CA2259464A1 - Compositions for cosmetic applications - Google Patents

Compositions for cosmetic applications Download PDF

Info

Publication number
CA2259464A1
CA2259464A1 CA 2259464 CA2259464A CA2259464A1 CA 2259464 A1 CA2259464 A1 CA 2259464A1 CA 2259464 CA2259464 CA 2259464 CA 2259464 A CA2259464 A CA 2259464A CA 2259464 A1 CA2259464 A1 CA 2259464A1
Authority
CA
Canada
Prior art keywords
peg
cosmetic composition
polymer network
oil
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2259464
Other languages
French (fr)
Inventor
Eyal S. Ron
Barry J. Hand
Lev S. Bromberg
Marie Kearney
Matthew E. Schiller
Peter M. Ahearn
Scott Luczak
Thomas H. E. Mendum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Medlogic Global Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medlogic Global Corp filed Critical Medlogic Global Corp
Publication of CA2259464A1 publication Critical patent/CA2259464A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0212Face masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/04Preparations for care of the skin for chemically tanning the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q9/00Preparations for removing hair or for aiding hair removal
    • A61Q9/02Shaving preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers

Abstract

A cosmetic composition is described having a cosmetically acceptable carrier, comprising a reverse thermal viscosifying polymer network comprising at least one poloxamer component capable of aggregation in response to a change in temperature randomly bonded to at least one poly(acrylic acid) component; and a cosmetically active agent which imparts a preselected cosmetic effect, said carrier and said agent disposed within an aqueous-based medium.

Description

WO 98/48768 PCT~US98/08931 COMPOSmONS FOR COSMEl'IC APPLICATIONS

l his application is a cQ~ n-in-part ~rplirqtion of copf n~in~ appli~nr~n U.S.S.N. 60/034,805 filed January 2, 1997, and e~ltitled "Responsive Polymer Networks and Methods of Their Use", which is a co.,l;n.~l;on-in-part application of cop~on.lin~ applic~*on PCT/US96/10376 filed June 14, 1996, dloci~n~ting the United States, and entitled "Real,o~.sive Polymer Networks and Methods of Their Use", which is a continuation-in-part application of copending application U.S.S.N. 08/580,986 filed 10 January 3, 1996, and entitled "Responsive Polymer ~etworks and Methods of Their Use", each of which is incorporated entirely bv reference.

Field of the In~ention The present invention relates to a cosme2ic composition useful in a varie~y of 15 topical and pelsonal care products. including tre~trnenr~ of disorders and imperfections of the skin or other areas of the bodv. More particularlv. the present invention is directed IO a cosmetic composition comprising a polo:~amer:poly(acrvlic acid) polvmer network that can be designed to reversiblv gel over ~ wide range of conditions to provide a composition having a controllable range of viscosities. m~king ~0 i~ userul in a varietv of cosmetic and personal care ~ppiic~tions.

Barknround of the Invention ~Ianv e:camples are known of cosmetic CO~llpOaiLiOnS intenfl~d for L~ t of the skin or elsewhere on the body, where it is desired to have certain p,op~llies of 25 viscosity. Hydrogels, such as cellulosics, have been included ils thir ken~rs in cosmetic compositiosLs. A hydrogel is a polymer net~,vork which absorbs a large quantity of water without the polymer dissolving in water. The hydrophilic are~s of the polymer chain absorb water and form a gel region. The e~ctent of gelation ~Pp~n~1S upon the volume of the solution which the gel region occupies.
Reversibly gelling solutions are known in which the solution viscosit,v inc~cases and dec.~ases with an increase and decrease in t.,.llp~,.ature, r~J~,c~;Li~ely. Such reversibly gelling systems are useful wherever it is desirable to handle a material in a fluid state, but performance is preferably in a gelled or more viscous state.
A known material with these properties is a therrnal setting gel using block S copolymer polyols, available co~ ,r~;ially as Pluronic~ polyols (BASF, Ludwigshafen, Germany), which is described in U.S. Patent No. 4,188,373. Adjusting t'ne conc~ tion of the polymer gives the desired liquid-gel transition. However,concentrations of the polyol polymer of at least 18-20 % by weight are needed toproduce a composition which exhibits such a transition at commercially or physiologicaily useful temperatures. Also. solutions containing 18-20 % bv wei~ht of responsive polymer are tvpicallv very viscous e~en in the liquid" phase. so that these solutions can not function under conditions where low viscosit!. free-flowing isrequired prior to transition. In addition, these polymer concentrations are so high that the material itself may cause unfa-orable inter~ctions during use.
Another known svstem which is liquid ~t room temperature~ but forms a semi-solid when warmed to ~bout bodv temperature is forrned from tetrafunctional block polymers of polyoxyethylene and polyo:cypropvlene condensed with ethylene~i~mine.
cornmercially, available as Tetronic~ polyols. These compositions are formed from approximatelv 10% to ~0% by weight of the polvol in an a~ueous medium. See~ U.S.Patent No. 5,'5~.318.
Joshi et al. in U.S. Patent No. 5.'52.318 reports reversible gelling compositions which ~re made up of a physical blend of a pH-sensitive gelling polymer (such as a cross-linked poly(acrylic acid) and a tc.n~c.~ re-sensitive _elling polymer (such as methyl cellulose or block copolymers of poly(ethylene glycol) and poly(propyleneglycol)). In compositions including methylcellulose, 5- to ~-fold mcreases in viscositv are observed upon a simultaneous change in lc.~ .d~ 3nd pH for very low methylcellulose levels (1-4% by weight). See, Figs. 1 and 2 of Josni et al. In compositions including Pluronic(~ and Tetronic~ polyols. commercially available forms of poly(ethylene glycol)/poly(propylene glycol) block copolymers, significant 30 increases in viscosity (5- to 8-fold) upon a simultaneous change in tt~ c.~.lure and pH

CA 022~9464 1998-12-30 W 098/48768 PCT~US98/08931 are observed only at much higher polymer levels. See, Figs. 3-6 of Joshi e~ al.
Hoffman e~ al. in WO 95/24430 disclose block and graft copolymers comprising a pH-sensitive polymer component and a te.llpc.lLLIre-sensitive polymer component. The block and graft copolymers are well-ordered and contain regularly~pe~.lit1g units of the pH-sensitive and ~ e.aLu~-sensitive polymer colnpo,l.,,lls.
The copolymers are described as having a lower critical solution ~.llp~la~ (LCST), at which both solution-to-gel transition and ~r~cip;L~lion phase transition occur. Thus.
the transition to a gel is accompanied by the clouding and opacification of the solution.
Light tr~ncmiccion is reduced, which may be undesirable in many applications, where the aesthetic characteristics of the composition are of some concern.
Thus, the known systems which echibit reversible gelation ar~ limited in that they require large solids content and/or in that the increase in viscosity less than 10-fold. In addition. some known systems e~hibit an increase in viscosity which is accompanied with the undesirable opacification of the composite.
Summ~rv of the Invention It is an object of the present invention to provide a cosmetic composition whichis includes a component capable of reversible gelation or viscosification.
It is a further object of the invention to provide a cosmetic composition which includes an ingredient capable of gelation or viscosification at very low solids contem.
It is ~nother object of the present invention to provide a cosmetic composition which possPssPs improved flow and gelation characteristics as compared to pl~e~ies poscPcsed by conventional reversible gelation compositions.
It is a further object of the invention to provide a polymer network compositionfor use in cosmetic compositions useful as a surfact~nt or emulsifier in the solubilization of additives and, in particular, hydrophobic additives.
It is a further object of the invention to provide a cosmetic composition which posc~cPs the approl.liate thickness. emolliency and cosmetic effect with a minimum of solids content.
It is a further object of the invention to provide a polymer network for use in CA 022~9464 l998-l2-30 WO 98/48768 PCTrUS98/08931 cosmetic compositions useful as a s~1cpen-lin~ agent for otherwise insoluble additives.
It is yet a further object of the present invention to provide a composition capable of solubilizing emulsions at elevated tC.~ .aLu~
It is yet a further object of the invention to provide new and useful cosmetic S compositions incorporating the reversibly gelling polymer net~,vork composition of the present invention, which take advantage of its unique advantageous properties.
It is yet another object of the present invention to provide reversibly gelling polymer network compositions which are coI~lposcd of biocompatible polymers.
These and other objects of the invention are achieved with a cosmetic 10 composition which incorporates a polo~a~ ,.polv(acrylic acid) polymer network as a cosmetically acceptable carrier. The polymer netuork comprises a poloxamer component randomly bonded to a polv(acrylic acid). or P.~. component in an aqueous-based medium. the polymer network being capable of aggregating in response to an increase in temperature. The reverse thermal viscosify.ng 15 poloxamer:poly(acrylic acid) polymer network includes random covalent bondingbetween the poly(acrylic acid) component and the poloxamer component of the network. The polymer netuork may also include some unbound or free' poloxamer or other additives which contribute to or modifv the characteristic properties of the polymer composition.
In addition. the cosme~ic composition includes a cosmetic agent selected to provide a preselected cosmetic effect. By "cosmetic agent'. as that term is usedherein~ it is meant that the additive imparts a cosme~ic effect. A cosmetic effect is distinguishable from a pharmaceutical effect in that a cosmetic effect relates to the promoting bodily attr~ctiveness or masking the phvsical manifestations of a disorder or 25 disease. In contrast, a pharmaceutic seeks to treat the source or symptom of a disease or physical disorder. It is noted however, that the same additives may have either a cosmetic or pharmaceutical effect, depending upon the amounts used and the mar~ner Of ~ minictration~
By "cosmetic'' as that term is used herein. it is meant the cosmetic and W O 98/48768 PCT~US98/08931 personai-care applications intPn(l~d to promote bodily attractiveness or to cover or mask the physical m~nif~st~tionc of a disorder or disease. Co~m~tirs include those products subject to regulation under the FDA co~mçtic guidPlin~s, as well as ~ s~ products, acne products, skin protectant products, anti-dandruff products, and deodorant and 5 ~~ .a~ild,lt products.
By "gel~tion" or vi~co~ific ~tion as that term is used herein, it is meant a drastic increase in the viscosity of the polymer n~lwu~l~ solution. Gelation is ~lepton~ nt on the initiai viscosity of the solution, but typically a viscosity increase in the range of preferably 2- to 100-fold, and preferably 5- to ~0-fold, and more preferably 10- to 20-10 fold is observed in the polymer network which is used in the prcpdldlion of thecosmetic compositions of the invention. Such effects are obser-ed in a simple polvmer network solution and the effect may ~e modified by the presence of othercomponents in the cosmetic composition.
By reversibly gelling'' as that term is used herein. it is meant that the process 15 of gelation takes place upon an increase in temperature rather than a decrease in temperature. This is counter-intuitive. since it is generally known that solution viscositv decreases with an increase in temperature.
As used herein. ''poloxamer" is a triblock copolymer derived from poiy(ethvlene glvcol)-poly(propylene glycol)-polv(ethylene glycol) blocks. The ~0 polo:camer is capable of responding to a change in te.~.pd~llre by aitering itS degree of association ~nd/or agglomeration. The aggregation mav be in the form of micelle formation~ precipitation, labile cro~linking or other factors. The poloxamer ha-s the general formula of a triad ABA block copolymer, (Pl)a(P~)b(P L)a where P, =
poly(ethylene glycol) and P~ = poly(propylene glycol) blocks, where a is in the range '75 of 10-50 and where b is in the range of ~0-70.
The poly(acrylic acid) component includes poly(acrylic acid) and its salts. The poly(acrvlic acid) supports and interacts with the poloxamer component so that amulti-material, r~a~onaive polymer network is formed. The interaction of the poloxarner and poly(acrylic acid) exhibits a synergistic effect, which magnifies the effect of the poloxamer component in viscosifying and/or gelling the solution.

~ .. _ , W O 98/48768 PCTrUS98/08931 The novel interaction between the cons~ Pnt polymers components of the polymer network permits formation of gels at very low solids content. Gelation and/or visco~ifi~tion is observed in aqueous solutions having about 0.01 to 20 wt% of the poloxamer co.ll,uon~,nt and about 0.01 to 2() wt% of the poly(acrylic acid) component.
S A typical reversibly gelling polymer network may be comprised of less than about 4 wt% of total polymer solids (e.g., poloxamer and poly(acrylic acid))and even less than lwt% total polymer solids w~ile still exhibiting reverse therrnal viscosification. Of course, the total solids content including additives of a reversibly gelling polymer network composition may be much higher. The viscosity of the gel increases at least 10 ten-fold with an increase in te.ll!,e.~nlre of about 5~C at pH 7 and I wt% polymer.
Viscosity increases may be e-~en greater over ~ larger temperature range at pH 7 and 1% polymer network content.
The relative proportion of poloxamer and poly(acrylic acid) may vary dependent upon the desired properties of the polymer composition. In one 15 embodiment. the poloxamer is present in a range of about I to 70 wt% and the poly(acrylic acid) is presenl in a range about of 99 to 80 ~t%. In another embodiment. the polo:camer component is present in a range of about 21 to 40 wt~/o and the poly(acrylic acid) component is present in a range of about 79 to 60 wt%. In another embodiment. the polo:camer component is present in a range of about 41 to 50 20 wt% and the poly(acrylic acid) component ~s present in a range of about 59 to 50 wt%. ~n another embodiment, the poloxarner component is present in a range of about 51 to 60 wt% and the poly(acrylic acid) component is present in a range of about ~9 to 40 wt~'o. In yet another embodiment. the poloxarner component is present in arange of about 61 to 90 wt% and the poly(acrylic acid) component is present in a25 range of about 39 to 20 wt%. In another embodimen~, the poloxamer co.llponcllt is present in a range of about 81 to 99 wt% and the poly(acrylic acid) component ispresent in a range of about 19 to I wt%.
The poloxamer:poly(acrylic acid) polymer network described above is included in a cosmetic composition to improve the flow characteristics, thickness and other 30 properties of the composition. The composition includes additional cosmetic agents~

WO 98/48768 PCT~US98/08931 such as are needed for the cosmetic purpose of the composition. Additives also may be included to modify the polymer network perfonn~n~e, such as to increase or decrease the t~ .alule of the liquid-to-gel transition and/or to increase or decrease the viscosity of the re~ori~ive polymer colll~oailion.
In one aspect of the invention, the poloxalll~ .oly(acrylic acid) polymer network is incol~uldl~d into a cosmetic colllpo~ilions to impart thickening pro,~c~lies to the cosmetic colllpo~ilion at the use and/or application te.~ .dlllre. Such thirl~oning properties include erlh~nred overall viscosity, as well as a desirable viscosity re;~l~onse with ten,pc.dl~re. The polymer network may be useful as a thickener in pH rangeswhere other thickeners are not effective.
In another aspect of the invention. the polo~amer:pol-(acrylic acid) polymer network is incorporated into a cosme~ic composition to stabilize and solubilize hydrophobic agents in the cosmetic composition, The polymer network ma,v be included to increase emulsion stability~ an~ emulsions. i.e.. suspension of small 15 droplets or particles of .~ firsl material in a second material. Iose viscosity upon he~ting. As will be demonstrated herein. the poloxamer:poly(acrvlic acid) polymer network retains its emulsifving properties even with temperature increase.
In addition. it ma,v be included in the composition to impart emolliency to the composition. The composition ma,v also act as a film-forming agent after it has been 20 applied to the skin. This ~ilm-forming agent may be used as a barrier to prevent water loss from the skin which contributes to the moisturization of the skin.
In another aspect of the invention. the poloxarner:poly(acrylic acid) poiymer network may be included as an additive in cosmetic applications to prevent viscosity loss at elevated temperatures.
Brief Des.. ;~,lion of the D~ ..-. i..~
The invention is described with reference to the Drawing, which is presellted for the purpose of illustration and is in no way jnt~ od to be limiting, and in which:
Figure I is a graph of viscosity vs. te~l~p~ldlllre for a I wt~,/o, 2 wt% and 3 wt%
30 responsive polymer network aqueous composition of a polo:camer/poly(acrylic acid) (1 1) at pH 7 0 Illcas-lle~ at a shear rate of 0 44 sec-';
Figure 2 is a graph of viscosity vs ~ p~.a~LIre for a 1 wt% poloxamer:
poly(acrylic acid) polymer network co-llposi~ion dernonstrating reversibility of the viscosity rc~onse;
Figure 3 shows the viscosity re~Jol~se of a Z wt% polox~.c.,l)oly(acrylic acid) polymer composition at various shear rates;
Figure 4 shows a viscosity l~;",ol~se curve for a 2 wt% poloxamer: poly(acrylic acid) polymer network composition prepared with nominal rnixing and stirring andp~ a,ed using high shear homogenization (8000 rpm, 30 min);
Figure S is a graph of viscosity vs telllp.i~.Lure for a I wt% poloxamer:
poly(acrvlic acid) polymer network composition ~t various pHs:
Figure 6 is a graph of viscosity vs temperature for a I wt% poloxarner poly(acr,vlic acid) polymer network composition with and wilhout addition ot 0 25 wt% KCI;
Figure 7 is a graph of viscosity vs temperature for a I wt% polo:camer poly(acrylic acid) polymer network composition with and ~vithout addition of 0,5 wt%
acet~nide MEA;
Figure 8 is a graph of viscositv vs tel-lp~ ure t'or a I wt% polox~ner polv(acrvlic acid) polymer network composition without and with S wt%, 10 wt% and 20 wt% added ethanol, respectively;
Figure 9 is an illustration of a reversibly gelling polymer network used as an emulsifier and stabilizer for a hydrophobic agent;
Figure 10 is a srh~ tic illustra~ion of the poloxamer poly(acrylic acid) polymer network below and above the transition tel~ e illustrating the ag~aLion of the hydrophobic poloxamer regions;
Figure 11 is a graph of viscosity vs pH for a I wt% responsive polymer network aqueous col..po~i~ion of a polox~i.c~/poly(acrylic acid) (1 1) measured at a shear rate of 0 44 sec~';
Figure 12 is a plot of viscosity vs t~nlpe.~ re for (a) a 1 wt% responsive 30 polymer network aqueous composition of Pluronic~ F127 poloxamer/poly(acrylic acid) W O 98/48768 PCT~US98/08931 (1:1) and (b) a I wt% physical blend of Pluronic~ F127 poloxamer/poly(acrylic acid) (1:1) at pH 7.0 measured at a shear rate 0.22 sec~';
Figure 13 is a plot of viscosity vs. te~ a~ for a I wt% responsive polymer network aqueous composition of Pluronic~ F88 poloxarner/poly(acrylic acid) (1:1) at 5 pH 7.0 measured at a shear rate 2.64 sec ';
Figure 14 is a graph of the viscosity vs. t~ ..pF..~ e effect for a responsive polymer network con.posilion of 2 wt% Pluronic~ P104 poloA~lle./l,oly(acrylic acid) (1:1) in deionized water at pH 7.0 measured at shear rate of 22 sec~';
Figure 15 is plot of viscosity vs. te.llp~ for a responsive polymer network composition of ' wt% Pluronic~ F123 poloxamerlpoly(acrylic acid) (1:1) at pH 7.0measured ata she r rate of 2' sec ':
Figure 16 is a plot of viscosity vs. temperature for I wt% made of series of polo~c~mers and poly(acrylic acid) (1:1) in deionized water at a shear rate of 1,2 sec-';
Figure 17 is a plot showing release of hemoglobin from a polo~camer/poly(acrylic acid) polymer network of the invention:
Figure 18 is a plot showing the release of Iysozyme from the polo~carner/poly(acrylic acid) polymer comple~c of the invention:
Figure 19 is a plot showing release of insulin from a polo:~amer/poly(acrylic acid) polymer network composition of the invention:
'O Figure '0 is a plot of viscosity vs. temperature for a polo~cameripoly(acrylic acid) polymer network composition (a) before and (b) after sterilization by autoclave:
Figure 'I is a plot of viscosity vs. te.~ e for an oil-free moisturizing forrnulation prepared from (a) a responsive polymer network composition of the invention and (b) a conventional oil-in-water forrnulation;
Figure 2' is a plot of equilibriurn solubility of estradiol (A, B) and proge~l~rone (C, D) in aqueous solutions (pH 7) of Pluronic~ F127 (A, C) and responsive polymer network (B, D) vs. t~ pc.dl~lre;
Figure 23 is a plot of the ratio of equilibriurn solubilities of estradiol in r~OnSiVe polymer network and water vs. polymer concentration in the responsive polvmer network solutions;

WO 98/48768 PCT~US98/08931 Figure 24 is a plot of the effect of loading fluofe:jce;ll on the onset of gelation of ~ onsive polymer network vs. total polymer co~ r~llion in ~c~olL,ive polymer network solution (pH 7.0);
Figure 25 is a plot of the pe~ct~ age of a) estradiol and b) proge~,one release 5 from rea,.,ol~ive polymer network vs. time;
Figure 26 is a plot of the rate of pro~ L~one release and macroscopic viscosity vs. polymer col~c~ lion;
Figure 27 is a plot of the pe~ct:"~ge of progesterone release vs. polymer concentration in responsive polymer network and, Figure 28 is a plot of the relative diffusivity of polv(styrene) late,Y particles in water and responsive polymer network.

Det~iled DescriPtion of the Invention The present invention is directed to a cosmetic composition comprising a cosmetically acceptable carrier comprising a novel poloxamer:poly(acrvlic acid) polymer network. The polvmer network func~ions as a te~ ,e~ ure sensitive thickening agent. and in addition pocsec~es surfactant ~nd emulsifying capabilities which may be beneficial to the cosmetic composition. The polvmer network composition according to the invention includes a poloxamer component randomly bonded to a poly(acrylic acid) component. The two polymer components mav interact with one another on a molecular level. The polvmer network contains about 0.01-20 wt4/o each of poloxamer and poly(acrylic acid). Exemplar,v polymer network-compositions range from about 1:10 ~o about 10:1 poloxamer:poly(acrylic acid).
Polymer network gel compositions which e~chibit a reversible gelation at body tem~ re (25-40~C) and/or at physiological pH (ca. pH 3.0-9 0) and even in basic environments up to pH 13 (hair care) are particularly prefe..ed for cosmetic applications.
In one embodiment of the invention, a 1:1 poloxamer:poly(acrylic acid) polymer network at ap~v,vp~iate pH e~hibits flow properties of a liquid at about room 30 temperature, yet rapidly thickens into a gel consistency of at least about five times *rB

WO 98/48768 PCT~US98/08931 greater, preferably at least about 10 times greater, and even more preferably at least about 30 times and up to 100 times greater, viscosity upon il~e.case in te..~ dL~lre of about 10 ~C and preferably about 5 ~C. The reversibly gelling polymer network of the present invention exhibit gelation even at very low polymer con~e~"ldlions. For S example, polymer network co-.lposilions at pH 7 comprising about 0.5 wt% poloxarner co,ll~onc.lL and about 0.5 wt% PAA exhibits a ~ fic~nt increase in viscosity from a free-flowing liquid (50 cps) to a gel (6000 cps). The observed gelation takes place at low solids COI~t~.lL5, such as less than 20 wt% or preferably less than about 10 wt%, or more preferably less than about 2.5 wt% or most preferably less than about 0.1 wt%.
Thus, only a small amount by weight of the polymer network need be incorporated into a cosmetic composition in order to provide tne desired thickening or viscosifying effect.
The reverse viscosification effect at low polymer concentrations provides clear,colorless gels which are particula.ly well-suited to cosmetic applications. For example.
very little residue is formed upon dehydration ~hich may be important in some applications~ such as in topically applied cosmetics. An additional advantage of the polymer network of the invention is that it remains clear and translucent above and below the critical temperature or pH. These chalacL~,istics of the reversibly gelling polymer network make it well suited for use in cosmetic compositions.
The polymer network of the pre ent inven~ion technologv may be added to cosmetic for.nulations to increase the thickness and viscosity of ~he composition. The polox~mer:poly(acrylic acid) polymer network poc~ es hydrophobic regions capableof aggregation. Unlike conventional thick~rlers, the aggregation of the polymer network of the present invention is te...p~ ure sensitive. Thus, the inventive polymer 25 network of the present invention may have a transition t~."~e.~ e (i.e. tellly~lalu~e of aggregation) above room tell~pela~lre so that the cosmetic co~..posiLion is of low viscosity at or below room t~ ature and is of high viscosity at or around body t~.up~.alure (body te.l,p~ re includes both surface and internal body t~ ulc;).
Thus, a composition may be prepared at low telllp~la~lres while the polymer network 30 is in a low viscosity state. Mixing of ingredients under low viscosity is ~ected to be W 098/48768 PCT~US98/08931 easier, thus simplifying the m~nllf~rtllring process. Yet, the resultant mixture would be of incre~ed viscosity at use tt~l,pe.d~ s. As a further advantage, a cosmeticcomposition comprising poloxamer:poly(acrylic acid) polymer network may be spread thinly to allow for even application, due to its low viscosity at room l-,.,.,u~,.~L~lre, but 5 will thicken and "fill" the skin contours upon warming up to body surface tt;lll~"d1ULC.
In another aspect of the invention, the composition may be applied through a nozzle that provides high shear to reduce viscosity, yet the composition regains its viscosity after application to the skin. This COr~ with conventional formulations which perm~nPntly lose viscosity after being subjected to high shear.
In another aspect of the invention, the composition may be formulated and applied as a liquid, spray, semi-solid gel, cream. oimment. lotion. stick. roll-on formulalion. mousse, pad-applied formulation, 3nd film-forming formulation.
The poloxamer:poly(acrylic acid) polymer network mav also be included in a cosmetic composition for use as a stabilizing, solubilizing or ~mulsifying agent for a hydrophobic component of the cosmetic formulalion. The slrong hvdrophilic regions of the poloxamer resulting from agoregation and micelle formation create hydrophobic domains which m~v be used to solubilize and control release of hydrophobic agents.
Similar micelle-based systems have been shown to protect trapped peptides against enzymatic degradation from surface enzymes.
The reversibly gelling polymer network of the presenl invenlion is a unique polymer composilion designed to abruptly chan e its physic31 characterislics or the characteristics and properties of materials mixed therewith wilh a change in t~,~,pcldture. Without intPn~ing to be bound by any particular mech~nicm or chemical structure, it is believed that the stru~ture of Ihe polymer network involves a random bonding of the poloxamer onto the backbone of the poly(acrylic acid). A por~.ion of the polo:camer which is present during the polymerization reac~ion which forms the poly(acrylic acid) is bonded to the backbone of the forrning poly(acrylic acid) through hydrogen abstraction and subsequent reaction. See detailed discussion of the ml ch~ni.cm, below. The combination of the poly(acrylic acid) and randomly bonded poloxamer gives the composition its unique properties. Any free polo~camer rPm~ining CA 022F,9464 1998-12-30 after polyll-e.i~lion of PAA remains associated with the random co-polymer, resulting in a miscible composition. Free poloxamer may also be present in the polymer network composition; however, its presence is not required in order to observe reverse therrnal viscosification.
The poly(acrylic acid) may be linear, branched and/or cros~linkP~ Poly(acrylic acid) is capable of ionization with a change in pH of the solution. By ionization, as that term is used with respect to poly(acrylic acid), it is meant the formation of the conjugate base of the acrylic acid, narnely acrylate. As used herein, poly(acrylic acid) includes both ionized and non-ionized versions of the polymer. Changes in ionic 10 strength m:~y be accomplished by a change in pH or by a change in salt concentration.
The viscosifying effect of the polymer network is partly a t~unc~ion of the ionization of the poly(acrylic acid); however, reverse thermal elling mav occur without ioniz~tion.
Changes to the ionic state of the polymer causes Ihe polymer ~o e~cperience attractive (collapsing) or repulsive (e:~p~n~ing) t'orces. ~hhere there is no need or desire for the 15 composition to be applied in a hi_h viscositv state. it mav be possible to prepare the composition as non-ionized polv(acrylic acid). The body s natural buffering ability will adiust ~he pH of Ihe applied composition to ionize the poly(acrylic acid) and thereby develop its characteristic viscosity The polo:carner possesses regions of hydrophobic character. e.g.. polv(propyleneglycol) blocks. and hvdrophilic character~ e.g.~ polv(ethylene glycol) blocks. The poloxamer may be linear or branched. Suitable poloxamers include triad block copolymers of poly(ethylene glycol) and poly(propylene glycol) having the general formula (P,),(P.)b(P,)I, where P, = poly(ethylene glycol) and P~= poly(propyleneglycol) blocks, where a is in the range of 10-50 and where b is in the range of S0-70 where poly(propylene glycol) le~l~sellls the hydrophobic portion of the polymer and poly(ethylene glycol) represents the hydrophilic portion of the polymer. Pluronic(l~
polymers (BASF) are commercially available for a in the range of 16 to 48 and b ranging from 54-62. One or more poloxamers may be used in the reversibly gellingpolymer network composition of the present invention.
The reversibly gelling responsive polymer networks compositions of the present CA 02259464 l998-l2-30 W 098/48768 PCTrUS98/08931 invention are highly stable and do not exhibit any phase separation upon stqnr~in~ or upon repeated cycling bet~,veen a liquid and a gel state. Samples have stood at room L~ .pc~dl~lre for more than three months without any noticeable decomposition, clouding, phase separation or degradation ot gelation properties. This is in direct 5 contrast to polymer blends and aqueous mixed polyrner solutions, where phase stability and phase separation is a problem, particularly where the con~ .,e..~ polymers are immicoible in one another.
An example of the dramatic increase in viscosity and of the gelation of the reversibly gelling polymer network compositions of the invention is shown in Figure 1.
Figure I is a graph of viscosity vs. te",~ela~ure for 1 wt%~ ~ wt% and 3 wt% polymer network compositions comprising 1:1 polox~mer:poly(~cr lic acid). hvdrated and neutralized. The viscosity measuremems were taken on a Brookfield viscometer at a shear rate of 0 il4 sec-' at pH 7Ø .~11 solutions had an initial viscosity of about 1080 cP and exhibited a dramatic increase in viscositv to gel point at about 35~C. This is not typical of all polymer networl; compositions since polvmerization condition will affect initial viscosity. Final viscosities were qpproximately 33,000 cP, 100,000 cP
and 155,000 cP for the I wt%, ' wt~,'O and 3 w~ O compositions. respectivelv. This represems viscosity increases of about 30-. 90- and 140-fold. respectivel~;. This effect is entirelv reversible. Upon cooling, the composition regains its initial viscosity. This is demonstrated in Figure ~. where .q I wt% poloxamer:pol~(acrvlic acid) composition is warmed through the transition temperarure up to 35 'C (simple curve). cooled to room telllp~.d~ure (24 'C. ticked curve) and then warmed again to up above the transition t~lllpe.~ re (open box cur~/e). The viscosity response was virrually identical in all three inct~n~es.
As would be expected with a non-Newtonian system. the solution viscosity differs with different shear rates. Figure 3 shows the viscosity response of a ~ wt%
poloxamer:poly(acrylic acid) polymer composition at various shear rates. The viscosity response is consistent between ~4 C and 34 C; however. the final viscosity is reduced with increasing shear rate.
However. unlike many prior ~rt hydrogels~ e.g.. c~rbomers, the W098/48768 PCT~US98/08931 poloxamer:poly(acrylic acid) polymer network composition does not perm~nPrltly loose viscosity after being subjected to high shear conditions. The poloxarner:poly(acrylic acid) polymer network composition remains unaffected by such shear conditions ashomogeni7~tion. ~igure 4 compares the viscosity ~e~onse curve of a 2 wt%
5 poloxarner:poly(acrylic acid) polymer composition prepared with nnmin~l mixing(simple lirne) and stilTing with that of a polymer composition of similar composition p,e~a ed using high shear homogenization decig~t~d by a ticked line (8000 rpm, 30 min). No ~ignifi~ ~nt decrease in viscosity is observed.
A number of factors influence the viscosity and transition t~ p~,dLure of the 10 composition. The more il.lpoitaht factors include polymer concentration. pH and presence and nature of additives.
The effect of pH on the viscositv of reversibly gelling poiymer networks is shown in Figure 5. Incre sing pH from the starting pH has a lesser e~'fect on the viscosity than decreasiny the pH. This may relale to the exten~ of ionization of the 15 poly(acrylic acid) componenl of the polymer network as discussed above. This may be clearly seen in Figure ~ when comparing the viscositv response of d I wt%
poloxamer:poly(acrylic ~cid) polymer composition at pH 5 and pH 11. Satisfactoryviscosities can be obtained at high pHs indicatin the poteMial ~alue of the reversibly gelling polvmer network in products such as depilatories. hair straighteners and hair ~0 relaYers.
The responsive polvmer network may also include additi~,es for influencing the p..ro~ ance of the polymer composition, such as the transition t~,npe.dlllre an~ the viscosity of the polymer composition above the transition t~.lly~,ature. The following list is not int~n~ed to be exhaustive but rather illustrative of the broad variety of 25 additives which can be used.
These materials include solvents (e.g., 2-propanol, ethanol, acetone, 1,2-pyrrolidinone, N-methylpyrrolidinone), salts (e.g., calcium chloride. sodium chloride, potassium chloride, sodium or potassium phosphates, borate buffers, sodium citrate), preservatives (benzalkonium chloride. phenoxyethanol, sodium 30 hydroxymethylglycinate. ethylparaben. benzoyl alcohol, methylparaben. propylparaben.

CA 02259464 l998-l2-30 WO 98/48768 PCT~US98/08931 butylparaben, Gerrnaben II), hurnectant/moi~ ,a (acet~mide MEA, l~rtimide MEA, hydrolyzed collagen, marmitol, p~nth~nol, glycerin), lubricants (hyalurorlic acid, mineral oil, PEG-60-lanolin, PPG-12-PEG-50-lanolin~ PPG-2 myristyl ether propionate) and surfact~ntc Surfactants may be divided into three classes: cationic, anionic"and nonionics.
An example of a cationic surfactant used is ricinoleamidopropyl ethyldimoniurn eth~slllf~te (Lipoquat R). Anionic surfactants include sodium dodecyl sulfate and ether sulfates such as Rhodapex C0-436. Nonionic surfactants include Surfynol CT-I 11,TG, polyoxyethylene sorbitan fatty acid esters such as Tween 65 and ~0, sorbitan fatty 10 acid esters such as Span 6~ alkylphenol ethoxylates such as Igepal CO-110 ~nd 430, dimethicone copolyols such as Dow Corning 190~ 193, and Silwet L7001.
The addition of polvmers has been studied including xan1han ~um. cellulosics such as hvdroxyethylcellulose (HEC). carbomethoxycellulose (C~C), lauryldimoniumhydroxypropvl oxyethyl cellulose (Crodacel QL)~ hydroxypropvlcellul~,se (HPC), and l5 hydroxypropylmethylcellulose (HP~IC). poly(acrvlic acid), cvclodextrins. methyl acrylarnido propyl triarnmonium chloride (~IAPTAC), polyeth,vlene oxide.
polyvinylpvroliddone, polyvinyl alcohol, and propylene oxidelethylene oxide random copolymers. Poloxarners may also be used as ~dditives. Ex,~nples include both the Pluronic~ polyols having an (P,)a(P.)b(P,)3 structure such as Pluronicl~ Fi8. L44. P65, F68. F88. L9~. P103. P104. P105. F108. Ll~' and F127, as well as the reverse Pluronic~) R series (P~)a(PI)b(P~)~ structure such as Pluronic~9 17R~ and '5R8. Other mi;cell~lleous materials include propylene glycol. urea, triethanolamine. alkylphenol ethoxylates (Iconol series), and linear alcohol alkoxylates (Plurafac series).
Additives affect the viscosir of the compositions differently depending upon the nature of the additive and its concenll,lLion. Some additives will affect the initial or final viscosity, whereas others will affect the te~l~p~ e range of the viscosity response, or both.
Potassium chloride and ~cet~ e MEA are ,wo e~camples of additives which decrease the final viscosity of the col,lpo~ilion (see, Example 30). KCI (0.25%) added to a I wt% reversibly gelling polymer composition reduces the viscosit,v bv about 3000 W O 98/48768 PCT~US98/08931 cps. See, Figure 6. The hnm~ct~nt ~cet~mirle MEA, lowers the viscosity of a I wt%
solution by ~loxil..ately 1,500 cps (see, Figure 7).
Glycerin, ethanol and ~imPthi~one copolymer have been shown to affect the t~,~llp~ldL lre range over which the viscosity lea~onse occurs. Glycerin shifts the S transition tel~ to a slightly lower range from an initial 24-34 ~C to about 24-30 C, but does not affect the final viscosity (see, Example 44). The effect of ethanol on the viscosity is different at different conce~ Lion levels. At S wt% and 10 wP/0 added ethanol, the transition temp~.dLu~e is shifted to lower ranges, e.g., 24-29 C and 20-29 C, re~ ely. At 20 wt% added ethanol, the composition not only exhibits a 10 lowering of the transition temperature~ but also a marked incre~se in initial .~nd final viscosity. See. Figure 8. Dimethicone copolymer (I wt%) also changed the transition tcnlpe.ature, but in this instance the transition ~emperature range was raised to ~-41 'C. Thus. proper selection of additives permits the formulator to adjust the transition temperature to various ranges.
1~ Those skilled in the ~rt will ~ppreciate that the polymer network compositions of the present invention may be utilized for a wide variety of cosmetic and personal care applications. To prepare a cosmetic composition, an effective amount of cosmetically active agent(s) which imparts the desirable cosmetic effect is incorporated into the reversibly gelling polymer nerwork composition of the present invention.
20 Preferably the selected agent is water soluble. which will readilv lend itself to a homogeneous dispersion ~hrough out the reversibly gelling polymer network composition; however~ the polymer network has been demonstrated to signific~nt1ysolubilize or suspend hydrophilic agents in order to improve formulation homogeneitv (see, Example 36). It is also preferred that the agent(s) is nonreactive with the 25 polymer network composition. For materials which are not water soluble, it is also within the scope of the invention to disperse or suspend powders or oil (lipophilic materials) throughout the polymer nen,vork composition. It will also be appreciated that some applications may require a sterile environment. It is co~ lated as within the scope of the invention that the reversibly gelling polymer net~,vork compositions of 30 the present invention may be prepared under sterile conditions. An additional feature WO 98/48768 PCT~US98/08931 of the reversibly gelling polymer composition is that is prepared from con~tit~ nt polymers that have known accepted toxicological profiles, The polox&,.c..l.oly(acrylic acid) polymer network has been evaluated under Good Laboratory Practice (GLP) standard protocols known in the art for toxicity in S an~rnal models and found to exhibit no toxic effects. The results of the toxicity study are s~ ndlizcd in the following Table 1. The non-toxicity of the polymer networkmakes it an ideal f~n~ te for use in cosmPtic co,l,~os;tions.
Table 1. Toxicity data for 6% polo2~amer:poly(acrylic acid) solution at pH 7.
Reaclion testes mode of testing results Skin sensitization guinea pig - topic31 not a sensitizer eye irritation rabbil eve instillalion negative primary derrnal irritation rabbit - topical verv slight edema (I on a scale of 1-8) acute derrnal to,Yicity, rat - single dose ('g!kg) no toxicity acule oral ~oxicity rat - single dose (~gikg) no toxicity AMES test ne~ative E.Yemplary cosmetic and personal care applications. for which the reversibly gelling polymer network composition may be used include. but ~re not limited to.babv products~ such ~s baby shampoos. Iotions, po-~,ders and crearns: bath preparations. such 20 as bath oils, tablet and salts, bubble baths, bath fragrances and bath capsules;-eye makeup preparations, such as eyebro~v pencil, eyeliner, eye shadow, eye lotion, eye makeup remover and mascara; fragrance plep~aLions, such as colognes and toilet waters, powders and sachets; noncoloring hair preparations, such s hair conditioner, hair spray, hair straip~ L ~a~ permanent waves, rinses shampoos, tonics, dressings and 25 other grooming aids; color cosmetics; hair coloring ~ aldLions such as hair dye, hair tints, hair shampoos, hair color sprays, hair li~l~t~ and hair ble~ches; makeup preparations such as face powders, foundations, leg and body paints, lipstick, makeup bases, rouges and makeup fi,Yatives; manicuring pl~l~alions such as ~c~co~t~ and WO 98/48768 PCT~US98/08931 undercoats, cuticle softeners, nail crearns and lotions~ nail eYtPn~s, nail polish and enarnel, and nail polish and enarnel remover; oral hygiene products such as dentnfices and mouthwashes; personal cltq~nlin~sc such as bath soaps and det~.g~ s, deodorants.
douches and femininP hygiene product; shaving ~ ions such as aftershave lotion, 5 beard softeners, men's talcum, shaving cream, shaving soap and preshave lotions; skin care ~lep~1lions such as cl~ncing ple~ a~ions, skin antiseptics, depilatories, face and neck cleansers, body and hand cleansers, foot powders and sprays, moisturizers, night JaldliOnS, paste masks, and skin L~sh~ "s, and suntan plepd~aLions such as suntan creams. gels and lotions, indoor tanning pl~;l,alaLions.
Plct~d~ion of the above-named cosmetic compositions and others mav be accomplished with reference to any of the cosmetic formulation guid~books and industy journals which are available in the cosme~ic indus~ry, These references supply standard formulations which may be modified bv the addi~ion or subsIiIution of the reversible viscosifyino polymer nehvork of the present invention into the formulation.
15 Suitable guidebooks include Cosmetics and Toiletries Ma~azine. Vol. 111 (March~
1996); Formularv: Ideas for Personal Care: Croda Inc~ Parsippanv. NJ (1993); andCosmeticon: Cosmetic Forrnularv~ BASF. which ~re hereby incorpora~ed in their entirety bv reference.
The cosmetic composition mav be in anv forrn. Suitable forms include but are 20 not limi~ed to lotions. creams. sticks. r.~ ons formulations. mousses. aerosol sprays.
pad-applied formulations. and film-t'orming formulations.
As those skilled in the art will appreciate, the foregoing list is e:cemplary only Because the reversibly gelling polymer network composition of the present invention is suited for application under a variety of physiological conditions. ~ wide variety of 25 cosmetically active agents may be incorporated into ~nd ~rninictered from thepolymer network composition. In addition to the poloxamer:poly(acrylic acid) polymer network. additional cosmetically acceptable carriers mav be included in the composition, such as by way of example only, emollients~ surfactants, humectants, powders and other solvents. By way of e:cample only, the cosmetic composition also 30 may include additional components. which serve to provide additional aspects of the CA 022~9464 1998-12-30 cosmetic affect or to improve the stability and/or a~mini~tration of the cosmetic. Such additional coll.pon~l.t~ include, but are not limited to, preservatives, abrasives, aridl-lPntc~ ~nti~nP agents, anti-aging agents, ~ntihart~rial5 ~nti~king, an~icaries agents, anticellulites, ~ntitl~n~ruff, antifungal, anti-infli1..,...~rolies, anti-irritants, 5 antimicrobials, antio~ ntc~ astringents, a~ , antiseptics, antistatic agents, as~ringents, binders, buffers, additional carriers, chelators, cell stimulants, cleansing agents, conditioners, deodorants, dipilatories, d~ , di~yc.so~, emollients, mul~ifiers, enzymes, e~c~nti~l oils, e~foliants, fibers, film forrning agents. fixatives~
foarning agents, foarn stabilizers, foam boosters, fungicides. gellants. glosser. hair 10 conditioner. hair set resins, hair sheen agents. hair waving a ents. humectants.
Iubricants. moisture barrier agents. mois~urizers. ointment bases. opacifier. plasticizer.
polish~ polvmers, powders, propellant. protein, refatting agents. sequestrant. silicones.
skin c~lming agents~ skin cleansers. skin condilioners~ skin healing, skin lightening agents~ skin protectants~ skin smoothing agents. skin softening agents. skin soothing 15 agents, stabilizers. sunscreen agents, surfactants. suspending agents, tanning accelerators. thickeners, vitamins. waxes, wetting a ents. Iiquefiers. colors. flavors and/or fragrances . Suitable materials which serve the additive functions lisled here ~;re well known in the cosmetic industrv A listing of the additive function and materials suitable for incorpora~ion into the cosme~ic composition may be found in ~0 Appendi~ which is appended hereto ~t the end of Ihe speciric~tion. Further information may be obtained by reference to The Cosmetic Bench Handbook~
Cosmetics & Toiletries; C.C. Urbano, editor, Allured Publ. Corp.~ 1996~ which ishereby incol~,orated in its entirety by reference.
A brief description of some preferred additives and cosmetic311y active agents ~5 follows. The compositions of the invention include a safe and effective amount of a cosmetically active agent. i'Safe and effective'', as it is used herein, means an amount high enough to significantly positively modify the condition to be treated or the cosmPtiC effect to be obtained, but low enough to avoid serious side effects.
Preservatives can be desirably incorporated into the cosmetic compositions of 30 the invention to protect against the growth of potentially harmful microorganicm~

Suitable preservatives include, but are not limited to, alkyl esters of para-hydroxybenzoic acid. hydantoin derivatives, p~ra~en~, propioniate salts, triclosan tricarbanilide, tea tree oil, alcohols, farnesol, farnesol acetate, hexachlorophene and 411dLelll~,y arnmonium salts, such as benzolconjure, and a variety of zinc and S ~ rnin~m salts. Cosmetic ch.omi~t~ are farniliar with ay~)lo~";ate preservatives and may selects that which provides the required product stability Preservatives arepreferably employed in amounts ranging from about 0.0001% to 2% by weight of the composltlon.
Emollients can be desirably incorporated into the cosmetic compositions of the invention to provide lubricity to the formulation. Suitable emollients may be in the form of volatile and nonvolatile silicone oil. hiehly branched hydrocarbons and synthetic esters. Amounts of emollients may be in the range ot' ~bout 0.1-~0 wt%, and preferably ~bout 1-~0 wt%. By way of example onlv~ suitable silicones include cyclic or line r polydime~hylsiloxanes, polyalkylsilo,Yanes~ polyalkylarylsiloxanes andpolyether siloxanes. Bv wa~ of example only. suitable es~er emollients include alkenyl esters of fatty acids, polyhydric alcohols. such ~s ethylene glycol mono and di-fatty acid esters. polyethylene glycol and ~he like. ether-esters. such as fatty acid esters of ethoxylated fatty alcohols. wax esters. such as beeswax. sperrnaceti. mysristyl myristate and stearyl stearate. and sterol esters. such as cholesterol fartv acids.
A variety of oily emollients may be employed in the compositions ot this invention. These emollients may be selected from one or more of the following classes: 1. Triglyceride esters such dS vegetable and animal fats and oils. Examples include c~stor oil. cocoa butter, safflower oil, cottonseed oil, com oil. olive oil, cod liver oil, almond oil, avocado oil, palm oil, sesarne oil. squalene. Kikui oil and soybean oil; 7. Acetoglyceride esters, such as acetylated monoglycerides; 3.
Ethoxylated glycerides, such as ethoxylated glyceryl mono~dLe: ~. Alkyl esters of fatty acids having 10 to 20 carbon atoms, such as, methyl. isopropyl, and butyl esters of fatty acids, and including hexyl laurate, isohexyl laurate, isohexyl p~lmit~te, isopropyl palmitate, decyl oleate, isodecyl oleate. h~oy~ cyl stearate decyl stearate, isopropyl isostearate. diisopropyl adipate. diisohexvl adipate. dihexyldecyl adipate, CA 022~9464 l998-l2-30 WO 98/48768 PCT~US98/08931 diisopropyl seb~r!~tP, lauryl lactate, myristyl lactate, and cetyl lactate; 5 alkenyl esters of fatty acids having 10 to 20 carbon atoms, such as oleyl myristate, oleyl stearate, and oleyl oleate and the like; 6. fatty acids having 10 to 20 carbon atoms, such as pelargonic, ;auric, myristic, palmitic, stearic, isostearic, hydluxy~l~a"c, oleic, linoleic, S ricinoleic, arachidic, behenic, and erucic acids and the like; 7. fatty alcohols having 10 to 20 carbon atoms, such as, lauryl, myristyl, cetyl, hexadecyl, stearyl, isostearyl, hydroxystearyl, oleyl, ricinoleyl, behenyl, erucyl, and 2-octyl dodecanyl alcohols are examples of ~ticfactory fatty alcohols and the like, 8. fatty alcohol ethers, such as ethoxylated fatty alcohols of 10 to ~0 carbon atoms including the lauryL cetvl. stearyl, 10 isostearvl, oleyl. and cholesterol alcohols. having art~r~led thereto from I to 50 ethvlene ûxide groups or I to 50 propylene oYide oroups: 9 ether-esters such as fatty acid esters of ethoYylated fatty alcohols: 10. Lanolin and derivatives~ such as lanolin.
Ianolin oil. Ianolin wax. lanolin alcûhols, lanolin fatty ~cids. isopropyl lanolate.
ethoxylated lanolin. ethoxylated lanolin alcohols. ethoxylated cholesterol. propoxylated 15 lanolin alcohols, acetylated lanolin alcohols. Ianolin alcohols iinoleate. Ianolin alcohols ricinoleate. aceta~e of lanolin alcohols ricinoleate. acetate of ethoxylated alcohols-esters. hvdrogenolysis of lanolin, ethoxylated hydrogenated lanolin. ethoxylatedsorbitol lanolin. and liquid and semisolid lanolin absorption b~es~nrl the like: 11.
polyhydric alcohol esters, such as. eth~lene ,lycol mono and di-fattv acid esters.
20 diethylene glycol mono-and di-fatty acid eslers. polyethvlene olycol (200-6000) mono-and di-fatty acid esters. propvlene glycol mono- and di-fatty acid esters. polypropylene glycol 2000 monooleate. polypropvlene glycol ~000 monostearate, ethoxylated propvlene glycol monostearate, glyceryl mono- and di-fatty acid esters, polyglycerol polyfatty esters, ethoxylated glyceryl monostearate, 1,2-butylene glycol monostearate, 1,2-butylene glycol distearate. polyoxyethylene polyol fatty acid ester, sorbitan fatty acid esters, and polyoxyethylene sorbitan fatty acid esters are satisfactory polyhydric alcohol esters; 12. wax esters such as beeswax. spermaceti. myristyl myristate, stearyl stearate: 13. beeswax derivatives, e.g. polyoxyethylene sorbitol beeswax; 14.
vegetable waYes including carnauba and c~ waYes; 15. phospholipids such as lecithin and derivatives: 16. sterol including cholesterol and cholesterol fatty acid W 098/48768 PCT~US98/08931 esters; 17. amides such as fatty acid arnides, ethoxylated fatty acid arnides, solid fatty acid alkanol~rnid~c Humect~nt~ may be added to the composition to increase the effectiveness of the emollient, to reduce scaling, to stimnl~t~ removal of built-up scale and improve S skin feel. By way of exarnple only, suitable h~ ; include polyhydric alcohols, such as glycerol, polyalkylene glycols, alkylene polyols their derivatives, propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol,hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,~,6-he:l~anetriol, ethoxylated glycerol, propoxylated glycerol and the like. The arnount of hurnectant may be in the range of about O.j-30 wt% and preferably between 1-15 wt%.
ln topical skin care applications. a variety of active substances rnay be advantageously employed. Bv way of example only suitable ~ctive agents which maybe incorporated into the cosmetic composition include anti-aging active substances~
anti-wrinkle active substances. hydrating or moisturizing or slimming active substances. depigm~nti~g active substances. substances acti-e .~gainst free radicals.
anti-irritation active s-lbst~nces. sun protective ac~ive subs~ances. anti-acne ~ctive s-lhst~nrec firrning-up acti-e substances, e:cfoliating active substances. emollient active suhst~nces. and :~ctive substances for the treating of skin disorders such as dermatitis and the like.
Bv wav of example only. in the ~ase vr hvdration. one or more moisturizers may be used, such as glycerin or urea. in combination with one or more precursoragents for the biosythesis of structural proteins. such as hydroxyproline, collagen peptides and the like.
By the way of e~cample only, in case of 51imminsg, at least one ketolytic agent or an alpha-hydroxyacid such a salicylic acid or S-r.-octanoicsalicylic acid mav be used in combination with at least on liporegulating agent such as caffeine.
By way of example only, in the case of depigm~nt~tion, at least one keratolytic agen~ is used in combination with a depigmPntin~ agent such as hydroquinone, tyrosinasee inhibitor (kosic acid), ascorbic acid, kojic acid and sodium metabisulfite an the like.

WO 98/48768 PCT~US98/08931 By way of example only, in the case of protection against free radical agents, vitarnin E (against COO radicals), superoxide riicmllr~c~ (against O, free radicals) and sugar and caffeine (against OH free radicals).
By way of exarnple only, in the case of anti-aging, moisturizers, suns~re~,ls, S alpha-hydroxyacids, salicylic acid or surface restructuring agents may be used in combination with enzymes for the repair of DNA, vascular protective agents or phosphnlipids rich in oligoelements and poly~ rd fatty acids.
By way of exarnple only, in the case of anti-acne agents, keratolytics, such as salicylic acid, sulfur, lactic acid, glycolic~ pyruvic acid. urea. resorcinol and N-10 acetylcysteine, and retinoids. such as retinoic acid and its derivatives may be used.
By way of example only, in the case of anti-infl~mm~rion. non-steroidal anti-infl~mm~tr,ry agents (NS~IDS) mav be used. such as propionic acid derivatives. acetic acid, fenamic acid derivatives. biphenvic~rboxylic acid deri-atives~ oxic ms. including but not limited to aspirin. acetaminophen, ibuprofen. napro:cen. benoxa~rofen, 15 flurbiprofen, fenbufen, ketoprofen. indoprofen. pirprofen, carporfen. and bucloxic acid and the like.
By way of e:cample only, in the case of antibiotics and antimicrobials may be included in the composition of the invention ~ntimicrobial drugs preferred for inclusion in compositions of the present inven~ion include salts of ~-lactam drugs.
20 quinolone drugs, ciprofloxacin, norfloxacin. tetracycline, er~,~hromycin. ~mik:lrin triclosan. doxycycline, capreomycin. chlorhe:cidine, chlortetracycline, o:cytetracycline.
çlin~l~mycin, ethambutol. he:camidine isethionate. metronidazole. pent~rnidine, gentamicin, Icanamycin. Iineomycin. methacycline. meth~n~mine minocycline, neomycin, netilmicin. paromomycin. streptomycin~ tobramvcin. miconazole and 25 ~m~nf~(1ine and the like.
By way of example only, in the case of sunscreen pro~ection, suitable agents include 2-ethylhexyl p-methoxycinn~m~te~ 2-ethylhe:cyl N.~l-dimethyl-p-aminob~n70at.o, p-aminobenzoic acid, 2-phenyl p-methoxycinn~m~te, 2-ethylhexyl octocrylene, oxybenzone, homomenthyl salicylate. octyl salicylate, 4,4'-methoxy-t-30 butyldibenzoylmethen. 4-isopropyl dibenzoylmethane, 3-benzylidene carnphor, 3-(4-WO 98/48768 PCT~US98/08931 methylbenzylidene) carnphor, titaniurn dioxide, zinc oxide, silica, iron oxide, and rnixtures thereof and the like. The sulls~,eel~ng agents disclosed therein have, in a single molecule, two distinct chromophore moieties which exhibit different ultra-violet radiation absorption spectra. One of the chromophore moieties absorbs predon~ ly5 in the WB radiation range and the other absorbs strongly in the UVA radiation range.
These alms~lc~nil g agents provide higher efficacy, broader W absorption, lower skin p~n~ dl.on and longer lasting efficacy relative to conventional SUnscl-,el-s. Generally, the suns~ ns can comprise from about 0.5% to about 70% of the compositions useful herein. Exact amounts will vary depending upon the sunscreen chosen and the desired 10 Sun Protection Factor (SPF). SPF is a commonlv used measure of photoprotection or a sunscreen q~ainst ervthema.
By way of example only, in the case of sunless tanning agents include.
dihydroxyacetone, glyceraldehyde. indoles and their derivatives, and the like.
The composition mav include cleqnsin_ surf~ctants. Cleansing surfactants are 15 cationic~ anionic. amphoteric or non-ionic surfactan~s ~hich are water-soluble and produce a consumer-acceptable amount of foam. ~onionic surfactants are well-known materials and have been used in cleansing composi~ions. Therefore~ suitable nonionic surfactan~s include. but are not limited to, compounds in the classes kno-vn as alkanolamides. block copolymers of ethylene and propylene. ethoxylated alcohols,20 etho:cylaled alkylphenols~ alkyl polyglycosides qnd mixtures thereof. In particular~ the nonionic surfact~nt can be an ethoxylated alkylphenol. i.e., a cond~nc~rion product of an alkylphenol having an alkyl group conr~ininP from about 6 to about 1~ carbon atoms in either a straight chain or branched chain configuration with ethylene oxide.
the ethylene oxide being present in an arnount equal to at le st about 8 moles ethylene 25 oxide per mole of alkylphenol. Examples of compounds of this type include nonylphenol con-l~n~ed with about 9.5 moles of ethylene oxide per mole of phenol;
dodecylphenol condenced with about 1~ moles of ethylene oxide per mole of phenol;
dinonylphenol con~l~once~l with about 15 moles of ethylene oxide per mole of phenol;
octylphenol con~enced with about ten moles of ethylene oxide per mole of phenol; and 30 diisooctyl phenol condensed with about 15 moles of ethylene oxide per mole of CA 02259464 l998-l2-30 phenol.
A wide variety of acids, bases, buffers, and sequc~Ll~lt~ can be utilized to adjust and/or m~int~in the pH and ionic strength of the compositions useful in the i.~ant invention. Materials useful for adjusting and/or ~,.~;..I;.;..i~-e the pH and/or the S ionic strength include sodiurn carbonate, sodium hydroxide, hydrochloric acid,phosphoric acid, sulfuric acid, acetic acid, sodium acetate, sodiurn hydrogen phosph~t~, sodiurn dihydrogen phosphate, citric acid, sodiurn citrate, sodiurn bica,l,onate, triethanolamine, EDTA, disodium EDTA, tetrasodium EDTA, and the like.
The polymer network may be useful as a solubilization agent in cosmetic and 10 personal care applications. A self-assembling svstem comprising the reversibly gelling polymer network e:chibits thermogelation. pH sensitivitv. and the .~bility to solubilize hydrophobic agents in aqueous media. When polox~mer is copolymerized with poly(acrylic acid) (PAA) according to the invention. the resulting copolymer network is bioadhesive and can be applied in a number of therapies. The materials described in 15 this invention combine "reverse" thermoviscosific.~tion m~lco~h~cion. solubilization of hydrophobic and difficult to manage moieties. easy formulation. and protection of agents from degradation to provide a superior medium for cosmetic and personal care products.
The reversible viscosification of the polvmer net~,vork at elevated tempc.~SLLIles 20 makes the materials ideal for use as thickening agents in cosmetic and personal c,~re products a~ any temperamre above the transition. Another use of the "thickening" of solutions con~ining the polymer network as a thick~n~r supplement in emulsions.
Currentlv emul~ifiers are often negatively effected b,v increased t~ ,d~ures. Anadditive with reverse thermal viscosification properties. however, would react in ~5 exactly the opposite way, increasing its ability to emulsify as it gained three-dimensional structure upon heating above its transition t~ .dnJre.
In the applications where the reversibly gelling polymer composition can act as a surfactant, the polymer network will have the ability to act as a primary e~~ ifier without any (or with very little) addition of traditional surfactant. The responsive 30 polymer network will also act as a stabilizer for oil-soluble ingredients that would W 098/48768 PCT~US98/08931 .
2~
conventionally need to be solubilized by oils in forrnulation. The hydrophobic portion of the polymer network (PPO) forms domains which act as reservoirs for an oil-soluble or hydrophobic additive, such as an oil droplet, as is illustrated in Figure 9.
rhese two features of the material of the invention would enable it to be used as a S base in a cosmetic formulation that would be non-greasy due to lack of oils, such as petrolaturn and mineral oil. The U~ c in viscosity above the transition te.~ aLllre adds structure and yield value to the water ph~e and results in a highly stable emulsion.
Thus. polo~..c..~oly(acrylic acid) polymer network compositions are valuable 10 materials in the formulation of cosmetic and personal care products. In particular, thev may be useful as rheology modifiers. provide a cushionine effect on .ne skin. otfer barrier properties and controlled rele~se of actives. In addition. the polymer composition may serve as a surfactant and is compatible ~ith most ingredients used in the cosmetic industrv.
The above properties of the polo.Yamer:polv(acrylic acid) polymer network provides a cosmetic composition that spreads evenly and smoothly and which leaves a lubricious feel to the skin. .~ sensorv evaluation was conducted with seven random volunteers in order to determine the sensory effect of a cream formulation on the skin.
An oil-free cosmetic formulation was prepared substantiall- as set forth in Example ~0 3,(b) and was compared to ~ive~ Oil Free. ~ produc~ of Beiersdorf of Gerrnany.
Volunteers placed unmarked samples on the skin and evaluated the formulation based upon its feel and texture. The sarnples were rated on a scale of I (bad) to 5 (good).
The oil-free cosmetic formulation of the present invention scored equally to the Nivea Oil Free moisturizing product. Both samples scored a 3.5 on the rating scale.
The observed thermal behavior of the reversibly gelling polymer network suggests that the increase in viscosity is due to aggregation of the hydrophobic portion of the poloxamer at the transition ~ lpc,dL lre which, because of bonding with the poly(acrylic acid) component, serve as ~cl~ y cross-links which physically bridge adjacent chains of poly(acrylic acid) to provide a viscous gel-like e~ctended polymer structure. The aggregation process mav be understood as occurring as shown in Figure 10, in which a backbone 20 r~ el~t poly(acrylic acid), a thin band 24 le~v~esellt~ the hydrophobic poly(propylene) glycol region of the poloxamer and a thick band 26 r~eS~ the hydrophilic poly(ethylene glycol) region of the poloxamer. Below the transition ~ ,aLLlre, the polymer network is randomly arranged, as is shown in S Figure lO(a). At or above the transition Le.ny~,.dlu,e, the hydrophobic regions 24 associate to form aggregations or micelles 28, as is shown in Figure lO(b). The association in--eases the effective molecular weight of the polymer network composition with the corresponding incre~se in viscosity, A general method of making the poloxarner PAA polymer network compositions of the present invention comprises solubiliza~ion of the poloxamer in acrylic ~cid monomer~ followed by poly;nerization of Ihe monomer to P.d~A.
Polymerization may be accomplished by ~ddition of a pol~merization initiator or b,v irradiation ~echniques. The initiator mav be a free r,~dical initiator. such ~s chemical free radical initiators and u~, or gamma radiation initiators. Conventional free radical 1~ initiators ma,v be used according to the invention. including but in no way limited to ammonium persulfate. benzoin ethyl e~her, benz-l pero:~ide. I.~'-azobis(2.~-dimethylpentanitrile) (Vazo S') and azobisisobu~ronitrile (AIB~). Ini~iation may also be accomplished using cationic or ionic initiators. ~lanv variations of this methods will be apparenl to one skilled in the art and are contemplated ~s within the scope of the inven~ion. For e.Yample, the polo:camer componenl may be dissolved in an acrylic acid/water mixture instead of pure monomer. It mav be desirable to remove unreacted monomer ~nd/or t'ree poloxamer from the resultan~ polvmer network. This ma-y be accomplished using conventional techniques, such as. by u~ay of e~ample. dialysis or sohxle~ e~c~raction.
Without inten~inP to be bound by a particular m,oc~nicm or structure, the following scheme t~,preSC~ s a possible chemical mech~ni~m for the formation of the system here described. These mech~nicm~ are presented by way of explanation and are no wav limiting of the invention. rt is contemplated that these or other mechanistic routes may in &ct occur in the formation of the polymer network of the present invention.

*rB

PCT~US98/08931 I ~nitiation R- + CH,=CHCOOH ---> RCH2CH-COOH (2) II Hvdro~en Abstraction S R- + -OCHRCH,O- ---> RH + -OCR-CH,O-(3) R- + -CH~CH,COOH ---> R~I + -CH,CH-COOH
(4) III Chain Transfer -CH,CH-COOH + -OCH.CRH- ---> -CH,CH,COOH + -OCH~CR-- (5) -OCH,CR-O- + -CH,CHCOOH ---> -OCH,CRHO- - -CH,CH-COOH (7) IV Pror)a~ation RCH,CH-COOH - CH.=CHCOOH --> RCH~CHCOOHCH,CH-COOH (8) V Side Chai:l Branchina Off AA Backbone 15 -CH,CH-COOH- ~ CH.=CHCOOH --> -CH~CH(CH.CH-COOH)COOH (9) VI ~ Branchine off Poloxarner Backbone -OCH~CR-O- - CH,=CHCOOH --> -OCH,CR(CH~CH-COOH)O- ( 10) VII HomoYenous Termination -CH~CH-COOH --> -CH,CHCOOHCHCOOHCH.-~0 (Il) VIII Hetero~enous Termination with bondin~ of Pluronic to P~A
-CH,CH-COOH + -OCH,C-RO- --> -CH,CH(-OCRCH,O-)COOH
(I 'a) The scheme for bonding of poloxarner to acrylic acid may involve initiation (eq 25 1), hydrogen abstraction from the propylene or ethylene moietv of the poloxamer (eq 3), and attachment to acrylic acid via addition across the unsaturated bond (eq 10) Propagation (eq 8) leads to the final PAA
Alternatively, the mee~l~ni~m may proceed by initiation according to eqs. (1) and (~) propagation to form PAA (eq 8), a chain transfer reaction to g~,~.c~te a30 reactive poloxamer moiety (eq 5), followed by addition of the reactive poloxarner WO 98/48768 PCTrUS98/08931 moiety to the unsaturated bond of acrylic acid (eq. 10) and subsequent propagation of the PAA chain.
Thus the polymer nerwork may include a plurality of poly(acrylic acid)) units bonded to a iingle poloxarner unit or, qltern~qtively~ a plurality of poloxarner units 5 bound to a single PAA backbone. Combinations of these alternatives are also a possibility.
Reverse phase polymerization may be used to prepare polymer net~vork beads by dispersion of the poloxamer and acrylic acid monomer mixture in a nonpolar solvent such as hexane or heptane. The aggregating polymer/monomer solution is 10 dispersed with agitation in the nonpolar solvent in order to suspend droplets of the solution. Polymerization of the monomer is initiated bv conventional means (i.e..
addition of a ini~iator or irradiation) in order to pol,vmerize the monomer and t'orm responsive polymer network beads. See~ U.S.S.~I. 08/'76.~32 &led July 18~ 1995 and entitled "Useful Responsive Polymer Gel Be,qds" for further information on the 15 preparation of polymer gel beads. herein incorporated bv reference. Such a method may be particularly desirable to provide a heat sink for the heat generated in the e~<othermic pol,vmerization reaction.
The pol,vmer network comple:ces and aqueous gelling solutions of the present invention may be understood with reference to the following e:~mples. which are 20 provided for the purposes of illustration ~nd which are in no wav limiting of the invention.
E~arn~le I This e~ample describes the synthesis of a polymer networK and an aqueous responsive polymer network solution t,lep.~cd using a triblock polymer of poly(ethylene glycol) and poly(propylene glycol), Pluronic~ F27 polyo!, and 25 poly(acrylic acid). This e~ample also characterizes the gelation and the physical properties of the resultant polymer network.
Svnthesis. Block copolymer of poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) having triad ABA structure (PEG)A(PPG)~(PEG)A
(Pluronictg Fl'7 NF polyol, Polo~arner ~07 NF polyol, where 'F" means Flakes, "12"
means 12X300=3600 - MW of the PPG section of the block copolymer~ '7" PEG in CA 02259464 lsss-l2-30 W O 98/48768 PCTrUS98/08931 the copolymer is 70 wt%, and nominal molecular weight is 12,600) from BASF (3.0 g) was dissolved in 3.0 g acrylic acid (Aldrich). This leples~.lL~ a S~lbSt:~nti~ y 1:
weight ratio of Pluronic(l~ F127 polyol and poly(acrylic acid). The solution wasdeac.aLed by N, bubbling for 0.5 h and following addition of 100 rnl of freshly 5 prepared saturated solution of arnmoniurn persulfate (Kodak) in deionized water was kept at 70 ~C for 16 h resulting in a L~ t polymer.
Viscosit~ mea~ . A known arnount of the resultant polymer was suspended in 100 ml deionized water into which NaOH was added. Following swelling for 3 days while stirring, the pH of the resulting fine suspension was adjusted 10 to 7. Samples of 15 ml each were taken~ and pH in each vial was adjusted to desired value b,v addition of I M HCl or NaOH. Sarnples ~vere then kept o~ernight ,~nd their viscosities were measured at different temperatures usin Brookt;eld viscometer using either an SCl-18 or an SC~-~5 spindle.
A control e~cperiment w:~s done with a phvsical blend of Pluronic~ F1~7 pol,vol and pol,v(acr,vlic acid) (~IW ~50.000) available ~'rom .~ldrich. Pluronic~ F1~7 polyol and pol,v(acrylic acid) were dissolved together in deionized wa~er at I wt% total polvmer concentration and the resultant solution ~vas adjusted to pH 7. stirred and kept in refri~erator. The responsiveness of the polvmer nervork composition and the physical blend to temperature and pH is illustrated in Figs. l. 11 and 1'. Figs. I and 20 2 clearly demonstrate that the synthetic route ou~lined above resulted in ,~ polymer net~,vork sys~em that is sensitive to pH and tempera~ure of the environmenl. Note th~t the liquid-gel transition is very sharp, occurring over a very small tc~ turè change or pH (see. Figure 11). Figure 12 is a viscositv vs. tell~ tllre graph colll~ g the gelling characIeristics of the responsive polymer network composition and the physical 25 blend. The blend prepared by physically mixing of the triblock PEG/PPG/PEG
polymer and poly(acrylic acid) did not echibit viscosifying effect either as a function of t~ c~aLL~re or pH.
It was generally observed that 0.5-j wt% polymer network compositions made of Pluronic~) F127 polyol nd poly(acr,vlic acid) viscosify at tc~ ,c..~ cs of around 30 30 ~C and higher if pH is adjusted to 6 or higher, The gelling effect was observed in *rB

WO 98/48768 ~ PCT~US98/08931 polymer network compositions St~ ing 3 months or longer. Repeated heating and cooling of responsive polymer network compositions did not cause deterioration of the polymer r,elwulk or the gelling effect. Solutions of either Pluronic~ F127 polyol or poly(acrylic acid) (1-5 w% in water, adjusted to pH 6 or higher) or physical blends of 5 the two lacked the reverse thermal gelling effects found for polymer network compositions.
ExamPle 2. This e.~ lc describes a standard operating procedure for the m~nufi3rlllre of the reversible gelling polymer network.
The procedure is based upon a 50 liter production. A NaOH solution was prepared by dissolving 131.8 g NaOH pellets in 131.~ mL DI water (50% solution).The NaOH was allowed to dissolve completel~. The ~'aOH solueion will be used to convert a percentage of the acr,vlic acid to sodium acrylate in situ. Acrylic acid monomer ( ~ kg) is charged into 3 monomer feed tank and agitated at 250 rpm.
NaOH is added slowlv. The precipitate formed as the acr,vlic acid is neutralized to sodiurn acrvlate is allowed lo dissol~,e. Pluronic~ F127 (,.5 kg) is slowly added to the monomer feed tank. Pluronic~ Fl27 is dissolved under continued agitation.
Norpar l~ (a refined C-l' alk~ne) is added to the reaction vessel (37 L). The mixture is aeitated at 100 rpm. Stabilizer solution of Ganex V-1~6 is prepared in 'L Norpar 12 and added to the reactor under agitation.
A reaction vessel was degassed usine a ni~rogen sparge introduced from the bottom of reactor and was continued throughout the reaction. Initiator (13.63 g Laurvl peroYide and ~.23 g Vazo 52 in 0.7 kg acr,vlic acid monomer) is introduced irno the monomer solution. The monomer solution was transferred to the reaction vessel.
Agitation was increased to 150 rprr.. ~itrogen sparging continued for an additional 20 minutt-s and then heating began. Heating began at a rate of 0.5-1.0 ~C/min up to75 C. The reaction began to e~cotherrn at about ~5-50 ~C and is allowed to continue without cooling until a maximurn is reached. It is then cooled to 75 C using forced cooling. The reaction continued for 12 hours and ~as then cooled to 35 ~C. The slur~v was transferred into pails nd the polymer beads were allowed to settle.
The slurry was filtered through Buchner Funnels with filter paper (11 ~Lm pore .

size) until the bulk of the Norpar had been removed from the beads. The beads were washed three times with heptane. The filtered beads were transferred to a Pyrex drying tray and spread on the tray in a uniform layer. The beads were dried under vacuum for 4 hours at 40-50 ~C. The dried beads were analyzed as follows.
Elemental analYsis. The elemental analysis was performed by Qll:3ntit~tive Technologies, Inc., Whitehouse, NJ using a Perkin Elmer 2400 CHN Elemental Analyzer. Analysis provided C (52.49%), H (7.50%), ~ (< 0.05%), the balance ~ccllme(l to be oxygen (39.96%).
Therrnal Gravimetric Analvsis (TGA). The TGA method was perforrned by Massachusetts Material Research, Inc., West Boylston, .~ using a Dupont TGA
model '95. The assay was run using a temperature rarnp trom 30 to 500 'C,'min. The resolution for the system was set to ~ (1.0 ~C'min for all slope changes). The data was analyzed using the first derivalive of the curve and using maYima and minima to mark transitions. The moisture content was also c~lculated in this manner. The first derivative yielded three maYima. The first transition (mois~ure) was 3.0% bv weight.
the second transition was 14.0% by weight and the third was 67.02% by weight.
Residue ( I ~ .98% rem~ined).
Molecular weieht deterrnination bv ~el perrneation chromato~raPhv (GPC).
The molecular weight was determined by GPC on a Hewlet P~ckard 1-100 Liquid Chroma~ography system wilh a Viscotech T60 Triple Deleclor system. Three Waters Ultrahydrogel colurnns~ 1000. 500 and 50 A. were used for the separation. The mobile phase was O.IM NaNO, and O.OIM K,HPO, salt solution, pH adjusted with phosphoric acid to a pH of 8.0 i 0.1. The flow rate for the separation was 0.9 mL!min. The column temperature was m~int~in~d at 15 ~C. The injection volume forthe assav was 50 ,uL~ A PEG molecular wei~ht standard of '3~000 Daltons was usedto align the delectors. The result for the assay were:
Mn: 341,700 Daltons Mp: 1,607,000 Daltons Mw: 2,996.000 Daltons Free poloxarner deterrnination bv GPC. The arnount of free (unbound) W O 98148768 PCT~US98/08931 poloxamer in the polymer matrix was determined using the above GPC method and co...p ~ ;n~ the poloxarner peaks to that of a standard poloxarner solution. The typical result is appro,d.l,ately 18-22% free poloxamer by weight.
The effect of both the bonded and non-bonded poloxamer on the gelation S ~opc.Lies of the l~ onsive polymer network has been ~terminP~ by extraction of the non-bonded poloxamer from the material. Such extraction studies have established that the graft co-polymer alone exhibits the r~ c~i~lic reverse thermal gelation of the composition; however, the presence of non-bonded poloxamer co"lponent modtll~t~s the gelation process. The non-bonded poloxamer component can affecl the ~clllye~drulc of transition (from liquid to gel) and the degree of transi~ion and assists in a more controlled and reproducible Ir~nsition.
Bound poloxamer deterrnina~ion bv ethvlene oxide ~EO~ titration. The EO
titration was performed as follows. A 5 gm sample of the product polymer was extracted in dichloroethane for three hours at reflux ~emperatures. The solid isremo~ed and dried under ~ v~cuum tor 1~ hours at room temperature. The dry material is then analvzed using AST~I method D 2959-95, Standard Test ~lethod for Ethylene Oxide Conten~ . The amount of EO in the sample is related to the amount of poloxamer bound lo the polymer. The typical result is approximately 15 % bv weight of EO.
The rela~ive amount of free poloxamer may be varied dependent upon the relative proporlions of starting materials and Ihe method of poly;nerization. Although the residual solids presumably contain only poloxamer which is bonded to the poly(acrylic acid), i.e., a graft co-polymer, the material still shows strong viscosification when it is neutralized and dissolved in water. However, the ~lllpe.dture of viscosification is inclcased s~lbs~ y and the degree of viscosification per gram of total solids is increased by removal of free poloxamer.
Thus, the free poloxamer plays a role in modifying the exteM and ~ c.dture of viscosification. The poloxamer undergoes co,~.ll,a~,onal changes and changes to the critical micelle concelll.dtion as a function of temperature. The poloxarner will 30 change from an open, non-aggr~gdted form to a mire~ r~ agv~c~at~d form with W 098/48768 PCTrUS98/08931 changes in L. ..I~c,~.~...e.
Residual acr~lic monomer rietennin~tion bv eas chromato~ra~h~v (GC). The residu~l acrylic acid monomer was detPrrnine~l by GC analysis using a Hewlet Packard GC 5890A, using a HP-FFDAP-TPA 10 m x 0.53 mm x Illm column. The sarnple S was ~A~,acled and run in m~th~nl l. Using an internal standard ratio, the sample was co,ll~a~d to a one point calibration. The typical results for this assay were below 70 ppm acrylic acid monf)m-or.
Residual Nor~ar solvent bv GC. The residual Norpar in the sample was determined by GC using the above method and comparing the ~orpar peaks to that of 10 a standard. The typical results were below 1.5 ~vt%.
W-vis sPectrurn. Optical clarily data of UV-vis spectrophotome~er was obtained. A 1.0% solution in water was prepared and measured at 420 nm.
Transmitt~nce (%) was typically gre~ter than 90%.
Differen~ial sc~nnin~ calorimetrv (DSC~. The DSC was performed by 15 Massachusetts ~vlaterial Research. Inc.. West Boylston. ~vlA using a temperature ramp from 30 to 350 ~C at S Clmin. The resolution for the system was set to ~ (1.0~C/min for all slope changes). The assay yielded one endothermic event at ~65 ~C. typic~lly 270 J/g.
Examples 3-9. This example describes the svnthesis of a several reversible 20 thermal ~elling polymer ne~-vork prepared using a variety of poloxamers and poly(acrylic acid). The gelation and the physical properties ot the resultant polymer network compositions are reported in Table 2.

WO 98/48768 PCTrUS98/08931 Table2.

exarnple poloxamerpoloxatner Cu~ pO~;I;v~, pOlOX- trans. ~o amer- temp.
PAA
3 PluronicÇ9 F88 2400 MW PPG; 80 wP/0 1:1 48 Cviscosity response Prill polyol PEG; nominal MW curve shown in 11~400 Figure 13 4 Pluronic(l9 F127 3600 MW PPG; 70 wP/O 1:1 30 C pentaerythritol NF polyol PEG; nominal MW 12,600 triallyl ether crosslink ngent used Pluronic~9 P104 3000 MW PPG; 40 wt% 1:1 ~8 C viscosity response polyol PEG; nominal MW 5.900 curve shown in Figure i4 6 Pluronic~ P123 3600 MW PPG; 30 wt% 1:1 ~5 Cviscositv response polyol PEG; nominnl MW 5,750 curve shown in Fi ,ure 15 7 Pluronicl9 as above 1:1.1 ~2 C polymer solid F127/Pluronic~ formed. dried:
F108 polyol resolubilized in blend (1: 1) neutralizing solution 8 Pluronic~) F88 as above 1:1.7 80 C polymer solid polyol formed~ dried;
resolubilized in neu~ralizmg solution 9 Pluronicl9 as above 1:1.7 85 C polymer solid F 127/Pluronic~ formed. dried:
F88 polyol blend resolubilized in soiution Example 10. The followin e:cample demon~ilates the effect of hydrophiliclhydrophobic ratio on the gelling temperature. Polymer network compositions were prepared from the following poloxamers shown in Table 3.

CA 022~9464 1998-12-30 Table 3. Composition of poloxamers invPsti~t~d triblock polyol polymer MW of PPG block wt% o~' PEG block composition (PEG)3,(PPG)56(pEG)3~
P1~4 3250 40 (PEG)25(PPG)56(PEG)25 (PEG),6(PPG)56(PEG)l6 Table 3 shows that in this series, the fraction of PEG is reduced when the molecular weight of the PPG block is kept constant. Linse (Macromol. 26:4437-4449 (1993)) report phase diagrams for these copolymers in water were c~lrul~ted and it was shown that two-phase boundaries corresponding to the beginning of aggregation lS are almost unaffected by the molecular mass, given a constant PEG/PPG ratio, whereas these boundaries shifted to lower temperature as the PEG content of the polymer is reduced at constant mass. The strong depent1Pnre of the PEG/PPG ratio is a consequence of the differing solubili~ies of PEG and PPG in water at the elevated temperatures. Thus one would suppose that aggregation that causes viscosification in 20 the responsive polymer network composition should shift to lower temperature as PEG fraction decreases.
The poloxamer (3.0 g) was dissolved in 3.0 g acrvlic acid. The solution was deaerated by N. bubbling for 20 min. and following addition of the 100 :l of freshly prepared saturated solution of ammonium persulfate in deionized water was kept at 25 70~C for 16 h resulting in a strong whitish polymer. A sample of the polymer obtained (0.4 g) was suspended in 40 ml deionized water into which NaOH was added. Suspended Ic~yohsive polymer network particles were allowed to dissolve under constant stirring. The resulting 1 wt% polymer network solutions were subjected to the viscosity measurement at shear rate of 132 or 13.2 sec-l using a SC4-18 spindle. It can be seen from Figure 16 that, firstly, viscosity of the 1 wt%

CA 022~9464 1998-12-30 W098/48768 PCT~US98/08931 l~al,onsive polymer network solutions before viscosification (at 20-24~C) decreases in the series (PEG)37(PPG)56(PEG)37(Fl03) > (PEG)?5(PPG)s6(PEG)~5(Fl04) >
(PEG)16(PPG)s6(PEG)l6(F105) and, secondly, the ttl--p~ u~ at which gelation shifts from about 15~C for (PEG)37(PPG)s6(PEG)37 to about 35~C for S (PEG)~5(PPG)s6(PEG)25 and (PEG)16(PPG)s6(PEG)16. Both results are in excellent a~ nt with the theory set forth in Linse.
Example 11. The following example is related to release of and active agent from a poloxamer:poly(acrylic acid) polymer network. Drug loading and kinetics of release of the protein hemoglobin from poloxamer:poly(acrylic acid) polymer network is described.
Svnthesis. Pluronic~ F127 (3.0 g) was dissolved in 3.0 g acrylic acid. The solution was deaerated by N~ bubbling for 0.5 h and following addition of 100 Fl of freshly prepared saturated solution of amrnonium persulfate (Kodak) in deionizedwater was kept at 70~C for 16 h resulting in a transparent polymer. The resultant responsive polymer network obtained (5 g) was suspended in 95 ml deionized waterinto which NaOH was added. The resulting suspension was allowed to swell for 7 days.
Hemoglobin loading and release. A 5 wt% respon~ive polymer network composition (3 g) was allowed to swell for 16 h in 10 ml of 0.25 mg/ml solution of human hemoglobin (Sigma) in deionized water adjusted to pH 8. The resulting mixture was well shaken and placed into the feed chambers of customized vertical, static, Franz-like diffusion cells made of Teflon. The feed and receiver chambers of the diffusion cells were separated by mesh screens (# 2063). The receiver chamber was continuously stirred by a m~gnrtir bar. The cells were allowed to equilibrate to either 25 or 37~C (in an oven). The feed and receiver phases consisted of 1 g of the hemoglobin-loaded responsive polymer network and 6 ml of phosphate-buffered saline (pH 7.4), respectively. In the control expe~u-l~"t, the feed phase was made of 1 g of 0.25 mg/ml hemoglobin solution. After the feed solution had been loaded into thecell, the kinetic time commrnred. Samples of the receiver phase was withdrawn from time to time and their absorbance was ll.casul~d ~ecllophotoll.cllically at 400 nm.

*rB

CA 022~9464 1998-12-30 To c~ tç hemoglobin concenIl~.lions, corresponding calibration curves (absoll.allce in PBS versus hemoglobin concentration) were g~.1e.dted. The results of the kinetic eA~ nl are prese.lted in Pigure 17. It can be seen that the rate of hemoglobin release from the polymer network was substantially lowered at 37~C when co,ll~cd5 to that at 25~C, because of viscosity increase in the polymer network at elevated hlllp~at~ S (see Figure 1). The protein released from the polymer network colllposiLion still retained its native structure, as was del~ led by comparison of uv-vis spectra of release hemoglobin and natural hemoglobin.
Example 12. The following example is related to release of an active agent 10 from a poloxamer:poly(acrylic acid) polymer ne~work. Drug loading and kinelics of release of the protein Iysozyme from a polymer network is reported Lysozyme loading and release. A 5 wt% responsive polymer network composition (3 g) was allowed to swell for 16 h in 10 ml of 1 mg/ml solution of chicken egg-white Iysozyme (Sigma) and 1.5 mg/ml sodium dodecyl sulfate (Aldrich) 15 in deionized water adjusted to pH 8.5. The resulting mixture was well shaken and placed into the feed chambers of customized ver~ical, static, Franz-like diffusion cells made of Teflon. The feed and receiver c~nhers of the diffusion cells were separated by mesh screens (# 2063). The receiver chamber was continuously stirred by a m~gnP~ic bar. The cells were allowed to equilibrate tO ei~her 25 or 37~C (in an 20 oven). The feed and receiver phases consisted of 1 g of the Iysozyme-loaded responsive polymer network and 6 ml of phosphate-buffered saline (pH 7.4), respectively. In the control experiment, the feed phase was made of 1 g of 1 mg/ml Iysozyme solution. After the feed solution had been loaded into the cell, the kinetic time comm~nre~l. Samples were withdrawn and their absolbance measured 25 speclluphotometrically at 280 nm. A calibration curve was prepared for Iysozyme concentration ranging from 0 mg/ml to 0.5 mg/ml in phûsphate buffered saline. The results of the kinetic experiment are pl~,sellI~d in Figure 18. It can be seen that the rate of Iysozyme release from the I~ JI onsi~e pûlymer n~.wolk composition was sllbst~nti~lly lowered at 37~C when compared to that at 25~C, because of viscosity 30 increase in responsive polymer network at elevated temperatures (see Figure 1).

CA 022~9464 1998-12-30 WO 98/48768 PCT~US98/08931 In order to demonstrate the retention of the enzymatic activity of Iysozyme, the Iysozyme released from the r~,S~uOnsi~e polymer network co,llposition was assayed using Micrococcus Iyso~leik~ir~l~ cells and collll.aled to that of original Iysozyme. The enzymatic activity of Iy~uL~lllc was the same, within the error of the assay (15%), as 5 that of the original Iysozyme. Control without Iysozyme in pl~:sence of sodium dodecyl sulfate did not show any a~ ciable Iysis of the cells.
Example 13. The following example is related to release of an active agent from a poloxamer:poly(acrylic acid) polymer network. Drug loading and kinetics of release of insulin from a responsive polymer network composition is reported.
Insulin loadin~ and release. A 5 wt% responsive pûlymer network composition (3 g) was allowed to swell for 16 h in lO ml of 5 mglml solution of bovine Zn2+-insulin (Sigma) in deionized water adjusted to pH 7. The resulting mixture was well shaken and placed into the feed chambers of customized vertical, static, Franz-like diffusion cells made of Teflon. The feed and receiver chambers of 15 the diffusion cells were separated by mesh screens (~ 2063). The receiver chamber was continuously stirred by a m~gnPti~ bar. The cells were allowed to equilibrate to either 25 or 37~C (in an oven). The feed and receiver phases consisted of 1 g of the insulin-loaded responsive polymer network and 6 ml of phosphate-buffered saline (pH
7.4), respectively. In the control experiment, the feed phase was made of l g of 5 20 mg/ml insulin solution. After the feed solution had been loaded into the cell, the timing comm~r~e(l. Samples were withdrawn and their absorbance was measured spectrophotometrically at 280 nm. A calibration curve was prepared for insulin concentration ranging from 0 mg/ml to 1.25 mg/ml in phosphate buffered saline. The results of the kinetic experiment are prese.l~ed in Figure 19. The rate of insulin 25 release from responsive polymer network was substantially lowered at 37~C when compared to that at 25~C, because of viscosity increase in responsive polymer network at elevated temperatures (see Figure 1).
Example 14. This example demo~ aL~s the ~ ?alaLion of a sterile reversibly gelling polymer network aqueous composition and the stability of the composition to 30 sterilization. The polymer network is prepared as described in Example 1, except that -wo 98/48768 PCT/US98/08931 the composition is prepared at 2 wt% Pluronic~ F127 polyol/poly(acrylic acid). After dissolution of the 2 wt% polymer network in water, the viscosity is measured. The co.lll.osilion then is sterili_ed by autoclaving at 121~C, 16 psi for 30 minutes.
Viscosity is d~ ...in~ after sterili7~tion The col.~,sl,onding curves for viscosity (a) 5 before and (b) after sterilization are shown in Figure 20 and establish that minim~l change in the viscosity profile of the material has occurred with sterilization.Examples 15-30. These examples show additives which may be used to affect the transition L~ .atule overall vi~rosifir~tion of the polymer network composition.
A 1 wt% polymer network was prepared in deionized water at pH 7 in which 10 a variety of additives were included in the composition. The effect of the additive was determined by generation of a Brookfield viscosification curve. Results are reported in Table 4.

CA 02259464 l998-l2-30 Table 4.

Exarnple No. Additive (wt%) Effect of additive on:
transition temp. final viscosity ( C) (% change) 1,2-methyl I (1.8) N
pyrrolidone (S) 16 Rhodapex C0-436 I (1.6) N
(2) 17 Dow Corning 190 I (5) I (150) (2) 18 isopropyl alcoholI (3 1) I (45) (0.5) 19 Pluronic0 Ll22 (1)D (4.4) D (13) Pluronic3 F88 (1) N I (41) 21 Tween 80 (0.5) N I (18) 22 Germaben0 II (1) D (9) I (100) 23 Iconol NP-6 (1) D (9) I (500) 24 Plurafac C-17 I (5.2) D (36) (0.5) Dow Corning 193 1 (4.1) D (12) (0.75) lS 26 glycerin (5) D (2) N

random copolymer (0.5) 28 PVP K15 (1) N N
29 MAPTAC (1) N D (8) potassium chloride N D (34) (0.25) 20 = increase; D = decrease; and N = no change W098/48768 PCT~US98/08931 Example 31. RPc~llce of the surfactant nature of the polymer network composition coupled with the gelation effect of the polymer r,etv~ol~ composition, it is possible to prepare formulation which are 100% water-based, but which are lubricous and thick.
Formulations includin~ a nonionic surfactant formulation: An O/W (oil-in-water) emulsion was made by colllbin~ng the following ingredients utili7in~
conventional mixing techniques:
Table ~.
Ingredient % w/w 10 % wt. l:l responsive 20.0 polymer network as prepared in Example 1 mulsifying Wax N~' 2.5 Mineral Oil 5 0 ' Polowax available t'rom Croda Into a vessel equipped with a high efficiency homogenizer, the formula amount of all ingredients is added, water is added to 100% w/w and allowed to mix to homogeneity. This formulation contains a nonionic surfactant and gives an emulsion that is fluid at room temperature but viscosifies above 32~C.
Formulations includin a cationic surfactant forrnulation: An O/W (oil-in-water) emulsion was made by combining the following ingredients l~tili7ing conventional mixing techniques:
Table 6.
% w/w l0 % wt. 1:1 responsive 20.0 polymer network as prepared in Example 1 Behentrimonium Methosulfate 2.5 (and) Cetearyl alcohol' Mineral Oil 5.0 l Incroquat Behenyl TMS availa~le trom Croda Into a vessel equipped with a high efficiency homogenizer, the formula amount W O 98/48768 PCT~US98/08931 of all ingredients is added and allowed to mix to homogeneity. This form~ tion contains a cationic surfactant and gives an emulsion that is fluid at room ~ y~ture but vi.cwsifiPs above 32~C.
Forrnulations includin~ an anionic surfactant formulation: An O/W (oil-in-5 water) emulsion was made by co.llbh)illg the following ingredients lltili7ingconventional mixing techni~lues:
Table 7.
~ngredient % w/w 10 % wt. 1:1 responsive 20.0 polymer network as prepared in Example 1 Cetearyl Phosphate (and) 2.5 Cetearyl alcohol' Mineral Oil 5 0 ' Crodafos CES available ~rom Sroda Into a vessel equipped with a high efficiency homogenizer, the forrnula amount of all ingredients is added, water is added to 100% w/w and allowed to mix to homogeneity. This formulation contains a anionic surfactant and gives an emulsion that is fluid at room temperature but viscosifies above 32~C.
Example 32. Acne Medication. An oil-free, clear, anti-acne tre~tmPnt is made by combining the following ingredients utilizing conventional mixing techniques:
Table 8.
t % w/w 25 10 % wt. 1 1 responsive 20.0 polymer networlc prepared as in Exarnple 1 Glycerin USP 5 0 Salicylic Acid 2.0 30 DL-Panthenol 0,5 Gerrnaben~ 11' 0.1 Di~o~ m V~lA 0.2 US~ Purified Water 72.2 ' Gerrnabe.l-ll available from Sut.on Laboratories To one vessel, equipped with a T.ightnin' Mixer with a 3 blade paddle prop, WO 98/48768 PCT/USg8/0893 the full amount of USP Purified Water to 100% w/w is added. While m~int~ining the lpe~ture, with moderate to vigorous mixing, the formula amount of Disodium EDTA, Citric Acid, DL-Panthenol, Glycerin, Salicylic Acid, and Ge~m~ben~D II is added. These materials are allowed to dissolve at 50~C. After dissolution, the vessel 5 is then cooled to 20~C. To another vessel, equipped with a high efficiency homogc.~ r, the formula amount of ~ onsive polymer n~.wu~ is added. The responsive polymer network vessel is then cooled to 4~C. After cooling, while vigorously homogenizing, the contents of the first vessel is added to the secondvessel, and allowed to mix to homogeneity.
The composition displays a flowable clear jelly appearance with excellent spreadability and absorption characteristics at room temperanlre, and after heating the formulation to 32~C, the composition thirL-rnc ~o a gel-like consistency.
Example 33. (a) Oil-free Moislllri~er (forrnulation I): An oil-free, lubricous moisnlrizer was made by combing the following ingredients nrili7ing conventional15 mixing techniques:

CA 022~9464 1998-12-30 W 098/48768 PCT~US98/08931 Table 9.
In~redient % w/w 105~ wt 1:1 responsive polymer 20.0 network as prepared in Example Glycerin USP 5.0 PPG-2 Myristyl Ether 3.0 Propioniate DL-Panthenol 0.S
Germaben~ 0.1 Disodium EDTA 0.2 Citric Acid 0.01 USP Purified Water 71.19 ' Gerrnaben~ lI availa~le ~rom Sutton Laboratories The above ingredients were added and processed as described above for the acne composition. The composition displayed a flowable creamy lotion appearance with excellent emolliency, spreadability and absorption characteristics at room te"lp~ldrure. After heating the formulation to above 26~C, the composition thir~en~d to a gel-like consistency. The viscosity vs. temperature curve is shown in Figure 21 and demonstrates that addition of adjuvants ,o the composition significantly enh~nres the responsive polymer network m~im~lm viscosity ( > 900,000 cps). The use of the poloxamer:poly(acrylic acid) polymer network in the formulation also imparts a unique viscosification effect after application to the skin, which is not evident in typical cornmercial O/W emulsion formulations (See, Figure 21b).
(b) Oil-free Moisturizer (formulation Il): An oil-free, lubricious moisturizer was made by combing the following ingredients l)tili7in~ conventional mixing technillues:

WO 98/48768 PCT~S98/08931 Table 10.
I.. ~di~.~l % w/w 1:1 polymer nelwu,k as prepared 2.0 in Example 1 Glycerin USP 5.0 Carbopol 980 1.0 D-pan-h~l, propylene glycol 1.0 Preservative 1.0 Hydrolyzed protein (and) 0.5 hyaluronic acid Sodium hydroxide 0.2 USP Purified Water 90 The above ingredients were added and processed as described above for the acne composition. The composition displayed a flowable creamy lotion appearance with excellent emolliency, spreadability and absorption characteristics at room temperature. After heating the formulation to 26~C, the composition thickens to a gel-like consistency. The addition of adjuvants to the composition significantlyenh~nres the polymer network maximum viscosity.
ExamPle 34. Sunscreen Lotion. An oil-free, lubricious sullsc~ lotion was made by combining the following ingredients utili7ing conventional mixing techniques-CA 02259464 l998-l2-30 Table 11.
,.. l % w/w 1:1 polymer network as p,~l,ared 2.0 in Example 1 S Glycerin USP 8.0 Carbopol 980 1.0 Parsol MCX 7.0 Myristyl Ether Propionate 5 0 Preservative 1.0 Cyclomethicone 1.0 Sodium hydroxide 0.2 USP Purified Water 74 The above ingredients were added and processed as described above for the acne composition. The composition displayed a flowable creamy lotion appearance with excellent emolliency, spreadability and absorption characteristics at room temperature. After heating the formulation to above 26~C. the composition ~hi~k~nPd to a gel-like consistency. The addition of adjuvants to the composition signifir~ntly enh~nres ~he polymer network maximum viscosity.
~xample 35. Facial mask. A face mask was made by combing the following ingredients ~Itili7in~ conventional mixing techniques:

CA 022~9464 1998-12-30 W O 98/48768 PCT~US98/08931 Table 12.
~ngredient % w/w 1:1 polymer network as piet)ar~d 1.0 in Example 1 Polyvinyl alcohol 6.0 Polyvinylpyrollidone (20%) S.0 D-panthPnnl, propylene glycol 1.25 Propylene glycol 1.25 USP Purified Water 85.5 The above ingredients were added and processed as described above for the acne composition. The composition displayed a flowable creamy lotion appearance with excellent emolliency, spreadability and absorption characteristics at room temperature. After heating the formulation lo above 26~C, the composition thickPn~d 15 to a gel-like consistency. The addition of adjuvants ~o the composition .signifir~ntly e~h~nres the polymer network maximum viscosity.
Example 36. Facial toner. A face mask was made by combing the following ingredients ~ltili7ine conventional mixing techniques:
Table 13.
I"~.~ul,e-~l % w/w 1:1 polymer network as prepared 0.01 in Example 1 Hydroxyethyl cetyldimonium 1.00 phosphate PEG-40 hydrogenated caster oil2.00 D-panrh~n~ l, propylene glycol0.50 Glycerin 2.00 Witch hazel extract 5.00 USP Purif1ed Water 88.49 CA 022~9464 l998-l2-30 The above ingredients were added and ~.-,cessed as described above for the acne composition. The composition displayed a flowable appearance with excellentemolliency, spreadability and absorption charac~..islics at room temperature. After heating the ~ormulation to above 26~C, the composition thirl~PrtPd to a gel-likecon~i~t-~nry. The addition of adjuvants to the composition si~nific~ntly enh~nres the polymer network m~xim-lm viscosity.
Example 36. Solubilization studies of model hydrophobic a~eents in the poloxamer: polv(acrYlic acid) Dolvmer network: estradiol and ~ ne~ This example is ~lese.l~d to demonstrate the solubilization of a hydrophobic ageM in the 10 polymeric network. Progesterone and estradiol were used as the hydrophobic agents in this model solubilization study.
Acrylic acid (99%), fluorescein (98%), ~-estradiol (98%), and progesterone (98%) were all obtained from Aldrich and used as received. Pluronic0 F127 NF wasobtained from BASF. Poly(oxyethylene-b-oxypropylene-b-oxyethylene)-g-poly(acrylic acid) copolymers (responsive polymer network ) were synthesized by free-radical polymerization of acrylic acid in the presence of poloxamer as described above. The polymer network copolymers (liccllc$ed here were composed of about 1:1 ratio of PAA to poloxamer. The rheological properties of polymer network were ~c.ce5.ced using LVDV-II+ and RVDV-II+ Brookfield viscometers. The microscopic light 20 scattering of 21 nm poly(styrene) lalex particles in deionized water and 1 w%reversibly gelling polymer network was measured using He-Ne ;aser as described previously (See, Matsuo, E.S., Orkisz, M., Sun, S.-T., Li, Y., Tanaka, T., Macromolecules, 1994, 27, 6791). The solubili~y of fluorescein and hormones in aqueous solutions was measured by the equilibration of excess solubilizate with the 25 corresponding solution following removal of undissolved species by centrifugation and filtration. Hydrophobic agents were assayed s~e~lophotometrically at 240 (progesterone) or 280 rlm (estradiol), or by using 70/30 w/w H,SO4/MeOH
(Tsilifonis-Chafetz reagent). In vitro hormone release studies were con~-lct~d using thermostatted, vertical Franz cells. Spunbonded polypropylene microfilters (micron 30 relention, 15-20) were used as a membrane separating feed and receiver phases in CA 022~9464 1998-12-30 WO 98/48768 PCT~US98/08931 Franz cells. The .~ ol~ive polymer network, water, ethanol, and 20% PEG in waterwere observed to wet the membrane. The l~,ce;~r solutions consisted of 20 w% PEGin water (pH 7) and were stirred by m~gn~tir bars. The feed phases composed of responsive polymer network were loaded with either estradiol or proge~Le,one. Each hormone was dissolved in ethanol and the resulting solution was added into the responsive polymer n~,wolk.
Equilibrium solubility vs. te.llpeldLurc plots for estradiol and proge~ ro-le (partition coefficient octanol/water (P) 7200 and 5888, respectively, in aqueoussolutions of Pluronic0 F127 polyol and responsive polymer network are presented in Figure 22. It can be seen that increasing t~llpeldlul~ and concentration (C) of polymers in the solution raises the amount of the hormone dissolved. In Figure 22a, vertical lines ~ se"l critical micellar temperatures (CMT) for corresponding Pluronic F127 polyol solutions. It is interesting to note that the slope of the solubility-temperature plots increased as te",yc~ature reached CMT, indic~ting that solubilization in the Pluronic solutions was predominantly due to the formation of micelles. Similar trend was observed in the ~a~onsive polymer network solutions.The S values in 5% aqueous solutions of branched PAA did not exceed 15 and 40 ~g/mL at 60 ~C for estradiol and progesterone, respectively. The solubility values found for responsive polymer network were the same as S in parent Pluronic solutions of equivalent concentrations. Therefore, it may be suggested that solubilizationbehaviors of the responsive polymer network are governed by the p~up~.Lies of the poloxamer incorporated into it. Thermodynamic parameters of the solubilization process with ,~sl-onsi~e polymer network were c~lr~ Pd using the same approximations as in the micellar solubilization with Pluronic polyols. See, Saito,Y., Kondo, Y., Abe, M., Sato, T., Chem.Pharm.Bull., 1994, 42, 1348. Namely, partition coefficient P was estimated from equilibrium solubilities of estradiol in responsive polymer network and water:
P=SSH/SW (13) by extrapolating the solubility plots of the steroid in Figure 22 to 100 % responsive polymer network. Using P values obtained from data in Figure 23, we c~lc~ tPd the standard free energy change (~G), standard enthalpy of solubilization (~H), and stan-dard entropy of solubilization (AS) using the following ~ ;,sions:
AG = -RTlnP; ~H = -R~InP/~(1/T); ~\S = (~H- AG)/T (14) Thermodynamic palalllet~l~ obtained alGng with P values are given in Table 13 5 Apparent partition coeffiriP~t~ and sh~odyllalllic pal~llct~l~ for solubilization of estradiol by ~ yonsive polymer n,LwulL
Table 13.
'T, K P=SSH/S ~G ¦~H AS
kJ/mol I kJ/mol J/mol 277 490 -14.3 68.6 ~93 520 -15.2 52.0 ~10 660 -16.7 4.72 53.9 ~23 660 -17.4 54.0 ~33 660 -18.0 54.0 Negative ~G values indicate spontaneous solubilization at all temperatures, whereas positive /~H shows that the solubilization was endothermic, similar to the solubilization of estriol, as well as indomethacin, by the poloxamer. Notably, ~S of solubilization was always positive, suggesting that the more ordered water molecules 20 surrounding hydrophobic estradiol molecules moved to the less ordered bulk phase when the estradiol was transferred to the hydn)phobic core of PPG segments in responsive polymer network. The aggregation of the PPG segments at elevated tc.ll~e.atures provides not only temporary cross-linking in the gel, but also a thermodyn~mir~lly "friendly" environment for the hydrophobic drugs. Indeed, one 25 can express the free energy of forrr.ation of the agy,-~gaLc core-water interface in responsive polymer network as:
~'G = [aPw(1- O + aWD~](47rR2/n) (15) where aPw and aWD are the interfacial tensions between pure PPO polymer and water and between water and the drug, l~sye.,ti~ely; ~ is the volurne fraction of the drug 30 within PPO core; R is the effective radius of the core, and n is the aggregation number.

CA 022~9464 1998-12-30 W 098/48768 PCT~US98/08931 Equation (3) shows that solubilization of a hydrophobic drug of high aWD
should increase ~he stability of the aggregate. The solubilization process was found to decrease the critical mi~lli7~tion conc~ ation and substantially h~ ase the micellar core radius in Pluronic surfactants (Hurter, P.N. et al., "In Solubilization in 5 Surfactant Ag~l~gates", Christian, S.D., Ed., Marcel Dekker, New York, 1995). A
similar trend is in~ir~tPc~ by the lowering the onset of gelation of the responsive polymer n~lwolh upon solubilization of fluul~sce;n (LogP 2.1) (Figure 24). The solubilization of hydrophobic drugs by responsive polymer network, analogous to the mirell~r solubilization of drugs by poloxamer, suggests that the responsive polymer 10 network can be an effective vehicle in drug delivery.
Our in vi~ro study of hormone release from responsive polymer network shows an increase in the initial transport rate with either decreasing total polymer concel,~ ion in the formulation or decreasing ~ pcrdture (Figure 25). These effects are related to the changes in macroscopic viscosity of the responsive polymer 15 network, which erodes more rapidly from the feed phase through the membrane into the receiver compartment as the viscosity decreases (Figure 26). The degree of the responsive polymer network erosion was measured by weighing hormone-loaded responsive polymer network before and after kinetic experiment.
Figure '7 shows that the relative amoun~ of progesterone penetrating into the 20 receiver phase decreased 4-fold with the increase of total polymer concentration, whereas the total relative amount of progesl~,une stayed almost constant as tetal polymer concentration in the responsive polymer network increased. This result shows the existence of two routes of transport of hydrophobic drugs in our model system.
Firstly, the drug incorporated into aggregates within the responsive polymer network 25 system can flow through the lll~lbldne along with the erosion of the responsive polymer network; secondly, the drug not associated with the responsive polymer network aggregates can diffuse out of the responsive polymer network in the feedphase. The second process should not be related to the viscosity of the responsive polymer network. Indeed, the dynamic light scattering experiment shows no dramatic 30 change of diffusivity of poly(styrene) latex particles in the responsive polymer WO 98/48768 PCT~US98/08931 nelwu,~ as t~ rises thereby increasing ~..rosco~ic viscosily more than 10-fold (Figure 28). This result in~ tPs that the viscosity of the ~s~onsive polymer W~ is e~Pnti~lly ,ln~rrl~ct~d on the Il~clu~eo~;c scale.

Appendix A attached.

A~ ~U1X A
Cosmetic Bench Reference Function Definitions Abrasive: nbrldes, smwlhes. polishes Emoliien~: sofiens, smoodhes sbn Absorbenl powder: talces up iiquids. sponge-like Ietion Emuisifier a surtace-aeuve Igem (surfaetant) toal promoles Ihe formalion of Absorplion base: tonms waler.in-oU emulsions waler.in~il or oil-in-waler emulsions Addulen~- Ieidifies. lowers pH. neuualizes aiicalis Enzymes: eomplex proleins produeed by living eells Ihnl ent~iyze bioehemieal reaeuons at body lemperarUte .~ , ' .. capable oF rencling ehemicDlly ehher IS an Ieid or a base; Fiber strands of namr.ti or symheue plymers: for inslanee. eonon. wwl, silk.
ampholene surfaetanls are eompmlble wllh 3mome and eanonie surhet~ms nylon, polyesuer r: ~, .solulionof,pul~. i formsfilmswhenlhesolvemev~porales Analgesie: relieves pain afier OppliQuon to I surface Anlacid: neutralizes slomach neidjly Fixalive: fil~n or sels pertumes: retards .. ~ .o,-. promoles loneer laslin ~L~ / ' '' '- Ihe t~ . ' of baclena aroma A ' ~ prevenls or retnrds cnicing of powders: keeps powders free- Fiavor: impms n .I.~L.-~U. rasle (nnd Iroma) lo edible fwds and drinks:
flowing somelimes used in iip produels ' ~ ~ relards or eliminales dandruff Foam booster enhances quaiily and quamily of l~ther of shampws Anafoam: suppresses l'olrn during mixing Foamer: a ~ ' e-uve agem (surfactmn Ihal produces foam: an emulsion ol' . reduces, suppresses, counleraCts ' '' ' air-in~water A~ U reduces. suppresses or prevems irritnlion Foam stabiiiztr see Foam boosler A~ ' ' a~ ' desuroys. inhibits or suppresses Ihe erowlh of Fungieide: inhibUs or destroys growlh of fungi L GeUan~: ;l eelling aeem: fonms gels: includes I wide ~riery of malenals ~uch A ' inhibits oxidalion and raneidity ~s polvmers, clays and soaps A~ , reduces or inhibits perspirauon Glosser: fumishes I surt'lce lusler or bnghmess: usullly used in lip or h:dr iti.. reduces or prevenls Uehing produels Hair eoloraot: see Coloram Antistptie: inhibhs the erowth of ~ ' ~ ' on Ihe shn or on living ossue Hair eonditirotr see Condiuioner Antjstat: reduces stalic by neutraiizing elecuieli charee on _ surfiee Hair d,ve: imparls I new permanenl or ; eolor lo hair Astringent: conrraets organic bssue aller applieauon Hsir sel pol~ner- polymer and/or resins used lo maintain desired hair sh;~pe Binder: promoles cohesion ol powders Hair-set re90: see Hair-sel polymer Bbaehing aeem: lighlens eolor. o cidizing ngem Hair wsving see Redueing Igem and Neurraiizer Botanieal: nDIurai planl denvmive Humeetant absorbs. holds and retains moisture Bufrer: helps maintain onginai pH (aeidhy or basiehy~ of ;I prepar~fion 11 ' ~ ~, enhanees waler solubilhy Carrier: a vehiele or base used for I preparation I ~ ' basle chemucals which are chemic~lly modified lo obtain Ihe Chelr te: tonm _ complex with Irace-metni impumies. usulllv caleium or iron desired fw~ion Colorant: ~dds eolor. m~y be ~ soluble dye or m insoluble pigmem on mix~ng with aur in soluti e agent (Surf~ctml ~ that ~onmS _ loam or lalher r~ . improves eondUion of shn nnd hnir Lubrieanc n duces fneuon. smwthes. Idds slip Coupling agent: nids in ' '''' ' or. ' of , ' Moisturebarrier retardspassaeeofmoistureorwaer eomponents i~ ' removeseolorbyndsorption.blelchingoroxid~tion '' ' ,_. Iids in increasing the moisture eomenl of the skin Ihrough l! used lo denature ethyl nleohol Neutrrlizer an o~udizing Igent used in h~ir wlving thal slops the ~clion of Ihe Dental powder: powdered denufnee reducing Igem ~d re~ ' ' ' the disulfide linlcages in hair Deodorant: desuro,vs. masks or inhibits fonmalion of unple~sam odors Oil sbsoro n1: see Absorbem powder Depilatorv: removes h~ir ehemieally Ointment b se: m anhydrous mixrure of oleaginous components us~d IS a Detergent: ~ surfice-aclive agem (surfactnm~ Ihal cle~ns by emulsifying oils vehicle for md suspens particulale soil Opaeifier opaeifies elear liquids or soiids ~;~; ~ r ~ deslroys pnthoQenie I ~ Oxidant: oaidizing _eent. neutraiizes reducine Igents. bielching Igem Dispersant:promolesthc ' ~ ' "' ' of ~'', v , Pearlant: impnns I pe3rlescem lexnure 3nd lusler D,ve stabilizer: ~ce Smbilizer Perfume soivent: see Solvem nnd Solubilizer Cocmefic Bench Re~erence 1996 1.1 *rB

.

CA 02259464 l998-l2-30 WO 98/48768 56 PCT~US98/08931 Pet~oxide st~bilizer: see Slabilizer Stabilizer: added to stabilize emulsions andlor suspension~
Pigmenl:ut;nclypowdenedin~oluble~ubstDnceusedloimpmcolor.lus~eror Slimulane produces a Icmporary incre3se in Ihe tunclionDI ictivily ol ;m opucily orpmSm or ;my or ils pans Plasticizer:pl3s~icizes~mukesmoretle~ible)polymenct;lmsortibtrs Surfacl~lnllsurt~ aclive3gienl):lowerssurt3ce~ensionb~we~nlwo or more i- , '' phases: SODpS. de~ert!enlS. welllny Iyenls.
Poltsh: ~moolhe~: Idds olos~ Dnd lu~ler aolubiziny Igenls ~nd cmulsirying :Iyenls cre Iyplcul Polvmer- I ~crv hir~h molecular weiyhl compound Cun~ inF ol repeDline suffaclanls.. ,ccla,,,lj~dlsanionic~c;tlionic~nonionicand , ' ,~, suuclur31 unils 3nionic ~urtaclanls ere neea~ively ch;trFed. cllionic surli~ct3nl~ ha~e powder: a solid in Ihe lonm ol I;ne p3nicles no eleclric;tl charge if~.. '.. proleclsproducrstromapollDYeby w~L Suspendingstgent keepsfinelydividcdsolidp;miclcsin~uspcnsion Propellanl: pressunzed ~jas in I com;tiner used lo eJlpel Ihe comems wh~n Svletttner: sweelens lo pmvide a more pleDs3nl 13sle pressure i~ relc3.~ed by opemno a v;ll~e Tanning Dccelernlor: ccceler3les Ihe lannine of ~kin Prolein: nDlurDlly ~ccurring complc.~ ' ol amino ~cids Thickenermhickens or incre tses ~ uail~ ' V
Reducine uFene r~duce~ D chem icll compound u~uDI Iy by donDon6 ~leclron~: Thixotrope: ~he pmpeny oi cen3m ocls and emu l~ions ol becom i ny morc lloid neulrtlizcs o~ndiziny :Iyems or less viscous when sh3ken or sllrred Refa~inc3Fen~ dd-ùllsm;tlen;llsn~lhe~urteceol~ub~lr;tles~e~ skin;tnd UVabsorber:used~sasunscr~enandlopro~ec~prcp;lr;llion~lromdcortd~uon h;ur by UV r;tdiDlion Resin:nonvolDlile~olidorsem~solidorr3nic~ub~lDnceAobt3inedrrompl3nts W~3bsorber:~bsorbsin~heranFe3'WOOn;momelerslnm 3s e~tud3les lo prcpared bv l)ul~ ~L.~ ol' simple molecules WB absorber Ibsorbs m ~he rDnge '90-1'0 n;lnome~ers ~ nm ~orm- .w"' comple.~es wilh mullllv~lenl poskive ions ' ~ Wax: my ol nurnerous subsl3nces oJ' phm. mimll or ~vmhelic onein Ihu~
Silicone: P~l! menc oromiC ~ilicon compounds which 3re W31er resisl3m com3in pnnc~pDDly eslers ol hioher iDny JCids :mli hieher l;lllV ;llcohol~: Ire~
Skin proleClanl: prolecls skin ~rom ~.. ,... ' falty 31cohols, ~any aclds and h.JIu-~bu.. moy llso be pre~enn w;u~es denved Irom pelroieum producls sre muinly hi!5. ' ' -weieh Solubilizer: ~olubilizes. usuDlly inlo ~qu,ous ~ehicle~. norrn311y insoluble h~J~ uiu m;llenuh. ~uch l~ Ir3er;mc~s. ~ r~. olls. clc.
Welting u~ene a surface-Dcli~c 30eem (surhcl3nll IhDI lowers Ihe ~un~ce ;md Sol vent: u~ulllv liu,uids cup;lbl~ ~1 di~olvlnl! olher sub~l3nces inlertDci~ ension. 13cili~alineo Ihe wenine ol' sun3ce~

~, ~ew Book Compiles The / ~ ~ - - Very Best in Hair Research The Applied Research Series pulls together the ~ elv best papers .. :3~ on srifantifie adv.ances and research. Featuring the latest techni-Hai~ Care ~ r.~le ~ cal information forrn~ hnLr advice and ingredient revie-vs, this .... ~. ~ book is an ideal addition to vour research librar~.

Adsorpton o~catioruc polvrners D. ~ arrILtnd R Schmitt I would like _ copies oi the Hair Care booh (Paymenl requlred wnh oraer ~erannde--D. Braida f;~ al 3 Payment enclosed. USS64 per COpy. (US lunas drawn on a US banK only.) Melanin5 - I;C. Broum anJl C. Prota Please aod US56 Per copy ~or all inlemaeonal alrmall oraers.
I~ienshaircoloring-S. Casperson 3 Charge my 3 nu 3 X
Skin p.. -..e..l-u.. o; hair d~es - H. Beck et ol A~ric~n-.~ulIencnn hilir - A. Syerl et al C~n~ Numcer ~plrauon Dale Ethnic hair care - A, Syed HIircurl rel~;ers-P. ObuhnchoandM Bimlan as ~apDear-oncar3 IPI- J~pnne Sign-lur~
Cvsteine ~ ng lotions - A. Itcasaki Nam- ~Pb~ nnrJ COmP-nY
~eeping~'0Csundercontrol- S. Price Acar ~
Soft co-er 69pages .. ~ r ~ -~ ~ Coc- Coumny Published1996 A~ ~ Te~epnona lmcluce area ccael Fa~ ~mclua- ar~ corJel ISBN:0-931H0~ a~
Illtu rl Lo~ unn;ul:~iG ~ ~ ~ e-m~ aar~ss ~llou~l~c~llo~ol~n~ : Pn~ uo~ cl~oc~on~ C2 Pnce:S6~ 3 ~ Send your oraerwllh pavmenmû Allurrd Publishing Corp 362 S Schmale Fload Carol Slream IL 60188 USA . Phone 708i653-2155 ~ Fax 7û8/653 2192 Functions Abrasive II,L '' ;Icid Marinecollagen Adzuh bc3ns Lacuc 3cid Mushroom IConolus v~rsicolor~ exr~c Almond (fJrunus 3mygd31us) me~ll. shell sranules Nitric 3cid Musk roK ~Rosa moschlu) oil Aluminum silic31e Phosphonc 3cid p Apncol ( Prunus 3rmeniaca) kernel powder shells Sodium bisulf31e Quatemium-5 1 Hydr31ed silic3 Sulfuric 3cid Rubus thunbersii exrrac Jojoba ~ Buxus chinensis~ seed powder Tan3ric 3cid Senum prolein Luffa cylindrica Stenoc31yx mic31ii extr3cl Olive stonc gr3nules AHA Tricholoma matsuuke extr3ct Oysler shell powder Apple ~ Pynus malus) e%tr3ct Peach ~Prunus persic3) pit powder Apncot (Prunus armeniaC31 kernel powder Antibacterial Pe3ch (Prunus persic3) slone granules Citric 3cid Ammonium iodide Pul~ ' J 1.. ~ Ethyl 13cuue n r~ HEC gr3nules Glycolic3cid (~ ' ' ' di3ceule C. diglucon ral,. ; 1... ~ oxidized. P. spheres L3c3c 3cid n ~ ile Polvsrvrene Malic acid ~1 I
Purruce Sodium lacule Hexatnidine ~: ' Rice (Orvza saùv3~ bran Tturtaric 3cid Hexelidine Silic~ and S. colloidal Iceland moss /cetr~ri3 isl3ndic~) extrac Sodium chlonde Antiacne Lactofemn Walnul (Juglans rerzia~ shell powder Clays (while. yellow. red. green. pink) I - bromide. L. chlonde P~ ' I chlonde ~' ~~rl~tion base Salicvlic 3cid 1 .:~,. '' ' chlonde l.l.o-~ ' Sulh;r Mauriuella 3rm3u extr3clICaolin .'~tushroom (Cordvceps s3ùolifer31 exrr~ct Per~ola~urn Anti-aging Orange ùlossom extr3cl Rice (Oryz3 saova) starch Basil ~Ocimum b3silicum) exrr3cl Orr~nse ~Citrus aur3nlium dulcis I peel extr3ct Sov (Glvcine soja ) slerol Carrol ~ D3ucus c3rou ) exr~3cl PEG 12 Ebinko cer3rnides extr3c~
Zeolite Caulpa k3emp~er3 exrs3a Peppenmim ~ Menth3 pipenu) exrr3c~
Ceramide 33 (liquid soy e~tracO r ~P~.. 1l ~.. ,.. ,.. Imurense~ e:-r~c~
bent powder Craraegus cuneur3 exrr3c~ Pine ~Pinus svlvesuis~ needle exu~c~
Corn IZe3 m;~ys l sr3rch Eugeni3 j;lmbol3na ex~r3c~ P~ bic~ clic oxazolidine ~ Fomes fomer tius e:~D~3C~ Qu~emium 73 Nylon- 12 Fomis~opsis pinicola exrr3c~ Rubus thunbereii cxrr3c~
Oal lAven3 s3u-3) brDn. tlour. me31 Ganodemma lucidum oil Te3 tl~e ~Melaleucl alternifoliD) oil Zeolile Ginsens ~P3n3x gmsens) extr3c~ Tncloc~rb3n Hyalumnic 3cid Undecylenlc 3cid c~g~ Hydmlyzed serum pm(ein Ace0c 3cid Hydrolyzed soy flour ~nticakin~
Ciulc 3cid Isachne pulchelh exrr3a .~luminum sr3rch o ~. ~Uxu~
Fum~nc Dcid Laclofemn Calciumsle~rDIe Giutamic ~cid Lady's rhisrJe ~ Silybum marianum) e~urDcl DisrLarch phosphlle Glvcolic 3cid Ligusticum jeholense extr3c~ Hydraled sllicD

TheOnlyFormofGentleEflicacy E~¦
Natural ~ Odorless ~ Biod~yliddable ~ Customcolors ~ Mildoraggressiveparticles QOaA~CW
CORPORATEOFFlCES 1151N.Fiesta~ivd.-Gilb~t.AZ~5233-t602)545-7000 Faxl602)t923000-N~w\'or~-Carlada-EuroD~ Asia Ih~N~h7~501u~0n ~

B~OOKS lNDUSl'RES inc.
Cosmttic Ingrcdi~nrs ~4 Idcas~ ' ~ ~ ~ ~
Tel908-561-;200 F 90'8NJ~7~~~
I ~ IUNIVERSAL a~ "ALPHAHYOROIrY .. CIDS"
~ IPRESERV-A-CHEM INC. ~e~ Glycolic ~. Ic 297 North 7th Street. Jr8~~7k82ni42eg York 1121 ~ ~ Tartaric Ascorbic Fa~t:718-782-8109 Allantoin Aloe Vera Cosmetic Bench Rererence 1996 1.;

Functions Kaolin Mulbeny IMortts nigra) eA~raa Domipben brornide Magnesium mynstale. M. silicate NiaciDamide ascoroa~e r~
rM~ N-.. micronized Orange (Ci~rus auramium dulcis) peel eAtraa Eucalypnts (Euc~lyprus globulus) extraa Silica silylate Orange blossom exlra~ Fennel (Foeniculum vulgare) exlrac Sodium alulttinu m siliQte Palmeuo exlran GttrL;c (Allium sativurtt) extraa Zioc slcarale Palmilogl collagen anuno acids Glyoeryl caprylale. G. Iaturale Passion nower (Passiflora laurifolia) batit exlran Hexuniditne Anticaries ~pP~ Paulownia impenalis extra~ Hinoldtiol Cctylarnune h. ~ Salicylic acid Honeysuckle (Lonicera capnfolium) extraa Olanur Shea buuer ~r~ ~~ parkij) Licben (Usnea baroata~ extract Sodium fluonde Sodium ~ beta glucan ~ cbloride Stearyl .. Ih~ ... h, l t . t, Soy (Clyane soja) protein PeDtylene glycol ... ,...... A - . Slearylyl~_~ Phenethyl alcoùol S~enocalvx micalu extraa Pnenol A. ,li ' _ Tocopheryl aceute. T. nicorinate r-A- .. Trichomonas japonica eAtraa r-r ~ ~ Fucus vesiculosus) extracl Wlllow (Salix alba) extraa Pbenyl mercudc acetale P.m. benzoale. P.m. borale ~ Ruscus aculearus) exlraa Wltch hazel (Hamamelis virginiana~ extraa o P; , !~
Carctma cambogla exlraa Wlthania somniferum extraa r.l~ ~ bicyclic oxazolidine Fomes tometanus extraa Yanow (Achillea miUefoliurm) eA-traa Pot ssium sorbate Fomistopsis pinicola exlraCt Zinc laaale r.,,l~
Ivy extract r ~ , ethosulfa~e Mushroom I Conolus versicolor) exmaa Anti-irrilant , Sage (Salvia orficu;alis) extraa TEA h . Acelyl Sodium benzoale. S. pymbione Tncholoma mauulake exlraa AUamoin Sodium ncinoleale. S. sbale oil suUonateAllantoin ~cetyl metbionine. A gJ~_~ acid Tbimerosal ~tidandruff Azelamide MEA Tbyme ( rbYmus vulgaris) exlraa Burdock (Arctium lappa) exrract Ber ine Tbymol ~n yl~.. ol Calendula obicinalis exuact Tddocarban Corydalis ambi ua exrraa 1 , ~d betaine Tddosan Disodium, .: MEA- Cocelh-7carboAylicaad 1l - ~ . .
Ginger root exrraa Comt1ower (Centaurea cvanus) extraa Undecvlenic abd Inga edulis exlr3a Diisoslearvl dimer dilinoleale ZjDC o-ide. Z PCA
MaurBiella armata exlma Dipaltnitovl qstine Zinc pyntbione. Z ~:
~ ~v sacchannate Green lea emracl PEG-6 1 !; Hydrolvzed sweet almond protein ~q~
Piroaone 013mine H) ~, , ~ gelatin Ascorbic acid Resorcinol Laurnyl coUagen amino acids A polypepode Rosemarv ~Rosmadnus officinalis) extract l-Lysine lauroyl methionine Ascorbvl oleate. A palmitate Sodium shale oil sulfonate MaUow eAtraa r StenodvA micalu exrract Mar icaria (ChamomiUa recuuta~ exrraa BHA
U~ . DEA Palrnilovl ùvdrolvzed milk protein HHT
WtUow (Salix albal bark extraa Palmitovl hvdrolvzed whcal prolein l-Buwl h.
Znc pvnthione Palmitovl keratul amino acids Dilaunl 1i PEG-12 palm kemel glv~ndes Dimydswl 1 i Anhfun~al PEG-~ glv~rvl tallowate Disodium EDTA
Black walnul ~Jugl3ns mgr3) ext-aa PEG-30 glvcervl Dislean H 'i ConeBovA er ( Echinacea angustifolia) exrraa PEG-60 alrDond glvcendes Dodecyl gallate Orange blossom exlract PEG-78 glvcenl cocoale EDTA
Phfrda pamcuiata exrraa PEG-82 glycenl tallowate Erythotbic acid PEG-200 slvcervl tallowate Ferulic 3cid A '. t.,~ 'u ~ Pmpionvlcollagenaminoaads Grape(Vitisvinifera)seedextr3a Allamotn ~1, actd PVP Green tea exrraa Bisabolol A Iysate e~tr3a HEDTA
Black poplar (Populus nigra? exrract Sodium Cl~-15 pareth-15 sulfonale 1l) Brassm3l : exuaa Sodium I 11)1 ~ ~I_t.. -D 3 ,-(Ruscus aalleants) eAnaa Soy (Glvane soja) protein F H)ll ~
Calendula officin31is eAtract ~ collagen armino acids Lactoferrin Caralpa kaemplera exuaa Valedan (Vaienana otfianalis) extract Lysrne PC~
Celasrrus paniculata e~Auaa Melanin C~ramide 33 (liquid sov exrraa) ~isll~ Methyl gallale Cbaparral (l~rrea mexicana) exrraa r ch.lodde Niacinamide ascorbale Coneuower (Echinacea angustifolia) exrract Benzoic acid t: hm L _ aad Cornflower (Centaureit cyanus) extraa Benzyl alcohol Oat (Avena sauva) exrract Dipotassium ~ B~ ~ . Oryzanol r ~ fortunei exu~aa 2-Brnmo-2 -13-diol Pemitsodium pentelateEupbrasia oiEidnalis extraa r~ . r Penteuc acid Fi~ racemosa exrraa Capryloyl collagen amino adds Ptnpyl gallale Golden seal (Hydrastis canadensis) root extraa Capryloyl glydne. C. keratin aminn adds Retinyl palnulate polypcpode Horse cbesmm (Aesculia 1,, ) extraa r, ~ ~ ~- bromide , ~, Iysal!e extraa Jujube ~Zizvphus jujuba~ e~uraa Cetvl pyndinium chlodde age (Salvia offianalts) extraa Lammana Japontca extraa rm b Liconce ~GIvcv~hiza glabra! extraa rm ;'~ 1 Sooium selenale. S. sulfile Ligusocwn ieholense. L. Iuctdum extract Citron oil Superoxide dismutase Mamcaria ~ Chamomilla recunta) extract Copper PCA Tea (Camillia sinensis) exlract Melaleuca uncinata extraa C!~ 1 alcohol Tetrasodium EDTA
MdtD azild~rachtac%trDct rP .: chlonde Tocopherol 1.6 Cosmetic Bench Reierence 1996 W O 98/48768 ~9 PCTAJS98/08931 Functions Toeopheryl acelale~ T. Iinoleale I : rntnonium eblorido Sambueus nisra oil Wlldmarloram(Onganumvulgare)extraa I ~ b ~1 ~Ihydrnlyzed0UageD roole~ttraet Yeasl(.e ~ ,~. cerevisiae)extraa(Faex) l~ ' J dimerdiiinoleate Selinumspp.e%tracr Oleailmniurn ehlonde Shore- robusola extraa AI 'i~ PEG-2 cocamine Tar~e aeid ~1 . , PEG-2- ehloride Waioul (Juslar/sresia)leafexrraa oil Aiurninum eapryloyl hydrolyzed eollasen PEG-2 r ehloride Wbeat (Trilicum vulsare) prolein Aluminum hrJl.A Li~ A. cblonde PEG~ r.~liJ~".,. slyeendes White nerde (ldmiurn alburn) e%traa Aluminum , . A. ~ 1 PEG- 10 cocamine Wlteh bazel ~Hamamelis virg~ruana ~ exuaa Aluminum PCA. A. - , ~ PEG-15 sovarnine Y , bunseanum exr~aa Aluminuml B.. ,leoUagenaminoaeids PPG-9 . ehloride Zin,eiaa;ue Aluminum Drconium ~ ~ ~ , PPG-25 , chloride Ziziphus jujuba exrraa Aluminum zirconium ~ PPG-40: , chlonde Aiuminum zireonium ~ 1 h~ GLY Propylene giyeol slearale ~
Aiurninum zirconium , o 26 -27 -53 -62. -72 Aiurniourn sLarch ~.. uO
Aiuminum-Lh gl~ . powder r , " I L ._, . ehionde ~3Oroo nir~ide Sase(Saiviaofiieinaiis)exuaa r~l , ,, I epoxypropyldimoniutn C20-40 a0-50 C10-60aieohols Tommemil (Polemilla er~aa) exuaa ehioride Caieium slearate Zireonium ~ ~. Siiiea. colloidai Ceiiuiose sum Sorbitan eaprvlate r:, ~ e.lbehenale Antiseptic N-Sova~ 3 , .I)-N.N: .: N oL .I Dusoslearvl maiale Aiuminum PCA arnmonium elhvl suifale Dioayl sebaeate Azadiraehla indiea exuaaSoyeLbyl elbosuifale Dislareh pbosphale ~-Bromo-2 . r -1.3-diol r . ,,. ethosuifale Caienduia amurrensis exlraet S~ chionde Geiiao sum p-C3tioro-m-eresol c ~ , , . I benzvl dimonium ehionde "'~ ~ jojoba oil aOve (Eugenia~u~h,; )oii r. r ~ ~ ethosuifale isocerylaieohol 1.palmilale Crataegus CUneala exuacl r. ehioride isopropyl wslearale D: ~1 aieohol N-sleuvl{3 . r- lI)-N N-dimeLhyl~N-eLbvi Isostearyl erueate. 1. isoslearale EoLada IJh ~ estu~ael a~tttDoDium elhvl su;fale Isostearvl, Euealypms (EUQIYPmS slobulus) eXLraa Wheal ; , ,i ~ eLbo5ulfale Ma~orleirtrtD
Golden sea3 (Hvdraslis eaDadeDsis) rool exuaa U 5, .
1- '' ,' Astringent r~ ~ eellulose Melia ausualasicL .U. azadiraehla e~trraa AlumiD_m eiuale. A. Iaelale Oayl palmitale Melhyl salicvlale Asuasalus sinicus e;tuaa Oayldodeevl mvrtstale Oranse ~ Chrus auranlium dulcis) peel exuaa Astroearyum murumunL A. rueuma exlraa h~yldor~eeyl stearovl dim~r diJinoleale Oxvquinoline sulfale Azaoirachta indica extraa ~ ... slearoyl stearale Pfaf~ia paniculalJ extraa Azelarnide MEA Oleyl oleale PotLcsium abiemul hvdrolvzed collagen Bearberrv ~.' r - . Iu uva-ursi) exuaa PEG-20. -75 -150. -240. -350 PVP-iodine Bireh (Bemla aJba) ieaf extracl Silver niua~e CaLaJpa hemptera exrract ~l~u ., I.u_. P.. mlcrontzed Sodiutn saJicvla~e Celasrrus paniCulaLa exrraa PVP
Slereulia plotanifolia exulct Coee~nca indica exr ael Sorb t I
Tea Lree I Melaleuea allernifolia) oil Coffee (Coffea arabiea) bean extract vn ' ~
Tormemil I Pmenlilla erecta ) exUacl Euphrasia ob icinalis exuact Tapioca dexurin Xanthozvlum bungeanum ex~raCI Eulerpe preealona exuaa Tririeevl behenale. T. I
Evemns pnmrose (Oenolhera btennusl exrracl Trideevl slearovl slearare ~ Genuan ~Genuana iUlea~ excraa Tnsodium HEDTA
Aeetamlde ME ~ Geranium maeularum eXLraa A r .I~ Inmonium ch3Oride Grape (Vios vinjferaJ leaf exrraa Biol. polymer o~N A~c ~ h_A~ ' chlonde Henna (l~wsonia inermis) exrract Distareh phospbale Al~cvl dimelhvl betame Hieroehloe odorata eXlrael Dos rose (Rosa eanina) seed exuaa r ,, ~ chlonde Honeysuckle(Loniceraetlpnfolium)e-Arraet HydrogeoperoAide r ~ . r" h! elhosulfale Hops(Hurnuluslupulus)exuaa Kojieabd r ~ /I h, ~ .h, 1 dumonuum ch30nde Horsetail extra~ Mulbem ~Moms nisra) exuaa C~buA~.! c nm Hypenesmper~ran~extraa ~ _ roolextraa Celethvl elhosuJfale Ivy e~aa ' ~ chloride JunipeneicommunisexUael Botaqi ChidD Kadsura heleliloca exuaa Acacia Chitosan Kola (Cola aaiminata) exrraa Acacia faroesiana eAtraa r. ~, , 1 c~h! ' " elhosulfale Lady s roan~le (A3cbemi33a vu3saris) extraa Asritttonv (Agnmonia eupatoria) extract r. ' h.J~uA~u .. r,l hydrolyzedrice Lemon(Citmsmedicalimonumlextract peelexrma A3der(Ainucfirma)exrract prolein Lemon - exUacl Alfalf~ (Medicago sativa) extract r, h!. ~r,v~,~lhydrolyzedsov Lysu~chia g~ eAuaa Aie~ae(A : nodosum)exlraa proteuD Magnoiia spp. extraa Aigae (I i dcarum) exuaa D ~ h ~J~UA~ r~l,U Y Mrimonium chloride Mauriru nexosa extraa Aioe barbadensis. A b. exuaa Dimelhyl D. cocarttine ~ regia exuac~ Aioe capeosis extraa DimethvlI D.soyam0e Mela3eucaunbnata M.wiisoniiextraa AipineVeronicaexuaa Dumelhvi lailovvartune Melia australasica exuaa Aithea offibnaiis exrraa D ' ~' ' '!lh!l~uAi ~!' ' Nenle(Unicadioica)exrraa AngelicaarchaDgelicaexr~cl - Oait (Quercus) bari~ eXUacl ArLce ~Piunpinelia anisum) exuaa D; ! I--h ~ I h . ~ UA~ . ~h! I Ocimum basilicum. O. sanmm extraa Appk (Pvms maiusl extract N-Dodecvl-N.i'l: ! I N (d~ ul acelale) Paimeno eAlraa Apncol / Pmnus Drmeniaca~ exrraa ammomum chlonde Passlon ibwer ~ PDssiflora launfolia ~ fruil exuDct Arnica montana exlraa r ', r ~ I h!'~'U'~' Plamain ~Phmago mDjor) exUDCI ~ttemisia capiiiaris exlra~
Gl ~cerv I ............ ' Polvgooum mulbaorum exlracl Anichoite I C- nara scolvmus) exuac ....neJ IDllùwDmlne n <lde Plerocarpu~ mDrsuplanus c~xlracl AsateDda ~ FerulD Dssa loelidal exlrDc lc. ~ ....... l.. l.. ~.O .l .11~; RDcpnerr~ ~Ruhu~ ~slma Asi;lc~rum ~lebol li eYIrila PCTrUS9N/08931 Functions Aspur;teus ol l;clniJIl~ eXmtCI Cucumbem Cucumis S;tlivus~ extT; ct Jlsmine lJ~sminum o~ficin31e~ extr3c A itrsteulus simcu~ extr3c~ Cypresc ~Cupnessus ~ exlrJe~ Job s te trs ~Coix l~crym;t-jobB extracl AvenslGcumnvulele~tlrtc~ DDndelion~TurDxucumotficinDlelextfitct Jojob;tlBuxuschinensisJseedpovder Avoc;tdo(Perseterlt~ m;t~exlrDcl DalelPhoenixd~clvli~er;t~ex~rDel lunipenuscommuniscx~r;tc~
B;tlmmlnl lMelicsululicint~ exmDcl~oilexmtcl DeadSeuMud Sul~s KelplM;tcmcvslispynferD)ex~roct B~n~nu I Musu sapicnlutnl extr. c~ Doe ro~e IRos~ c;tnin;tl hips ex~rDcl KiWi lAclimdia chinensisl Iruit exlr;tct. seed oil B~rlev I Hordeum ~ule;lre) extract Dver s broom extrDa Kola ICola ;tcummDtD~ extr;ta Basil I Oclmum busi licum ~ eXlrtcl Eleulhen- Sinsens I A . semicosus ~ KrDmeri;t tri;tndm extrtct Bearbenv ~AII r ~ 5 Uvu~urSil CXtrJC~ CXlntCI Lldy s m;~mle IAlch~mlllu vulcarisl e:~lrDCt Beepollene~tlr;tc~ ElmlUlmusc~mpes~nslesur3ct Ladv'sThistlelSiivbummDn3num~extr~c~
13ee~Bel;tvuleJnsle.t~rlc~ EucalvptuslEuc~lyp~usslobulus~e.~uract L~ur,cllLlurusnobilislcxultct Bet;teluc:ln Euc~lyptusslobulusml L~venderlLavnnduia;tneustitoli;t~e.ttntct~w~ter Bilben,vl\~:;cciniummvnillu.~extr;tcl Eucommllulmotdesextract LemonlCilnusmedicalimonumlexu-aa.Juic~
Biollavonolds Euphr;tslu nlficinalis e~t~rac~ extrtc~. peel exu;tct BinchlHeluluJlhD~b;trke.ttract.leDfextrlct Eveninepnmrose~OenolherDbiennis~extnDcl.oil Lemon' ~' - exlracl airchlBelul;lplttvphyllD jJpomc;t~extrDct Everl~lln~elHelichrvsumaren3numlextract LemonerasslCymbopoeon ~exlr~ct Hitlerormselcilrusuuranliumamara~extracl~ Fennel(F~cniculumvulgarc)extrncl Lcop3rdfower(Belamc3ndaLbinenslslroolexlr ~lowere~lrlcl~peeletlrJcl Fenuerceketlracl BlJck ~ohosh ICimicllueD rDcemosD~ exlrJa Fennemed nce lOrvza sa~ivDI exr~nct Lettuce (Lactuca sc;tnola sanva) exlract BlackcunrJnl(RihesniLrumlcxlracl FemlDrvoplensliiix-MJslexlracl Llconce(Glvcynhlzasllbra)exlrDc al;lckhennJexlracl FielFicu~cnrica~exuact Ld~c(s~vnns;tvuls~nslcxm BhJckpoplJrlPopulusnisru~e~ttrnct Fi;needletxtrDct Lmden~rillaarecntca1extract alack walnumJuelm~ merll exlract Fumitorv IFumaria olficinalis1 extrtct m en ( m J cordatol exlracl waler Bhldd~rwr;~ck(Fucus~eslculo~u~lexlracl Gnrdeniallondaexlracl Loriuol(Enoho~rvaJaponlc:llleatex~rJc Boraee (Borleo ollicinJlisl c~tmac~ G3rlic ~AIiium saovuml ex~mcl Mi~ldenhalr lem eX~rJCt BuckthomlFrJneulD:dnuslex~ract Gelidium . M~stnoh~kobusextran Burdo k ( Arcllum IJPPjJ ~ exlrlcl Gemian I Genti~nD luteD~ eXIract Mallo~v e tu-act Burdock I Arclium mmus I roo~ extr~cl Geranium mDculatum exlracl MandraeorJ o Icm:lrum exlract Bumel e~tracl Gineer root exlruct M~nn~n 3_ I ~uom ~Ruscus :Iculeatus~ extroct Ginkeo biloba extraCI MDrngold CJbbDs e rose ( Ro-;l cenulolin ~ ex~r.lcl Ginsene ( PanDx einsene~ e.x~acl MDnne sllls Cahmus(Aconu~cJlDmus~cxlracl Cl~yld aad Mstuncana(ChamomillDreculila~ctlract Calendulaolficin~ extrJct Glvcynhlzicacid '' .. ~ SpirteJulmana~e:~tr~ct Caper (Capp3ns ~pmo~a~ e.xtract Glycyn~izin. JmmomDIed Melon (Cucumis m~lo~ e:~tr~ct C~psicumlrute~censextrlct.C.l:oleore~in Golden~eJl~HyllrstisctnDdensis~roolexlr~cl MEAioo~ne CarDv,J,v(CIrumcar~ilexlrJcl GoldthreadlCoptisjaponica(extracl Mislletoe(viscumJlbumlexlract CDrraeeenJn i Cllondnu~ -nspuo Golu koliJ c tlracl Mu-ewon ( ~nemisia pnncep~ trJcL ~valer Currot IDJu~u~ ~ trolJI extr.Jct GrJPC ( vhl~ viniJeral dis~illale. c~tract Mulberry n ~lonus Dlba( n~ot extrlct Carrol(Dilucusc~rol;l~all~aloil GrDpclVilisvinlleralleJt.~eedcx~rac~ MulbcrrvH.lonusbomby~lslroolexlrDc C~ssia aunculDIa exlrJct Grape ~iiln extrlct Mushroom txtract CelDndine l~-h~ein mJjus~ estraa Grapetnuu Icimus ertndisl peel extract Mvrr'n (Commiphora m-rhJJ extrDct Chamomlle ( ~nlhemi~ nob~ ( extract oil Gn en beJn ( Pha~eolus lunatu~( extract Nastunium e.~tract ChapDn~l IL3rrea me.~(c3nJI e~lrJct Ground l~v (Glechoma hedertceJI e:~u~ct Nemli cxlract Chem ~ Prunu~ cpec~o~a I leJt e.~tracl GuDrmD ~ PJulliniJ cupana( exlract Nenle d Jn1c3 dioicDI eslrJct Chem bark. C.b. c.~lrDcl 11~ .. procumbens extrac~ Oak ~Qu~rcu~l bDrk exlrac~
Cheslnul ~CIslane3 ~all~ e~lracl HDvnov~erex~rac~ O~k roo~ e.~trac~
Chinese nlDI~cu~ ~ Hibi~cu~ roc3-~lnensi~l e.~rJC~ HazeHCorilu~ avellanDI nul e.~r3c~ OJI lA~ena ~JIIval br3n. brJn e.~nrac~mlour. proleln Chlorella ~ ul~ exlrJcl Henna i L~v. ~onla inenmls I exlracl OJ~ tlov er Cimiciiuoa loell i~ rhizome e~racl H~spendin. H. melhvl chJlcone Oli-e lOIeJ eumpa~ exlrac~. ICJt C.XlrDCt Cinchona ~ucclrur~rJ e.~rJc~ Hibiscu~ ~abdDritfil extrx~ Onion ( Allium cepD~ extract C;t~ uao-.Jm~3~er soluhle Hibiscus ~vnJcus extnact Oranee blossom exlracl Guus biollJ~onold complex High betD ~ UCD barlev tlour Orange (C;UU5 DUranl~um dulcisl flo~-er e!ttrDcn ClDrV e~rac~ Honevsuci;le ~ LonlcerD capn~olium I extract peel exlrac clove(Eu~eniacar!nph~llus~e~tlrDcl l; . ''~Lon~ccr~japomcaHeatextr~cl P~nsv~ViolDtricolorlextra Clover ( Tniollum prJlen.ie ~ eXlrJa Hops I Humulus lupulus I exlracl Papava I Clrica p~pDVDI e~lracl Cnldlum olficlnJle rhlznm~ exmDcl. C.o. waler Horse chtsmul ~ Aesculia 'b~ I exlracl Parslev I Cwm ~D. ' I c.~uracl CoHee ~Co~feD ;lrab~cJI hcJn eXlrJCI Horseradish ~CochleanD armorac~DI extrDcl Pass~on llov er I P~ssifiora launfoliDI Iruil e.~tracl Collo~dal ollmeDI Horsetail extracl P lu_c- IPD~sii'iorD incarrlDtal exlrDc Col~slool ~Tussllazo 13rti~r31 IC31 e~ilr3cl Houttuvnll cordata e~uacl PCD ~Pi~um ~allvum~ extract ComlrevlS-mphvlumo~U.In;lle~leD~exu.lct HyDcinth(HyJcinthusonentalislextract PeDch~prunusprslcDlexuact~leJ~extract Conduranoo e.~rJct Hydrrxot~l (Centdla ~CiDtiC~( extrlct Pel;treon~um eopitlttum e.~tract C"nello~emEch~naceaim~usnlolm(extract HydrolvzedoJlprotein.sovnour Pellitor~uParictDriaotficinDlislextrtct ~ l l k e t ~ r c t ~ ~ ' R n v ~ ~ ~
Corntlower(C~nlJureJcvanuslexlracl Jap3nese~n~elicDlAn~elic~acutiloba~extr~ct. Pcriwinkie(\oncamlnor~exlr~ct CrDtDe~US monoeln(t c~lrJcl wDuer PEG 80 jojoba acidlalcohol Cnthmum m;triumum exlrnct Japanese hawthorn ICratDeeus cune~t~l extract PEG-1'0 jojoba Jcid/alcohol CAMPO Siddha Herbs Extracts ~ CAMPO RF-~F'\RCH
Jolhi-Pul (r ~ . 9~ s) Siddha Extract ~or High contEtnt bir~av8ilable 44~
NN~Ural Redlum ~or anîi Karposi Sarcoma Skin Treatml~rlt~ qlW Level 36. Hong Leong Eluilding, F~oma-Maram ~Hairy Tree~ Siddha Extract torANTI SENSE DNA 16 RathEIs Ouay. Singapora 0104 ~~
Topical lpl '' la tor HIV~ Ly,. ph n 'Tel: (65) - 7653292 Full Colour Fax: ~65) ~ 7653Z93 Siddha Ex~racts lor post-CI-.~ I' t Skin-Damage Treatment PC - \/ideo T~ . (65~ 7653292 - For Tech. Assisîance~

. ~ . . .

CA 02259464 l998-l2-30 W O 98/48768 61 PCT~US98/08931 Functions Pfaff~a paniculilta exttaet Wheat (Tnueum vulgare) extraet. proueitt Phytie aeid Fi. ~.- amurense extrae~ Wheat (Triticum vulgare) germ extrae~ Potassium aspartate p; , ' jl Wheat bran lipids Sodium aspa tate Pimento ( Pimenu otfieinaiisl extr;tet White yinger ( Hedyehium eoronarium\ extrae~ Sodium , i ~ , Igl, Pine ~Pinus 5ylvestris ~ cDne. needle extraa White nettle ~i~mium album) extraer Sodium ' PineappletAnanassativusl~xtraa WlldagrimonylPotenoliaansennalextrac~ Iclh,:
Plantain ( Plantago major ~ extrae~ Wdd eherry ~Prunus serouna I bark extraet Tetrasodium EDTA
Pollen exu ae~ Wdd indigo (i3Dpdsta onetonD) Tnpotassium i_DTA
Pongamol Wdd marjoram (Origanum vulgarel earraet Trisodium f- DTA. HEDTA
Pona Cocos ex~rac~ Wllow (Saiix albal bark extraet. exr aet Puerarb~ lobola exuac~ Wdlow lSalix aibal leal' extraet t PII sltmula~
C ueen ot the meadow exu ac~ Wl~eh ha~el ( Hamamelis virginiana ~ exrraet Aeseulus ehnensls e~ttrae~
C uillaja saponaria extrae~ Yatrow (Aehillea millefoiium) eJtrraet Artemisia apiaeea exrrae~
uinee I Pvrus cydoma ~ seed extrae~ Yeast ~e ~ eerevisiae ) extract ( Faeal Astroearyum muru. A. tueuma extrac~
~uinoa ~ qumoal extracl Yueea vera extraet Baetrls gaslpaes extraa Raspberrv I Rubus ) exu ac~ 7 ~: pipenlUm e1~traet Bot~joa sorbd~s extrael Rauwolha (Serpenuml extmet _edoary (Cureyma redoratia) oil Cl,~J monfolium extraa Rehm tnnia ehinensis exu~c~ ~uffer Coeanea indiea exrraer Restharrow I Ononis ~pinosa ~ extraa Ammonium earbonate. A. phosphnte Comfrey ( Symphytum off~einaie I leaf extrac~
Rh. _1._~.. 1~.. ~hlv extrDct Caieium hydroxide. C. phosphale Condurango extraet P ._ea extmcl Citrie acid Dandelion (Taraxacum of ficinillel exLract Rhubarb ( Rheum palmillum) extraa r-~ ~ HCI Echtea glauca extraa Rice lOm~a s;mva~ bran exu~c~ Glveine Equisetum arvense exuite~
Riee fa~tv acid Phosphone aeid Eueaivptus (Euc;tlyptus globulus~ extrac~
Rose I Rosa multiflora) exu ac~ Potassium phosphale r forrunel exuacl Rosemarv I Rosmannus otficinalis ~ exrntcl Potassium sodium tartm~e Euterpe precatona extraa Rubia dnclorum extmc~ Sodium aceu~e. S. citra~e Fieus ntcemosa extmc~
SafflowemCimh;tmus unctonus) extrac~ Sodium lacute. S. phosphate hl od tra Sage(salviaofficinillis)exu~cLwater Sueeinieaeid Hleroe oe orauex a Sambueus ni~ra berrv exrr;tet. exrract T Horse chesunut ( Aescuha I ) ex~ract Sandaiwood ~ Santaium album I extract 'iCnagdsura heteitloca extraet San2uinaria eanadensls extraet ~;au~
Saponaria offieimtlis extract Ac ylates eopolymer. sphencai powder LiBUstrumi iuetd um graecum exu~c' Sasa venchll e.~rrac~ Argtrune Maurtua tlexosa extractSaxifraga sarmentosa exuraet r ~I~J~ ,. ulglyeende ~ - ~ - reght exuact Seabiosaar ensi~exuac~ ( .I-J.~ unglycende Melaleuci~braetelu .~ exrrila Seu~ellana baicatensis rom e.~trac~ triglyeende Nelumbium speemsum extrae~
Siik exLrac~ t ~I ./ .~ ,./ul .. unglyeendes Oeimum basilieum extraet. O. sanrum extraet Silver t; m Ables peamou) extrac~ Cete treth- 0 Paulownia impenalis exrlaet Sisal (Agilve ngidal extrac~ CoeonuuCocos nuc~fera) oil Pfaffa spp. extraa Slippery elm extraa Cyelodextrin Ptetoa~rpus marsupianus extraa Soapberrv 153plndus mukurossl extract Dipropylene glycol Rubus thunbergii extraet Sophom ~ngusutollit exu~a Glyeervl caprylale. G. ~ . . Selinum spp. extraa Sophora fla- escens rom extract Hvdrated sdlca Shorea robuso~ extraa Sophora jilponica extrac~ i_iposomes X ~ bunceimum exuact Soybean ~GIvcine soJal exrract Magnesium silieate Sov IGlycine so!a~ germ exUitcL pno~ein. sterol Methyl propanediol Cleansing Spearrrunl Hvlentha ~indisI extracL oil PEG-8/SMDI copolymer 8irch I Betula albit H eaf extract Spinach (Spinachl oleraceal exrrac~ Poulsslum chlonde i emongrass lCymbopogon: t l extrac~
Spiraea ulmiuria extrac~ PPG-I~/S.UDI Copolymer Oat (Avena salival bran extract Sunnower I Helian~hus annuus I seed exrraa PPG-5 I/SMDI Copolymer Passion flower ( Passiflora launfolia~ hul~ extrac~
Sweet almond IPrunus amygdalus dulcis~ eAxrraa Propylene carbonate. P. glycol Wnch hazel (Hamamelis virriniana) extrac~
Sweet cherry ~ Prunus avium ) exr ac~ Serum albumin Yarrow i Achillea millefolium ) exAtrac~
Swee~ cicelv ~ Anthnscus cereiolium~ extract Sodium .~ùuA~ . Jl beLa-glucan Sweet clo er I ~ielilotus otficinalis ) extract Sodium chlonde Sweet violel ~ V~ola odoraL I exrrac~ Sodium magnesium silica~e Acetarnide MEA
SweniachiraLaexurlcl Tapiocadextrin 6-(N-Acetvlamino~ I UA~ IL chlonde Tea (Camillia ~inen~ls) extract . : . .. . .
Thistle (Chicus benedictusl extracr Cheialot~s A.. ~
Thyme (Thymus vulQans~ exrrac~ Al diacedc ~ciù Adi P~ ~Y 1 1.
Tomato (Solanum l~.u~ extrac~ Calc~um d~sodlum EDTA diethylene oiamine copolymer Tonmen~il ( Potenulla erecLal exrtac~ D~sodtum EDTA -copper AMP-isos~earo~l hvdrolvzed whea~ protein Tuberose ~ Poli~nthes luberosa~ extract EDTA Apncot ~ Prunus armeniac31 kernel oil Tunmenc ~ Curcuma longa ~ eAxr act HEDTA r ~ ~ chlonde Valenan~Valenanaorrlcinalis~exuact Mal~cIc~d E ~, "I ~IUA~JIU~Idimonium Walnut (Ju~lms rt gial extract. Ieaf exAtract Monostearyl citrate chloride Wa~er Lily ( Nymph;tea ~Iba I root exAr act Pentasodium pentetate r ~ eLhosulfate Watercness ~ ~astunium ûfflcinale ~ extract Penret~c ac~d r . lt ~ . PG-dimonium chlonde CAMPO Siddha Herb Extracts ~Ç CAMPO RESEARCH ,~
CAMPO Rai.. fu.e~l Herbi-xtracts& Oils ~ L~v~136.HongL~ong~uilding, CAMPO Australasian Herbs 8 Tea ~ree Extracts 16 Rrlm~s Ouay, Slng~oro 0104 CAMPO Chinese 8 Japanes~ Herb Extracts PC - Vidr~o T ~ d ~ 65)o7o6sr32s2- (65) ;7653293 1.12 Cosmetic Bench Rererence 1996 . .

CA 022~9464 1998-12-30 Functions r . r ~ : behenale Hydrolyzed sweel almond pro~cin r. 1~ chlond~
iehenamine oxide Hydrolyzed wheat proleir /PVP copolvm~r r~ 1~, , : . ~ , , 1 ehenovl PG-mmonium chloride Hydrolyzed wheal proleio polvsiloxane polvmer ehloride ehenyibelain- Il ' ~Ih,ll ~_' dimoniwnchloride r~, 2.-5 -6-11 -16 ihvL~ hvdrolvzdcollagn 11~- ~ ' r.l~ 17 -18 -24-29 ~4 r , ~I belaine H~ U~ chilosan Pot ssiurn dimcthicone copolyol pamhenyl Capramide DEA 11~_ , Jl guar h ' ~, "' ' pbospbale r , ~;~uw mglycende chlortde Poatssiwm lauroyl colla5en amino aads Caprylyl pyrrolidone 11~ b ~ r ~ JI ~ , J ~ Potassiwmlawoylhydrolyzedsoyprmein Cassia aunculala exuacl chloride Potassium lawovl wheat amino acids Cetamine oxide 11, ~ Jl bis-,l~ ~' '' chlande Poassiwm slearovl hydrolyzed collagcn r, ~ c hlond- H 1 ' - gelalin PPG-5 laoolin alcohol elber ChilosanPCA 11~_ ~r~ ~ l; hydrolyzed keralin PPG-9 " ' ~ ' chlonde Ci~nc acid H h silk Pi~G-20 lanolin alcohol elher r; . r~ ~" '' /; ' Cd laclale CI 11~ b ~, , hydrolyzed wheal Proline propion n~ prolein P opylene giycol stearale r. , r~ , ./1 Isopropylh~J~ - ' dimelhicone rvP," ' , ~ vl~
hydrolyzrd collagen copolyol polygivcol esler r, ~ , Isopropvl lanolal- ~ " ' ' ' ,; ' ~; - copolym~r h~JIvA~tJ~uu~ h.l~ J collag-n ' ' , belain- 1 ~vr~ J;
r~ h ' ' elhosulfale Jl ' ' !' giUconale ~ 5i~vl esler r~ , , .I PG-dimoniumchlonde CPc ' ' 1/" ' ' Pivcolale PVf/l ' '~.. vwheatDroleincopolvmer phosphate I r ~ /1 b! iacvale Qualerruum 2~ -26 -33~ -61 ~2 -70 -80 Co v I ' ' o)tide ' v~ ~1 .Ih!l " abosuifate ~ualemium 76 hvdmlyzed coliagen r"al.' ', r-l buaine ~ !l v; ~ chionde P ' ' ~lln vv'' chionde Co~ ' h~J u~u uu~ I hvdrolvzed hair ' ' ' vl morpholine I m lactale r , ,1 epoxvpropyl dimonium keralin I ~ , I morpholine oxide ciniondc r, h!J~u~ v~, hydmlyzedrice I ~IPG-dimoniumcbionde " ' ' ,I~h! ' elhosulhle ptm-in ' " chionde f ice peplide r, h.J~ v~lhvdrolyzedsilk Isoslearvlhvdrolyzedanimaiprolein r .;:' ahosulfale r. - h!J~ ,Ihydrolyzedsoy l~u~ ' JI '' ' .~ v~Jldimonium P' ' ' ;Ibelaine protein ehlonde '" ' ' ' N ' ' ~' lactal~
Coconm aicohol I ' ' ' ' ' ~1 ~Ih! ' elhosulfale N-Cocovl(3 ,;)-NN ;I'i !1 I ~ rJl 3 ' ~ chlonde ammonium elhvl sulfale I ~I PG-dimonium chlonde I Pc ~ ' ' ' , h elhosulfal-Collagenphlhalale phosphale Siiiconequa~ernium 3 D;b~h~ 1/0; ' 1~1 dirnonium chlonde i awamine oxide Silk amino acids Diiv~h- !; chloride i~awoampho PG-giycinale phosphate Sodium/TEA-laurovl collagen amino acids D;-c ~ chlonde Laut~vlhydrolyzedcollagen Lh elaslin SodiwmTEA-laurovl hvdrolvzed keralin D;l-.. ; ' chionde Lauroyl siik amino acids Sodium~lEA-lauroyl keralin amino acids i~;h d~ h.lcoclmineoxide Lattrvlmelhvleiucelh-lOh!J~u~ v~-l Sodiumauate Dh; ' ;~h~li !J~VJ~ Ur!I dimoniumchionde Sodiumcocovlhvdrolvzedsoyprotein chionde Laurvl phosphale L pvrrolidone Sodium h!l~ lailow dimelhvl givcinat~
D ' !v~ JIvl laiiow ~Ivcina~c I . ' h hv~y v~u!; hvdrolvzed Sodium laurovl collaeen keraon amino bcids Di' .J,u~. ' I tallowamine oxlde collagen keralin sov protein Sodiurn laurovl wheat amino acids DilaUrVI aCelVI dimOniUm ChlOndC I ~ Sodium ~; ; k r ~ ; Miik armno acids Soluble keratin wheal prmein Dimethvlh!~ Iallowamine Mtikprolein~Lactisproleinum) SovamideDEA
Dimelhvllauramine Dl isostearate ~ '' chionde " Ib ~L~;~ chionde Dimethvl ~ sovamine slearamine Mv uu~lbetainc M ~ !; c, r r;l b~taine S !' ',~
D' '~ dimerate t1s ~; bromide r ~lah~ ethosulfale Disodium h!l _ ' cmtonseed glycende Oa~ (Avena sanva~ protem 50yethvl r' ethosulfate Oleamide o ethosulfate Disodium laureth '' t~ ' ~ r!l betaine O ! Steanmide MEA
Disodium l n ,~ a~ JI d ' ~' hvdrolyzed o H _ !; ! ~ ~ ~
Di,l.. .; ' chlonde collagen ~ IbenzvldimoniumchDonde Ethvl ester of hvdrolyzed keratin (1 ' ~ ' oxide ~ I cetearvl dimonium tosvlate N ELh!' ' -t . I ~N-i v; ' ' 1- Olearnine ~ ,;d' v' slearate N N-dimethvl ammonium chlo Ol amune oxide o ,, I ' .' ' ahosulfa~e Glulamic acid Oleoyl sarcosme ~o ~ ~I morpholine laaale Glyeervl collagenate Oleyl belaine o ' ~ .I PG dir~onium chlonde Glvane Olevl ' b! ' ' ~1 elhon um ethosulfale phospbale Guarh, ' vu u~. Pl chlonde r ~ . rJlbetame slearamitteoxide Henna I Lawsonia inermis) exlraa r r ~ 1; ! I ~' '' ' ~ I hydrolvz-d H. I ~te~DOwamin~oxid~ r P. oxtde eobagen Ireralin 11;1 ~ I " i ' chDoride Pamhenvl h~JIu~r Ju~ chDoride c panthenol Hydrolyzedconchionnprolein PEG-~-' hD ' SlearoylamDdoethyld Hvdrolvz~d eegprotein PEG 31 c onde ~ ' bromide Hvdrolvzed extensin - auramme oxld- Slearvl dlsttethicone Hvdrolvzed tibronectm 5 st-aryl ammomum laaate T r Jl ~ !
Hvdrolvz d hsh orot~in PEG 15 n c Te~ramethvl tribydroxy hexadecane Hvdrolvzed keratin ~u-uuu !_ chlonde TEA-cocoyl hydrolyzed collagen Hvdrolvzed lactalbumin PEG-'7 Hvdrolvzed nnilk protein PEG~0 Tn.c ~ chlonde H-droNzed oals PEG-S5 lanolin Tridecvl saDtcylate H~drol~zedmllculin PEG-70ol) Triethomumhydroly2cdcollagencthosutfate H~dml\zcv~ rr-u-ln Pul!~' ' copol~ol Wheal-." ~ DClate Functions Wheat v ', , Jl .~, ' ' Disodium I ' ' TEA-PEG-3 cocamidt sulfate ethosulfale Disodium I ' lil , ' t ~ betaiDe Wheat p~podc Disodium lauryl '' Yeast powder, ', ' Disodium mvristalttudo MEA '' Disinfectant Disodium wwxyool-10 '' H " ' cbloride ~;Q~ ne ~ Pr-- Disodiumolea~ttido PEG-2 '' ChloropheDe Acetyl ' ' Disodium PEG~ cocoamido MIPA '' D Yl chloride ~ ~ DisDdium ' ' '' MEA '' M ~ ' " saccharittale Myreth-3 Disodium ": ' li, ,' Sbil~oniD
Oleyl alcohol ~ sulfonic acid Sodium ~"" ' , ' PPG-10 butaDediol D ' ~ ' 6, -9 Tea tree (Melaleuca allernifolia) oil PPG-10 celvl ether I J~J~ r p T .
PPG-10 olevl ether I ' . , /1 betaine PPG-15stearyle~her Isosteareth-ocatwxylicacid Diseersanl PPG-22 butyl ether r ~ AllcyLtted ~A~l~ . , '~, ' ' PPG-23 oleyl ether Isoslearyl ~ .. hll imidazoliDe C20-40, C30-50, C40-o0 alcobols PPG-50 oleyl ether I ~ , oxide Castor (RjCjDUS cornmuDis) oilTrideceth-7 carboxylic acid Latueth-ll Ceteareth-20 Latuoampho PG-glycinale phospba~e Ceql PPG-2 isodeceth-7 carboxvlate Denaturant Laurylglucoside,L.phosphate Ch~l~t~.J'~ ' ,1,'~.~:' ' llauroylglutamate Nicottne sulfate Magneslum htueth sulfate. M laurvl sulfate Dusosteuvl adipate Sucrose octaacetate MEA-lauretD sulfate Dunethicone copolyol melhyl ether Tbymol MEA-lauryl sulfate D~ ~ ' I duner dilinoleate Dental powder MlpA-laurylsulfate r. ~ l Dicalcium pbosphate MyristamiDe oxide Eihyl L, ' ~. ' yl ole,vl oxazoline Silica Myrisucacid Glycerylcaprylate.G.~,.. :
Sodium . ~ ~ Nonnxynol-10 Glycnyl diisostearate S~tnnous fluonde Oleth-li -15 !I"'O'J 11! _ ' tallow slvcendes Deodorant Oleyl belaine ' ' ~ copolymer Abieuc acid ~ ' ' ', , yl betaine Isnceql alcohol Azadirachta indica extraa PEG-10 slycervl stearate Isopropyl Cl -15-pueth-9~carboxylate 1'1' '." coppercomplex PEG-15glvcerylslearate Isosteuyl Eugenia jambolana exrract PEG-25 glycervl isostearate Lanolin acid Famesol Potassiurn coroyl hydrolyzed collasen Lauretb 1, -6, -16 Fermented vegetable Sooiutn , , ' Melanin Mauritia tlexosa extract Sodium , ' Nonoxynol-2. -18. ~20, -30, ~0 Salvia miltionhiza exrract Sodium . Octox,vnol-5, -10 Sodium aluminurn ' ' ' ~J~VA~ lactate Sodium~ js. ' suUate OctoA-vnol 16, 30, 10. 70 Spondias arnara exuact Sodittm cocoyl hydrol,vzed soy protein Ot t~: 5 Trietbvlcirrate Sodiumcocoylisethionate o n: ~ 1/, copolyol citrate Zinc phenol sulfonale. Z ncinoleale Sorliurn C12-15 puelh-25 sulfate Oletb40 Sodium C1~16 olefin suUonale Oleyl alcobol DepiiatorY Sodium C14-17 alkvl secsuUonale PEG-5 caslor oiJ. glvcervl sesquioleale 13uium sulfide Sodium dccetb suUate PEG-o becswax Eeeswax. oxideed Sodium d~cyl diphenyl etber sulfonate PEG-8/SMDI copolvmer Calciurn ~Lv N ' _odium .I~/d~ :' ' ' PEG-9 castor oil, oleate. stearate L-cysleine HCL Sodium !' ' ~il ' ,. ether sulfonate PEG-10 dioleate. stearumine potassium P 1~ ' Sodium iodate PEG-12 becswax Sodium ' _1}. ' Sodium laureth-2 suUate PEG-12 glyceryl dioleate, Iaurate Tbtioglycerin Sodium lauretb-3 suUate PEG-15 castor oil Sodiurn lauretb-7 suUale PEG-20 almond slycerides Det~gen t Sodium lauretb- 12 sulfale PEG-20 glyceryl isosteuate Ammonuum lauretn suUatc Sodiurn lauretb- 13 carboxylate PEG-20 sorbitan misosterate Ammonuum laurvl suUale Sodium laureth suUale PEG-25 caslor où
Capramidc DEA Sodiurn ' li, , ' PEG-30 ~
, yl ~ ! lactale Sodium ~ PEG-~0 b~ _ ' caslor oil PCA isoslearate Deql glucoslde Sodium lauroyl metbyl alalltnate PEG 60 sbta buner slycerides De~,. ' ' ' 25 Sodium lauryl pbosphate. S.l. suUale Poloxamer 101,127 181, 182.184 DEA lauryl suUIle Sodium lauryl sulfoacelale Pnlyglyceryl-2 Dlumyl sodium '' Sodium methyl oleoyl laurate Polyglyceryl-3 "' . oleate Dicyclolbexvl sodium '' Sodiurn methyl cocoyl taurate re,l~ yl 5 disteuate Diisobuql sodium '' Sodium ~ ' :' .: PM~6 mixed fanv acids Disodiumc, ,' ' Sodiuml b~: ,' ' ' '' PD1~ ljl 10 "' dislearate Dlsodmm ,. , ' bl . SodiummyrenbsuUale Pol~ c-yl 10decaolealeDisodium n y' ~ ' , ' ' Sodiwm myristyl sulfale Pol~ . acid Disodium ~,. ~: , 'i~ , Sooiwm octyl sulfale. oleyl suUale Polysorbale 40, 80 Disodtum celearyl '' Sodiwm POE alkyl ether acetale Potassiwm ,oolyacrylale Dtsodtum cocanudo MEA ~ '' Sodiwm nidecetb-7 carboxylate PPG-3 PEG-6 olevl etber Disodium cocamido MIPA ' Sodiwm trideceth suUate PPG-9 " ' .: phosphate Disodium , ' 'i , Sodiwm tridecvl suUate PPG-IVSMDI Copolvmer Dlsodmm deceth-o ' Sleareth-ll. ~i0 PPG-15 stearyl etber Dlsodmm isodecvl '' IEA :' ' " '' PPG-25, PPG~0 '' ' ,' chloride Disodium lauramido MEA TEA-laweth sullale PPG-511SMDI Copolymer Dlsodium lauramido PEG-' TEA-lawvl sulfale h ~/~iW_~olr copolymer Dlsodmm laurelh ~' TEA-pabm l~ennelsarcosiDale 1 v~ copolymer 1.16 Cosmetic ~ench Relerence 1996 .. ..

Functions Rapcseed ~)d. elho)lyl;llcd hlyh enucic acld Celyl s~c~ryl oclmoale t' h ' ' ~yl heh~na~e Ricinoleyl ~Icohol Chi. ~Solvia hispanic;n oil D;h, ~ allovvamin~ olea~e Sodiumcetelh-l3-clrhoAvl;l~e Choles~cnceslers Diisobulvladipme Sodium h= 'I' S. pul~ ' Choleslcml Diisocelvl adipale. d 'c Sodium pol~. ~ rl ~ ~LA ' ~sl/~ 'J"ve.yl h~un~vl elu~:~ma~e DiisodeLvl ;Idip~le SorbilDn oleale Cholo~leyl h, '~ y~ .l. Diisopropyl Jdipule. dimcr dilinol~;lle Slelrelh 10 Cholc~lcryl slCaralc Dii~opropyl ~ebacaleTncom~nYI PVp Cholclh-~4 Djjsoslcaroyl i,.. e~h~ p" ~doxv ~ilicateTni.~oslcmn PEG-h eslers C 18-70 Isop Irall;n Dii.ws~earyl adipale T~lylJ.~.. vl cl~ra~e C10-18. C12-18 mglycendcs Diisos~c~ryl dimcrdilinole3le C12-15 lincaraleohol~ '-c,h.;h Diisoslearvl l'um~r~e. D. mula~e EmQIJi~ r. ', . , I PG-Jimnnlum ~hlondc Dilim~leic lcid Amyl ledclvcol~le~rllc Coco~Theobmmacacaolhu~cr Dimelhicone Acelylaledh.5 'I;molin r. , r. Dimelhicunecopolvo Ac~lylaled h .JI U~ rd elycendc ron t r ~ ' Dimelhicl~ne copulvol acc~u~. D c. almond~
Acelylilled h~l."e.. ~.I.J vercllble clyccnde Coconul ICucos nucileral oil Dimethicune copol~nl hius~e:lrJIc. D.c. Iac Acelyl led h~nolin. A.l. ;llcohol Cocoyl hydmlvzed ~I~V prmeln Dimelh~cone copl~l~ol me~hvl e~her Acelyl Ied l rd ~:lyc~nd~ Cullaeen phlhal le Dimelhicone ~opulyol phlhalille Acelylal~d ~ Collold;ll u~lmcal Dimelhic(lne ~ .h l - behen~
Acclyl~led palm kernel glycendes Comtrev ISymphvlum olricinule~ l~aie~u~ct D' ' ' ' ~ICarille Alcunles moluccana elhvl CSler Com (Zca mavs~ od Dim-lh~ I lauram~nc ~dea~e Allaoloin Curnp~ppv~Pap verrhl~ca~lexlracl Dio~nyl loipa~e ,~ - v hvdro xlde ~Icaral~ Cullon.~ecd ~ Cossvpl um 1 ~ld Dioclv l ,limer dil inulcale AMP-i~o~lcarnyl hvdrolyzcd.~ov pmlem Cullleli~heXlraCI D;u~
ApncollPrunus Irmenl;lcalAcrnel~il C~ ~ ~ D~ .' ' .Idimerdilinoleale Arachidvvl hehenalc Decclh~ phosphale Diuelyldooecyl ' ' Ar~ania ~pmosl oll Deevl IdeDle Dioclyl malalc D. ~cbac:lle. wccin:lle AvocodolPerseaLralissim;l~oil. '' ' D.~ . D; !~ ~lullally~cidc~lcr Avocldooilelhvlcsler ~ r~ dloxane D; ~ slhex~ u,~l.. l;/l.cs:lc:lprJl~
BabassulOrbicnyaoleiferaloil Dibulvl~ebacale Ch ~ lhexahydroxy~lcnrale/l~o~ ralc Blryl isoclcar ,c. a. sle~lc Dicnprvl ~dipale Disle:lryl ' ~ dilinldc:lle P ' ~ q~yl '' .lluAr~ dimonium Dicnprvlylelher D maleale Dimdecyl:ldipale chlonde Dielhyieneclycol-;' - Do~roselRo,~canlna)hip~vil Beheno~vdmelhicone Diclhylcncclycoldioclanoale EzclO~um~yol~exlrac Behenylalcohol.8.behenalc bis-l~ .c.. U.. ",.~' ~.. u.. ,.. /;.. ~learalC/ EmuIDmmlcelus)oil Bchenvl enucale. B. iso~learale h,o,~;A~ Erucyl erucale aenzvl laural~ bis-D: '~;c"L~ "v' .~ ' Elhyl ~oc~dale aladdervrac61Fucu~eslculu~usl~AIract k.-. r ~ i~ hhylhexyli~opillmilale Bor~ce ~ B-~raco ~I'ficinali~ ed ud Dv, -;~ ,uyi l,hv.".h..l..lvl PG-oimonlum Br~in cxlmcl Br~zd nu~ cnholelliil csccls~) od _ I _ Bulvl m~n~lal~. ol~al~ arJI~ Y ~ i~
BUIVIOCI~I vleale ~ ~ i~
Cl'-l~. Cl'-16. Cl~-15 llcohols Cl'-15alcuhuh-~clanoalc Cl'-15~ locnzoale I . L~l 5 !!~
dl-CI'-15 llkvl lumartlC
Cl~-15 Ill;yl lacl3lc Tca ( Carnell ià ~mcnsls I oi l ~ _ C10-30 h~ L.. uUI ~ lers r vl~ c~nde C.,,lrl-~/L~n~ Inelyc~ndc PEG I csl~rs C-ulrL-~-.Ju~ mglycendc I 8 i ~ 1 1 ~ 1 i ' i5 ~ ~ ~ i C. ~,~ y l,./.~u"-,l~ l-i; mglvcende C.~,,.yhcl-.-,u~/ol~.~ Inclycéndcs C. " ~b i~uf~f~c~ Inclyccnde Cupsicum Irulc.sCen~ olcoresin C;trrot i Daucus c trOL7 sallval od clshewlAnacardiumnccident.7lc~nuloil 1 . . Ll C~slo m Ricinuscommunisloil ~ _ ~
Ccle3ryl bchen~l~. C. candelill3le _¦¦ ~ 3~ ~_ Celearyl ' C. oct noalc _ Celelryl palmilrtlc~ C. ~learale_~
Celelh- 10 Cclosle3ryl UCarale ~""~
CetvlCI'-15parelh-~carboAvlalc ~ ,L~
Ccr'vl acet~lc. C. ~Icohol ' ROBECO INC. o~
Ccryleslcrs.C.13clalc ~~P~RKAVENUE~NE\NYORK.NYio8fio ~~R~C~
Cclyl m~n~l.71C. C. ~A 13noal~ Zl2-CJ80~10 ~ ~ ~ ~ ~
Cclvl OIC:IIC. C. palmuJIc FAX 2l2-cec-~
Cc~vl PPG~ )decclh-, ~Jrbo~ lc "'~q' CCI! I n.tn~llealc. C. ~Icar:)lc ~ OUR 78~ YFAR ~1~5~
( ~cmf~ l lr~rrn~ n/- l ln W Og8/48768 65 Functions 2-Ethylhexvl isostearate Isononyl i OL~
Etltyl linolenalc. E. minlcale ' , ~: " ' O ~: ' ' yl behenale. O. oenzoale EIDYI morrhuale. E. mynstale Isopropyl avocadale Octyldodecyl entcDIe. O. myristale Elhyl oleate, E. olivale l opropyl C12-15 1 ~ 9~ : ' ' ,' oleale. O. ncinoleale Evening pnmrose (Oenolhera biennis) exlrDct, oil Isopropyl isoslearale Octyldodeql slearale Glycerelh4.5-lactale Isop~pyl lanolale, 1. Iinoleale bis~ ~: ' ' , I sleDroyl dimer diliooleale Glycerelh-5 laclale Isop~pyl mynslale. 1. palmitale Octyldodeql slearoyl steDrale Glycereth-7 benzoate boplopyl PPG-2-isodeceth-7 arboxvlate Oleamine oxide Glycereth-7 ~ Isopropyl sleDrDIe n~ .\ glycerides Glycerelh-7 IriaCetate Isotorbide laurDle Olek alcobol Glycerelh-7 Inoclanoale Isoslearic acid Oleos~earine Glycerelh-l~ -26 ISOSteDIYI alcohol Oleyl alcohol, O. erucale, O. oleate Glycerol n i~; ' Iso tearyl behenale, 1. benzoate Ol jve (Olea europa) oil Glycetyl adipale. G. dioleate Isoslearyl dislyceryl succinale Orange (Chlus auramium dulcis) peel wax Glyceryl isostearate. G. Ianolate IsosteDryl erucate. 1. ~rucyl erucate Orange roupy (I', ' ' atlamicus) oil Glyceryl linoleate. G. I , ,. _' Isostearyl isosleDrale. 1. Iactale Palm (Elaeis suineensis) oil Glyceryl mynslale. G. oleale Lsostauyl malate. 1. myristale PDlm l~ernel slycendes Glyceryl ncinoleale Isostearyl . , palrttitale Palmitic acid Glyceryl Inacelyl r.JI~ Isostearyl slearoyl slearale Pao~henyl triace~ale Glycerylmacelylncinoleale I ~ H hyc' r~ r,;dimooium Partiallyh,' ,, ~canolaoil Gl~ cblonde Partially h. ' I soybean oil Cl~ tridecyl ' Peach (Prunus persica) eltract Gold of Pleasure oil Isolridecyl mynslale Peanul (Arachis hypogaea) oil Grape (Vids viniferal seed oil Jojoba (E3uxtls chioensis) oil Pec~tn (Carva illinoensis) od Hazel (Corvlus avellana) nut oil Jojoba buner, J. eslers PEG-2 ';' P, dioclanoale Heliamhus annum elhyl esler lojoba oil. symhelic PEG-2 rDillc solids Hexadecyl isopalmhale ICul~ui (Aleumes molaccana) nul oil pEG~
!- ' ,.' " '' Lactamide DGA PEG 1 ~ ~ P. dilaurale Hexyl laurale L;utethH0 acetale PEG~5 C3~i2 alcohols chrale H~Ar 'd ' Laoolin. L acid PEG-5 Cl~-18 alcohols chrale HeAyldecyl stearale LaDolin alcohol, L oil ' PEG-5 1l! - _ ' caslor oil Honey exlracl l~ttoliD. ultra aohydrous PEG-5 h. ' ,, ' castor oil '' Hybnd safflower (Carthamus linclonus) oil LaDolir~ wax PEG-6 Hybnd sunflower (Helianthus annuusl oil Lanosle~l PEG~t b , ' ' , ~:' glycendes 1 Iy ' ~ ' C6- 1~ olefin polymers l~rd glyceride PEG-7 glvceryl cocoale 11~ ' _ ' c~swr oil Latlreth-~ ~3 PEG-8 H. ' ~ J CaS101 oil laurale Laurelh~ acelale. L. benzoale PEG-8 ddaurale, P. dioleale 11; ' _ J coconm oil Laurelh-'~octanoate PEG-8/SMDI copolvmer H~ cononseed oil I ' '~ ' ' ' ' ' tnglyceride PEG-9 slearyl stearalelly ~ _ ' C1''~18 Iriglycendes Lauryl behenate, L lactale PEG-10 slearvl stearole 11, ' ' lanolin Lauryl phosphale PEG-12 11~1 _ - ' lanolin, dislilled I ,: '' h~.: ' isoslearale PEG-12 dioleale. P: palm kernel glycerides - ' lecilhin l~squerella fendlen oil PEG-15 coamine ul.,.l~,~ ' , ' H~ millc lipids Linoleic acid PEG-18 Il~ ', ~, ' n3inlc oil Maadar ua lernifolia nm oil PEG-2D
Il,. _ ' paim kernel glvcerides Malealed sovbean oil PEG-20 1.. ' _ ~ caslor oil isoSlear31e ll~ln ' palm oil Manso (Masnifera indical oil. seed oil PEG-20 h. ' , ' castor oil pVIr l Mansokerneloil PEG-20';1 _ 'lanoljn H~ sovbean oil M ' ,; (limnamhes alba) seed otl PEG-24 h M ~ ' lanolin ' slarch hvdrolysale Menhaden (Erevoonia Iyrannus) oil PEG-25 PA8A. P. propylene glycol slearale 11~1 ' lallow glycende MePDYI acetyl ncinoleate PEG 10 ghyceryl laurale H~l 1 lallow glvcende lactale Metbyl glucelh-20 PEG 10 h.. ' ' caslor oil isoslearale ' tunJe oil Methyl glucelb-20 benzoale. .M. g. dislearale PEG 10 h!- _ ' caslor oil laurale Il ~vegelablesl,vcendes Metltylh,2. ~ M.ncinoleate PEG-10h. ' _ 'castoroil, '' 11; ~ vegetable oil ~ ! waA PEG 10 jojoba oil Hydrolvzed collagen Mined oil ~Parab'inum liquidum) PEG~50 h. ' _ ' castor oil laurate Hydrolvzcd conchonn proteiD Mi~ otl PEG-50 h;. ' ' castor où I
Hydrolvzcd l;eralin Musl~ rose (Rosa moschala~ oil PEG-oO shea buner slycerides Hydrolvzed mushroom ~Tncholoma matsutal~e~ Myretb-3 PEG~70 manso giycendes extract Myrelh~3 Qprale. M. Iaurate PEG-75 Hydrolyzed oat prolein Myreth-3 myrislate. M. octanoate PEG-75 laDolio, P. shea butler slvcerides Il, ' v i ' lanolin Myrisql alcohoL M. Iaaale PEG-75 sborea buner glycendes H~ JA~' ' miL~c slycendes Myrisql mynstale. M. octanoale PEG-150 H~ ' V~.UiL acid Myrisql propionale, M. slearale PEG/PPG~1716 copolvmer lliipe buner Neatsfool oil rc ~ ' ~I dioleate 150bulvl palmilalc. 1. sle~ral~ Neem (Melia azadirachla) seed oil r~
Isoceljl behenale. 1. omanoale Neopentyl glycol dicaprate r. ~. d s~earate Isocetyl palmilale. l.salicylale Neopemyl gly01 d' " J P- )~h.hl lsocelyl slearale Neopemyl ~lycol "' r"~
Isodecetn-2 cocoale Neopenryl slycol dioctanoale P~,.. ~.~.~.lh.. ;l: ' p, Isodecyl cilrale. 1. co oale Oal (Avena saliva~ ~ran exlraC~, eAtract, flour P-... t.. ~. ~ . ' ' jl tetralaurale. P.
IsodecYI 1. Iaurale Octa0sanyl slearate r. ~ ~ ~llerraoleate. P. . , ' _ Isodecyl , Octyl cocoale r. ~ ~ ~1 le~raslearale Isodecvloclanoale 1.olcale oc~yll~ o . r~ ~
Isodecyl slelrale Octyl , , O. omanoale P, ~ , 1-, '," ,; elher Isododecane Oaylole~le. O. palmilale Petrolarum 1s~eicosane Octyl pelar=onale, O, slearalc Pbenethvl dimelhicone OayldecJnol Phenyl '' ~ P. melhiconc. P. Irimelhicone 1.20 Cosmetic Bench Reierence 1996 ... ., .. ~

W098/48768 66 PCTrUS98/08931 Functions Phvl3nmol PPG S/SMDI copolvmer Propylene glywl mvnslyl e~her aeelate Pis~nchio I Pistnci3 v~ml nul oil PPG-9 Propylene glycol stearate SE
Pl3cemnl enzvmes PPG-9-buleth- 1 ' Purnphn (Cucurbila pepo~ seed oil pollen exlr3cl PPG-9 bulvl ether Quinoa ('~ - quinoa) oil Poloxamer 105 benzoale PPG- 10 butanedioL P. celvl elher Rnpeseed ~E3rassic3 campesms) oil PoloxJmer 18' dibenzoale PPG-IO melhvl glucose eiher Rice (Oyza saliva) bran oil. bran wax Polvbulene PPG-IO olevl elher Rice falq aeid Polvdecene PPG- 11 slearvl elher Safrdower (Cnrthamus linclonus) oil Pul~ ~ copolvol PPG-I'-buteih-16 Saltnon(Salmo)et~Lzexlrac' F~l. .h! l~n~ elycol PPG-I'-PEG SOItnolin Sesame~Sesamum indicum)oil Pol~giyceryl-' p PPG-I~-PEG-651anolinoi) Sharkliveroil Pul.~ l-' Inisoslearnle PPG-I~/SMDl Copolvmer Sheabulterll3 1. u~ . parLi) PUI;~ 1-3 p 0l~31C PPG-IJbutvlether Sheabutter(e la. parhi)extrnct Ful.tl~ 1-3 steorate PPG-15 butvl elher. P. ste3rvl ether Shea butter. ethoxvlaled Ful;~ l~.. G -fi diolente PPG-15 sle trvl elher ben20ale Shorea stenoptera butter Pul.~ l-10 dec301eme P. dectstetrate PPG-16 butyiether Silvbum mananum ethvl esler Pul~tlv.~.~l IOIelraoleale PPG-18bmvlelh~r Sitostearvlaeetate Ful;. PPG-'O Shn lipids Pul; ~. PPG-'O-buteth-iO Slipperv elm extract Pul~. , . . PPG-'Ocetvlether SodiumC8-16 P~ l PPG-'I-glvcerelh- ~ sulfonate Pul;.. vvu~c PPG-'6 Sodium e~C .~ I beta-gluc3n Pvl;vA~h~Ic.. c ~ o~ v~ rl~.. glycol PPG-'7 Qlvcervl ether Sodiumcelelh-13-carboxvlale Ful... ~.. c 3 PPG-'S-bulelh-3 i So3ium dimethicone copolvol ncelyl Fu:. ~ ,ul~ ~h.. ~ copolvmer PPG-30 Sodium glyceyl ole3le phosphnle Polvsorbal~ JO PPG-;O celvl elher Sodium hvaduronale. S. ~ lulc Polassium dimelhicone copolvol phosphale PPG 10 butvl elher Sorbeth- OPPG- -bulelh-3 PPG-iO celvl ether. P olevl ether Sorbitan isostearate. S. palmitate PPG-' lanolin nlcohol elher PPG-51iSMDI Copolvmer Sorbitan S. ~-PPG- mvnslvl elher propionale PPG-53 bmvl elher Sorbitan tnoieate PPG-3 1, ~J,, castor oil Propglene glycol cetelh-3 ncet~te Sovbean (Glycine sojaJ oil PPG-3 mvnslvl ether Pmpvlene glvcol dicJprylate Spennaceti PPG-5-buteth-7 Propvlene glycol dl ~ b PPG-5-lnureth-i Propvlene r~ivcol P.g. dioctanoale Squaiene PPG-5 bulyl elher Pmpvlene gijcol l i, 51 I cele3rVi dimonium losvlale PPG-5 lanolin waa Pmpvlene givcol isoceteth-3 acetate Stearetb I stearate PPG-5 ~ .. - ~ilu,.. l ether Pmpjlene gijcol isosle3rate. P.g. laurale Stearie aeid S. hydra2ide PPG-7-buteth-10 Pmpylenegiycolmynstate Stearoxydimetbicone I

1~1 ~ 3 ~_____ I ~ r ~

_ __ ~ t~ ;~ 3~ ~ --a~ ~ :~~ ~_~ 11 ~_ ~ ~ l 1~

C.~sme~ic B~ncrl Rete~ence 194~ 1.'1 *rB

CA 022;i9464 1998-12-30 Functions S~ c~llolymer C31cium sle3rlle N-Dodecvi-N.N-dimelhyl-N-(oodecyl aCe~31el Sle3rvi behen31e. S. oenzo3le C31cium ~le3rovl htclyl3le Jmmonium chlonde Sle3rvl '' ' S.cruc31e C;lprDmideDEA ~ ~ ~1~ '. '.I.. _mddccondens3le Sle3rylhepl3no3le 5.propion31e t- ~ .' 3cid Egg(ovumlvoikemraLt Sle3ryl ~le3ralc 1~ ~!; .' ,. elycendes Emulsirying WD~I NF
Ste3rvl ~le3rnvl .ue3r3le CuYIor oil. clho~lyl3led Etho~lyl3led f3uv 31cohol Sucrose ~0~03le f-- ~- chlonde N E ' ,: ' hD 1.1 (N i ~ .,,v. ' ' 1-Sunllower I Hcli3mhus 3nnuus ~ ~ccd oil Cele3rclh-' -I -5 -6 N.N-dimelhvl 3mmonium chlo . r:
Sweel 31mond ~ Prunu, 3mygd31u~ dulcls) oil Ccle3relh-~ phosph~tle Elhyl he~l~nediol Sweel ~herrv I Prunus 3vlum~ ph l-d Ccle3relh-5 phoYph~tle Eu~elen3 er3cilis ~ul. ~-.h.. d~
Synlhelic jl~jObOOII Cele'.~relh-u7 lo ~1 It Glycerelh-26phosph31e Symhelicw3x Cete3relh-lOphosph31e Glycerylctprvl31e.G. v; '~
T3110w Cele3relh-15-17~0-'5 Glycery1 ~ "'; '.' TLn.. J~V.I~;~U~VI ~le3r31e CCICUrelh-~7 -29 -30 -3~ Glycervl coco31e. G. dil3urale Tocophcrvl 3cel31e Ccle3ryl 31cohol Glycerjl dil3ur31e. G. diole31e Tric3prin Cele3ryl glucoYide Glycervl disle3r3le. G. h, 3 Tnc3prvlin Cclelh-' -~ -6 -10 -1~ -13 Glycerjl isosle3r;tle. G. 13nol3le Tnc3prylyl cllr3le Cclelh-16 -'0 -'5 -30 -33 Glvcervl 13ur~1e. G. Iinole31e Trichoh)ma m3lYul3ke cV~lr3cl ~'~ ' , ' '' ' bromide Glvcerjl mono-di-lri-c3prvl31e Tridecyl behen31e. T. coco3le t-- chlonde Gljcervl mynsl3le. G. ole31e Tndecyl cruc31e. T r Celyl dimelhicone copolvol Glycerjl p31mil3le. G. ncinole3~e Tridecvl ocl;~no3le. T. ~le3rlle Cclyl phllsph31e Glycervl neinole3le SE
Tndecvl sle3rovl ~le tr31e Cholexlerol Glyeerjl sle3r3le. G. sle3rale Cilr31e Tndecvl Inmellh3le Cholclh-10 -15 -'I Glvcervl ~le3r3le 13cl3le T, :' v IJ~yl ihr3le Coc3mide DEA. C. .~1 EA Gl jcervl slenrlle SE
Tnisocelvl cnr3le ('- . . !D ! Giycenvl ~ vl TnisoYIe3nn ('~ ,.. 1 PG-oimonium chlonde Glycol disle3r3ie. G. ole31e Tnlsosle3ryl cilr3le ~hosphme Glycol p31mil3le. G. ~le3r31e TnlsoYIe3rvllnhnole3le Coc3mlne Glycolsle3r31eSE
Tnl3unn Co-elh-7 .3rbo~tylic 3cid Glycolamide sle3r3le Tnlinolein Coconul Icid Cl.. ' ' 'i~ ' T. ' . I~J u- u .. ~. v I UC/I- - Coppcr prolein c0mple~v~ coco-gl~ cendcs T, ' Vi 1~. ~ mcoco3le Collon~eed~lvcende 11,3~ 'cononYeedrlvcende T.i ' vlulp.. r ~ mhur3le Cl -13 puelh-; ~1 9 ~t3 11~ ' ' 13nolin Tnmynson C16-18 p3relh-3 ~5.5 -13 -19 11~.' ' lecilhin Triocl3nom Cyclode~mn 11~3i ' p31m oil T~io_~vlJuJ~vl cur3le D ~s~ul . '' ' 11~!1 ~ sov glvcende Triolein DEA-ccle3relh-'-phosph3le 11 ~ ' l3110W elvcendes Tnp31milin DEA~elyl phosph;lle 11~ ' ~3110w nl;cendes cilr~le Tnpropvlene :Ivcol citr31e DEA~v~lu~LùA~ ' IIJ '1 ~ phoYph3leTnsle3rin DE.~-olelh-3 phosphule 11~1 ~' ' hnolin T.i ' r DEA-ùlelh-5-phosph3le 11~ ' ;' ' lechhin Vegel3ble oil DEA olelh-10 phosph31e 11~ ~. .I h.JIu ~ ~.n-W31nul IJu-13ns regi3~ oil DEA-olcnh-_O-phosph3le 11.. 1~ I b Whe3mTnlicum~ulg3re~enm~lil Dicele3relh-lOphosphonc~cid 1 ' 8sle3r31eU'' chlonde Emulsi fier D. ' .: ' ' . I ~le3r31e Isocelelh- l O sle3r3lc Acelvhled l).J.. - ' 13rd ylvccnde Diglycervl sle3r31e m313le Isoceuelh-'0 Acelvl3ledh~JI, 'veeel3hlc dycende l::h~J-. ~ 15-'0-30 Isocervl~Icohol Acelvl31ed .~ c"l~., r;h ' l3110W phlh31ic 3cid ;Imide Isol3urelh-6 Acr,vl3les/C10-C3b31kyl;lcryl3lc-,., '~. Dil;luryl3celvldimoniumchlonde 1 '')l u~ldh/~J~' eluco:llle Acryl31e~/vlnvl ~ l. r~ - ~(, u~ dimelhicon~ u~ -lvcolllc Acrylic ~chl/. .- ~, coplllymer copolvol phosph31e "~ . . ~ Dilinole;c 3cid chlonde v, Ammomum ,.,v; ~ v~ copolymer D' copolyol 31mond~le lsosle3relh-- -3 -lo -l- ~-o~-~ -5o Ar3chidvl 31cohol t! copolyol isosle3r31e Isosle3re h-2-oclano3le Reesw~x ~; copolvol 13ur3le Isosle~reth-10 sle3rDle .u~lvl l;h.I.u~ I dimonium ~\; copolyol methvl elher Isosle3ric 3cid chlonde ~- copolvol oliv31e Isosle3rvl dielvcervl 5uccinDIe Behenelh-5-10-'0-30 ~ copolvolphlh3131e ~ uu~ldih~droxypropyldimonium Behemc 3ad ~ ~1.. 1.~1 h~J.u,~.h~; chlonde Behenyl belDine I '' 130~ ' I u~ vl I ' ~sl PG-dimonium Dipropyleneglycol Lcoeth-~ -10-h5 -16-20 10 chlonde Disodiumh~ '- = 'collonseedglycende L3neth-lODcel31e Cl'-~0 3cid PEG-8 esler Disodium n ' ' ' ' :-1E.\ '' ' L~ndin C 18-36 3cid Disodium sle3ryl ~ r L~nolin. ultr3 3nhydrous C31cium Jul-~ sulronulc Disodium '' ' ' ' L3nolin wax C31clum prolein complex Dislaryl phlhalic acid 3mide l~ramide DEA. L. MEA

5 ¦~ ~L~!IcrF3C E~lUI5lt1ERS I~ ich dis~erse caroomer For su; ~ t ' ' e-3imina~eS surtaclant-based T~Jk to the global leader.

Cosmetlc 8ench Reterence 1996 CA 022~9464 1998-12-30 WO 98/48768 68 PCT~US98108931 Functions I ' ' r ' PEG-5 lanobte. P. oleamirte PEG-20 lanolirt P. Iaura~e 1 PG-dimonium chloride PEG-5 sny steml P. soyamine PEG-20 oleale Laurelh-l ~Z -3 ~ -5 PEG-5 slearacttirle~ P. slearale PEG-20 melbyl glucose Laureth-Z-oclanoale PEG-5 lallow mine PEG-20snrbilartbeeswax Laurelh-3 phosphale PEG-6 ' ,1;.. i~lycerides PEG-20 sorbilan isosleUalo Laurelh--l carboxvlic acid PEG-6 cocarttide PEG-20 sorbilan misoslerale Laurelh-j carboxvlic acid PEG-6 ClZ-t4 eflùer PEG-20 sorbi~an uioleale Laurelh-6-7-9-11-1' PEG~5dilauRIe.P.dioleale PEG-20slearale.P.tallowarnine L turelh- 11 cDrboxvlic acid PEG-o disleaRIe P. isosteuale PEG-23 oleale. P. slearale Laurelh-16 -'0 -'i -_S -30 PEG-6 lauraunide. P. Iaurale PEG-24 h, ' ' lanolin Lauryl PCA PEG-6 oleale. P. padmilale PEG-25 CaslOr oil ~: copolyol PEG-o sorbitatt beeswax PEG-25 phyloslerol Lecuhin PEG-6 sorbitan lauRIe PEG-25 pmpylene glycol slearale l PG-dimonium chloride PEG~i sorbirltn oleate PEG-25 soy sterol P. slearale phosphale PEG-6 sorbiaut slearale PEG-29 casmr oil Lithium stearate PEG-6 steaRIe PEG-30 caslor oil Magnesiumsulratel i h.. ' - PEG~i-3Z PEG-30 'il '~b,.'. -Maleated sovbean oil PEG-o-32 slellrale PEG-30 glycervl cocoale Melhoxv PEG-17idodecyl slycol copolymer PEG-7 glyceryl cocoale PEG-30 glycerjl isoslearale Melhyl gluceth-Z0 distearate PEG-7 h! ' _ ' c tslor oil PEG-30 glycervl laurate Melhvl glucose dioleate. M. g. PEG-7 oleaue PEG-30 glycervl oleale Melhyl glucose PEG-75 lallowamine PEG-30 glyceryl slearale MEA-laurcth sulfale PEG-8 PEG-30 h, ' _ ' castor oil Myrelh-3 -I -7 PEG-8 beeswax. P. casmr oil PEG-30 lanolin Myrelh-i mvri5tale PEG-8 Cl'-14 elher PEG-30 sorbitart tetraoleate r ~ b ~ ' PEG-8 dilaurate. P. dioleDle PEG-32 dilaurate. P. dioleate Nonoxynol- I -' -~ -5 -6 -7 PEG-8 disleaRIe PEG-32 dislearale. P. Iaurale t: ~.. ol8-9-10-11-lZ-13 PEG-8giyceryllaurale PEG-32Oleale P.slearale Nonoxvnol-14-15-18-'0-30 10-j0 PEG-81auRIe.P.oleale PEG-33c~sloroil Nonvl nonoxvnol-5 -10 PEG-8. P. t;dlate PEG-35 casmr oil. P slearale Oal~Avenasativa)flour PEG-9ctstoroil PEG 10casmroil Octoxynol-I-3-j-8-10 PEG-9diisoslearale PEG~0glycerylisosleara Octoxvnol 16. 30. 40 PEG-9 dioleate. P. disleDrale PEG-10 glycervl laurale Z-Octyl dodecvl ;tlcohol PEG-9 laurale P. oleale PEG~0 glyceryl . ' o,~ PEG-9 stearate PEG-10 h! ' _ ' castor oil O ~ t b '0~'5 PEG-10cDslo~oil.P.cocamine PEG 10h. 'cDstoroilPCAisoste~rale Oleamidc DEA PEG-10 coconut oil cslers PEG 10 sorbhan ' O' ' ~Id.. ~h.' ' PEG-lOCI_-18alcohols PEG 10sorbhanlanolale PEG- 10 dioleale PEG-10 sorbilan lelmoleale Oleic acid PEG-10 glyceryl isoslelrale PEG~0 slearale Oleth-'-3 1-5-6-7-8-9 PEG-10h!~ ~ 'cDsloroil PEG 10/dodecvlglycolcopolymer Olelh-10-lZ-15-Z0-_3 PEG-10h ' _ 'casmroill ' PEG 12babassuglvcerides Oleth-'5 -30 -~10 -50 PEG-10 lartolale PEG~ sorbitart laurale Oleth 13 PEG-10 polyglvceryl-' laurale PEG 15 padm l~ernel glycendes Oleth-' PhosphDte PEG- 10 sorbhan l~ura~c PEG 15 safflower clycendes Olelh-3 phosphale PEG-10 sov slerol. P sle tramine PEG-50 ianolin. P. stc~raminc Oleth-S phosphat~ PEG-10 steaRIe PEG-50 slearale Olcth-10 phosphalc PEG-II bDbassu glycendes PEG-60 almond slycendes Olelh-'0 phosphale PEG- 11 casmr oil PEG-60 cDstor oil Palm acid PEG- I_ dilaurale. P dioleDte PEG-60 corn glycendes r ~ - PEG-I disleatale PEG-60 glvcervl i Palmilic ;tcid PEG-12 glyceryl dioleale PEG-60 h;d _ d casmr oil PEG-' cocamine. P. dislearale PEG-I_ laume P. oleDle PEG-60 b; ' ' casmr oil isoslearate PEG-_ L~d~ tallow amine PEG-12 sleaRle P. Iallale PEG-60 b; b _ ' cDsmr oil PEG-Z laurJIe. P. Iaurale SE PEG-14 avocado giycendes PEG-60 sbea bmter glvcerides PEG-Z oleamine. P. oleale PEG-15 castor oil PEG-60 sorbiian lelraoleD~e PEG-' sovamine. P. stearamine PEG-15 coQmine PEG-70 mango glycendes PEG-' slearale. P. sleara~e SE PEG-15 glyceryl isos~eara~e PEG-75 PEG-3 cocamide PEG-15 glyceryl laura~e PEG-75 CDS~Or oil. P. dilaura~e PEG-3CI'-C18alcohols PEG-15glycerylricinolea~e PEG-75diolea~e P.dis~eara~e PEG-; ylvceryl isosleara~e PEG-15 oleamine. P. oleale PEG-75 lattolin. P. Iaura~e PEG-3glyceryl '' PEG-15 P.s~earamine PEG-7501ea~e PEG-3 glvceryl tnstearate PEG-15 lailow amine PEG-75 sbea buner glycerides PEG-3 lanola~e. P. sorbi~an oleale PEG-15 ladlow polyamine PEG-75 sborea buner glycendes PEG-3 slearale PEG-16 PEG-75 slearale PEG~ dioleale. P. ~''' PEG-16 h. ' ~ ' caslor oil PEG-80 sorbitan lauralePEG-S dilaurale. P. dis~esra~e PEG-16 soy s~erol PEG-90 sleara~e PEG I glyceryl dislearate PEG-18 sleara~e PEG-IOO caslor oil PEG I laura~e P. olea~e PEG-20aimond slycerides PEG-lOOh! ' cas~oroil PEG- I s~earate PEG-ZO cas~or oil. P. dilaura~e PEG-IOO lanolin P. sleara~e PEG I sleoryl stearale PEG-ZOdinleale P. dislearale PEG-120 disleuale PEG I lallale PEG-ZO glycenl laurale PEG-150 dilaurale. P. dioleale PEG-5 casmr oil. P. cocamine PEG-ZO glycervl oleale PEG-150 dis~eara~e. P. Ianolin PEG-5 C12-C18 alcohols PEG-ZO glyceryl sleara~e PEG-150 laurate. P. olealePEG-5glycervlisosletrale PEG'oylycerylu~ . - PEG-150slearale PEG-5 glycervl scsquiolemc PEG-20 glvcervl tnslearale PEG-ZOO casmr oil PEG-5 glyccryl slearale PEG-_O h ' ' caslor oil PEG-'OO tdvcervl slelrale PEG-5gl~cervl~ PEG-_Oh 3~ 'ltnolin PEG-'Oi)h;' ~ctsmr CosmeîiC Bench Re~erence I aa~

Functions PEG-zOo lauralc. 1~. ~,leale Sooium C12-15 pareth-15 sulfonale T " ~ , ,1 PEG-~OO laurale Sodium isoslearoyl laclylalo Taliowelb-6 Phosphale eslers Sodium laurelh-l7 carboxylale Tetrasodium: ~. ,I slearyl Phosphaled Imine ~"I~des Sodium lauroyl laclyla~e Sodium lauryl sulfate TEA---,1 a.. v _ copolymer PoloxamerlOl ll~fhlZ'.1''31Z4 Sodium ~ 6phosphale rlssueexlraa Poloxamer 181. Ik2 i~4.185 '35 ~37 Sodiumoclylsulfale Tl q phosphale Poloxamer Z38. 31~it 338cs07 Sodiumoleate Trideceth-3. -5. -6. -7 -8 Pvl~bl~ vl-2 olc;~tc Sooium oleyl sulfate Tridecelh-9. -10 -IZ -15 P'lJhl~ yl-3f~ h~ Sodiumphospha~e Tridecyl~lhoxy;ale Pul, Iy.. vl ' s~ ~ Sodium stearovl lactvhte T
Pul.bl~ l 2stcfr~lc Sorbelh-20 Trilaweth--lphosphate Pul,bl~ 1-2-PEG I Soroilan isoslearlle S. Iaurate Triolein Pul~hly-~lv1-2-Pf:G~lstearale Sorbilanoleale S.palmilale TrisodiumHEDTA
Pol~hly.-,11-3 dn~lcarate. P. dioleate Sorbilan Tristeann PulJ61~.. v1-3dh.tc;rate Sorbitan ' S
Puhbl, ~ -3 i J'.. distearale Sorbilan stearate. S. i Enzyme PulJbl~ 1-3 olc;llL. . ~JU ~. Sorbhan moleate. S. tristearate Fermemed vegelable Pul~bls~... . 3 sm;~ lc 5 , , I .- . . Ganoderma lucidum oil Pul~bly.L.. I I olc;nc. P. slearale Sojamine Lipase ru1.61~- v1-6 dhllcJIc. P. dislearale Slearamide DEA Papain rvl.hl~ i 6 laun-lc. . mvnstate Ste~ramide DlBA-stearate Sov (Glvcine soja) prolein Pul~blv~c~ vl.6 olcillC, P. ~vl~ ; Superoxide dismulasePul ~ SI ~ v 1 -6 SlCJ~:~lc ~ . .
Pul 51;.c~v1-8 olc;llc . . 1 ' laalle Pulselj... ,vl-lOdc~ lclle ~ ,lPG-dimoniumchlonde Essent~aloil Pulj~ls... ~ I lOdii~-~ learale phosphale Aesculuschinensisexlrac Pul.61~.. ;1-10 di"lcJIe. P. dipalmilate Slearamme Artemlsla apllcea exlram Pul hly.G. v 1-10 di~lc;~rlle. P. isoslearate Slearamine oxide BrasslCa ~F~ exlract Puls~ls.~lvl-10 i;,ur;llc. P. Iinoleate Stearelh-2. ~. -6. -7 -10. -11 -13 Carawav (Carum carvi) oil r I I l-lOmi~ciflllvacids Steareth-2phosphate Cardamon(Elettana . )oil ~ ~b ~; Steareth-15 -20.~21 -30.~100 ciove(Euseniac~vl J" )oii Pu1~ ,vl.lo ~)lc.ltC Stearic Icid Eclipta alba extract Fu~ 1-10 Sucrose cocoate. S. dislearale Eucaiypms blobulus oil h~ v ~ Sucrose stearale r, ~ fonunei extrac P-~;h~Vl-lO Iclr;l~lclle Symhelic beeswax Eulerpe precalona exlr3m P- '~hl~.--;l-lo ~rhdc:lle Tallow glvcende. 3celvlaled 1.. '. Hterochloe odorala exlraa Pul. ~.~.h~ " lv- ~ lycol T ~- . ~I DEA Kadsura ùeleliloca exlracl Pul ~"11 Polvsorbme 'O ~1. 111 60. 61 Poljsorbale 6~i. 8n. ~1. 85 _ Polassium 31rgimlc. 1' .elvl phosphale ~jj_ ~;,~
Polassium laurale. P. myrislale Polassium lallowalc ~ .... _ PPG-I-PEG.g Iaurvl clycol elher PPG-'-celearelh-' PPG-3 isosle3relh-' PPG-3 PEG-~ olcvl ~ u hcr . .~_ ."e~
PPG-5 celelh-10 rl~ h3~ '0 PPG-8 vlcale ~--~i~_ - i3i .~~;
PPG-IO celvl elher l-h~ph3le --D~ ~~

PPG 15 ~Ic~rvi elh-PPG-'~-buleih-'7 PPG-35 laurelh- '5 PrG-~6-hulelh-~h I'PG-'6 olclle l'rG 36~llCIle Prnpylene 51vcol ;~lcul -l~. P.g. dioleale I'ropvlene glvcol h~dr~vvSIearale l'ropvl~ne gl;~col l;llll.uc. P.~. ricinoleale Propilene glvcol rMIloltlle SE ~ -.
I'ropvlene glvcol ~Ic:~r;llc ~ ~:. ~li~
I'ropylene glvcol ~Ic:~r:ne. SE ~q~
~u31erniUm-33 -- --U ~r--~ I Lll~' '- ' elhOSUlfale ' ~ -- l~lcc (Orv~a ~;~liv31 hr:m vvax DEi\
I~icinoleic ;Icid .'i:lponins ~clcnium pn)lcinc~m~l'le ~dicone yu ucrnium- K ~6 , um L.;;pr ;~l lc l ~ 3~ =~
,I~IIum ~:lrl-lllllcr n~ n 1 . ,~ e~ence Iqq~
1 .~5 *rB

.. . ....

CA 022S9464 l998-l2-30 PCT~US98/08931 Functions Ligus~rum lucidum ex~raa PVMMA deeadiene , 1~ . ~ , ,, I belame Lysimachia r ~ exlr;tc~ PVP/~i ~ , Lauryl belaine Melaleuca bracteaut extract polyglyeol esler M~ h~ P
Melaleucil nvpercifoli3 eXtrDCt b ~ ,~ ' copolymer copolyol phospha~e Melaleuca ~ v.~-u exu3ct P~l, ' J ', ' ~ ~ Mynstamine oxide Melaleuca uncina~a exnact i '~ yl,p_:,J~_31 ester Octyldodecvl benzoate Melaleuca wilsonii extmct pVP/eieosene copolymer Oleamide DEA. O. MIPA
Naslurlium sinensis exuact P v 1, . copolymer Oleyl be~aiDe Nelumbium speciosum exlrDct r ~'1 ll., ls . d whest protein copolymer Palm kernelamide DEA
Paulownia impenDlis extract Rice peptide PEG-3 lauramine oxide Rosemary ( Rosmarinus officinalis) oil Seriein PPG-15 stearyl ether benzoate Selinum ~pp. extroct She- butter (~ l-. , parkii) PEG-7000 Trichomonas japunicaextract Shellac Sodium .' Withania somniferum extract Sodium C12- 15 pare~h-7 sulfonate Sodium cocovl isethionate Yuzu oil Sodium hyaluronate Sodium laureth sulfate Ziziphus jujuba extmct Soluble collasen Sodium lauroyl wheat amino acids Soluble keratin Sodium octoxynol-2 ethane sulfonale Exfoliant Soluble wheat prolein , . r yl betajne Apncot ( Prunus armeniaca) kernel powder TEA-.. ~ ~. .: . _ copolymer Tallowamide MEA
Glycolic;tcid ~, r ~ resin , .
Jojoba ( Huxus chinensis) seed powder Trieontanyl PVP Foam stab~ er Laaie acid Tnelhonium hvdrolvzed collagen elhosulfale r , ,: oxide Papain Wheal peplide l~ehenamine oxide PEG ll-~vocado Glvcerdies Caprylyl pyrrolidone Willow (Salix alba) bark exlrDcl Fixative Cetamine oxide Aerylates copolymer Cocamide DEA. C. Mf A. C. MIPA
~~c Adipic ~ ,u,ut,.l r. , , .I belaine Corn ~Ze;t mays) cob powder dlelhylene uiamlne copolymer 5~ , "I hJ.
Nvlon-66 AMP-acrvlates copolymer r- , ,: laurvl ether Oat (Avena sativa) bran, meal Hydrolvzed zein r. , ,,: oxide Ravon Methacr,vlol ethvl ~ .,.. ~; copolvmer Coeamine oxide Methyl rosinate D:, ~mh!l Cl -15 alLA~,u.u,u~ oxide film former Pvl~., L -lo. -zg D:- ~.h.l cocamine oxide Acetvlated lanolin PPG-Zo methvl glucose ether r J.,lh.l Iallowamine oxide Ac.~ ,h. . ~b.~ acrvl3tes copolvmer Sodium polystyrene sulfonate , , ,I h.Lu~
Aerylates,u.. ~L.~: copolvmer H~ I ~,.. , ~. . ~, Aervl3uscopolvmer Fla~or /aroma~ DEA
Alkvlated eVl~;; ~ r--- ~ ,l~ Laur rnide DEA, L. ,UEA
Ammonium.,.,~ eopolvmer Caraway(C3rumc3rvi)0il I r ~: oxide Eletaglucm Cardatnon (Elettaria _ M ~ Ojl Lauramine oxide ~ vJ~ k(Fucusvesiculosus)e-Atract CiDnamon(r casia)oil Laureth-10 ,~ . . . Clove (Eugenia ~.,.~ ~,h.: ) oil Lauric-linoleic DEA
Ethyl vanillin I ,: ( .~
Chitos3n lae~ale Eucalyptus slobulus oil I .: ".. ,m~ I .
Collapen Flavor (aroma) Lauryl pynolidone Collaeen phthal3te Glutamic 3cid Linoleamide MEACollmd31 oa~meal Gl~.~-, acid Mynstamide DEA. .U. .UEA
Desamidocollagen Glycyrrhizic aeid Oleamide ME.~
D ~ ~ ~Rl~ , sjloxv silicate Glyeynhizin. ammoniated Palmitamide MEA
DMHF Melhyl salicylate PEG-3 lauramide Elhvl esler of hvdrolyzed silk OraDge (Cilrus aurantium duleis~ oil PEG-I oleamide _.. ;l ,. . Peppenmint (Men~ha pipenla~ oil ~ MEA

GeUan sum Rosemary ~Rûsmarious off~einalis~ oil Ses;~mide DEA
GIJ. d ~1~.. glyeol/adipate ~-U~ VI~ Sodium ~ - Whea~ permamide DEA
High beta-glucan barley llour Tttymol Hydrolyzed collagen Vaoillh Ammorlium laureth sulfate HvdTolvzed keratin Hjdrolvzed oat protein Foam booster Ammonuum laureth-5 sulf3te Hvdrolvzed pea protein All~ ~: oxide Ammonium laurelh-12 sulfa~e Hydrolvzed re~iculin ~ r , yl betaine Amrttomum lauryl sulfale. A. 1. -Hvdrolvzed RNA r ~ oxide Amraonuummyrelh sulfale Hjdrolyzed silk Caprylyl pynolidone Ammonium nonoxynol ~I sulfalc Hydrolvzed sov protein Carrageenan (Chondrus crispus) Capryl ~"y~yl~ B 1 Hvdrolvzed wheat protein Coeamide DEA. C. MIPA Ce~yl belaine Hjdroljzed wheal ~. copolyol r- ~, "I betaine Coeamide phosphaleeopolvmer r- , , ~: ! ' laetale r- . .,'~
HydrolyzedwhealproteimPVPeopolymer r- -, ,,lh,. ~- C~ , ";: 1~, iactate Il.. ~,u.up.: r, L DEA~laurethsulfale 11; ~,u.u,u~ gelalin r. ),~ ~, ,,lbelaine DEAlaurylsulfale Jojoba (Buxus chinensis~ oil Coeoyl amido hydrùxy sulfo belaine Deeyl glueoside I ~'~ L I Cocoyl j ~ ~ ' ' elhoxylale Disodium ' r Mvnslûvl hvdrolvzed collagen DEA b ,. I-- d leeRhin Disodium ., , ~ il ~ Dimelhyl laurarnine Disodium ~". ~:
Oal (Avena saliva) exU3cl. prmein Disodium eoeamido ME~. ~ ~r ' Disodium rt ,~
PuH. .1 .... ,. ionomer Disodium , Disodium I
Pul.~lu.il.. l' h.-~ -ll.-"'. ~9 DisodiumlauramidoMEI~ Ir Disodium' p il r pol~vin~ ceullr. P. ;llcohol Disodium laurelh Disodium laurvl r~ L3ur3mide MIP A Disodium ule3mido MEA ~ r~
' ~ rr~ n,-,~ ",~

PCT~US98/08931 Functions Disodium PEG-~I cocoamido ?~111 A '; Aiuminum distearate. Amrislearale t_, . bromide. C. chloride r ~ ~ oxlde Behenic acid Celvl pyndinium chloride Luuryl giucoslde CDicium a4inale C'oia (Saivia hispanica) oil MEA laurelh sulIale CDrbomer Ch.~ ' monfolium eXIrac Mixeo ;~_r- . ' ~ mvnslale N O ~ ! , ,,, , Cinchona succirubra exlracl MlPA-laurvl sulfale ' ' ~ r. , . ,1 !~' prOplOllale PEG-80 sorbilan iaurale CDnaseenan (Chondrus crispus) Coccinea indica exlraa PEG laurvl ~her sulfDle Cere5in r, h, . ~,u.ou~ I hydrolyzed Polassium cocoale. P. Iaurvl sulfale CCICDrYI caDdelillale coUa,r~en Quillaja saponana ~xlracl 1~" ~ bi l r, - h,3 r~ I hvdrolyzed kemlin Sodium .. ~ , ~ r , ~ Dcld copolymer r~ u~ Jl silk amino acids SodiumL.""~ Elhybne/VAcopolymer r h,J, ~y,~r~lhydrolyzedwhea Sodium .~ . . r Gellan gum proKin Sodium ~ ~ ' ' ' ' Hexanediol behenyl beeswax r, h. Il ~ YIUA~h.l cellulose Sodium ~ n H~ ' jojobaoil r, chlonde Sodium Cl~- 15 parelh~5 sulfale 1l) ~ _ ' jojoba wax Collagen amino acids Sodium CI'-15 parelh-3 sulfonale 11~ Dcid r, Sodium C1'- 15 parelh- 15 sulfonale Jojoba wax L cysleine HCL
Sodium CHt-16 olcfin sulfonale Lanelh-5, -15 1~ ~
Sodium decelh sulfale ~ ~ Di.. l.: " chloride Sodium laurelh~' sulfa~e Mvrelh-3-oclanoale r... chlonde Sodium IDurelh-3 sultale OaDcosanvl slearale Di;, h ~ Mallowamine oleale Sodium IDurelh-7 sulfDle Olelh.3 phosphale Dimethi0ne Sodium ~ n~ Olelh~lo phosphale Dimelhicone copolvol aCelale. D c~ llmondale Sodium laurylelher '' Poloxamer 105, 123, 1~4 185. '35 Dimelhicone copolyol amine Sodium laurvl sulfDle. S. 1. sulfoacelale Poloxamer '37 ''38. 338. ~07 Dimethicone 0POIYOI ILh.d~UA~
Sodlum laur,vl lf Pol~ ' Dimelhicone copolvol isosleDrale. D. c. Iaurale Sodium magnesium laurelh sulfDle p~1' . ' D ' copolvol olivaleSodiummyrelhsulfDIe.S.mynsl~vlsulfale r ,~ ,., ox3dlzed Dimelhiconeh .I~LA!~U~r~ Mnmoniumchlonde Sodium trideceth sulfate Pnlassium alsinale, P. chloride Dirctethyl lauramine dimer dilinolcale TEA~l.J.~,p ~ Sodium ~. ' 6 phosphale ! r fJ~ ah~, TEA-laurelh sulfau Sodium lallowalc D ' )~I~.h.l h~3 ~.~h.' TEA-lauro,vl collD~en Dmino acids Synlhclic bccswax ~ ~
TEA-laurovl kemlin Dmmo DCids lEA ~ copolvmcr Diphenvl d ' 'TEA-laurvi sulf31e Tribehenin D: " ' chloride TEA-pDlm kernel sarcosinDIe N-Dodecvl-N.N dimelhvl N-(dodecvl acelDIcl WheDI 8~ r .,u~l belDinc G1055er ammoniumchloride YUCCD vem eXlracl CI8~36 aad slvcol csler Emada ~ IA d~ _ eYIraCI
Diphenvl dimethicone Ethyl esler of hvdrolyzed animDI prolein Fragratnr r~ Oclvldodecvl laclale bulvlene glvcol chlonde Orange (Ciuus auramium dulcis) oil P~nenvl melhicone. P n ' ' cm-tin Peppermim (Memha pipenlD~ oil Polyglycer,vl-~ dioleale orev IMel) Phenelhvl alcohol Pole ' ~vcrolvzedcollar~en r. ,~; - icrolized hair kerann Fr~rance solvent r. ~c . ; - jcrolized vegelable prolein Benzvl benzoale r l; ~ ~ ~ - vorolvzed wheal u., '' ' copolvol Dielhvl phlhalDIe ' ' v , ! ~ chlonde acetvl copolvmer Trielhyl cilrale Tea (CDmellia sinensis) oil ~ d~ ' " ' PhOSPhale Fungicide Tribehenm 1l) ~r.v~ hydrolvzed collagen AslrocDrvum munumunu exlracl Hair care praein ~,uB ' co ~vldrolyzed whea Azadlrachla mdlca cxlraa G-miDna scabra exlraa Hvssop lHyssopus officinalisj exlract aptan ~laldenhair fern extract Insa edulis exlraa ! oxid Ficus ra~cemosa extracl Nicotinic acid lsoslearoyl hydroiyzed collagen Liguslicurn ~ hoh.. _ e~ a Wztercress lNaslurtium officinale) exttacl Kiwi /Aairtidia chmensis) fruil extraa MelaJeuca ~ , ' ! U-,.ll~U eXIraCI ~ ~ Kola (Cola acuminala) exlraa Mella DzadirDchla eXlracl Atnino bispropyl; LDmmana 1Dpontca extraa Mushroom (cordvceps sabolifera) exlracl AMPD-isoslearovl hydrolvzed collagen Lauryl h, h ~ ,u~ u~,~ I Irimonium yON~
Sodium ( ' I t ~qua Ichlhammol I ~p !I ;SOSteDraleTea Iree (MelDieuca allennifoliD) oil e.abaSSu (Orblgnya oleifera) oil r . I~!JI~ I hydrolvzed 1, ,, chloride collagen UL'~, ~ ~EA F~t ~-;~I ! I~ ~'' ' h!Jlu~ ur:lhydrolyzedwheD
Zinc ~ -h~l dimonium prolem Ziziphus jujuba exlrDct chlortde di;inoleale ' ' !; dimer Eiotin ' I biscelv ACrVliCDCid/~LIvl ~ copolvmer ~ ! I malonamlde Lvslmachla ' ~l, ~gar r ~ vl pG dimollium ~1elaleuca hvpercifolia exlraCI
Algin chlonde Ocimum sanlum exlraa Brazil nm (Benholellia excelsa) oil OleDllmnium chlonde CoSmetic clench Relerence 1996 1 .'J7 W O 98/48768 72 PCT~US98/08931 Functions Oleyl " ' . ' ' , , ,1 clhonium elhosulfale VA/bulyl ' " ' , I acryla~e copolymer Panthenyl ethyl etber r I v~ .; ,1 ....... copolymer PCA
Panthenylelhylclher V~ ' ,Ipropionatecopolvmer PEG4 Paulownia imperialis cxlrDct VAh copolymer PolyZuDirto susar condensale PeDch (Prunus penicD~ leat exlracl Vmyl e, ' '. v'P/ Pot ssium laclale PEG-2 ~ ' chloride I , ~ ! copolymer Propyleneslycol PEG-1'0 jojoba acid/alcohol r ,: hydrolyzed collagen PG h ' ~ ' '' ' chlonde Hairshe~n rl ,: hydrolyzedsoy prolcin PG h ' ~ ' ' chlonde Maidenhir krn exUaCI r. ,: hydrolyzed wheal prmein PG h.d~A;.. ~ ' " T ' ~ Jl melhicon~ Qu ternium-22 chlonde Rice ~Oryza saliva~ germ oil PG h, ' A~ h,R " ' ,~ " Hairwaving SeaSZtlts(Marissal) chloride Ammonium ' ' ,'~. ' A Ihiolaaale Shea butler (E ~ parkii) Phenyl ' ' Argania spinosa oil Siil~ powder p j~ L cysleine HCL Sodium ùehenovl laclylale Phylamriol Cysline Sodium caproyl laclylale Pul~ dlV~ slycol ri ~s Sodium cocoyl laayla~e Pul.r , ,1- ~ glvcoi Dilburyl ' ' U Sodium hyaluronale P~ 6~ -7~ -10 r-~ ~ - sul;ite E ' ' ~1~ ' Sodium isostearoyl lactylate Pul, , ' '' -'8, 39 E ' ' ' thiolactDtc Sodium laclale S Iauroyl lactylale, S PCA
PPG-5-cclelh-10 phosphale Glyceryl ' ' 's ~ Sodium, 1~0, rlu~; hvdrolvzedcollasen 11, ~. '.m' ': ~,'c SodiumsleDroyllaclylale F~",.l. hvdroljzed soy prmein lojob eslers Sorohan laurale P~Ut~ hydrolyzed wheDI prolein ~ ' Ihiolaclale Sorbtlan (~ ~ 18. -75. -~-ZI, -8 Sheabuuer ~Ihoxylaled Sorbltol O ~ 79 hvdrolvzed keralin Sodium ' ' ~ F _ 5 79 hydrolyzed silk rhioslycenn TEA-PCA
Sambucus niera extract~ oil ntioslycolic acid Urea S ' , I " ' chlonde Thiolactic acid H,~ I"
Silicone, 1, 8 Humet;tant Ammonium, '' Sodmm , Ammonium ~
Sodium cocovl hydrolyzed collasen Acetamtde MEA Cetamine oxide Sodium polvstvrene sullonate Acelyl ' ' ' ~ ox'd N-Soya-~i ', r I)-NZ,N " ' ~I N -~hvl 6-(N Ac~ UA~h-~ chlonde L;uramineoxid~
ammonium elhvl sulfDle Adenosine phosphale SteZlpvnum chloride Ammonium iaclD~e PPG-'~ 6, -9, -1' C,l 1~ ' chlo-ide, , , Calcium r Sodium cumcne suironate C ~ i ~JIUA~ , ,I hydrolyzed whea~ CDlclum sleDroyl iaaylale Sodium loluene su;fonate protein chlonde ' ~ ' ~I chitosan ' ' ' Tridecab 19 ~arboxviic tcid St.~ ' ' I .mvA~_,h l hvdrolvz~d collasen ilosan PCA
N-St~ar,vl-( i r ; ~ I)-N.N-dimelhvl-N-elhyl Chol~sl~ryl h~ A~
Immoniumelh-lsulrale CoUasen puN ' bydrolyzale CDPrVIjCJC;d StenocDlvx mic;tlii cxlracl Coilmdai oalmeai i~ecelh-;
T~ .",.N' '.; ' chlondc n copoiyollaurale Diethylsuccmale T ~ ' 1, chlonde Ethyl ester of h,vdrolyzed silk DM hvd-moin Tea (CZZrnellia sinensis) oil i Zjrt,v quaternary atnine chlonde complex Ethvlene dichlonde T EA-coco v I hv dro lvzed sov prole in Giycereth- 7 - I ' -'6 ~i~ iuoro 3-nUro aniline T~ Gl ' ' ~ Methvl benzoale, M cocoaKWheal amino acids ycenn Honey extracl Methyl Isoslearate M Iaurale ~jr set resin polymer I~ - ' passion fruitoil Methylmynstate M palmUitte ~n ~' ~?r~vhlmide copolvmer Hydrolyz~d CDSem Oietc Dnd Acrjlates/PVP copulymer ilijdroivzed ~ TaU oii acid Acrylates/h~JuA . ~.~acrvlatescopolymer Hydroljzedoalprotein TaUowacid AMP-acrylales copolvmer HvjrJroiyzed sllk Laîhering agent Butylester ot PVM-MA copolymer 11, ~ i chitosan Ammonium cocovl sarcosinate Carbox,vlatedvinvlacetateterpolymer 11~ , rJ' ' ' hvdrolvzedcasein AtnmoniumC~ 15alkvlsulfDte Diglycol/cHDM~ ,IP copolymer 11~ ~ hvdrolvzed silk Ammonium lauroyl sarcosinate Eclipta alba extraa 1~ ' ' hVdrOIvzed SOv prolein Cocamide MEA elhoxylale EthyleslerofPVMMAcopolymer 11~' " ,' ' ' hydrolyzedwheatpnuein (~ I:'Ut'!
I IJ J~UA~ ~.U,UV I chilosan Keratin am;no acids bydrolyzed collagen Isopropyl esler of PVM/MA copolvmer Lactamide DGA UEA Laurovl sucosine O-l~la-l~ ; !1 1 ~ r ,Itnmoniumchloride Myristoylsarcosine ~I copolymer Lacticacid Sodiumcocoylsucosinalc PUI~. ' Vl~.. JU~. r; I ' chloride Lactose Sodium lauroyl sarcosinate Pul!~, u~ . glycol C, Lawoyl Ivsine Sodium methyl cocoyl taurate PVP Mallllol Sodiwn myrisloyl sarcosinale pVP/," ' ~, ~ " ~ ~I copolymer Mannitol TEA~cocoylsarcosinatc pVP/Polv~L~ ~I polvelycol eslcr Mclhvl 51uccth-10 -'0 TEA-lauroyl sarcosinale pVP,'VA c opol~ mer Natto gum pVP~V~ m !Ipolpionalecopolymer Oal(Av~nasaliva~extract prolein Lubrtcant Sodlum pol~lcr~ l~le Pamhcm)l ,~, -~- Cosmetic 8ench Reterence 1996 .. .. , ~ . . ..

W O 98/48768 73 PCT~US98/08931 Functions Boron ni~nde S~earyl dimelhlcone Lanolin PEG-80 jojoba acidUaicohol Caicium aluminum borosilicale Triisos~earyl citrate Lipo~ytic--Gelidium '' _' Calcium sloarale Triolein 1) ~ n ' peroxide Hydrogeo peroxide.
f ~ tnglvcende Trisodium HEDTA Urea peroxide Cocelh-7 clrboxylic acid T ' OJry8~n l ",, p~
Coconul (Cocos nucilera) oil Zinc laurale. Z. slearate Pcr~ide - p; Sodium stannale C . Scalp - ~ e ' (Belula alba) leaf exuac Diisodecvl adipale Mlscellanr ous Scbosradc--i aminana sacchanna extracl Diisostearvl fumarate Adhcsion promorcr~ h~' glycoU Shu~c. H,. l~-.lwheat prolein Dimelhicone copolvol adipale . h h ' ~ .ur,I yvlv. '' Glyceryl isoslearale. G. oleate Ar '_ ' Glycol salicvlale SWn barricr lipid--Ccramide 3 ~i('7-Glyceryl ~,vl ~ ~ Anc5thclic .~ ~ h,l ' _ Gold of Pleasure oll An~i-claslic H~ . d Ulva lacnuca exua~ sAin clarificr--Oa; (Avena saliva) bran cxtrac Hyaluronic acid A- ' ~ ' shale oil sulfonate Skin I , ~ (Belula alba) leal e~lrac coconuloil A~ ' _ ' hvdroxide.Magnesium .~.. .. ~ Dimelhicone copolyol ll~d _ ' cottonseed o~l silicate~ Simethicone ii~3~ _ 'palmoil Anu~ocm--Dimelhiconesilylale Simelhicone ' ~ ~ :
H~ . ' oil Anri/ipusicJ_aminaria saccharina extran h, ' ~ l tnmomum chlonde Il~' sovbean od An~iprurilic--Coal tar I 1~ .b ~ vegelable oil A ~ ' "--Garlic (Ailium salivum \ exlracl St nlc5s ~ r~yl tyrosine Eclipla alba Hydrolyzed oal flour A- ' . " Chioese hibiscus ~Hibiscus rosa- eauacl in while emulslon I guar sinensis) exlraa Tonic~Ciwi (Aclinidia chinensisl fruil exlracl.
Isodecvl slcarale llarricr~il~. .1-.. glycoUadipale Malncaria ~Chamomiila reculila~ cxlract.
Isopropvl ianola~e . Oran~o ICitrus auranlium dulcis) peel exuact Isostearvl diglycervl succinate C~ll .. ~ .. c._ Cl .~v" . ~.. Hvdrolvzed Uscoslrv sla~ilizer--Diisodecyl adipate Jojoba eslers Ulva laauca extracl Sprcading agenr--Slearvl heplanoale Lanolinoil ~Ao_ ~ r Ch~ h.. L'o. .. ' ' ~I Woundhealing--Comfrev(Symphylumofficinale) Laurelh-3 phosphale Magnesium mvns~ale ~I sleaale lauroyl glulamale. Isododecane leafexlracl Mango ( Mangi~era indica~ oil Colloid--Gelaon 1 ~ cgenl--PVP!eicosene copolymer.
Mineral oll (PDraffinum liquidum~ Coolins r ~ I PCA. .~enthone giycenn P'v I ~A~J~ c copolymer. Tricomanyl pVp Mink oil r ~ aover(Tnfollum pralense) exu-an Moisturebarrier Neatsfool oil Dyc srabiliz~r--Unc acid ~ I.,. v ' ' ' copolymer~- Filkr--Mica Belaglucan Panially l.~d~. ~ - ' soybean oil Frasranc~slabiliz~r--2 ''.4.4'- C16-leA alkvl melhicone PEG I dilaurate Frccradlcaiscà~cngcr--Melaoin Glycolipids PEG-5M IRfiller--Corallinaofficinalis Isoelcosaoe PEG-'3M ~ ~ D l~T ~ T
PEG-27 lanolin PEG-30 IJnolin PEG 10 lanolin. P. stearate C H E M I C A L C O M P A N Y
PEG~SM

PEGIPPG-17;6copolvmer Up to date. innovative technolog~ for the Pemaervlhruvl; ' .
Petrolalum r Y cosmetic industrv has been the clriving force Phenelhvl dimelhicone Phenylme~hlcone behind Bernel Chemical Companv since its Pul~ v' ' ' ~1~. sulfonicac~d ", Polybulene foundin~ in 1982. Combinin~ over 60.years Pul~' copolyol t7 t, rul~ leslerofmixeùvegelablefallyacids of cosmetic e~cpertise and marketing know-Potassium laurate P. mynslate ledge, we have introduced more than 20 raw PPG-' mvnslyl e~her propiona~e PPG-3 mvrislylelher materlals ~or use ~y tne cosmetic chemist.
PPG~9 bulelh-18 PPG- 1 I sleary l elher ~--PPG- 1~ -bulelh- 16 PPG-I~-PEG-50 lanolin J ur product is innovation. Finding unique PPG locetvl e'thhe'rr materials~ such as ~ARRL~ SF and CUPL~V
PPG-20 buteth-30 ~
PPG-~4-but~lh-~7 rl~, that contrlbute to the growth of our PPG-28 bulelh-35 PPG-3601eale customers has established Bernel products PPG~0 butyl ether Qualernium-79 hvdrolvzed keralin worldwlde.
U - 79hvdrolvzedsiLk B E R N
Rice (Orvza satival starch ~ ~
Shea bul~er ( l~u~ parkii) exlract C H E I h I C A L C O M P A N Y
ShoreaslenoplerabuUer l~Grand.~ve.,Endewootl.. ~J0~631 Slearamid~ MEA. S ~EA-sleara~e Phone:_01-~69-893~ ~ F~ 01-569-1,~1 51~4..~A~ I. I !
Cosme~ic Bench Reterence lq96 1.')9 CA 022;i9464 1998-12-30 F-lnctions ~ ~ Emblica o~ficinalis exuact b~ elaslinale. M.i~noslerol Elhyl minkale Miik atnino acids Octvl pelargonale. O. sleDrate Eugenia jambolana exlract Minerai oil (Paraffinum liquidum) p~ l~ Evening pnmrose (Oenolhera bieonis) exuact. oil ~ '~ aspanale Pul~ Gail- sinensis exuacl Mourin apiranga exuac Pul~ Ganori-rma lucidum oil Natlo gum Silicn silvlale Ginsens (Panax ginseng) exlracl Nelurnbium speciosum exuac TH~ UA~I ' '' '. h.. A~propylmyrislyl Gkditsiasinensisexlracl Neopemylglycoldicaprale elher Glycereth-l Oat (Avena sativa) protein T .~ ~ . Glyceryl alginale. G. collasenale Ocryl h Glyccryl yOH. ~ Ophiopogon japonicus exuacl ~r ~ .t.. ; . Glycolic acid Orange (Ciuus auramium dulcis~ peel wax ~- .y~llrimoniumchlonde Glycolipids Palmeltoexlrac Adeoosine Inphosphale rl~ _ ~ Pantethine Aesculus chinensis exuacl Cl ~ Pamhenyl ethyl elher Aigae (Ascophvllum nodusum)extracl Gnclum exuact Par ffio Aigae exuacl Grape (~nis vinifera) seed oil Partia~y h!_ _ sovbean oil AJoe barbadensis. A. b. exUacl Hazel (Corvlus avellana) nul oil Pe nul (Arachis hypogaea) oil Ammonium laclale Honey exuacl Pecan (Carya illinoensis) oil Amnioficlluid Hyaluronicacid PEG I -o.-8.-12 Apple (Pvrus malus) eXlracl Hybrid saffiower ICanhamus 0nclonus) oil PEG-70 maogo glycendes Apncol ( Prunus Irmeniacal kernel oil H! b _ ~ C;tSlOr Oil PEG-75 shea bmler glvcendes Arginine PCA Hy _ coconul oil PEG-75 shorea bmler glvcendes A 1 Iy ~ cmlonseed oil PEG- lOO slearale Anemisil ~placea exlr~cl IH _ ' lecilhin P~ h~ ~vl '~r x Asuocarvum murumuru exuacl "~- palm oil adipale Avocado ~Perse~ gr~lissimal ex~rac~. Oil 11,- YUI!; r, ! ~
Avocndo(Perseaer;tlissima) ~ sovbeaooil Pemvleneglycol Babassu lOrbign~a oleifera) oil 11 _ s-.: _ oil r. ~ .h~Y~Y!I ether 8acms gasipaes exuacl 1~- ~ vegelable oil Pelrolamm Benincasa hispids cxtracl Hydroiyzed c Ii Peuoleum wax Belaglucan Hydrolvzed collagen Pfaffia spp. exuacl 8etaine Hydrolvzed elaslin Pistachio (Pistacia vera) nut oil Borage (Boraso otficioalisl seed oil Hydrolyzed fibronenin Placemal prolein Brazil nul ( Benholellia cxceisa ~ exuacl. oil Hydrolvzed ~ ! ~ a Plankloll exlmCI
CI0-30 - ~ esters Hydrolyzed keralin Polyamino susar condensale Caicium I ~ ~ Hydrolyzed milk prolein Polvbmene Calcium prmein complex Hydrolvzed oats P~l~. iany acids C.. y ~ .. y. l. Inelvcende Hydrolyzed pea prolein Pmassium DNA. P. Iaclale. P. PCA
C y~vl ~i~ Iy~i~P ~nglvcende Hydrolyzed placemal prolein PPG-8/SMDI copolvmer C~y~vl . -.y.-.. uigiycende Hydrolvzed rice prolein PPG-20 melhyi glucose elher dislearate C~ VI;~ YII~mI~;~ .- iv.. nd. Hydrolyzedtransgeniccollagen Propyleneglycoldi.~ylv;
Cashew lAnacardium occidentale~ nul oil Hydrolyzed serum protein Propylene glycol dioctanoate Celastrus paniculata extract Hydrolyzed silk Pumphn (Cucurbita pepo) seed oil Ceramide 33 (liquid sov extrac~) Hydrolvzed sweet ~Imond protein Quinoa (~ quinoal extract Chia (Salvia hispanical oil Hydrolyzed whem pro~ein Rapeseed (Br~ssica campesuisl oil Chinese hibiscDs I HibiscDs rosa-sinensis) eAxtrlct II!J ~-~ .h . I chRoson Rehrnanma chinensis exU~CI
Chitin Inositol Rice (Orvza satlva) bran oil Chitos;tn. C. PCA Isodecyl salicvlate Rose Water Cholestenc est rs Isostearyl hydrolvzed nnimal protein Royai jellv extract Cholesterol Jojoba (Buxus chinensisl oil Sacchande isomerale Cb ~ kluL-~l laurovl giutamate Jojoba esters c .~- lvsate extract '~ h;l. UA~yl~V.I hvdrolyz~dcollagen Keratinaminoacids ~ /5~v prmeintermem rc h .J~A Vl~ Ur; i hvdrolyzed silk Kiwi (Actinidia chinensisl fruil exuact Saifiower (Canhamus tinctonus) oil r- - h . ;i .. A~ Y~u~,; I hvdrolvzed vvhe;tl Kol- (Cola acuminata ) exuacl Selenium aspanate. S. protem complex protein Kul~ul (Aleurites molaccaoa~ nut oil Serian . hVI~ A~yluy. I silk Jmino acids Lactamide DGA. L. MEA Serum albumin Collagen Lactic acid Sesame (Sesamum indicum) oil Colla5en amino acids. C. phthalate ~ . ! fermem Shea butter (rmS. ~ paukii) Copper ~spanale. C. prolein complex Laclococcus hydrolysale Shea buller (r s . I parhi) cxlrac Corn (ZeD mavsloi~ Lactoyl !; elaslinale Sho~easlenoplerabmler Collonseed ( Gossvplum I oil Lanolin alcohol Sill~ amino acids Cralaegus Cuneala exlracl Lauryl PCA Sodium ~ IA~ bela-slucan Cucumbcr (Cucumis s~tivus) extract Lectlhin Sodium chondroitin sulfate Desamido collDeen Lesquerella fendleri oil Sodium DNA. S. hyaluronate Dicaprvlvl maleDte Liposomes Sodium lactale. S. PC~
Diisocelvl Lysme PCA Solublecollasen Diisoslearvl adipate Macadamla terni~olia nut oil Soluble Iransgeoic elaslin Dimelhvl hvaluronale Masnesium aspanale Soybean (Glycine soja) oil C: .:; hvaluronale Malîllol Spherical cellulose acelate Dio~ vlJuJ c!l dirner dilinoleate Mango (Man if cra indica) oil Spondias amara extract D ~l! v ~ Mannan Stomach cxtracl hlllUI fDll,V DCld ester Marine yU'! iJ. Sun~ower (Helianthus annuus) seed oil Dog rose ( Rosa camna) h~ps exuacl Mauritella arma~a exu~ct Superoxide dismutase Dog rose I Ros~ canma) seed extmct ~ regia extract r~ssue extract EchitcD glaucD exlracl ~ ~ ~ .. ( Limoamhes alba) seed oil Tocophervl acetate. T. Iinoleme Elasun Dmmo DCio~ Mclalcuca hvpercifoliD cxuact Tomato (Solanum ~ cxtract 1 30 Cosme~ic Bench Reterence I 996 Functions Tormennl(Polcnllll;lereclDIeAlrDcl SleDryl~leOlrDte AmmoniUmo~r; ~; copolymer Trch:~lu~e Styrene r 1~ Ab' ~; copolymer T,i St~. ~I.. t.. copolym~r Ab'l-i _ylhydrolvzedcollDeen VeeetDblc oil Styrenc/PVP copolymer Bulylester ol pVM-MA copolymer WDlnut IJuclanj reciD~ oil TriisojleDrin PEG 6 es~ers Czlcium cDnrDgeenDn WulerCreS~ I N;l~lunium olficin;llcl txlrDcl (~: ~ VinylDCelDle lerpolymer Wheul ( Trbicum ~ ulg3re I cerm e1urDcl, yenm oi l P~ Ce~eueth-8 phosphoteY3rrow (A~hillco millelolium~ e.~lrDc~ Acetyl mbulyl chrDIe CcleDrelh 5 phosph;ue WheOn umlno ucids Acelyl Inelhyl cilrDIe CeleDreth-10 phosphDle Yc3sllC ~' ~ CerevisiDe)e~lrccl(F;lexl A~ roylhydrolyzedwhe:llprolein CeleDreth-~9.-3~1 Yoeun lillr~lc AMPD-iso~leOroyl hydrolyzed CollDgen C~ L
Zinc ilsp3nDIe Cyclohe~;mc odimelhDnol dibcnzoOue r. h~lluA~ul~ luA~. h,l cellulo,e Ziziphu~JuJub;lc:'lrDcl Dibulvlphlh31;lte Cl7-13pueth~ 9.-'3Diethvl phlh;llDIe DEA-celellre~h-~-phosphDIe Diethjlene gl~col dibenzoDle DEA-olelh-5-phosphDle ~ A-- ' Diisopropvl jebDc;~le DEA-olelh-~O-phosphDIe Aminoelh,vl propDnedh)l r~ copolvol DiglycoUCHDM/i r '~IP copul,vmer l propDnediol Dimethvl phthohle Diisopmpyl dimerdilinoleDle ,~ zl propDnol Dipropylene clvcol dibcnzoDle [ ,1 " z~ ;IOAY silic:lle Ammonium ~ubon:lle Ethvl eslcr ot hvdrolvzed kerOIinDjjSOSIeDrVI dimer dilinole~le Culcium hvdroAlde Glyceml Inbtnzo;ue Dilinoleic Dcid r~ ~ Glycol D~ ~ ~. Dcid/celeuyl ' ~ ~L
Hydmlyzed ~enum prolein copolvmer GlucDmlnc Isocelyl j;llic IDIe Eclipt t 31b:l eAlr:lcl Dvr ~ Isodecyl bcnzome Ethyl esler ot pVM/MA copolymer l~u~,. u~ . IsoeicosDne r M 1.. /.. v 1;. ilC id copo Ivmer '-Melhyl-~-h~.l,uA~".. Isopmpvl IDnolOIe EthjlenelVA copolymer Morphollnc IsosleDrovl hvdrolvzed collDI!en Glycerelh-'6 pho~phule Sodlum bromDle l~urovl hvd;olvzed coll;lgen HvDluronic Dcid Succlnic Icld M;trine collDgen Hydmljzed wheDI prolein poly~ilo.~Jne pol,vmer T Neopemyl slycol ùibenzo:lle H~_ !r _n~l i hydrolyzed collDeen Octyl benzo;lle. O. IJur~le 11~ !r ~Ur~ i hvdrolyzed whcDI
Oil absorbent PEG-60 ~h~D buller clycendes pn~lein HydrDled ~lliCI P~ o~ .. ~Irl I Limelh-~O
Polvmelhvl .~O.~ P.h ~ eI,VCOI dibcnzoDle I : r~l-uA~ ,url h,v-lrolyz~d ~ov Silicon dioAide hvdt;lle 1'l ~r r ~ . clycol dibenzo:ue pmlein WDlnumJucluns regiDI shell powdcr PPG-I'-PEG-50 IOnolinMethDcrylol elhylb~ .r' copolymer PPG-'O c~lvl clher O.-~lo-~r v ~ ~i Ointment h~- PPG-'O IDnolin Dlcohol elher , rl--lC copolymer BOrD5e ( Bor:lgo otficinOlisl se~d oil Pmpylcne elycol dibenzoDle Oleth-' phosphme C. ". ~ . u~ ~~/.1-. ric Inslycende Pmpylene glycol mvn~lvl clher DCel~le Olelh-5 phosphDle Glvcervl COCODI~ Ric~ (Or~zD SDU~DI br:m V.:IA PEG-3 IDnolDIe H~ . coco-gl~cendes Semm prolein PEG~ ~lelrDle LDnolin Tu,~ ,u~v resin PEG-5~1 S1ink oil TnDcefin PEG-7 glycervl cocolle Oleosle;mne Tnbulyl cBr~lc PEG-8 elycervl IDurDIe T~llow Trielhyl cBrDIe PEG-81SMDI copolymcr Tnmelhvl pem3nediol dibenzoDle PEG-9 c~slor od Opacifier T ~ PEG-9.~1 BDnum sullDIe PEG-I I bDbessu elvcende~Cl~-16 llcohol~ h PEG-I' pDlm kelmel glycendes Ccleu,vl ocl~no;lle ACrYIDI~S copolvmer PEG-I ~leDrDI~
Cclyl mvnslDIe. C. pDlmimlc Aluminum ~iliclle PEG-BI ilvoc:ldo elycendes C~ , ~,pvl I;lur,vl elhcr N~DISfOOI oil PEG-15 glycervl l;lur~le Glycervl ~ leu3le Tallow PEG-'O conn giycendes Glycervl hvdroAysleDrnle PEG-'Ocvening pnmrose elycende~
Glyceryl mvnslme, G. ~le:uDIe ~ m~ PEG-'O glyceryl ole~leGlycol dlsleuDIe. G. ~leu:lle AcrylDmide codium ilcrv6ne copolvmer PEG-'3 oleDle M35neslum mvnsl31e AcrvLIe~-VA ~.u~,uls PEG-13M
PEG-l ~ le3r3le. P. sleOr31e AcrvLIes/3crvlDmide ~opolvmer PEG-'9 c3sl0r oil PEG-' sle3r3le SE Acrybles/h~i.u,.~_.. l.. , 3crvl31escopolvmer PEG 12 b3b3ssu olvcendes PEG-3dlsle3r3le Ac.. ; 'o~lu~-~: copolvmer PEG 15~3tflowerolvcendes Propylene ~Iycol mynsrû~e. P. g. s~e3r3~e Ac.;; ':le3relh '0, ~, copolvmer PEG 15M
Sle3rDmlde Adipic " j~t el~U~S~ r~ Ur l ~ PEG 60 evemns pnmrose elycende~
Sle3r3mlde DlBA-s~e3r3~e copolymer PEG-oO h~ ' c3slor oil Sle3r3mide MEA Adipic .Ic-1'. - ~: h ~r- r1I PEG-75 cOs~oroil Sle3r3mlde MlEA-sle3r3le dielhylene In3mine copolymer PEG-90M
S~ "1 Jl 13cl3le Ammonium 3cryl31es copolymer PEG-I'O disleDr3le ~ ~ ~r~Y~lER~CEMU151rlERS I~ ich New, easiest to For surfac~ant-based Eliminates enn' .. b~;l Talk to the global leader.
disDerse car~omer products ; ~ ,""~
1.31 Functions PEG-150 lDnolin Powder n " ' chlonde PEG-160M Acrylales copolymer, sphencal powder U ehloride PC A, h . '' ' ' ~: " chlonde Anapulgite Berl~Dicacid PG h, ' ;mhr' " ' ' chloride 13oronnilride Ben2ylalcobol PG h,.'1 r. ' r' " ' al~ ' ' Calcium aluminum borosilicate r chloride Calcium carbonale 5-Bromo-5-oilro-1.3-dioxaoe POlr. ~1.. ,. ionomer Cellulose maeelate 2-Bromo-2-~ 1.3-diol Pul~ ... ,. micronized Corn (Zea mays) cob powder, slarch r ~
I'ul~ . oxidized 11~ ' jojuba wax Calciuro pmpionale Pu1~ 1-7 pMyh,.' ~ Magnesium carbonale. M. mvristate ('' bromide Pul~. r; r '~ chloride Magnesiumstearate Cetylpyndiniumchlonde PM~ 6.-7,-10,-11.-~ 39 Mica (~
rul~ . cellulose ~ .
Polassium alginale Nylon-6 e-Cymen-5-ol Polassium laurovl collagen amino acids Nylon powder Di~lidinyl urea Polassium laurovl hvdrolvzed sov protein Ool (Avena sativa~ s~arch ~ 1 alcohol Potassium laurovl wheal amino acids Polvllmide 1~ ~
PPG-8/SMDI copolymer PLI~ ' ,!.. ~ C~ ~ ' ~ 11 1 . .r PPG-I~ISMDI copolymer Polvmelhvl ' ~' Dintethyl h, ' ~. ' ,I pyrazole PPG-51/SMDl copolvmer Poh. ~; ~ Dime~byl oxazolidinePVWMA dec~diene ~ r~JI~ PTFE Disodiutn EDTA
P~ r !' ' ~1 ' copolymer Silica DMDM bydamoin PVP/VA copolvmer Sill~ powder EDTA
Sodium cocovl hvdrolyzed whell prolein Sphencll cellulose acetate Erytborbtc acid C- h~ ,u.ur,rl hvdrolvzcd wh~m Talc r prolein Tapioca dextnn ~ ~
Slearelh-~ phosphale Zinc laurale Fomistopsis offminalis oil TEA-.. ~; 'a ~' copolvmer ~ r T~ ,' ' '.r,u/~ resin Powder. absorbent Glut~ral T~, ' ' ' ' ' ' ~d. resin Aluminum slarch u~ r HEDTA
Tridecelh-~i, -6, -7, -8 Clays (white, yellow. red. green. pink) ~-VA/butvl ' ' ~1 acrylale copolymer Sorbilol He~mtdme VA/c .... ~1 ' copolymer Taploca I ' ~1 urea VmyI -~
r ~ ; copolymer P~ Isopropvl sorbale Wheal ~Trhicum vulgare) prolein Alcnhol Xanthan gum Arcorbic acid MDM hvdamoin Ascorbyl palmilale r ~ chlonde Me~hvl paraben sodium In the World of Natural Waxes ; ~i Carnduba~ Beeswal~ Candelilll~Va~ Mushroom(Cordvcepssaboli~era)exlracs ' ''~ ~ P masnocdlum pentetate WDi ~1 PheDethvl alcohol ? ~ i lll Phenvl mercunc Icemte Pe~ r"l biguanide .~A~ ~ ¦~ Potassiurnsorbate _ - ._ r ,, ll 5T~AHL ~ ~IT5CH INC. ~il~u=mj~ls Sodium ' ~'l ' S. Jeh..' _, " ~= Sodium enthorbale, S. ethyl paraben Sodium h ' _~ _~ Sodittm, ' '~ S.
Sodium o-l ' .1~ ' Sodium propiOnate~ s ~ r~ l~
Sodium pvmhione, S. salicylale \~ ~_.;;~ 5~orlbiUcmacSiuofit~
Te~sodium EDTA
Ceresine ~nd_E~ 7 P;uliiin And Th;imerosal Ozolcerne .. ~ ' Th!mol T h e r e i s n o o n e e I s e ! Trisodmm EDTA, T, HEDTA
Dedicated to ~atural Waxes and us ic cid Specialty Blends Since 1 904 ¦ "~"I~C~C ~0 ~CII 1111~ !10 C-UA~A~I~IC~0 ~ U~ 0~ PmPel ~ t (;16) 587-9000 / FAX: (516) 58,-9120 j Dimethvl e~her lS~ t 1,32 Cosmetic Bench Reterence 1996 . ~.

Functions Isobutane Sodium cDsemitle Liposomes PropDne Sodium coeoyl hydrolyzed collDgen MDgnesium sulfale hepl~-hydrale Sodium coeoyl hydrolyzed soy prolein Detyldodeeyl behenDle O mvnslale Protein Sudium mynslovl hvdrolvzed colbtgen bis~Octyldodeeyl steilroyl dimer dilinolelle Albumen Sudium oleovl hvdrolvzed colllgen Oelvldodecvl stearovl ~le~rate Sodium steilroyl hydnolyzed coll;teen Oetvl b,l~
131etiahvaclnlhinae~r;tet Sodium ' .1~ v~ hydrolvzedeolhleen PEG-3stearDte Clu z monfoliume~tr;tel Sodium~TEA-laurovlhvdrolvzedeollai~en PEG \oleamide C~ ' hvdro~ti propyl hydroly2ed Sodium/TEA laurojl hydrolvzed kemlin PEG-6 ~ .p ~l . elyeendes ,ollaren Soluble coliaeen PEG-7 glyeervl cocoille C~ h~ 1,!1hydrolyzedkerltin Solublekeralm PEG-16 C~ ' hydro~propyl hydrolyzed soy Soluble wheill protein Propylene glycol Lihp~L", pn)tein Soy (Glycine soj;t~ protein Cl '' hydro~ypropyl hydrolyzed wheat 5~ " ' h.J~u,~ ,I hydrolvzed Resm protein collagen AL.~ UA~. . Dcylates copolymer C )coyl hvdrolvzed colhleen ~ ' h d~"~ h.l hydrolyzed coll;~een Ethylene vinyl acet~te Cullugen C phthalate TEA--ocoylhydrolvzedcollDgen GlyeerylablelDIe Collaeen un~mo-polv~ilonane hydrolyzDte TEA-eocoyl hydrolvzed soy protein MethDcrvlol ethyl I ' ' ~' - copolymer D~u ~y~ ,' kn acid TEA-louroyl colloeen ilmmo ileids ~Methyl Dcsamhlo coll~een TEA-hluroyl ker~tln ilmino Dcids rùl.r ~el~
ELI~tinlmlni)acid, Tntcheahvdrolveite Pul.~ 16 ~1 Embrvo e~tra~t Triethomum hvdrolvzed collaeen ethosulfDte Sucrose benzo~te Ethvl eelem~l hvdrolvzed mimDI protein Wheat ~Tnticum vulg;lre~ yerm e~ttrDct protein r~
Fibroneclln Whe~l ;Imino acids Gclatin Wheal peptide Glcium acetate C pho~phale C ,ulf ~te Human placental protein Whe;ttprotein ~ ~ ' andentr~pmem svstems Hydrolvzed .oll;leen PentDsodlum tnphosphute Hydrolyzede~lensin Pro~ein.h,d,uly~d PolDssiumphocphale P~odiumlDnr~tc Hydrolyzed nsh proteln Ethyl ester ot hydrolyzed sdk Silieon dionide hvdrate Hydrûlvzed hemoelobin Hydmlyzed eDsein Hydrolyzed k er~tin Hydrolvzed elaslin Sodium cltrDte S glucon~te Hydrolyzed lactalbumin Hydroljzed mushnoom (Tncholoma mDtsulDkel T~rtDne Deid Hydrolvzed milk proleln e~ttr~el Hydnolyzed ~oy llour Hydmlyzed pel protein TnpotDsslum EDTA
Hydrolyzed ~veel nlmond protem Hydrolyzed nee protem H~ p~l", h ' hydrolyzed eoll;lgen H,vdmlyzed senum protein Silicone Isosle~rovl hydrolvzed coll~gen Hydrolyzed sill Amino bispropyl dimelhieone KerDbn Hydrolyzed soy prolein Ammonium~'' ' ' copolvol sult'lte Laetotemn Hydrolyzed vege~Dble prolein A ~ ~
t - ~ ~ ~ Hydmlyzed vvheal proteln sehenoltv dmethieone ~ '' h~ ,u,u,u Ihydmlyzedcollaeen IH1 Sr ,~ln- hydrolyzedctsein C16-18~1kvlmethicone MDrillecollacell H~ 'r ,.lli hvdrolvzedslik Cervldimethiconecopolvol Methvlsilanol elaslinDle 11~ hvdrolyzedsoy prolein C~ ')iiso~letrovM, ' ~lolp., Polaselum ubieloyl h-drolyzed collaeen H! ~ hl hvdrolvzed ~~heal silo~y silic~le Pol;tssium ~ocovi hydrolyzed collDeen prolem Diisod~c~d ~dipnle Polaes~um mynslovl h~drolyzed COIIDgen r DiiSosl~Drv~ ~--.. ,.,h!lulul. silo~y silicale Potas~um leovl hvdrolvz~d colheen ~ ~enl Dimelhlcone Pol~ssiumundec~leno,vlhydrolyzedcollagen Dimynslyl '' 'i, ~~ Dimelhiconecopolvol P~ ' i h~drolvzed collDeen Hydrolyzed zeln iodized Dimelhicone copolvol DlmondDIe r,S",;~ hvdrolvzed sov protein Hydmlyzed zein ~ultunzed Dimethicone copol;~ol isosteDrDte rru~"h" hydrol;zed wheat prolein Zinc ~, ' ' ' ~ '- sulfonylDIe Dimahieone copolyol olivnte D, c phthal~te Protein h!llu., , Dimethieone .u,uoH, ' Q /9 hvdrolvzed kerDlin ~ - ~- D ' ' ' r .dilinoleie aeid Qu;llernium-~9h~droljzedsilk ' ' ".tnelyeendePEG Iesters l!' '' 'h.d~u~ ,.ue D steartle Rice p~plide Cocamlde MIPA Diphenvl dimelhicone RNA DjjSOSIeDrYI dim~rdilinoleDIe Disodium-PG l,,U,, '' ' IhiosulfDIe Scnum ;llbumin S prolem 11~ ~ pûlm kernel glycendes Isopmpvl h. ' ~L_ ~ ~ J,m' Silk powder Le slehtiryl emcDle 1 isOsleDntle copoiyol Methlcone T y ou~ cross linking conoi~ione~ CRODASONE W C r o~ d~O aD

B~OOKS LNDUS~ES irLc~
C~sm~n~ /n~r~di~nls ~ Ide~' 70 Tvler Place ~outh Pl~infield. NJ 07n80 USA ~ ~ ~ __ Tel 908~61-i'00 F:lx 908-~61-917.1 ~j ~ i Cncme~ n( h Rele!ence I ~f~ 1 33 CA 022~9464 1998-12-30 Functions Octamethyl ~~ ' ' Pot~ssmm cocoyl hydrolyzed collagen Isodecyl saliqlale Phenyl melhicone, P n ~ - Relinyl pDlmilale polypepude lojoba (8uxus cDinensis) oil Polyelher Trisiloxnne Saivia millionhiza exuacl Ladv's Thistle (Silybum mananum) exlrt r~,l,. .: - Sil- l~uDiDaria japonica exlraa A I " ~ d ' Sodium cocoyl hydrolyzed collagen Ligusucum jeholense exnac Q ~o Soluole UDnsgeniC elaslin i' iposomes Silicone qualennium-l -d '' h, 's ~nh~l hydrolyzed coilagen Ma~oliaspp exnac Sodium-PG-propyl IhiosulfDlc dimelhicone Slearyl melhicone MaDgo kernel oil Sl.~ JA~I ' ' '' ' ' copolymer Marsilea minuta exlran T ' ~lail~ kilLh~a~ Mel ieucahyperafoliaexlrac Catendula obTicinalis eXIracl Melaleuca uncinala ~xlrac rjL' - calmin~ Pn~ Cl~ , Melaieucawilsonii exnacl Cornflower lCcmDurea cvanus) exlraCI Hydrocolyl (Cemelh asialica) exlrDn '' ' ' '' ' In PEG-8 glyceryl cocoolc Fenn-l (Focniculum vulyDrel exlract Oat (AvenD saliva) exlran Oal (Avena salival meal Fenugreek exnacl Sandalwood (Samalum album~ exlracl Oysler (Oslrea) shell eXIrac Linden (rdiD corda~D) exlrDcl Speannim ~Memha vindis) exlran r ~
Valenan (Valerianl officinalis) exnD~ Pearls (Margama margama) Skin li~l.l . . ~/~.1 t .~ ~Pn~ r~ ! .
Skin cleanser Ascorbic Dcid polyp~plide p, A ~ .' Dog rose IRosa canina~ hips exnacl Be~rbeny (A , ' !lua uva-ursi) exlran p~ A ~ h ' .ID~ U~U~I elher Pap-ya (cancD papaval ~xlran 11~ ~I , ' i,m" D ,' , . ' ~ Petrolalum Peach IPrunus persicDI ~XlrDcl Lemon (Chrus medica limonuml peel extract PEG-8/sMDl copolymer Rose IRosa muldilora~ exlraa Pearls (MDrgamD marganla) PEG-12 Ebinko ceramides exlran Willow(Salixalba)exlracl Pfaffiaspp exlrac Skin protecta~ Pi ~ ' 'i~ ' CL;n ~ A~ 1 ' !; '' ' elasljnale Planxlon exlrDcl Artemisia apiacea exrrDcl Ailamoin A aluminum hvdroxide Polvgonum muhillorum exmacl A~ ~ mcuma exlran Aioe barbDdensis A b exlracl Pobgamol Bacsns gasipaes ~xlract Aiuminum starch u~. !' PPG-I~'SMDI Copolvmer Biolin Anise ( Pimpinella anisum ~ emacl PPG 5 liSMDI Copolvmer A ~ ~ 2 ~ nh.l ùiscelyl malonamide Amica monlana exUaCI P~,, ' hydrolyzed collagen Blelia hyacimhina exoacl Artemisia apiDCea exlrDCI Ouinoa 1(-1 , '' quinoal exUacl ~il 80rage (Borago officinalis) seed oil Ascorbyl m 't!' ' ' peminale Saivi~ millionhiza exlrac r , , . ~ t~. l PG dimonium A ~ lucuma exlrDa Sambucus nigra exmc chlonde Baclns gasipaes exlmcl ShariA liver oii C bU~! BetaglucDn Shorea robusola exlran Calalpa kDempferD ~xnDcl lli,h, h ~nh~l biscnvl malonamide Sodium chondroilin sulfale Coco ~ I PG-dimonium cbioride Blelia hyacimhina exUacl Soluble IransgeniC elaslin ' " ' h I~UA~ "lhydrolyzedkeralin C18-701soparatfin ~ ' h!' ~ ' Ihydrolyzcd~lla~ "
Collagen amino acids Catendula amunensis exlrscl Sterculia platanifolia exlrac c; r ~. n chilin Superoxid~dismmase D ' D copolvol acelale Carcinia cambogia exlracl Trach-a hvdrolysale Emblica orrlcinalis exuact Canm (Daucus carotal exlracl Wheal ITntlcum vulgare) genm exlracl prlu~ jn Equisemm Irvense exuacl Carrol ( Daucus cDrmD salivaJ oil While nettie I immium album I exnaCI
Elhyl esler oi hvdrolvzed ~nimal prmein Catalpa kaemptera exlracl Withama somoilerum exlrac Evening primrose I Ocnmhera biennis) oil ~' a~ " ttlbum exlmcl ,Y ' ' bungeanum exnDc Fomes lomemnus exnDcl Chtosan Zioc oxidc Fomislopsis offlcinalis oil Ch ~ ' monfolium exlraa Geladn Collageo ~ s. ~ ~Pnt Ginseng Mlld~UA~ ' ' ' chionde Conn poppy (Papaver rhoeas) exoacl Ailhea orfinnalis eXlrDCI
bulyleoe glycol Crataegus cuneala exlran Coltsfool (Tussilago larfara) ieaf exlrac Glycolipids Crataegus monogina exlraa Comfrey /Symphylum officinDle) leDf cxn Gl~ Cypress (Cupressus , ~ . ~) exrract Plamain (plamago major) exnaCI
Gnelum exlram t ' Sericin Honey (Mel) D A ~ ~ ~ dilinoleic acid Hydrolyzed ' '',, ' Di ' ' ~I M ' ~ _ D slearale Skln solten~llg Hydrolvzedelaslin D ' " hvaluronale Clays(while yellow red green pink) Hvdrolvzed pea prolein Eehilea glauca extran Cueurober (Cucumis sadvus) exlrDc Hydrolyzed nce prolein Embryo exlracl ICelp (Macrocyslis pyrifera) eXlran Hydrolyzed serum prmein Enlaoa, ' ~ ' ' eXlrDCI Peacb IPrunus persicDI exlrDC
Hydrolyzed silk Equiselum uveose exlract Phenethyl dimelhicone Hydrolvzed sov prmein ' ' ' fonunei exlr;tn Hydrolvzed vegelable prmein Euierpe preQlona exlract Skin 500thing Hydrolyzed wheat prolein Fenugreek e%tract Calendula officinalis extmct Inga edulis extract Fomistopsis officinalis oil, F pinicola extran Cberry bult e%tran Kiwi (Aclinidia chinensis) fruil exlracl Galla sinensis exlract Cueumber (Cucumis salivus) exlract Laminana japonica exoacl Genlian (Gentiana lutel) exlract Gulic (Allium satwum) extract Lecithin Gleditsia sinensis extract Hyssop (Hyssopus officinalis) extram Marsilea minuta eXlran Glyeeryl ncinoleale Jasmine t~asminum offieinale) extran Nettle (UnicD dioicD) extmct Glyeolipid5 ICelp (Macrocvsos pynfem) extract p . , Hierochloe odorala exlran Mango kemel oil Pearls I MartA~anla mar arilD) Hyaluronic Icid U ' (Spiraea ulmana) exlmc PEG-~' Ebinko cemmtdes exuacl H ~ _ ' lecilhin Ouinee ( Pyrus cydonia ) seed extmct Phenvl i ' Hydrolyzed lupine prm~in Slipperv ebo eXlrDct Phnamriol Hydrolvzed milk prmeln Valenan I Valenma officinllis) exlrlc Poi-yonum mubilll)rum exlmCI Hydrolvzed mushroom iTricholuml malsmake~ Willow ISalix albal extroc pol~umllcrnium-~-'' ~1) exlracl Whchhlzcl(Hamamcli~\irrinional~lr~
Indl m Ir.~ ITr~mo~l~lum m utl~Qxtrac ~ Irr~ ;hillc a mdl-lldhlml ~~str l-*rB

.. . .

WO 98/48.'68 79 PCT/US98/08931 Functions PEC-15 cas~oroil PPG-3 ' ' '7 Solubilizer PEG-18 stePrPIe PPG-3 isoee~elh-20 oeetate Accn~l ' ' PEG-20ylycerylisos~ePr~le.P.B laurrte PPG-5~eelelh-10phosphPIe Alm~md oil PEG-6 es~ers PEG-70 ylyceryl olePle. P. g. sle~r~le PPG-5-celeth-20 PEG~20 melhvl glucose ' PPG f ' ~: ' ' 12. -20. -30 Aminoelhvl propanediol PEG-20 sorbi;Pn isoslePr~le PPG-12-PEG-65 IPnolin oil .~- !IP". ' A.pmpPnol PEG~2osorbilpnuiisosler~le PPG-15stearylelher ~pncol kernel oil PEG 6 eslerS PEG-2~ 13nolin PPG-18 bulyl elher B " ~ chloride PEG-25 clslor oil PPG-24 bulvl elher Bulo~dil!lycol PEG-25 h~ .' ' cPslOr oil PPG-26-bulé~h-26 Bul.vl l!luco~i~le PEG-30 c~slor oil PPG-33 bulyl ether Bulvlene cl~col PEG-30 glyeeryl coeoP~e PPG-33-bute~h 15 a ~ PEG-30 ~Iyceryl isosleDrPIe PPG-10-PEG~60 IPnolin oil C~prlc-eaprylic -~ PEG 30 glyeeryl l~urale PPG-50 celyl elher Cilpryl ~yl ~1~; PEG-30 glyeeryl oleale Propl~lene ylyeol diePprylale. dicpprylPle/
C.",. ~ l--/-.. ". -- ~nYlycende PEG-30 elyceryl slC~r~le dkDprPIe C~ ' ' melycende PEG-33 c3sloroil r DEA
C~ /ul~ Inglycendes PEG-35 casloroil r lo C~ yl ~ l clucOside PEG-36 c~slor oil Sodium alphP olefin sulfonPle CeleJrclh-~0 PEG 10casloroil SodiumlPurylsulfPle Celclh-10 PEG 10 olyceryl l~ur~le. P. 6 ~tePrale Sodium '~
Celvl PPG-' isudecelh 7 c~rbo~vl~le PEG 10 h,. ' . _ ' cDslor~il T ' Chule~lerol PEG-10 h ~J,. ~ ' c3slor oil PCA isoslePrPle rrioClanoin Corn oil PEG-oe~ler~ PEG 10sorbilpndiisoslearPIe T
Dec~l!lvcerol 1 ' PEG 15 p~lm kern~l ylycendes ~ ~ - PEG-18 h.. ' ., ' caslor oil ~
Dil~urelh- 10 pho.~phDle PEG-50 caslor oil Acnie PCid Dimelhyloclvnediol PEG-50r,.' _ 'cPSloroil ACelOAe Diolelh # phosph~te PEG-60 ;llmond gl,vcendes Alcohol. .~. denPL
Glyeerelh-7 -'6 PEG-60 cPslor oil r Glyceryl clpryl~le. G. dihurPIe PEG-60 conn glycendes e ~ .ol Glyceryl .. ,u.vl ~, PEG-60 olyceryl isosle~r~le. P. ~,. sle~rPle Buryl ~cet31e ISoeieosPne PEG-60 I,!J~. _ i c3stor oil n~Buql ~Icohol r ~ ~ ' PEG~60 l~nolin Burvl mynsl~le. B. sleDr31e Isosle:lrelh-'O PEG 70 mPnY-o glycendes Burvlene elvcol L;meth-S. -15 PEG-75 l~nolin C9-11 isopPralfin LiJurelh-_3 PEG-75sheDbullergl~cendes C10-11 isop;u~ffin ~lelh~ ed ~v~ J~ ,. PEG-75 ~horePbu~lerglycendes C10 13 isop~rPffin ~ynelh-3 PEG-801,.1~ c~sloroil CPprvlicalcnhol ~Ivnelh-3-~clDno~le PEG 80 jojobP ~cld/31cohol CPslor IRicinus communis) oil NonoJlynol-10.~ I1.-IO.-S0 PEG-80sorbil~nIPur~le Cele~rylocl~noPle OcloJtynol- 11. -10 PEG-100 CDSlOr oll Ceql sle~ryl ocl~noPIe O' p ~d~ uv-; Ir PEG-lOOh.. ' 'clsloroii f'l~
Olelh 3.-~. -10.-15.-~0.-'5.-50 PEG-I'O jojobP~cidlPIcohol Decvl~lcohol Olelh-'0 pho~phDIe PEG-'00 I-.h.ù~ .~,... Diethvlene ~Ivcol PEG-~.-6.-8.-I'.-16.-'0.-i'. 10. Polo~Pmer~07 Diethylen~elvcoldibenzoDIe PEG-l dil~ur3le Polyglyceryl 3 ole~le Diethyl sebPc~le PEG-h-.. u--c/-.~ li- _1~cendes Poly_lyceryl 6diolePle Diisoeetvl~dipPle PEG-6 melhvl elher P~ 1-10 dec~ole~le. P. telr~olePIe Diisopropvl ;ldip~le. D. ~eb~c~le PEG-8 disleDrlle PolYsorbille '0. 60. ~0 Dimelhvl phlhal~le PEG-I' l~ur~le PPG-~ isodecelh-l. 6. -9.-1' Dipropjleneglycol Pigments ~ r.~,. Yd~ ~.ta-~b ~ F~ , ~ F- "' ~ Esters ~ Proteins ~ Lanolin I,~ We Speci~ e in Personal Care.

~ Perforrnance Chemicals for Specialty Requirements.

Costec, Inc. ~ 655 First Bank Drive ~ P~latine. IL 60067 USA
~ Telephone: 8~71359-5713 ~ F~x: 800/5 COSTEC

.~loe ~era ~ Jojoba Oil ~ t ~ Pi~ ls ~ P~ erY~tiY~ ~ Surfactants ~ Fm~lcifi~rs .. , . ... ... " .., ... , ~

.

~ Functions Dipropylene glvcol dibenzoale Glyeery~ c' , G. stear le SE Sueerianin~ agenl ~ ~ ~v~ui Glyeeryl mono-di-~n-caprylate Linnbarnide DEA
Elhvl aCel~ie. E. laclal~ PEG-20 almond glyeerides Elhyl mvnsmle. E. oleale ) ~ ' C12-18 Iriglyeendes PEG-oO lanolin '-Elhylhex,vl isoslearale ~ allow glyeendes PEG-75 lanolin Glveerin - ydrolyzed oat flour Glveohrol ~ ~, . I h~J~ Surfartant Heptane ~araya (S~enculia urens) gum Alltvl dimelhvl belain~
H~xyl nlcohol ,aurelh-3 A"e~: " ',; oxide Hexylene glycol v nllno Ammonium eoeovl sareosimle Isobugvl slearale Oe~hy adled ~. . Arnmonium C12 15 alkyl sulfale 50CelVI salievlale ' G~0 slearnle Ammonium l" ' eopolyol sulfalesodeeyj benzoale, Ij ' ,G40/dooecyl glyeol eopolymer Ammonulurn jaurelh-n sulfa~e koeieosane ' )~ elher Ammomum iauro,vi sareosinale Icohol I mVnslale 'PG-7~ elh-10 Ammonium laurvl sulfale. A 1 '' Laurelh-' aeClale opyiene earbonale. P. g yeol ~Iginale mmomum o=xynoi 4 sulfale ,t d _ y~ul , ~todjum ~ ~ I I CO 1O aleohol elhoxylale 1~ ' ,t---Jr--, . odium earbomer C30-50 alcohol elhoxvlale vle~hyl ~Icohol ~torbban laurale C40-60 aleohol elhoxvlal~
Melhyl propanediol~learie hvdrazide Caleium d ' .IL~.~.,~. sulfonale Melhylene ehlonde _2',4,~1'-Tr~. h~ ~, , p~ Crdeium laurale ~lEK ~rieapnn Celenrelh-2 phosphale MIBK rieaprvlin Celearelh-5 phosphale Morpholine ~rilaunn Cetearelh-10 phosphale Omyl benzoale, O. ~rimynslin Celolelh-35 Octvl laurale. O palmilale ~ripalmilin C~lvl belaine. C phosphale Octyldodecvl laelale Trisle rin r~~mide MEAelhoxvlale Olive oil PEG-6 eslers r ~ , I belaine. pomssium sal Pemul oil PEG-6 eslers ~ mQlant r ~ ~I belaine ammonium sal pemane Capsicum fruleseens exlracl r - ~ ~t ,, I hydroxv sullaine Peuoleum dislillales EAeulhern ginseng (~ ' , semieosusl r. ', ,, I hydroxy sullaine, Immonium sall PEG-6 melhvl elher eAIraet r. ~ v~ I hydroxv sullaine. pomssium sal PEG-12 Guarana(plulliniacupana\exlract r ~ ."" oxide PEG-20 I,~J" _ ' cnsmr ml l~aocoeeus hydrolvsate Coeelh-7 earbnxvlie aeidPEG-33 cnswr oil ~ ~ ~ ' ' elnslinale r. g, PEG-50glyceryl cocoale ~ ' ' ' h..... ' ., _' aspartale r. I Iaurvl-laurelhsulfale Pul~gl~ yl-_ dioleale TEA b. l. '; r ~ laur,vl sulfale Fol~gl~ vl-3 1, Toeopheryl nieolinale r Indeeelh sulfale Fu~ mh~ glyeol dib~nzoale Uroe nieaeid Coeo ~ ' ' Ivl PG-dimonium chlonde Pul~.,v~ glveol dlbenzoale Yeast (-~ ' .. " cerevisiae) eXuacl (Faex) N-Coeoyl-(3 , , ~I)-N.N-dimelhvl-N-ethyl PPG- t mvnslvl elher propmnale Ledostrv ICurcvma zedorlria) oil amtnonium ~Ihvl sulfale PPG-3 Zine DNA Coeovl glmamic acid PPG-'0 l~nolin ~Icohol elher Coeovl hvdrolyzed sov prmein Propvl ~Ieohol Sun5creen Coeovl h; bv,~.,.h~l imidazoline Propvlenc carbonale Basil (Pasilicum sanrum) oil exlracl Cll-i5 parelh-9. -i'. -'0, -30, -~0 Propvlene glycol Basil (Ocimum basllicum) exuam C12-13 pare~h sulfate Propylene glycol dibenzoale p ~ ,3 I C12-13 parelh-5 c~rboxylie Icid Propvlene glvcol m~hyl elha 3 ~ , ' ' carnphor C12-15 parePù-12 Prop,vlen~ gl,vcol mynslale Borojoa sorbilis exlracl C14-15 pauelh-8 clrboxylic Icid Pyndine C12-15 alkvl benzoale DEA-olelh-5-phosphale Sesame ~S~samurn indicum) oil Coffee (Coffen arabica) bean exrran DEA-olelh-20-phosphale Slearvl heplanoale Ethyl srdieylale Deeeth-3, -6. -8 Toluene Glyceryl PABA D ~.. ' '~ ' 25 Xylene Homosalate Dieelearelh-10 phosphorie Ieid SpF booster H~ ' , tn~.-D 3' ,, ' r ~ copolvol Borojoasorbilis exuaet Isoamylp: ' ~ 0 ~ eopolyol almondale. D c. iSoslearale I salicvlatc I . , .1' ~I saBcylate rl ~ copolyol laurale. D c olivale Sl,.. /a.,~' copolymer Job'stears(Colxl .,. i~,l.,)exrtaQ D copolyolphlhalale Yeast (S~.. h. u.. ~ cerevisiae) exuacl (Faex) Oclyl dimelhyl PAE3A. O ~ prorp'yl PG-belaine Oclyl salicylale, O unas one D;~..... ' ' ' ' 2 laurovl glulamale Stabilizer Oryzanol Dio.. ,.'r'~ ' ' 5 lauroylglmamale Acnlales-VA ~ul~ Pansy (Vola Incolor) exlracl D ~s ' ' ~1 lauroyl glulamale .l,u~0 '~ copoIymer PEG-~S PABA Disndium ~ m' ~ ' A ~ /r''~ rlh ~O ' ' ~' copolvmer Ph.. ," ' ' sulfonic acjd Disndium ~
Acrylatesiv!nvl ~ TEA-salicvlale Disodium lanelh-5 '' C10 pol~ I polyglvcol esler Tltamum dioxide Disodium lauramido MEA ~' -Cllcium alginale Disodiurn laurelh '' n~vD~ lacla~e Sunscreen U\/8 Disodium olclmido MIPA ~ '' Coc~mine oxide L~ , ' -5 Disodium olelmido PEG-2 '' Colloidal silica sols Eclipla Jlba exuacl Disodium olelh-3 ~ "
Cvclodex~nn PEG-'5 PABA Disodium, ' ' MEA ~ '' Disodium EDTA Ste~relh-10û Disodium lallamido MEA -~f Gcllan gum Tridecvl salicvlale Dislelrelh-' laurovl glulamale (D~sme~jc ~sench Relerence 1996 1.3, CA 022~9464 1998-12-30 W O 98/48768 81 PCT~US98/08931 Functions Oi Ih ~ Inurovl ylurtmnlc PEG 120Jojobn o;l Sodium Inuroyi hydrolyzed collngen ElhoAyl3led gly-erol sorbitnn snturnted fDtty neid PoloADmer 101. 1~' Sodium inuroyi sarcosinote. S L tnurnte ElhoAylnted glycerol sorbitnn unsaturated fatty p~ polyelher copolver Sodium methyi oleoyi tnurnte neid ester Pou~ssium eo-oyl slyemnte Sodium mynstoyl ylutamnte Glyeereth-_5 PCA i~o~tenr~e Polnssium cocovl hydrolvzed eollngen Sodium mvnsloyl hydrolyzed eollnyen Glyeerelh~6pho~phme PotassiumC9-lSphosph3leester Sodiummvnstoylsnrcosinnte Glyceryl hydroAvs~earnte Pot~ssium Inurovl hvdrolvzed collnsen Sodium mynslyl sulfme 11~ ' Mnllowoyl glummle neid Polassium IDurvi suifme Sodium ~ ol 6 phosphme Isopropyl h, 5 VA~ Potassium mvnsloyl hydrolvzed eollngen Sodium oaoAynol-7 elhnne ~ulfonnle copoly I Polassium nleovl hydrolvzed collngen Sodium oclyl sulfme r ~ r Y I helnine Potassium p3imnme Sodium oleoyl hydrolyzed collagen L3ure~h~ 3. 1.-7.-1_.-16 Polassium ' ~8.. ~,.1hydrolyzedeoll3gen Sodiumsle~n7glhydrolyzedcollagen Laurelh-3 carbonvlic Icid. L. phosph;ne PPG-7-isodece~h I -o -9 - I _ Sodium mdecah sulf3le Laurelh-ScarboAylic3cid PPG-6CI_-18purelh.11 Sodium_ ' ~I.. vvlhydrolvzedcoll3yen Luurelh- 11 carboAvlic achl Prolein b, '. _~ ' Sodium/TEA-laurovl hvdrolyzed collayen Lluroyl ~3rcosine Q Sq Sodiumfl'EA-lauroyl hydrolyzed ker3lin L3urvl;' Y ~lu~buA~t. ,Iul.. ,~- Quillajasapon3n3eAIr;tet Sorbitani~o~teartte L~uryl h, ' A~.. YI imidazoline R3h'mose 13ur3te. R. mvnslale. R. ole3te Sle3n7vl sareosine bEA RDffinose p;tlmitate. R. ste3rDIe Sulfaled c3slor oil M3enesium 13uKIh-8 sulflle r , , ,I belaine TEA-cocovl elulom;tle MeroA3pol 105. 171. 17' Silieoneuualemium-1.-8.-9 TEA-cocoylhydrolyzedcoll3een MEA-13uryl sulfue Sodium alph3 olefin sulfonate TEA Cl7 15 alkyi suil lle MlAed ~u~ . . mvn Sodium cocovl hydrolyzed wheal prolein TEA h, h~c M3110w glulam3le Myrelh-7 Sodium cocovl iselhionale TEA-lauroyl glulam3leMynstoyl s3reosine Sodium Cl ~ 13 sult'ale TEA-laurovl ker31in umino 3cids Mynslyl 31eohol SodiumCI'-I~ parelh-7 sulf31e TEA-laurovl ~arCOsin31e NonoAynol-7 -9 ~ 13 -15 Sodium C I _-15 p3relh-3 sulfon~le TEA-laurvi sulf31e NonoAynol-lOc3rboxylicacid SodiumCI_-15p~relh-7carboAyl3le TEA-mvnsloylhydrolyzedcoll3een OaoAynol-10.-1~ SodiumCI'-15parelh-7sulfon3le Toeopherelh-5-10-18-'0-30-50-70 0LI~ ' ' ' 10.-16 SodiumCI'-15parelh-8c3rboAyl3le Tridecelh-7carboxyliclcid Oleoyl sarcoslne Sodium C I '-15 p3relh- 15 ~ulfonale Tndecelh-9 Olelh-' phosph31e Sodium Cl_-18 31kvl sulf31e Tridecah-l9-c3rhoAvlic 3cid Olelh-5 phosph31e Sodium C13-17 alk3ne ~ullon3le Tridecvl elhoAylaleOleyl bel3ine Sodium C1-1-16 ohl;n sulfonale T ~ ~ C10-1-1 sulf~le Oleyl l.~J.uA~.h!l imid3zoline Sodium cele3ryl sulf3le Tnlauryl phosph31e r o-AIde Sodium celyl oleyl sulf~le Whe31 e~ 1 helaine Palmilyl belalne Sodium coco-l3110w sulf3le Yueea ver3 eAIracPCA elhvl cocovl ~rgm3~e Sodium cocoyl ylulam3le PEG-7 h~JI, ' c3slor od Sodium cocoyl hydrolyz~d colhgen ~pendin~ ~nt PEG-8.. ~,.YW.. ~".. clycendes Sodiumcocovlhvdrolyzedsoypro~ein A.,~: ' 10 ' ~ . copolymer PEG-813ura~e Sodiumcoeovl~arcosin~le A~ 0 ' Yl.n.copolymer PEG-8 ste3rl1e Sodium .'' ' copolyol 3ceryl Alein PEG-15 elvcer l sle3rale ~ ! . C BemOnile PEG-'5 elvcer l iso~l~3rale Sodium L~JIue_.. l.J l3110W glulamole C10 ~ . ' .I polyelvcol esl~r PEG-_7 lanohn Sodium isod~cvl sulfale PEG-30 13nolin Sodium i~ur~lh-5 c3rbol(vlale C31clum 31ym3le PEG-IO C3510r oil Sodium 13urelh- 11 c3rbo~-ylale C~rbom~r. C. 93 PEG 10 ~Ivcervl sle~rDle Sodium 13urclh- 1 3-csrbo~vl3le C~eeeniul IChondrus cnspus PEG~O joJoba oil. P. I~nolin Sodium 13urelh sul~3le Cellulos~ gum PEG-60 ~Iycer~l isosl~ le. P. g. sle~31e Sodium I . ' Cetyl h ' ~ ' J; " ' WltcocollJGl d~iOn _¦
~'r- 01l 1'' ' ' ~ Group _~eet!ng daily your changln~
W ItCO 2cOa3l~6olo~277(BOutSjdetheu.s) ~for su-~actants glo~
Fax 203 552-2B50 OUR NAME IS MCINTYRE ,~
~, OURGAME IS AMPHOTERICS

MclNT~'RE 24601 Governors Highway . University Park, IL 60466 ) GROUP LTD. (708) 534-6200 ~ FAX: (708) 534-6216 . 1-800-645b457 .~ .

CA 022~9464 1998-12-30 .

W O 98/48768 82 PCT~US98/08931 Fun~:tions Dih!-dn---na~Ld lallow phlhalic acid amiLIc Culcium alginote MDM hydamom Dislc:lr! l l7hlhalic acid amlde Calcium carrageenan I ~
GuamC~ ;-nopsis ~ eum Caprylic alcohnl ~ ~
Hccmlllc Carbomer Mynstomide DEA. M MEA
Hvdn~ . c L ~ ' ~I h 8 ~ ' Myristomine oxide !i~ JMAcopl)lvmer Currogeenan~Chondnuscnspusl Mynslylalcohol Macllc~lulll aluminum silicate Cellulose. C gum Ocrocosi~nvl slearate Mcd~lc.llulo~c Ceteorvlalcohol C behenate Olenmide.O.DEA.O ~1EA
p ~ Celeoryl oLIanoate. C ~tearale Palmitomide MEA
Pui ~ c. P micronlzed Cetoslearvl slearale Pectin Pn~pv;~ Iycol aleimne Celyl alcuhol PEG-2 laurale Qu;ll;lllllllll-18bentonlte Cctylb~J~UA~ ' PEG-3disleiarstle.P.Iauramid~
Qualcrllillln 1.7 hectorjte Cetyl mynstate C palmilale PEG-3 huramineoAide Sodiulll m3enesium silicale Cocomide PEG-4 "' P oleamide Sodiulll 1~ Cocomide MEA C MIPA PEG-5M
cl ~ hemonile S heclonle C< ~ oxide PEG-obeeswaA
SlcarcOI l~)allvH ' ~; copolvmcr Coco-betoine PEG-7h~' ~ 'costoroil Trac l~illull I Aslraealus eummifer~ gum CL' O . PEG-8 Trih;bclllll C. '~' I betaine PEG-8 dioleale P. distearale Trihvdlll~v~leann Cocosl amido hydroxy ~ulfo betitine PEG-8 steara~e T,~ ' macneslum aluminum uli-iJIc Cocoyl, ' ' ' elhoxylale PEG-9M
Xunlhilll cum Colloidid ~ilica ~ols PEG-12 beeswaA
DE.~ h.dlu~ lechhin PEG~18glycerylul-_oe' s ~ DE.~-linolea~e PEG-23M
C;ILIUIII ~.~Lchann DE.~-olelh 3 phosphale PEG-28 glyceryl tallowa~e Fnuclll~c DE.~ oleth- 10 phosphale PEG 10 jojoba oil GlycyldlLIlnic acid Decyl alcohol PEG 15M
GlycvrllllA- Icid Dextran PEG-50 tollow slmide Glycjrrhl~ln ' Dextrin PEG-55 propylene glycol olea~e Hydn~ L'd corn Storch Dilaureth- 10 phosphate PEG-75 sleara~e Laall~; Dioleth-8 phosph;tte PEG-90M
Mallill ll D! IHF PEG- I OO stearate Mamlill ~I Ethox! laled falty alcohol PEG- 1'0 methyl glucose diolea~e Sacch;mll Gellan cum PEG-150dis~eora~e Sodiu~ -hann Gl~ccrslbehenale~G steara~e PEG-150~ lteu-as~eara~e Sorhhlll Gl~cer!-1~1. ' vl,~. PEG-loOM
Sucnl~c GuamC!anopsis .. ' ~ I gum PEG-200 elvcervl steara~e Gus~r b~ u~ .i chlonde PEG-200 glyccryl ~allowa~e Tannin~ Jcccl~.dtur Hectorioe P~n.. ~' .1 ' ' !~ce~vl Ivnl~ine He~l alcohol r~m.~ .' IIVI le~rasteara~e Carr;n (j~JULU~ carolalex~ract H~drtedsilica Poloxam~rlO5 12~ 185 '37 '38.338 ~07 CoppLr ILclvl~vroslnsllemelhvlsilslnol H~genatcdrapeseedoil Polyacrylicacid Dihvdr-~lvucelone H! ~ena~ed s~arch hvdrolvsa~e Polysorba~e 'O
Di~;)diulll Inulvl 1~ rosina~e H~ ~eenaled lallowelh-oO myns~yl glycol Potassium aleina~e. P chlonde Ecliplu .llhu exlraa m whhe emulsion H~ zed oa~ llour Po~ssium olea~e. P stearate GIUC~/~L ~vnl~ina~e H ~i~zed transeenic collaeen PPG-5-ceteth-10 phospha~e H'~ Propylene olvcol s~eara~e Thickcncr H~ ~x~ propvl chilosan PVM/MA decadiene .. u ,~ uH . _.
Acrvlulc~ VA ~~ u ~l ul ~ H ~;propjl euar PVP
AcrjlulL~/C I O~C30 alAyl acrvla~e . u ,~ . H r ~ H!--~x~propyl ~ . " ' Qustternium- 18 bentonile AcrylDIL~/cC~e~h-2oitaconalecopolvmer H~ , Quaternium-18hectori~o A.,11.m 1- -' 20 ' ~: copolvmcr l~:th~10 Rapeseedoil.e~hoxyla~edhighenucicacid AcrylulL~ earelh-2o ilaconale copolymér ls;~ramide DEA R' ' ' ' ' MEA
AcrylulL~l~leare~h-7o~ lL~lv; copolvm-~r ISC~F oAide SesamideDEA
A.,~ -J-J Irr'h-50acrylatecopolymer 1~ Sodiuma.,~' M .1 ' .. u~"vl Acrvluoe~/vinvl' 1L ~u.~vl. )~ aX Sodiumcarbomer.S carrageenan Acryli~ m~ .. v copolymer r~ --.alSIenculiaurens)gum Sodiumceleth-13-carooxylslle Algin ~ ide DEA L MEA. L. vtlPA Sodium chlonde ~1 h ' hydroxide slearale 1 r ~ Jl oetajne Sodium maenesium silicale. S j~earate Ammonlum -lV; /~ v'- u coplJl~m~ __~-10 Soroitan '' S. mstearaoe ~mml,nlum aleinule ' ' --.:-linoleic DEA Soys~mide DEA
~rachRlyl ulcohol I -~ I-linokoyl '' ' ' ' ~ r,~ - ~ ,/1 betstine Behem~ aLid -- !I-mvnstoyl '' '' ' ' ' S~rch ~1.~;0 ' ,1. .o~ul.. ~ ' salt Behenyl;~l~ohol B behenate I ~:alcohol.L betaine StsuchI h.. ~ ' ''~copolvmer-sodiumsaB
Benu)nBL ~:U rnide DEA. L MEA r - " bentonite. S. hectonte ~ 10 p-,h;curbS myl polvglvcol ester :~:;ri; acid Stearstmide -1 -15ulcohols :~:~icacid Stesu mideDEA.S.MEA S MEA-steslrate -I'-lf)slhllhols ' :- s heaniCeratonislsiliqualgwn '' '' ~1 " '; lactate _ 18-3~1 aL-Id ' ~ sium slluminum silicate Slesuamine oxide ~rich ~.e,v easiestto Forsu ~ Biminatess,u" ,. ~ Talktothe global leader.
~ e~~e carcorr~er CA 022~9464 1998-12-30 Functions Stearelh-lOallyl ' '.. ~. copolymer Goldofpleasureoil CeraiD
Slearie acid Gntpe ~VIds vinifera) seed oil Cetyl :' ' ' C. isooetanoale Slearvl aleohol Hael (Corylus avellana~ nul oil D' '~
Symhede beeswax HyWd sunilower (Heliamhus annuus) oil D- ' ' ' h, ' T~ " _ ' MEA 11~ ~ ' coconuloil D' ' ' ' stearale TEA~ ; a~m ~ ' _ copolvmer lly ~ ' co~lonseed oil 11, ' .. ' caslor oil Traeacablh lAslragalus gummifer) gum 11~ ~ ' vegetable oil 11~ ' coltonseed oil Tribehenin Jojoba ( Buxus chinensis) oil I _ ' jojoba oil. H. j. wax T~ ICubd (Aleurites molaeeana) nut oil 1' ~ ' ' palm kernel oil T. ' ' magnesium aiuminum silieate MY damia tennifolia nut oil I, ~ ' rapeseed ml Wheat germamide DEA ~ ' ' . (Limnanthes alba) seed oil I ~ nee bran wax Wheat b-- , ,, I betaine Mexiean P~PW ~il I ~ ~ vegeta e m Xamhan sum Palttt (Elaeis suineensis) kernel oil Isooetadeevl i Partitllv h ' ' sovbean oil J put (Rhus succedanea) wax T~;Y~trope Pe dt (Pmnus persiea) kemel oil Joioba esters Bentonue Peanut (Ar tchis hvpogNa) oil Monta~ (Montan cera) wax Heetonte Peean (Carya illinoensis) oil Ouneury wax '' -" bentomte Pumpxin(Cucurbitapepo)se doil r~ cc-~13beeswax T Rapeseed (Brasslca campesms) oil r. ..... , .. , . copolymer ,oner Rice (Orvza sadval bran oil - ' Althea offtcinalis exlmct SaEllower ~Canhamus unclonus) oil Syntheo?e candelilla wax Dog rose I Rosa canina) hips exlract ot SyDIbedc carnauba Ginseng ( P~nax ginseng) ex~raa Sisymbrium irio oil Wetting al ent HorselaQ extracl Sogbean (Glvcine soja) oil r " chlonde Lemon L A extraa SuDflow-r (Helianthus annuus) seed oil r ~ chlonde ~ ' ' e (Splraea ulmana) extract W lnut (Juslans reeia) oil r. ' chlonde Nettle ( Unica dioica) extract Wheat (Tridcum vulgare) germ oil Ceteareth- 0 Rose (Rosa mulnQora) extrac~ Wtld borase oil Ceteth-20 Rosemary ~Rosmarinus officinalis) extract Celyl pyndinium chloride B ' -U-2.-3~-4.-6-8 -9 -11.-12 ~teorbicaad t;~ ' 'i ' ' aeid 8utyl ~J.I ........... Aseorbic acid polvpepdde D" ' ' ' Ivl ~ ' C
Corallina otficinalis Aseorbyl palmitate rr ~ copolvol melhvl ether Isopropyl ~I;t ~ ,.; Biodn 11~ ~ copoljol phthalale Menthvl ;mthrtnilale Caleium I ' Dioetyl sodium '' l.4'-T ~ Eîhylh. ' ~. ' yloleyl oxazolinerltanium dioxide C ~ ~ ~ Il, ' B milk glycendes Zine oxlde Edipla alba e%trael Isolaureth-6 UVB absorber Embliea o'~lcinalis extram Lanolin acid Equisetum arvense extract Laurvl pyrrolidone Argama spmosa ml r r ~ ' r ~ m -3 ~ -6 -9 -11 Eseulin Leathin _ - ' rosinale Corallina officlnalis Elhvl linoleale Methyl rosinale DEB. I.. _li.G~- Folicacid Nonylnonoxynol-5 l~uninana japonica extract Oetollvnol-8. 70 Elhyl d ' ~J~ I PA8A Marsilea minmaexlracl Oleth 15 Etocrylene Melaleuca braaeata extract Oleth-20 phosphate Homosalate Merutdione PEG-9 eastor oil Isoamyl p: ' ~ ' Nastunium sinensis extmet PEG-15 castor oil Isopropyl, ' , Nelutnbium speciosum extract PEG-20 glyceryl slearale 15, , .. 1 vl salievlate Niaein PEG-20 sorbitan triisosterate t M ~ Ikl. .~ camphor t:' ' ' N. ascorbate P G-45 palmkemelglycerides Octocrylene t . . P 'G-60 ~Imond glycendes. P. com slycendes Omnzole Nieotinic acid P 'G-60 shea butter glycerides Octyl dlmethyl PABA Oeitnum basilicum extract P 'G-70 mango glycerides Octvl ' r ' PanthenyMnacetate Pl.G-75 shorea butter glycerides Octyl salicvlale. O. mazone Panlothenic Icid PEG-80 sorbilan laurale PA8A r;.,: Polmtamer123.181 18'.184 '35 334 PEG-75 PA8A Pyridoxine HCI Polyether trisiloxane '1 ' ' ' sulfonie Icid Reunnl Polyglvcervl-3 oleale Shea buner. elhoxylaled Retinyl acetate. R. palmitate rM~ 6 dioleate TEA-salicylate Rednyl palmilate polypeptide FM~ 10 lelraolealerltanium dioxide Rednyl propionate Polysorbate 60 80 TriPABA pamhenol Ribonavin lelraaeelale PPG-2-isodeceth~t. -6 -9 -12 Zioc oxide Sodium as0rbale PPG-10 lannlin alcohol elher Thiamine HCL Propylene glycol t/~gp~ qii Toeopherol Sodium' ~. ' v aeelale Apncol ~prunus ammeniaca) kemel oil Toeopheryl acelale T. succinale Sodium c~
AvoemJo (Persea sralissima) oil Sodium decyl diphenvl elher sulfonale Eaobab oil ~k~ Sodium ' ' ~ 1 ether sulfonal-C;llendul~ otficinalis oil Baybeny (Mynca cen~era) wax Sodium lauryl sulfale rl = " T kurzii) oil 13ehenoxv dmethicone Sulfated castor oil Coconm ICocos nucifera~ oil C16-18 alkvl mclhicone Triisocenl ehrale Corn ~ Zea mavs I oil CandelillD ( Euphorbia cenfer t) wax Tnisostearin PEG-6 eslers C~ulonsceLi ( Gossyplum ~ oil Carn tuh~ ICopemici t cerifera) wax Yucea vera exlntcl .

Claims (38)

Claims:
1. A cosmetic composition, comprising:
a cosmetically acceptable carrier, comprising a reverse thermal viscosifying polymer network comprising at least one poloxamer component randomly bonded to at least one poly(acrylic acid) component said polymer network capable of aggregation in response to a change in temperature; and a cosmetically active agent which imparts a preselected cosmetic effect, said carrier and said agent disposed within an aqueous-based medium.
2. A cosmetic composition for topical application, comprising:
a cosmetically acceptable carrier, comprising a reverse thermal viscosifying polymer network comprising at least one poloxamer component capable of aggregation in response to a change in temperature randomly bonded to at least one poly(acrylic acid) component; and a cosmetically active agent selected to treat imperfections or disorders of the skim said carrier and said agent disposed within an aqueous-based medium.
3. The cosmetic composition of claim 1, wherein the cosmetic composition is a shampoo and the cosmetically active agent comprises a cleansingsurfactant.
4. The cosmetic composition of claim 1, wherein the cosmetic composition is a moisturizer and the cosmetically active agent comprises a moisturizer.
5. The cosmetic composition of claim 1, wherein the cosmetic composition is a sunscreen and the cosmetically active agent comprises a uv-absorbing agent.
6. The cosmetic composition of claim 1, wherein the cosmetic composition is an acne cream and the cosmetically active agent comprises an antiacne agent.
7. The cosmetic composition of claim 1, wherein the cosmetic composition is a hair straightener and the cosmetic agent comprises a base for increasing the pH.
8. The cosmetic composition of claim 1, wherein the cosmetic composition is a sunless tanning lotion and the cosmetically active agent comprises skin tinting agent.
9. The cosmetic composition of claim 1, wherein the cosmetic composition is an antiperspirant and the cosmetically active agent comprises aluminum chlorhydrate.
10. The cosmetic composition of claim 1, wherein the cosmetic composition is a shaving cream and the cosmetically active agent comprises an emollient and a foaming surfactant.
11. The cosmetic composition of claim 1, wherein the cosmetic composition is a face cosmetic and the cosmetically active agent comprises a pigment.
12. The cosmetic composition of claim 1 or 2, wherein the cosmetic agent comprises a hydrophobic material, wherein the cosmetically acceptable carrier stabilizes the hydrophobic material in the aqueous medium.
13. The cosmetic composition of claim 2, wherein said cosmetic agent selected to treat imperfections or disorders of the skin is selected from the group consisting of acidulents, antiacne agents, anti-aging agents, anti-inflammatories, anti-irritants, antioxidants, depilatories, detergents, disinfectants, emollients, exfoliants, humectants, lubricants, moisturizers, skin conditioners, skin protectants, skin lightening agents, skin soothing agents sunscreening agents and tanning accelerators and mixtures thereof.
14. The composition of claim 4, wherein said composition further comprises a cosmetic agent selected from the group consisting of humectants and emollients
15. The composition of claim 1 or 2. further comprising one or more additives selected from the group consisting of preservatives. abrasives, acidulents.
antiacne agents. anti-aging agents. antibacterials anticaking, anticaries agents, anticellulites. antidandruff, antifungal, anti-inflammatories, anti-irritants, antimicrobials.
antioxidants, astringents. anitperspirants, antiseptics, antistatic agents, antringents.
binders. buffers, additional carriers, chelators, cell stimulants. cleansing agents.
conditioners. deodorants, dipilatories, detergents. dispersants. emollients. emulsifiers.
enzymes. essential oils, exfoliants, fibers. film forming agents. fixatives, foaming agents, foam stabilizers, foam boosters, fungicides, gellants, glosser. hair conditioner.
hair set resins. hair sheen agents, hair waving agents, humectants, lubricants, moisture barrier agents, moisturizers. ointment bases, opacifier. plasticizer, polish, polymers, powders, propellant, protein, refatting agents, sequestrant. silicones, skin calming agents, skin cleansers, skin conditioners, skin healing, skin lightening agents, skin protectants, skin smoothing agents, skin softening agents, skin soothing agents,stabilizers, sunscreen agents, surfactants, suspending agents, tanning accelerators, thickeners, vitamins. waxes. wetting agents, liquefiers, colors, flavors and/or fragrances
16. The composition of claim 1, wherein the cosmetic composition takes a form selected from the group consisting of lotions, creams, sticks, roll-on formulations, mousses, sprays, aerosols, pad-applied formulations and masks.
17. The composition of claim 1, wherein the viscosification occurs at a temperature in the range of about 27 to 40°C.
18. The composition of claim 1, wherein the viscosification occurs at a temperature in the range of about 30 to 37°C.
19. The composition of claim 1. wherein said composition is formulated as a product selected from the group consisting of baby products. baby shampoos, lotions. powders and creams: bath preparations. bath oils, tablets and salts, bubble baths. bath fragrances bath capsules; eye makeup preparations. eyebrow pencil.
eyeliner. eye shadow, eye lotion, eye makeup remover, mascara: fragrance preparations, colognes, toilet waters, powders and sachets: noncoloring hair preparations. hair conditioner, hair spray, hair straighteners. permanent waves, rinses.
shampoos, tonics, dressings and other grooming aids: color cosmetics: hair coloring preparations, hair dye, hair tints, hair color sprays, hair lighteners and hair bleaches;
makeup preparations, face powders, foundations, leg and body paints, lipstick makeup bases, rouges and makeup fixatives; manicuring preparations. basecoats, undercoats, cuticle softeners, nail creams, nail extenders, nail polish and enamel, and remover; oral hygiene products. dentrifices, mouthwashes; personal cleanliness, bath soaps, detergents, deodorants, douches and feminine hygiene product; shaving preparations, aftershave lotion, beard softeners, men's talcum, shaving cream, shaving soap, preshave lotions; skin care preparations, skin cleansing preparations, skin antiseptics, depilatories, face and neck cleansers, body and hand cleansers. foot powders;
moisturizers, night preparations, paste masks, skin fresheners; and suntan preparations, suntan creams, gels and lotions, and indoor tanning preparations.
20. The cosmetic composition of claim 1 or 2, wherein the poloxamer component is present in an amount in the range of about 0.01 to 20 wt% and the poly(acrylic acid component) is present in the amount of about 0.01 to 20 wt%.
21. The cosmetic composition of claim 1, wherein the polymer network comprises a plurality of poloxamers.
22. The cosmetic composition of claim 1, wherein the polymer network comprises a plurality of poloxamer components randomly bonded to a poly(acrylic acid) backbone.
23. The cosmetic composition of claim 1, wherein the reversibly viscosifying polymer composition comprises a plurality of poly(acrylic acid) components randomly bonded to a poloxamer component.
24. The cosmetic composition of claim 1, wherein the aqueous-based medium is selected from the group consisting of water, salt solutions and water with water-miscible organic compound(s).
25. The cosmetic composition of claim 1, further comprising an additive selected to increase transition temperature and increase viscosity of the reversible viscosifying polymer network.
26. The cosmetic composition of claim 1, further comprising an additive selected to increase transition temperature and decrease viscosity of the reversible viscosifying polymer network.
27. The cosmetic composition of claim 1, further comprising an additive selected to increase transition temperature without affecting viscosity of the reversible viscosifying polymer network..
28. The cosmetic composition of claim 1, further comprising an additive selected to decrease transition temperature and increase viscosity of the reversible viscosifying polymer network.
29. The cosmetic composition of claim 1, further comprising an additive selected to decrease transition temperature and decrease viscosity of the reversible viscosifying polymer network.
30. The cosmetic composition of claim 1, further comprising an additive selected to decrease transition temperature without affecting viscosity of the reversible viscosifying polymer network.
31. The cosmetic composition of claim 1, further comprising an additive selected to increase viscosity without affecting transition temperature of the reversible viscosifying polymer network.
32. The cosmetic composition of claim 1, further comprising an additive selected to decrease viscosity without affecting transition temperature of the reversible viscosifying polymer network.
33. The cosmetic composition of claim 1 or 2, characterized in that the gel remains translucent to light before and after response to the environmental stimulus.
34. The cosmetic composition of claim 1, wherein the poly(acrylic acid) is branched.
35. Method of making an cosmetic composition, comprising:
dissolving a poloxamer capable of aggregation in response to a change in temperature in acrylic acid monomer;
initiating polymerization of the monomer to form a poly(acrylic acid) randomly bonded to the poloxamer, so as to form a reversibly viscosifying polymer composition;
mixing the reversibly gelling polymer compositions with a cosmetic agent which imparts a desired cosmetic effect to the composition.
36. The method of claim 36, wherein a polymerization initiator is selected to provide the polymer network having a selected temperature of viscosification.
37. The method of claim 36, wherein one or more poloxamers are added.
38. The cosmetic composition of claim 1, wherein the reversibly viscosifying polymer network is present in an amount in the range of 0.01% 10%.
CA 2259464 1997-05-01 1998-05-01 Compositions for cosmetic applications Abandoned CA2259464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84688397A 1997-05-01 1997-05-01
US08/846,883 1997-05-01

Publications (1)

Publication Number Publication Date
CA2259464A1 true CA2259464A1 (en) 1998-11-05

Family

ID=25299219

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2259464 Abandoned CA2259464A1 (en) 1997-05-01 1998-05-01 Compositions for cosmetic applications

Country Status (4)

Country Link
EP (1) EP0927019A1 (en)
AU (1) AU7174998A (en)
CA (1) CA2259464A1 (en)
WO (1) WO1998048768A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011609A4 (en) * 1997-05-09 2000-08-16 Medlogic Global Corp Compositions for cosmetic applications
US7074747B1 (en) 1999-07-01 2006-07-11 Johnson & Johnson Consumer Companies, Inc. Cleansing compositions
AU5764800A (en) 1999-07-01 2001-01-22 Johnson & Johnson Consumer Companies, Inc. Cleansing compositions
US6762158B2 (en) 1999-07-01 2004-07-13 Johnson & Johnson Consumer Companies, Inc. Personal care compositions comprising liquid ester mixtures
FR2811995B1 (en) 2000-07-21 2003-06-06 Oreal POLYMER COMPRISING WATER-SOLUBLE UNITS AND LCST UNITS, AND AQUEOUS COMPOSITION COMPRISING SAME
DE10050403A1 (en) * 2000-10-12 2002-04-25 Goldschmidt Ag Th Enzymatic production of hydroxy fatty acid esters of polyhydric alcohols which are solid at room temperature
GB0031264D0 (en) 2000-12-21 2001-01-31 Unilever Plc Antiperspirant products
FR2819415B1 (en) 2001-01-15 2003-11-21 Oreal DISPERSIONS STABILIZED AT TEMPERATURES FROM 4 TO 50 BY MEANS OF A POLYMER COMPRISING WATER-SOLUBLE UNITS AND LCST UNITS
FR2819416B1 (en) * 2001-01-15 2004-12-17 Oreal TEHRMOGELIFYING FOAMING COMPOSITION AND FOAM OBTAINED
FR2819429B1 (en) 2001-01-15 2003-03-07 Oreal FOAMING EMULSIONS AND COMPOSITIONS CONTAINING A POLYMER COMPRISING WATER-SOLUBLE UNITS AND LCST UNITS, IN PARTICULAR FOR COSMETIC APPLICATIONS
FR2822379B1 (en) * 2001-03-20 2007-06-15 Sederma Sa COSMETIC AND DERMOPHARMACEUTICAL COMPOSITIONS CONTAINING UMBELLIFERONE
FR2824832B1 (en) * 2001-05-16 2005-05-27 Oreal WATER-SOLUBLE WATER-SOLUBLE SKELETOLYMERIC POLYMERS WITH LCST LATERAL UNITS, PROCESS FOR THEIR PREPARATION, AQUEOUS COMPOSITIONS CONTAINING SAME, AND USE THEREOF IN THE COSMETIC FIELD
ES2300399T3 (en) * 2002-04-30 2008-06-16 Cognis Ip Management Gmbh EMPLOYMENT OF MIXTURES OF ACTIVE PRINCIPLES WITH ACELAIC ACID AND GLYCLRETIC ACID AS ANTI-ACNE AGENTS.
US7087559B2 (en) 2002-12-16 2006-08-08 Avon Products, Inc. Non-foaming cleaning and conditioning hair care compositions
FR2843025A1 (en) * 2002-12-18 2004-02-06 Oreal The use of an interpenetrating polymer network, especially one comprising a polyacrylic and polyurethane, in cosmetic compositions as an agent for reducing facial and/or neck wrinkles and/or retensioning the skin
FR2849596B1 (en) * 2003-01-08 2005-02-11 Oreal COMPOSITION FOR THE TREATMENT OF ACNEIC TREND SKIN
EP1491202A1 (en) 2003-06-23 2004-12-29 Polichem S.A. Nail restructuring compositions for topical application
DE102005026002A1 (en) * 2005-06-03 2006-12-14 Beiersdorf Ag Cosmetic preparations containing an aqueous aniseed extract and one or more polymeric thickening agents selected from the group of cellulose derivatives
DE102005037546A1 (en) * 2005-08-09 2007-02-22 Beiersdorf Ag Cosmetic preparation with UV sunscreen filters
US7871634B2 (en) 2005-08-11 2011-01-18 L'oréal Cosmetic compositions useful for lengthening lashes
US20130115320A1 (en) 2007-03-30 2013-05-09 Dynova Laboratories, Inc. Therapeutic agent for intranasal administration and method of making and using same
DE102007018225A1 (en) * 2007-04-16 2008-12-11 Beiersdorf Ag Cosmetic or dermatological formulation for promoting regeneration of skin flora, and for use in cosmetic skin care, comprise root parts or ethanolic extracts of Geranium
BRPI0721327B1 (en) * 2007-12-28 2015-09-08 Inst Nac De Pesquisas Da Amazônia Inpa Liquid composition with plant extracts and method of preparation.
WO2009082793A1 (en) * 2007-12-28 2009-07-09 Instituto Nacional De Pesquisa Da Amazônia - Inpa Evanescent cream comprising plant oils and process for producing the same
WO2009082790A1 (en) * 2007-12-28 2009-07-09 Instituto Nacional De Pesquisa Da Amazônia - Inpa Solid cleansing composition comprising oil from plants belonging to the genus bactris and/or mauritia
WO2009082796A1 (en) * 2007-12-28 2009-07-09 Instituto Nacional De Pesquisa Da Amazônia - Inpa Cosmetic composition comprising plant extracts and preparation method of the same
US8221731B2 (en) 2008-05-30 2012-07-17 Aveda Corporation Continuous moisturization compositions
FR2932070B1 (en) 2008-06-10 2012-08-17 Oreal MAKE-UP AND / OR CARE OF LASHES
FR2940761B1 (en) 2009-01-07 2012-12-28 Polymerexpert Sa ANTI-ROUNDER COMPOSITION CONTAINING A THERMOGELIFYING POLYMER
BRPI1009982A2 (en) 2009-05-01 2017-06-27 Signal Investment & Man Co moisturizing antimicrobial composition
CA2810000A1 (en) 2010-08-31 2012-03-08 Trans Union Llc Systems and methods for improving accuracy of insurance quotes
CN103347529B (en) 2010-12-09 2016-10-26 Y&B妈妈之选有限公司 Preparation comprising saponin and application thereof
US10434058B2 (en) 2010-12-09 2019-10-08 Y&B Mother's Choice Ltd. Natural formulations
WO2012077120A2 (en) 2010-12-09 2012-06-14 Y&B Mother's Choice Ltd. Natural formulations
US8790669B2 (en) * 2011-09-30 2014-07-29 L'oreal Cosmetic compositions comprising latex film formers
US9408785B2 (en) 2012-10-15 2016-08-09 L'oreal Hair styling compositions containing aqueous wax dispersions
US10413496B2 (en) 2012-10-15 2019-09-17 L'oreal Aqueous wax dispersions
US10626294B2 (en) 2012-10-15 2020-04-21 L'oreal Aqueous wax dispersions containing volatile solvents
IL229836A0 (en) 2013-12-08 2014-03-31 Y & B Mother S Choice Ltd Preparations for suppressing or attenuating ocular irritancy
US10561596B2 (en) 2014-04-11 2020-02-18 L'oreal Compositions and dispersions containing particles comprising a polymer
US10807280B2 (en) * 2015-06-22 2020-10-20 The Boeing Company Method of extracting a tooling mandrel from a composite laminate cavity
FR3039063B1 (en) 2015-07-22 2017-07-21 Biosynthis Sarl PROCESS FOR ENRICHING PONGAMOL WITH KARANJA OIL
KR102518631B1 (en) 2016-05-02 2023-04-07 와이앤드비 마더스 초이스 엘티디. Composition of saponins and plant extracts
RU2678307C1 (en) * 2018-11-13 2019-01-25 Индивидуальный предприниматель Талагаева Елена Владимировна Active additive to perfume and cosmetic products for acne
CN109749221A (en) * 2019-01-14 2019-05-14 辽阳博仕流体设备有限公司 A kind of antibacterial light degradation composite membrane and its preparation method and application
FR3091996B1 (en) 2019-01-24 2021-01-29 Les Laboratoires Brothier HEALING COMPOSITION
CN115252524B (en) * 2022-08-30 2023-03-14 植物医生(广东)生物科技有限公司 Facial cleanser and preparation process thereof
CN115813825A (en) * 2022-12-27 2023-03-21 广州研智化妆品有限公司 Composition capable of improving large pores and application of composition in cosmetics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106609A (en) * 1990-05-01 1992-04-21 The Procter & Gamble Company Vehicle systems for use in cosmetic compositions
US5662892A (en) * 1996-03-15 1997-09-02 The Procter & Gamble Company Personal care compositions containing hydrophobic linear copolymer and hydrophobic, volatile, branched hydrocarbon solvent

Also Published As

Publication number Publication date
WO1998048768A1 (en) 1998-11-05
AU7174998A (en) 1998-11-24
WO1998048768A9 (en) 1999-03-25
EP0927019A1 (en) 1999-07-07

Similar Documents

Publication Publication Date Title
CA2259464A1 (en) Compositions for cosmetic applications
US9937254B2 (en) Water-soluble supramolecular complexes
JP5846696B2 (en) Individual health care formulation containing alkyl ketal ester and method for producing the same
JP7369683B2 (en) Water-soluble supramolecular complex
CN101505712B (en) Compositions based on hyperbranched condensation polymers and novel hyperbranched condensation polymers
EP1146854B1 (en) Compositions and methods for treating hair and skin using aqueous delivery systems
WO1998050005A1 (en) Compositions for cosmetic applications
KR20090013233A (en) Cosmetic compositions containing side chain crystalline (scc) polymers
JP2009528439A (en) Heterocyclic substituted novel condensation polymers
JPH1053510A (en) Composition for external use
US20160250134A1 (en) Polymers and uses thereof
JP2008115091A (en) Nonionic surfactant, and cosmetic and agent for external use each using the same
TWI314057B (en)
JP4573383B2 (en) Cosmetic oil and cosmetics and external preparations using the same
CN102892799B (en) Cation/cationogen comb copolymer compositions and containing their personal care product
JPH11514362A (en) Oil additive conditioner
JPH11189522A (en) Cosmetic and skin preparation for external use
JP4834236B2 (en) Silicone derivatives and oils, cosmetics and external preparations containing the same
US20230338268A1 (en) Ethylcellulose formulations and methods of making same
JP2011093917A (en) Cosmetic and preparation for external use
JPH08245360A (en) Skin cosmetic

Legal Events

Date Code Title Description
FZDE Dead