CA2347897A1 - Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines - Google Patents

Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines

Info

Publication number
CA2347897A1
CA2347897A1 CA 2347897 CA2347897A CA2347897A1 CA 2347897 A1 CA2347897 A1 CA 2347897A1 CA 2347897 CA2347897 CA 2347897 CA 2347897 A CA2347897 A CA 2347897A CA 2347897 A1 CA2347897 A1 CA 2347897A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
acid
polymer
weight
preferably
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2347897
Other languages
French (fr)
Inventor
Ulrich Riegel
Matthias Weismantel
Volker Frenz
Thomas Daniel
Fritz Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Basf Aktiengesellschaft
Ulrich Riegel
Matthias Weismantel
Volker Frenz
Thomas Daniel
Fritz Engelhardt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Abstract

The invention relates to a method for the secondary cross-linking of gels or surfaces of water-absorbing polymers by treating the polymer with a surface secondary cross-linking agent and subsequently subjecting it to a secondary cross-linking reaction during or after the treatment by raising the temperature and drying the polymer. According to the invention, the cross-linking agent is a compound of formula (I), wherein R1 is hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, trialkylsilyl or acetyl and R2, R2', R3, R3', R4, R4' independently is hydrogen, C1-C12 alkyl, C2-C12 alkenyl or C6-C12 aryl, dissolved in an inert solvent. The invention also relates to the liquid-absorbing polymers obtained by said method, to their use in hygiene items, packaging material and nonwovens.

Description

Postcrosslinking hydrogels with 2-oxotetrahydro-1,3-oxazines Description The present invention relates to a process for the gel or surface postcrosslinking of water-absorbent hydrogels with 2-oxotetrahydro-1,3-oxazines, the polymers thus obtainable and their use in hygiene articles, packaging materials and nonwovens.
Hydrophilic, highly swellable hydrogels are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partly crosslinked polyalkylene oxide or natural products that are swellable in aqueous fluids, for example guar derivatives. Such hydrogels are used as products for absorbing aqueous solutions in the manufacture of diapers, tampons, sanitary napkins and other hygiene articles, and as water retainers in market gardening.
To improve application properties, for example diaper rewet and absorbency under load (AUL), hydrophilic, highly swellable hydrogels are generally surface or gel postcrosslinked. This postcrosslinking is preferably carried out in the aqueous gel phase or as surface postcrosslinking of the ground and classified polymer particles.
Useful crosslinkers for this purpose include compounds containing at least two groups capable of entering covalent bonds with the carboxyl groups of the hydrophilic polymer. Useful compounds include for example di- or polyglycidyl compounds, such as diglycidyl phosphonate, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, and these compounds can also be used in mixtures with each other (see for example EP-A-0 083 022, EP-A-0 543 303 and EP-A-0 530 438). Polyamidoamines useful as crosslinkers are described in EP-A-0 349 935 in particular.
A major disadvantage of these crosslinkers is their high reactivity, since it necessitates particular precautions in production to avoid undesirable side effects. Moreover, the aforementioned crosslinkers have skin-irritating properties, which makes their use in hygiene articles problematical.
Known crosslinkers also include polyfunctional alcohols. For instance, EP-A-0 372 981, US-A-4 666 983 and US-A-5 385 983 teach the use of hydrophilic polyalcohols and the use of polyhydroxy surfactants. The reaction is carried out at 120-250°C. The process has the disadvantage that the esterification which leads to crosslinking is very s:Low even at such temperatures.
Prior German Patent Application DE-A-19 807 502 describes a process for postcrosslinking with 2-oxazolidinones.
It is an object of the present invention to provide gel or surface postcrosslinking equivalent to or superior to the prior art by using relatively inert compounds capable of reacting with carboxyl groups. This object is to be achieved with a very short reaction time and a very low reaction temperature.
We have found that this object is achieved, surprisingly, when 2-oxotetrahydro-1,3-oxazines are used as c:rosslinkers. More particularly, the moderate reactivity of the crosslinkers can be boosted with inorganic or organic acidic catalysts. Useful catalysts include known inorganic mineral acids, their acidic salts with alkali metals or ammonium and also their corresponding anhydrides. Useful organic catalysts include known carboxylic acids, sulfonic acids and amino acids.
The invention accordingly provides a process for the gel and/or surface postcrosslinking of water-absorbent polymers by the polymer being treated with a surface postcrosslinking solution and being postcrosslinked and dried during and after the treatment by raising the temperature, wherein the crosslinker comprises a compound of the formula I
O
~ R1 R4, O~N~
RZ CI).
R4 ~ ~ R2, R3' R3 where R1 is hydrogen, C1-C4-alkyl, C1-C4-hydroxyalkyl, trialkylsilyl or acetyl and RZ, Rz', R3, R3', R4, R4' are each independently hydrogen, C1-C12-alkyl, C1-C12-alkenyl or C6-C12-aryl, dissolved in an inert solvent.
The postcrosslinking and drying temperature is preferably 50-250°C, especially 50-200°C, most preferably 100-180°C.
The surface postcrosslinking solution is preferably sprayed onto the polymer in suitable spray mixers. Following spray application, the polymer powder is dried thermally, and the crosslinking reaction can take place not only before but also during'the drying. Preference is given to spray application of a solution of the crosslinker in reaction mixers or mixing and drying systems such as, for example, Lodige mixers, BEPEX~ mixers, NAUTA~ mixers, SHUGGI~ mixers or PROCESSALL~. Moreover, fluidized-bed dryers may also be used.
Drying may take place in the mixer itself, by heating the outer casing or by blowing hot air in. It is similarly possible to use a downstream dryer such as a tray dryer, a rotary tube dryer or a heatable screw. But it is also possible, for example, to use an azeotropic distillation as a drying technique. The preferred residence time at this temperature in the reaction mixer or dryer is less than 60 min, particularly preferably less than 30 min.
In a preferred embodiment of the invention, the reaction is accelerated by adding an acidic catalyst to the surface postcrosslinking solution. Useful catalysts for the process of the invention include all inorganic acids, their corresponding anhydrides, and organic acids. Examples are boric acid, sulfuric acid, hydroiodic acid, phosphoric acid, tartaric acid, acetic acid and toluenesulfonic acid. More particularly their polymeric forms, anhydrides and also the acidic salts of the polybasic acids are also suitable. Examples of these are boron oxide, sulfur trioxide, diphosphorus pentoxide and ammonium dihydrogenphosphate.
The crosslinker is dissolved in inert solvents. The crosslinker is used in an amount of from 0.01 to 5~, preferably 0.01-1.0~, preferably from 0.05 to 0.5~, by weight, based on the polymer used. The preferred inert solvent is water or a mixture of water with mono- or polyhydric alcohols. However, it is also possible to use any unlimitedly water-miscible organic solvent which is not itself reactive under the process conditions. When an alcohol-water mixture is used, the alcohol content of this solution is for example 10-90~ by weight, preferably 30-70$ by weight, especially 40-60~ by weight. Any alcohol of unlimited miscibility with water can be used, as can mixtures of two or more alcohols (eg. methanol + glycerol + water). The alcohol mixtures may contain the alcohols in any desired mixing ratio.
However, it is particularly preferable to use the following alcohols in aqueous solution: methanol, ethanol, isopropanol, ethylene glycol and particularly preferably 1,2-propanediol and 1,3-propanediol.

In a further preferred embodiment of the invention, the surface ,, postcrosslinking solution is used in a ratio of 1-20~ by weight, based on the mass of the polymer. Particular preference is given to a solution quantity of 0.5-10$ by weight, based on the polymer.
The invention further provides crosslinked water-absorbent polymers that are obtainable by the process according to the invention.
The hydrophilic, highly swellable hydrogels to be used in the process of the invention are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers or natural products swellable in aqueous fluids, for example guar derivatives.
Preferably the polymer to be crosslinked is a polymer containing structural units derived from acrylic acid or its esters, or obtained by graft copolymerization of acrylic acid or acrylic esters onto a water-soluble polymer matrix. These hydrogels are known to one skilled in the art and are described for example in US-A-4 286 082, DE-C-27 06 135, US-A-4 340 706, DE-C-37 13 601, DE-C-28 40 010, DE-A-43 44 548, DE-A-40 20 780, DE-A-40 15 085, DE-A-39 17 846, DE-A-38 07 289, DE-A-35 33 337, DE-A-35 03 458, DE-A-42 44 548, DE-A-42 19 607, DE-A-40 21 847, DE-A-38 31 261, DE-A-35 11 086, DE-A-31 18 172, DE-A-30 28 043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0 455 985, EP-A-0 467 073, EP-A-0 312 952, EP-A-0 205 874, EP-A-0 499 774, DE-A 26 12 846, DE-A-40 20 780, EP-A-0 205 674, US-A-5 145 906, EP-A-0 530 438, EP-A-0 670 073, US-A-4 057 521, US-A-4 062 817, US-A-4 525 527, US-A-4 295 987, US-A-5 011 892, US-A-4 076 663 or US-A-4 931 497. The content of the aforementioned patent documents is expressly incorporated herein by reference.
Examples of hydrophilic monomers useful for preparing these hydrophilic, highly swellable hydrogels are polymerizable acids, such as acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphonic acid, malefic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-methylpropanephosphonic acid and its amides, hydroxyalkyl esters and amino- or ammonium-containing esters and amides and also the alkali metal and/or ammonium salts of monomers containing acid groups. Also suitable are water-soluble N-vinylamides such as N-vinylformamide or else diallyldimethyl-ammonium chloride. Preferred hydrophilic monomers are compounds of the general formula II

(II), where R5 is hydrogen, methyl or ethyl, R6 is -COORS, hydroxysulfonyl or phosphonyl, a (C1-C4)-alkanol-esterified phosphonyl group or a group of the formula III

~ H3C ~ , CH3 ~C\ ~R5 (III) R7 is hydrogen, methyl, ethyl or carboxyl, R$ is hydrogen, amino-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, alkali metal or ammonium ion and R9 is a sulfonyl group, a phosphonyl group or a carboxyl group or an alkali metal or ammonium salt of each of these.
Examples of C1-C4-alkanols are methanol, ethanol, n-propanol, isopropanol or n-butanol.
Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid and also their alkali metal and ammonium salts, for example sodium acrylate, potassium acrylate or ammonium acrylate.
Useful grafting bases for hydrophilic hydrogels obtainable by graft copolymerization of olefinically unsaturated acids or their alkali metal or ammonium salts may be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and also other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polyethylene oxides and polypropylene oxides, and also hydrophilic polyesters.
Useful polyalkylene oxides have for example the formula IV

Ril R1~ ~0~ HzC - CH - 0'J ( IV) , n X
where R1~ and R11 are independently hydrogen, alkyl, alkenyl or aryl, X is hydrogen or methyl, and n is an integer from 1 to 10,000.
R1~ and R11 are each preferably hydrogen, (C1-C4)alkyl, (CZ-C6)alkenyl or phenyl.
Preferred hydrogels are in particular polyacrylates, polymethacrylates and also the graft polymers described in US-A-4 931 497, US-A-5 011 892 and US-A-5 041 496.
The hydrophilic, highly swellable hydrogels are preferably in crosslinked form; that is, they include compounds having at least two double bonds which have been copolymerized into the polymer network. Suitable crosslinkers are in particular N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or t:riacrylate, examples being the diacrylates and dimethacrylates of butanediol and of ethylene glycol, and trimethylolpropanetriacrylate, and also all.yl compounds such as allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and also vinylphosphonic acid derivatives as described for example in EP-A-0 343 427. In the process of the invention, however, particular preference is given to hydrogels prepared using polyallyl ethers as crosslinkers and by acidic homopolymerization of acrylic acid. Suitable crosslinkers are pentaerythritol tri-and tetraallyl ether, polyethylene glycol diallyl ether, monoethylene glycol diallyl ether, glycerol di- and triallyl ether, polyallyl ethers based on sorbitol and also ethoxylated variants thereof.
The water-absorbent polymer is preferably a polymeric acrylic acid or a polyacrylate. This water-absorbent polymer may be prepared by a process known from the literature. Preference is given to polymers containing crosslinking comonomers in amounts of 0.001-10 mol$, preferably 0.01-1 mol$, but very particular preference is given to polymers obtained by free-radical polymerization using a polyfunctional ethylenically unsaturated free-radical crosslinker which additionally bears at least one free hydroxyl group (eg. pentaerythritol triallyl ether or trimethylolpropane diallyl ether).
The hydrophilic, highly swellable hydrogels are preparable by conventional polymerization processes. Preference is given to addition polymerization in aqueous solution by the process known as gel polymerization. In this process from 15 to 50~ strength by weight aqueous solutions of one or more hydrophilic monomers and optionally of a suitable grafting base are polymerized in the presence of a free-radical initiator, preferably without mechanical mixing, utilizing the Trommsdorff-Norrish effect (Makromol. Chem. 1, 169 (1947)). The polymerization reaction may be carried out in the temperature range from 0 to 150°C, preferably from 10 to 100°C, not only at atmospheric pressure but also at elevated or reduced pressure. As customary, the polymerization may also be carried out in a protective gas atmosphere, preferably under nitrogen. The polymerization may be initiated using high-energy electromagnetic radiation or the customary chemical polymerization initiators, for example organic peroxides, such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and also inorganic peroxy compounds such as (NH4)25208 ~ KZS20$ or H202. They may if desired be used in combination with reducing agents such as sodium hydrogensulfite and iron(II) sulfate or redox systems where the reducing component is an aliphatic or aromatic sulfinic acid, such as benzenesulfinic acid or toluenesulfinic acid or derivatives thereof, such as Mannich adducts of sulfinic acids, aldehydes and amino compounds as described in DE-A-1 301 566. The qualities of the polymers may be further improved by postheating the polymer gels for a number of hours within the temperature range from 50 to 130°C, preferably from 70 to 100°C.
The gels obtained are neutralized for example to the extent of 0-100 mold, preferably 25-100 mold, particularly preferably 50-85 mold, based on monomer used, for which the customary neutralizing agent can be used, preferably alkali metal hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate or sodium bicarbonate.
Neutralization is customarily effected by mixing in the neutralizing agent as an aqueous solution or else, preferably, as a solid. For this purpose the gel is mechanically comminuted, by means of a mincer for example, and the neutralizing agent is sprayed on, scattered over or poured on and then carefully mixed in. To effect homogenization, the resultant gel mass may be passed through the mincer again a number of times. The neutralized gel mass is then dried with a belt dryer or roller dryer until the residual moisture content is less than 10~ by weight, especially below 5~ by weight. The dried hydrogel is then ground and sieved, the customary grinding apparatus being roll mills, pin mills or vibratory mills. The particle size of the sieved hydrogel is preferably in the range 45-1000 Nzn, particularly preferably 45-850 ~m most preferably 200-850 ~.m.
To ascertain the quality of surface postcrosslinking, the dried hydrogel is tested using the test methods described hereinbelow:
Methods:
1) Centrifuge retention capacity (CRC):
This method measures the free swellability of the hydrogel in a teabag. About 0.200 g of dried hydrogel is sealed in a teabag (format: 60 mm x 60 mm, Dexter 1234 T paper) and soaked for min in a 0.9$ strength by weight sodium chloride solution. The teabag is then spun for 3 min in a customary commercial spindryer (Bauknecht WS 130, 1400 rpm, basket diameter 230 mm). The amount 25 of liquid absorbed is determined by weighing the centrifuged teabag. The absorption capacity of the teabag itself is taken into account by determining a blank value (teabag without hydrogel), which is deducted from the weighing result (teabag with swollen hydrogel).
Retention CRC [g/g) _ (weighing result for teabag - blank value -initial weight of hydrogel) - initial weight of hydrogel.
2) Absorbency under load (0.3/0.5/0.7 psi):
For the absorbency under load, 0.900 g of dry hydrogel is distributed uniformly on the screen base of a measuring cell. The measuring cell consists of a Plexiglass cylinder (50 mm in height and 60 mm in diameter) whose base is formed by adhering a screen of steel mesh (mesh size 36 micron or 400 mesh). A coverplate is placed over the uniformly distributed hydrogel and loaded with an appropriate weight. The cell is then placed on a filter paper (S&S 589 Schwarzband, diameter = 90 mm) lying on a porous glass filter plate, this filter plate itself lying in a Petri dish (30 mm in height, 200 mm in diameter) which contains 0.90 strength by weight sodium chloride solution so that the liquid level at the beginning of the experiment is level with the top edge of the glass frit. Hydrogel is then left to~absorb the salt solution for 60 min. Subsequently the complete cell with the swollen gel is removed from the filter plate and the apparatus is reweighed following removal of the weight.
Absorbency under load (AUL) is calculated as follows:
AUL [g/g] _ (Wb-Wa) - Ws where Wb is the mass of the apparatus + gel after swelling, Wa is the mass of the apparatus + initial weight of the gel before swelling, and Ws is the initial weight of dry hydrogel.
The apparatus is measuring cylinder + coverplate.
Examples la and lb Base polymer:
In a 40 1 plastic bucket, 6.9 kg of glacial acrylic acid are diluted with 23 kg of water. 45 g of pentaerythritol triallyl ether are added to this solution with stirring, and the sealed bucket is inertized by passing nitrogen thrc>ugh it. The polymerization is then initiated by adding about 400 mg of hydrogen peroxide and 200 mg of ascorbic acid. After the reaction has ended, the gel is mechanically comminuted and admixed with sufficient aqueous sodium hydroxide solution to provide a degree of neutralization of 75 mold, based on the acrylic acid used. The neutralized gel is then dried on a roll dryer, ground with a pin mill and finally classified. This is the base polymer used in the subsequent examples.
The base polymer is sprayed in a blaring lab blender with crosslinker solution of the following composition: 4$ by weight of methanol, 6~ by weight of water and 0.20 by weight of 2-oxotetrahydro-1,3-oxazine, based on polymer used. The moist polymer is then divided into two portions which are each heat treated at 175~C in a through circulation cabinet, one portion for 60 min and the other for 90 min. The dried product is classified at 850 micron to remove lumps.
Examples 2a and 2b Base polymer as per Example 1 is sprayed with crosslinker solution in a blaring lab blender. The solution has a composition such that the following dosage is obtained, based on base polymer used: 0.40% by weight of 2-oxotetrahydro-1,3-oxazine, 4$ by weight of propylene glycol and 6% by weight of water. One portion of the moist polymer is then dried at 165°C for 60 min, another at 5 165°C for 90 min.
Example 3 Base polymer as per Example 1 is sprayed with crosslinker 10 solution in a blaring lab blender. The composition of the solution is such that the following dosage is achieved, based on base polymer used: 0.30% by weight of 2-oxotetrahydro-1,3-oxazine, 3%
by weight of 1,2-propanediol, 7% by weight of water and 0.2% by weight of boric acid. The moist polymer is then dried at 175°C for 60 min.
Example 4 Base polymer as per Example 1 is sprayed with crosslinker solution in a blaring lab blender. The composition of the solution is such that the following dosage is achieved, based on base polymer used: 0.40% by weight of N-methyl-2-oxotetrahydro-1,3-oxazine, 4% by weight of ethanol, 6%
by weight of water and 0.2% by weight of ammonium dihydrogenphosphate. The moist polymer is then dried at 175°C for 60 min.
The polymers prepared as per the above examples were tested. The results are reported below in Table 1.

ro o ~o--N tT

a o \

a c tr M oo a o ~r, ,Q,'.~ O1 O~ .--I .-i N N N

.,.I

a M \

CTO .---~ M 1f1 M ~T N

R',O ~ -~ M M M M M M

>T

U \

fxLT N O 00 t0 N ~f1 .-1 ()~ C V' M M M M M

O O O
N N N

x x o 0 o x N N N

da da ~ x x da ~o .o ~o + + ~ ~ c~ +

I
+~ x x + + + x a o 0 0 a~ a~ a~ ~ ~ o > ~ ~ w w w w U dP as da ac as as U7 V c!' C' V' M C

+~

~

r- I I I I I dP
i f1 N

ro o ~
x +J N~ N
~!

ro M x v ox o z .-1 r-i .~ ~ .--iN

:a 1a ~I 1.a la la Sa U N N N v U N

x x x x x .~ x a ~ a a a a ,., -.I ,~ ~ r, fA dPN dPU7dPUIdPU1 dPU7 aiP
N

U) I O N O N O UlO UI Ofn O
Ul O N O N O d O a O MO c O

la Sa 1.1 1-1 f.1 LI 1.I

U o V o U o U o V oU o U

O~ C s~ C C ~ >~

-ri -.~ -.~ -.-I ~r-I -rl --1N ~ ~ E ~ ~ E

I

N -.~ 0 0 0 0 0 0 Ca+~ ~o a~ ~a a~ ~o ~o i i C
~ 0 0 0 0 0 -~W 0 7.f~ I ui u W W t1 ~ u1 l.iN s t~ c~ ~ ~c r~ t~

C~~ I .-i ,--a ~ .-~ .-~ .1 N

U

ro N w CT

d ~

-.-Iro ,~ ro .ca .-1'.,N ?G-n w N N M V

G

N O +~-.iN ~ N N N U

r1C.L~ r~.-~ .-I r-1 .-i .-~ r-1 r-i ~ N .CN ~ E ~ ~ E

x ro~ ~

. X X X 7C >C X
ro ~

W a73 U W W W W W W
E~

Crosslinker 1: 2-oxotetrahydro-1,3-oxazine _Crosslinker 2: N-methyl-2-oxotetrahydro-1,3-oxazine Percentages are by weight based on polymer used. Drying temperature and time relate to the heat treatment of the base polymer after it has been sprayed with surface postcrosslinking solution.

Claims (8)

1. The process for the gel and/or surface postcrosslinking of water-absorbent polymers by the polymer being treated with a surface postcrosslinking solution and being postcrosslinked and dried during and after the treatment by raising the temperature, wherein the crosslinker comprises a compound of the formula I

where R1 is hydrogen, C1-C4-alkyl, C1-C4-hydroxyalkyl, trialkylsilyl or acetyl and R2, R2', R3, R3', R4, R4' are each independently hydrogen, C1-C12-alkyl, C1-C12-alkenyl or C6-C12-aryl, dissolved in an inert solvent.
2. The process of claim 1, wherein the polymer to be crosslinked is a polymer containing structural units derived from acrylic acid or esters thereof or obtained by graft copolymerization of acrylic acid or acrylic esters onto a water-soluble polymer matrix.
3. The process of claim 1 or 2, wherein surface postcrosslinking is effected using a catalyst comprising an acid or anhydride thereof.
4. The process of claim 3, wherein the acid is boric acid, sulfuric acid, hydroiodic acid, phosphoric acid, tartaric acid, acetic acid or toluenesulfonic acid or polymeric forms, acidic salts or anhydrides thereof.
5. The process of one or more of claims 1 to 4, wherein the inert solvent is water or a mixture of water with mono- or polyhydric alcohols comprising from 10 to 90% by weight of alcohol.
6. The process of one or more of claims 1 to 5, wherein the crosslinker is used in an amount of from 0.01 to 5% by weight, based on the weight of the polymer.
7. Water-absorbent polymer obtainable by the process of claims 1 to 6.
8. The use of the polymer obtainable as per claim 7 in hygiene articles, packaging materials and nonwovens.
CA 2347897 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines Abandoned CA2347897A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19854573.8 1998-11-26
DE1998154573 DE19854573A1 (en) 1998-11-26 1998-11-26 Postcrosslinking process of hydrogels with 2-oxo-tetrahydro-1,3-oxazines
PCT/EP1999/009003 WO2000031153A1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines

Publications (1)

Publication Number Publication Date
CA2347897A1 true true CA2347897A1 (en) 2000-06-02

Family

ID=7889097

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2347897 Abandoned CA2347897A1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines

Country Status (7)

Country Link
US (1) US6657015B1 (en)
EP (1) EP1141039B1 (en)
JP (1) JP2002530491A (en)
CA (1) CA2347897A1 (en)
DE (1) DE19854573A1 (en)
ES (1) ES2216617T3 (en)
WO (1) WO2000031153A1 (en)

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854575A1 (en) * 1998-11-26 2000-05-31 Basf Ag Crosslinked swellable polymers
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
WO2002059214A1 (en) 2001-01-26 2002-08-01 Nippon Shokubai Co., Ltd. Water absorbing agent and method for production thereof, and water absorbing article
CN1277583C (en) 2001-06-08 2006-10-04 株式会社日本触媒 Water-absorbing agent, its production method and sanitary material
EP1436335B1 (en) 2001-10-05 2005-01-26 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
DE60238439D1 (en) * 2001-12-19 2011-01-05 Nippon Catalytic Chem Ind polymeric water-absorbing and processes for their preparation
DE10204938A1 (en) * 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials, liquid absorbing hygiene articles, packaging materials, and soil additives
EP1808152B1 (en) 2003-02-12 2012-08-29 The Procter and Gamble Company Absorbent Core for an Absorbent Article
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
EP1651283B1 (en) 2003-08-06 2011-03-16 The Procter & Gamble Company Absorbent article comprising coated water-swellable material
US7270881B2 (en) 2003-08-06 2007-09-18 The Procter & Gamble Company Coated water-swellable material
EP1654012B1 (en) 2003-08-06 2013-04-24 Basf Se Water-swellable material comprising coated water-swellable polymer particles
EP1518567B1 (en) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
DE102004009438A1 (en) 2004-02-24 2005-09-15 Basf Ag A process for the surface postcrosslinking of water
DE102004038015A1 (en) * 2004-08-04 2006-03-16 Basf Ag A process for postcrosslinking of water-absorbing polymers with cyclic carba-mats and / or cyclic ureas
US20080004408A1 (en) 2004-09-28 2008-01-03 Basf Aktiengesellschaft Method for the Continuous Production of Crosslinked Particulate Gel-Type Polymers
DE102004051242A1 (en) 2004-10-20 2006-05-04 Basf Ag Fine-particle water-absorbing polymer particles with high liquid transport and absorption capacity
DE102004057868A1 (en) 2004-11-30 2006-06-01 Basf Ag Preparation of water-absorbing polymer comprises polymerizing (where metal sulfate is added) mixture of e.g. acid group containing monomer, cross linkers and unsaturated monomers and treating the ground polymer with post crosslinking agent
JP2008529591A (en) * 2005-02-04 2008-08-07 ザ プロクター アンド ギャンブル カンパニー Absorbent structure having improved absorbent material
EP1846047B1 (en) * 2005-02-04 2010-07-14 Basf Se A process for producing a water-absorbing material having a coating of elastic filmforming polymers
US20080154224A1 (en) * 2005-02-04 2008-06-26 Basf Aktiengesellschaft Process for Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers
US20080161499A1 (en) * 2005-02-04 2008-07-03 Basf Aktiengesellschaft Water Swellable Material
EP1846049B1 (en) * 2005-02-04 2011-08-03 Basf Se Water-absorbing material having a coating of elastic film-forming polymers
DE102005010198A1 (en) * 2005-03-05 2006-09-07 Degussa Ag Hydrolysis, postcrosslinked superabsorbents
DE102005014291A1 (en) 2005-03-24 2006-09-28 Basf Ag A process for producing water-absorbing polymers
EP1879930B1 (en) 2005-04-07 2013-01-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin based on a polyacrylic acid or its salt
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
DE102005042604A1 (en) 2005-09-07 2007-03-08 Basf Ag Neutralization process
EP2269720A1 (en) 2005-12-22 2011-01-05 Nippon Shokubai Co., Ltd. Method for manufacturing water-absorbing resin via surface crosslinking
JP5410018B2 (en) * 2005-12-22 2014-02-05 株式会社日本触媒 Water absorbent resin composition and a method of manufacturing, the absorbent article
US20090012486A1 (en) * 2005-12-28 2009-01-08 Basf Se Process for Production of a Water-Absorbing Material
EP1837348B1 (en) * 2006-03-24 2013-09-18 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
EP2289982A1 (en) 2006-03-27 2011-03-02 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin composition
RU2463310C2 (en) 2006-07-19 2012-10-10 Басф Се Method of producing water-absorbing polymer particles with high permeability by polymerising droplets of monomer solution
DE102008000237A1 (en) 2007-02-06 2008-08-07 Basf Se Mixtures, useful e.g. as an inhibitor or retarder for the stabilization of polymerizable compound, preferably swellable hydrogel-forming polymers, comprises a phenol imidazole derivative and a polymerizable compound
WO2008108277A1 (en) 2007-03-01 2008-09-12 Nippon Shokubai Co., Ltd. Granulated water absorbent containing water-absorbing resin as the main component
US20100120940A1 (en) 2007-04-05 2010-05-13 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent having water-absorbing resin as main component
DE112008000011B4 (en) 2007-06-18 2013-11-28 The Procter & Gamble Company The disposable absorbent article and its use
EP2157950B1 (en) 2007-06-18 2013-11-13 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
EP2018876A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
US8188163B2 (en) * 2007-08-28 2012-05-29 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
JP5320305B2 (en) * 2007-09-07 2013-10-23 株式会社日本触媒 Binding process for a water-absorbent resin
CA2722538C (en) 2008-04-29 2014-08-12 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US20090318884A1 (en) * 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
JP5496227B2 (en) 2009-02-18 2014-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a water-absorbing polymer particles
WO2010100936A1 (en) 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
US9803033B2 (en) 2009-04-30 2017-10-31 Basf Se Method for removing metal impurities
EP2432511B1 (en) 2009-05-20 2013-07-24 Basf Se Water-absorbent storage layers
US8502012B2 (en) * 2009-06-16 2013-08-06 The Procter & Gamble Company Absorbent structures including coated absorbent material
WO2010149735A1 (en) 2009-06-26 2010-12-29 Basf Se Process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure
CN102481386A (en) 2009-08-26 2012-05-30 巴斯夫欧洲公司 Deodorizing compositions
EP2471845B1 (en) 2009-08-27 2017-02-15 Nippon Shokubai Co., Ltd. Water-absorbing resin based on polyacrylic acid (salt) and process for producing same
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
EP2478050B1 (en) 2009-09-18 2018-01-24 Basf Se Open-cell foams equipped with superabsorbers
CN105771945A (en) 2009-09-29 2016-07-20 株式会社日本触媒 Particulate water absorbent and process for production thereof
US9328207B2 (en) 2009-10-09 2016-05-03 Basf Se Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
JP5871803B2 (en) 2009-10-09 2016-03-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se How humidification after-crosslinked water-absorbent polymer particles after surface
WO2011042404A1 (en) 2009-10-09 2011-04-14 Basf Se Use of heating steam condensate for producing water-absorbent polymer particles
JP5591339B2 (en) 2009-10-09 2014-09-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Continuous process for the preparation of water-absorbing polymer particles
WO2011054784A1 (en) 2009-11-06 2011-05-12 Basf Se Textiles comprising improved superabsorbers
US9574019B2 (en) 2009-11-23 2017-02-21 Basf Se Methods for producing water-absorbent foamed polymer particles
EP2504038A1 (en) 2009-11-23 2012-10-03 Basf Se Method for producing water-absorbent polymer foams
JP2013511608A (en) 2009-11-23 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a water-absorbing polymer particles which color stability is improved
EP2329803A1 (en) 2009-12-02 2011-06-08 The Procter and Gamble Company Apparatus and method for transferring particulate material
JP6141020B2 (en) 2010-01-27 2017-06-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Odor control water-absorbing composite material
WO2011099586A1 (en) 2010-02-10 2011-08-18 株式会社日本触媒 Process for producing water-absorbing resin powder
EP2539381A1 (en) 2010-02-24 2013-01-02 Basf Se Method for producing water-absorbing polymer particles
CN102762616B (en) 2010-02-24 2014-07-16 巴斯夫欧洲公司 Method for producing water-absorbing polymer particles
JP5632906B2 (en) 2010-03-12 2014-11-26 株式会社日本触媒 The method of producing a water-absorbent resin
JP2013522403A (en) 2010-03-15 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of polymerization by water absorption polymer particle droplets of the monomer solution
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
WO2011117215A1 (en) 2010-03-24 2011-09-29 Basf Se Method for removing residual monomers from water-absorbent polymer particles
US8450428B2 (en) 2010-03-24 2013-05-28 Basf Se Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
KR101782188B1 (en) 2010-03-24 2017-09-26 바스프 에스이 Ultrathin fluid-absorbent cores
WO2011117245A1 (en) 2010-03-25 2011-09-29 Basf Se Method for producing water-absorbing polymer particles
WO2011131526A1 (en) 2010-04-19 2011-10-27 Basf Se Method for producing water-absorbing polymer particles
EP2580256A2 (en) 2010-06-14 2013-04-17 Basf Se Water-absorbing polymer particles with improved colour stability
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
EP2623198A4 (en) 2010-09-30 2015-06-24 Nippon Catalytic Chem Ind Particulate water absorbent and production method for same
WO2012045705A1 (en) 2010-10-06 2012-04-12 Basf Se Method for producing thermally surface post-crosslinked water-absorbing polymer particles
WO2012054661A1 (en) 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
JP2013540190A (en) 2010-10-21 2013-10-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Water-absorbing polymer particles and a method of manufacturing the same
EP2476714A1 (en) 2011-01-13 2012-07-18 Basf Se Polyurethane integral foams with improved surface hardness
CN103459473B (en) 2011-01-28 2016-04-13 株式会社日本触媒 Polyacrylic acid (salt) -based method for producing a water absorbent resin powder
JP6138056B2 (en) 2011-02-07 2017-05-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Preparation of water-absorbing polymer particles having a high swelling rate
WO2012107344A1 (en) 2011-02-07 2012-08-16 Basf Se Method for producing water-absorbing polymer particles
DE102011003882A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for deletion and / or inhibiting fluorine and / or phosphorus-containing fires
DE102011003877A1 (en) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Composition for deletion and / or inhibiting fluorine and / or phosphorus-containing fires
WO2012119969A1 (en) 2011-03-08 2012-09-13 Basf Se Method for producing water-absorbing polymer particles having improved permeability
WO2012152647A1 (en) 2011-05-06 2012-11-15 Basf Se Method for producing water-absorbing polymer particles
US9279048B2 (en) 2011-05-18 2016-03-08 Basf Se Use of water-absorbing polymer particles for dewatering feces
US20120296297A1 (en) 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
EP2709682B1 (en) 2011-05-18 2016-12-14 Basf Se Use of water-absorbing polymer particles for the absorption of blood and/or menstrual fluid
CN103561782B (en) 2011-05-26 2016-11-16 巴斯夫欧洲公司 The method of preparing water-absorbing polymer particles
CN103561781B (en) 2011-05-26 2016-06-29 巴斯夫欧洲公司 A method of continuously preparing water-absorbing polymer particles
WO2012163995A9 (en) 2011-06-01 2013-01-31 Basf Se Deodorizing mixtures for incontinence articles
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
JP6053762B2 (en) 2011-06-03 2016-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Continuous process for the preparation of water-absorbing polymer particles
EP2714755B1 (en) 2011-06-03 2017-04-26 Basf Se Method for continuous production of water-absorbent polymer particles
ES2459724T3 (en) 2011-06-10 2014-05-12 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
EP2532329A1 (en) 2011-06-10 2012-12-12 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
CA2838032A1 (en) 2011-06-10 2012-12-13 The Procter & Gamble Company Absorbent structure for absorbent articles
WO2012170779A1 (en) 2011-06-10 2012-12-13 The Procter & Gamble Company Absorbent structure for absorbent articles
US20120316528A1 (en) 2011-06-10 2012-12-13 Carsten Heinrich Kreuzer Disposable Diapers
EP2532334B1 (en) 2011-06-10 2016-10-12 The Procter and Gamble Company Absorbent core for disposable absorbent article
EP2532332B2 (en) 2011-06-10 2017-10-04 The Procter and Gamble Company Disposable diaper having reduced attachment between absorbent core and backsheet
JP5940655B2 (en) 2011-06-10 2016-06-29 ザ プロクター アンド ギャンブル カンパニー The absorbent core for a disposable absorbent article
CN103764179B (en) 2011-06-30 2016-03-02 宝洁公司 Scavenger component comprising oil absorbent structure
WO2013007819A1 (en) 2011-07-14 2013-01-17 Basf Se Method for producing water-absorbing polymer particles having a high swelling speed
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2013056978A3 (en) 2011-10-18 2013-07-18 Basf Se Fluid-absorbent article
EP2586409A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
EP2586412A1 (en) 2011-10-24 2013-05-01 Bostik SA New absorbent article and process for making it
EP2586410A1 (en) 2011-10-24 2013-05-01 Bostik SA Novel process for preparing an absorbent article
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
WO2013083698A1 (en) 2011-12-08 2013-06-13 Basf Se Process for producing water-absorbing polymer fibres
EP2812365A1 (en) 2012-02-06 2014-12-17 Basf Se Method for producing water-absorbing polymer particles
CN104114591B (en) 2012-02-15 2016-10-12 巴斯夫欧洲公司 Water-absorbing polymer particles have a high swelling ratio and high permeability
JP2015512990A (en) 2012-03-30 2015-04-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method of crosslinking after heat surfaces in a drum type heat exchanger having a reverse screw helix
JP2015514841A (en) 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Preparation of crosslinked water-absorbing polymer particles after surface
EP2838573A1 (en) 2012-04-17 2015-02-25 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
WO2013182469A3 (en) 2012-06-08 2014-02-06 Basf Se Odour-control superabsorbent
EP2671554B1 (en) 2012-06-08 2016-04-27 The Procter and Gamble Company Absorbent core for use in absorbent articles
JP6250042B2 (en) 2012-06-13 2017-12-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a water-absorbing polymer particles in the polymerization reactor having at least two shaft parallel axially rotated
JP6226969B2 (en) 2012-06-19 2017-11-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Preparation of water-absorbing polymer particles
EP2679209B1 (en) 2012-06-28 2015-03-04 The Procter and Gamble Company Absorbent articles with improved core
EP2679208B1 (en) 2012-06-28 2015-01-28 The Procter and Gamble Company Absorbent core for use in absorbent articles
EP2679210B1 (en) 2012-06-28 2015-01-28 The Procter and Gamble Company Absorbent articles with improved core
CN104411732A (en) 2012-07-03 2015-03-11 巴斯夫欧洲公司 Method for producing water-absorbent polymer particles with improved properties
WO2014019813A1 (en) 2012-07-30 2014-02-06 Basf Se Odour-inhibiting mixtures for incontinence products
EP2888296B1 (en) 2012-08-27 2016-08-10 Basf Se Process for producing water-absorbing polymer particles
EP2889082A4 (en) 2012-08-27 2016-08-17 Nippon Catalytic Chem Ind Particulate water-absorbing agent and process for producing same
CN104619755A (en) 2012-09-11 2015-05-13 株式会社日本触媒 Method for manufacturing polyacrylic acid (polyacrylate)-based water-absorbent agent, and water-absorbent agent
JP6002773B2 (en) 2012-09-11 2016-10-05 株式会社日本触媒 Polyacrylic acid (salt) -based water absorbent preparation and the water-absorbing agent
JP6261595B2 (en) 2012-09-19 2018-01-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a water-absorbing polymer particles
WO2014054731A1 (en) 2012-10-03 2014-04-10 株式会社日本触媒 Absorbent and manufacturing method therefor
EP2730596A1 (en) 2012-11-13 2014-05-14 Basf Se Polyurethane soft foam materials containing plant seeds
CA2994492A1 (en) 2012-11-13 2014-05-22 The Procter & Gamble Company Absorbent articles with channels and signals
US20150299404A1 (en) 2012-11-21 2015-10-22 Basf Se Process for producing surface- postcrosslinked water-absorbent polymer particles
CN104812418A (en) 2012-11-26 2015-07-29 巴斯夫欧洲公司 Method for producing superabsorbers based on renewable raw materials
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
EP2740449A1 (en) 2012-12-10 2014-06-11 The Procter and Gamble Company Absorbent article with high absorbent material content
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
EP2740454A1 (en) 2012-12-10 2014-06-11 The Procter and Gamble Company Absorbent article with profiled acquisition-distribution system
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
DE202012013572U1 (en) 2012-12-10 2017-12-05 The Procter & Gamble Company An absorbent article having a high absorption material content
EP2740452A1 (en) 2012-12-10 2014-06-11 The Procter and Gamble Company Absorbent article with high absorbent material content
DE202012013571U1 (en) 2012-12-10 2017-12-06 The Procter & Gamble Company Absorbing particles with high absorbent material content
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter and Gamble Company Absorbent core with high superabsorbent material content
EP2951212B1 (en) 2013-01-29 2017-03-15 Basf Se Method for producing water-absorbing polymer particles with high swelling rate and high centrifuge retention capacity with simultaneously high permeability of the swollen gel bed
WO2014118025A1 (en) 2013-01-30 2014-08-07 Basf Se Method for removal of residual monomers from water-absorbing polymer particles
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
EP2813201B1 (en) 2013-06-14 2017-11-01 The Procter and Gamble Company Absorbent article and absorbent core forming channels when wet
WO2015028158A1 (en) 2013-08-26 2015-03-05 Basf Se Fluid-absorbent article
CN105473113A (en) 2013-08-27 2016-04-06 宝洁公司 Absorbent articles with channels
WO2015036273A1 (en) 2013-09-12 2015-03-19 Basf Se Method for producing acrylic acid
RU2016104124A (en) 2013-09-16 2017-10-20 Дзе Проктер Энд Гэмбл Компани Absorbent articles with channels and indicating element
US20160279605A1 (en) 2013-11-22 2016-09-29 Basf Se Process for producing water-absorbing polymer particles
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
US20160375171A1 (en) 2013-12-20 2016-12-29 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
EP2995322B1 (en) 2014-09-15 2017-03-01 Evonik Degussa GmbH Smell adsorbent
EP2995323A1 (en) 2014-09-15 2016-03-16 Evonik Degussa GmbH Amino polycarboxylic acids as processing aids in the production of superabsorbents
WO2016050397A1 (en) 2014-09-30 2016-04-07 Basf Se Method for producing water-absorbing polymer particles
EP3009474B1 (en) 2014-10-16 2017-09-13 Evonik Degussa GmbH Method for the production of water soluble polymers
WO2016135020A1 (en) 2015-02-24 2016-09-01 Basf Se Method for the continuous dehydration of 3-hydroxypropionic acid to give acrylic acid
WO2016149252A1 (en) 2015-03-16 2016-09-22 The Procter & Gamble Company Absorbent articles with improved strength
US20160270987A1 (en) 2015-03-16 2016-09-22 The Procter & Gamble Company Absorbent articles with improved cores
WO2016162238A1 (en) 2015-04-07 2016-10-13 Basf Se Method for producing super absorber particles
US20180126032A1 (en) 2015-04-07 2018-05-10 Basf Se Method for the Agglomeration of Superabsorber Particles
WO2016162175A1 (en) 2015-04-07 2016-10-13 Basf Se Method for the dehydration of 3-hydroxypropanoic acid to form acrylic acid
KR20180004788A (en) 2015-05-08 2018-01-12 바스프 에스이 Production method for producing water-absorbing polymer particles and belt dryer
WO2016207444A1 (en) 2015-06-26 2016-12-29 Bostik Inc. New absorbent article comprising an acquisition/distribution layer and process for making it
EP3175832A1 (en) 2015-12-02 2017-06-07 The Procter and Gamble Company Absorbent article with improved core
EP3205318A1 (en) 2016-02-11 2017-08-16 The Procter and Gamble Company Absorbent article with high absorbent capacity
US20170281423A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-Absorbent Article
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
US20170281422A1 (en) 2016-03-30 2017-10-05 Basf Se Ultrathin fluid-absorbent article
WO2018077639A1 (en) 2016-10-26 2018-05-03 Basf Se Method for discharging superabsorbent particles from a silo and filling them into bulk containers
DE202017005496U1 (en) 2017-10-24 2017-12-19 The Procter & Gamble Company disposable diaper
DE202017006014U1 (en) 2017-11-21 2018-01-14 The Procter & Gamble Company An absorbent article having pockets
DE202017006016U1 (en) 2017-11-21 2017-12-01 The Procter & Gamble Company An absorbent article having channels

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1297109B (en) 1963-03-13 1969-06-12 Hoechst Ag derivatives process for preparing N-Acylmorpholon- (2)
US3364181A (en) 1965-11-10 1968-01-16 Dow Chemical Co Cyclic carbamate resins and method of preparation
DE1301566B (en) 1966-11-30 1969-08-21 Continental Gummi Werke Ag A process for preparing hydrolysis-resistant polyurethane elastomers
DE2304630A1 (en) 1973-01-31 1974-08-08 John L Grund Sewing machine needle - with lateral thread insertion
US4056502A (en) * 1974-08-05 1977-11-01 The Dow Chemical Company Absorbent articles made from carboxylic polyelectrolyte solutions containing bis-oxazoline crosslinker and methods for their preparation
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
US4038470A (en) 1975-03-20 1977-07-26 Ceskoslovenska Akademie Ved Method for preparation of polymers which contain n-acyllactam groups
JPS5346199B2 (en) 1975-03-27 1978-12-12
DE2706135C2 (en) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
JPS6025045B2 (en) 1980-03-19 1985-06-15 Seitetsu Kagaku Co Ltd
DE3028043A1 (en) 1980-07-24 1982-02-18 Vdo Schindling Electric clock drive for stepping motor - has meshing gears with damping liq. in gap between two adjacent teeth
DE3118172C2 (en) 1981-05-08 1993-02-25 Philips Kommunikations Industrie Ag, 8500 Nuernberg, De
JPS6018690B2 (en) 1981-12-30 1985-05-11 Seitetsu Kagaku Co Ltd
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
JPS6216135B2 (en) 1982-04-19 1987-04-10 Nippon Shokubai Kagaku Kogyo Kk
JPH0153974B2 (en) 1984-02-04 1989-11-16 Arakawa Chem Ind
JPS6173704A (en) 1984-09-19 1986-04-15 Arakawa Chem Ind Co Ltd Production of highly water-absorptive resin
DE3511086A1 (en) 1985-03-27 1986-10-09 Belzer Dowidat Gmbh tongs
US4588490A (en) 1985-05-22 1986-05-13 International Business Machines Corporation Hollow cathode enhanced magnetron sputter device
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
DE3713601C2 (en) 1987-04-23 1989-07-13 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
US4833222A (en) 1987-10-22 1989-05-23 The Dow Chemical Company Crosslinker stabilizer for preparing absorbent polymers
DE3738602A1 (en) 1987-11-13 1989-05-24 Cassella Ag Hydrophilic swellable graft polymers, their preparation and use
EP0331805B1 (en) 1988-03-05 1992-02-26 Henkel Kommanditgesellschaft auf Aktien Packaging container with a flexible bag resting in a rigid envelope and having a closable spout
DE3822490A1 (en) 1988-07-02 1990-01-04 Hoechst Ag Aqueous solutions of polyamidoamine epichlorohydrin are-resins, process for their production and their use
DE3831261A1 (en) 1988-08-29 1990-03-15 Lentia Gmbh Process for the preparation of liquid-absorbent acrylic resins
RU2015141C1 (en) 1988-12-08 1994-06-30 Ниппон Сокубаи Кагаку Когио Ко., Лтд. Method of absorbing resin preparing
DE3910563A1 (en) 1989-04-01 1990-10-04 Cassella Ag Hydrophilic quellfaehige graft copolymers, their preparation and use
DE3911433A1 (en) 1989-04-07 1990-10-11 Cassella Ag Hydrophilic quellfaehige graft polymers, their preparation and use
DE3917846A1 (en) 1989-06-01 1990-12-06 Hilti Ag Traegerstreifen for powder-actuated fastening tools
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5051545A (en) 1990-04-06 1991-09-24 Summagraphics Corporation Digitizer with serpentine conductor grid having non-uniform repeat increment
US5408019A (en) 1990-05-11 1995-04-18 Chemische Fabrik Stockhausen Gmbh Cross-linked, water-absorbing polymer and its use in the production of hygiene items
DE4015085C2 (en) 1990-05-11 1995-06-08 Stockhausen Chem Fab Gmbh Crosslinked water-absorbing polymer and use for the production of hygiene articles, for soil improvement and in cable jacketing
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847C2 (en) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh A process for producing water-swellable products using fine fractions of water-
EP0467073B1 (en) 1990-07-17 1995-04-12 Sanyo Chemical Industries Ltd. Process for producing water-absorbing resins
DE4105000A1 (en) 1991-02-19 1992-08-20 Starchem Gmbh A process for the preparation of finely divided, water-swellable polysaccharide graft polymer
DE69217433D1 (en) 1991-09-03 1997-03-27 Hoechst Celanese Corp Superabsorbent polymer with improved absorbent properties
DE4138408A1 (en) 1991-11-22 1993-05-27 Cassella Ag Hydrophilic hydrogels hochquellfaehige
DE4219607C2 (en) 1992-06-16 1995-09-21 Kabelmetal Electro Gmbh A process for producing an optical fiber loose tube hollow or
WO1994009043A1 (en) 1992-10-14 1994-04-28 The Dow Chemical Company Water-absorbent polymer having improved properties
US5288811A (en) * 1992-11-05 1994-02-22 Exxon Research And Engineering Company Cyclic carbonyl containing compounds via radical grafting
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
DE4244548C2 (en) 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Powdered absorbent under load aqueous liquids as well as blood polymers, processes for their preparation and their use in textile constructions for the body hygiene
US5417316A (en) 1993-03-18 1995-05-23 Authentication Technologies, Inc. Capacitive verification device for a security thread embedded within currency paper
DE4440015A1 (en) 1993-12-24 1995-06-29 Rieter Ingolstadt Spinnerei Bobbin sleeve storage and feed
DE4418881A1 (en) 1994-05-30 1995-12-07 Rexroth Mannesmann Gmbh Electrohydraulic control system and control valve for farm vehicle lifting gear
GB9606834D0 (en) 1996-03-30 1996-06-05 Int Computers Ltd Inter-processor communication
DE19807502B4 (en) 1998-02-21 2004-04-08 Basf Ag Postcrosslinking process of hydrogels with 2-oxazolidinones, hydrogels prepared therefrom and their use

Also Published As

Publication number Publication date Type
ES2216617T3 (en) 2004-10-16 grant
DE19854573A1 (en) 2000-05-31 application
EP1141039B1 (en) 2004-02-18 grant
WO2000031153A1 (en) 2000-06-02 application
US6657015B1 (en) 2003-12-02 grant
JP2002530491A (en) 2002-09-17 application
EP1141039A1 (en) 2001-10-10 application

Similar Documents

Publication Publication Date Title
US6143821A (en) Water-absorbing polymers with improved properties, process for the preparation and use thereof
US6207796B1 (en) Production process for hydrophilic polymer
US5574121A (en) Process for preparing an absorbent resin crosslinked with a mixture of trimethylolpropane diacrylate and triacrylate
US6391451B1 (en) Surface-treated superabsorbent polymer particles
US6388000B1 (en) Method for production of hydrophilic resin
US5712316A (en) Powder-form cross-linked polymers capable of absorbing aqueous liquids and body fluids, method of preparing them and their use
US6174929B1 (en) Water-absorbent cross-linked polymers in foam form
US6602950B1 (en) Hydrophilic hydrogels with a high swelling capacity and method for producing and using them
US4755560A (en) Process for producing highly water-absorbing polymer
US5075344A (en) Process for producing a superabsorbent polymer
US5981070A (en) Water-absorbent agent powders and manufacturing method of the same
US20020128618A1 (en) Hydrogels
US5164459A (en) Method for treating the surface of an absorbent resin
US5115011A (en) Process for producing quality-improved water-absorbent polymers and products
US5532323A (en) Method for production of absorbent resin
US5973014A (en) Process for the preparation of porous, hydrophilic, highly swellable hydrogels
US6803107B2 (en) Surface-treated superabsorbent polymer particles
US6372852B2 (en) Water-absorbing composition and production process for water-absorbing agent
EP0668080A2 (en) Water-absorbent agent, method for production thereof, and water-absorbent composition
US20040231065A1 (en) Method for crosslinking hydrogels with morpholine-2,3-diones
US5624967A (en) Water-absorbing resin and process for producing same
US5409771A (en) Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles
US5281683A (en) Process for producing water-absorbent resin
US4813945A (en) Ultrahigh water-absorbing fiber forming composition
US5610220A (en) Powder-form polymers which absorb, even under pressure, aqueous liquids and blood, a method of producing them and their use in textile articles for body-hygiene applications

Legal Events

Date Code Title Description
FZDE Dead