CA2314966C - Thermoplastic polymer composition containing black iron oxide - Google Patents

Thermoplastic polymer composition containing black iron oxide

Info

Publication number
CA2314966C
CA2314966C CA 2314966 CA2314966A CA2314966C CA 2314966 C CA2314966 C CA 2314966C CA 2314966 CA2314966 CA 2314966 CA 2314966 A CA2314966 A CA 2314966A CA 2314966 C CA2314966 C CA 2314966C
Authority
CA
Grant status
Grant
Patent type
Prior art keywords
iron oxide
composition
polyester
black iron
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA 2314966
Other languages
French (fr)
Other versions
CA2314966A1 (en )
Inventor
Brian Edison Maxwell
Philip Edward Gibson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grupo Petrotemex de C V SA
Original Assignee
Eastman Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)

Abstract

Disclosed herein is a thermoplastic polymer composition comprising a blend of a thermoplastic polymer admixed with from about to 50 ppm black iron oxide particles, based on the amount of said thermoplastic polymer. The black iron oxide is admixed with the polymer in order to speed up the process of repeating parisons formed from the polymer during bottle manufacturing. The composition has the beneficial combination of a large percent repeat rate improvement (RIV) with only a small decrease in transparency (.DELTA.L*). The ratio of RIV.DELTA.L* is significantly better than carbon black-polymer blends having similar RIV.

Description

THERMOPLASTIC POLYMER COMPOSITION CONTAINING BLACK IRON OXIDE
This patent application claims the benefit of U.S. Provisional Patent Application, serial number 601072,365, filed ,January 23, 1998, now issued as U.S. patent number 6,022,920.
FIELD OF THE INVENTION
The present invention relates to the production of clear, colorless thermoplastic polymer having improved reJleat. The present invention is particularly useful in the field of beverage bottle manufacturing.
BACKGROUND
Heat lamps used for reheating polymer preforms (parisons) for the commercial manufacture of beverage bottles are typically quartz lamps having a broad light emission spectrum from 500 nm to greater than 1500 nm.
The maximum light emission from quartz lamps occurs in the range of about 1100-1200 nm. Polyester, especially polyethylene terephthalate ("PET"), absorbs poorly in the region between 500 and 1400 nm. So in order to speed up the reheat step in bottle production, agents which absorb light in the' 700-1200 nm range can be added to the polyester polymer.
A variety of black and gray body absorbing compounds have previously been used as reheat agents to improve the heat up characteristics of polyester under quartz lamps. However, these compounds impart color to polymers. Therefore, the amount of absorbing compounds that can be added to a polymer is limited by its impact on the visual properties of the polymer, such as transparency. Transparency is represented as ''L*" in the Gardner Color System, with an L* of 100 representing 100% transparency and an L* of 0 representing 100% opacity. Generally, darker colored reheat agents can be added in only very small quantities because of their negative impact on L*.

Previously disclosed examples of useful polymer reheat agents include carbon black (US 4,408,004) and reduced antimony metal (US 5,419,936 and US
5;529,744). Additionally, US 4,420,581 and US 4,250,078 disclose using red iron oxide as an infrared absorber in polyester containing green dye. The red tint s added by the red iron oxide is not problematic in that use because the green dye masks the red tint. While colorless and green beverage bottles have been found to be commercially useful, red tinted bottles have not been marketable.
Without the masking presence of a green dye, red iron oxide would cause an undesirable red hue to an otherwise colorless, or neutral hue, polyester bottle.
io A more darkly colored absorbing compound generally improves heat up characteristics better than a relatively lighter absorbing compound. However, the more darkly colored absorbing compounds can only be added in very small quantities due to the larger negative impact on L*. For example, when carbon black, a very dark black compound, is added to PET in concentrations greater ~ s than a few ppm, bottles blown from that PET are very gray and dull in appearance. Reduced antimony metal can be present in PET in concentrations up to about 50 ppm without having an excessive negative impact on L* because reduced antimony is a gray metal which is much lighter in color than true black body absorbers like carbon black.
2o U.S. Patent 4,481,314, discloses the use of certain anthraquinone type dyes for the purposes of improving reheat rates. However, these dyes have substantial absorbance in the visible spectrum, resulting in coloration of the polymer. In addition, their relatively low molar extinction coefficients (E) (in the range of 20,000) require the use of relatively large amounts of the dye (20-2s ppm) to the polymer. At a concentration of 50 ppm, the reheat rate improvement was 7%. However, at these levels the polymer displays a light green color which is not suitable for producing clear, neutral hue bottles.
In light of the above, it would be desirable to have an infrared absorber material which can be added to a thermoplastic polymer in a concentration :~o sufficient to effectively increase the reheat rate of the polymer by about _2_ percent, yet without deleteriously affecting polymer L* as much as previously known effective polymer repeat agents.
SUMMARY OF THE INVENTION
The present invention is a thermoplastic polymer composition which comprises a blend of a thermoplastic polymer admixed with from about 5 to 50 ppm black iron oxide particles, based on the amount of said thermoplastic polymer.
to DETAILED DESCRIPTION OF THE INVENTION
The applicants have found that black iron oxide (Fe304) is a very effective polyester repeat agent when used in a relatively high concentration of up to about 50 ppm. The increase in polymer repeat rate using 50 ppm of black iron oxide is comparable to the increase in polymer repeat rate provided by the ~s addition of merely about 5 ppm black iron oxide. .It was found that, despite the fact that a much higher concentration of a black iron oxide must be admixed in a polymer to attain the same increase in repeat rate, the increase in repeat rate is achieved with comparatively less detrimental affect on polymer L* using black iron oxide.
2o A further benefit of the present invention is that, unlike other black or gray body absorbing compounds, black iron oxide is readily and quantitatively measurable in the resultant polyester composition due to the detectability of iron.
This provides a significant improvement in processing and production control over the amount of absorbing agent admixed with the polymer since carbon black 2s and antimony metal cannot be quantitatively distinguished from the other forms of carbon and antimony which are inherently present in polyester.
The present invention is a thermoplastic polymer composition which comprises a blend of a thermoplastic polymer admixed with from about~5 to 50 ppm black iron oxide (Fe304), based on the amount of polymer. An article such 3o as a beverage bottle formed from the present composition will display an L*
just WO 99/3770$ PCTNS99/01050 slightly lower (less transparent) than the L* of an article formed from the same polymer without the presence of black iron oxide. The present polymer composition has an improved (less) reheat time under a quartz lamp of up to about 15 percent.
The thermoplastic polymer composition of the present invention has an unexpectedly high ratio of reheat rate improvement to transparency change (R!V/~L*), when compared to a composition that is the same except for an absence of iron oxide. The percent reheat improvement (RIV) is the improvement in polymer reheat rate after admixing black iron oxide to the ~o polymer. OL* is the amount of change in the transparency of the polymer upon admixing the black iron oxide with the polymer. The ratio of RIV to AL* for the composition of the present invention is preferably greater than about 2.0, more preferably greater than about 2.5. For comparison, the ratio of RIV to DL* for thermoplastic polymer admixed with carbon black is about 1.5. Hence, the ratio is of RIV to OL* of the composition of the present invention is superior to that of carbon black polymer compositions having similar RIV.
The composition of the present invention is preferably made by admixing black iron oxide particles to the polymer reactant system, during or after polymerization, to the polymer melt, or to the molding powder or pellets from 2o which the bottle parisons are formed. In order to achieve adequate mixing, the black iron oxide should be added to a polymer while at an inherent viscosity (LV.) of about 0.6 to 0.8 dUg, measured at 25°C in a 60140 wtlwt phenolltetrachloroethane.
The suitable concentration of black iron oxide in the present polymer 2s composition is between about 5 to 50 ppm, preferably between about 7 to 30 ppm, with a concentration of about 10 to 20 ppm being more preferred. The concentration of black iron oxide is based on the amount of polymer in the composition.
The average particle size of the black iron oxide used in the present ~o invention is preferably between about 0.1 to 10 Nm (micrometers), more preferably between about 0.5 to 5 Nm. The presence of larger particles would cause a bottle formed from the polymer composition to become hazy.
The thermoplastic polymers in the present composition can be any crystallizable thermoplastic homopolymer or copolymer. However, the s thermoplastic polymer used in the present invention is most usefully a polyester, particularly a partially aromatic polyester, especially a polyester derived, at least mainly, from an aromatic diacid and an aliphatic diol. The preferred polyester is one which comprises at least 70 mole percent, and more preferably at least 85 mole percent, of units of ethylene terephthalate.
to In addition to units derived from terephthalic acid, the acid component of the present polyester may be modified with units derived from one or more additional dicarboxylic acids. Such additions! dicarboxylic acids include aromatic dicarboxylic acids preferably having 8 to 14 carbon atoms, aliphatic dicarboxylic acids preferably having 4 to 12 carbon atoms, or cycloaliphatic dicarboxylic acids t s preferably having 8 to 12 carbon atoms. Examples of dicarboxylic acid units useful for modifying the acid component are units from phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanediacetic acid, Biphenyl-4,4'-dicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and the like, With isophthalic acid, 2o naphthalene-2,6-dicarboxylic acid, and cyclohexanedicarboxylic acid being most preferable. It should be understood that use of the corresponding acid anhydrides, esters, and acid chlorides of these acids is included in the term "dicarboxylic acid".
In addition to units derived from ethylene glycol, the diol component of the 2s present polyester may be modified with units from additional diols including cycloaliphatic diols preferably having 6 to 20 carbon atoms and aliphatic diols preferably having 3 to 20 carbon atoms. Examples of such diols include diethylene glycol, triethylene glycol, 1,4-cyclohexanedimethanol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, 3-methylpentanediol-30 (2,4), 2-methylpentanediol-(1,4), 2,2,4-trimethylpentane-diol-(1,3), 2-_5_ ethylhexanediol-(1,3), 2,2-diethylpropane-diol-(1,3), hexanediol-(1,3), 1,4-di-(hydroxyethoxy)-benzene, 2,2-bis-(4-hydroxycyclohexyl)-propane, 2,4-dihydroxy-1,1,3,3-tetramethyl-cyclobutane, 2,2-bis-(3-hydroxyethoxyphenyl)-propane, and 2,2-bis-(4-hydroxypropoxyphenyl)-propane.
Polymers of the present invention can be prepared by conventional polymerization procedures well-known in the art. Polyester polycondensation processes include direct condensation of dicarboxylic acid with the diol, ester interchange, and solid state polymerization methods. Typical polyesterification catalysts which may be used include titanium alkoxides, dibutyl to tin dilaruate, and antimony oxide or antimony triacetate, used separately or in combination, optionally with zinc, manganese, or magnesium acetates or benzoates andlor other such catalyst materials as are well known to those skilled in the art. Phosphorus and cobalt compounds may also optionally be present.
Other components can be added to the composition of the present is invention to enhance the performance properties of the polyester composition.
For example, crystallization aids, impact modifiers, surface lubricants, denesting agents, stabilizers, antioxidants, ultraviolet light absorbing agents, metal deactivators, colorants, nucleating agents, acetaldehyde reducing compounds, other reheat reducing aids, fillers and the like can be included. The resin may 2o also contain small amounts of branching agents such as trifunctional or tetrafunctional comonomers such as trimellitic anhydride, trimethylolpropane, pyromellitic dianhydride, pentaerythritol, and other polyester forming polyacids or polyols generally known in the art. All of these additives and many others and their use are well known in the art and do not require extensive discussion.
Any 2s of these compounds can be used in the present composition as long as they do not hinder the present invention from accomplishing its objectives. Therefore, it is preferable that the present composition be essentially comprised of a blend of thermoplastic polymer and black iron oxide, with only a modifying amount of other ingredients being present.

The polymer composition of the present invention may be used to form bottle parisons, also known as preforms, which are test tube shaped, injection molded articles. A parison is typically heated to about 10°C above the glass transition temperature of the polymer composition by passing the parison in front s of a bank of quartz infrared heating lamps, positioning the parison in a bottle mold, and then blowing pressurized air through the open end of the mold.
The present invention is illustrated by the examples below. However, the examples should not be interpreted as a limitation on the present invention.
~o EXAMPLES
Polyethylene terephthalate (PET) polymer compositions were made containing varying levels of black iron oxide (BIO) and carbon black (CB). The relative reheat rates of the polymers were measured as follows:
The polymer samples were injection molded into 3" x 3" x 0.150" flat ~ s piaques. The plaques were set aside for 24 hours to come to ambient temperature. A set of four reference standard plaques and four plaques of each sample material were treated as follows.
A plaque was placed in a wooden holder that only contacted the plaque on the edges. The temperature of the plaque in the holder was measured. This 2o was the initial temperature (T;). The holder was moved into position a fixed distance in front of a tungsten quartz heat lamp identical to those used in reheat blow molding machines. The lamp was tuned to emit fight at a temperature of 4,000 degrees Fahrenheit (~,max approximately 1,100 nm). The lamp was turned on for 35 seconds. Then the temperature of the plaque was read by an infrared 2s pyrometer. The temperature was read from the face of the plaque which was not illuminated. This was done to allow the heat absorbed by the front surface of the plaque to soak through the plaque. The temperature of the back side of the plaque rises at first to a maximum temperature and then begins to fall slowly as the entire plaque cools. The maximum temperature was recorded as the final 3o temperature (Tf).

The temperature rise was recorded as ~T (T~-T~). The change in temperature was also adjusted for small differences in the thickness of the plaques. The adjusted 0T was then averaged over the four plaques to give the OTa"9 for each sample. The ~Ta"~ for each sample was divided by the DT of the s concurrently tested reference standard to provide the Reheat Index Value (RIV) _ (ATa~9 Sample ~: OTa"9 Reference).
Percent Reheat Improvement was calculated as Reheat Improvement = ((RIVsemp~e-RIVco~cro~) = RIVcontrot) x 100 lU
Table 1 below shows that, at equivalent improvements in reheat (RIV), the black iron oxide (B10) samples displayed better L*, compared to the carbon black (CB) samples. This property is quantified below as RIV / aL*.
t 5 Table 1 Conc.

Additive lapml RIV L* 0 L* RIV /
~L*

BI O 0.00% 86.30 Control 0 BIO Control0 0.00% 85.81 0.00 BIO 2 0.29% 85.78 -0.03 9.67 B I O 5 3.17 % 84. -1.27 2. 50 BIO 8 6.35% 83.09 -2.72 2.33 CB Control0 0.00% 86.60 CB Control0 0.00% 86.44 0.00 CB 0.5 2.85% 84.07 -2.37 1.20 CB 1 5.72% 82.18 -4.26 1.34 CB 2 10.07% 79.56 -6.88 1.46 CB 4 19.40% 73.37 -13.07 1.48 Sb Metal ? 83.44 The results from Table 1 were plotted as a function of reheat additive concentration to predict performance at higher and lower concentrations to determine that the black iron oxide concentration limits of the composition of the 2o present invention are between about 5 to 50 ppm.
_g_

Claims (13)

1. A thermoplastic polymer composition comprising a polyester and from about 5 to 50 ppm black iron oxide particles, based on the amount of said polyester, wherein said composition has a ratio of percent reheat rate improvement to transparency change (RIV/.DELTA.L*) greater than about 2.0, wherein the RIV and .DELTA.L* are determined based on a composition that is the same except for an absence of iron oxide.
2. The composition of Claim 1 wherein the concentration of black iron oxide is about 7 to 30 ppm.
3. The composition of Claim 1 further wherein said particles have a particle size of about 0:1 to 10 µm.
4. The composition of Claim 1 wherein said polyester comprises between about 70 to 100 mole percent repeat units from ethylene terephthalate.
5. The composition of Claim 1 wherein said polyester comprises at least 70 mole percent units of ethylene terephthalate.
6. An article selected from a preform or a bottle comprising the thermoplastic polymer composition of any one of claims 1-5.
7. A process for preparing a clear finished article, comprising the steps of forming a preform from the thermoplastic composition of any one of claim 1-5, reheating said preform under a quartz lamp to an appropriate blow molding temperature and blow molding a clear finished article from said preform.
8. A process for preparing a clear finished article, comprising the steps of forming a preform from a thermoplastic composition comprising at least one polyester and from about 5 to 50 ppm black iron oxide particles, based on the amount of said polyester, reheating said preform to an appropriate blow molding temperature and blow molding a clear finished article from said preform.
9. The process of claim 8 wherein said reheating is conducted for a time up to about 15 percent less than for a preform which does not contain said black iron oxide particles.
10. The process of claim 8 or 9 wherein the concentration of black iron oxide is about 7 to 30 ppm.
11. The process of claim 8 wherein said polyester comprises at least 85 mole percent units of ethylene terephthalate and is modified with units derived from one or more additional dicarboxylic acids selected from isophthalic acid, naphthalene-2,6-dicarboxylic acid, and cyclohexanedicarboxylic acid.
12. A clear preform formed from a thermoplastic polymer composition comprising at least one polyester and from about 5 to 50 ppm black iron oxide particles, based on the amount of said polyester polymer.
13. A clear bottle formed from a thermoplastic polymer composition comprising at least one polyester and from about 5 to 50 ppm black iron oxide particles, based on the amount of said polyester polymer.
CA 2314966 1998-01-23 1999-01-19 Thermoplastic polymer composition containing black iron oxide Active CA2314966C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US7236598 true 1998-01-23 1998-01-23
US60/072,365 1999-01-15
US09232307 US6022920A (en) 1998-01-23 1999-01-15 Method for the production of clear bottles having improved reheat
US09/232,307 1999-01-15
PCT/US1999/001050 WO1999037708A1 (en) 1998-01-23 1999-01-19 Thermoplastic polymer composition containing black iron oxide

Publications (2)

Publication Number Publication Date
CA2314966A1 true CA2314966A1 (en) 1999-07-29
CA2314966C true CA2314966C (en) 2004-10-19

Family

ID=26753291

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2314966 Active CA2314966C (en) 1998-01-23 1999-01-19 Thermoplastic polymer composition containing black iron oxide

Country Status (8)

Country Link
US (1) US6022920A (en)
EP (1) EP1049738B1 (en)
JP (1) JP2002501097A (en)
CN (2) CN1286910C (en)
CA (1) CA2314966C (en)
DE (2) DE69930502D1 (en)
ES (1) ES2257030T3 (en)
WO (1) WO1999037708A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503586B1 (en) 1998-02-25 2003-01-07 Arteva North America S.A.R.L. Title improved infrared absorbing polyester packaging polymer
US6660792B2 (en) 1999-12-21 2003-12-09 M & G Usa Corporation Process for fast heat-up polyesters
US20040030029A1 (en) * 2000-12-08 2004-02-12 Stephen Weinhold Polyester compositions for hot-fill containers
US6780916B2 (en) * 2001-07-26 2004-08-24 M & G Usa Corporation Oxygen-scavenging resin compositions having low haze
US7687124B2 (en) * 2001-07-26 2010-03-30 M&G Usa Corporation Oxygen-scavenging containers having low haze
US7740926B2 (en) 2001-07-26 2010-06-22 M&G Usa Corporation Oxygen-scavenging containers
CN1625466A (en) * 2002-02-01 2005-06-08 因温斯特北美公司 Opaque polyester containers
US20040101642A1 (en) * 2002-11-26 2004-05-27 Quillen Donna Rice Glassy carbon thermoplastic compositions
US7303795B2 (en) * 2003-03-13 2007-12-04 Invista North America S.A. R.L. Molding of polypropylene with enhanced reheat characteristics
US7189777B2 (en) * 2003-06-09 2007-03-13 Eastman Chemical Company Compositions and method for improving reheat rate of PET using activated carbon
US7258923B2 (en) * 2003-10-31 2007-08-21 General Electric Company Multilayered articles and method of manufacture thereof
US7479517B2 (en) * 2003-11-28 2009-01-20 Futura Polyesters Ltd. Process for the preparation of fast reheat (FRH) bottle grade polyethyleneterephthalate (PET) resin
US20050165148A1 (en) * 2004-01-28 2005-07-28 Bogerd Jos V.D. Infra-red radiation absorption articles and method of manufacture thereof
GB0407114D0 (en) 2004-03-30 2004-05-05 Colormatrix Europe Ltd Polymer additives and methods of use thereof
US7662880B2 (en) * 2004-09-03 2010-02-16 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic nickel particles
US20060051542A1 (en) * 2004-09-03 2006-03-09 Zhiyong Xia Polyester polymer and copolymer compositions containing metallic molybdenum particles
US20060110557A1 (en) * 2004-09-03 2006-05-25 Zhiyong Xia Polyester polymer and copolymer compositions containing metallic tungsten particles
US7816436B2 (en) * 2004-11-08 2010-10-19 INVISTA North America S.à.r.l. Carbon black with large primary particle size as reheat additive for polyester and polypropylene resins
KR101313507B1 (en) * 2004-11-12 2013-10-01 그루포 페트로테멕스 에스.에이. 데 씨.브이. Polyester polymer and copolymer compositions containing titanium nitride particles
US20060105129A1 (en) * 2004-11-12 2006-05-18 Zhiyong Xia Polyester polymer and copolymer compositions containing titanium carbide particles
US7368523B2 (en) * 2004-11-12 2008-05-06 Eastman Chemical Company Polyester polymer and copolymer compositions containing titanium nitride particles
US7300967B2 (en) * 2004-11-12 2007-11-27 Eastman Chemical Company Polyester polymer and copolymer compositions containing metallic titanium particles
FR2878185B1 (en) * 2004-11-22 2008-11-07 Sidel Sas container manufacturing method comprising a step of heating by means of a radiation beam coherent electromagnetic
JP4655602B2 (en) * 2004-11-30 2011-03-23 凸版印刷株式会社 Method for producing a black-matte stretch container
US7425296B2 (en) * 2004-12-03 2008-09-16 Pressco Technology Inc. Method and system for wavelength specific thermal irradiation and treatment
US20070096352A1 (en) * 2004-12-03 2007-05-03 Cochran Don W Method and system for laser-based, wavelength specific infrared irradiation treatment
US20060122300A1 (en) * 2004-12-07 2006-06-08 Zhiyong Xia Polyester polymer and copolymer compositions containing steel particles
US20060177614A1 (en) * 2005-02-09 2006-08-10 Zhiyong Xia Polyester polymer and copolymer compositions containing metallic tantalum particles
US20060222795A1 (en) * 2005-03-31 2006-10-05 Howell Earl E Jr Polyester polymer and copolymer compositions containing particles of one or more transition metal compounds
JP4683991B2 (en) 2005-04-22 2011-05-18 アサヒビール株式会社 Beverage container
US7399571B2 (en) * 2005-05-06 2008-07-15 General Electric Company Multilayered articles and method of manufacture thereof
US8557950B2 (en) * 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US8900693B2 (en) * 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
US7745512B2 (en) * 2005-09-16 2010-06-29 Eastman Chemical Company Polyester polymer and copolymer compositions containing carbon-coated iron particles
US7776942B2 (en) * 2005-09-16 2010-08-17 Eastman Chemical Company Polyester polymer and copolymer compositions containing particles of titanium nitride and carbon-coated iron
US8431202B2 (en) 2005-09-16 2013-04-30 Grupo Petrotemex, S.A. De C.V. Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
US7838596B2 (en) * 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US9267007B2 (en) * 2005-09-16 2016-02-23 Grupo Petrotemex, S.A. De C.V. Method for addition of additives into a polymer melt
US7655746B2 (en) * 2005-09-16 2010-02-02 Eastman Chemical Company Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers
US7932345B2 (en) 2005-09-16 2011-04-26 Grupo Petrotemex, S.A. De C.V. Aluminum containing polyester polymers having low acetaldehyde generation rates
DE102006017126B4 (en) * 2006-04-12 2009-08-13 Krones Ag A process for producing a hollow plastic body
US20070260002A1 (en) * 2006-05-04 2007-11-08 Zhiyong Xia Titanium nitride particles, methods of making them, and their use in polyester compositions
US20080027207A1 (en) * 2006-07-28 2008-01-31 Jason Christopher Jenkins Non-precipitating alkali/alkaline earth metal and aluminum compositions made with mono-ol ether solvents
US7709595B2 (en) * 2006-07-28 2010-05-04 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum solutions made with polyhydroxyl ether solvents
US7709593B2 (en) * 2006-07-28 2010-05-04 Eastman Chemical Company Multiple feeds of catalyst metals to a polyester production process
US7745368B2 (en) * 2006-07-28 2010-06-29 Eastman Chemical Company Non-precipitating alkali/alkaline earth metal and aluminum compositions made with organic hydroxyacids
US20080058495A1 (en) * 2006-09-05 2008-03-06 Donna Rice Quillen Polyester polymer and copolymer compositions containing titanium and yellow colorants
US8563677B2 (en) * 2006-12-08 2013-10-22 Grupo Petrotemex, S.A. De C.V. Non-precipitating alkali/alkaline earth metal and aluminum solutions made with diols having at least two primary hydroxyl groups
FR2913210B1 (en) * 2007-03-02 2009-05-29 Sidel Participations Improvements has heating of plastics by infrared radiation
FR2917005B1 (en) * 2007-06-11 2009-08-28 Sidel Participations preformed body of the heating device for the blow containers
US8945695B2 (en) * 2008-05-06 2015-02-03 Nan Ya Plastics Corporation Polyethylene terephthalate resin synthesized inorganic Ti—Mg catalyst and its applications thereof
US9903988B2 (en) 2012-12-11 2018-02-27 3M Innovative Properties Company Stabilized infrared absorbing dispersions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250078A (en) * 1979-03-19 1981-02-10 Eastman Kodak Company Thermoplastic polyester molding compositions
US4420581A (en) * 1979-03-19 1983-12-13 Eastman Kodak Company Thermoplastic polyester molding compositions
US4408004A (en) * 1982-02-24 1983-10-04 The Goodyear Tire & Rubber Company High clarity, low haze polyesters having reduced infrared heat-up times
US4481314A (en) * 1983-06-29 1984-11-06 Eastman Kodak Company Infrared radiation absorbent anthraquinone derivatives in polyester compositions
GB2165547B (en) * 1984-09-06 1988-06-08 Ginegar Kibbutz Polymeric sheeting for agricultural use
US4731400A (en) * 1984-12-18 1988-03-15 Mitsui Petrochemical Industries, Ltd. Thermoplastic resin composition
JPH0581623B2 (en) * 1989-04-21 1993-11-15 Showa Denko Kk
GB8926631D0 (en) * 1989-11-24 1990-01-17 Ici Plc Polymer compositions
US5278023A (en) * 1992-11-16 1994-01-11 Minnesota Mining And Manufacturing Company Propellant-containing thermal transfer donor elements
JP3024495B2 (en) * 1994-10-21 2000-03-21 ジェイエスアール株式会社 Laser marking resin composition
US5695907A (en) * 1996-03-14 1997-12-09 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element and method

Also Published As

Publication number Publication date Type
DE69930502D1 (en) 2006-05-11 grant
EP1049738B1 (en) 2006-03-22 grant
CN1566209A (en) 2005-01-19 application
ES2257030T3 (en) 2006-07-16 grant
EP1049738A1 (en) 2000-11-08 application
CA2314966A1 (en) 1999-07-29 application
CN1161402C (en) 2004-08-11 grant
CN1288477A (en) 2001-03-21 application
WO1999037708A1 (en) 1999-07-29 application
JP2002501097A (en) 2002-01-15 application
US6022920A (en) 2000-02-08 grant
CN1286910C (en) 2006-11-29 grant
DE69930502T2 (en) 2006-08-24 grant

Similar Documents

Publication Publication Date Title
US6723768B2 (en) Polyester/polycarbonate blends with reduced yellowness
US4643925A (en) Multi-layer polyisophthalate and polyterephthalate articles and process therefor
US6586558B2 (en) Process for making PEN/PET blends and transparent articles therefrom
US6777048B2 (en) Polyester compositions containing silicon carbide
US6191209B1 (en) Polyester compositions of low residual aldehyde content
US5340884A (en) Polyamide concentrate useful for producing blends having improved flavor retaining property and clarity
US20030040564A1 (en) Oxygen-scavenging containers having low haze
US5902539A (en) Process for making PEN/PET blends and transparent articles therefrom
US5874517A (en) Method to reduce regenerated acetaldehyde in pet resin
US6599994B2 (en) Polyester blends and heat shrinkable films made therefrom
US6444283B1 (en) Polyester-polyamide blends with reduced gas permeability and low haze
US20040249113A1 (en) Compositions and method for improving reheat rate of PET using activated carbon
US5859116A (en) Clarity and adjustable shrinkage of shrink films using miscible polyester blends
US20030108702A1 (en) Oxygen-scavenging containers
US7129317B2 (en) Slow-crystallizing polyester resins
US7094863B2 (en) Polyester preforms useful for enhanced heat-set bottles
US4654399A (en) Composition and process for making an amber colored polyester
US4374949A (en) Composition and process for making a green colored polyester
US6054551A (en) Polyester comprising a residue of isophthalic acid, terephthalic acid, ethylene glycol and an aromatic diol derivative
US20070203279A1 (en) Polymeric Materials And Additives Therefor
US20060052504A1 (en) Polyester polymer and copolymer compositions containing metallic nickel particles
US6200659B1 (en) Polyester, stretch blow molded product formed thereof and method for producing polyester
US20080093777A1 (en) Extrudable Polyethylene Terephthalate Blend
US5405921A (en) Polyester compositions having improved optical properties and heat stability
US6274212B1 (en) Method to decrease the acetaldehyde content of melt-processed polyesters

Legal Events

Date Code Title Description
EEER Examination request