcaacttg caatttgcaa ggattacaca tttcactgtg atgtatattg 120 tgttgcaaaa aaaaaaaagt gtctttgttt aaaattactt ggtttgtgaa tccatcttgc 180 tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa acatctgaag 240 agctagtcta tcagcatctg acaggtgaat tggatggttc tcagaaccat ttcacccaga 300 cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca taacaaaccc 360 tgctccaatc tgtcacataa aagtctgtga cttgaagttt agtcagcacc cccaccaaac 420 tttatttttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataaag tacccatgtc 480 ttta 484 <210> 435 <211> 424 <212> DNA
<213> Homo Sapiens <400> 435 gcgccgctca gagcaggtca ctttctgcct tccacgtcct ccttcaagga agccccatgt 60 gggtagcttt caatatcgca ggttcttact cctctgcctc tataagctca aacccaccaa 120 cgatcgggca agtaaacccc ctccctcgcc gacttcggaa ctggcgagag ttcagcgcag 180 atgggcctgt ggggaggggg caagatagat gagggggagc ggcatggtgc ggggtgaccc 240 cttggagaga ggaaaaaggc cacaagaggg gctgccaccg ccactaacgg agatggccct 300 ggtagagacc tttgggggtc tggaacctct ggactcccca tgctctaact cccacactct 360 gctatcagaa acttaaactt gaggattttc tctgtttttc actcgcaata aattcagagc 420 aaac 424 <210> 436 <211> 667 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(667) <223> n = A,T,C or G
<400> 436 accttgggaa nactctcaca atataaaggg tcgtagactt tactccaaat tccaaaaagg 60 tcctggccat gtaatcctga aagttttccc aaggtagcta taaaatcctt ataagggtgc 120 agcctcttct ggaattcctc tgatttcaaa gtctcactct caagttcttg aaaacgaggg 180 cagttcctga aaggcaggta tagcaactga tcttcagaaa gaggaactgt gtgcaccggg 240 atgggctgcc agagtaggat aggattccag atgctgacac cttctggggg aaacagggct 300 gccaggtttg tcatagcact catcaaagtc cggtcaacgt ctgtgcttcg aatataaacc 360 tgttcatgtt tataggactc attcaagaat tttctatatc tctttcttat atactctcca 420 agttcataat gctgctccat gcccagctgg gtgagttggc caaatccttg tggccatgag 480 gattccttta tggggtcagt gggaaaggtg tcaatgggac ttcggtctcc atgccgaaac 540 accaaagtca caaacttcaa ctccttggct agtacacttc ggtctagcca gaaaaaaagc 600 agaaacaaga agccaaggct aaggcttgct gccctgccag gaggaggggt gcagctctca 660 tgttgag 667 <210> 437 <211> 693 <212> DNA
<213> Homo Sapiens <400> 437 ctacgtctca accctcattt ttaggtaagg aatcttaagt ccaaagatat taagtgactc 60 acacagccag gtaaggaaag ctggattggc acactaggac tctaccatac cgggttttgt 120 taaagctcag gttaggaggc tgataagctt ggaaggaact tcagacagct ttttcagatc 180 ataaaagata attcttagcc catgttcttc tccagagcag acctgaaatg acagcacagc 240 aggtactcct ctattttcac ccctcttgct tctactctct ggcagtcaga cctgtgggag 300 gccatgggag aaagcagctc tctggatgtt tgtacagatc atggactatt ctctgtggac 360 catttctcca ggttacccta ggtgtcacta ttggggggac agccagcatc tttagctttc 420 atttgagttt ctgtctgtct tcagtagagg aaacttttgc tcttcacact tcacatctga 480 acacctaact gctgttgctc ctgaggtggt gaaagacaga tatagagctt acagtattta 540 tcctatttct aggcactgag ggctgtgggg taccttgtgg tgccaaaaca gatcctgttt 600 taaggacatg ttgcttcaga gatgtctgta actatctggg ggctctgttg gctctttacc 660 ctgcatcatg tgctctcttg gctgaaaatg acc 693 <210> 438 <211> 360 <212> DNA
<213> Homo Sapiens <400> 438 ctgcttatca caatgaatgt tctcctgggc agcgttgtga tctttgccac cttcgtgact 60 ttatgcaatg catcatgcta tttcatacct aatgagggag ttccaggaga ttcaaccagg 120 atgtttctac acctgtgggt tatgacaaag acaactgcca aagaatcttc aagaaggagg 180 actgcaagta tatctggtgg agaagaagga cccaaaaaag acctgttctg tcagtgaatg 240 gataatctaa tgtgcttcta gtaggcacag ggctcccagg ccaggcctca ttctcctctg 300 gcctctaata gtcaataatt gtgtagccat gcctatcagt aaaaagattt ttgagcaaac 360 <210> 439 <211> 431 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(431) <223> n = A,T,C or G
<400> 439 gttcctnnta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60 tggccagggc agcaagcctt agccttggct tcttgtttct gctttttttc tggctagacc 120 gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180 gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240 gccaactcac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300 gatatagaaa attcttgaat gagtcctata aacatgaaca ggtttatatt cgaagcacag 360 acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420 aatttagtag t 431 <210> 440 <211> 523 <212> DNA
<213> Homo Sapiens <400> 440 agagataaag cttaggtcaa agttcataga gttcccatga actatatgac tggccacaca 60 ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120 tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180 aggaaggaaa gatgtgaata ggctgatggg caaaaaacca atttacccat cagttccagc 240 cttctctcaa ggagaggcaa agaaaggaga tacagtggag acatctggaa agttttctcc 300 actggaaaac tgctactatc tgtttttata tttctgttaa aatatatgag gctacagaac 360 taaaaattaa aacctctttg tgtcccttgg tcctggaaca tttatgttcc ttttaaagaa 420 acaaaaatca aactttacag aaagatttga tgtatgtaat acatatagca gctcttgaag 480 tatatatatc atagcaaata agtcatctga tgagaacaag cta 523 <210> 441 <211> 430 <212> DNA
<213> Homo Sapiens <400> 441 gttcctccta actcctgcca gaaacagctc tcctcaacat gagagctgca cccctcctcc 60 tggccagggc agcaagcctt agccttggct tcttgtttct gctttttttc tggctagacc 120 gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180 gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240 gccaactcac ccagctgggc atggaycagc attatgaact tggagagtat ataagaaaga 300 gatatagaaa attcttgaat gagtcctata aacatgaaca ggtttatatt cgaagcacag,360 acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420 aatttagtag 430 <210> 442 <211> 362 <212> DNA
<213> Homo sapiens <400> 442 ctaaggaatt agtagtgttc ccatcacttg tttggagtgt gctattctaa aagattttga 60 tttcctggaa tgacaattat attttaactt tggtggggga aagagttata ggaccacagt 120 cttcacttct gatacttgta aattaatctt ttattgcact tgttttgacc attaagctat 180 atgtttagaa atggtcattt tacggaaaaa ttagaaaaat tctgataata gtgcagaata 240 aatgaattaa tgttttactt aatttatatt gaactgtcaa tgacaaataa aaattctttt 300 tgattatttt ttgttttcat ttaccagaat aaaaactaag aattaaaagt ttgattacag 360 tc 362 <210> 443 <211> 624 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(624) <223> n = A,T,C or G
<400> 443 tttttttttt gcaacacaat atacatcaca gtgaaatgtg taatccttgc aaattgcaag 60 ttgaaagaat taaattcaga ggaggggaga gaaagagtac tcagtaggga ctgagcacta 120 aatgcttatt ttaaaagaaa tgtaaagagc agaaagcaat tcaggctacc ctgccttttg 180 tgctggctag tactccggtc ggtgtcagca gcacgtggca ttgaacattg caatgtggag 240 cccaaaccac agaaaatggg gtgaaattgg ccaactttct attaacttgg cttcctgttt 300 tataaaatat tgtgaataat atcacctact tcaaagggca gttatgaggc ttaaatgaac 360 taacgcctac aaaacactta aacatagata acataggtgc aagtactatg tatctggtac 420 atggtaaaca tccttattat taaagtcaac gctaaaatga atgtgtgtgc atatgctaat 480 agtacagaga gagggcactt aaaccaacta agggcctgga gggaaggttt cctggaaaga 540 ngatgcttgt gctgggtcca aatcttggtc tactatgacc ttggccaaat tatttaaact 600 ttgtccctat ctgctaaaca gatc 624 <210> 444 <211> 425 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1) . . (425) <223> n = A,T,C or G
<400> 444 gcacatcatt nntcttgcat tctttgagaa taagaagatc agtaaatagt tcagaagtgg 60 gaagctttgt ccaggcctgt gtgtgaaccc aatgttttgc ttagaaatag aacaagtaag 120 ttcattgcta tagcataaca caaaatttgc ataagtggtg gtcagcaaat ccttgaatgc 180 tgcttaatgt gagaggttgg taaaatcctt tgtgcaacac tctaactccc tgaatgtttt 240 gctgtgctgg gacctgtgca tgccagacaa ggccaagctg gctgaaagag caaccagcca 300 cctctgcaat ctgccacctc ctgctggcag gatttgtttt tgcatcctgt gaagagccaa 360 ggaggcacca gggcataagt gagtagactt atggtcgacg cggccgcgaa tttagtagta 420 gtaga 425 <210> 445 <21.1> 414 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(414) <223> n = A,T,C or G
<400> 445 catgtttatg nttttggatt actttgggca cctagtgttt ctaaatcgtc tatcattctt 60 ttctgttttt caaaagcaga gatggccaga gtctcaacaa actgtatctt caagtctttg 120 tgaaattctt tgcatgtggc agattattgg atgtagtttc ctttaactag catataaatc 180 tggtgtgttt cagataaatg aacagcaaaa tgtggtggaa ttaccatttg gaacattgtg 240 aatgaaaaat tgtgtctcta gattatgtaa caaataacta tttcctaacc attgatcttt 300 ggatttttat aatcctactc acaaatgact aggcttctcc tcttgtattt tgaagcagtg 360 tgggtgctgg attgataaaa aaaaaaaaag tcgacgcggc cgcgaattta gtag 414 <210> 446 <211> 631 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(631) <223> n = A,T,C or G
<400> 446 acaaattaga anaaagtgcc agagaacacc acataccttg tccggaacat tacaatggct 60 tctgcatgca tgggaagtgt gagcattcta tcaatatgca ggagccatct tgcaggtgtg 120 atgctggtta tactggacaa cactgtgaaa aaaaggacta cagtgttcta tacgttgttc 180 ccggtcctgt acgatttcag tatgtcttaa tcgcagctgt gattggaaca attcagattg 240 ctgtcatctg tgtggtggtc ctctgcatca caagggccaa actttaggta atagcattgg 300 actgagattt gtaaactttc caaccttcca ggaaatgccc cagaagcaac agaattcaca 360 gacagaagca aaatacaggg cactacagtt cagacaatac aacaagagcg tccacgaggt 420 taatctaaag ggagcatgtt tcacagtggc tggactaccg agagcttgga ctacacaata 480 cagtattata gacaaaagaa taagacaaga gatctacaca tgttgccttg catttgtggt 540 aatctacacc aatgaaaaca tgtactacag ctatatttga ttatgtatgg atatatttga 600 aatagtatac attgtcttga tgttttttct g 631 <210> 447 <211> 585 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(585) <223> n = A,T,C or G
<400> 447 ccttgggaaa antntcacaa tataaagggt cgtagacttt actccaaatt ccaaaaaggt 60 cctggccatg taatcctgaa agttttccca aggtagctat aaaatcctta taagggtgca 120 gcctcttctg gaattcctct gatttcaaag tctcactctc aagttcttga aaacgagggc 180 agttcctgaa aggcaggtat agcaactgat cttcagaaag aggaactgtg tgcaccggga 240 tgggctgcca gagtaggata ggattccaga tgctgacacc ttctggggga aacagggctg 300 ccaggtttgt catagcactc atcaaagtcc ggtcaacgtc tgtgcttcga atataaacct 360 gttcatgttt ataggactca ttcaagaatt ttctatatct ctttcttata tactctccaa 420 gttcataatg ctgctccatg cccagctggg tgagttggcc aaatccttgt ggccatgagg 480 attcctttat ggggtcagtg ggaaaggtgt caatgggact tcggtctcca tgccgaaaca 540 ccaaagtcac aaacttcaac tccttggcta gtacacttcg gtcta 585 <210> 448 <211> 93 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(93) <223> n = A,T,C or G
<400> 448 tgctcgtggg tcattctgan nnccgaactg accntgccag ccctgccgan gggccnccat 60 ggctccctag tgccctggag agganggggc tag 93 <210> 449 <211> 706 <212> DNA
<213> Homo sapiens <220>
<221> mist feature <222> (1)...(706) <223> n = A,T,C or G
<400> 449 ccaagttcat gctntgtgct ggacgctgga cagggggcaa aagcnnttgc tcgtgggtca 60 ttctgancac cgaactgacc atgccagccc tgccgatggt cctccatggc tccctagtgc 120 cctggagagg aggtgtctag tcagagagta gtcctggaag gtggcctctg ngaggagcca 180 cggggacagc atcctgcaga tggtcgggcg cgtcccattc gccattcagg ctgcgcaact 240 gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat 300 gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcncga cgttgtaaaa 360 cgacggccag tgaattgaat ttaggtgacn ctatagaaga gctatgacgt cgcatgcacg 420 cgtacgtaag cttggatcct ctagagcggc cgcctactac tactaaattc gcggccgcgt 480 cgacgtggga tccncactga gagagtggag agtgacatgt gctggacnct gtccatgaag 540 cactgagcag aagctggagg cacaacgcnc cagacactca cagctactca ggaggctgag 600 aacaggttga acctgggagg tggaggttgc aatgagctga gatcaggccn ctgcncccca 660 gcatggatga cagagtgaaa ctccatctta aaaaaaaaaa aaaaaa 706 <210> 450 <211> 493 <212> DNA
<213> Homo Sapiens <400> 450 gagacggagt gtcactctgt tgcccaggct ggagtgcagc aagacactgt ctaagaaaaa 60 acagttttaa aaggtaaaac aacataaaaa gaaatatcct atagtggaaa taagagagtc 120 aaatgaggct gagaacttta caaagggatc ttacagacat gtcgccaata tcactgcatg 180 agcctaagta taagaacaac ctttggggag aaaccatcat ttgacagtga ggtacaattc 240 caagtcaggt agtgaaatgg gtggaattaa actcaaatta atcctgccag ctgaaacgca 300 agagacactg tcagagagtt aaaaagtgag ttctatccat g~aggtgattc cacagtcttc 360 tcaagtcaac acatctgtga actcacagac caagttctta aaccactgtt caaactctgc 420 tacacatcag aatcacctgg agagctttac aaactcccat tgccgagggt cgacgcggcc 480 gcgaatttag tag 493 <210> 451 <211> 501 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1). .(501) <223> n = A,T,C or G
<400> 451 gggcgcgtcc cattcgccat tcaggctgcg caactgttgg gaagggcgat cggtgcgggc 60 ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat taagttgggt 120 aacgccaggg ttttcccagt cncgacgttg taaaacgacg gccagtgaat tgaatttagg 180 tgacnctata gaagagctat gacgtcgcat gcacgcgtac gtaagcttgg atcctctaga 240 gcggccgcct actactacta aattcgcggc cgcgtcgacg tgggatccnc actgagagag 300 tggagagtga catgtgctgg acnctgtcca tgaagcactg agcagaagct ggaggcacaa 360 cgcnccagac actcacagct actcaggagg ctgagaacag gttgaacctg ggaggtggag 420 gttgcaatga gctgagatca ggccnctgcn ccccagcatg gatgacagag tgaaactcca 480 tcttaaaaaa aaaaaaaaaa a 501 <210> 452 <211> 51 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(51) <223> n = A,T,C or G
<400> 452 agacggtttc accnttacaa cnccttttag gatgggnntt ggggagcaag c 51 <210> 453 <211> 317 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <222> (1) . . (317) <223> n = A,T,C or G
<400> 453 tacatcttgc tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa 60 acatctgaag agctagtcta tcagcatctg gcaagtgaat tggatggttc tcagaaccat 120 ttcacccana cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca 180 taacaaaccc tgctccaatc tgtcacataa aagtctgtga cttgaagttt antcagcacc 240 cccaccaaac tttatttttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataagg 300 tacccatgtc tttatta 3l7 , <210> 454 <211> 231 <212> DNA
<213> Homo Sapiens <400> 454 ttcgaggtac aatcaactct cagagtgtag tttccttcta tagatgagtc agcattaata 60 ='~
taagccacgc cacgctcttg aaggagtctt gaattctcct ctgctcactc agtagaacca 120 agaagaccaa attcttctgc atcccagctt gcaaacaaaa ttgttcttct aggtctccac 180 ccttcctttt tcagtgttcc aaagctcctc acaatttcat gaacaacagc t 231 <210> 455 <211> 231 <212> DNA
<213> Homo Sapiens <400> 455 taccaaagag ggcataataa tcagtctcac agtagggttc accatcctcc aagtgaaaaa 60 cattgttccg aatgggcttt ccacaggcta cacacacaaa acaggaaaca tgccaagttt 120 gtttcaacgc attgatgact tctccaagga tcttcctttg gcatcgacca cattcagggg 180 caaagaattt ctcatagcac agctcacaat acagggctcc tttctcctct a 231 <210> 456 <211> 231 <212> DNA
<213> Homo Sapiens <400> 456 ttggcaggta cccttacaaa gaagacacca taccttatgc gttattaggt ggaataatca 60 ttccattcag tattatcgtt attattcttg gagaaaccct gtctgtttac tgtaaccttt 120 tgcactcaaa ttcctttatc aggaataact acatagccac tatttacaaa gccattggaa 180 cctttttatt tggtgcagct gctagtcagt ccctgactga cattgccaag t 231 <210> 457 <211> 231 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (231) <223> n = A,T,C or G
<400> 457 cgaggtaccc aggggtctga aaatctctnn tttantagtc gatagcaaaa ttgttcatca 60 gcattcctta atatgatctt gctataatta gatttttctc cattagagtt catacagttt 120 tatttgattt tattagcaat ct.ctttcaga agacccttga gatcattaag ctttgtatcc 180 agttgtctaa atcgatgcct catttcctct gaggtgtcgc tggcttttgt g 231 <210> 458 <211> 231 <212> DNA
<213> Homo Sapiens <400> 458 aggtctggtt ccccccactt ccactcccct ctactctctc taggactggg ctgggccaag 60 agaagagggg tggttaggga agccgttgag acctgaagcc ccaccctcta ccttccttca 120 acaccctaac cttgggtaac agcatttgga attatcattt gggatgagta gaatttccaa 180 ggtcctgggt taggcatttt ggggggccag accccaggag aagaagattc t 231 <210> 459 <211> 231 <212> DNA
<213> Homo Sapiens <400> 459 ggtaccgagg ctcgctgaca cagagaaacc ccaacgcgag gaaaggaatg gccagccaca 60 ccttcgcgaa acctgtggtg gc.ccaccagt cctaacggga caggacagag agacagagca 120 gccctgcact gttttccctc caccacagcc atcctgtccc tcattggctc tgtgctttcc 180 actatacaca gtcaccgtcc caatgagaaa caagaaggag caccctccac a 231 <210> 460 <211> 231 <212> DNA
<213> Homo Sapiens <400> 460 gcaggtataa catgctgcaa caacagatgt gactaggaac ggccggtgac atggggaggg 60 cctatcaccc tattcttggg ggctgcttct tcacagtgat catgaagcct agcagcaaat 120 cccacctccc cacacgcaca cggccagcct ggagcccaca gaagggtcct cctgcagcca 180 gtggagcttg gtccagcctc cagtccaccc ctaccaggct taaggataga a 231 <210> 461 <211> 231 <212> DNA
<213> Homo Sapiens <400> 461 cgaggtttga gaagctctaa tgtgcagggg agccgagaag caggcggcct agggagggtc 60 gcgtgtgctc cagaagagtg tgtgcatgcc agaggggaaa caggcgcctg tgtgtcctgg 120 gtggggttca gtgaggagtg ggaaattggt tcagcagaac caagccgttg ggtgaataag 180 agggggattc catggcactg atagagccct atagtttcag agctgggaat t 231 <210> 462 <211> 231 <212> DNA
<213> Homo sapiens <400> 462 aggtaccctc attgtagcca tgggaaaatt gatgttcagt ggggatcagt gaattaaatg 60 gggtcatgca agtataaaaa ttaaaaaaaa aagacttcat gcccaatctc atatgatgtg 120 gaagaactgt tagagagacc aacagggtag tgggttagag atttccagag tcttacattt 180 tctagaggag gtatttaatt tcttctcact catccagtgt tgtatttagg a 231 <210> 463 <211> 231 <212> DNA
<213> Homo Sapiens <400> 463 tactccagcc tggtgacaga gcgagaccct atcaccgccc cccaccccac caaaaaaaaa 60 actgagtaga caggtgtcct cttggcatgg taagtcttaa gtcccctccc agatctgtga 120 catttgacag gtgtcttttc ctctggacct cggtgtcccc atctgagtga gaaaaggcag 180 tggggaggtg gatcttccag tcgaagcggt atagaagccc gtgtgaaaag c 231 <210> 464 <211> 231 <212> DNA
<213> Homo Sapiens <400> 464 gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac cttagtgact 60 aaggacatca catatgaaga atgtttaagt tggaggtggc aacgtgaatt gcaaacaggg 120 cctgcttcag tgactgtgtg cctgtagtcc cagctactcg ggagtctgtg tgaggccagg 180 ggtgccagcg caccagctag atgctctgta acttctaggc cccattttcc c 231 <210> 465 <211> 231 <212> DNA
<213> Homo Sapiens <400> 465 catgttgttg tagctgtggt aatgctggct gcatctcaga cagggttaac ttcagctcct 60 gtggcaaatt agcaacaaat tctgacatca tatttatggt ttctgtatct ttgttgatga 120 aggatggcac aatttttgct tgtgttcata atatactcag attagttcag ctccatcaga 180 taaactggag acatgcagga cattagggta gtgttgtagc tctggtaatg a 231 <210> 466 <211> 231 <212> DNA
<213> Homo sapiens <400> 466 caggtacctc tttccattgg atactgtgct agcaagcatg ctctccgggg tttttttaat 60 ggccttcgaa cagaacttgc cacataccca ggtataatag tttctaacat ttgcccagga 120 cctgtgcaat caaatattgt ggagaattcc ctagctggag aagtcacaaa gactataggc 180 aataatggag accagtccca caagatgaca accagtcgtt gtgtgcggct g 231 <210> 467 <211> 311 <212> DNA
<213> Homo sapiens <400> 467 gtacaccctg gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg 60 tggtggcttt tctccttttt catcaagact cctcagcagg gagcccagac cagcctgcac 120 tgtgccttaa cagaaggtct tgagattcta agtgggaatc atttcagtga ctgtcatgtg 180 gcatgggtct ctgcccaagc tcgtaatgag actatagcaa ggcggctgtg ggacgtcagt 240 tgtgacctgc tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga 300 ctgcagcaga c ~ 311 <210> 468 <211> 3112 <212> DNA
<213> Homo Sapiens <400> 468 cattgtgttg ggagaaaaac agaggggaga tttgtgtggc tgcagccgag ggagaccagg 60 aagatctgca tggtgggaag gacctgatga tacagagttt gataggagac aattaaaggc 120 tggaaggcac tggatgcctg atgatgaagt ggactttcaa actggggcac tactgaaacg 180 atgggatggc cagagacaca ggagatgagt tggagcaagc tcaataacaa agtggttcaa 240 cgaggacttg gaattgcatg gagctggagc tgaagtttag cccaattgtt tactagttga 300 gtgaatgtgg atgattggat gatcatttct catctctgag cctcaggttc cccatccata 360 aaatgggata cacagtatga tctataaagt gggatatagt atgatctact tcactgggtt 420 atttgaagga tgaattgaga taatttattt caggtgccta gaacaatgcc cagattagta 480 catttggtgg aactgagaaa tggcataaca ccaaatttaa tatatgtcag atgttactat 540 gattatcatt caatctcata gttttgtcat ggcccaattt atcctcactt gtgcctcaac 600 aaattgaact gttaacaaag gaatctctgg tcctgggtaa tggctgagca ccactgagca 660 tttccattcc agttggcttc ttgggtttgc tagctgcatc actagtcatc ttaaataaat 720 gaagttttaa catttctcca gtgatttttt tatctcacct ttgaagatac tatgttatgt 780 gattaaataa agaacttgag aagaacaggt ttcattaaac ataaaatcaa tgtagacgca 840 .
aattttctgg atgggcaata cttatgttca caggaaatgc tttaaaatat gcagaagata 900 attaaatggc aatggacaaa gtgaaaaact tagacttttt tttttttttt ggaagtatct 960 ggatgttcct tagtcactta aaggagaact gaaaaatagc agtgagttcc acataatcca 1020 acctgtgaga ttaaggctct ttgtggggaa ggacaaagat ctgtaaattt acagtttcct 1080 tccaaagcca acgtcgaatt ttgaaacata tcaaagctct tcttcaagac aaataatcta 1140 tagtacatct ttcttatggg atgcacttat gaaaaatggt ggctgtcaac atctagtcac 1200 tttagctctc aaaatggttc attttaagag aaagttttag aatctcatat ttattcctgt 1260 ggaaggacag cattgtggct tggactttat aaggtcttta ttcaactaaa taggtgagaa 1320 ataagaaagg ctgctgactt taccatctga ggccacacat ctgctgaaat ggagataatt 1380 aacatcacta gaaacagcaa gatgacaata taatgtctaa gtagtgacat gtttttgcac 1440 atttccagcc cctttaaata tccacacaca caggaagcac aaaaggaagc acagagatcc 1500 ctgggagaaa tgcccggccg ccatcttggg tcatcgatga gcctcgccct gtgcctggtc 1560 ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg ttccttaaag gatgggcagg 1620 aaaacagatc ctgttgtgga tatttatttg aacgggatta cagatttgaa atgaagtcac 1680 aaagtgagca ttaccaatga gaggaaaaca gacgagaaaa tcttgatggc ttcacaagac 1740 atgcaacaaa caaaatggaa tactgtgatg acatgaggca gccaagctgg ggaggagata 1800 accacggggc agagggtcag gattctggcc ctgctgccta aactgtgcgt tcataaccaa 1860 atcatttcat atttctaacc ctcaaaacaa agctgttgta atatctgatc tctacggttc 1920 cttctgggcc caacattctc catatatcca gccacactca tttttaatat ttagttccca 1980 gatctgtact gtgacctttc tacactgtag aataacatta ctcattttgt tcaaagaccc 2040 ttcgtgttgc tgcctaatat gtagctgact gtttttccta aggagtgttc tggcccaggg 2100 gatctgtgaa caggctggga agcatctcaa gatctttcca gggttatact tactagcaca 2160 cagcatgatc attacggagt gaattatcta atcaacatca tcctcagtgt ctttgcccat 2220 actgaaattc atttcccact tttgtgccca ttctcaagac ctcaaaatgt cattccatta 2280 atatcacagg attaactttt ttttttaacc tggaagaatt caatgttaca tgcagctatg 2340 ggaatttaat tacatatttt gttttccagt gcaaagatga ctaagtcctt tatccctccc 2400 ctttgtttga ttttttttcc agtataaagt taaaatgctt agccttgtac tgaggctgta 2460 tacagccaca gcctctcccc atccctccag ccttatctgt catcaccatc aacccctccc 2520 atgcacctaa acaaaatcta acttgtaatt ccttgaacat gtcaggcata cattattcct 2580 tctgcctgag aagctcttcc ttgtctctta aatctagaat gatgtaaagt tttgaataag 2640 ttgactatct tacttcatgc aaagaaggga cacatatgag attcatcatc acatgagaca 2700 gcaaatacta aaagtgtaat ttgattataa gagtttagat aaatatatga aatgcaagag 2760 ccacagaggg aatgtttatg gggcacgttt gtaagcctgg gatgtgaagc aaaggcaggg 2820 aacctcatag tatcttatat aatatacttc atttctctat ctctatcaca atatccaaca 2880 agcttttcac agaattcatg cagtgcaaat ccccaaaggt aacctttatc catttcatgg 2940 tgagtgcgct ttagaatttt ggcaaatcat actggtcact tatctcaact ttgagatgtg 3000 tttgtccttg tagttaattg aaagaaatag ggcactcttg tgagccactt tagggttcac 3060 tcctggcaat aaagaattta caaagagcaa aaaaaaaaaa aaaaaaaaaa as 3112 <210> 469 <211> 2229 <212> DNA
<213> Homo sapiens <400> 469 agctctttgt aaattcttta ttgccaggag tgaaccctaa agtggctcac aagagtgccc 60 tatttctttc aattaactac aaggacaaac acatctcaaa gttgagataa gtgaccagta 120 tgatttgcca aaattctaaa gcgcactcac catgaaatgg ataaaggtta cctttgggga 180 tttgcactgc atgaattctg tgaaaagctt gttggatatt gtgatagaga tagagaaatg 240 aagtatatta tataagatac tatgaggttc cctgcctttg cttcacatcc caggcttaca 300 a.acgtgcccc ataaacattc cctctgtggc tcttgcattt catatattta,tctaaactct 360 tataatcaaa tacactttta gtatttgctg tctcatgtga tgatgaatct catatgtgtc 420 ccttctttgc atgaagtaag atagtcaact tattcaaaac tttacatcat tctagattta 480 agagacaagg aagagcttct caggcagaag gaataatgta tgcctgacat gttcaaggaa 540 ttacaagtta gattttgttt aggtgcatgg gaggggttga tggtgatgac agataaggct 600 ggagggatgg ggagaggctg tggctgtata cagcctcagt acaaggctaa gcattttaac 660 tttatactgg aaaaaaaatc aaacaaaggg gagggataaa ggacttagtc atctttgcac 720 tggaaaacaa aatatgtaat taaattccca tagctgcatg taacattgaa ttcttccagg 780 ',~'w ttaaaaaaaa agttaatcct gtgatattaa tggaatgaca ttttgaggtc ttgagaatgg 840 gcacaaaagt gggaaatgaa tttcagtatg ggcaaagaca ctgaggatga tgttgattag 900 ataattcact ccgtaatgat catgctgtgt gctagtaagt ataaccctgg aaagatcttg 960 agatgcttcc cagcctgttc acagatcccc tgggccagaa cactccttag gaaaaacagt 1020 cagctacata ttaggcagca acacgaaggg tctttgaaca aaatgagtaa tgttattcta 1080 cagtgtagaa aggtcacagt acagatctgg gaactaaata ttaaaaatga gtgtggctgg 1140 atatatggag aatgttgggc ccagaaggaa ccgtagagat cagatattac aacagctttg 1200 ttttgagggt tagaaatatg aaatgatttg gttatgaacg cacagtttag gcagcagggc 1260 cagaatcctg accctctgcc ccgtggttat ctcctcccca gcttggctgc ctcatgtcat 1320 cacagtattc cattttgttt gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt 1380 tttcctctca ttggtaatgc tcactttgtg acttcatttc aaatctgtaa tcccgttcaa 1440 ataaatatcc acaacaggat ctgttttcct gcccatcctt taaggaacac atcaattcat 1500 tttctaatgt ccttccctca caagcgggac caggcacagg gcgaggctca tcgatgaccc 1560 aagatggcgg ccgggcattt ctcccaggga tctctgtgct tccttttgtg cttcctgtgt 1620 gtgtggatat ttaaaggggc tggaaatgtg caaaaacatg tcactactta gacattatat 1680 tgtcatcttg ctgtttctag tgatgttaat tatctccatt tcagcagatg tgtggcctca 1740 gatggtaaag tcagcagcct ttcttatttc tcacctggaa atacatacga ccatttgagg 1800 agacaaatgg caaggtgtca gcataccctg aacttgagtt gagagctaca cacaatatta 1860 ttggtttccg agcatcacaa acaccctctc tgtttcttca ctgggcacag aattttaata 1920 cttatttcag tgggctgttg gcaggaacaa atgaagcaat ctacataaag tcactagtgc 1980 agtgcctgac acacaccatt ctcttgaggt cccctctaga gatcccacag gtcatatgac 2040 ttcttgggga gcagtggctc acacctgtaa tcccagcact ttgggaggct gaggcaggtg 2100 ggtcacctga ggtcaggagt tcaagaccag cctggccaat atggtgaaac cccatctcta 2160 ctaaaaatac aaaaattagc tgggcgtgct ggtgcatgcc tgtaatccca gccccaacac 2220 aatggaatt 2229 <210> 470 <211> 2426 <212> DNA
<213> Homo sapiens <400> 470 gtaaattctt tattgccagg agtgaaccct aaagtggctc acaagagtgc cctatttctt 60 tcaattaact acaaggacaa acacatctca aagttgagat aagtgaccag tatgatttgc 120 caaaattcta aagcgcactc accatgaaat ggataaaggt tacctttggg gatttgcact 180 gcatgaattc tgtgaaaagc ttgttggata ttgtgataga gatagagaaa tgaagtatat 240 tatataagat actatgaggt tccctgcctt tgcttcacat cccaggctta caaacgtgcc 300 ccataaacat tccctctgtg gctcttgcat ttcatatatt tatctaaact cttataatca 360 aattacactt ttagtatttg ctgtctcatg tgatgatgaa tctcatatgt gtcccttctt 420 tgcatgaagt aagatagtca acttattcaa aactttacat cattctagat ttaagagaca 480 aggaagagct tctcaggcag aaggaataat gtatgcctga catgttcaag gaattacaag 540 ttagattttg tttaggtgca tgggaggggt tgatggtgat gacagataag gctggaggga 600 tggggagagg ctgtggctgt atacagcctc agtacaaggc taagcatttt aactttatac 660 tggaaaaaaa atcaaacaaa ggggagggat aaaggactta gtcatctttg cactggaaaa 720 caaaatatgt aattaaattc ccatagctgc atgtaacatt gaattcttcc aggttaaaaa 780 aaaaagttaa tcctgtgata ttaatggaat gacattttga ggtcttgaga atgggcacaa 840 aagtgggaaa tgaatttcag tatgggcaaa gacactgagg atgatgttga ttagataatt 900 cactccgtaa tgatcatgct gtgtgctagt aagtataacc ctggaaagat cttgagatgc 960 ttcccagcct gttcacagat cccctgggcc agaacactcc ttaggaaaaa cagtcagcta 1020 catattaggc agcaacacga agggtctttg aacaaaatga gtaatgttat tctacagtgt 1080 agaaaggtca cagtacagat ctgggaacta aatattaaaa atgagtgtgg ctggatatat 1140 ggagaatgtt gggcccagaa ggaaccgtag agatcagata ttacaacagc tttgttttga :1200 gggttagaaa tatgaaatga tttggttatg aacgcacagt ttaggcagca gggccagaat 1260 cctgaccctc tgccccgtgg ttatctcctc cccagcttgg ctgcctcatg tcatcacagt 1320 attccatttt gtttgttgca tgtcttgtga agccatcaag attttctcgt ctgttttcct 1380 ctcattggta atgctcactt tgtgacttca tttcaaatct gtaatcccgt tcaaataaat 1440 atccacaaca ggatctgttt,tcctgcccat cctttaagga acacatcaat tcattttcta 1500 .
atgtccttcc ctcacaagcg ggaccaggca cagggcgagg ctcatcgatg acccaagatg 1560 gcggccgggc atttctccca gggatctctg tgcttccttt tgtgcttcct gtgtgtgtgg 1620 atatttaaag gggctggaaa tgtgcaaaaa catgtcacta cttagacatt atattgtcat 1680 cttgctgttt ctagtgatgt taattatctc catttcagca gatgtgtggc ctcagatggt 1740 aaagtcagca gcctttctta tttctcacct ggaaatacat acgaccattt gaggagacaa 1800 atggcaaggt gtcagcatac cctgaacttg agttgagagc tacacacaat attattggtt 1860 tccgagcatc acaaacaccc tctctgtttc ttcactgggc acagaatttt aatacttatt 1920 tcagtgggct gttggcagga acaaatgaag caatctacat aaagtcacta gtgcagtgcc 1980 tgacacacac cattctcttg aggtcccctc tagagatccc acaggtcata tgacttcttg 2040 gggagcagtg gctcacacct gtaatcccag cactttggga ggctgaggca ggtgggtcac 2100 ctgaggtcag gagttcaaga ccagcctggc caatatggtg aaaccccatc tctactaaaa 2160 atacaaaaat tagctgggcg tgctggtgca tgcctgtaat cccagctact tgggaggctg 2220 aggcaggaga attgctggaa catgggaggc ggaggttgca gtgagctgta attgtgccat 2280 tgcactcgaa cctgggcgac agagtggaac tctgtttcca aaaaacaaac aaacaaaaaa 2340 ggcatagtca gatacaacgt gggtgggatg tgtaaataga agcaggatat aaagggcatg 2400 gggtgacggt tttgcccaac acaatg 2426 <210> 471 <211> 812 <212> DNA
<213> Homo sapiens <400> 471 gaacaaaatg agtaatgtta ttctacagtg tagaaaggtc acagtacaga tctgggaact 60 aaatattaaa aatgagtgtg gctggatata tggagaatgt tgggcccaga aggaaccgta 120 gagatcagat attacaacag ctttgttttg agggttagaa atatgaaatg atttggttat 180 gaacgcacag tttaggcagc agggccagaa tcctgaccct ctgccccgtg gttatctcct 240 ccccagcttg gctgcctcat gtcatcacag tattccattt tgtttgttgc atgtcttgtg 300 aagccatcaa gattttctcg tctgttttcc tctcattggt aatgctcact ttgtgacttc 360 atttcaaatc tgtaatcccg ttcaaataaa tatccacaac aggatctgtt ttcctgccca 420 tcctttaagg aacacatcaa ttcattttct aatgtccttc cctcacaagc gggaccaggc 480 acagggcgag gctcatcgat gacccaagat ggcggccggg catttctccc agggatctct 540 gtgcttcctt ttgtgcttcc tgtgtgtgtg gatatttaaa ggggctggaa atgtgcaaaa 600 acatgtcact acttagacat tatattgtca tcttgctgtt tctagtgatg ttaattatct 660 ccatttcagc agatgtgtgg cctcagatgg taaagtcagc agcctttctt atttctcacc 720 tctgtatcat caggtccttc ccaccatgca gatcttcctg gtctccctcg gctgcagcca 780 cacaaatctc ccctctgttt ttctgatgcc ag 812 <210> 472 <211> 515 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1) . . (515) <223> n = A,T,C or G
<400> 472 acggagactt attttctgat attgtctgca tatgtatgtt tttaagagtc tggaaatagt 60 cttatgactt tcctatcatg cttattaata aataatacag cccagagaag atgaaaatgg 120 gttccagaat tattggtcct tgcagcccgg tgaatctcag caagaggaac caccaactga 180 caatcaggat attgaacctg gacaagagag agaaggaaca cctccgatcg aagaacgtaa 240 agtagaaggt gattgccagg aaatggatct ggaaaagact cggagtgagc gtggagatgg 300 ctctgatgta aaagagaaga ctccacctaa tcctaagcat gctaagacta aagaagcagg 360 agatgggcag ccataagtta aaaagaagac aagctgaagc tacacacatg gctgatgtca 420 cattgaaaat gtgactgaaa atttgaaaat tctctcaata aagtttgagt tttctctgaa 480 gaaaaaaaaa naaaaaaaaa aaanaaaaan aaaaa 515 <210> 473 <211> 5829 <212> DNA
<213> Homo Sapiens <400> 473 cgcatgccgg ggaagcccaa gctggctcga agagccacca gccacctgtg caagggtggg 60 cctggaccag ttggaccagc caccaagctc acctactcaa ggaagcaggg atggccaggt 120 tgcaacagcc tgagtggctg ccacctgata gctgatggag cagaggcctg aggaaaatca 180 gatggcacat ttagctcttt aatggatctt aagttaattt ttctataaag cacatggcac 240 cagtccatgc ctcagagctc gtatggcact gcggaccaca gcaggccgag ttcccaggat 300 tgccatccag gggggccttc tgtagccctg gccagacctt gcagaggtgg ctgggtgctc 360 tttgagcgag ctcggcctcc ctggcatgca caggccccag gtactgacac gctgctctga 420 gtgagcttgt cctgccttgg ctgccaccta actgctgatg gagcagcggc cttaggaaaa 480 gcaaatggcg ctgtagccca actttagggt agaagaagat gtaccatgtc cggccgctag 540 ttggtgactg gtgcacctgc tcctggcgta cccttgcaga ggtgggtggt tgctctttgg 600 ccagcttggc cttgcctggc atgcacaagc ctcagtgcaa caactgtcct acaaatggag 660 acacagagag gaaacaagca gcgggctcag gagcagggtg tgtgctgcct ttggggctcc 720 agtccatgcc tcgggtcgta tggtactgca ggcttcttgg ttgccaagag gcggaccaca 780 ggccttcttg aggaggactt tacgttcaag tgcagaaagc agccaaaatt accatccatg 840 agactaagcc ttctgtggcc ctggcgagac ttaaaatttg tgccaaggca ggacaagctc 900 actcggagca gcgtgtcagt agctggggcc tatgcatgcc gggcagggcc gggctggctg 960 aaggagcaac cagccacctc tgcaagggtg cgcctagtgc aggcggagca tccaccacct 1020 cacccgctcg aggaagtggg gatggccagg ttcccacagc ctgagtgtct gccaccttat 1080 tgctgatgga gcagaggcct taagaaaagc agatggcact gtggccctac ctttagggtg 1140 gaagaagtga tgtacatgtc cggacgctaa ttggtgactg gtacaccggc tcctgctaca 1200 cctttgcaga ggtggctggt tgctctttga gccagcttgt ccttgcccgg catgcacaag 1260, tttcagtgca acaactttgc cacaaatgga gccatataga ggaaacaaga agcaggttca 1320 ggagaagggt gtaccctgcc tttggggctc cagtccatgc ctcaggtgtc acatggcact 1380 gcgggcttct tggttgccag gaggcggacc acaggccatc ttggggagga ctttgtgttc 1440 aagtgcagaa agcagccagg attgccatcc agggggacct tctatagccc tggccaaacc 1500 ttgcaggggt gtctggttgc tctttgagcc ggcttggcct ccctggcatg cacgggcccc 1560 aggtgctggc acgctgctcc gagtgtgctt gtcctgcctt ggctgccacc tctgcggggg 1620 tgcgtctgga gggggtggac cggccaccaa ccttacccag tcaaggaagt ggatggccat 1680 gttcccacag cctgagtggc tgccacctga tggctgatgg agcaaaggcc ttaggaaaag 1740 cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt cctgcagcga 1800 gtgaggttgg tggctgtgcc cccagctcct ggcgcgccct cgcagaggtg actggttgct 1860 ctttgggccc tcttggcctt gcccagcatg cacaagcctc agtgctacta ctgtgctaca 1920 aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat gctgcctttg 1980 ggggctccag tccttgcctc aagggtctta tgtcactgtg ggcttcttgg ttgtcaagag 2040 gcagaccata ggccgtcttg agagggactt tatgttcaag tgcagaaagc agccaggatt 2100 gccaccctcg ggactctgcc ttctgtggcc ctggccaaac ttagaatttg gccgtagaca 2160 ggacaggctc acttggagta gcgtgtccgt agctggggtc tgtgcatgcc gggcaaggcc 2220 gggctggctc ggggagcaac cagccacctc tgcgggggtg cgcctggagc aggtggagca 2280 gccaccagct cacccactcc aggaagccgg ggtagccagg ttcccaaggc ctgagtgggt 2340 gccacctaat ggctgaagaa acagaggcct tgggaaaacc agatggcact gtggccctac 2400 ctttatggta gaagagctga tttagcctga ctggcagcgt gtggggttgg tggctggtct 2460 gcctgctgct ggcgcatccg tgcaaggatg gctggttgcc ctttgagcca gcttgccctt 2520 gcccggcatg cgcaagcctc agtgcaacaa ctgtgctgca aatggggcca tatagaggaa 2580 aggagcagct ggctctggag catggtgtgc actccctttg ggccttcagt ccatgtctca 2640 .
tgggtcgtat gacactgcgg gcttgttggt tgccaagagg cagaccacag gtcatcttga 2700 ggaggacttt atgttccagt ccagaaagca gccagtggta ccacccaggg gacttgtgct 2760 tctgtgccca ggccagacgt agaatttgac aaagtcagga cggtctcagt cagagcggcg 2820 tgtcggtccc cggggcctgt gcatgccggg cagggccggg ctggcttggg gagcaagcag 2880 t-ccacctctgt taagggtgtg cctggagcag gtggagcagc caccaacctc acgcactgaa 2940 agaagcaggg atggccaggt tccaacatcc tgagtggctg ccacctgatg gctgatggag 3000 cagaggcctg aggaaaagca gatggcactg ctttgtagtg ctgttctttg tctctcttga 3060 . ..
tctttttcag ttaatgtctg ttttatcaga gactaggatt gcaaaccctg ctcttttttg 3120 ctttccattt gcttggtaaa tattcctcca tccctttatt ttaagcctat gtgtgtcttt 3180 gcacatgaga tgggtctcct gaatacagga caacaatggg tctttactct ttatccaact 3240 tgccagtctg tgtcttttaa ctggggcatt tagcccattt acatttaagt ttagtattgt 3300 tacatgtgaa atttatcctg tcatgatgtt gctagctttt tatttttccc attagtttgc 3360 agtttcttta tagtgtcaat ggtctttaca attcgatatg tttttgtagt ggctggtact 3420 ggtttttcct ttctacgttt agtgtctcct tcaggagctc ttgtaacaca agaatgtgga 3480 tttatttctt gtaaggtaaa tatgtggatt tatttcttgg gactgtattc tatggccttt 3540 accccaagaa tcattacttt ttaaaatgca attcaaatta gcataaaaca tttacagcct 3600 atggaaaggc ttgtggcatt agaatcctta tttataggat tattttgtgt ttttttgaga 3660 tatggtcttt gtcatcgagg cagaagtgcc gtggtttgat cataattcac cacagccctg 3720 aactcttgag tccaagccat ccttttgcct taatctccca accagttgga tctgcaggca 3780 taaggcatca tgcgtggcta attttttcac gttttttttt tttttttgtc gagattatgg 3840 tgtcactgtg ttgctctggc tgatctcaaa tgtttgacct caagggatct ttctgccacg 3900 gcctcctaaa gtgctaggat tatatgcatg atacaccatg cctattgtag agtattacat 3960 tattttcaaa gtcttattgt aagagccatt tattgccttt ggcctaaata actcaatata 4020 atatctctga aacttttttt tgacaaattt tggggcgtga tgatgagaga agggggtttg 4080 aaactttcta ataagagtta acttagagcc atttaagaaa ggaaaaaaca caaattatca 4140 gaaaaacaac agtaagatca agtgcaaaag ttctgtggca aagatgatga gagtaaagaa 4200 tatatgtttg tgactcatgg tggcttttac tttgttcttg aatttctgag tacgggttaa 4260 catttaaaga atctacatta tagataacat tttattgcaa gtaaatgtat ttcaaaattt 4320 gttattggtt ttgtatgaga ttattctcag cctacttcat tatcaagcta tattatttta 4380 ttaatgtagt tcgatgatct tacagcaaag ctgaaagctg tatcttcaaa atatgtctat 4440 ttgactaaaa agttattcaa caggagttat tatctataaa aaaaatacaa caggaatata 4500 aaaaacttga ggataaaaag atgttggaaa aagtaatatt aaatcttaaa aaacatatgg 4560 aaactacaca atggtgaaga cacattggtg aagtacaaaa atataaattg gatctagaag 4620 aaagggcaat gcaggcaata gaaaaattag tagaaatccc tttaaaggtt agtttgtaaa 4680 atcaggtaag tttatttata atttgctttc atttatttca ctgcaaatta tattttggat 4740 atgtatatat attgtgcttc ctctgcctgt cttacagcaa tttgccttgc agagttctag 4800 gaaaaaggtg gcatgtgttt ttactttcaa aatatttaaa tttccatcat tataacaaaa 4860 tcaatttttc agagtaatga ttctcactgt ggagtcattt gattattaag acccgttggc 4920 ataagattac atcctctgac tataaaaatc ctggaagaaa acctaggaaa tattcgtctg 4980 gacattgcac ttggcaatga atttatgggt aaccactgat ccacttccag tcactatcca 5040 tgagttttta tttccagata catgaaatca tatgagttga aactttcttt tgattgagca 5100 gtttggaaac cgtctttttg tagaatctgc aagtggatat ttggaaccct ttgaggccta 5160 tgctgaaaaa agaaatatct tcactacatg atgaccacca gcagcagctg gggaaaccag 5220 caccctgtgg aattccatac ggtgcataga atacatcctc ccttcagtcg gcttgggtca 5280 acttaggtca tgggccacct ggctgatagc agtttccaca gaaatgcttc aagatgaaag 5340 tggatgaccg ggccaccctc caccactgcc ctgtaagacc atgggacaca caggccacca 5400 gttcttttca tgtggtcatc ccctgttaga tgggagaaaa tacacctgcc tcatttttgt 5460 accttctgtg tgaacattcc acggcagact gtcgctaaat gtggatgaag aattgaatga 5520 atgaatgaat atgagagaaa atgaataaat ggttcagatc ctgggctgga aggctgtgta 5580 tgaggatggt gggtagagga gggtctgttt ttcttgcctt taagtcacta attgtcactt 5640 tggggcagga gcacaggctt tgaatgcaga ccgactggac tttaattctg gctttactag 5700 ttgtgattgt gtgaccttgt gaaagttact taaaccctct gtgcctgttt ctttatctgt 5760 aaaatggaga taataagatg tcaaaggact gtggtaagaa ttaaatgctt taaaaaaaaa 5820 aaaaaaaaa 5829 <210> 474 <211> 1594 <212> DNA
<213> Homo sapiens <-400> 474 atttatggat cattaatgcc tctttagtag tttagagaaa acgtcaaaag aaatggcccc 60 agaataagct tcttgatttg taaaattcta tgtcattggc tcaaatttgt atagtatctc 120 aaaatataaa tatatagaca tctcagataa tatatttgaa atagcaaatt cctgttagaa 180 aataatagta cttaactaga tgagaataac aggtcgccat tatttgaatt gtctcctatt 240 .
cgtttttcat ttgttgtgtt actcatgttt tacttatgag ggatatatat aacttccact 300 gttttcagaa ttattgtatg cagtcagtat gagaatgcaa tttaagtttc cttgatgctt 360 tttcacactt ctattactag aaataagaat acagtaatat tggcaaagaa aattgaccag 420 ttcaataaaa ttttttagta aatctgattg aaaataaaca ttgcttatgg ctttcttaca 480 tcaatattgt tatgtcctag acaccttatc tgaaattacg gcttcaaaat tctaattatg 540 tgcaaatgtg taaaatatca atactttatg ttcaagctgg ggcctcttca ggcgtcctgg 600 gctgagagag aaagatgcta gctccgcaag ccggagaggg aacaccgcca cattgttaca 660 cggacacacc gccacgtgga cacatgacca gactcacatg tacagacaca cggagacatt 720 accacatgga gacaccgtca cacagtcaca cggacacact ggcatagtca catggacgga 780 cacacagaca tatggagaaa tcacatggac acaccaccac actatcacag ggacacagac 840 acacggagac atcaccacat ggacacactg tcacactacc acagggacac gagacatcac 900 actgtcacat ggacacacca tcacacacat gaacacaccg acacactgcc atatggacac 960 tggcacacac actgccacac tgtcacatgg acacacctcc acaccatcac accaccacac 1020 acactgcctg tggacacaag gacacacaga cactgtcaca cagatacaca aaacactgtc 1080 acacggagac atcaccatgc agatacacca ccactctggt gccgtctgaa ttaccctgct 1140 ggggggacag cagtggcata ctcatgccta agtgactggc tttcacccca gtagtgattg 1200 ccctccatca acactgccca ccccaggttg gggctacccc agcccatctt tacaaaacag 1260 ggcaaggtga actaatggag tgggtggagg agttggaaga aatcccagcg tcagtcaccg 1320 ggatagaatt cccaaggaac cctctttttg gaggatggtt tccatttctg gaggcgatct 1380 gccgacaggg tgaatgcctt cttgcttgtc ttctggggaa tcagagagag tccgttttgt 1440 ggtgggaaga gtgtggctgt gtactttgaa ctcctgtaaa ttctctgact catgtccaca 1500 aaaccaacag ttttgtgaat gtgtctggag gcaagggaag ggccactcag gatctatgtt 1560 gaagggaaga ggcctggggc tggagtattc gctt 1594 <210> 475 <211> 2414 <212> DNA
<213> Homo sapiens <220>
<221> unsure <222> (33) <223> n=A,T,C or G
<400> 475 cccaacacaa tggctttata agaatgcttc acntgtgaaa aacaaatatc aaagtcttct 60 tgtagattat ttttaaggac aaatctttat tccatgttta atttatttag ctttccctgt 120 agctaatatt tcatgctgaa cacattttaa atgctgtaaa tgtagataat gtaatttatg 180 tatcattaat gcctctttag tagtttagag aaaacgtcaa aagaaatggc cccagaataa 240 gcttcttgat ttgtaaaatt ctatgtcatt ggctcaaatt tgtatagtat ctcaaaatat 300 aaatatatag acatctcaga taatatattt gaaatagcaa attcctgtta gaaaataata 360 gtacttaact agatgagaat aacaggtcgc cattatttga attgtctcct attcgttttt 420 catttgttgt gttactcatg ttttacttat ggggggatat atataacttc cgctgttttc 480 agaagtattg tatgcagtca gtatgagaat gcaatttaag tttccttgat gctttttcac 540 acttctatta ctagaaataa gaatacagta atattggcaa agaaaattga ccagttcaat 600 aaaatttttt-agtaaatctg attgaaaata aacattgctt atggctttct tacatcaata 660 ttgttatgtc ctagacacct tatctgaaat tacggcttca aaattctaat tatgtgcaaa 720 tgtgtaaaat atcaatactt tatgttcaag ctggggcctc ttcaggcgtc ctgggctgag 780 agagaaagat gctagctccg caagccgggg agggaacacc gccacattgt tacatggaca 840 caccgccacg tggacacatg accagactca catgtacaga cacacggaga cattaccaca 900 tggagacacc gtcacacagt cacacgagca cactggcata gtcacatgga cggacacaca 960 gacatatgga gaaatcacac tgacacacca ccacactatc acagggacac agacacacgg 1020 agacatcacc acatggacac actgtcacac taccacaggg acacgagaca tcacactgtc 1080 acatggacac accatcacac acatgaacac accgacacac tgccatatgg acactgccac 1140 acacactgcc acactgtcac atggacacac ctccatacca tcacaccacc acacacactg 1200 ccatgtggac acaaggacac acagacactg tcacacagat acacaaaaca ctgtcacacg 1260 gagacatcac catgcagata caccaccaca tggacatagc accagacact ctgccacaca 1320 gatacaccac cacacagaaa tgcggacaca ctgccacaca gacaccacca catcgttgcc 1380 -,.;.
acactttcat gtgtcagctg gcggtgtggg ccccacgact ctgggctcta atcgagaaat.1440 r tacttggaca tatagtgaag gcaaaatttt tttttatttt ctgggtaacc aagcgcgact.1500 ctgtctcaaa aaaagaaaaa aaaagcaata tactgtgtaa tcgttgacag cataattcac 1560 tattatgtag atcggagagc agaggattct gaatgcatga acatatcatt aacatttcaa 1620 tacattactc ataattactg atgaactaaa gagaaaccaa gaaattatgg tgatagttat 1680 attgacctgg agaaatgtag acacaaaaga accgtaagat gagaaatgtg ttaacacagt 1740 ctataagggc atgcaagaat aaaaataggg gagaaaacag gagagttttt caagagcttt 1800 ctggtcatgt aagtcaactt gtatcggtta atttttaaaa ggtttattta catgcaataa 1860 actgcacata cttcaattgt acattttggt aattcttggc atttgtagct ctataaaacc 1920 agcaacatat taaaatagca aacatatcca ttacctttac caccaaagtt ttcttgtgtt 1980 ttttctactc actttttcct gcctatcccc ccatctcttc cacaggtaac cactgatcca 2040 cttccagtca ctatccatga gtttttattt ccaaatacat gaaatcatat gaatttctgg 2100 tttttcctgt tggagcccaa ggagcaaggg cagaatgagg aacatgatgt ttcttwccga 2160 cagttactca tgacgtctcc atccaggact gaggggggca tccttctcca tctaggactg 2220 ggggcatcct tctccatcca gtattggggg tcatccttct ccatccagta ttgggggtca 2280 tcctcctcca tccaggacct gaggggtgtc cttttctgcg cttccttgga tggcagtctt 2340 tcccttcatg tttatagtra cttaccatta aatcactgtg ccgttttttc ctaaaataaa 2400 aaaaaaaaaa aaaa 2414 <210> 476 <211> 3434 <212> DNA
<213> Homo sapiens <400> 476 ctgtgctgca aatggggcca tatagaggaa aggagcagct ggctctggag catggtgtgc 60 actccctttg ggccttcagt ccatgtctca tgggtcgtat gacactgcgg gcttgttggt 120 tgccaagagg cagaccacag gtcatcttga ggaggacttt atgttccagt ccagaaagca 180 gccagtggta ccacccaggg gacttgtgct tctgtggccc aggccagacg tagaatttga 240 caaagtcagg acggtctcag tcagagcagc atgtcggtcc ccggggcctg tgcatgccgg 300 gcagggccag gctggcttaa ggagcaagca gccacctctg ttaggggtgt gcctggagca 360 ggtggagcag ccaccaacct cacgcactga aagaagcagg gatggccagg ttccaacatc 420 ctgagtggct gccacctgat ggctgatgga gcagaggcct gaggaaaagc agatggcact 480 gctttgtagt gctgttcttt gtctctcttg atctttttca gttaatgtct gttttatcag 540 agactaggat tgcaaaccct gctctttttt gctttccatt tgcttggtaa atattcctcc 600 atccctttat tttaagccta tgtgtgtctt tgcacatgag atgggtctcc tgaatacagg 660 acaacaatgg gtctttactc tttatccaac ttgccagtct gtgtctttta actggggcat 720 ttagcccatt tacatttaag tttagtattt gttacatgtg aaatttatcc tgtcatgatg 780 ttgctagctt tttatttttc ccattagttt gcagtttctt tatagtgtca atggtcttta 840 caattcgata tgtttttgta gtggctggta ctggtttttc ctttctacgt ttagtgtctc 900 cttcaggagc tcttgtaaca caagaatgtg gatttatttc ttgtaaggta aatatgtgga 960 tttattctgg gactgtattc tatggccttt accccaagaa tcattacttt ttaaaatgca 1020 attcaaatta gcataaaaca tttacagcct atggaaaggc ttgtggcatt agaatcctta 1080 tttataggat tattttgtgt ttttttgaga tatggtcttt gtcatcgagg cagaagtgcc 1140 gtggtttgat cataattcac cacagccctg aactcttgag tccaagccat ccttttgcct 1200 taatctccca accagttgga tctacaagca taaggcatca tgcgtggcta attttttcac 1260 gttttttttt tttttgtcga gattatggta tcactgtgtt gctctggctg atctcaaatg 1320 tttgacctca agggatcttt ctgccacagc ctcctaaagt gctaggatta tatgcatgat 1380 acaccatgcc tattgtagag tattacatta ttttcaaagt cttattgtaa gagccattta 1440 ttgcctttgg cctaaataac tcaatataat atctctgaaa cttttttttg acaaattttg 1500 gggcgtgatg atgagagaag ggggtttgaa actttctaat aagagttaac ttagagccat 1560 ttaagaaagg aaaaaacaca aattatcaga aaaacaacag taagatcaag tgcaaaagtt 1620 ctgtggcaaa gatgatgaga gtaaagaata tatgtttgtg actcatggtg gcttttactt 1680 tgttcttgaa tttctgagta cgggttaaca tttaaagaat ctacattata gataacattt 1740 tattgcaagt aaatgtattt caaaatttgt tattggtttt gtatgagatt attctcagcc 1800 tacttcatta tcaagctata ttattttatt aatgtagttc gatgatctta cagcaaagct 1860 gaaagctgta tcttcaaaat atgtctattt gactaaaaag ttattcaaca ggagttatta 1920 tctataaaaa aatacaacag gaatataaaa aacttgagga taaaaagatg ttggaaaaag 1980 taatattaaa tcttaaaaaa catatggaaa ctacacaatg gtgaagacac attggtgaag 2040 tacaaaaata taaattggat ctagaagaaa gggcaatgca ggcaatagaa aaattagtag 2100 aaatcccttt aaaggttagt ttgtaaaatc aggtaagttt atttataatt tgctttcatt 2160 tatttcactg caaattatat tttggatatg tatatatatt gtgcttcctc tgcctgtctt 2220 .
acagcaattt gccttgcaga gttctaggaa aaaggtggca tgtgttttta ctttcaaaat 2280 atttaaattt ccatcattat aacaaaatca atttttcaga gtaatgattc tcactgtgga 2340 gtcatttgat tattaagacc cgttggcata agattacatc ctctgactat aaaaatcctg 2400 gaagaaaacc taggaaatat tcgtctggac attgcacttg gcaatgaatt tatgggcgct 2460 ttggaatcct gcagatataa taatgataat taaacaaaac actcagagaa actgccaacc 2520 ctaggatgaa gtatattgtt actgtgcttt gggattaaaa taagtaacta cagtttatag 2580 aacttttata ctgatacaca gacactaaaa agggaaaggg tttagatgag aagctctgct 2640 atgcaatcaa gaatctcagc cactcatttc tgtaggggct gcaggagctc cctgtaaaga 2700 gaggttatgg agtctgtagc ttcaggtaag atacttaaaa cccttcagag tttctccatt 2760 ttttcccata gtttccccaa aaaggttatg acactttata agaatgcttc acttgtgaaa 2820 aacaaatatc aaagtcttct tgtagattat ttttaaggac aaatctttat tccatgttta 2880 atttatttag ctttccctgt agctaatatt tcatgctgaa cacattttaa atgctgtaaa 2940 tgtagataat gtaatttatg tatcattaat gcctctttag tagtttagag aaaacgtcaa 3000 aagaaatggc cccagaataa gcttcttgat ttgtaaaatt ctatgtcatt ggctcaaatt 3060 tgtatagtat ctcaaaatat aaatatatag acatctcaga taatatattt gaaatagcaa 3120 attcctgtta gaaaataata gtacttaact agatgagaat aacaggtcgc cattatttga 3180 attgtctcct attcgttttt catttgttgt gttactcatg ttttacttat ggggggatat 3240 atataacttc cgctgttttc agaagtattg tatgcagtca gtatgagaat gcaatttaag 3300.
tttccttgat gctttttcac acttctatta ctagaaataa gaatacagta atattggcaa 3360 agaaaattga ccagttcaat aaaatttttt agtaaatctg attgaaaata aaaaaaaaaa 3420 aaaaaaaaaa aaaa 3434 <210> 477 <211> 140 <212> PRT
<213> Homo Sapiens <400> 477 Met Asp Gly His Thr Asp Ile Trp Arg Asn His Met Asp Thr Pro Pro His Tyr His Arg Asp Thr Asp Thr Arg Arg His His His Met Asp Thr Leu Ser His Tyr His Arg Asp Thr Arg His His Thr Val Thr Trp Thr His His His Thr His Glu His Thr Asp Thr Leu Pro Tyr Gly His Trp His Thr His Cys His Thr Val Thr Trp Thr His Leu His Thr Ile Thr Pro Pro His Thr Leu Pro Val Asp Thr Arg Thr His Arg His Cys His Thr Asp Thr Gln Asn Thr Val Thr Arg Arg His His His Ala Asp Thr Pro Pro Leu Trp Cys Arg Leu Asn Tyr Pro Ala Gly Gly Thr Ala Val Ala Tyr Ser Cys Leu Ser Asp Trp Leu Ser Pro Gln <210> 478 <211> 143 <212> PRT
<213> Homo Sapiens <400> 478 Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln Ser His Gly His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr Gly Glu Ile Thr Trp Thr His His His Thr Ile Thr Gly Thr Gln Thr His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr Pro Thr His Cys His Met Asp Thr Gly Thr His Thr Ala Thr Leu Ser His Gly His Thr Ser Thr Pro Ser His His His Thr His Cys Leu Trp Thr Gln Gly His Thr Asp Thr Val Thr Gln Ile His Lys Thr Leu Ser His Gly Asp Ile Thr Met Gln Ile His His His Ser Gly Ala Val <210> 479 <211> 222 <212> PRT
<213> Homo sapiens <400> 479 Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln Ser His Glu His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr Gly Glu Ile Thr Leu Thr His His His Thr Ile Thr Gly Thr Gln Thr His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr Pro Thr His Cys His Met Asp Thr Ala Thr His Thr Ala 'rhr Leu Ser His Gly His Thr Ser Ile Pro Ser His His His Thr His Cys His Val Asp Thr Arg Thr His Arg His Cys His Thr Asp Thr Gln Asn Thr Val Thr Arg Arg His His His Ala Asp Thr Pro Pro His Gly His Ser Thr Arg His Ser Ala Thr Gln Ile His His His Thr Glu Met Arg Thr His Cys His Thr Asp Thr Thr Thr Ser Leu Pro His Phe His Val Ser Ala Gly Gly Val Gly Pro Thr Thr Leu Gly Ser Asn Arg Glu Ile Thr Trp Thr Tyr Ser Glu Gly Lys Ile Phe Phe Tyr Phe Leu Gly Asn Gln Ala Arg Leu Cys Leu Lys Lys Arg Lys Lys Lys Gln Tyr Thr Val <210> 480 <211> 144 <212> PRT
<213> Homo Sapiens <400> 480 Met Glu Pro Tyr Arg Gly Asn Glu Gln Pro Ser Gln Glu Gln Gly Val Cys Cys Leu Trp Gly Leu Gln Ser Leu Pro Gln Gly Ser Tyr Val Thr Val Gly Phe Leu Val Val Lys Arg Gln Thr Ile Gly Arg Leu Glu Arg Asp Phe Met Phe Lys Cys Arg Lys Gln Pro Gly Leu Pro Pro Ser Gly Leu Cys Leu Leu Trp Pro Trp Pro Asn Leu Glu Phe Gly Arg Arg Gln Asp Arg Leu Thr Trp Ser Ser Val Ser Val Ala Gly Val Cys Ala Cys Arg Ala Arg Pro Gly Trp Leu Gly Glu Gln Pro Ala Thr Ser Ala Gly Val Arg Leu Glu Gln Val Gl.u Gln Pro Pro Ala His Pro Leu Gln Glu .

Ala Gly Val Ala Arg Phe Pro Arg Pro Glu Trp Val Pro Pro Asn Gly <210> 481 <211> 167 <212> PRT
<213> Homo sapiens <400> 481 Met His Gly Pro Gln Val Leu Ala Arg Cys Ser Glu Cys Ala Cys Pro Ala Leu Ala Ala Thr Ser Ala Gly Val Arg Leu Glu Gly Val Asp Arg Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys Ser His Ser Leu Ser Gly Cys His Leu Met Ala Asp Gly Ala Lys Ala Leu Gly Lys Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr Asp Val Pro Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser Ser Trp Arg Ala Leu Ala Glu Val Thr Gly Cys Ser Leu Gly Pro Leu Gly Leu Ala Gln His Ala Gln Ala Ser Val Leu Leu Leu Cys Tyr Lys Trp Ser His Ile Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu Trp Ala Ser Trp Leu Ser Arg Gly Arg Pro <210> 482 <211> 143 <212> PRT
<213> Homo Sapiens <4C0> 482 Met Glu Pro Tyr Arg Gly Asn Lys Lys Gln Val Gln Glu Lys Gly Val Pro Cys Leu Trp Gly Ser Ser Pro Cys Leu Arg Cys His Met Ala Leu Arg Ala Ser Trp Leu Pro Gl.y Gly Gly Pro Gln Ala Ile Leu Gly Arg Thr Leu Cys Ser Ser Ala Glu Ser Ser Gln Asp Cys His Pro Gly Gly Pro Ser Ile Ala Leu Ala Lys Pro Cys Arg Gly Val Trp Leu Leu Phe Glu Pro Ala Trp Pro Pro Trp His Ala Arg Ala Pro Gly Ala Gly Thr Leu Leu Arg Val Cys Leu Ser Cys Leu Gly Cys His Leu Cys Gly Gly Ala Ser Gly Gly Gly Gly Pro Ala Thr Asn Leu Thr Gln Ser Arg Lys Trp Met Ala Met Phe Pro Gln Pro Glu Trp Leu Pro Pro Asp Gly <210> 483 <211> 143 <212> PRT

<213> Homo Sapiens <400> 483 Met Glu Thr Gln Arg Gly Asn Lys Gln Arg Ala Gln Glu Gln Gly Val Cys Cys Leu Trp Gly Ser Ser Pro Cys Leu Gly Ser Tyr Gly Thr Ala Gly Phe Leu Val Ala Lys Arg Arg Thr Thr Gly Leu Leu Glu Glu Asp Phe Thr Phe Lys Cys Arg Lys Gln Pro Lys Leu Pro Ser Met Arg Leu Ser Leu Leu Trp Pro Trp Arg Asp Leu Lys Phe Val Pro Arg Gln Asp Lys Leu Thr Arg Ser Ser Val Ser Val Ala Gly Ala Tyr Ala Cys Arg Ala Gly Pro Gly Trp Leu Lys Glu Gin Pro Ala Thr Ser Ala Arg Val Arg Leu Val Gln Ala Glu His Pro Pro Pro His Pro Leu Glu Glu Val 115 120 7_25 Gly Met Ala Arg Phe Pro Gln Pro Glu Cys Leu Pro Pro Tyr Cys <210> 484 <211> 30 <212> PRT
<213> Homo Sapien <400> 484 Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe .1 5 10 15 Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile <210> 485 <211> 31 <212> DNA
<213> Artificial Sequence <220>
<223> Made in a lab <400> 485 gggaagctta tcacctatgt gccgcctctg c 31 <210> 486 <211> 27 <212> DNA
<213> Artificial Sequence <220>

<223> Made in a lab <400> 486 gcgaattctc acgctgagta tttggcc 27 <210> 487 <211> 36 <212> DNA
<213> Artificial Sequence <220>
<223> Made in a lab <400> 487 cccgaattct tagctgccca tccgaacgcc ttcatc 36 <210> 488 <211> 33 <212> DNA
<213> Artificial Sequence <220>
<223> Made in a lab <400> 488 gggaagcttc ttccccggct gcaccagctg tgc ~ 33 <210> 489 <211> 19 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 489 Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala Ser Val Ala <210> 490 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 490 Tyr.Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala Thr Cys Leu Ser His Ser <210> 491 <211> 20 <212> PRT

<213> Artificial Sequence <220>
<223> Made in a lab <400> 491 Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu Thr Gly Phe Thr <210> 492 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 492 Ala Leu Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala Ser Leu <210> 493 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 493 Tyr Thr Leu Ala Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly <210> 494 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 494 Leu Pro Lys Tyr Arg Gly Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Ile Ser 2210> 495 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 495 Asp Ser Leu Met Thr Ser Phe Leu Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly <210> 496 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 496 Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala <210> 497 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 497 Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val Ser Val Arg Val <210> 498 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 498 Asp Val Ser Val Arg Val Val Val Gly Glu Pro Thr Glu Ala Arg Val Val Pro Gly Arg <210> 499 <211> 20 <212> PRT
<213> Artificial Sequence <220>

<223> Made in a lab <400> 499 Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp Ser Ala Phe Leu <210> 500 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 500 Leu Asp Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser Ile Val <210> 501 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 501 Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala <210> 502 <211> 414 <212> DNA
<213> Homo Sapien <220>
<221> misc_feature <222> (1). .(414) <223> n = A,T,C or G
<400>

caccatggagacaggcctgcgctggcttttcctggtcgctgtgctcaaaggtgtccaatg 60 tcagtcggtggaggagtccgggggtcgcctggtcacgcctgggacacctttgacantcac 120 ctgtagagtttttggaatngacctcagtagcaatgcaatgagctgggtccgccaggctcc 180 agggaaggggctggaatggatcggagccattgataattgtccacantacgcgacctgggc 240 gaaaggccgattnatnatttccaaaacctngaccacggtggatttgaaaatgaccagtcc 300 gacaaccgaggacacggccacctatttttgtggcagaatgaatactggtaatagtggttg 360 gaagaatatttggggcccaggcaccctggtcaccgtntcctcagggcaacctaa 414 <210> 503 <211> 379 <212> DNA

<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(379) <223> n = A,T,C or G
<400> 503 atncgatggtgcttggtcaaaggtgtccagtgtcagtcggtggaggagtccgggggtcgc 60 ctggtcacgcctgggacacccctgacactcacctgcaccgtntctggattngacatcagt 120 agctatggagtgagctgggtccgccaggctccagggaaggggctggnatacatcggatca 180 ttagtagtagtggtacattttacgcgagctgggcgaaaggccgattcaccatttccaaaa 240 cctngaccacggtggatttgaaaatcaccagtttgacaaccgaggacacggccacctatt 300 tntgtgccagaggggggtttaattataaagacatttggggcccaggcaccctggtcaccg 360 tntccttagggcaacctaa 379 <210> 504 <211> 19 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 504 Giy Phe Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro Tyr Phe Lys Glu Asn Ser Ala <210> 505 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 505 Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn Asp Asn Val Thr Asn Thr Ala Asn <210> 506 <211> 407 <212> DNA
<213> Homo Sapien <400> 506 atggagacaggcctgcgctggcttctcctggtcgctgcgctcaaaggtgtccagtgtcag 60 tcgctggaggagtccgggggtcgcctggtcacgcctgggacacccctgacactcacctgc 120 accgtctctggattctccctcagtagcaatgcaatgatctgggtccgccaggctccaggg 180 aaggggctggaatacatcggatacattagttatggtggtagcgcatactacgcgagctgg 240 gtgaaaggccgattcaccatctccaaaacctcgaccacggtggatctgagaatgaccagt 300 ctgacaaccgaggacacggccacctatttctgtgccagaaatagtgattttagtggtatg 360 ttgtggggcccaggcaccctggtcaccgtctcctcagggcaacctaa 407 <210> 507 <211> 422 <212> DNA
<213> Homo Sapien <400>

atggagacaggcctgcgctggcttctcctggtcgctgtgctcaaaggtgtccagtgtcag 60 tcggtggaggagtccgggggtcgcctggtcacgcctgggacacccctgacactcacctgt 120 acagtctctggattctccctcagcaactacgacctgaactgggtccgccaggctccaggg 180 aaggggctggaatggatcgggatcattaattatgttggtaggacggactacgcgaactgg 240 gcaaaaggccggttcaccatctccaaaacctcgaccaccgtggatctcaagatcgccagt 300 ccgacaaccgaggacacggccacctatttctgtgccagagggtggaagtgcgatgagtct 360 ggtccgtgcttgcgcatctggggcccaggcaccctggtcaccgtctccttagggcaacct 420 as 422 <210> 508 <211> 411 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <222> (1). .(411) <223> n = A,T,C or G
<400> 508 atggagacaggcctcgctggcttctcctggtcgctgtgctcaaaggtgtccagtgtcagt 60 cggtggaggagtccgggggtcgcctggtcacgcctgggacacccctgacactcacctgca 120 cagtctctggaatcgacctcagtagctactgcatgagctgggtccgccaggctccaggga 180 aggggctggaatggatcggaatcattggtactcctggtgacacatactacgcgaggtggg 240 cgaaaggccgattcaccatctccaaaacctcgaccacggtgcatntgaaaatcnccagtc 300 cgacaaccgaggacacggccacctatttctgtgccagagatcttcgggatggtagtagta 360 ctggttattataaaatctggggcccaggcaccctggtcaccgtctccttgg 4.11 <210> 509 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 509 Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210> 510 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 510 Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile <210> 511 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 511 Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Asp Gln Lys <210> 512 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 512 Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu <210> 513 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 513 Ala Pro Cys Gly Gln Val Gly Val Pro Asx Val Tyr Thr Asn Leu <210> 514 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 514 Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210> 515 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 515 Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg <210> 516 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 516 Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln <210> 517 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 517 Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met <210> 518 <211> 15 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 518 Arg Ala Glu 'Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly <210> 519 <211> 17 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 519 Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg Asn Tyr Asp Glu Gly Cys Gly <210> 520 <211> 25 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 520 Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly <210> 521 <211> 21 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 521 Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala <210> 522 <211> 20 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 522 Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr Gly Ser Gln Glu Asp ' Phe Thr Gln Val <210> 523 <211> 254 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <220>
<221> VARIANT
<222> (1)...(254) <223> Xaa = any amino acid <400> 523 Met Ala Thr Ala Gly Asn Pro Trp Gly Trp Phe Leu Gly Tyr Leu Ile Leu Gly Val Ala Gly Ser Leu Val Ser Gly Ser Cys Ser Gln Ile Ile Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Thr His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu,Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210>

<211>

<212>
DNA

<213> sapien Homo <400>

atggccacagcaggaaatccctggggctggttcctggggtacctcatccttggtgtcgca'-60 ggatcgctcgtctctggtagctgcagccaaatcataaacggcgaggactgcagcccgcac120 tcgcagccctggcaggcggcactggtcatggaaaacgaattgttctgctcgggcgtcctg180 gtgcatccgcagtgggtgctgtcagccgcacactgtttccagaactcctacaccatcggg240 ctgggcctgcacagtcttgaggccgaccaagagccagggagccagatggtggaggccagc300 ctctccgtacggcacccagagtacaacagacccttgctcgctaacgacctcatgctcatc360 aagttggacgaatccgtgtccgagtctgacaccatccggagcatcagcattgcttcgcag420 tgccctaccgcggggaactcttgcctcgtttctggctggggtctgctggcgaacggcaga480 atgcctaccgtgctgcagtgcgtgaacgtgtcggtggtgtctgaggaggtctgcagtaag540 ctctatgacccgctgtaccaccccagcatgttctgcgccggcggagggcaagaccagaag600 gactcctgcaacggtgactctggggggcccctgatctgcaacgggtacttgcagggcctt660 gtgtctttcggaaaagccccgtgtggccaagttggcgtgccaggtgtctacaccaacctc720 tgcaaattcactgagtggatagagaaaaccgtccaggccagttaa 765 <210>

<211>

<212>
PRT

<213> sapien Homo <400>

Met Ala Ala Gly Leu Gly Leu Ile Thr Asn Pro Tyr Trp Gly Trp Phe Leu Gly Ala Gly Cys Ser Ile Ile Val Ser Leu Gln Val Ser Gly Ser Asn Gly Asp Cys Trp Gln Ala Leu Glu Ser Pro Ala His Ser Gln Pro Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Al.a Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser <210> 526 <211> 963 <212> DNA
<213> Homo Sapiens <4b0> 526 atgagttcct gcaacttcac acatgccacc tttgtgctta ttggtatccc aggattagag 60 aaagcccatt tctgggttgg cttccccctc ctttccatgt atgtagtggc aatgtttgga 120 aactgcatcg tggtcttcat cgtaaggacg gaacgcagcc tgcacgctcc gatgtacctc 180 tttctctgca tgcttgcagc cattgacctg gccttatcca catccaccat gcctaagatc 240 cttgcccttt tctggtttga ttcccgagag attagctttg aggcctgtct tacccagatg 300 ttctttattc atgccctctc agccattgaa tccaccatcc tgctggccat ggcctttgac 360 cgttatgtgg ccatctgcca cccactgcgc catgctgcag tgctcaacaa tacagtaaca 420 gcccagattg gcatcgtggc tgtggtccgc ggatccctct tttttttccc actgcctctg 480 ctgatcaagc ggctggcctt ctgccactcc aatgtcctct cgcactccta ttgtgtccac 540 caggatgtaa tgaagttggc ctatgcagac actttgccca atgtggtata tggtcttact 600 gccattctgc tggtcatggg cgtggacgta atgttcatct ccttgtccta ttttctgata 660 atacgaacgg ttctgcaact gccttccaag tcagagcggg ccaaggcctt tggaacctgt 720 gtgtcacaca ttggtgtggt actcgccttc tatgtgccac ttattggcct ctcagttgta 780 caccgctttg gaaacagcct tcatcccatt gtgcgtgttg tcatgggtga catctacctg 840 ctgctgcctc ctgtcatcaa tcccatcatc tatggtgcca aaaccaaaca gatcagaaca 900 cgggtgctgg ctatgttcaa gatcagctgt gacaaggact tgcaggctgt gggaggcaag 960 tga 963 <210> 527 <211> 320 <212> PRT
<213> Homo sapiens <400> 527 Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Val Leu Ile Gly Ile Pro Gly Leu Glu Lys Ala His Phe Trp Val Gly Phe Pro Leu Leu Ser Met Tyr Val Val Ala Met Phe Gly Asn Cys Ile Val Val Phe Ile Val Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Ser Phe Glu Ala Cys Leu Thr Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Ala Gln Ile Gly Ile Val Ala Val Val Arg Gly Ser Leu Phe Phe Phe Pro Leu Pro Leu Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser 1.65 170 175 Tyr Cys Val His Gln Asp Val Met Lys Leu Al.a Tyr Ala Asp Thr Leu Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Thr Val Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly Leu Ser Val Val His Arg Phe Gly Asn Ser Leu His Pro Ile Val Arg Val Val Met Gly Asp Ile Tyr Leu Leu Leu Pro Pro Val Ile Asn Pro Ile Ile Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala Met Phe Lys Ile Ser Cys Asp Lys Asp Leu Gln Ala Val Gly Gly Lys <210> 528 <211> 20 <212> DNA
<213> Homo Sapien <400> 528 actatggtcc agaggctgtg 20 <210> 529 <211> 20 <212> DNA
<213> Homo Sapien <400> 529 atcacctatg tgccgcctct 20 <210> 530 <211> 1852 <212> DNA
<213> Homo sapiens <400> 530 ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata 60 aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca 120 tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc 180 tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat 240 ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg 300 ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc 360 gtggcgctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg 420 ggagttcttc cttcatagtt catccatatg gctccagagg aaaattatat tattttgtta 480 tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgtga 540 ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga 600 aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca 660 gctttctcca ccttgctgga agtgacctgc tgtccagaag tttgatggct gaggagtata 720 ccatcgtgca tgcatctttc atttcctgca tttcttcctc cctggatgga cagggggagc 780 ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg 840 agcaagaggt gcaagtggtg ctgccactgc ttcccctgct gcagggggag cggcaagagc 900 aacgtggtcg cttggggaga ctacgatgac agcgccttca tggatcccag gtaccacgtc 960 catggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt ccccagaaag 1020 gatctcatcg tcatgctcag ggacacggat gtgaacaaga gggacaagca aaagaggact 1080 gctctacatc tggcctctgc caatgggaat tcagaagtag taaaactcgt gctggacaga 1140 cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggccgtacaa 1200 tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc aaatattcca 1260 gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa attaatggcc 1320 aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380 ctgctacttg gtatacatga gcaaaaacag caagtggtga aatttttaat caagaaaaaa 1440 gcgaatttaa atgcgctgga tagatatgga agaactgctc tcatacttgc tgtatgttgt 1500 ggatcagcaa gtatagtcag ccctctactt gagcaaaatg ttgatgtatc ttctcaagat 1560 ctggaaagac ggccagagag tatgctgttt ctagtcatca tcatgtaatt tgccagttac 1620 tttctgacta caaagaaaaa cagatgttaa aaatctcttc tgaaaacagc aatccagaac 1680 aagacttaaa gctgacatca gaggaagagt cacaaaggct taaaggaagt gaaaacagcc 1740 agccagagct agaagattta tggctattga agaagaatga agaacacgga agtactcatg 1800 tgggattccc agaaaacctg actaacggtg ccgctgctgg caatggtgat ga 1852 <210> 531 <211> 879 <212> DNA
<213> Homo Sapiens <400> 531 atgcatcttt catttcctgc atttcttcct ccctggatgg acagggggag cggcaagagc 60 aacgtgggca cttctggaga ccacaacgac tcctctgtga agacgcttgg gagcaagagg 120 tgcaagtggt gctgccactg cttcccctgc tgcaggggga gcggcaagag caacgtggtc 180 gcttggggag actacgatga cagcgccttc atggatccca ggtaccacgt ccatggagaa 240 gatctggaca agctccacag agctgcctgg tggggtaaag tccccagaaa ggatctcatc 300 gtcatgctca gggacacgga tgtgaacaag agggacaagc aaaagaggac tgctctacat 360 ctggcctctg ccaatgggaa ttcagaagta gtaaaactcg tgctggacag acgatgtcaa 420 cttaatgtcc ttgacaacaa aaagaggaca gctctgacaa aggccgtaca atgccaggaa 480 gatgaatgtg cgttaatgtt gctggaacat ggcactgatc caaatattcc agatgagtat 540 ggaaatacca ctctacacta tgctgtctac aatgaagata aattaatggc caaagcactg 600 ctcttatacg gtgctgatat cgaatcaaaa aacaagcatg gcctcacacc actgctactt 660 ggtatacatg agcaaaaaca gcaagtggtg aaatttttaa tcaagaaaaa agcgaattta 720 aatgcgctgg atagatatgg aagaactgct ctcatacttg ctgtatgttg tggatcagca 780 agtatagtca gccctctact tgagcaaaat gttgatgtat cttctcaaga tctggaaaga 840 cggccagaga gtatgctgtt tctagtcatc atcatgtaa 879 <210> 532 <211> 292 <212> PRT
<213> Homo Sapiens <400> 532 Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe .-.

Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu Val Ile Ile Met <210> 533 <211> 801 <212> DNA
<213> Homo Sapiens <400> 533 atgtacaagc ttcagtgcaa caactgtgct acaaatggag ccacagagag gaaacaagca 60 gcaggctcag gagcagggta tgcgctgcct tcggctctcc aatccatgcc tcagggctcc 120 '.
tatgccactg cacgattctt ggttgccaag aggccaacca caggccatct tgagaaggag 180 tttatgttcc actgcagaaa gcagccagga tcaccatcca ggggacttgg tcttctgtgg 240 ccctggccag acatagaatt tgtgccaagg caggacaagc tcactcagag cagcgtgtta 300 gtacctcaaa tctgtgcgtg ccagacaagg ccaaactggc tcaatgagca accagccacc 360 tctgcagggg tgcgtctgga ggaggtggac cagccaccaa ccttacccag tcaaggaagt 420 ggatggccat gttcccacag cctgagtggc tgccacctga tggctgatat agcaaaggcc 480 ttaggaaaag cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt 540 cctgcagcga gtgaggttgg tggctgtgcc cccagctcct ggcacaccct cgcagaggtg 600 actggttgct ctttgagccc tcttagcctt gcccagcatg cacaagcctc agtgctacta 660 ctgtgctaca aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat 720 gctgcctttg ggggctccag tccttgcctc aagggtctta tgtcactgtg ggcttcttgg 780 ttgccaagag gcagaccata g 801 <210> 534 <211> 266 <212> PRT
<213> Homo Sapiens <400> 534 Met Tyr Lys Leu Gln Cys Asn Asn Cys Ala Thr Asn Gly Ala Thr Glu Arg Lys Gln Ala Ala Gly Ser Gly Ala Gly Tyr Ala Leu Pro Ser Ala Leu Gln Ser Met Pro Gln Gly Ser Tyr Ala Thr Ala Arg Phe Leu Val Ala Lys Arg Pro Thr Thr Gly His Leu Glu Lys Glu Phe Met Phe His Cys Arg Lys Gln Pro Gly Ser Pro Ser Arg Gly Leu Gly Leu Leu Trp Pro Trp Pro Asp Ile Glu Phe Val Pro Arg Gln Asp Lys Leu Thr Gln Ser Ser Val Leu Val Pro Gln Ile Cys Ala Cys Gln Thr Arg Pro Asn Trp Leu Asn Glu Gln Pro Ala Thr Ser Ala Gly Val Arg Leu Glu Glu Val Asp Gln Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys Ser His Ser Leu Ser Gly Cys His Leu Met Ala Asp Ile Ala Lys Ala Leu Gly Lys Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr Asp Val Pro Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser Ser Trp His Thr Leu Ala Glu Val Thr Gly Cys Ser Leu Ser Pro Leu Ser Leu Ala Gln His Ala Gln Ala Ser Val Leu Leu Leu Cys Tyr Lys Trp Ser His Ile Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu Trp Ala Ser Trp Leu Pro Arg Gly Arg Pro <210> 535 <211> 6082 <212> DNA
<213> Homo Sapiens <400> 535 cctccactat tacagcttat aggaaattac aatccacttt acaggcctca aaggttcatt 60 ctggccgagc ggacaggcgt ggcggccgga gccccagcat ccctgcttga ggtccaggag 120 cggagcccgc ggccactgcc gcctgatcag cgcgaccccg gcccgcgccc gccccgcccg 180 gcaagatgct gcccgtgtac caggaggtga agcccaaccc gctgcaggac gcgaacctct 240 gctcacgcgt gttcttctgg tggctcaatc ccttgtttaa aattggccat aaacggagat 300 tagaggaaga tgatatgtat tcagtgctgc cagaagaccg ctcacagcac cttggagagg 360 agttgcaagg gttctgggat aaagaagttt taagagctga gaatgacgca cagaagcctt 420 ctttaacaag agcaatcata aagtgttact ggaaatctta tttagttttg ggaattttta 480 cgttaattga ggaaagtgcc aaagtaatcc agcccatatt tttgggaaaa attattaatt 540 attttgaaaa ttatgatccc atggattctg tggctttgaa cacagcgtac gcctatgcca 600 cggtgctgac tttttgcacg ctcattttgg ctatactgca tcacttatat ttttatcacg 660 ttcagtgtgc tgggatgagg ttacgagtag ccatgtgcca tatgatttat cggaaggcac 720 ttcgtcttag taacatggcc atggggaaga caaccacagg ccagatagtc aatctgctgt 780 ccaatgatgt gaacaagttt gatcaggtga cagtgttctt acacttcctg tgggcaggac 840 cactgcaggc gatcgcagtg actgccctac tctggatgga gataggaata tcgtgccttg 900 ctgggatggc agttctaatc attctcctgc ccttgcaaag ctgttttggg aagttgttct 960 catcactgag gagtaaaact gcaactttca cggatgccag gatcaggacc atgaatgaag 1020 ttataactgg tataaggata ataaaaatgt acgcctggga aaagtcattt tcaaatctta 1080 ttaccaattt gagaaagaag gagatttcca agattctgag aagttcctgc ctcaggggga 1140 tgaatttggc ttcgtttttc agtgcaagca aaatcatcgt gtttgtgacc ttcaccacct 1200 acgtgctcct cggcagtgtg atcacagcca gccgcgtgtt cgtggcagtg acgctgtatg 1260 gggctgtgcg gctgacggtt accctcttct tcccctcagc cattgagagg gtgtcagagg 1320 caatcgtcag catccgaaga atccagacct ttttgctact. tgatgagata tcacagcgca 1380 accgtcagct gccgtcagat ggtaaaaaga tggtgcatgt gcaggatttt actgcttttt 1440 gggataaggc atcagagacc ccaactctac aaggcctttc ctttactgtc agacctggcg 1500 aattgttagc tgtggtcggc cccgtgggag cagggaagtc atcactgtta agtgccgtgc 1560 tcggggaatt ggccccaagt cacgggctgg tcagcgtgca tggaagaatt gcctatgtgt 1620 ctcagcagcc ctgggtgttc tcgggaactc tgaggagtaa tattttattt gggaagaaat 1680 acgaaaagga acgatatgaa aaagtcataa aggcttgtgc tctgaaaaag gatttacagc 1740 tgttggagga tggtgatctg actgtgatag gagatcgggg aaccacgctg agtggagggc 1800 agaaagcacg ggtaaacctt gcaagagcag tgtatcaaga tgctgacatc tatctcctgg 1860 acgatcctct cagtgcagta gatgcggaag ttagcagaca cttgttcgaa ctgtgtattt 1920 gtcaaatttt gcatgagaag atcacaattt tagtgactca tcagttgcag tacctcaaag 1980 ctgcaagtca gattctgata ttgaaagatg gtaaaatggt gcagaagggg acttacactg 2040 agtt.cctaaa atctggtata gattttggct cccttttaaa gaaggataat gaggaaagtg 21.00:
aacaacctcc agttccagga actcccacac taaggaatcg taccttctca gagtcttcgg 2160 tttggtctca acaatcttct agaccctcct tgaaagatgg tgctctggag agccaagata 2220 cagagaatgt cccagttaca ctatcagagg agaaccgttc tgaaggaaaa gttggttttc 2280-:
aggcctataa gaattacttc agagctggtg ctcactggat tgtcttcatt ttccttattc 2340's tcctaaacac tgcagctcag gttgcctatg tgcttcaaga ttggtggctt tcatactggg 2400 caaacaaaca aagtatgcta aatgtcactg taaatggagg aggaaatgta accgagaagc 2460 tagatcttaa ctggtactta ggaatttatt caggtttaac tgtagctacc gttctttttg 2520 gcatagcaag atctctattg gtattctacg tccttgttaa ctcttcacaa actttgcaca 2580 acaaaatgtt tgagtcaatt ctgaaagctc cggtattatt ctttgataga aatccaatag 2640 gaagaatttt aaatcgtttc tccaaagaca ttggacactt ggatgatttg ctgccgctga 2700 cgtttttaga tttcatccag acattgctac aagtggttgg tgtggtctct gtggctgtgg 2760 ccgtgattcc ttggatcgca atacccttgg ttccccttgg aatcattttc atttttcttc 2820 ggcgatattt tttggaaacg tcaagagatg tgaagcgcct ggaatctaca actcggagtc 2880 cagtgttttc ccacttgtca tcttctctcc aggggctctg gaccatccgg gcatacaaag 2940 cagaagagag gtgtcaggaa ctgtttgatg cacaccagga tttacattca gaggcttggt 3000 tcttgttttt gacaacgtcc cgctggttcg ccgtccgtct ggatgccatc tgtgccatgt 3060 ttgtcatcat cgttgccttt gggtccctga ttctggcaaa aactctggat gccgggcagg 3120 ttggtttggc actgtcctat gccctcacgc tcatggggat gtttcagtgg tgtgttcgac 3180 aaagtgctga agttgagaat atgatgatct cagtagaaag ggtcattgaa tacacagacc 3240 ttgaaaaaga agcaccttgg gaatatcaga aacgcccacc accagcctgg ccccatgaag 3300 gagtgataat ctttgacaat gtgaacttca tgtacagtcc aggtgggcct ctggtactga 3360 agcatctgac agcactcatt aaatcacaag aaaaggttgg cattgtggga agaaccggag 3420 ctggaaaaag ttccctcatc tcagcccttt ttagattgtc agaacccgaa ggtaaaattt 3480 ggattgataa gatcttgaca actgaaattg gacttcacga tttaaggaag aaaatgtcaa 3540 tcatacctca ggaacctgtt ttgttcactg gaacaatgag gaaaaacctg gatcccttta 3600 atgagcacac ggatgaggaa ctgtggaatg ccttacaaga ggtacaactt aaagaaacca 3660 ttgaagatct tcctggtaaa atggatactg aattagcaga atcaggatcc aattttagtg 3720 ttggacaaag acaactggtg tgccttgcca gggcaattct caggaaaaat cagatattga 3780 ttattgatga agcgacggca aatgtggatc caagaactga tgagttaata caaaaaaaat 3840 ccgggagaaa tttgcccact gcaccgtgct aaccattgca cacagattga acaccattat 3900 tgacagcgac aagataatgg ttttagattc aggaagactg aaagaatatg atgagccgta 3960 tgttttgctg caaaataaag agagcctatt ttacaagatg gtgcaacaac tgggcaaggc 4020 agaagccgct gccctcactg aaacagcaaa acaggtatac ttcaaaagaa attatccaca 4080 tattggtcac actgaccaca tggttacaaa cacttccaat ggacagccct cgaccttaac 4140 tattttcgag acagcactgt gaatccaacc aaaatgtcaa gtccgttccg aaggcatttg 4200 ccactagttt ttggactatg taaaccacat tgtacttttt tttactttgg caacaaatat 4260 ttatacatac aagatgctag ttcatttgaa tatttctccc aacttatcca aggatctcca 4320 gctctaacaa aatggtttat ttttatttaa atgtcaatag ttgtttttta aaatccaaat 4380 cagaggtgca ggccaccagt taaatgccgt ctatcaggtt ttgtgcctta agagactaca 4440 gagtcaaagc tcatttttaa aggagtagga cagagttgtc acaggttttt gttgttgttt 4500 ttattgcccc caaaattaca tgttaatttc catttatatc agggattcta tttacttgaa 4560 gactgtgaag ttgccatttt gtctcattgt tttctttgac ataactagga tccattattt 4620 cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga 4680 aaaagtttgt gacattgtag tagggagtgt gtacccctta ctccccatca aaaaaaaaaa 4740 tggatacatg gttaaaggat agaagggcaa tattttatca tatgttctaa aagagaagga 4800 agagaaaata ctactttctc aaaatggaag cccttaaagg tgctttgata ctgaaggaca 4860 caaatgtgac cgtccatcct cctttagagt tgcatgactt ggacacggta actgttgcag 4920 ttttagactc agcattgtga cacttcccaa gaaggccaaa cctctaaccg acattcctga 4980 aatacgtggc attattcttt tttggatttc tcatttatgg aaggctaacc ctctgttgac 5040 tgtaagcctt ttggtttggg ctgtattgaa atcctttcta aattgcatga ataggctctg 5100 ctaacgtgat gagacaaact gaaaattatt gcaagcattg actataatta tgcagtacgt 5160 -tctcaggatg catccagggg ttcattttca tgagcctgtc caggttagtt tactcctgac 5220 cactaatagc attgtcattt gggctttctg ttgaatgaat caacaaacca caatacttcc 5280 tgggaccttt tgtactttat ttgaactatg agtctttaat ttttcctgat gatggtggct 5340' gtaatatgtt gagttcagtt tactaaaggt tttactatta tggtttgaag tggagtctca 5400 tgacctctca gaataaggtg tcacctccct gaaattgcat atatgtatat agacatgcac 5460 acgtgtgcat ttgtttgtat acatatattt gtccttcgta tagcaagttt tttgctcatc 5520 agcagagagc aacagatgtt ttattgagtg aagccttaaa aagcacacac cacacacagc 5580 taactgccaa aatacattga ccgtagtagc tgttcaactc ctagtactta gaaatacacg 5640.:
tatggttaat gttcagtcca acaaaccaca cacagtaaat gtttattaat agtcatggtt 5'?00 cgtattttag gtgactgaaa ttgcaacagt gatcataatg aggtttgtta aaatgatagc 5760;...
tatattcaaa atgtctatat gtttatttgg acttttgagg ttaaagacag tcatataaac 5820='.
gtcctgtttc tgttttaatg ttatcataga attttttaat gaaactaaat tcaattgaaa 5880 taaatgatag ttttcatctc caaaaaaaaa aaaaaaaagg gcggccgctc gagtctagag 5940 ggcccgttta aacccgctga tcagcctcga ctgtgccttc tagttgccag ccatctgttg 6000 tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc cactcccact gtcctttcct 6060 aataaaatga ggaaattgca tc 6082 <210> 536 <211> 6140 <212> DNA
<213> Homo Sapiens <220>
<221> unsure <222> (4535) <223> n=A,T,C or G
<400> 536 cagtggcgca gtctcagctc actgcagcct ccacctcctg tgttcaagca gtcctcctgc 60 ctcagccacc agactagcag gtctcccccg cctctttctt ggaaggacac ttgccattgg 120 atttaggacc cacttggata atccaggatg atgtcttcac tccaacatcc tcagtttaat 180 tccatgtgca aatacccttt tcccaaataa cattcaattc tttaccagga aaggtggctc 240 aatcccttgt ttaaaattgg ccataaacgg agattagagg aagatgatat gtattcagtg 300 ctgccagaag accgctcaca gcaccttgga gaggagttgc aagggttctg ggataaagaa 360 gttttaagag ctgagaatga cgcacagaag ccttctttaa caagagcaat cataaagtgt 420 tactggaaat cttatttagt tttgggaatt tttacgttaa ttgaggaaag tgccaaagta 480 atccagccca tatttttggg aaaaattatt aattattttg aaaattatga tcccatggat 540 tctgtggctt tgaacacagc gtacgcctat gccacggtgc tgactttttg cacgctcatt 600 ttggctatac tgcatcactt atatttttat cacgttcagt gtgctgggat gaggttacga 660 gtagccatgt gccatatgat ttatcggaag gcacttcgtc ttagtaacat ggccatgggg 720 aagacaacca caggccagat agtcaatctg ctgtccaatg atgtgaacaa gtttgatcag 780 gtgacagtgt tcttacactt cctgtgggca ggaccactgc aggcgatcgc agtgactgcc 840 ctactctgga tggagatagg aatatcgtgc cttgctggga tggcagttct aatcattctc 900 ctgcccttgc aaagctgttt tgggaagttg ttctcatcac tgaggagtaa aactgcaact 960 ttcacggatg ccaggatcag gaccatgaat gaagttataa ctggtataag gataataaaa 1020 atgtacgcct gggaaaagtc attttcaaat cttattacca atttgagaaa gaaggagatt 1080 tccaagattc tgagaagttc ctgcctcagg gggatgaatt tggcttcgtt tttcagtgca 1140 agcaaaatca tcgtgtttgt gaccttcacc acctacgtgc tcctcggcag tgtgatcaca 1200 gccagccgcg tgttcgtggc agtgacgctg tatggggctg tgcggctgac ggttaccctc 1260 ttcttcccct cagccattga gagggtgtca gaggcaatcg tcagcatccg aagaatccag 1320 acctttttgc tacttgatga gatatcacag cgcaaccgtc agctgccgtc agatggtaaa 1380 aagatggtgc atgtgcagga ttttactgct ttttgggata aggcatcaga gaccccaact 1440 ctacaaggcc tttcctttac tgtcagacct ggcgaattgt tagctgtggt cggccccgtg 1500 ggagcaggga agtcatcact gttaagtgcc gtgctcgggg aattggcccc aagtcacggg 1560 ctggtcagcg tgcatggaag aattgcctat gtgtctcagc agccctgggt gttctcggga 1620 actctgagga gtaatatttt atttgggaag aaatacgaaa aggaacgata tgaaaaagtc 1680 ataaaggctt gtgctctgaa aaaggattta cagctgttgg aggatggtga tctgactgtg 1740 ataggagatc ggggaaccac gctgagtgga gggcagaaag cacgggtaaa ccttgcaaga 1800 gcagtgtatc aagatgctga catctatctc ctggacgatc ctctcagtgc agtagatgcg 1860 gaagttagca gacacttgtt cgaactgtgt atttgtcaaa ttttgcatga gaagatcaca 1920 attttagtga ctcatcagtt gcagtacctc aaagctgcaa gtcagattct gatattgaaa 1980 gatggtaaaa tggtgcagaa ggggacttac actgagttcc taaaatctgg tatagatttt 2040 ggctcccttt taaagaagga taatgaggaa agtgaacaac ctccagttcc aggaactccc 2100 acactaagga atcgtacctt ctcagagtct tcggttt_ggt ctcaacaatc ttctagaccc 2160 tccttgaaag atggtgctct ggagagccaa gatacagaga atgtcccagt tacactatca 2220 gaggagaacc gttctgaagg aaaagttggt tttcaggcct ataagaatta cttcagagct 2280.:.
ggtgctcact ggattgtctt cattttcctt attctcctaa acactgcagc tcaggttgcc 2340 tatgtgcttc aagattggtg gctttcatac tgggcaaaca aacaaagtat gctaaatgtc 2400~.-actgtaaatg gaggaggaaa tgtaaccgag aagctagatc ttaactggta cttaggaatt 2460r tattcaggtt taactgtagc taccgttctt tttggcatag caagatctct attggtattc 2520 tacgtccttg ttaactcttc acaaactttg cacaacaaaa tgtttgagtc aattctgaaa 2580 gctccggtat tattctttga tagaaatcca ataggaagaa ttttaaatcg tttctccaaa 2640 gacattggac acttggatga tttgctgccg ctgacgtttt tagatttcat ccagacattg 2700 ctacaagtgg ttggtgtggt ctctgtggct gtggccgtga ttccttggat cgcaataccc 2760 ttggttcccc ttggaatcat tttcattttt cttcggcgat attttttgga aacgtcaaga 2820 gatgtgaagc gcctggaatc tacaactcgg agtccagtgt tttcccactt gtcatcttct 2880 ctccaggggc tctggaccat ccgggcatac aaagcagaag agaggtgtca ggaactgttt 2940 gatgcacacc aggatttaca ttcagaggct tggttcttgt ttttgacaac gtcccgctgg 3000 ttcgccgtcc gtctggatgc catctgtgcc atgtttgtca tcatcgttgc ctttgggtcc 3060 ctgattctgg caaaaactct ggatgccggg caggttggtt tggcactgtc ctatgccctc 3120 acgctcatgg ggatgtttca gtggtgtgtt cgacaaagtg ctgaagttga gaatatgatg 3180 atctcagtag aaagggtcat tgaatacaca gaccttgaaa aagaagcacc ttgggaatat 3240 cagaaacgcc caccaccagc ctggccccat gaaggagtga taatctttga caatgtgaac 3300 ttcatgtaca gtccaggtgg gcctctggta ctgaagcatc tgacagcact cattaaatca 3360 caagaaaagg ttggcattgt gggaagaacc ggagctggaa aaagttccct catctcagcc 3420 ctttttagat tgtcagaacc cgaaggtaaa atttggattg ataagatctt gacaactgaa 3480 attggacttc acgatttaag gaagaaaatg tcaatcatac ctcaggaacc tgttttgttc 3540 actggaacaa tgaggaaaaa cctggatccc tttaatgagc acacggatga ggaactgtgg 3600 aatgccttac aagaggtaca acttaaagaa accattgaag atcttcctgg taaaatggat 3660 actgaattag cagaatcagg atccaatttt agtgttggac aaagacaact ggtgtgcctt 3720 gccagggcaa ttctcaggaa aaatcagata ttgattattg atgaagcgac ggcaaatgtg 3780 gatccaagaa ctgatgagtt aatacaaaaa aaaatccggg agaaatttgc ccactgcacc 3840 gtgctaacca ttgcacacag attgaacacc attattgaca gcgacaagat aatggtttta 3900 gattcaggaa gactgaaaga atatgatgag ccgtatgttt tgctgcaaaa taaagagagc 3960 ctattttaca agatggtgca acaactgggc aaggcagaag ccgctgccct cactgaaaca 4020 gcaaaacaga gatggggttt caccatgttg gccaggctgg tctcaaactc ctgacctcaa 4080 gtgatccacc tgccttggcc tcccaaactg ctgagattac aggtgtgagc caccacgccc 4140 agcctgagta tacttcaaaa gaaattatcc acatattggt cacactgacc acatggttac 4200 aaacacttcc aatggacagc cctcgacctt aactattttc gagacagcac tgtgaatcca 4260 accaaaatgt caagtccgtt ccgaaggcat ttgccactag tttttggact atgtaaacca 4320 cattgtactt ttttttactt tggcaacaaa tatttataca tacaagatgc tagttcattt 4380 gaatatttct cccaacttat ccaaggatct ccagctctaa caaaatggtt tatttttatt 4440 taaatgtcaa tagtkgkttt ttaaaatcca aatcagaggt gcaggccacc agttaaatgc 4500 cgtctatcag gttttgtgcc ttaagagact acagnagtca gaagctcatt tttaaaggag 4560 taggacagag ttgtcacagg tttttgttgg tgtttktatt gcccccaaaa ttacatgtta 4620 atttccattt atatcagggg attctattta cttgaagact gtgaagttgc cattttgtct 4680 cattgttttc tttgacatam ctaggatcca ttatttcccc tgaaggcttc ttgkagaaaa 4740 tagtacagtt acaaccaata ggaactamca aaaagaaaaa gtttgtgaca ttgtagtagg 4800 gagtgtgtac cccttactcc ccatcaaaaa aaaaaatgga tacatggtta aaggatagaa 4860 gggcaatatt ttatcatatg ttctaaaaga gaaggaagag aaaatactac tttctcaaaa 4920 tggaagccct taaaggtgct ttgatactga aggacacaaa tgtgaccgtc catcctcctt 4980 tagagttgca tgacttggac acggtaactg ttgcagtttt agactcagca ttgtgacact 5040 tcccaagaag gccaaacctc taaccgacat tcctgaaata cgtggcatta ttcttttttg 5100 gatttctcat ttaggaaggc taaccctctg ttgamtgtam kccttttggt ttgggctgta 5160 ttgaaatcct ttctaaattg catgaatagg ctctgctaac cgtgatgaga caaactgaaa 5220 attattgcaa gcattgacta taattatgca gtacgttctc aggatgcatc caggggttca 5280 ttttcatgag cctgtccagg ttagtttact cctgaccact aatagcattg tcatttgggc 5340 tttctgttga atgaatcaac aaaccacaat acttcctggg accttttgta ctttatttga 5400 actatgagtc tttaattttt cctgatgatg gtggctgtaa tatgttgagt tcagtttact 5460 .
aaaggtttta ctattatggt ttgaagggag tctcatgacc tctcagaaaa ggtgcacctc 5520 cctgaaattg catatatgta tatagacatg cacacgtgtg catttgtttg tatacatata 5580 tttgtccttc gtatagcaag ttttttgctc atcagcagag agcaacagat gttttattga 5640 gtgaagcctt aaaaagcaca caccacacac agctaactgc caaaatacat tgaccgtagt 5700 <
agctgttcaa ctcctagtac ttagaaatac acgtatggtt aatgttcagt ccaacaaacc 5760 ~.
acacacagta aatgtttatt aatagtcatg gttcgtattt taggtgactg aaattgcaac 5820 ' agtgatcata atgaggtttg ttaaaatgat agctatattc aaaatgtcta tatgtttatt 5880 -...
tggacttttg aggttaaaga cagtcatata aacgtcctgt ttctgtttta atgttatcat 5940 agaatttttt aatgaaacta aattcaattg aaataaatga tagttttcat ctccaaaaaa 6000 aaaaaaaaag ggcggcccgc tcgagtctag agggcccggt ttaaacccgc tgatcagcct 6060 cgactgtgcc ttctagttgc cagccatctg ttgtttggcc ctcccccgtg ccttccttga 6120 ccctggaagg ggccactccc 6140 <210> 537 <211> 1228 <212> PRT
<213> Homo sapiens <400> 537 Met Leu Pro Val Tyr Gln Glu Val Lys Pro Asn Pro Leu Gln Asp Ala Asn Leu Cys Ser Arg Val Phe Phe Trp Trp Leu Asn Pro Leu Phe Lys Ile Gly His Lys Arg Arg Leu Glu Glu Asp Asp Met Tyr Ser Val Leu Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu Leu Gln Gly Phe Trp Asp Lys Glu Val Leu Arg Ala Glu Asn Asp Ala Gln Lys Pro Ser Leu Thr Arg Ala Ile Ile Lys Cys Tyr Trp Lys Ser Tyr Leu Val Leu Gly Ile Phe Thr Leu Ile Glu Glu Ser Ala Lys Val Ile Gln Pro Ile Phe Leu Gly Lys Ile Ile Asn Tyr Phe Glu Asn Tyr Asp Pro Met Asp Ser Val Ala Leu Asn Thr Ala Tyr Ala Tyr Ala Thr Val Leu Thr Phe Cys Thr Leu Ile Leu Ala Ile Leu His His Leu Tyr Phe Tyr His Val Gln ~Cys Ala Gly Met Arg Leu Arg Val Ala Met Cys His Met Ile Tyr Arg Lys Ala Leu Arg Leu Ser Asn Met Ala Met Gly Lys Thr Thr Thr Gly Gln Ile Val Asn Leu Leu Ser Asn Asp Va1 Asn Lys Phe Asp Gln Val Thr Val Phe Leu His Phe Leu Trp Ala Giy Pro Leu Gln Ala Ile Ala Val Thr Ala Leu. Leu Trp Met Glu Ile Gly Ile Ser Cys Leu Ala Gly Met Ala Val L,eu Ile Ile Leu Leu Pro Leu Gln Ser Cys Phe Gly Lys Leu Phe Ser Ser Leu Arg Ser Lys Thr Ala Thr Phe Thr Asp Ala Arg Ile Arg Thr Met Asn Glu Val Ile Thr Gly Ile Arg Ile Ile Lys Met Tyr Ala Trp Glu Lys Ser Phe Ser Asn Leu Ile Thr Asn Leu Arg Lys Lys Glu Ile Ser Lys Ile Leu Arg Ser Ser Cys Leu Arg Gly Met Asn Leu Ala Ser Phe Phe Ser Ala Ser Lys Ile Ile Val Phe Val Thr Phe Thr Thr Tyr Val Leu Leu Gly Ser Val Ile Thr Ala Ser Arg Val Phe Val Ala Val Thr Leu Tyr Gly Ala Val Arg Leu Thr Val Thr Leu Phe Phe Pro Ser Ala Ile Glu Arg Val Ser Glu Ala Ile Val Ser Ile Arg Arg Ile Gln Thr Phe Leu Leu Leu Asp Glu Ile Ser Gln Arg Asn Arg Gln Leu Pro Ser Asp Gly Lys Lys Met Val His Val Gln Asp Phe Thr Ala Phe Trp Asp Lys Ala Ser Glu Thr Pro Thr Leu Gln Gly Leu Ser Phe Thr Val Arg Pro Gly Glu Leu Leu Ala Val Val Gly Pro Val Gly Ala Gly Lys Ser Ser Leu Leu Ser Ala Val Leu Gly Glu Leu Ala Pro Ser His Gly Leu Val Ser Val His Gly Arg Ile Ala Tyr Val Ser Gln Gln Pro Trp Val Phe Ser Gly Thr Leu Arg Ser Asn Ile Leu Phe Gly Lys Lys Tyr Glu Lys Glu Arg Tyr Gl.u L~ys Val Ile Lys Ala Cys Ala Leu Lys Lys Asp Leu Gln Leu Leu Glu Asp Gly Asp Leu Thr Val Ile Gly Asp Arg Gly Thr Thr Leu Ser Gly Gly Gln Lys Ala Arg Val Asn Leu Ala Arg Ala Val Tyr Gln Asp Ala Asp Ile Tyr Leu Leu Asp Asp Pro Leu Ser Ala Val Asp Ala Glu Val Ser Arg His Leu Phe Glu Leu Cys Ile Cys Gln Ile Leu His Glu Lys Ile Thr Ile Leu Val Thr His Gln Leu Gln Tyr Leu Lys Ala Ala Ser Gln Ile Leu Ile Leu Lys Asp Gly Lys Met Val Gln Lys Gly Thr Tyr Thr Glu Phe Leu Lys Ser Gly Ile Asp Phe Gly Ser Leu Leu Lys Lys Asp Asn Glu Glu Ser Glu Gln Pro Pro Val Pro Gly Thr Pro Thr Leu Arg Asn Arg Thr Phe Ser Glu Ser Ser Val Trp Ser Gln Gln Ser Ser Arg Pro Ser Leu Lys Asp Gly Ala Leu Glu Ser Gln Asp Thr Glu Asn Val Pro Val Thr Leu Ser Glu Glu Asn Arg Ser Glu Gly Lys Val Gly Phe Gln Ala Tyr Lys Asn Tyr Phe Arg Ala Gly Ala His Trp Ile Val Phe Ile Phe Leu Ile Leu Leu Asn Thr Ala Ala Gln Val Ala Tyr Val Leu Gln Asp Trp Trp Leu Ser Tyr Trp Ala Asn Lys Gln Ser Met Leu Asn Val Thr Val Asn Gly Gly Gly Asn Val Thr Glu Lys Leu Asp Leu Asn Trp Tyr Leu Gly Ile Tyr Ser Gly Leu Thr Val Ala Thr Val Leu Phe Gly Ile Ala Arg Ser Leu Leu Val Phe Tyr Val Leu Val Asn Ser Ser Gln Thr Leu His Asn Lys Met Phe Glu Ser Ile Leu Lys Ala Pro Val Leu Phe Phe Asp Arg Asn Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Lys Asp Ile Gly His Leu Asp Asp Leu Leu Pro Leu Thr Phe Leu Asp Phe Ile Gln Thr .Leu Leu Gln Val Val Gly Val Val Ser Val Ala Val Ala Val Ile Pro Trp Ile $5C 855 860 Ala Ile Pro Leu Val Pro Leu Gly Ile Iie Phe Ile Phe Leu Arg Arg Tyr Phe Leu Glu Thr Ser Arg Asp Val Lys Arg Leu Glu Ser Thr Thr Arg Ser Pro Val Phe Ser His Leu Ser Ser Ser Leu Gln Gly Leu Trp Thr Ile Arg Ala Tyr Lys Ala Glu Glu Arg Cys Gln Glu Leu Phe Asp Ala His Gln Asp Leu His Ser Glu Ala Trp Phe Leu Phe Leu Thr Thr Ser Arg Trp Phe Ala Val Arg Leu Asp Ala Ile Cys Ala Met Phe Val Ile Ile Val Ala Phe Gly Ser Leu Ile Leu Ala Lys Thr Leu Asp Ala Gly Gln Val Gly Leu Ala Leu Ser Tyr Ala Leu Thr Leu Met Gly Met Phe Gln Trp Cys Val Arg Gln Ser Ala Glu Val Glu Asn Met Met Ile Ser Val Glu Arg Val Ile Glu Tyr Thr Asp Leu Glu Lys Glu Ala Pro Trp Glu Tyr Gln Lys Arg Pro Pro Pro Ala Trp Pro His Glu Gly Val Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser Pro Gly Gly Pro Leu Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser Gln Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ile Ser Ala Leu Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp Ile Asp Lys Ile Leu Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys Lys Met Ser Ile Ile Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met Arg Lys Asn Leu Asp Pro Phe Asn Glu His Thr Asp Glu Glu Leu Trp Asn Ala Leu Gln Glu Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro Gly Lys Met Asp Thr Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val Gly Gln Arg Gln Leu 1170 1175 11.80 Val Cys Leu Ala Arg Ala Ile Leu Arg Lys Asn Gln Ile Leu Ile Ile Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr Asp Glu Leu Ile Gln Lys Lys Ser Gly Arg Asn Leu Pro Thr Ala Pro Cys <210> 538 <211> 1261 <212> PRT
<213> Homo Sapiens <400> 538 Met Tyr Ser Val Leu Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu Leu Gln Gly Phe Trp Asp Lys Glu Val Leu Arg Ala Glu Asn Asp Ala Gln Lys Pro Ser Leu Thr Arg Ala Ile Ile Lys Cys Tyr Trp Lys Ser Tyr Leu Val Leu Gly Ile Phe Thr Leu Ile Glu Glu Ser Ala Lys Val Ile Gln Pro Ile Phe Leu Gly Lys Ile Ile Asn Tyr Phe Glu Asn Tyr Asp Pro Met Asp Ser Val Ala Leu Asn Thr Ala Tyr Ala Tyr Ala Thr Val Leu Thr Phe Cys Thr Leu Ile Leu Ala Ile Leu His His Leu Tyr Phe Tyr His Val Gln Cys Ala Gly Met Arg Leu Arg Val Ala Met Cys His Met Ile Tyr Arg Lys Ala Leu Arg Leu Ser Asn Met Ala Met Gly Lys Thr Thr Thr Gly Gln Ile Val Asn Leu Leu Ser Asn Asp Val Asn Lys Phe Asp Gln Val Thr Val Phe Leu His Phe Leu Trp Ala Gly Pro Leu Gln Ala Ile Ala Val Thr Ala Leu Leu Trp Met Glu Ile Gl.y Ile Ser Cys Leu Ala Gly Met Ala Val Leu Ile Ile Leu Leu Pro Leu Gln Ser Cys Phe Gly Lys Leu Phe Ser Ser Leu Arg Ser Lys Thr Ala Thr Phe Thr Asp Ala Arg Ile Arg Thr Met Asn Glu Val Ile Thr Gly Ile Arg Ile Ile Lys Met Tyr Ala Trp Glu Lys Ser Phe Ser Asn Leu Ile Thr Asn Leu Arg Lys Lys Glu Ile Ser Lys Ile Leu Arg Ser Ser Cys Leu Arg Gly Met Asn Leu Ala Ser Phe Phe Ser Ala Ser Lys Ile Ile Val Phe Val Thr Phe Thr Thr Tyr Val Leu Leu Gly Ser Val Ile Thr Ala Ser Arg Val Phe Val Ala Val Thr Leu Tyr Gly Ala Val Arg Leu Thr Val Thr Leu Phe Phe Pro Ser Ala Ile Glu Arg Val Ser Glu Ala Ile Val Ser Ile Arg Arg Ile Gln Thr Phe Leu Leu Leu Asp Glu Ile Ser Gln Arg Asn Arg Gln Leu Pro Ser Asp Gly Lys Lys Met Val His Val Gln Asp Phe Thr Ala Phe Trp Asp Lys Ala Ser Glu Thr Pro Thr Leu Gln Gly Leu Ser Phe Thr Val Arg Pro Gly Glu Leu Leu Ala Val Val Gly Pro Val Gly Ala Gly Lys Ser Ser Leu Leu Ser Ala Val Leu Gly Glu Leu Ala Pro Ser His Gly Leu Val Ser Val His Gly Arg Ile Ala Tyr Val Ser Gln Gln Pro Trp Val Phe Ser Gly Thr Leu Arg Ser Asn Ile Leu Phe Gly Lys Lys Tyr Glu Lys Glu Arg Tyr Glu Lys Val Ile Lys Ala Cys Ala Leu Lys Lys Asp Leu Gln Leu Leu Glu Asp Gly Asp Leu Thr Val Ile Gly Asp Arg Gly Thr Thr Leu Ser Gly Gly Gln Lys Ala Arg Val Asn Leu Ala Arg Ala Val Tyr Gln Asp Ala Asp Ile Tyr Leu Leu Asp Asp Pro Leu Ser Ala Val Asp Ala Glu Val Ser Arg His heu Phe Glu Leu Cys Ile Cys Gln Ile Leu His Glu Lys Ile Thr Ile Leu Val Thr His Gln Leu Gln Tyr Leu Lys Ala Ala Ser Gln Ile Leu Ile Leu Lys Asp Gly Lys Met Val Gln Lys Gly Thr Tyr Thr Glu Phe Leu Lys Ser Gly Ile Asp Phe Gly Ser Leu Leu Lys Lys Asp Asn Glu Glu Ser Glu Gln Pro Pro Val Pro Gly Thr Pro Thr Leu Arg Asn Arg Thr Phe Ser Glu Ser Ser Val Trp Ser Gln Gln Ser Ser Arg Pro Ser Leu Lys Asp Gly Ala Leu Glu Ser Gln Asp Thr Glu Asn Val Pro Val Thr Leu Ser Glu Glu Asn Arg Ser Glu Gly Lys Val Gly Phe Gln Ala Tyr Lys Asn Tyr Phe Arg Ala Gly Ala His Trp Ile Val Phe Ile Phe Leu Ile Leu Leu Asn Thr Ala Ala Gln Val Ala Tyr Val Leu Gln Asp Trp Trp Leu Ser Tyr Trp Ala Asn Lys Gln Ser Met Leu Asn Val Thr Val Asn Gly Gly Gly Asn Val Thr Glu Lys Leu Asp Leu Asn Trp Tyr Leu Gly Ile Tyr Ser Gly Leu Thr Val Ala Thr Val Leu Phe Gly Ile Ala Arg Ser Leu Leu Val Phe Tyr Val Leu Val Asn Ser Ser Gln Thr Leu His Asn Lys Met Phe Glu Ser Ile Leu Lys Ala Pro Val Leu Phe Phe Asp Arg Asn Pro Ile Gly Arg Ile Leu Asn Arg Phe Ser Lys Asp Ile Gly His Leu Asp Asp Leu Leu Pro Leu Thr Phe Leu Asp Phe Ile Gln Thr Leu Leu Gln Val Val Gly Val Val Ser Val Ala Val Ala Val Ile Pro Trp Ile Ala Ile Pro Leu Val Pro Leu Gly Ile Ile Phe Ile Phe Leu Arg Arg Tyr Phe Leu Glu Thr Ser Arg Asp Val Lys Arg Leu Glu Ser Thr Thr Arg Ser Pro Val Phe Ser His Leu Ser Ser Ser Leu Gln Gly Leu Trp Thr Ile Arg Ala Tyr Lys Ala Glu Glu Arg Cys Gln Glu Leu Phe Asp Ala His Gln Asp Leu His Ser Glu Ala Trp Phe Leu Phe Leu Thr Thr Ser Arg Trp Phe Ala Val Arg Leu Asp Ala Ile Cys Ala Met Phe Val Ile Ile Val Ala Phe Gly Ser Leu Ile Leu Ala Lys Thr Leu Asp Ala Gly Gln Val Gly Leu Ala Leu Ser Tyr Ala Leu Thr Leu Met Gly Met Phe Gln Trp Cys Val Arg Gln Ser Ala Glu Val Glu Asn Met Met Ile Ser Val Glu Arg Val Ile Glu Tyr Thr Asp Leu Glu Lys Glu Ala Pro Trp Glu Tyr Gln Lys Arg Pro Pro Pro Ala Trp Pro His Glu Gly Val Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser Pro Gly Gly Pro Leu Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser Gln Glu Lys Val Gly Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ile Ser Ala Leu Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp Ile Asp Lys Ile Leu Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys Lys Met Ser Ile Ile Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met Arg Lys Asn Leu Asp Pro Phe Asn Glu His Thr Asp Glu Glu Leu Trp Asn Ala Leu Gln Glu Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro _ Gly Lys Met Asp Thr Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val Gly Gln Arg Gln Leu Val Cys Leu Ala Arg Ala Ile Leu Arg hys Asn Gln Ile Leu Ile Ile Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr Asp Glu Leu Ile Gln Lys Lys Ile Arg Glu Lys Phe Ala His Cys Thr Val Leu Thr Ile Ala His Arg Leu Asn Thr Ile Ile Asp Ser Asp Lys Ile Met Val Leu Asp Ser Gly Arg Leu Lys Glu Tyr Asp Glu Pro Tyr Val Leu Leu Gln Asn Lys Glu Ser Leu Phe Tyr Lys Met Val Gln Gln Leu Gly Lys Ala Glu Ala Ala Ala Leu Thr Glu Thr Ala Lys Gln Arg Trp Gly Phe Thr Met Leu Ala Arg Leu Val Ser Asn Ser <210> 539 <211> 10 <212> PRT

<213> Artificial Sequence <220>
<223> Made in a lab <400> 539 Cys Leu Ser His Ser Val Ala Val Val Thr <210> 540 <211> 9 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 540 Ala Val Val Thr Ala Ser Ala Ala Leu <210> 541 <211> 14 <212> PRT
<213> Homo sapiens <400> 541 Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu <210> 542 <211> 15 <212> PRT
<213> Homo sapiens <400> 542 Thr Gln Val Val Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala <210> 543 <211> 12 <212> PRT
<213> Homo sapiens <400> 543 Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val <210> 544 <211> 18 <212> PRT
<213> Homo sapiens <400> 544 Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val Glu Glu Lys Phe Met Thr <210> 545 <211> 18 <212> PRT
<213> Homo Sapiens <400> 545 Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala Ser Val <210> 546 <211> 29 <212> PRT
<213> Homo Sapiens <400> 546 Phe Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg Met <210> 547 <211> 58 <212> PRT
<213> Homo Sapiens <400> 547 Val Ala Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg Arg Leu <210> 548 <211> 18 <212> PRT
<213> Homo Sapiens <400> 548 Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu Glu Cys <210> 549 <211> 18 <212> PRT
<213> Homo sapiens <400> 549 Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala <210> 550 <211> 14 <212> PRT
<213> Homo sapiens <400> 550 Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Arg Pro Phe <210> 551 <211> 11 <212> PRT
<213> Artificial Sequence <220>
<223> Made in a lab <400> 551 Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala

Claims (64)

1. An isolated polypeptide comprising at least an immunogenic portion of a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
(a) sequences recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536;
(b) sequences that hybridize to any of the foregoing sequences under moderately stringent conditions; and (c) complements of any of the sequence of (a) or (b).
2. An isolated polypeptide according to claim 1, wherein the polypeptide comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID No: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotide sequences.
3. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 108, 112, 113, 114, 172, 176, 178, 327, 329, 331, 339, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534 and 537-550.
4. An isolated polynucleotide encoding at least 15 contiguous amino acid residues of a prostate-specific protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with antigen-specific antisera is not substantially diminished, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing sequences.
5. An isolated polynucleotide encoding a prostate-specific protein, or a variant thereof, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing sequences.
6. An isolated polynucleotide comprising a sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536.
7. An isolated polynucleotide comprising a sequence that hybridizes under moderately stringent conditions to a sequence recited in any one of SEQ
ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536.
8. An isolated polynucleotide complementary to a polynucleotide according to any one of claims 4-7.
9. An expression vector comprising a polynucleotide according to any one of claims 4-8.
10. A host cell transformed or transfected with an expression vector according to claim 9.
11. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a prostate-specific protein, the protein comprising an amino acid sequence encoded by a polynucleotide sequence recited in any one of SEQ ID NO:
2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-471, 472-476, 524, 526, 530, 531, 533, 535 and 536 or a complement of any of the foregoing polynucleotide sequences.
12. A monoclonal antibody that specifically binds to an amino acid sequence selected from the group consisting of SEQ ID NO: 496, 504, 505, 509-517, 519, 520, 522 and 539-551.
13. A monoclonal antibody comprising a complementarity determining region selected from the group consisting of SEQ ID NO: 502, 503 and 506-508.
14. A fusion protein comprising at least one polypeptide according to claim 1.
15. A fusion protein according to claim 14, wherein the fusion protein comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.
16. A fusion protein according to claim 14, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.
17. A fusion protein according to claim 14, wherein the fusion protein comprises an affinity tag.
18. An isolated polynucleotide encoding a fusion protein according to claim 14.
19.. A pharmaceutical composition comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:
(a) a polypeptide according to claim 1;
(b) a polynucleotide according to claim 4;
(c) an antibody according to any one of claims 11-13;
(d) a fusion protein according to claim 14; and (e) a polynucleotide according to claim 18.
20. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:
(a) a polypeptide according to claim 1;
(b) a polynucleotide according to claim 4;
(c) an antibody according to any one of claims 11-13;
(d) a fusion protein according to claim 14; and (e) a polynucleotide according to claim 18.
21. A vaccine according to claim 20, wherein the immunostimulant is an adjuvant.
22. A vaccine according to claim 20, wherein the immunostimulant induces a predominantly Type I response.
23. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a pharmaceutical composition according to claim 19.
24. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a vaccine according to claim 20.
25. A pharmaceutical composition comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with a pharmaceutically acceptable carrier or excipient.
26. A pharmaceutical composition according to claim 25, wherein the antigen presenting cell is a dendritic cell or a macrophage.
27. A vaccine comprising an antigen-presenting cell that expresses a polypeptide according to claim 1, in combination with an immunostimulant.
28. A vaccine according to claim 27, wherein the immunostimulant is an adjuvant.
29. A vaccine according to claim 27, wherein the immunostimulant induces a predominantly Type I response.
30. A vaccine according to claim 27, wherein the antigen-presenting cell is a dendritic cell.
31. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of an antigen-presenting cell that expresses a polypeptide encoded by a polynucleotide recited in any one of SEQ
ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, and thereby inhibiting the development of a cancer in the patient.
32. A method according to claim 31, wherein the antigen-presenting cell is a dendritic cell.
33. A method according to any one of claims 23, 24 and 31, wherein the cancer is prostate cancer.
34. A method for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:

(i) polynucleotides recited in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536; and (ii) complements of the foregoing polynucleotides;
wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the prostate-specific protein from the sample.
35. A method according to claim 34, wherein the biological sample is blood or a fraction thereof.
36. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated according to the method of claim 50.
37. A method for stimulating and/or expanding T cells specific for a prostate-specific protein, comprising contacting T cells with at least one component selected from the group consisting of:
(i) a polypeptide according to claim 1;
(ii) a polypeptide encoded by a polynucleotide comprising a sequence provided in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
(iii) a polynucleotide encoding a polypeptide of (i) or (ii); and (iv) an antigen presenting cell that expresses a polypeptide of (i) or (ii), under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.
38. An isolated T cell population, comprising T cells prepared according to the method of claim 37.
39. A method for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population according to claim 38.
40. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
(a) incubating CD4+ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
(i) a polypeptide according to claim 1;
(ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
(iii) a polynucleotide encoding a polypeptide of (i) or (ii); or (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);
such that T cells proliferate; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient.
41. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
(a) incubating CD4+ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of:
(i) a polypeptide according to claim 1;
(ii) a polypeptide encoded by a polynucleotide comprising a sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536;
(iii) a polynucleotide encoding a polypeptide of (i) or (ii); or (iv) an antigen-presenting cell that expresses a polypeptide of (i) or (ii);
such that T cells proliferate;
(b) cloning at least one proliferated cell to provide cloned T cells; and (c) administering to the patient an effective amount of the cloned T cells, and thereby inhibiting the development of a cancer in the patient.
42. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
(a) contacting a biological sample obtained from a patient with a binding agent that binds to a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence selected from the group consisting of:
(i) polynucleotides recited in any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536; and (ii) complements of the foregoing polynucleotides;
(b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
43. A method according to claim 42, wherein the binding agent is an antibody.
44. A method according to claim 43, wherein the antibody is a monoclonal antibody.
45. A method according to claim 42, wherein the cancer is prostate cancer.
46. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
(a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;
(b) detecting in the sample an amount of polypeptide that binds to the binding agent;
(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
47. A method according to claim 46, wherein the binding agent is an antibody.
48. A method according to claim 47, wherein the antibody is a monoclonal antibody.
49. A method according to claim 46, wherein the cancer is a prostate cancer.
50. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:
(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;
(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
51. A method according to claim 50, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
52. A method according to claim 50, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
53. A method for monitoring the progression of a cancer in a patient, comprising the steps of:
(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence of any one of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides;
(b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide;
(c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) to the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
54. A method according to claim 53, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
55. A method according to claim 53, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
56. A diagnostic kit, comprising:
(a) one or more antibodies according to claim 11; and (b) a detection reagent comprising a reporter group.
57. A kit according to claim 56, wherein the antibodies are immobilized on a solid support.
58. A kit according to claim 56, wherein the detection reagent comprises an anti-immunoglobulin, protein G, protein A or lectin.
59. A kit according to claim 56, wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
60. An oligonucleotide comprising 10 to 40 contiguous nucleotides that hybridize under moderately stringent conditions to a polynucleotide that encodes a prostate-specific protein, wherein the protein comprises an amino acid sequence that is encoded by a polynucleotide sequence recited in any one of SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-476, 524, 526, 530, 531, 533, 535 and 536, or a complement of any of the foregoing polynucleotides.
61. A oligonucleotide according to claim 60, wherein the oligonucleotide comprises 10-40 contiguous nucleotides recited in any one of SEQ ID NO:
2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209, 220, 222-225, 227-305, 307-315, 326, 328, 330, 332, 334, 350-365, 381, 382, 384, 386, 389, 390, 392, 393, 396, 401, 402, 407, 408, 410, 413, 415-419, 422, 426, 427, 432, 434, 435, 442-444, 446, 450, 452, 453, 459-461, 468-476, 524, 526, 530, 531, 533, 535 and 536.
62. A diagnostic kit, comprising:
(a) an oligonucleotide according to claim 61; and (b) a diagnostic reagent for use in a polymerase chain reaction or hybridization assay.
63. A host cell according to claim 10, wherein the cell is selected from the group consisting of: E. coli, baculovirus and mammalian cells.
64. A recombinant protein produced by a host cell according to claim 10.
CA002391369A 1999-11-12 2000-11-09 Compositions and methods for the therapy and diagnosis of prostate cancer Abandoned CA2391369A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/439,313 1999-11-12
US09/439,313 US6329505B1 (en) 1997-02-25 1999-11-12 Compositions and methods for therapy and diagnosis of prostate cancer
US44368699A 1999-11-18 1999-11-18
US09/443,686 1999-11-18
PCT/US2000/030904 WO2001034802A2 (en) 1999-11-12 2000-11-09 Compositions and methods for the therapy and diagnosis of prostate cancer

Publications (1)

Publication Number Publication Date
CA2391369A1 true CA2391369A1 (en) 2001-05-17

Family

ID=27032000

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002391369A Abandoned CA2391369A1 (en) 1999-11-12 2000-11-09 Compositions and methods for the therapy and diagnosis of prostate cancer

Country Status (5)

Country Link
EP (1) EP1230364A2 (en)
JP (1) JP2004537252A (en)
AU (1) AU1656501A (en)
CA (1) CA2391369A1 (en)
WO (1) WO2001034802A2 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828431B1 (en) 1999-04-09 2004-12-07 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
US7241876B2 (en) 1996-01-11 2007-07-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
US20030125536A1 (en) * 1996-01-11 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of breast cancer
US7033827B2 (en) 1997-02-25 2006-04-25 Corixa Corporation Prostate-specific polynucleotide compositions
US6620922B1 (en) 1997-02-25 2003-09-16 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US7202342B1 (en) 1999-11-12 2007-04-10 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6943236B2 (en) 1997-02-25 2005-09-13 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6329505B1 (en) 1997-02-25 2001-12-11 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer
US6657056B2 (en) 1997-02-25 2003-12-02 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
US6818751B1 (en) 1997-08-01 2004-11-16 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6894146B1 (en) 1997-02-25 2005-05-17 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6465611B1 (en) 1997-02-25 2002-10-15 Corixa Corporation Compounds for immunotherapy of prostate cancer and methods for their use
US6800746B2 (en) 1997-02-25 2004-10-05 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20030185830A1 (en) 1997-02-25 2003-10-02 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US7517952B1 (en) 1997-02-25 2009-04-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6630305B1 (en) 1999-11-12 2003-10-07 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US6759515B1 (en) 1997-02-25 2004-07-06 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
EP1007650B1 (en) 1997-04-10 2009-03-18 Stichting Katholieke Universiteit University Medical Centre Nijmegen Pca3, pca3 genes, and methods of use
US20030149531A1 (en) 2000-12-06 2003-08-07 Hubert Rene S. Serpentine transmembrane antigens expressed in human cancers and uses thereof
ATE437947T1 (en) 1998-06-01 2009-08-15 Agensys Inc SERPENT TRANS MEMBRANE ANTIGENS EXPRESSED IN HUMAN CANCER AND THEIR USES
US6833438B1 (en) 1999-06-01 2004-12-21 Agensys, Inc. Serpentine transmembrane antigens expressed in human cancers and uses thereof
US7037667B1 (en) 1998-06-01 2006-05-02 Agensys, Inc. Tumor antigen useful in diagnosis and therapy of prostate and colon cancer
US6902892B1 (en) 1998-10-19 2005-06-07 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating prostate cancer
US6943235B1 (en) 1999-04-12 2005-09-13 Agensys, Inc. Transmembrane protein expressed in prostate cancer
ATE321857T1 (en) 1999-09-29 2006-04-15 Diagnocure Inc PCA3 MRNA IN BENIGN AND MAGNIFICENT PROSTATE TISSUES
US7361338B2 (en) 1999-10-05 2008-04-22 Agensys, Inc. Methods to inhibit growth of prostate cancer cells
US6790631B1 (en) 1999-10-05 2004-09-14 Agensys, Inc. G protein-coupled receptor up-regulated in prostate cancer and uses thereof
DK1517913T3 (en) * 1999-10-07 2007-06-18 Corixa Corp A Mycobacterium tuberculosis coding sequence for expression of heterologous proteins
US20020048777A1 (en) 1999-12-06 2002-04-25 Shujath Ali Method of diagnosing monitoring, staging, imaging and treating prostate cancer
PL356908A1 (en) * 2000-01-14 2004-07-12 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
CA2403909A1 (en) * 2000-03-27 2001-10-04 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US20020009455A1 (en) * 2000-04-27 2002-01-24 Ted Lau DNA encoding a novel PROST 03 polypeptide
ES2333579T3 (en) 2000-06-20 2010-02-24 Corixa Corporation FUSION PROTEINS OF MYCOBACTERIUM TUBERCULOSIS.
CA2422642A1 (en) * 2000-10-03 2002-04-11 Human Genome Sciences, Inc. Human prostate specific g-protein receptor hpraj70
US7048931B1 (en) 2000-11-09 2006-05-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
WO2002083921A2 (en) 2001-04-10 2002-10-24 Agensys, Inc. Nuleic acids and corresponding proteins useful in the detection and treatment of various cancers
US6897024B2 (en) 2001-05-31 2005-05-24 Stichting Katholieke Universiteit More Particularly The University Medical Centre Nijmegen Nucleic acid molecules comprising the promoter for PCA3, and uses thereof
EP2287186B1 (en) 2001-09-06 2014-12-31 Agensys, Inc. Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer
US7494646B2 (en) 2001-09-06 2009-02-24 Agensys, Inc. Antibodies and molecules derived therefrom that bind to STEAP-1 proteins
IL165372A0 (en) * 2002-06-11 2006-01-15 Glaxosmithkline Biolog Immunodenic compositions
AU2003243151A1 (en) 2002-08-16 2004-03-03 Agensys, Inc. Nucleic acid and corresponding protein entitled 251p5g2 useful in treatment and detection of cancer
AU2004209578A1 (en) 2003-02-07 2004-08-19 Diagnocure Inc. Method to detect prostate cancer in a sample
WO2004113571A2 (en) * 2003-06-26 2004-12-29 Exonhit Therapeutics Sa Prostate specific genes and the use thereof as targets for prostate cancer therapy and diagnosis
MXPA06012187A (en) 2004-04-22 2007-03-28 Agensys Inc Antibodies and molecules derived therefrom that bind to steap-1 proteins.
CA2491067A1 (en) 2004-12-24 2006-06-24 Stichting Katholieke Universiteit Mrna rations in urinary sediments and/or urine as a prognostic marker for prostate cancer
PT2502938E (en) 2006-10-27 2015-06-05 Genentech Inc Antibodies and immunoconjugates and uses therefor
GB201513921D0 (en) 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
MA49289A (en) 2017-04-03 2020-02-12 Hoffmann La Roche ANTIBODIES BINDING TO STEAP-1

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041289A (en) * 1987-11-13 1991-08-20 Becton Dickinson And Company Method of purging residual tumor cells in vitro with lymphokine activated cytotoxic cells
WO1997033909A2 (en) * 1996-03-15 1997-09-18 Corixa Corporation Compounds and methods for immunotherapy and immunodiagnosis of prostate cancer
CN1195851C (en) * 1997-02-25 2005-04-06 科里克萨有限公司 Compounds for immunotherapy of prostate cancer and methods for their use
WO1998037418A2 (en) * 1997-02-25 1998-08-27 Corixa Corporation Compounds for immunodiagnosis of prostate cancer and methods for their use
US6130043A (en) * 1997-05-02 2000-10-10 Abbott Laboratories Reagents and methods useful for detecting diseases of the prostate
EP1088072A2 (en) * 1998-06-22 2001-04-04 Incyte Pharmaceuticals, Inc. Prostate cancer-associated genes
AU762812B2 (en) * 1998-07-14 2003-07-03 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer
WO2001025272A2 (en) * 1999-10-04 2001-04-12 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer

Also Published As

Publication number Publication date
WO2001034802A9 (en) 2002-08-08
AU1656501A (en) 2001-06-06
WO2001034802A3 (en) 2002-04-04
JP2004537252A (en) 2004-12-16
WO2001034802A2 (en) 2001-05-17
EP1230364A2 (en) 2002-08-14

Similar Documents

Publication Publication Date Title
CA2391369A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
AU762812B2 (en) Compositions and methods for therapy and diagnosis of prostate cancer
US7033827B2 (en) Prostate-specific polynucleotide compositions
US6800746B2 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
CA2397741A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US6329505B1 (en) Compositions and methods for therapy and diagnosis of prostate cancer
CA2403909A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20030185830A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
EP1988097A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20020192763A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US6395278B1 (en) Prostate specific fusion protein compositions
US6630305B1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US6759515B1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20020193296A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20020081680A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US7048931B1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20060269532A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US20020051977A1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
US6894146B1 (en) Compositions and methods for the therapy and diagnosis of prostate cancer
JP2009142284A (en) Composition and method for therapy and diagnosis of prostate cancer
MXPA01000432A (en) Compositions and methods for therapy and diagnosis of prostate cancer
TW200815476A (en) Compositions and methods for therapy and diagnosis of prostate cancer
JP2008271978A (en) Composition and method for therapy and diagnosis of prostate cancer

Legal Events

Date Code Title Description
FZDC Discontinued application reinstated
EEER Examination request
FZDE Discontinued