CA2337605C - Sound processing apparatus - Google Patents

Sound processing apparatus Download PDF

Info

Publication number
CA2337605C
CA2337605C CA 2337605 CA2337605A CA2337605C CA 2337605 C CA2337605 C CA 2337605C CA 2337605 CA2337605 CA 2337605 CA 2337605 A CA2337605 A CA 2337605A CA 2337605 C CA2337605 C CA 2337605C
Authority
CA
Canada
Prior art keywords
sound
sound source
control circuit
volume control
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2337605
Other languages
French (fr)
Other versions
CA2337605A1 (en
Inventor
Katsunori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hudson Soft Co Ltd
Original Assignee
Hudson Soft Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4284988A external-priority patent/JPH0822337B2/en
Priority claimed from JP4284990A external-priority patent/JPH0822339B2/en
Priority claimed from JP4284989A external-priority patent/JPH0822338B2/en
Priority claimed from JP4293768A external-priority patent/JPH06180595A/en
Application filed by Hudson Soft Co Ltd filed Critical Hudson Soft Co Ltd
Priority claimed from CA002106442A external-priority patent/CA2106442C/en
Publication of CA2337605A1 publication Critical patent/CA2337605A1/en
Application granted granted Critical
Publication of CA2337605C publication Critical patent/CA2337605C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)

Abstract

A sound processing apparatus has a volume control circuit for controlling sound volume and a register storing plural values specifying attenuation levels. The register values are determined to linearly correspond to the rate of change of the attenuation level.

Description

This application is a division of application Serial No.2,106,442 filed September 17, 1993.

SOUND PROCESSING APPARATUS
HACRGROUND OF THE INVENTION
The present invention relates to a sound processing apparatus, and more particularly to a sound processing apparatus used in a game computer system.
Traditionally, in a computer system, sound is produced from waveform data, which is generated by a computer program based process; however, the quality of the sound has been low.
For that reason, sound data (analog signals) now are converted into digital signals so. that the sound waves may be synthesized by an arithmetic operation.
In general, a game computer use a programmable sound generator (PSG), which is small in size and capacity. In the PSG, wave data supplied by a CPU are modulated in amplitude or frequency in order to generate a sound wave. The PSG may generate simple waves to intentionally produce noise. According to the PSG, it is easy to control the output sound; however, it is difficult to generate a variety of sounds.
For A/D conversion, a pulse code modulation (PCM) method is used, by which an analog signal is sampled at predetermined intervals, the sampled data are quantized, and then, are transformed into binary data.
According to a difference PCM (DPCM) method, the difference of the next two sampled data is quantized so that the amount of output data is reduced. Further, according to an adaptive difference PCM (ADPCM) method, the quantizing process is performed at a short pitch when the next two sampled data have a great difference, and on the other hand, the process is performed at a long pitch when they have a small dif ference . As a result, the output data may be more compressed.
The PCM and ADPCM data are compatible with each other by compression and extension processing, which is performed based on conversion between scale value and scale level, and between the ADPCM data, the changing amount and changing level of the data.
In a game computer, ADPCM sound data stored in an extra recording device are read by a CPU, and the data are extended by an ADPCM decoder in accordance with a scale value and a scale level, so that the original sound is reproduced.
The ADPCM decoder contains a synchronizing signal generating circuit, which generates a transmission rate using a crystal resonator. The PCM data are reproduced in accordance with the transmission rate.
Recently, the game computer has become provided not only with a sound source such as PSG and ADPCM controlled by the CPU, but also an external audio device to realize high quality sound reproduction. For example, in a game computer using a CD
( compact disk ) as recording medium, a CD player is directly used as the PCM sound source to generate high quality sound.
Generally, the sound data are controlled in volume by a volume control circuit, and output sound is supplied through a mixer circuit. Basically, two types of volume control circuits, analog and digital types, are used in game computers.
According to the volume control circuit of the analog type, volume of output sound is controlled by a voltage signal. The volume control circuit of the digital type includes a D/A
converter, in which a conversion ratio is changed for each bit.
An attenuation amount (N) of a volume control circuit is given by the equation "N ( Db ) - log ( I1/Io ) , " where I1 and Io represent levels of input and output signals, respectively. Most volume control circuits include registers holding values for specifying attenuation values of sound data.
Fig. 1 shows the relation between register values and attenuation values for a volume control circuit contained in a conventional sound processing apparatus. As shown in this table, an attenuation range of l2dB is divided into eight levels, in which the first four values are set to have ldB
differences from each other, and the last four values are set to have 2dB differences from each other. The attenuation levels -ldB, -2dB, -3dB, -4dB, -6dB, -8dB, -lOdB and -~,2dB correspond to register values 7, 6, 5, 4, 3, 2, 1 and 0, respectively.
In the conventional volume control circuit, the difference values of attenuation are not constant, because it is difficult to divide the total attenuation level (attenuation range ) constantly, especially at the maximum and minimum levels .
According to the conventional volume control circuit, the register values are determined to correspond to the attenuation a levels one-to-one, and therefore, it is difficult for an operator to adjust the sound volume to desired levels.
A conventional game computer contains a sound source chip for sound processing. Most sound source chips include sound sources for generating sound, and volume control circuits for controlling volume of the sound supplied from the sound sources. The volume control circuits are structured to be adapted to the characteristics of sound to be reproduced and the performances of amplifiers, speakers and the like.
When an external volume control circuit is provided with the game computer to realize high performance sound processing, a controller circuit is required to be built in the system to control the external volume control circuit.
Recently, a plurality of sound sources are employed in a game computer to treat a variety of sound, to produce special sound and music effects. However, such a high performance system is expensive for a game computer, because plural volume control circuits having different performances must be controlled properly.
Generally, a plurality of sound sources, such as PSG
and ADPCM, are contained in different sound chips individually, and output sound of the sound chips are also supplied to an external mixer circuit.
When an external sound source, such as a CD player with no volume controller, is employed in the system, an extra volume control circuit is necessary to be contained in the system to control volume of the player. As described above, when a plurality of sound sources are employed in a system, the circuitry in the system becomes complicated,'and as a result, the cost of the system becomes high.
5 In the conventional game computer, volume and output controlling by the volume and mixer circuits are performed in accordance with values held in internal registers.built in the volume control circuits, the register values being set by a CPU.
According to the conventional system, the circuitry in the system becomes complicated because the CPU controls the sound chips individually.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a sound processing apparatus in which output volume may be adjusted to desired levels easily by operators.
It is another object of the present invention to provide a sound processing apparatus, which may be fabricated to have a simple structure even if an external sound source is employed therein.
It is still another ob ject of the present invention to provide a sound processing apparatus, which may be fabricated to have a simple structure even if a plurality of sound sources are employed therein.
According to a first feature of the present invention, a sound processing apparatus includes a volume control circuit for controlling volume of output sound, and a register for holding plural values specifying attenuation levels. The register values are determi:aed to linearly correspond to the :rate of change of the a~.tenuation level.
According to a sect>rzc~ featuwe of tine present invention, there is provided a sour:.d proces~~i.ng apparatus, which contains a sound source ~~hip, cony~:r '_s inch a sound source witrv.in the sound source chip for producing sound data;
an external volume :control t~ix~cuit, whielu is placed out of the sound sc>urce chid:;, arid is supplied with. the sound. data from said sound. source ';::c:> c~.c:~ntrol vol.i~me of output sound.; and an internal controller circ.~.uit, which is built in the sound source chip, for supp_Ly:irag a control syc~r~al to said external volume control circuit, end for c::o:~tro?.1 ing the output sound when said external volume :~ontroi circuit does not opE:rate, wherein:
said sound sourc::e electrically produces sound by programming.
According to a third feature of the present invention, a sound processing apparatus includes a sound source chip, and an external sound source for generating external sound <iata.
'the sound source chip contains an internal sound source generating internal sound data, and a mixer circuit for mixing 'the internal and external sound data to generate output sound.
According to a fourth feature of the present invention, a sound processing apparatus includes a sound source chip, and an external sound source for generating external wound data. The sound source chip contains an internal sound source generating internal sound data, a volume control circuit to which the internal and external sound data are supplied for controlJ.ing voJ.ume of :ou.t.p~ut sauna, and a ni.ixer circuit to generate output: sound in accordance with output data of the volume control circuit.
According to a fourth featm:~e of tze present invention, there is provided a sound processing apparatus, comprising:
a sound source ch:l.p _.i.r:crluding a.ra internal sound source for producing sound date:.;
an external volume control circuit arranged apart from said sound source chip and responsive_ to said sound data from said internal sound sc:urce, far- controlling the volume of output sound; and an intern<~l volume ~::a:r~trol cJ.rcuit arranged within the sound source chip for supplying a control signal to said external. volurr~e contrc>l ci:rcuit:, and for controlling the volume of output sound when said external volume control circuit does not operate., said internal volume control circuit including, a plurality of registers, each storing at least one register value representing an amplifier and attenuation step.
BRIEF DESCRIPTION OF THL DRAWINGS
FIG. 1 is a table showing a relation between values of a register and attenuatic>ra :Levels in a volume control circuit according to a conventional sound processing apparatus.
FIG. 2 is a block diagram showing a r_amputer system using a sound processing apparatus according to the invention.
FIG. 3 i:~ a block diagram sh.owi.ng a sound data output unit according to the irwention.
FIG. 4 is a table showing a relation between values of a register and attenuatioru levels in a volume cantrol circuit according to the invent i ~:~rn ,.

7a FIC~. 5 is a d:iagr~=~m snowing the cartents of an operation register according to t:.e invention.
FIG. 6 is a diagram showing the contents of a volume register according to tt-_c:~ in~~ent::i_ .n.
FI!~. 7 is a diagrar~~ showing the contents of control registers according to the invention.
Fig. 8 is a diagram showing the contents of a PSG
operation register according to the invention.
Fig. 9 is a table showing a relation between a register and addresses AO to A3 of the PSG according to the invention.
Fig. 10 is a timing chart showing operation of the rsound data output unit according to the invention. ' a:
Fig. 11 is a block diagram showing a sound source chip with an internal volume control circuit according to the invention.
Fig. 12 is a conceptual view showing an example of the sound source chip according to the invention.
Fig. 13 is a table showing interrelationships among register values, amplifier and attenuation steps, and adjusting speed, according to the invention.
Fig. 14 is a block diagram showing a sound source chip with an external volume control circuit according to the invention.
Figs. 15 to 17 are conceptual views showing other examples of the sound source chip according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
Fig . 2 shows a computer system, which includes a game-software recording medium 100 such as a CD-ROM, a CPU 102 of the 32-bit type, a control unit 104 for mainly controlling transmission of sound data and interfacing most devices to each other, an image data extension unit 106, an image data output unit, a sound data output unit 110, a video encoder unit 112, a VDP unit 114 and a TV display 116.
CPU 102, control unit 104, image data extension unit 106 and VDP unit 114 are provided with their own memories M-RAM, K-RAM, R-RAM and V-RAM, respectively.
Fig. 3 shows sound data output unit 110, shown in Fig.
2 . The sound data output unit includes , a 6 channel programmable sound generator (PSG) 300, right and left channels ADPCM
decoders (#1 and #2) 302 and 304, a sound data output circuit to which sound data are supplied from the CD-ROM (external sound source ) , and a volume control circuit 306 for controlling output of the ADPCM decoder and PSG.
Fig. 4 shows a relation between values set in the volume register and attenuation values to be used. As shown in this table, an attenuation range of l2dB is divided into eight levels, in which the first four values are set to have 1dB
differences from each other, and the last four values are set to have 2dB differences from each other. The attenuation levels -ldB, -2dB, -3dB, -4dB, -6dB, -8dB, -lOdB and -l2dB correspond to register values 11, 10, 9, 8, 7 and 6, 5 and 4, 3 and 2, and 1 and 0, respectively. Each register value corresponds to 1dB
(changing rate). If the total attenuation values -lOdB and -l2dB are changed to -lOdB and -lldB, register values 3 and 2, and 1 are set to correspond to the attenuation values of -lOdB

and -lldB, respectively.
According to the invention, it is easy for operators to adjust output volume to desired levels by their sense, because the register values linearly correspond to the relative 5 difference value (1d8) of attenuation levels. Especially, the invention is useful for ittusic produced by a program, in which sound volume is required to be monitored in accordance with register values.
Sound data supplied from the ADPCM decoder are 10 buffered in the R-RAM and are transmitted by the control unit.
Bascally, the ADPCM decoder uses a sampling frequency of 31.47kHz; however, 15,73kHz, 7.87kHz and 3.98kHz are available.
The ADPCM sound data are defined by 4 bits, in which the first bit represents a code, and are transmitted for each byte.
In the computer system, sound volume and sampling frequency of the ADPCM decoder, soft-reset, and operation of the PSG are controlled by the CPU using registers.
The registers contained in the ADPCM decoder are now explained in conjunction with Figs. 5 and 6.
Fig. 5 shows an operation register for specifying operations of the ADPCM decoder. A sampling frequency of the ADPCM decoder is specified using 2 bits.
Fig. 6 shows a volume register for specifying sound volume of the ADPCM decoder. Each channel of the ADPCM decoder is controlled in volume for right and left. When each of the registers D5 to DO is set at "3F (hexa)," the maximum volume is obtained. One register value corresponds to an attenuation amount of -1. 5dB, and the register value "1C ( hexa ) " corresponds to the maximum attenuation amount -52.5dB. When the register value is set at 1B to 00, no sound is obtained.
Fig. 7 shows control registers contained in the control unit for controlling the operation of the ADPCM decoder.
Fig. 7(1) shows a reproduction mode register for holding data that specify a sampling frequency and a start timing for data transmission.
Fig. 7(2) shows a data buffer control register for holding data that specify an interrupt operation and a condition of a memory storing sound data to be transmitted to the ADPCM
decoders #1 and #2.
Fig. 7(3) shows a start address register for holding data that specify a start address of data to be read from the memory.
Fig. 7(4) shows an end address register for holding data that specify an end address of data to be read from the memory.
Fig. 7(5) shows a half address register for holding data that specify an address for an interrupt operation.
Fig. 7(6) shows a status register for holding data that specify conditions of data transmission from the ADPCM
decoders.
The PSG employs a waveform memory system, by which waveforms are generated for each channel in accordance with the contents of a waveform register, a waveform of each period being formed by 5 bits x 32 words.
Fig. 8 shows a register unit for holding data that specify the operations of the PSG.
Fig. 8(1) shows a channel select register RO for holding data that specify a channel address.
Fig. 8(2) shows a main volume register R1 for holding data that specify the whole volume of sound generated by mixing sounds of all the channels. In response to r,MAr. and RMAL, left and right outputs are controlled, respectively. Each of the LMAL and RMAL is defined by 4 bits, and has the maximum volume when "F (hexa)" set thereat. A value 1 corresponds to an attenuation width of -3dB.
Fig. 8(3) shows a register R2 for holding data that specify an amount for fine adjustment of a frequency.
Fig. 8(4) shows a register R3 for holding data that specify an amount for rough ad justment of the frequency, so that the output frequency is specified in accordance with values held in the last four bits of the registers (4) and in the register (3).
Fig. 8(5) shows a register R4 for holding data that specify the operation of the PSG. At the first bit, data for controlling output of the channel and writing operation of data to a waveform register R6 are held. At the second bit, data for controlling a direct D/A mode are held. When "1" is set at the first bit, output operation (mixing) of the sound of the channel is performed. When "0" is set at the first bit, no output sound is supplied, and data are able to be written into the waveform register R6. When "1" is set at the second bit, an address counter of the waveform register R6 is reset, and a data signal is directly supplied to a D/A converter. When "1F (hexa)" is set at the last 5 bits, the maximum volume is obtained. Each register value corresponds to an attenuation width of -3dB.
Fig. 8(6) shows a volume register R5 for holding data that specify sound volume.of the right and left channel. The first and last four bits LAL and RAL are used for sound volume of the left and right channels, respectively. When "F (hexa)"
is set at LAL and RAL, the maximum volume is specified for the channel. Each register value corresponds to an attenuation width of -3dB
Fig. 8(7) shows the waveform register R6 for holding a waveform for one period of the channel. The register holds waveform data of 32 words (5bit/word) for one channel.
Fig. 8(8) shows a register R7 for holding data that specify whether noise or music is selected to be used and a frequency of a clock signal to be supplied to a noise generator.
The noise enable and noise frequency data are held at the first bit and the last five bits, respectively.
Fig. 8(9) shows a register R8 for holding data that specify a frequency of an LFO (Low Frequency Oscillator) for frequency modulation. .
Fig. 8(10) shows a register R9 for holding data that specify whether the LFO is set or reset and a modulation degree of the frequency modulation using the LFO.
The registers shown in Fig. 8 are provided for each channel. The registers R2 to R7 are addressed by AO to A3 and the register R0; however, the registers R0, R1, R8 and R9 are addressed only by AO to A3.
Fig. 9 shows a relation between the registers RO to R9 and the address values AO to A3.
The PSG employs a dynamic range (D range) of 45dB.
Therefore, when the total amount of attenuation level of the register R1 (LMAL/RMAL), register R4 (AL) and register R5 (LAL/RAL) is less than -45dB, no sound is reproduced because the amount -45dB is in practice equivalent to -~dB.
The operations for writing data by the CPU into the registers, shown in Figs. 7 and 8, are now explained in conjunction with Fig. 10.
Fig . 10 shows voltage levels at input terminals of the sound data output unit. In this figure, -CS, AO to A4, -WR and D7 to DO represent a chip select signal, a write address signal, a write signal and a data input signal, respectively. Input data are supplied from the CPU through the bus of D7 to DO to the sound data output unit. In a write mode when the write signal -WR is low, data are written through D7 to DO to the registers specified by the chip select and address signals from the CPU. Each time when the write signal -WR rises to a high level recovery mode (shown by broken line), the data are latched, and then the latched data become effective at the next falling edge of a sampling clock pulse. When data are written more than two times in one sampling period, the following data, which have been written just before the previous data, become 5 effective.
Fig. 11 shows a sound data output unit (sound source chip) of a second preferred embodiment. This unit includes a volume control circuit 406 containing right and left VCAs (Voltage Control type Amplifier) , VCAR and VCA1,, for controlling 10 sound volume of the PCM sound signal supplied from the CD-ROM.
The sound data output unit is provided with VCA input terminals VCARIN and VCALIN. The input terminals are connected to output terminals VCAROUT and VCAR, and VCALOUT and VCAL, respectively.
The output terminals VCAROUT and VCALOUT are used when volume 15 control circuit 406 is used as an internal volume control circuit. The output terminals VGAR and VCAL are connected to an external volume control circuit so that circuit 406 is used as a controller circuit.
In this embodiment, volume control circuit 406 is used as the internal volume control circuit, and therefore, the output terminals VCAROUT and VCALOUT are connected through terminals LINER and LINEL to mixer circuits 408 and 410, respectively. In this unit, four sound signals are supplied from two channels of ADPCMs 412 and 414 and six channels of PSG
416 and PCM to each mixer circuit. The VCAs include volume registers R15 and R16 for specifying an attenuation level to control output sound volume.
Fig. 12 shows a sound source chip 500 of the second preferred embodiment, which is a conceptual view of the sound data output unit shown in Fig. 11. The sound source chip includes a sound source 502, an internal volume control circuit 504 and a mixer circuit 506. Other sound sources, and other volume control circuits for plural sound sources, may be R contained in the sound source chip.
Fig . 13 shows the characteristics of the VCA, register values, amplifier and attenuation steps, and adjusting speed.
Output of the unit shown in Fig. 11 having the characteristics shown in Fig. 13 is now explained.
When the register is rewritten "3F" to "00", the volume level is changed by "20 log (0 / 1023) - -~dB", and the necessary time T is given by the following equation.
T = 1.49 x 512 + 2.98 x 256 + 5.96 x 128 + 11.92 x 64 + 23.84 x 32 + 47.68 x 16 + 2956.16 = 7.53ms when the register is rewritten "3D" to "3F", the volume level is changed by "20 log (1023 / 991) - 0.27dB", and the necessary time T becomes 47.68~s = 49 x (1023 - 991).
Fig. 14 shows a sound source chip (sound data output unit) according to a third preferred embodiment. This unit has the same structure as that of the second preferred embodiment shown in Fig. 11; however, an internal volume control circuit 406 operates as a controller circuit to control an external volume control circuit 600. External volume control circuit 600 is connected through VCAR and VCAL terminals to the internal volume control circuit, so that volume registers R15 and R16 are rewritten in accordance with direct voltage signals supplied to the VCA input terminals VCARIN and VCALIN. In response to the direct voltage signals, control voltage signals are generated to be supplied to the external volume control circuit. The external volume control circuit supplies sound data which have been controlled in volume to the mixer circuits.
Fig. 15 shows a sound source chip 700 of the third preferred embodiment, which is a conceptual view of the sound data output unit shown in Fig. 14. The sound source chip includes a sound source 702, a controller circuit (internal volume control circuit) 704, and a mixer circuit 706 connected to an external volume control circuit 708.
How to obtain the control voltage when the unit shown in Fig. 14 has the characteristics, shown in Fig. 13, is now explained. When 1.0V voltage is applied to analog ground, and the register is rewritten "3D" to "3F", the output voltage V and necessary time T are given by the following equations.
V = -1 x 1023 / 991 = -1.032V (analog ground) T = 1.49 x (1023 - 991) - 47.68us As described before, according to the second and third preferred embodiments, the internal volume control circuit is used as either the volume control circuit or controller circuit for the external volume control circuit. Therefore, when the external volume control circuit is employed, ari extra controller circuit is not necessary. Further, the internal mixer circuits also operate for the external volume control circuit, and as a result, internal and external sound may be mixed to generate output sound.
Fig. 16 shows a sound source chip 800 of a fourth preferred embodiment. The sound source chip includes a sound source 802, a volume control circuit 804 connected to an external sound source (not shown), and a mixer circuit 806.
Other sound sources, and~other volume control circuits for plural sound sources may be contained in the sound source chip.
If the volume control circuit is not necessary, a sound signal from the external sound source is supplied to.the mixer circuit directly.
The mixer circuit contains not only an internal mixer that mixes sound from a multi-channel sound source, but also a mixer that mixes sound from a variety of sound sources.
Fig. 17 shows a sound source chip 900 of a fifth preferred embodiment. The sound source chip includes an ADPCM
sound source 902, a PSG sound source 904, and a mixer circuit 906. Other sound sources, and volume control circuits, and two channel mixer circuits may be contained in the sound source chip.
As described before, according to the invention, an extra external mixer circuit is not necessary, because a plurality of sound sources such as PSG and ADPCM are connected to the internal mixer circuits . Further, it easy to control the sound data output unit by the CPU, because the registers for controlling sound output are contained in one chip.

Claims (9)

CLAIMS:
1. A sound processing apparatus, which contains a sound source chip, comprising:

a sound source within the sound source chip for producing sound data;

an external volume control circuit, which is placed out of the sound source chip, and is supplied with the sound data from said sound source to control volume of output sound; and an internal controller circuit, which is built in the sound source chip, for supplying a control signal to said external volume control circuit, and for controlling the output round when said external volume control circuit does not operate, wherein:

said sound source electrically produces sound by programming.
2. The sound processing apparatus, according to claim 1, wherein:
said sound source is composed of a plurality of sound source circuits.
3. The sound processing apparatus, according to claim 2, wherein:

said plurality of sound source circuits comprise a PSG
(Programmable Sound Generator) and an ADPCM (Adaptive Difference Pulse Code Modulation) decoder.
4. A sound processing apparatus, comprising:
a sound source chip including an internal sound source for producing sound data;
an external volume control circuit arranged apart from said sound source chip and responsive to said sound data from said internal sound source, for controlling the volume of output sound; and an internal volume control circuit arranged within the sound source chip for supplying a control signal to said external volume control circuit, and for controlling the volume of output sound when said external volume control circuit does not operate, said internal volume control circuit including, a plurality of registers, each storing at least one register value representing an amplifier and attenuation step.
5. The sound processing apparatus of claim 4, wherein said plurality of registers include:

a first register for controlling a right studio channel, and a second register for controlling a left audio channel.
6. The sound processing apparatus of claim 4, further comprising:
an external sound source, arranged apart from the sound source chip and coupled to said external volume control circuit, for generating external sound data;

a mixer circuit, arranged within the sound source chip and connected to said external volume control circuit, for mixing internal and external sound to generate output sound.
7. The sound processing apparatus of claim 4, further comprising:
an external sound source, arranged apart from said sound source chip for generating sound source data;
wherein, when said external volume control circuit does not operate, said internal volume control circuit receives said external sound data for controlling the volume of output sound, and a mixer circuit generates output sound in accordance with output data of said internal volume control circuit.
8. The sound processing apparatus, according to claim 4, wherein:
said internal sound source is composed of a plurality of sound source circuits.
9. The sound processing apparatus, according to claim 8, wherein:
said plurality of sound source circuits comprise a PSG
(Programmable Sound Generator) and an ADPCM (Adaptive Difference Pulse Code Modulation) decoder.
CA 2337605 1992-10-01 1993-09-17 Sound processing apparatus Expired - Fee Related CA2337605C (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP4284988A JPH0822337B2 (en) 1992-10-01 1992-10-01 Sound source chip with external volume control function
JP4-284990 1992-10-01
JP4284990A JPH0822339B2 (en) 1992-10-01 1992-10-01 Computer game device composed of a sound source chip having a plurality of sound source output sections
JP4284989A JPH0822338B2 (en) 1992-10-01 1992-10-01 Sound source chip including internal mixer with external audio signal input terminal
JP4-284989 1992-10-01
JP4-284988 1992-10-01
JP4-293768 1992-10-07
JP4293768A JPH06180595A (en) 1992-10-07 1992-10-07 Sound and image processor
CA002106442A CA2106442C (en) 1992-10-01 1993-09-17 Sound processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002106442A Division CA2106442C (en) 1992-10-01 1993-09-17 Sound processing apparatus

Publications (2)

Publication Number Publication Date
CA2337605A1 CA2337605A1 (en) 1994-04-02
CA2337605C true CA2337605C (en) 2003-12-09

Family

ID=27508526

Family Applications (2)

Application Number Title Priority Date Filing Date
CA 2343560 Abandoned CA2343560A1 (en) 1992-10-01 1993-09-17 Sound processing apparatus
CA 2337605 Expired - Fee Related CA2337605C (en) 1992-10-01 1993-09-17 Sound processing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA 2343560 Abandoned CA2343560A1 (en) 1992-10-01 1993-09-17 Sound processing apparatus

Country Status (1)

Country Link
CA (2) CA2343560A1 (en)

Also Published As

Publication number Publication date
CA2337605A1 (en) 1994-04-02
CA2343560A1 (en) 1994-04-02

Similar Documents

Publication Publication Date Title
US5416847A (en) Multi-band, digital audio noise filter
US5524060A (en) Visuasl dynamics management for audio instrument
US6051772A (en) Method and apparatus for emulating a frequency modulation device
US5117726A (en) Method and apparatus for dynamic midi synthesizer filter control
US6453286B1 (en) Computer system for processing image and sound data using ADPCM stereo coding
CA2106442C (en) Sound processing apparatus
CA2337605C (en) Sound processing apparatus
EP0724250B1 (en) Sound source data generating method, recording medium, and sound source data processing device
US6750759B2 (en) Annunciatory signal generating method and device for generating the annunciatory signal
US5659317A (en) Apparatus for reproducing digital audio waveform data
US6369728B1 (en) Method and system for real-time processing of the recorded PCM data to get the desired full-scale range of values
JPH0199307A (en) Audio processing unit
KR950007116B1 (en) Reproducing apparatus for multi-media system
JPH06180595A (en) Sound and image processor
JP3393608B2 (en) Audio processing device
JP2669439B2 (en) Waveform editing method
RU2218674C2 (en) Method and device for shaping digital audio signal used for sound reproduction
JP3100415B2 (en) Volume control circuit of sound field control device
JPH06180600A (en) Sound and image processor
JP3193790B2 (en) Audio data playback processing method
JP2550327Y2 (en) Audio player
KR950010767B1 (en) Extention &amp; abstraction system of pcm data
JP2853805B2 (en) Waveform data storage device for sound generator
JPH09138634A (en) Information reproducing device and recording medium
Gartenlaub Hi fi digital audio tape to SUN workstation transfer system for digital audio data

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed