CA2253471C - Device for enhancing transdermal sampling - Google Patents

Device for enhancing transdermal sampling Download PDF

Info

Publication number
CA2253471C
CA2253471C CA002253471A CA2253471A CA2253471C CA 2253471 C CA2253471 C CA 2253471C CA 002253471 A CA002253471 A CA 002253471A CA 2253471 A CA2253471 A CA 2253471A CA 2253471 C CA2253471 C CA 2253471C
Authority
CA
Canada
Prior art keywords
agent
device
sheet
microblades
body surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002253471A
Other languages
French (fr)
Other versions
CA2253471A1 (en
Inventor
Michel J. N. Cormier
Felix T. Theeuwes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alza Corp
Original Assignee
Alza Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US1999096P priority Critical
Priority to US60/019,990 priority
Application filed by Alza Corp filed Critical Alza Corp
Priority to PCT/US1997/010595 priority patent/WO1997048441A1/en
Publication of CA2253471A1 publication Critical patent/CA2253471A1/en
Application granted granted Critical
Publication of CA2253471C publication Critical patent/CA2253471C/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • A61B5/150427Specific tip design, e.g. for improved penetration characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150969Low-profile devices which resemble patches or plasters, e.g. also allowing collection of blood samples for testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150977Arrays of piercing elements for simultaneous piercing
    • A61B5/150984Microneedles or microblades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15105Purely manual piercing, i.e. the user pierces the skin without the assistance of any driving means or driving devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15142Devices intended for single use, i.e. disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/20Surgical instruments, devices or methods, e.g. tourniquets for vaccinating or cleaning the skin previous to the vaccination
    • A61B17/205Vaccinating by means of needles or other puncturing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0038Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a channel at the side surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Abstract

A device (10, 88, 98, 104) for piercing the stratum corneum of a body surface to form path-ways through which an agent can be withdrawn. The device com-prises: a sheet (6) having a plural-ity of microblades (4) extending downward therefrom for piercing the stratum corneum, and a col-lector (26, 90, 106) on the sheet (6) which withdraws the agent through the pathways.

Description

WO 97/48441 ~ PCTIUS97/10595 ~ DEVICE FOR ENHANCING TRANSDERMAL SAMPLING

The present invention relates to transdermal agent sampling. More 6 particularly, this invention relates to the transdermal sampling of agents, such 7 as glucose, electrolyte and substances of abuse, such as but not limited to 8 alcohol and illicit drugs. The present invention uses skin-piercing microblades 9 to enhance the transdermal flux of the agents during transdermal sampling.

13 Interest in the percutaneous or transdermal sampling of agents 14 continues to grow. The transdermal sampling of agents still faces significant problems. In many instances, the flux of agents through the skin is insufficient 16 to calculate quickly and accurately the concentration of the substance in the 17 blood or body.
18 One method of increasing the transdermal sampling of agents relies on 19 the application of an electric current across the body surface or on "electrotransport". "ElectrotransporN' refers generally to the passage of an 21 agent through a body surface such as skin, mucous membranes, nails, and the 22 like. The transport of the agent is induced or enhanced by the application of an 23 electrical potential, which results in the application of electric current, which 24 samples or enhances sampling of the agent. The electrotransport of agents through a body surface may be attained in various manners. One widely used 26 electrotransport process, iontophoresis, involves the electrically induced 27 transport of charged ions. Electroosmosis, another type of electrotransport 28 process, involves the movement of a solvent with the agent through a 29 membrane under the influence of an electric field. Electroporation, still another type of electrotransport, involves the passage of an agent through pores formed 31 by applying a high voltage electrical pulse to a membrane. In many instances, 1 more than one of these processes may be occurring simultaneously to different 2 extents. Further increases in transdermal sampling rates are highly desirable.
3 One method of increasing the agent transdermal sampling rate involves 4 pre-treating the skin with a skin permeation enhancer. The term "permeation enhancer' is broadly used herein to describe a substance which, when applied 6 to a body surface through which the agent is sampled, enhances its 7 transdermal flux. The mechanism may involve an increase in the permeability 8 of the body surface or in the case of electrotransport sampling a reduction of 9 the electrical resistance of the body surface to the passage of the agent therethrough, and/or the creation of hydrophilic pathways through the body 11 surface during electrotransport.
12 There have been many attempts to enhance transdermal flux by 13 mechanically puncturing the skin prior to transdermal drug delivery. See for 14 example U. S. Patent Nos. 5,279,544 issued to Gross et al., 5,250,023 issued to Lee et al., and 3,964,482 issued to Gerstel et al and WO 96/17648 published 16 June 13, 1996. These devices utilize tubular or cylindrical structures generally, 17 although Gerstel and WO 96/17648 do disclose the use of other shapes, to 18 pierce the outer layer of the skin for agent delivery, but not sampling.
Each of 19 these devices provide manufacturing challenges, limited mechanical attachment of the structure to the skin, and/or undesirable irritation of the skin.
21 As has been discussed, a variety of chemicals and mechanical means 22 have been explored to enhance transdermal flux. However, there is still a need 23 to provide a device suitable for increasing transdermal flux which device is low-24 cost and which can be manufactured reproducibly (i.e., without significant variation from device to device) in high volume production.

AMENDED SI~L

DESCRIPTION OF THE INVENTION

The present invention provides a reproducible, high volume production, low-cost device suitable for increasing transdermal flux for agent sampling and monitoring. The invention comprises a plurality of microblades for piercing the skin. The microblades typically have a length of less than about 0.5 mm and a width and thickness which is even smaller. In spite of their small size, the microblades can be made with an extremely reproducible size and shape so that the microslits formed by the microblades puncturing the skin also have a very reproducible size and depth. Because the microblades have a small thickness (i.e., small relative to the width and length of the blades), the microblades produce less tissue damage for a given cross-section than a skin piercing microneedle having a circular cross-section. The device of the present invention pierces the stratum corneum of a body surface to form pathways through which an agent (e.g., a body electrolyte) can be withdrawn (i.e., sampled or monitored).

In one aspect of the invention, there is provided a device for piercing the stratum corneum of a body surface to form pathways through which an agent can be withdrawn, comprising: a sheet having a plurality of microblades extending downward therefrom; and a collector on the sheet which withdraws the agent through the pathways.

In another aspect of the invention, the device comprises a sheet having a plurality of microblades integral therewith and extending downward therefrom and a collector on the sheet which collects an agent which is withdrawn through the pathways in the skin formed by the microblades.
The device of the present invention can be used in 3a connection with body analyte or drug sampling, or both.
Collectors (i.e., sampling devices) for use with the present invention include, but are not limited to, "reverse"
electrotransport devices as disclosed in Glikfeld et al., U.S. Patent No. 5,279,543 and Guy et al., U.S. Patent No.

5,362,307, passive diffusion devices as disclosed in Schoendorfer for U.S. Patent No. 5,438,984, osmotic devices as disclosed in Eckenhoff et al., U.S. Patent No. 4,756,314 and negative pressure driven devices.

~ BRIEF DESCRIPTION OF THE DRAWINGS

3 Figure 1 is a diagrammatic cross-sectional view of a sampling system in 4 accordance with one embodiment of the present invention;
Figure 2 is an enlarged perspective view of the skin proximal side of the 6 micro blade array device which may be used in the present invention;

7 Figure 3 is a diagrammatic representation of a method for producing a 8 micro blade array used in the present invention;

9 Figure 4 is a diagrammatic cross-sectional view of a passive agent sampling system in accordance with one embodiment of the present invention;
11 Figure 5 is a diagrammatic cross-sectional view of another embodiment 12 of a passive agent sampling system in accordance with the present invention;
13 Figure 6 is a perspective exploded view of one embodiment of a 14 "reverse" electrotransport agent sampling system with a blade array device according to one embodiment of the present invention;
16 Figure 7 is a bottom plan view of the "reverse" electrotransport agent 17 sampling system of figure 6;
18 Figure 8 is a right side elevational view of the "reverse" electrotransport 19 agent sampling system of figure 6;
Figure 9 is a rear elevational view of the "reverse" electrotransport agent 21 sampling system of figure 6; and 22 Figure 10 is a cross-sectional view taken along line 10-10 of the 23 assembled "reverse" electrotransport agent sampling system of figure 8;

MODES FOR CARRYING OUT THE INVENTION

27 Turning now to the drawings in detail, one embodiment of a sampling 28 device of the present invention is generally shown in Figure 1. Figure 1 29 illustrates an osmotic collector or sampling device 104 in combination with a skin-piercing microblade array member 2. The osmotic collector 104 is 31 attached to a body surface by means of an impermeable flexible adhesive overlay 100. Collector 104 is comprised of an absorbent pad (which is impregnated with an osmotically active material such as a highly soluble salt) 106 located between a semi-permeable or osmotic membrane 94 and an optional agent 5 sensing element 108. The semi-permeable member 94 is permeable to water and the agent to be collected and impermeable to the osmotically active material. Any of a wide variety of natural and synthetic semi-permeable membranes are known in the art as osmotic membranes.

Suitable membranes are enumerated in U.S. Patent Nos.
3,845,770, 3,916,899, 4,077,407 and 4,014,334.

The pad 106 has preferably dispersed therethrough sufficient undissolved osmotic agent such that the concentration of the solution formed within the collection pad as a result of the imbibition of water through the semi-permeable membrane 94 will be maintained at the saturation level throughout the intended sampling period. The pad 106 may also contain dispersed therethrough a collecting material such as colloidal silica, ion exchange resins, activated charcoal or other materials that selectively adhere to the agent being collected to prevent back diffusion of the agent through the membrane 94.

The optional agent sensing element can be any of a variety of chemically reactive sensors and indicators, for example the color indicating test strips associated with glucose testing. The adhesive overlay 100 can have a cut-out or transparent window in the area of the indicators so that the indicators can be readily viewed. In an alternate embodiment, the agent sensing element can be located between the member 2 and the pad 106. Alternatively, pad 106 and osmotic membrane 94 are combined in one layer of absorbent 5a hydrogel that stores the absorbed fluid as well as the agent. Preferably, the pad 106 is free to expand or is encapsulated in the semi-permeable or osmotic membrane 94 so that it retains the fluid therein.

Member 2 is used in conjunction with the percutaneous sampling of an agent. The term "sampling" is used broadly herein to include withdrawal of or monitoring the presence or amount of an agent. The terms "substance"
and "agent" are used interchangeably herein and broadly include substances such s as glucose, body electrolytes, alcohol, illicit drugs, licit substances, 2 pharmaceuticals, blood gases, etc. that can be sampled through the skin. The 3 major barrier properties of the skin, such as resistance to agent passage, reside 4 with the outer most layer (i.e., stratum corneum). The inner division of the epidermis generally comprises three layers commonly identified as stratum 6 granulosum, stratum malpighii, and stratum germinativum. There is essentially 7 little or no resistance to movement of an agent through the stratum granulosum, 8 stratum malpighii, and stratum germinativum. The device of the present 9 invention is used to form microslits in the stratum corneum for in situ sampling of an agent.
11 Member 2 comprises a plurality of microblades 4 (i.e., a blade array) 12 extending downward from one surface of a sheet 6 (see Figure 2 in which a 13 portion of member 2 is in an inverted position to show the microblades).
The 14 microblades 4 are sized and shaped to penetrate the stratum corneum of the epidermis when pressure is applied to the device but do not penetrate the skin 16 sufficiently to contact the patient's nerve endings. With this configuration, the 17 microblades do not cause a painful sensation or bleeding. The microblades 4 18 form microslits in a body surface to increase the sampling of a substance 19 through the body surface. The term "body surface" as used herein refers generally to the skin, of an animal or human. Placement of the member 2 in 21 conjunction with a sampling system associated therewith on the body surface of 22 a patient allows in situ sampling and monitoring without relying on collecting a 23 blood or sample with a needle and syringe or lance and test strip. In one 24 preferred embodiment, the device is designed to monitor glucose levels in diabetic patients. In the case of agent (e.g., body analyte) sampling, the 26 analyte migrates from the body through the microslits in the stratum corneum 27 which are cut by the microblades 4. The sampled agent may be collected 28 directly from the skin, or the agent may be contained in the interstitial fluid 29 and/or sweat of the patient and the latter fluid can be collected for purposes of sampling the agent.
31 In one embodiment, the opening 8 corresponds to the portion of the 2466 CIP 2 =

1 sheet 6 occupied by each of the microblades prior to the blades being 2 transposiiioned into the downward depending position. In the illustrated 3 embodiment (Figures 2 and 3), the sheet 6 is formed with an opening 8 4 between the microblades 4. The opening 8 corresponds to the portion of the sheet 6 occupied by each of the microblades 4 prior to the microblades being 6 bent into a position which is substantially perpendicular to the plane of sheet 6.
7 The number of openings 8 per device and the number of microblades 4 per 8 device are independent. The device may have only one large opening 8 with a 9 plurality of microblades ~ around the opening. As will be described below, the opening 8 may be covered with an agent-attracting member for enhancing the 11 movement of an agent being sampled past the electrodes and into an agent-12 collecting reservoir.
13 The microblades 4 are generally formed from a single piece of material 14 (although they need not be) and are sufficiently sharp and long for puncturing at least the stratum corneum of the body surface. In one embodiment, the 16 microblades 4 and the sheet 6 are essentially impermeable or are impermeable 17 to the passage of an agent. The width of each microblade can be any of a 18 range of widths. Usually, the width of the microblade is in the range of about 25 19 m to 500 m. The length of the microblades is subject to variation of the body surface being penetrated and corresponds to the natural thickness of the 21 stratum corneum. Usually, the microblades 4 will be about 20 m to about 22 m in length. The microblades 4 can have slanted (i.e., angled) leading edges 23 64 (FIG. 2) to further reduce the insertion force required to press the 24 microblades 4 into the body surface. The leading edges 64 of each microblade can be all the same angle or can be at different angles suitable for piercing the 26 body surface. The leading edge can have multiple segments with the distal 27 most segment having a smaller angle with respect to an axis along the length of 28 the microblade than a more proximal segment. Altematively, the leading edge 29 of each microblade can be arcuate (i.e., curved) in shape, having, for example, a convex or concave shape.
31 The member 2 can also improve the attachment of the device to the NME:41DED
~EE~

I body surface so that continuous agent detection through the body surface is 2 preserved during movement of the body surface. In the embodiment shown in 3 FIG. 2, projections in the form of barbs 50 on at least one of the microblades 4 4 assist in anchoring the member 2 and any corresponding device or structure used in combination therewith to the body surface. Barbs 50 can be on any 6 number of the microblades from one to all microblades. The tiarbs 50 are 7 optional as other means for holding the member in contact with the body 8 surface can be used. The present invention can be used in conjunction with a 9 wide variety of microblades configurations, for example, referenoe may be had io to WO 97/48440 published December 24, 1997 of which any of the disclosed I , configurations can be used with the present invention.
12 The pattem for any of the microbiade array members 2 of the present 13 invention can be produced with a photo-etching process. For exaFnple, 14 reference may be had to U.S. Patent No. 6,537,264 of which any of the disclosed methods can be used to produce the 16 member 2 of the present invention. A thin sheet 6 of metal such as stainless 17 steel or titanium is etched photo-lithographicaAy with pattems containing skin 18 piercing structures. In general, a thin laminate dry resist or wet resist is applied 19 on the sheet 6 which typically has a thickness of about 7 pm to about 100 pm, zo preferably about 25 m to about 50 m. The resist is contact exposed using a 21 mask having the desired pattem and is subsequently developed. These n operations are conducted in much the. same way that they are for the 23 manufacture of a printed circuit board. The sheet 6 Is then etched using acidic 24 solutions. After the pattem has been etched through the sheet, the sheet 6 is placed on a die 52 (Figure 3) having a plural'rty of openings 56 corresponding to za the openings 8 in the sheet. A punch 54 having a plurality of protrusions 27 corresponding to the openings 8 in the sheet 6 and openings 56 in the die 52 is za initiaUy located above the sheet 6 and the die 52. At the initial stage, the 29 microblades 4 are in the same plane as the rest of the sheet 6. The punch protrusions 58 are then pressed into the openings 8, thus bending the 31 microblades downward to be substantially perpendicular to the plane of the 1 sheet 6. The finished structure provides microblades 4 with an adjacent 2 opening 8. In one embodiment, the opening 8 allows the passage of interstitial 3 fluid therethrough when the member 2 is applied to the body surface.
4 Rectangular openings 8 are shown in the figures but the invention encompasses the use of any shape openings including, but not limited to, 6 square, triangular, circular and elliptical.
7 Generally, the microblades 4 are at an angle of about 90o to the surface 8 48 (FIG. 2) of the sheet 6 after being punched, but they can be disposed at any 9 angle forward or backward from the perpendicular position that will facilitate penetration of and attachment to the body surface. In addition, other anchoring 11 elements such as barbs, openings, etc. can be used with the angled 12 microblades to further enhance anchoring of the device.
13 The member 2 can optionally be made to adhere to the patient's body 14 surface by various means, including an adhesive applied to the body-contacting side of sheet 6 or other anchoring elements on the member 2 of any of the 16 embodiments discussed herein. Further, a watch band or elastic bandage can 17 be used to maintain the device in contact with the skin. The adhesive should 18 have sufficient tack to insure that the member 2 remains in place on the body 19 surface during normal user activity, and yet permits reasonable removal after the predetermined (e.g., 24-hour) wear period. A suitable release liner (not 21 shown) is preferably provided for maintaining the integrity of the adhesive 22 before use. In use, the release liner is stripped from the adhesive before the 23 device is applied to the skin.
24 As is best shown in Figure 2, the microblades 4 have a thickness which is much smaller than the width of the blades near their base, i.e., near the point 26 where the blades are attached to the sheet 6. This blade geometry provides 27 maximum drug percolation area with a minimum blade penetration area, and 28 hence less tissue damage. The agent percolation area is the area of the micro 29 slit opening(s) formed in the stratum corneum by the blade(s), less the cross-sectional area of the blade(s). The microblades are shaped with the largest 31 possible surface area with a minimal cross-sectional area so as to give the 2466 CIP 2' 1 largest possible percolation area. Thin microblades are better than round 2 protrusions for this purpose because for the same cross-section, a thin blade 3 produces more percolation area and less tissue damage than a round 4 protrusion. This is a crucial advantage over the prior art round elements such 5 as needles and tubes. Thin microblades also require less insertion force than 6 round protrusions. The width of each blade can be any of a range of widths.
7 The widths can be different from blade to blade in the array pattern.
Likewise, 8 the width can be variable along the length of the blade, as will be described in 9 more detail below. The width of the blade at the intersection of the blade and 10 the body surface after the blade array has been inserted is preferably in the 11 range of about 25 m to about 500 m, more preferably about 50 m to about 12 400 m, more preferably 100 m to about 300 m.

13 The sheet 6 and microblades 4 can be made from materials that have 14 sufficient strength and manufacturability to produce blades, such as, glasses, ceramics, rigid polymers, metals and metal alloys. Examples of metals and 16 metal alloys include but are not limited to stainless steel, iron, steel, tin, zinc, 17 copper, platinum, aluminum, germanium, nickel, zirconium, titanium and 18 titanium alloys consisting of nickel, molybdenum and chromium, metals plated 19 with nickel, gold, rhodium, iridium, titanium, platinum, and the like. An example of glasses include a devitrified glass such as "PHOTOCERAM" available from 21 Coming in Coming, NY. Examples of polymers include but are not limited to 22 rigid polymers such as polystyrene, polymethylmethacrylate, polypropylene, 23 polyethylene, "BAKELITE", cellulose acetate, ethyl cellulose, 24 styrene/acrylonitrile copolymers, styrene/butadiene copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, polyvinyl chloride and acrylic 26 acid polymers including polyacrylates and polymethacrylates.
27 The number of microblades 4 and openings 8 of any of the 28 embodiments of the member 2 is variable with respect to the desired flux rate, 29 agent being sampled, sampling device used (i.e., reverse electrotransport, passive diffusion, osmotic, suction, etc.), and other factors as will be evident to 31 one of ordinary skill in the art. In general, the larger the number of blades per ~~~

, unit area (i.e., the blade density), the more distributed is the flux of the agent 2 through the skin because there are a greater number of agent-conveying 3 pathways through the skin. Consequently, the smaller the number of blades 4 per unit area, the more concentrated is the flux of the agent through the skin because there are fewer pathways. The present invention has a blade density 6 of at least about 10 blades/cm2 and less than about 1000 blades/cm2, 7 preferably at least about 600 blades/cmZ, more preferably at least about 800 8 blades/cm2. In similar fashion, the number of openings per unit area through 9 which the agent passes is at least about 10 openings/cm2 and less than about 1000 openings/cm2. In one embodiment, the present invention produces a 11 percolation area of about 0.005 to .05 cm2/cm2 of body surface, preferably 12 about 0.01 cm2/cm2 of body surface.
13 In other embodiments of the present invention, passive transdermal 14 sampling devices are used with member 2. Two examples of passive transdermal sampling devices are illustrated in Figures 4 and 5. In Figure 4, 16 passive transdermal sampling device 88 comprises a reservoir 90 sandwiched 17 between a backing layer 92, which is preferably impermeable to the agent, and 18 a wicking membrane 94. In Figure 4, the reservoir 90 is formed of a material, 19 such as a rubbery polymer, that is sufficiently viscous to maintain its shape. If a lower viscosity material is used for reservoir 90, such as an aqueous gel, 21 backing layer 92 and wicking membrane 94 would be sealed together about 22 their periphery to prevent leakage. Located below membrane 94 is microblade 23 array member 2. The device 88 adheres to a body surface by means of 24 contact adhesive layer 96 around the periphery of the member 2. A
strippable release liner (not shown) is normally provided along the exposed surface of 26 adhesive layer 96 and is removed prior to application of device 88 to the body 27 surface.
28 Alternatively, as shown in Figure 5, transdermal sampling device 98 may 29 be attached to a body surface by means of a flexible adhesive overlay 100.
Device 98 is comprised of an impermeable backing layer 102 adjacent one 31 surface of reservoir 90. Adhesive overlay 100 maintains the device 98 on the 1 body surface. Adhesive overlay 100 can be fabricated together with, or 2 provided separately from, the remaining elements of the device 98. With 3 certain formulations, the adhesive overlay 100 may be preferable to the contact 4 adhesive 96 shown in Figure 4. This is true, for example, where the agent reservoir contains a material (such as, for example, an oily surfactant 6 permeation enhancer) which adversely affects the adhesive properties of the 7 contact adhesive layer 96. Impermeable backing layer 102 is preferably slightly 8 larger than reservoir 90, and in this manner prevents the agent collected in 9 reservoir 90 from adversely interacting with the adhesive in overlay 100. A
wicking membrane (not shown in Figure 5) similar to membrane 94 in device 88 11 (Figure 4) is located on the skin/mucosa side of reservoir 90. A strippable 12 release liner (not shown) is also normally provided with device 98 and is 13 removed just prior to application of device 98 to the body surface.
14 One embodiment of the present invention relies on the application of an electric current across the body surface or "electrotransport".
Electrotransport 16 refers generally to the passage of an agent through a body surface such as 17 skin, mucous membranes, nails, and the like. The transport of the agent is 18 induced or enhanced by the application of an electrical potential, which results 19 in the application of electric current, which for "reverse"
electrotransport, samples or enhances sampling of the agent. The electrotransport of the agents 21 out of the skin may be aitained in various manners. One widely used 22 electrotransport process, iontophoresis, involves the electrically induced 23 transport of charged ions. Electroosmosis, another type of electrotransport 24 process invloved in the transdermal transport of uncharged or neutrally charged molecules (e.g., transdermal sampling of glucose), involves the movement of a 26 solvent with the agent through a membrane under the influence of an electric 27 field. Electroporation, still another type of electrotransport, involves the 28 passage of an agent through pores formed by applying an electrical pulse, a 29 high voltage pulse, to the skin. In many instances, more than one of these processes may be occurring simultaneously to different extents. Accordingly, 31 the term "electrotransport" is given herein its broadest possible interpretation, to 1 include the electrically induced or enhanced transport of at least one charged or 2 uncharged agent, or mixtures thereof, regardless of the specific mechanism(s) 3 by which the agent is actually being transported.
4 It will be appreciated by those working in the field that the present invention can be used in conjunction with a wide variety of electrotransport 6 systems, as the invention is not limited in any way in this regard. For examples 7 of electrotransport drug sampling systems, reference may be had to U.S.
8 Patent Nos. 5,279,543 to Glikfeld et al. and 5,362,307 to Guy et al.
9 Electrotransport devices generally Lise at least two electrodes which are in elPctrical contact with some portion of the skin, nails, mucous membranes, or 11 other body surface. In the case of transdermal agent sampling, one of the two 12 electrodes is referred to as the "receptor" electrode, and is the one into which 13 the agent (e.g., body analyte) is collected after being withdrawn from the body.
14 The second electrode is typically termed the "counter" or "return"
electrode, and serves to close the electrical circuit through the body. For example, when the 16 agent to be sampled is a cation, the cathode becomes the receptor electrode 17 while the anode serves to complete the circuit. When the agent to be sampled 18 is an anion, the anode becomes the receptor electrode while the cathode 19 serves to complete the circuit. When the agent to be sampled has no net charge (e.g., glucose), then either the anode or the cathode, or both electrodes, 21 can serve as the receptor electrode.
22 Figures 6-10 illustrate a representative reverse electrotransport sampling 23 device 10 that may be used in conjunction with the present invention.
Device 24 10 comprises an upper housing 16, a circuit board assembly 18, a lower housing 20, first electrode 22, second electrode 24, electrically conductive gel 26 reservoir 26, electrically conductive gel reservoir 28 and skin-compatible 27 adhesive 30. Upper housing 16 has lateral wings 15 which assist in holding 28 device 10 on a patient's skin. Printed circuit board assembly 18 comprises an 29 integrated circuit 19 coupled to discrete components 40 and battery 32.
Circuit board assembly 18 is attached to housing 16 by posts (not shown in Figure 1) s.
~~~~

1 passing through openings 13a and 13b, the ends of the posts being 2 heated/melted in order to heat stake the circuit board assembly 18 to the 3 housing 16. Lower housing 20 is attached to the upper housing 16 by means 4 of adhesive layer 30, the upper surface 34 of adhesive layer 30 being adhered to both lower housing 20 and upper housing 16 including the bottom surfaces 6 of wings 15. Shown (partially) on the underside of circuit board assembly 18 is 7 a button cell battery 32. Other types of batteries may also be employed to 8 power device 10 depending on the need.
9 The device 10 is generally comprised of battery 32, eiectronic circuitry 19,40, electrodes 22,24, conductive gel reservoirs 26,28, and device 2, all of 11 which are integrated into a self-contained unit. The outputs (not shown in 12 Figure 1) of the circuit board assembly 18 make electrical contact with the 13 electrodes 24 and 22 through openings 23,23 in the depressions 25,25' formed 14 in lower housing 20, by means of electrically conductive adhesive strips 42,42'.
Eiectrodes 22 and 24, in turn, are in direct mechanical and electrical contact 16 with the top sides 44,44 of conductive gel reservoirs 26 and 28. The bottom 17 side 46 of conductive gel reservoir 28 contacts the patient's skin through the 18 opening 29 in adhesive layer 30. The bottom side 46' of conductive gel 19 reservoir 26 contacts the patient's skin through the plurality of openings 8 in the device 2. The gel in reservoir 26 is preferably a viscous gel that fills the 21 openings 8 such that the gel is in contact with the skin when the blades have 22 penetrated the stratum corneum. The contact between the gel and skin 23 provides a path for the agent to be transported along. If the gel is not in direct 24 contact with the skin initially, typically sweat accumulates in the confined area and provides a path for the transport of agent from the skin.
26 Device 10 optionally has a feature which allows the patient to 27 self-administer a sampling or monitoring sequence. Upon depression of push 28 button switch 12, the electronic circuitry on circuit board assembly 18 delivers a 29 predetermined DC current to the electrode/reservoirs 22,26 and 24,28 for a sampling interval of predetermined length. The push button switch 12 is 31 conveniently located on the top side of device 10 and is easily actuated through I clothing. A double press of the push button switch 12 within a short time 2 period, e.g., three seconds, is preferably used to activate the device for a 3 sampling or monitoring sequence, thereby minimizing the likelihood of 4 inadvertent actuation of the device 10. Preferably, the device transmits to the user a visual and/or audible confirmation of the onset of the sampling interval 6 by means of LED 14 becoming lit and/or an audible sound signal from, e.g., a 7 "beeper". Agent is withdrawn through the patient's skin, e.g., on the arm, by 8 electrotransport over the predetermined sampling interval.
s The push button switch 12, the electronic circuitry on circuit board to assembly 18 and the battery 32 are adhesively "sealed" between upper 11 housing 16 and lower housing 20. Upper housing 16 is preferably composed of 12 rubber or other elastomeric material, e.g., injection moldable ethylene vinyl 13 acetate. Lower housing 20 is preferably composed of a plastic or elastomeric 14 sheet rnaterial (e.g., polyethylene) which can be easily molded to form depressions 25,25' and cut to form openings 23,23'. The assembled device 10 16 is preferably water resistant (i.e., splash proof) and is most preferably 17 waterproof. The system has a low profile that easily conforms to the body, 18 thereby allowing freedom of movement at, and around, the wearing site. The 19 reservoirs 26 and 28 are located on the skin-contacting side of the device and are sufficiently separated to prevent accidental electrical shorting during 21 normal handling and use.
22 The device 10 adheres to the patient's body surface (e.g., skin) by 23 means of an adhesive layer 30 (which has upper adhesive side 34 and body-24 contacting adhesive side 36). The adhesive side 36 covers the entire underneath side of the device 10 except where the device 2 and reservoir 28 26 are located. The adhesive side 36 has adhesive properties which assures that 27 the device 10 remains in place on the body during normal user activity, and yet 28 permits reasonable removal after the predetermined (e.g., 24-hour) wear 29 period. Upper adhesive side 34 adheres to lower housing 20 and retains the electrodes and gel reservoirs within housing depression 25,25' as well as 31 retains device 2 to lower housing 20 and lower housing 20 to upper housing 16.

I In one embodiment of the sampling device, there is a release liner (not shown) 2 on the device 10 for maintaining the integrity of the device when it is not in use.
3 In use, the release liner is stripped from the device before the device is applied 4 to the skin.

The preferred form in which an agent is sampled generally determines 6 the type of sampling system to be used. That is, the selection of a "passive"
7 system which samples the agent by diffusion or an electrically powered system 8 which samples the agent by electrotransport will be mostly determined by the 9 form of the agent. For osmotic systems which sample drugs by convective flow carried by a solvent, the agent preferably has sufficient solubility in the carrier õ solvent. It will be appreciated by those working in the field that the present 12 invention can be used in conjunction with a wide variety of osmotic sampling 13 systems, as the invention is not limited to a particular device in this regard.
14 Osmotic devices are disclosed for example in U.S. Patent Nos. 4,756,314 to Eckenhoff et al., 4,340,480 to Eckenhoff, 4,655,766 to Theeuwes et al., and 16 4,753,651 to Eckenhoff. As mentioned above, the member 2 of the present 17 invention can be used with known sampling devices including, but not limited 18 to, reverse iontophoresis, osmosis, passive diffusion, phonophoresis, and 19 suction (i.e., negative pressure).
It will be appreciated by those of ordinary skill in the art that the invention 21 can be embodied in other specific forms without departing from the spirit or 22 essential character thereof. The presently disclosed embodiments are 23 therefore considered in all respects to be illustrative and not restrictive. The 24 scope of the invention is indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and 26 range of equivalents thereof are intended to be embraced therein.

- "~

Claims (28)

1. A device for piercing the stratum corneum of a body surface to form pathways through which an agent can be withdrawn, comprising:

a sheet having a plurality of microblades formed from the sheet and bent downward therefrom and at least one opening in the sheet adjacent the plurality of microblades;
and a collector on the sheet which withdraws the agent through the pathways and collects said agent.
2. The device of claim 1, wherein the collector is positioned to sample the agent from the body surface through an opening in the sheet.
3. The device of claim 1, wherein the collector is a reverse electrotransport device.
4. The device of claim 1, wherein the collector is a passive diffusion device.
5. The device of claim 1, wherein the collector is an osmotic device.
6. The device of claim 1, wherein the collector comprises:

a semi-permeable membrane positioned across an opening in the sheet; and an absorbent pad on the semi-permeable membrane.
7. The device of claim 6, wherein the absorbent pad contains an osmotically active material.
8. The device of claim 1, further comprising an agent sensing element.
9. The device of claim 8, wherein the agent sensing element is a glucose sensor.
10. The device of claim 1, further comprising an activation mechanism such that when activated, the collector performs a collection and monitoring sequence.
11. The device of claim 1, wherein the microblades having a length in the range of about 0.02 mm to about 0.4 mm.
12. A method for transdermally sampling an agent contained in the body of a patient, comprising:
providing a sheet having at least one opening adjacent a plurality of microblades, said microblades formed from the sheet and bent downward therefrom;

forming a plurality of microslits through a stratum corneum of skin of the patient by placing on the skin the sheet to cause said microblades to pierce the stratum corneum; and withdrawing the agent through the microslits and collecting the agent in a reservoir.
13. The method of claim 12, including positioning the collector to sample the agent through an opening in the sheet.
14. The method of claim 12, wherein the agent is withdrawn via reverse electrotransport.
15. The method of claim 12, wherein the agent is withdrawn via passive diffusion.
16. The method of claim 12, wherein the agent is withdrawn via osmosis.
17. The method of claim 12, including withdrawing the agent through a semipermeable membrane.
18. The method of claim 12, including sensing the agent collected in the reservoir.
19. The method of claim 12, wherein the agent is selected from the group consisting of body electrolytes, alcohol, glucose, and drugs.
20. The method of claim 12, wherein the agent is glucose.
21. The method of claim 20, including sensing the glucose collected in the reservoir and signaling the patient in response thereto.
22. The device of claim 12, wherein the microblades having a length in the range of about 0.02 mm to about 0.4 mm.
23. A device for piercing the stratum corneum of a body surface to form pathways through which an agent can be withdrawn, comprising:

a sheet having at least one opening adjacent a plurality of microblades extending from the sheet; and a passive diffusion device on the sheet which collects the agent withdrawn through the pathways.
24. The device of claim 23, wherein the passive diffusion device includes a membrane which draws the agent from the body surface and a reservoir for containing said agent.
25. A device for piercing the stratum corneum of a body surface to form pathways through which an agent can be withdrawn, comprising:

a sheet having at least one opening adjacent a plurality of microblades extending from the sheet; and an osmotic device on the sheet which collects the agent withdrawn through the pathways.
26. The device of claim 25, wherein the osmotic device includes a membrane which draws the agent from the body surface, an absorbent pad containing an osmotically active material, and a reservoir for containing said agent.
27. A device for piercing the stratum corneum of a body surface to form pathways through which an agent can be withdrawn, comprising:

a sheet forming at least one opening adjacent a plurality of microblades extending from the sheet; and a reverse electrotransport device on the sheet which collects the agent withdrawn through the pathways.
28. The device of claim 27, wherein the reverse electrotransport device includes an electrical source connected to a plurality of electrodes and a reservoir for containing the agent, the reservoir being coupled to an electrode.
CA002253471A 1996-06-18 1997-06-18 Device for enhancing transdermal sampling Expired - Fee Related CA2253471C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US1999096P true 1996-06-18 1996-06-18
US60/019,990 1996-06-18
PCT/US1997/010595 WO1997048441A1 (en) 1996-06-18 1997-06-18 Device for enhancing transdermal sampling

Publications (2)

Publication Number Publication Date
CA2253471A1 CA2253471A1 (en) 1997-12-24
CA2253471C true CA2253471C (en) 2007-10-30

Family

ID=21796163

Family Applications (3)

Application Number Title Priority Date Filing Date
CA002253549A Expired - Fee Related CA2253549C (en) 1996-06-18 1997-06-17 Device for enhancing transdermal agent delivery or sampling
CA002257217A Expired - Fee Related CA2257217C (en) 1996-06-18 1997-06-18 Device for enhancing transdermal agent delivery or sampling
CA002253471A Expired - Fee Related CA2253471C (en) 1996-06-18 1997-06-18 Device for enhancing transdermal sampling

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CA002253549A Expired - Fee Related CA2253549C (en) 1996-06-18 1997-06-17 Device for enhancing transdermal agent delivery or sampling
CA002257217A Expired - Fee Related CA2257217C (en) 1996-06-18 1997-06-18 Device for enhancing transdermal agent delivery or sampling

Country Status (15)

Country Link
US (5) US7184826B2 (en)
EP (3) EP0914178B1 (en)
JP (4) JP4012252B2 (en)
KR (3) KR20000016696A (en)
AR (2) AR008242A1 (en)
AT (3) AT234129T (en)
AU (3) AU3399197A (en)
CA (3) CA2253549C (en)
DE (6) DE69719761D1 (en)
DK (3) DK0914178T3 (en)
ES (3) ES2195151T3 (en)
PT (2) PT917484E (en)
TW (1) TW349872B (en)
WO (3) WO1997048440A1 (en)
ZA (1) ZA9705326B (en)

Families Citing this family (627)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2050057A1 (en) 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
WO1996037256A1 (en) * 1995-05-22 1996-11-28 Silicon Microdevices, Inc. Micromechanical patch for enhancing the delivery of compounds through the skin
DE69719761D1 (en) * 1996-06-18 2003-04-17 Alza Corp Apparatus for improving transdermal administration of medicaments or the acceptance of body fluids
US6607509B2 (en) * 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6918901B1 (en) * 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
JP2001525227A (en) 1997-12-11 2001-12-11 アルザ・コーポレーション Apparatus for enhancing transdermal drug flow
KR100561892B1 (en) * 1997-12-11 2006-03-16 알자 코포레이션 Device for enhancing transdermal agent flux
CN1161164C (en) * 1997-12-11 2004-08-11 阿尔扎有限公司 Device for enhaning transdermal agent flux
EP1911488A3 (en) 1997-12-11 2008-12-03 Alza Corporation Device for enhancing transdermal agent flux
US20030078499A1 (en) * 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
JP4368060B2 (en) * 1998-02-17 2009-11-18 アボット・ラボラトリーズAbbott Laboratories Collection and monitoring device of interstitial fluid
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6757560B1 (en) * 1999-04-09 2004-06-29 Novosis Pharma Ag Transdermal delivery system (TDS) with electrode network
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
PT1077634E (en) * 1998-05-13 2003-12-31 Cygnus Therapeutic Systems Monitoring physiological analytes
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US7922709B2 (en) 1998-07-13 2011-04-12 Genetronics, Inc. Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US6355021B1 (en) * 1998-07-14 2002-03-12 Maersk Medical A/S Medical puncturing device
WO2000004832A1 (en) * 1998-07-21 2000-02-03 Spectrx, Inc. System and method for continuous analyte monitoring
EP1109594B1 (en) * 1998-08-31 2004-10-27 Johnson & Johnson Consumer Companies, Inc. Electrotransport device comprising blades
US6148232A (en) * 1998-11-09 2000-11-14 Elecsys Ltd. Transdermal drug delivery and analyte extraction
CA2372409C (en) * 1999-01-28 2005-03-29 Alan D. King Delivery of macromolecules into cells
DE19903876B4 (en) * 1999-02-01 2006-09-28 Orthogen Gentechnologie Gmbh A method for in vitro generation and accumulation of interleukin-1 receptor antagonist
US6792306B2 (en) * 2000-03-10 2004-09-14 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
DK2266603T3 (en) 2000-10-18 2012-11-05 Glaxosmithkline Biolog Sa tumor Vaccines
US6611707B1 (en) 1999-06-04 2003-08-26 Georgia Tech Research Corporation Microneedle drug delivery device
US6379324B1 (en) 1999-06-09 2002-04-30 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US6256533B1 (en) 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6890553B1 (en) 1999-07-08 2005-05-10 Johnson & Johnson Consumer Companies, Inc. Exothermic topical delivery device
AU6076200A (en) 1999-07-08 2001-01-30 Johnson & Johnson Consumer Companies, Inc. Exothermic bandage
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US7133717B2 (en) 1999-08-25 2006-11-07 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery and diagnostic sampling
US6251083B1 (en) 1999-09-07 2001-06-26 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
US6623457B1 (en) * 1999-09-22 2003-09-23 Becton, Dickinson And Company Method and apparatus for the transdermal administration of a substance
US6835184B1 (en) 1999-09-24 2004-12-28 Becton, Dickinson And Company Method and device for abrading skin
US6331266B1 (en) 1999-09-29 2001-12-18 Becton Dickinson And Company Process of making a molded device
US6743211B1 (en) * 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
WO2001041863A1 (en) 1999-12-10 2001-06-14 Alza Corporation Device and method for enhancing microprotrusion skin piercing
CA2394171A1 (en) * 1999-12-16 2001-06-21 Alza Corporation Device for enhancing transdermal flux of sampled agents
KR100750841B1 (en) * 1999-12-16 2007-08-22 알자 코포레이션 Device and method for enhancing transdermal flux of sampled agents
US20080033492A1 (en) * 2000-01-07 2008-02-07 Biowave Corporation Electro-therapy method
US7013179B2 (en) 2000-01-07 2006-03-14 Biowave Corporation Percutaneous electrode array
DE60111125T2 (en) * 2000-01-21 2006-05-04 Instrumentarium Corp. Manufacturing process for a medical electrode
US6622035B1 (en) * 2000-01-21 2003-09-16 Instrumentarium Corp. Electrode for measurement of weak bioelectrical signals
EP1225831A2 (en) * 2000-03-17 2002-07-31 Sontra Medical, Inc. Non-invasive body fluid sampling and analysis
US7404815B2 (en) * 2000-05-01 2008-07-29 Lifescan, Inc. Tissue ablation by shear force for sampling biological fluids and delivering active agents
US6595947B1 (en) 2000-05-22 2003-07-22 Becton, Dickinson And Company Topical delivery of vaccines
US6856821B2 (en) * 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US6537242B1 (en) 2000-06-06 2003-03-25 Becton, Dickinson And Company Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance
US9918665B2 (en) 2002-03-11 2018-03-20 Nitto Denko Corporation Transdermal porator and patch system and method for using same
US8116860B2 (en) * 2002-03-11 2012-02-14 Altea Therapeutics Corporation Transdermal porator and patch system and method for using same
US9717451B2 (en) 2000-06-08 2017-08-01 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US6607513B1 (en) 2000-06-08 2003-08-19 Becton, Dickinson And Company Device for withdrawing or administering a substance and method of manufacturing a device
US6540675B2 (en) * 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US6589202B1 (en) 2000-06-29 2003-07-08 Becton Dickinson And Company Method and apparatus for transdermally sampling or administering a substance to a patient
US6603987B2 (en) * 2000-07-11 2003-08-05 Bayer Corporation Hollow microneedle patch
US6565532B1 (en) 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US6440096B1 (en) 2000-07-14 2002-08-27 Becton, Dickinson And Co. Microdevice and method of manufacturing a microdevice
US6656147B1 (en) 2000-07-17 2003-12-02 Becton, Dickinson And Company Method and delivery device for the transdermal administration of a substance
GB0017999D0 (en) 2000-07-21 2000-09-13 Smithkline Beecham Biolog Novel device
MXPA03001694A (en) 2000-08-24 2004-11-01 Johnson & Johnson Method for transdermal nucleic acid sampling.
US6690959B2 (en) 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
EE200300095A (en) * 2000-09-08 2005-02-15 Alza Corporation Medicament for inhibiting a decrease in transdermal flux of the methods for inhibition of pathway collapse
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
US20070179717A1 (en) * 2001-09-21 2007-08-02 Milliken Gordon L System and method for management of specimens
WO2002030506A2 (en) 2000-10-12 2002-04-18 Ink Jet Technology Ltd. Transdermal method
AU2001296827B2 (en) 2000-10-13 2005-11-17 Alza Corporation Microblade array impact applicator
PT1341452E (en) 2000-10-13 2009-03-18 Alza Corp Microprotrusion member retainer for impact applicator
US7131960B2 (en) 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US6821281B2 (en) 2000-10-16 2004-11-23 The Procter & Gamble Company Microstructures for treating and conditioning skin
US7131987B2 (en) * 2000-10-16 2006-11-07 Corium International, Inc. Microstructures and method for treating and conditioning skin which cause less irritation during exfoliation
AU2001297823B2 (en) 2000-10-26 2005-05-12 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US6591133B1 (en) * 2000-11-27 2003-07-08 Microlin Llc Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
WO2002064193A2 (en) * 2000-12-14 2002-08-22 Georgia Tech Research Corporation Microneedle devices and production thereof
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
AU2002367965A1 (en) * 2001-11-06 2003-12-31 Dermal Systems International Inc. High throughput methods and devices for assaying analytes in a fluid sample
US6663820B2 (en) 2001-03-14 2003-12-16 The Procter & Gamble Company Method of manufacturing microneedle structures using soft lithography and photolithography
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
WO2002074173A1 (en) 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
US6932933B2 (en) * 2001-03-30 2005-08-23 The Aerospace Corporation Ultraviolet method of embedding structures in photocerams
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
EP1752189A3 (en) 2001-04-20 2007-02-21 Alza Corporation Microprojection array having a beneficial agent containing coating
US20020193729A1 (en) * 2001-04-20 2002-12-19 Cormier Michel J.N. Microprojection array immunization patch and method
MXPA03009603A (en) * 2001-04-20 2004-12-06 Johnson & Johnson Microprojection array having a beneficial agent containing coating.
US6591124B2 (en) 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
DE60213976T2 (en) 2001-06-08 2007-04-26 Becton Dickinson And Co. needles device for manipulating or polishing array
WO2002100460A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
AU2002314489A1 (en) * 2001-06-20 2003-01-02 Power Paper Ltd. Adhesive bandage with display
EP1407712B1 (en) * 2001-07-19 2013-07-10 ARKRAY, Inc. Piercing device
US6790179B2 (en) 2001-08-01 2004-09-14 Johnson & Johnson Consumer Companies, Inc. Method of examining and diagnosing skin health
US20030028087A1 (en) * 2001-08-01 2003-02-06 Yuzhakov Vadim Vladimirovich Devices for analyte concentration determination and methods of using the same
US6840910B2 (en) 2001-08-01 2005-01-11 Johnson & Johnson Consumer Companies, Inc. Method of distributing skin care products
US6855117B2 (en) 2001-08-01 2005-02-15 Johnson & Johnson Consumer Companies, Inc. Method of treating the skin of a subject
SE0102736D0 (en) * 2001-08-14 2001-08-14 Patrick Griss Side opened out-of-plane microneedles for transdermal microfluidic interfacing and fabrication process of side opened out-of-plane microneedles
US6749575B2 (en) 2001-08-20 2004-06-15 Alza Corporation Method for transdermal nucleic acid sampling
US6881203B2 (en) * 2001-09-05 2005-04-19 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
DK1432466T3 (en) 2001-09-12 2012-12-03 Becton Dickinson Co Microneedle-based drug delivery penapparat for and method of use thereof
AU2002327675A1 (en) * 2001-09-19 2003-04-01 Biovalve Technologies, Inc. Microneedles, microneedle arrays, and systems and methods relating to same
US6830562B2 (en) * 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
WO2003026733A2 (en) * 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Microneedle with membrane
AU2002343457A1 (en) * 2001-09-28 2003-04-07 Biovalve Technologies, Inc. Switchable microneedle arrays and systems and methods relating to same
US6689100B2 (en) 2001-10-05 2004-02-10 Becton, Dickinson And Company Microdevice and method of delivering or withdrawing a substance through the skin of an animal
US20030069482A1 (en) * 2001-10-09 2003-04-10 Workman Jerome James Sampling article for determining quantitative and qualitative drug transfer to skin
US6966880B2 (en) * 2001-10-16 2005-11-22 Agilent Technologies, Inc. Universal diagnostic platform
US7429258B2 (en) * 2001-10-26 2008-09-30 Massachusetts Institute Of Technology Microneedle transport device
US20040120964A1 (en) * 2001-10-29 2004-06-24 Mikszta John A. Needleless vaccination using chimeric yellow fever vaccine-vectored vaccines against heterologous flaviviruses
EP2319577B1 (en) * 2001-11-07 2017-03-15 Syneron Medical Ltd. Integrated transdermal drug delivery system
EP1485317A2 (en) * 2001-11-30 2004-12-15 Alza Corporation Methods and apparatuses for forming microprojection arrays
DE60223844T2 (en) 2001-12-20 2008-08-28 Alza Corp., Mountain View Microprotrusions to pierce the skin with piercing deep control
ITTO20011228A1 (en) * 2001-12-28 2003-06-30 Cane Srl Container for disposable needle.
US20040073175A1 (en) * 2002-01-07 2004-04-15 Jacobson James D. Infusion system
US6908453B2 (en) * 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
US6808506B2 (en) 2002-02-04 2004-10-26 Becton, Dickinson And Company Device and method for delivering or withdrawing a substance through the skin
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
CA2475169C (en) * 2002-02-12 2011-04-12 Unomedical A/S Infusion device with needle shield
AU2003265226A1 (en) 2002-03-11 2003-12-19 Altea Therapeutics Corporation Transdermal drug delivery device, method and use
US6780171B2 (en) 2002-04-02 2004-08-24 Becton, Dickinson And Company Intradermal delivery device
US7047070B2 (en) 2002-04-02 2006-05-16 Becton, Dickinson And Company Valved intradermal delivery device and method of intradermally delivering a substance to a patient
US7115108B2 (en) * 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US20120296233A9 (en) * 2002-09-05 2012-11-22 Freeman Dominique M Methods and apparatus for an analyte detecting device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
CA2484265C (en) 2002-05-06 2012-08-07 Becton, Dickinson And Company Method and device for controlling drug pharmacokinetics
GB0210397D0 (en) * 2002-05-07 2002-06-12 Ferring Bv Pharmaceutical formulations
US20030212344A1 (en) * 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US7060192B2 (en) * 2002-05-09 2006-06-13 Lifescan, Inc. Methods of fabricating physiological sample collection devices
US20030143113A2 (en) * 2002-05-09 2003-07-31 Lifescan, Inc. Physiological sample collection devices and methods of using the same
US20030211619A1 (en) * 2002-05-09 2003-11-13 Lorin Olson Continuous strip of fluid sampling and testing devices and methods of making, packaging and using the same
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US7828827B2 (en) * 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
WO2004024224A1 (en) * 2002-09-16 2004-03-25 Sung-Yun Kwon Solid micro-perforators and methods of use
US6945952B2 (en) * 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
BR0312671A (en) 2002-07-19 2005-04-26 3M Innovative Properties Co microneedle device, method for using a microneedle device and method for applying a microneedle device
AR040819A1 (en) * 2002-08-08 2005-04-20 Alza Corp Transdermal delivery device having coated vaccine microprojections
US20040087992A1 (en) * 2002-08-09 2004-05-06 Vladimir Gartstein Microstructures for delivering a composition cutaneously to skin using rotatable structures
US20040265351A1 (en) * 2003-04-10 2004-12-30 Miller Richard L. Methods and compositions for enhancing immune response
US7166086B2 (en) 2002-08-29 2007-01-23 Becton, Dickinson And Company Substance delivery via a rotating microabrading surface
US20040051019A1 (en) * 2002-09-02 2004-03-18 Mogensen Lasse Wesseltoft Apparatus for and a method of adjusting the length of an infusion tube
WO2004020038A1 (en) * 2002-09-02 2004-03-11 Unomedical A/S A device for subcutaneous administration of a medicament to a patient
DK1534378T3 (en) * 2002-09-02 2009-05-04 Unomedical As A device for subcutaneous tilförsel of a medicament to a patient, and tubing for the same
AU2003257754A1 (en) * 2002-09-02 2004-03-19 Unomedical A/S An apparatus and a method for adjustment of the length of an infusion tubing
US20040236269A1 (en) 2002-09-25 2004-11-25 Marchitto Kevin S. Microsurgical tissue treatment system
AU2003275301A1 (en) * 2002-09-30 2004-04-23 Alza Corporation Drug delivery device having coated microprojections incorporating vasoconstrictors
US7244394B2 (en) * 2002-10-03 2007-07-17 Novartis Ag Methods and kits for assays of analytes of interest in tears
US20040106904A1 (en) * 2002-10-07 2004-06-03 Gonnelli Robert R. Microneedle array patch
DE60328039D1 (en) * 2002-10-11 2009-07-30 Becton Dickinson Co Insulin delivery system with sensor
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7045069B2 (en) * 2002-11-14 2006-05-16 Gennady Ozeryansky Microfabrication method based on metal matrix composite technology
DK200201823A (en) 2002-11-26 2004-05-27 Maersk Medical As Connector for a hose connection
US7018345B2 (en) * 2002-12-06 2006-03-28 Hisamitsu Pharmaceutical Co., Inc. Iontophoresis system
AR042815A1 (en) * 2002-12-26 2005-07-06 Alza Corp Delivery device active agent having composite members
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20080312555A1 (en) * 2004-02-06 2008-12-18 Dirk Boecker Devices and methods for glucose measurement using rechargeable battery energy sources
US20040158202A1 (en) * 2003-02-12 2004-08-12 Soren Jensen Cover
US7578954B2 (en) * 2003-02-24 2009-08-25 Corium International, Inc. Method for manufacturing microstructures having multiple microelements with through-holes
US7052652B2 (en) 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods
US20050070819A1 (en) * 2003-03-31 2005-03-31 Rosedale Medical, Inc. Body fluid sampling constructions and techniques
US7070580B2 (en) * 2003-04-01 2006-07-04 Unomedical A/S Infusion device and an adhesive sheet material and a release liner
US7415299B2 (en) * 2003-04-18 2008-08-19 The Regents Of The University Of California Monitoring method and/or apparatus
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
JP2004343275A (en) * 2003-05-14 2004-12-02 Murata Mach Ltd Image processing system and scanner
AT476137T (en) 2003-05-30 2010-08-15 Pelikan Technologies Inc Method and device for injecting liquid
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20050123507A1 (en) * 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
BRPI0412029A (en) * 2003-06-30 2006-09-05 Alza Corp microprojections coated formulations containing non-volatile counter-ion
KR20060037320A (en) * 2003-07-02 2006-05-03 알자 코포레이션 Microprojection array immunization patch and method
US7888546B2 (en) * 2003-07-03 2011-02-15 Corium International, Inc. Wound dressing, ingredient delivery device and IV hold-down, and method relating to same
US7695239B2 (en) * 2003-07-14 2010-04-13 Fortrend Engineering Corporation End effector gripper arms having corner grippers which reorient reticle during transfer
WO2005007223A2 (en) * 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
TW200514596A (en) * 2003-08-04 2005-05-01 Alza Corp Method and device for enhancing transdermal agent flux
US7223248B2 (en) * 2003-08-13 2007-05-29 Lifescan, Inc. Packaged medical device with a deployable dermal tissue penetration member
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
WO2007102842A2 (en) * 2006-03-09 2007-09-13 Dexcom, Inc. Systems and methods for processing analyte sensor data
KR20060115722A (en) * 2003-08-26 2006-11-09 알자 코포레이션 Device and method for intradermal cell implantation
US7099968B2 (en) * 2003-09-02 2006-08-29 Intel Corporation System and method for generating bus requests in advance based on speculation states
US8353861B2 (en) * 2003-09-18 2013-01-15 Texmac, Inc. Applicator for applying functional substances into human skin
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US8016811B2 (en) * 2003-10-24 2011-09-13 Altea Therapeutics Corporation Method for transdermal delivery of permeant substances
US20050106226A1 (en) * 2003-10-24 2005-05-19 Cormier Michel J. Pretreatment method and system for enhancing transdermal drug delivery
EP1680057A4 (en) * 2003-10-24 2007-10-31 Alza Corp Apparatus and method for enhancing transdermal drug delivery
CA2543154A1 (en) * 2003-10-28 2005-05-19 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
CA2543641A1 (en) 2003-10-31 2005-05-19 Alza Corporation Self-actuating applicator for microprojection array
CA2546282A1 (en) * 2003-11-13 2005-06-02 Alza Corporation System and method for transdermal delivery
DE10353629A1 (en) * 2003-11-17 2005-06-16 Lts Lohmann Therapie-Systeme Ag Device for the transdermal administration of active substances
EP1699524A4 (en) * 2003-11-18 2009-07-15 Nanopass Technologies Ltd Enhanced penetration system and method for sliding microneedles
BRPI0416822A (en) * 2003-11-21 2007-03-06 Alza Corp method and transdermal vaccine delivery system with ultrasound
EP1713533A4 (en) * 2003-11-21 2008-01-23 Univ California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
WO2005051476A1 (en) * 2003-11-28 2005-06-09 Acrux Dds Pty Ltd Method and system for rapid transdermal administration
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7831287B2 (en) * 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7467003B2 (en) * 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7366556B2 (en) 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
AT480761T (en) 2003-12-05 2010-09-15 Dexcom Inc Calibration methods for a continuous analyte sensor
US7460898B2 (en) * 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8017145B2 (en) * 2003-12-22 2011-09-13 Conopco, Inc. Exfoliating personal care wipe article containing an array of projections
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
GB0402131D0 (en) 2004-01-30 2004-03-03 Isis Innovation Delivery method
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP1718452A1 (en) * 2004-02-23 2006-11-08 3M Innovative Properties Company Method of molding for microneedle arrays
CA2560840C (en) * 2004-03-24 2014-05-06 Corium International, Inc. Transdermal delivery device
KR101158939B1 (en) 2004-03-26 2012-06-21 우노메디컬 에이/에스 Injector device for infusion set
CN101120101A (en) * 2004-04-13 2008-02-06 阿尔扎公司 Apparatus and method for transdermal delivery of multiple vaccines
US20070184222A1 (en) * 2004-04-20 2007-08-09 University Of Rochester Hydrogel-supported porous semiconductor devices
CA2566032A1 (en) 2004-05-13 2005-12-01 Alza Corporation Apparatus and method for transdermal delivery of parathyroid hormone agents
CN100566669C (en) * 2004-05-13 2009-12-09 阿尔扎公司 Apparatus for transdermal delivery of parathyroid hormone agents
MXPA06013490A (en) * 2004-05-19 2007-06-12 Johnson & Johnson Method and formulation for transdermal delivery of immunologically active agents.
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US7315758B2 (en) 2004-06-03 2008-01-01 Lynntech, Inc. Transdermal delivery of therapeutic agent
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20050273075A1 (en) * 2004-06-08 2005-12-08 Peter Krulevitch Method for delivering drugs to the adventitia using device having microprojections
US20050273049A1 (en) * 2004-06-08 2005-12-08 Peter Krulevitch Drug delivery device using microprojections
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8515516B2 (en) * 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US7537590B2 (en) * 2004-07-30 2009-05-26 Microchips, Inc. Multi-reservoir device for transdermal drug delivery and sensing
US20060030811A1 (en) * 2004-08-03 2006-02-09 Wong Patrick S Method and device for enhancing transdermal agent flux
US20060030788A1 (en) * 2004-08-04 2006-02-09 Daniel Wong Apparatus and method for extracting bodily fluid utilizing a flat lancet
US8062250B2 (en) 2004-08-10 2011-11-22 Unomedical A/S Cannula device
US20060058602A1 (en) * 2004-08-17 2006-03-16 Kwiatkowski Krzysztof C Interstitial fluid analyzer
US7798153B2 (en) * 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
KR20070099540A (en) * 2004-09-08 2007-10-09 알자 코포레이션 Microprojection array with improved skin adhesion and compliance
JP2008513409A (en) 2004-09-22 2008-05-01 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Immunogenic composition
JP2008514644A (en) * 2004-09-28 2008-05-08 アルザ コーポレイション Stabilization of alum adjuvant immune active agent
ITPD20040252A1 (en) * 2004-10-14 2005-01-14 Bidoia Sas Di Gianfranco Bidoi sprinkler surgery
JP4416625B2 (en) * 2004-10-29 2010-02-17 シスメックス株式会社 The tissue cutting device, the tissue cut assisting device and container
MX2007005813A (en) * 2004-11-18 2007-07-18 3M Innovative Properties Co Low-profile microneedle array applicator.
JP4927751B2 (en) * 2004-11-18 2012-05-09 スリーエム イノベイティブ プロパティズ カンパニー Method of coating a microneedle array
EP2388078B1 (en) 2004-11-18 2013-03-20 3M Innovative Properties Co. Method of contact coating a microneedle array
AU2005306429B2 (en) * 2004-11-18 2011-04-14 3M Innovative Properties Company Microneedle array applicator and retainer
US8057842B2 (en) 2004-11-18 2011-11-15 3M Innovative Properties Company Method of contact coating a microneedle array
CN100367906C (en) * 2004-12-08 2008-02-13 圣美迪诺医疗科技(湖州)有限公司 Endermic implantating biological sensors
USD655807S1 (en) 2005-12-09 2012-03-13 Unomedical A/S Medical device
US7867199B2 (en) * 2004-12-10 2011-01-11 Unomedical A/S Inserter
JP5882556B2 (en) * 2004-12-28 2016-03-09 ナブテスコ株式会社 Skin needle, needle manufacturing method for dermatological needle manufacturing apparatus and the skin
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US20090082693A1 (en) * 2004-12-29 2009-03-26 Therasense, Inc. Method and apparatus for providing temperature sensor module in a data communication system
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1846095A4 (en) * 2005-01-20 2014-03-05 Epley Medical Llc Minimally invasive, sustained, intra-tympanic drug delivery system
US20060204562A1 (en) * 2005-02-16 2006-09-14 Cormier Michel J Microprojection arrays with improved biocompatibility
US7985199B2 (en) 2005-03-17 2011-07-26 Unomedical A/S Gateway system
AU2006226734B2 (en) * 2005-03-21 2009-01-22 Unomedical A/S A mounting pad, an adhesive device comprising such mounting pad, and methods of applying such devices to a patient
JP4793806B2 (en) * 2005-03-22 2011-10-12 Tti・エルビュー株式会社 Iontophoresis device
US8280476B2 (en) * 2005-03-29 2012-10-02 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US20090131778A1 (en) * 2006-03-28 2009-05-21 Jina Arvind N Devices, systems, methods and tools for continuous glucose monitoring
US20100049021A1 (en) * 2006-03-28 2010-02-25 Jina Arvind N Devices, systems, methods and tools for continuous analyte monitoring
US20080009802A1 (en) * 2005-04-25 2008-01-10 Danilo Lambino Method of treating acne with stratum corneum piercing device
US20070270738A1 (en) * 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
US20060253078A1 (en) * 2005-04-25 2006-11-09 Wu Jeffrey M Method of treating skin disorders with stratum corneum piercing device
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
AT477010T (en) * 2005-06-28 2010-08-15 Unomedical As Packaging for infusion rate and method of applying a infusion set
US20070004989A1 (en) * 2005-06-29 2007-01-04 Parvinder Dhillon Device for transdermal sampling
US20070025869A1 (en) * 2005-07-15 2007-02-01 Gordon John H Fluid Delivery Device
US20070078414A1 (en) * 2005-08-05 2007-04-05 Mcallister Devin V Methods and devices for delivering agents across biological barriers
US8386030B2 (en) * 2005-08-08 2013-02-26 Tti Ellebeau, Inc. Iontophoresis device
US7731657B2 (en) * 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
WO2007027691A1 (en) 2005-08-31 2007-03-08 University Of Virginia Patent Foundation Improving the accuracy of continuous glucose sensors
CA2629393C (en) * 2005-09-06 2014-06-10 Theraject, Inc. Solid solution perforator containing drug particle and/or drug-adsorbed particles
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US9358033B2 (en) * 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
CN101267896A (en) * 2005-09-12 2008-09-17 阿尔扎公司 Coatable transdermal delivery microprojection assembly
US20070185432A1 (en) * 2005-09-19 2007-08-09 Transport Pharmaceuticals, Inc. Electrokinetic system and method for delivering methotrexate
US20070066934A1 (en) * 2005-09-19 2007-03-22 Transport Pharmaceuticals, Inc. Electrokinetic delivery system and methods therefor
JP2009509576A (en) * 2005-09-26 2009-03-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Substance through the skin was withdrawn and / or substance delivery
US20070083185A1 (en) * 2005-09-30 2007-04-12 Darrick Carter Iontophoretic device and method of delivery of active agents to biological interface
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
CA2624059C (en) 2005-09-30 2019-04-02 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
JP2009509634A (en) * 2005-09-30 2009-03-12 Tti・エルビュー株式会社 Functionalized microneedle transdermal drug delivery systems, devices and methods
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
WO2007041526A2 (en) * 2005-09-30 2007-04-12 Transcutaneous Technologies Inc. Iontophoresis apparatus and method to deliver antibiotics to biological interfaces
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7842008B2 (en) 2005-11-21 2010-11-30 Becton, Dickinson And Company Intradermal delivery device
KR101365001B1 (en) 2005-12-22 2014-02-21 글락소스미스클라인 바이오로지칼즈 에스.에이. Pneumococcal polysaccharide conjugate vaccine
US20080319404A1 (en) * 2005-12-21 2008-12-25 Pekurovsky Mikhail L Microneedle Devices
US20070142781A1 (en) * 2005-12-21 2007-06-21 Sayre Chauncey B Microinjector chip
BRPI0717219A2 (en) 2006-10-12 2015-05-26 Glaxosmithkline Biolog Sa "Immunogenic composition, a method for treating or preventing disease, and use of an immunogenic composition."
SI2086582T1 (en) 2006-10-12 2013-02-28 Glaxosmithkline Biologicals S.A. Vaccine comprising an oil in water emulsion adjuvant
PT1962926E (en) 2005-12-23 2009-08-27 Unomedical As Injection device
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2635251A1 (en) 2005-12-28 2007-07-26 Alza Corporation Stable therapeutic formulations
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US7658728B2 (en) * 2006-01-10 2010-02-09 Yuzhakov Vadim V Microneedle array, patch, and applicator for transdermal drug delivery
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
EP1992386B1 (en) 2006-02-10 2011-11-09 Hisamitsu Pharmaceutical Co., Inc. Transdermal drug administration apparatus having microneedles
EP1988958B2 (en) 2006-02-28 2016-03-16 Unomedical A/S Inserter for infusion part
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) * 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
CN101466393A (en) * 2006-03-15 2009-06-24 阿尔扎公司 Method for transdermal delivery of parathyroid hormone agents to prevent or treat osteopenia
US20100021503A1 (en) 2006-03-30 2010-01-28 Glaxosmithkline Biologicals S.A. Immunogenic composition
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
GB0607088D0 (en) 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
EP2005990B1 (en) 2006-04-07 2013-08-28 Hisamitsu Pharmaceutical Co., Inc. Microneedle device and transdermal administration device provided with microneedles
WO2007124411A1 (en) * 2006-04-20 2007-11-01 3M Innovative Properties Company Device for applying a microneedle array
WO2007127815A2 (en) * 2006-04-25 2007-11-08 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
EP2010269A4 (en) * 2006-04-25 2009-06-03 Alza Corp Microprojection array application with sculptured microprojections for high drug loading
US20070293816A1 (en) * 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Grouped Microprojections for High Drug Loading
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
CA2653631A1 (en) 2006-06-07 2007-12-13 Unomedical A/S Inserter
US20080071157A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
KR20090028701A (en) 2006-06-09 2009-03-19 우노메디컬 에이/에스 Mounting pad
WO2008008845A2 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
KR20090037492A (en) 2006-08-02 2009-04-15 우노메디컬 에이/에스 Cannula and delivery device
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
JP2010502267A (en) * 2006-08-28 2010-01-28 エージェンシー・フォー・サイエンス・テクノロジー・アンド・リサーチ Method of manufacturing a micro-needle and micro-needle
CA2661912A1 (en) * 2006-08-29 2008-03-06 Alza Corporation Drug electrotransport with hydration measurement of hydratable reservoir
US20080058726A1 (en) * 2006-08-30 2008-03-06 Arvind Jina Methods and Apparatus Incorporating a Surface Penetration Device
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
AU2007308804A1 (en) 2006-10-26 2008-05-02 Abbott Diabetes Care, Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
EP1917990A1 (en) 2006-10-31 2008-05-07 Unomedical A/S Infusion set
US7785301B2 (en) * 2006-11-28 2010-08-31 Vadim V Yuzhakov Tissue conforming microneedle array and patch for transdermal drug delivery or biological fluid collection
WO2008067409A2 (en) * 2006-11-28 2008-06-05 Polyplus Battery Company Protected lithium electrodes for electro-transport drug delivery
US20080147186A1 (en) * 2006-12-14 2008-06-19 Joshi Ashok V Electrochemical Implant For Delivering Beneficial Agents
US20080154107A1 (en) * 2006-12-20 2008-06-26 Jina Arvind N Device, systems, methods and tools for continuous glucose monitoring
AU2008208009B2 (en) * 2007-01-22 2013-08-15 Nitto Denko Corporation Transdermal porator and patch system and method for using same
EP2121111B1 (en) * 2007-01-22 2018-03-14 Corium International, Inc. Applicators for microneedle arrays
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080234562A1 (en) * 2007-03-19 2008-09-25 Jina Arvind N Continuous analyte monitor with multi-point self-calibration
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
WO2009096992A1 (en) 2007-04-14 2009-08-06 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2686093C (en) 2007-04-16 2018-05-08 Corium International, Inc. Solvent-cast microneedle arrays containing active
US8439861B2 (en) 2007-04-24 2013-05-14 Velcro Industries B.V. Skin penetrating touch fasteners
WO2008137747A1 (en) 2007-05-02 2008-11-13 The Regents Of The University Of Michigan Nanoemulsion therapeutic compositions and methods of using the same
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
WO2008150917A1 (en) * 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
US20080312518A1 (en) * 2007-06-14 2008-12-18 Arkal Medical, Inc On-demand analyte monitor and method of use
AU2008266382B2 (en) 2007-06-20 2013-06-27 Unomedical A/S A catheter and a method and an apparatus for making such catheter
AU2008265542B2 (en) 2007-06-21 2014-07-24 Abbott Diabetes Care Inc. Health monitor
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
CN101784282B (en) 2007-06-26 2015-07-08 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2009006349A2 (en) * 2007-06-29 2009-01-08 Polyplus Battery Company Electrotransport devices, methods and drug electrode assemblies
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
CA2691341A1 (en) 2007-07-03 2009-01-08 Unomedical A/S Inserter having bistable equilibrium states
RU2010104457A (en) 2007-07-10 2011-08-20 Уномедикал А/С (Dk) Input device with two springs
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
KR20100049576A (en) 2007-07-18 2010-05-12 우노메디컬 에이/에스 Insertion device with pivoting action
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) * 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
JP5451613B2 (en) * 2007-08-06 2014-03-26 アラーガン、インコーポレイテッドAllergan,Incorporated Method and device for desmopressin drug delivery
EP2178524A4 (en) * 2007-08-06 2013-09-04 Transderm Inc Microneedle arrays formed from polymer films
EP3488833A1 (en) 2007-08-21 2019-05-29 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US20090069740A1 (en) * 2007-09-07 2009-03-12 Polyplus Battery Company Protected donor electrodes for electro-transport drug delivery
WO2009040548A1 (en) * 2007-09-28 2009-04-02 The Queen's University Of Belfast Delivery device and method
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
JP5178132B2 (en) * 2007-10-11 2013-04-10 キヤノン株式会社 The image processing system and image processing method
US20090099427A1 (en) * 2007-10-12 2009-04-16 Arkal Medical, Inc. Microneedle array with diverse needle configurations
US8377031B2 (en) * 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9220678B2 (en) 2007-12-24 2015-12-29 The University Of Queensland Coating method
US7766846B2 (en) 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
CN102007066B (en) 2008-02-07 2013-06-26 昆士兰大学 Patch production
US8157747B2 (en) * 2008-02-15 2012-04-17 Lary Research & Development, Llc Single-use indicator for a surgical instrument and a surgical instrument incorporating same
WO2009103759A1 (en) 2008-02-20 2009-08-27 Unomedical A/S Insertion device with horizontally moving part
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
WO2009146072A1 (en) * 2008-04-01 2009-12-03 The General Hospital Corporation Method and apparatus for tissue expansion
US20090259176A1 (en) * 2008-04-09 2009-10-15 Los Gatos Research, Inc. Transdermal patch system
EP2982383B1 (en) 2008-04-10 2019-05-15 Abbott Diabetes Care, Inc. Method for sterilizing an analyte sensor
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2009127676A1 (en) 2008-04-16 2009-10-22 Glaxosmithkline Biologicals S.A. Vaccine
CN102105108B (en) * 2008-05-21 2013-12-04 谢拉杰克特股份有限公司 Method of manufacturing solid solution peforator patches and uses thereof
US20100286045A1 (en) 2008-05-21 2010-11-11 Bjarke Mirner Klein Methods comprising desmopressin
DK2712622T3 (en) * 2008-05-21 2016-09-12 Ferring Bv Orodispergibel desmopressin to the extension of the initial period of sleep, undisturbed by nocturia.
CA2760680A1 (en) 2008-05-23 2009-11-26 The University Of Queensland Analyte detection by microneedle patch with analyte selective reagents
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
EP2293719B1 (en) 2008-05-30 2015-09-09 Intuity Medical, Inc. Body fluid sampling device -- sampling site interface
EP2329035A2 (en) * 2008-06-04 2011-06-08 Seventh Sense Biosystems, Inc. Compositions and methods for rapid one-step diagnosis
CA2726067A1 (en) 2008-06-06 2009-12-10 Intuity Medical, Inc. Detection meter and mode of operation
CN105902482A (en) * 2008-06-25 2016-08-31 Fe3医学有限公司 Patches and methods for the transdermal delivery of a therapeutically effective amount of iron
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8202531B2 (en) * 2008-07-23 2012-06-19 Warsaw Orthopedic, Inc. Drug depots having one or more anchoring members
EP2149957B1 (en) * 2008-07-30 2017-06-14 Harman Becker Automotive Systems GmbH Priority based power distribution arrangement
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100063462A1 (en) * 2008-09-09 2010-03-11 Postel Olivier B Methods and Apparatus for Charging and Evacuating a Diffusion Dressing
JP5722782B2 (en) 2008-09-26 2015-05-27 ナノバイオ コーポレーション Nanoemulsion therapeutic compositions and methods of use thereof
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
CA2743904A1 (en) 2008-11-17 2010-05-20 The Regents Of The University Of Michigan Cancer vaccine compositions and methods of using the same
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
AU2009331635A1 (en) 2008-12-22 2011-06-23 Unomedical A/S Medical device comprising adhesive pad
EP2393549B1 (en) * 2008-12-30 2014-10-01 NuPathe Inc. Electronic control of drug delivery system
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
CN104434136A (en) 2009-03-02 2015-03-25 第七感生物系统有限公司 Devices for blood drawing
US8781576B2 (en) * 2009-03-17 2014-07-15 Cardiothrive, Inc. Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
US8617487B2 (en) 2009-03-25 2013-12-31 Venture Lending & Leasing Vi, Inc. Saliva sample collection systems
CN101829396B (en) * 2009-03-27 2013-01-30 清华大学 Micro-needle array chip and percutaneous administration patch using same and preparation method thereof
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010124255A2 (en) * 2009-04-24 2010-10-28 Corium International, Inc. Methods for manufacturing microprojection arrays
US8821945B2 (en) * 2009-04-25 2014-09-02 Fe3 Medical, Inc. Method for transdermal iontophoretic delivery of chelated agents
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
GB2469839B (en) * 2009-04-29 2014-09-10 Cook Medical Technologies Llc Medical instrument
BRPI1014623A2 (en) 2009-04-30 2016-04-05 Zeltiq Aesthetics Inc device, system and method of heat removal of lipid rich cells in subcutaneous
EP2440116B1 (en) * 2009-06-10 2018-02-28 Medtronic, Inc. Device and method for monitoring of absolute oxygen saturation and tissue hemoglobin concentration
WO2010148111A1 (en) 2009-06-16 2010-12-23 The Regents Of The University Of Michigan Nanoemulsion vaccines
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
CN104799866A (en) 2009-07-23 2015-07-29 雅培糖尿病护理公司 The analyte monitoring device
CN102470211B (en) 2009-07-30 2014-05-07 犹诺医药有限公司 Inserter device with horizontal moving part
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
MX2012000778A (en) 2009-08-07 2012-07-30 Unomedical As Delivery device with sensor and one or more cannulas.
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
US8514086B2 (en) 2009-08-31 2013-08-20 Abbott Diabetes Care Inc. Displays for a medical device
JP5795584B2 (en) 2009-08-31 2015-10-14 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Medical devices
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
US20130018279A1 (en) * 2009-09-01 2013-01-17 Pathway Genomics "blood sample collection apparatus and kits"
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
EP2493535A2 (en) * 2009-10-30 2012-09-05 Seventh Sense Biosystems, Inc. Systems and methods for application to skin and control of actuation, delivery and/or perception thereof
WO2011065972A2 (en) * 2009-11-24 2011-06-03 Seventh Sense Biosystems, Inc. Patient-enacted sampling technique
CA2782047A1 (en) 2009-11-30 2011-06-03 Intuity Medical, Inc. Calibration material delivery devices and methods
CN102791197B (en) * 2010-01-13 2016-03-23 第七感生物系统有限公司 Sampling device interface
WO2011088214A2 (en) * 2010-01-13 2011-07-21 Seventh Sense Biosystems, Inc. Rapid delivery and/or withdrawal of fluids
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
WO2011094573A1 (en) 2010-01-28 2011-08-04 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
GB201003922D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Conjugation process
GB201003920D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Method of treatment
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
AU2011269796A1 (en) 2010-03-24 2012-02-16 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
CN102844060A (en) 2010-03-30 2012-12-26 犹诺医药有限公司 Medical devices
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CN102892461B (en) * 2010-04-28 2015-11-25 因诺维奥制药公司 Oral mucosa electroporation device and use thereof
US9687641B2 (en) 2010-05-04 2017-06-27 Corium International, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US9795747B2 (en) * 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8658603B2 (en) 2010-06-16 2014-02-25 The Regents Of The University Of Michigan Compositions and methods for inducing an immune response
WO2011163347A2 (en) 2010-06-23 2011-12-29 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
WO2011162823A1 (en) 2010-06-25 2011-12-29 Intuity Medical, Inc. Analyte monitoring methods and systems
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
WO2012006677A1 (en) 2010-07-14 2012-01-19 The University Of Queensland Patch applying apparatus
JP2013538069A (en) 2010-07-16 2013-10-10 セブンス センス バイオシステムズ,インコーポレーテッド A low pressure environment for fluid transfer device
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
ES2550668T3 (en) * 2010-08-13 2015-11-11 Seventh Sense Biosystems, Inc. Technical and medical devices and / or consumer
EP2433663A1 (en) 2010-09-27 2012-03-28 Unomedical A/S Insertion system
US10024510B2 (en) * 2010-10-26 2018-07-17 Steven G. Hammond Flexible light emitting diode lighting process and assembly
EP2992827B1 (en) 2010-11-09 2017-04-19 Seventh Sense Biosystems, Inc. Systems and interfaces for blood sampling
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CN107019515A (en) 2011-02-28 2017-08-08 雅培糖尿病护理公司 Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
GB201103836D0 (en) 2011-03-07 2011-04-20 Glaxosmithkline Biolog Sa Conjugation process
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
EP3106092A3 (en) 2011-04-29 2017-03-08 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
EP3235429A1 (en) 2011-04-29 2017-10-25 Seventh Sense Biosystems, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
CA2833275A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
EA201391456A1 (en) 2011-05-17 2014-05-30 Глаксосмитклайн Байолоджикалс С.А. VACCINE AGAINST Streptococcus pneumoniae
WO2013020103A1 (en) 2011-08-03 2013-02-07 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
CN103874518A (en) 2011-10-12 2014-06-18 3M创新有限公司 Integrated microneedle array delivery system
US20140257188A1 (en) * 2011-10-12 2014-09-11 The University Of Queensland Delivery device
US8585721B2 (en) * 2011-10-12 2013-11-19 Covidien Lp Mesh fixation system
US9440051B2 (en) 2011-10-27 2016-09-13 Unomedical A/S Inserter for a multiplicity of subcutaneous parts
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
JP6443802B2 (en) 2011-11-07 2018-12-26 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring device and method
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
TWI583412B (en) * 2012-06-12 2017-05-21 Hisamitsu Pharmaceutical Co
US10132793B2 (en) 2012-08-30 2018-11-20 Abbott Diabetes Care Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US20160128947A1 (en) * 2012-10-22 2016-05-12 Stc. Unm Bioadhesive films for local and/or systemic delivery
WO2014066663A1 (en) 2012-10-24 2014-05-01 Platelet Targeted Therapeutics, Llc Platelet targeted treatment
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
WO2014100750A1 (en) 2012-12-21 2014-06-26 Corium International, Inc. Microarray for delivery of therapeutic agent and methods of use
BR112015019440A2 (en) 2013-02-20 2017-07-18 Cytrellis Biosystems Inc methods and devices for skin tightening
AU2014249471B2 (en) 2013-03-12 2019-01-24 Corium International, Inc. Microprojection applicators
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
CA2903763A1 (en) 2013-03-15 2014-09-25 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
CA2903583A1 (en) 2013-03-15 2014-09-18 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
MX2015012933A (en) * 2013-03-15 2016-09-19 Corium Int Inc Microarray for delivery of therapeutic agent and methods of use.
CA2903459A1 (en) 2013-03-15 2014-09-25 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US9616243B2 (en) 2013-06-14 2017-04-11 Cardiothrive, Inc. Dynamically adjustable multiphasic defibrillator pulse system and method
US10149973B2 (en) 2013-06-14 2018-12-11 Cardiothrive, Inc. Multipart non-uniform patient contact interface and method of use
US9833630B2 (en) 2013-06-14 2017-12-05 Cardiothrive, Inc. Biphasic or multiphasic pulse waveform and method
US10279189B2 (en) 2013-06-14 2019-05-07 Cardiothrive, Inc. Wearable multiphasic cardioverter defibrillator system and method
US9907970B2 (en) 2013-06-14 2018-03-06 Cardiothrive, Inc. Therapeutic system and method using biphasic or multiphasic pulse waveform
US9656094B2 (en) 2013-06-14 2017-05-23 Cardiothrive, Inc. Biphasic or multiphasic pulse generator and method
US20150038897A1 (en) 2013-07-30 2015-02-05 Zosano Pharma, Inc. Low-Profile Microneedle Patch Applicator
EP3038700A4 (en) 2013-08-27 2017-04-26 Halo Neuro, Inc. Method and system for providing electrical stimulation to a user
US9486618B2 (en) 2013-08-27 2016-11-08 Halo Neuro, Inc. Electrode system for electrical stimulation
EP3038699A4 (en) 2013-08-27 2017-03-29 Halo Neuro, Inc. Electrode system for electrical stimulation
US9782585B2 (en) 2013-08-27 2017-10-10 Halo Neuro, Inc. Method and system for providing electrical stimulation to a user
EP3042690A4 (en) * 2013-09-06 2017-04-26 Hisamitsu Pharmaceutical Co., Inc. Micro-needle sheet
DE102013219432A1 (en) * 2013-09-26 2015-03-26 Peter Röhr A blood sampling device and method for withdrawing blood
US10208102B2 (en) 2013-11-01 2019-02-19 University Of Oslo Albumin variants and uses thereof
WO2015071769A2 (en) 2013-11-13 2015-05-21 University Of Oslo Outer membrane vesicles and uses thereof
DK3069138T3 (en) 2013-11-15 2019-04-08 Oslo Univ Hf CTL peptide epitopes and the antigen-specific T cells, methods for the realization thereof and uses thereof
TWI548395B (en) * 2014-01-28 2016-09-11 Micro Nipple Technology Co Ltd Transdermal micrneedles continuous monitoring system
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
EP2905047A1 (en) * 2014-02-10 2015-08-12 LTS LOHMANN Therapie-Systeme AG Micro-needle system and method for producing the same
EP3111987A4 (en) * 2014-02-27 2017-10-11 Hisamitsu Pharmaceutical Co., Inc. Microneedle sheet
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US20160058992A1 (en) 2014-08-29 2016-03-03 Corium International, Inc. Microstructure array for delivery of active agents
CN105455855B (en) * 2014-09-04 2018-05-25 微凸科技股份有限公司 The method of measuring lactic acid and exercise training adjustment means
WO2016039333A1 (en) * 2014-09-08 2016-03-17 株式会社かいわ Puncture device
JP5967595B2 (en) * 2014-09-08 2016-08-10 株式会社かいわ Puncture device
AR102548A1 (en) 2014-11-07 2017-03-08 Takeda Vaccines Inc Disease vaccines hands, feet and mouth and methods of manufacture and use
JP2016093325A (en) 2014-11-14 2016-05-26 ロレアル Microneedle sheet for reducing wrinkles
KR101683173B1 (en) 2015-04-21 2016-12-07 (주)미래컴 Automatic cutting moldings and ejector
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2017004067A1 (en) 2015-06-29 2017-01-05 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
GB201518684D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
CA3010974A1 (en) 2016-01-11 2017-07-20 Verndari, Inc. Microneedle compositions and methods of using same
EP3413966A1 (en) 2016-02-08 2018-12-19 Halo Neuro, Inc. Method and system for improving provision of electrical stimulation
US9918932B2 (en) 2016-02-19 2018-03-20 Zosano Pharma Corporation Method of rapidly achieving therapeutic concentrations of triptans for treatment of migraines
GB201610599D0 (en) 2016-06-17 2016-08-03 Glaxosmithkline Biologicals Sa Immunogenic Composition
WO2018096396A1 (en) 2016-11-22 2018-05-31 University Of Oslo Albumin variants and uses thereof
US20180279929A1 (en) * 2017-03-31 2018-10-04 RichHealth Technology Corporation Transdermal microneedle array patch
WO2018237221A1 (en) 2017-06-23 2018-12-27 Nosocomial Vaccine Corporation Immunogenic compositions
WO2019040063A1 (en) 2017-08-23 2019-02-28 Zp Opco, Inc. Method of rapidly achieving therapeutic concentrations of zolmitriptan for treatment of migraines and cluster headaches
WO2019048936A1 (en) 2017-09-07 2019-03-14 University Of Oslo Vaccine molecules
WO2019048928A1 (en) 2017-09-07 2019-03-14 University Of Oslo Vaccine molecules
WO2019090238A1 (en) 2017-11-03 2019-05-09 Takeda Vaccines, Inc. Zika vaccines and immunogenic compositions, and methods of using the same

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US946837A (en) 1908-11-05 1910-01-18 Cordelia L Common Fountain tonic-applicator.
US2619962A (en) * 1948-02-19 1952-12-02 Res Foundation Vaccination appliance
FR1133709A (en) 1955-10-17 1957-04-01 Device for the application of new medical treatments
US2893392A (en) 1958-01-08 1959-07-07 American Cyanamid Co Article of manufacture for intracutaneous injections
US3072122A (en) 1959-01-15 1963-01-08 Rosenthal Sol Roy Package for transcutaneous injection
US2974787A (en) * 1960-05-10 1961-03-14 American Cyanamid Co Single use, prepackaged vaccinator
US3322121A (en) * 1965-11-26 1967-05-30 Oscar H Banker Skin-puncturing unit with a collapsible protective cover
CH522395A (en) * 1968-07-26 1972-05-15 Micromedic Systems Inc Test tube for taking blood percutaneous and digital
US3675766A (en) 1970-02-04 1972-07-11 Sol Roy Rosenthal Multiple puncture injector device
US3964482A (en) 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
BE795384A (en) 1972-02-14 1973-08-13 Ici Ltd dressings
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
JPS5029096U (en) * 1973-07-06 1975-04-02
OA5448A (en) * 1975-10-16 1981-03-31 Manufrance Manufacture Francai Multipénétrant device vaccinator.
US4077407A (en) 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4014334A (en) 1976-02-02 1977-03-29 Alza Corporation Laminated osmotic system for dispensing beneficial agent
US4141359A (en) 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
US4127118B1 (en) * 1977-03-16 1995-12-19 Alvaro Latorre Method of effecting and enhancing an erection
GB2066376B (en) 1977-11-09 1982-10-20 Emerit Andre A C Source of vacuum and device for creating and maintaining a negative pressure in an enclosure
US4250878A (en) 1978-11-22 1981-02-17 Motion Control, Inc. Non-invasive chemical species delivery apparatus and method
US4383529A (en) 1980-11-03 1983-05-17 Wescor, Inc. Iontophoretic electrode device, method and gel insert
US4340048A (en) 1981-03-28 1982-07-20 Alza Corporation Self-driven hypodermic injector
US4753651A (en) 1982-08-30 1988-06-28 Alza Corporation Self-driven pump
USH356H (en) * 1985-02-27 1987-11-03 Medtronic, Inc. Epicardial lead having low threshold, low polarization myocardial electrode
SU1296174A1 (en) * 1985-06-20 1987-03-15 Устиновский Государственный Медицинский Институт Apparatus for electrophoresis of medicines
US4655766A (en) 1985-08-01 1987-04-07 Alza Corporation Fluid imbibing pump with self-regulating skin patch
US4756314A (en) 1985-10-28 1988-07-12 Alza Corporation Sweat collection patch
US4711247A (en) 1986-04-18 1987-12-08 Henry Fishman Allergy testing method and apparatus
DE3735137A1 (en) * 1987-10-16 1989-05-03 Siemens Ag Arrangement for post of drugs in an implantable medical geraet
JP2907342B2 (en) 1988-01-29 1999-06-21 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Ion Infiltration noninvasive sampling or delivery device
US5438984A (en) 1988-09-08 1995-08-08 Sudor Partners Apparatus and method for the collection of analytes on a dermal patch
US5080646A (en) 1988-10-03 1992-01-14 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5169382A (en) 1988-10-03 1992-12-08 Alza Corporation Membrane for electrotransport transdermal drug delivery
US5147296A (en) 1988-10-03 1992-09-15 Alza Corporation Membrane for electrotransport transdermal drug delivery
US4941517A (en) * 1988-10-20 1990-07-17 Galloway Trust Aseptic fluid transfer apparatus and methods
US5362307A (en) 1989-01-24 1994-11-08 The Regents Of The University Of California Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance
US5054499A (en) 1989-03-27 1991-10-08 Swierczek Remi D Disposable skin perforator and blood testing device
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
EP0429842B1 (en) 1989-10-27 1996-08-28 Korea Research Institute Of Chemical Technology Device for the transdermal administration of protein or peptide drug
US5036861A (en) 1990-01-11 1991-08-06 Sembrowich Walter L Method and apparatus for non-invasively monitoring plasma glucose levels
US5161532A (en) 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
US5300100A (en) * 1990-08-22 1994-04-05 Advanced Warming Systems, Inc. Body warmer
US5158537A (en) * 1990-10-29 1992-10-27 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5156591A (en) 1990-12-13 1992-10-20 S. I. Scientific Innovations Ltd. Skin electrode construction and transdermal drug delivery device utilizing same
US5279544A (en) 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
SE9101022D0 (en) 1991-01-09 1991-04-08 Paal Svedman Medical suction apparatus
US5312456A (en) 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5122114A (en) * 1991-02-01 1992-06-16 Board Of Regents, University Of Texas System Method of using intramedullary catheter
US5231993A (en) 1991-11-20 1993-08-03 Habley Medical Technology Corporation Blood sampler and component tester with guide member
JP2572823Y2 (en) 1992-02-13 1998-05-25 株式会社アドバンス Simple blood collection device
US5484399A (en) * 1992-02-27 1996-01-16 Sloan-Kettering Institute For Cancer Research Process and device to reduce interstitial fluid pressure in tissue
US5309909A (en) 1992-05-22 1994-05-10 Physio-Control Corporation Combined skin preparation and monitoring electrode
US5370675A (en) * 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
JPH0670987A (en) 1992-08-28 1994-03-15 Katsuro Tachibana Medicine dosing and body liquid taking-out unit and device therefor
US5300110A (en) * 1992-10-15 1994-04-05 Angeion Corporation Dirk-based epicardial defibrillation electrode
JPH0824680B2 (en) 1992-10-26 1996-03-13 日本電気株式会社 Suction leachate collection device
JP2630197B2 (en) 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
JPH084182A (en) * 1994-06-17 1996-01-09 Nippon Steel Metal Prod Co Ltd Anchor member for flat deck plate
DE69519023T2 (en) 1994-06-24 2001-06-13 Cygnus Therapeutic Systems Device for iontophoretic sampling
EP0796128B1 (en) * 1994-12-09 1999-03-10 Novartis AG Transdermal system
WO1996037256A1 (en) 1995-05-22 1996-11-28 Silicon Microdevices, Inc. Micromechanical patch for enhancing the delivery of compounds through the skin
AU5740496A (en) 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
US5702359A (en) * 1995-06-06 1997-12-30 Genetronics, Inc. Needle electrodes for mediated delivery of drugs and genes
US5571162A (en) * 1995-06-07 1996-11-05 Intermedics, Inc. Transvenous defibrillation lead with side hooks
DE19525607A1 (en) * 1995-07-14 1997-01-16 Boehringer Ingelheim Kg Transcorneal drug release system
ES2536459T3 (en) 1995-08-29 2015-05-25 Nitto Denko Corporation Microporation of human skin for drug delivery and monitoring applications
US5682233A (en) 1995-09-08 1997-10-28 Integ, Inc. Interstitial fluid sampler
DE69719761D1 (en) * 1996-06-18 2003-04-17 Alza Corp Apparatus for improving transdermal administration of medicaments or the acceptance of body fluids
CA2259437C (en) 1996-07-03 2006-12-05 Altea Technologies, Inc. Multiple mechanical microporation of skin or mucosa
WO1998011937A1 (en) * 1996-09-17 1998-03-26 Deka Products Limited Partnership System for delivery of drugs by transport
US6918901B1 (en) * 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
CN1161164C (en) * 1997-12-11 2004-08-11 阿尔扎有限公司 Device for enhaning transdermal agent flux
JP2001525227A (en) * 1997-12-11 2001-12-11 アルザ・コーポレーション Apparatus for enhancing transdermal drug flow
KR100561892B1 (en) * 1997-12-11 2006-03-16 알자 코포레이션 Device for enhancing transdermal agent flux
US6022316A (en) * 1998-03-06 2000-02-08 Spectrx, Inc. Apparatus and method for electroporation of microporated tissue for enhancing flux rates for monitoring and delivery applications
US7419481B2 (en) * 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
AU2001296827B2 (en) * 2000-10-13 2005-11-17 Alza Corporation Microblade array impact applicator
PT1341452E (en) * 2000-10-13 2009-03-18 Alza Corp Microprotrusion member retainer for impact applicator
US7131960B2 (en) * 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions
AU2001297823B2 (en) * 2000-10-26 2005-05-12 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
WO2002074173A1 (en) * 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
MXPA03009603A (en) * 2001-04-20 2004-12-06 Johnson & Johnson Microprojection array having a beneficial agent containing coating.
EP1485317A2 (en) * 2001-11-30 2004-12-15 Alza Corporation Methods and apparatuses for forming microprojection arrays
DE60223844T2 (en) * 2001-12-20 2008-08-28 Alza Corp., Mountain View Microprotrusions to pierce the skin with piercing deep control
DE60315061T2 (en) * 2002-06-14 2007-11-22 Ogawa & Co., Ltd. Inhibitor against flavor impairment and inhibitor against the generation of a resulting odor by citralbeeinträchtigung
AR042815A1 (en) * 2002-12-26 2005-07-06 Alza Corp Delivery device active agent having composite members
US20050123507A1 (en) * 2003-06-30 2005-06-09 Mahmoud Ameri Formulations for coated microprojections having controlled solubility
AU2004287059A1 (en) * 2003-10-28 2005-05-19 Alza Corporation Delivery of polymer conjugates of therapeutic peptides and proteins via coated microporjections
CA2543641A1 (en) * 2003-10-31 2005-05-19 Alza Corporation Self-actuating applicator for microprojection array
AU2004292954A1 (en) * 2003-11-13 2005-06-09 Alza Corporation Composition and apparatus for transdermal delivery
CA2566032A1 (en) * 2004-05-13 2005-12-01 Alza Corporation Apparatus and method for transdermal delivery of parathyroid hormone agents
EP1838290A2 (en) * 2005-01-21 2007-10-03 Alza Corporation Therapeutic peptide formulations for coating microneedles with improved stability containing at least one counterion
TW200700094A (en) * 2005-01-31 2007-01-01 Alza Corp Coated microprojections having reduced variability and method for producing same
US20060204562A1 (en) * 2005-02-16 2006-09-14 Cormier Michel J Microprojection arrays with improved biocompatibility
US8374997B2 (en) * 2005-05-20 2013-02-12 Teradota Us, Inc. Application code generation and execution with bypass, logging, user restartability and status functionality
US20060280644A1 (en) * 2005-06-02 2006-12-14 Scott Sellers Method for terminal sterilization of transdermal delivery devices
CA2612307A1 (en) * 2005-06-21 2007-01-04 Alza Corporation Method and device for coating a continuous strip of microprojection members

Also Published As

Publication number Publication date
US7184826B2 (en) 2007-02-27
TW349872B (en) 1999-01-11
DE69719761T2 (en) 2003-12-18
JP2007260436A (en) 2007-10-11
US20070118070A1 (en) 2007-05-24
DE69730971T2 (en) 2005-11-17
PT917484E (en) 2004-12-31
EP0917483A1 (en) 1999-05-26
AR008242A1 (en) 1999-12-29
US20020016562A1 (en) 2002-02-07
DE69730971D1 (en) 2004-11-04
EP0914178B1 (en) 2003-03-12
DE69730973T2 (en) 2005-11-17
ES2195151T3 (en) 2003-12-01
AU3493397A (en) 1998-01-07
JP4012252B2 (en) 2007-11-21
EP0914178A1 (en) 1999-05-12
DK0917483T3 (en) 2005-02-07
WO1997048441A1 (en) 1997-12-24
DK0914178T3 (en) 2003-04-22
ES2230611T3 (en) 2005-05-01
CA2253549C (en) 2005-10-25
AU3572597A (en) 1998-01-07
KR20000016697A (en) 2000-03-25
AT234129T (en) 2003-03-15
ES2230614T3 (en) 2005-05-01
DE69730973D1 (en) 2004-11-04
ZA9705326B (en) 1998-01-14
US6219574B1 (en) 2001-04-17
DK0917484T3 (en) 2005-02-07
EP0917483B1 (en) 2004-09-29
US6230051B1 (en) 2001-05-08
PT917483E (en) 2005-01-31
DK914178T3 (en)
CA2253471A1 (en) 1997-12-24
JP2000512529A (en) 2000-09-26
JP2001505444A (en) 2001-04-24
CA2257217A1 (en) 1997-12-24
CA2257217C (en) 2006-03-07
EP0917484B1 (en) 2004-09-29
WO1997048442A1 (en) 1997-12-24
AU3399197A (en) 1998-01-07
KR20000016698A (en) 2000-03-25
JP2001507947A (en) 2001-06-19
KR20000016696A (en) 2000-03-25
EP0917484A1 (en) 1999-05-26
US6537264B1 (en) 2003-03-25
CA2253549A1 (en) 1997-12-24
AR012859A2 (en) 2000-11-22
DE69719761D1 (en) 2003-04-17
JP3847790B2 (en) 2006-11-22
AT277670T (en) 2004-10-15
AT277671T (en) 2004-10-15
WO1997048440A1 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
CA2461970C (en) Microdevice and method of delivering or withdrawing a substance through the skin of an animal
AU2001296828B2 (en) Apparatus and method for piercing skin with microprotrusions
CA2389829C (en) Biological fluid constituent sampling and measurement devices and methods
CA2329169C (en) Apparatus for electroporation through microporated tissue
JP4815095B2 (en) Delivery device for administering a substance transdermally
US6692456B1 (en) Apparatus for microporation of biological membranes using thin film tissue interface devices, and method therefor
US6155992A (en) Method and apparatus for obtaining interstitial fluid for diagnostic tests
EP1973479B1 (en) Microneedle array, patch, and applicator for transdermal drug delivery
CN1273830C (en) Apparatus and system for biological body fluid sampling and measuring analyte
US6379324B1 (en) Intracutaneous microneedle array apparatus
EP2701601B1 (en) Devices and methods for collection and/or manipulation of blood spots or other bodily fluids
US7228162B2 (en) Analyte sensor
US8870810B2 (en) Method and apparatus for enhancement of transdermal transport
US8287483B2 (en) Method and apparatus for enhancement of transdermal transport
US6931277B1 (en) Intracutaneous microneedle array apparatus
US6925317B1 (en) Integrated alignment devices, system, and methods for efficient fluid extraction, substance delivery and other applications
JP4700283B2 (en) The methods and methods of using the system to produce transdermal drug delivery patch system, the system
JP5639132B2 (en) System for continuous shaped analyte monitoring
ES2253876T3 (en) Collecting device and control interstitial fluid.
US8062232B2 (en) Test element with elastically mounted lancet
US6565532B1 (en) Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
DE69831268T2 (en) Apparatus for increasing the transdermal flux ingredients
ES2253278T3 (en) Device and method for improving the skin-piercing microprotrusions with.
DE60018796T2 (en) Apparatus for increasing the transdermal flux of agents samples
US6312612B1 (en) Apparatus and method for manufacturing an intracutaneous microneedle array

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed