CA2250906C - Enteric-coated pharmaceutical compositions of mycophenolate - Google Patents
Enteric-coated pharmaceutical compositions of mycophenolate Download PDFInfo
- Publication number
- CA2250906C CA2250906C CA002250906A CA2250906A CA2250906C CA 2250906 C CA2250906 C CA 2250906C CA 002250906 A CA002250906 A CA 002250906A CA 2250906 A CA2250906 A CA 2250906A CA 2250906 C CA2250906 C CA 2250906C
- Authority
- CA
- Canada
- Prior art keywords
- pharmaceutical composition
- composition according
- salt
- immunosuppressant
- mycophenolate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 22
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical group OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 title claims abstract description 19
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 title abstract description 21
- 229940014456 mycophenolate Drugs 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 239000002775 capsule Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 230000002265 prevention Effects 0.000 claims description 12
- 229960003444 immunosuppressant agent Drugs 0.000 claims description 9
- 239000003018 immunosuppressive agent Substances 0.000 claims description 9
- 230000001861 immunosuppressant effect Effects 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical group CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 claims description 7
- 108010036949 Cyclosporine Proteins 0.000 claims description 7
- 230000001506 immunosuppresive effect Effects 0.000 claims description 7
- 229960001265 ciclosporin Drugs 0.000 claims description 6
- 230000001404 mediated effect Effects 0.000 claims description 5
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical group [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 4
- 206010052779 Transplant rejections Diseases 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 4
- 210000000056 organ Anatomy 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 125000005591 trimellitate group Chemical group 0.000 claims description 4
- 230000001413 cellular effect Effects 0.000 claims description 3
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 3
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims description 2
- 230000009261 transgenic effect Effects 0.000 claims description 2
- 206010062016 Immunosuppression Diseases 0.000 claims 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims 1
- 208000027866 inflammatory disease Diseases 0.000 claims 1
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 4
- 239000002702 enteric coating Substances 0.000 description 12
- 238000009505 enteric coating Methods 0.000 description 12
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- -1 morpholinoethyl ester Chemical class 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 8
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 6
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229960000951 mycophenolic acid Drugs 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 229930105110 Cyclosporin A Natural products 0.000 description 3
- 239000001828 Gelatine Substances 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 239000001087 glyceryl triacetate Substances 0.000 description 3
- 235000013773 glyceryl triacetate Nutrition 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 210000000936 intestine Anatomy 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 229960004866 mycophenolate mofetil Drugs 0.000 description 3
- 229940046781 other immunosuppressants in atc Drugs 0.000 description 3
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 229960002622 triacetin Drugs 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 206010029164 Nephrotic syndrome Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000003872 anastomosis Effects 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 201000001981 dermatomyositis Diseases 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 108010036941 Cyclosporins Proteins 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 102100028675 DNA polymerase subunit gamma-2, mitochondrial Human genes 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000837415 Homo sapiens DNA polymerase subunit gamma-2, mitochondrial Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 208000012528 Juvenile dermatomyositis Diseases 0.000 description 1
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 208000004883 Lipoid Nephrosis Diseases 0.000 description 1
- HZQDCMWJEBCWBR-UUOKFMHZSA-N Mizoribine Chemical compound OC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HZQDCMWJEBCWBR-UUOKFMHZSA-N 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102100027208 T-cell antigen CD7 Human genes 0.000 description 1
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 1
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 206010066901 Treatment failure Diseases 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 208000016807 X-linked intellectual disability-macrocephaly-macroorchidism syndrome Diseases 0.000 description 1
- 229940008309 acetone / ethanol Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002682 anti-psoriatic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- PHEZJEYUWHETKO-UHFFFAOYSA-N brequinar Chemical compound N1=C2C=CC(F)=CC2=C(C(O)=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PHEZJEYUWHETKO-UHFFFAOYSA-N 0.000 description 1
- 229950010231 brequinar Drugs 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 201000010415 childhood type dermatomyositis Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229960002706 gusperimus Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229960000681 leflunomide Drugs 0.000 description 1
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229950000844 mizoribine Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- IDINUJSAMVOPCM-INIZCTEOSA-N n-[(1s)-2-[4-(3-aminopropylamino)butylamino]-1-hydroxy-2-oxoethyl]-7-(diaminomethylideneamino)heptanamide Chemical compound NCCCNCCCCNC(=O)[C@H](O)NC(=O)CCCCCCN=C(N)N IDINUJSAMVOPCM-INIZCTEOSA-N 0.000 description 1
- 229940063121 neoral Drugs 0.000 description 1
- 238000013059 nephrectomy Methods 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 125000001919 trimellityl group Chemical group C(=O)(O)C=1C=C(C(=O)*)C=CC1C(=O)O 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 230000002620 ureteric effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
- A61K38/13—Cyclosporins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4891—Coated capsules; Multilayered drug free capsule shells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This invention provides a pharmaceutical composition comprising a mycophenolate salt, the composition being adapted to release mycophenolate in the upper part of the intestinal tract.
Description
ENTERIC-COATED PHARMACEUTICAL COMPOSrTIONS OF MYCOPHENOLATE
This invention relates to mycophenolic acid.
Mycophenolic acid, also referred to herein as MPA, was first isolated in 1896, and has been extensively investigated as a pharmaceutical of potential commercial interest.
It is known to have anti-tumor, anti-viral, immunosuppressive, anti-psoriatic, and anti-inflammatory activity [see e.g. W.A. Lee et al, Pharmaceutical Research ( 1990), 7, p. 161 -166 anti references cited therein). Publications have appeared on MPA as an anti-cancer agent by Lilly scientists, see e.g. M.J. Sweeney et al., Cancer Research (1972), 32, 1795-1802, and by ICI scientists, see e.g. GB 1,157,099 and 1,203,328 and as an immunosuppressant agent see e.g. A. Mitsui et al. J. Antibiotics { 1969) 22, p. 358-363. In the above-mentioned article by W.A. Lee et al it is stated that attempts have been made to increase the bio-availability or specificity of MPA by making derivatives. The poor bioavailability of the acid was thought to be caused by undetermined factors such as drug complexation in the gastro-intestinal lumen, a narrow absorption window, metabolism before absorption etc.. The preparation of the morpholinoethyl ester, also known as mycophenolate mofetil (sometimes referred to herein as MMF), was described which had considerably higher bioavailability than MPA (100% for MMF and 43% for MPA). This derivative has been recently introduced commercially as an immunosuppressant for the treatment or prevention of organ 2 0 or tissue transplant rejection, at daily dosages of from about 200 mg to about 3 grams p.o., e.g. about 2 g p.o. Patient compliance with MMF is not ideal, inter alia, because of side-effects e.g. gastro-intestinal side effects, the origin of which is not known.
We have now found, after exhaustive testing, that mycophenolate salts when enteric coated or adapted to be released in the upper part of the intestines, e.g. in the duodenum, jejeunum 2 5 and/or ileum, are effective, well-tolerated, pharmaceuticals particularly for' immunosuppressive indications especially for the treatment or prevention of organ, tissue or cellular allograft or xenograft rejection, e.g. after transplant, or the treatment or prevention of immune-mediated diseases (autoimmune diseases) and have interesting bioavailability and stability characteristics. Moreover fewer unit dosage forms are required to be administered than for MMF, leading to easier administration.
The present invention provides in one aspect a pharmaceutical composition comprising a mycophenolate salt, the composition being adapted to release mycophenolate in the upper part of the intestinal tract (hereinafter referred to as a composition of the invention). The composition may be adapted in any conventional manner, preferably with means adapted to prevent release of the mycophenolate in the stomach and to ensure release in the upper part of the intestinal tract. In a further aspect the invention provides a pharmaceutical composition comprising a coated pharmaceutically acceptable mycophenolate salt.
According to one aspect of the present invention, there is provided a pharmaceutical composition comprising an enteric coated pharmaceutically acceptable mycophenolate salt and a pharmaceutically acceptable carrier or excipient.
According to another aspect of the present invention, there is provided a system comprising a pharmaceutical composition as described herein and an immunosuppressant for simultaneous, sequential or separate administration.
Such salts are cationic salts, e.g. of alkali metals, especially the sodium salts. Sodium mycophenolate salts are known, e.g. in South African Patent 68/4959. We prefer to use the mono-sodium salt. This may be obtained in crystalline form by recrystallization from acetone/ethanol -2a-if necessary with water; Mpt. 189-191°C.
The invention provides, more specifically, a solid enteric-coated composition in unit dose form for oral application, the core of the composition containing sodium mycophenolate in solid or liquid form.
The term "core" comprises sodium mycophenolate (or other cationic salt) if desired in admixture with further physiologically acceptable material, that can be surrounded by an enteric-coating. The term "core" comprises, in a wide sense, not only tablets, pellets or granules but also capsules, e.g. soft or hard capsules of gelatine or starch.
Such cores may be produced in conventional manner. We have found that the mycophenolate salts, particularly the sodium salt, are particularly interesting for the production of tablets. When tablet cores are used they have preferably a hardness of from ca. 10 to 70 N.
This invention relates to mycophenolic acid.
Mycophenolic acid, also referred to herein as MPA, was first isolated in 1896, and has been extensively investigated as a pharmaceutical of potential commercial interest.
It is known to have anti-tumor, anti-viral, immunosuppressive, anti-psoriatic, and anti-inflammatory activity [see e.g. W.A. Lee et al, Pharmaceutical Research ( 1990), 7, p. 161 -166 anti references cited therein). Publications have appeared on MPA as an anti-cancer agent by Lilly scientists, see e.g. M.J. Sweeney et al., Cancer Research (1972), 32, 1795-1802, and by ICI scientists, see e.g. GB 1,157,099 and 1,203,328 and as an immunosuppressant agent see e.g. A. Mitsui et al. J. Antibiotics { 1969) 22, p. 358-363. In the above-mentioned article by W.A. Lee et al it is stated that attempts have been made to increase the bio-availability or specificity of MPA by making derivatives. The poor bioavailability of the acid was thought to be caused by undetermined factors such as drug complexation in the gastro-intestinal lumen, a narrow absorption window, metabolism before absorption etc.. The preparation of the morpholinoethyl ester, also known as mycophenolate mofetil (sometimes referred to herein as MMF), was described which had considerably higher bioavailability than MPA (100% for MMF and 43% for MPA). This derivative has been recently introduced commercially as an immunosuppressant for the treatment or prevention of organ 2 0 or tissue transplant rejection, at daily dosages of from about 200 mg to about 3 grams p.o., e.g. about 2 g p.o. Patient compliance with MMF is not ideal, inter alia, because of side-effects e.g. gastro-intestinal side effects, the origin of which is not known.
We have now found, after exhaustive testing, that mycophenolate salts when enteric coated or adapted to be released in the upper part of the intestines, e.g. in the duodenum, jejeunum 2 5 and/or ileum, are effective, well-tolerated, pharmaceuticals particularly for' immunosuppressive indications especially for the treatment or prevention of organ, tissue or cellular allograft or xenograft rejection, e.g. after transplant, or the treatment or prevention of immune-mediated diseases (autoimmune diseases) and have interesting bioavailability and stability characteristics. Moreover fewer unit dosage forms are required to be administered than for MMF, leading to easier administration.
The present invention provides in one aspect a pharmaceutical composition comprising a mycophenolate salt, the composition being adapted to release mycophenolate in the upper part of the intestinal tract (hereinafter referred to as a composition of the invention). The composition may be adapted in any conventional manner, preferably with means adapted to prevent release of the mycophenolate in the stomach and to ensure release in the upper part of the intestinal tract. In a further aspect the invention provides a pharmaceutical composition comprising a coated pharmaceutically acceptable mycophenolate salt.
According to one aspect of the present invention, there is provided a pharmaceutical composition comprising an enteric coated pharmaceutically acceptable mycophenolate salt and a pharmaceutically acceptable carrier or excipient.
According to another aspect of the present invention, there is provided a system comprising a pharmaceutical composition as described herein and an immunosuppressant for simultaneous, sequential or separate administration.
Such salts are cationic salts, e.g. of alkali metals, especially the sodium salts. Sodium mycophenolate salts are known, e.g. in South African Patent 68/4959. We prefer to use the mono-sodium salt. This may be obtained in crystalline form by recrystallization from acetone/ethanol -2a-if necessary with water; Mpt. 189-191°C.
The invention provides, more specifically, a solid enteric-coated composition in unit dose form for oral application, the core of the composition containing sodium mycophenolate in solid or liquid form.
The term "core" comprises sodium mycophenolate (or other cationic salt) if desired in admixture with further physiologically acceptable material, that can be surrounded by an enteric-coating. The term "core" comprises, in a wide sense, not only tablets, pellets or granules but also capsules, e.g. soft or hard capsules of gelatine or starch.
Such cores may be produced in conventional manner. We have found that the mycophenolate salts, particularly the sodium salt, are particularly interesting for the production of tablets. When tablet cores are used they have preferably a hardness of from ca. 10 to 70 N.
The pellets or granules may, after application of the enteric-coating as described hereinafter may be used as such or to fill capsules, e.g. hard gelatine capsules. If desired the capsules may be alternatively enteric-coated, e.g. in conventional manner.
Other pharmaceutically acceptable ingredients may be present in the cores, e.g. those conventionally used in the preparation of pharmaceutically compositions, e.g.
fillers, e.g.
lactose, glidants, e.g. silica, and lubricants, e.g. magnesium stearate.
The term "enteric coating" comprises any pharmaceutically acceptable coating preventing the release of the active agent in the stomach and sufficiently disintegrating in the intestine tract {by contact with approximately neutral or alkaline intestine juices) to allow the resorption of the active agent through the walls of the intestinal tract.
Various in vitro tests for determining whether or not a coating is classified as an enteric coating have been published in the pharmacopoeia of various countries.
More specifically, the term "enteric coating" as used herein refers to a coating which remains intact for at least 2 hours, in contact with artificial gastric juices such as HCl of pH I at 36 to 38°C and preferably thereafter disintegrates within 30 minutes in artificial intestinal juices such as a KH~P04 buffered solution of pH 6.8.
The thickness of the coating may vary and depends inter alia on its permeability in water and acids. A typical coating may be about 16-30, e.g. 16-20 or to 25, mg on a size 1 gelatine capsule. Similar thicknesses may be applied in other formulations.
2 0 In general satisfactory results are obtained with a coating of 5 - 100 pm, preferably 20 - 80 ~m thickness. The coating is suitably selected from macromolecular polymers.
Suitable polymers are listed in e.g. L. Lachman et al. The Theory and Practice of Industrial Pharmacy, 3rd Ed, 1986, p. 365 - 373, H. Sucker et al, Pharmazeutische Technologic, Thieme, 1991, p. 355 - 359, Hagers Handbuch der pharmazeutischen Praxis, 4th Ed. Vol.
2 5 7, pages 739 to 742 and 766 to 778, (Springer Verlag, 1971 ) and Remington's Pharmaceutical Sciences, 13th Ed., pages 1689 to 1691 (Mack Publ., Co., 1970) and comprise e.g. cellulose ester derivatives, cellulose ethers, acrylic resins, such as methylacrylate copolymers and copolymers of malefic acid and phthalic acid derivatives.
The preferred films are made from cellulose acetate phthalate and trimellitate; methacrylic acid copolymers, e.g. copolymers derived from methylacrylic acid and esters thereof, containing at least 40% methylacrylic acid; and especially hydroxypropyl methylcellulose phthalate.
Methylacrylates include those of molecular weight above 100,000 daltons based on, e.g.
methylacrylate and methyl or ethyl methylacrylate in a ratio of about 1:1.
Typical products include Endragit L, e.g. L 100-55, marketed by Rohm GmbH, Darmstadt, Germany.
Typical cellulose acetate phthalates have an acetyl content of 17-26% and a phthalate content of from 30-40% with a viscosity of ca. 45-90cP.
Typical cellulose acetate trimellitates have ari acetyl content of 17-26%, a trimellityl content from 25 - 35 % with a viscosity of ca. 15-20 cS. An example of an appropriate cellulose acetate trimellitate is the marketed product CAT (Eastman Kodak Company, USA).
Hydroxypropyl methylcellulose phthalates, typically have a molecular weight of from 20,000 to 100,000 daltons e.g. 80,000 to 130,000 daltons, e.g. a hydroxypropyl content of from 5 to 10%, a methoxy content of from 18 to 24% and a phthalyl content from 21 to 35%.
An example of an appropriate cellulose acetate phthalate is the marketed product CAP
2 0 (Eastman Kodak, Rochester N.Y., USA).
Examples of suitable hydroxypropyl methylcellulose phthalates are the marketed products having a hydroxypropyl content of from 6-10%, a methoxy content of from 20-24%, a phthalyl content of from 21-27%, a molecular weight of about 84,000 daltons known under ~.
the trade mark HP50 and available from Shin-Etsu Chemical Co. Ltd., Tokyo, Japan, and having a hydroxypropyl content, a methoxy content, and a phthalyl content of 5-9%, 18-22% and 27-35% respectively, and a molecular weight of 78,000 daltons, known under the trademark HP55 and available from the same supplier.
A preferred coating is HP S0.
The enteric coating may be carried out in conventional manner, e.g. so that the cores are sprayed with a solution of the enteric-coating.
Suitable solvents for the enteric-coating are for example organic solvents, e.g. an alcohol such as ethanol, a ketone such as acetone, halogenated hydrocarbons such as CH~CI~ or mixtures of such solvents, e.g. ethanol /acetone, e.g. 1:1 to 10:1.
Conveniently a softener such as di-n-butylphthalate or triacetin is added to such a solution, e.g. in a ratio of coating material to softener of from 1: about 0.05 to about 0.3.
If desired for cellulose phthalates and other acidic coating materials an ammonium salt may be found and an aqueous solution may be used.
A fluidized bed coater may be used for coating.
Conveniently the cores are treated at room temperature or warmed up to 40°C e.g. by means of warm air of 40° up to 70°C, before spraying. To avoid a sticking of the cores the spray procedure is preferably interrupted at certain time intervals and the cores then warmed up again. It is, however, also possible to proceed without interruption of the spray procedure, e.g. by automatic regulation of the spray amount taking into account the temperature of 2 0 exhaust air and/or cores.
The spray pressure may vary within wide ranges, in general satisfactory results are obtained with a spray pressure of from about 1 to about 1.5 bar.
Other pharmaceutically acceptable ingredients may be present in the cores, e.g. those conventionally used in the preparation of pharmaceutically compositions, e.g.
fillers, e.g.
lactose, glidants, e.g. silica, and lubricants, e.g. magnesium stearate.
The term "enteric coating" comprises any pharmaceutically acceptable coating preventing the release of the active agent in the stomach and sufficiently disintegrating in the intestine tract {by contact with approximately neutral or alkaline intestine juices) to allow the resorption of the active agent through the walls of the intestinal tract.
Various in vitro tests for determining whether or not a coating is classified as an enteric coating have been published in the pharmacopoeia of various countries.
More specifically, the term "enteric coating" as used herein refers to a coating which remains intact for at least 2 hours, in contact with artificial gastric juices such as HCl of pH I at 36 to 38°C and preferably thereafter disintegrates within 30 minutes in artificial intestinal juices such as a KH~P04 buffered solution of pH 6.8.
The thickness of the coating may vary and depends inter alia on its permeability in water and acids. A typical coating may be about 16-30, e.g. 16-20 or to 25, mg on a size 1 gelatine capsule. Similar thicknesses may be applied in other formulations.
2 0 In general satisfactory results are obtained with a coating of 5 - 100 pm, preferably 20 - 80 ~m thickness. The coating is suitably selected from macromolecular polymers.
Suitable polymers are listed in e.g. L. Lachman et al. The Theory and Practice of Industrial Pharmacy, 3rd Ed, 1986, p. 365 - 373, H. Sucker et al, Pharmazeutische Technologic, Thieme, 1991, p. 355 - 359, Hagers Handbuch der pharmazeutischen Praxis, 4th Ed. Vol.
2 5 7, pages 739 to 742 and 766 to 778, (Springer Verlag, 1971 ) and Remington's Pharmaceutical Sciences, 13th Ed., pages 1689 to 1691 (Mack Publ., Co., 1970) and comprise e.g. cellulose ester derivatives, cellulose ethers, acrylic resins, such as methylacrylate copolymers and copolymers of malefic acid and phthalic acid derivatives.
The preferred films are made from cellulose acetate phthalate and trimellitate; methacrylic acid copolymers, e.g. copolymers derived from methylacrylic acid and esters thereof, containing at least 40% methylacrylic acid; and especially hydroxypropyl methylcellulose phthalate.
Methylacrylates include those of molecular weight above 100,000 daltons based on, e.g.
methylacrylate and methyl or ethyl methylacrylate in a ratio of about 1:1.
Typical products include Endragit L, e.g. L 100-55, marketed by Rohm GmbH, Darmstadt, Germany.
Typical cellulose acetate phthalates have an acetyl content of 17-26% and a phthalate content of from 30-40% with a viscosity of ca. 45-90cP.
Typical cellulose acetate trimellitates have ari acetyl content of 17-26%, a trimellityl content from 25 - 35 % with a viscosity of ca. 15-20 cS. An example of an appropriate cellulose acetate trimellitate is the marketed product CAT (Eastman Kodak Company, USA).
Hydroxypropyl methylcellulose phthalates, typically have a molecular weight of from 20,000 to 100,000 daltons e.g. 80,000 to 130,000 daltons, e.g. a hydroxypropyl content of from 5 to 10%, a methoxy content of from 18 to 24% and a phthalyl content from 21 to 35%.
An example of an appropriate cellulose acetate phthalate is the marketed product CAP
2 0 (Eastman Kodak, Rochester N.Y., USA).
Examples of suitable hydroxypropyl methylcellulose phthalates are the marketed products having a hydroxypropyl content of from 6-10%, a methoxy content of from 20-24%, a phthalyl content of from 21-27%, a molecular weight of about 84,000 daltons known under ~.
the trade mark HP50 and available from Shin-Etsu Chemical Co. Ltd., Tokyo, Japan, and having a hydroxypropyl content, a methoxy content, and a phthalyl content of 5-9%, 18-22% and 27-35% respectively, and a molecular weight of 78,000 daltons, known under the trademark HP55 and available from the same supplier.
A preferred coating is HP S0.
The enteric coating may be carried out in conventional manner, e.g. so that the cores are sprayed with a solution of the enteric-coating.
Suitable solvents for the enteric-coating are for example organic solvents, e.g. an alcohol such as ethanol, a ketone such as acetone, halogenated hydrocarbons such as CH~CI~ or mixtures of such solvents, e.g. ethanol /acetone, e.g. 1:1 to 10:1.
Conveniently a softener such as di-n-butylphthalate or triacetin is added to such a solution, e.g. in a ratio of coating material to softener of from 1: about 0.05 to about 0.3.
If desired for cellulose phthalates and other acidic coating materials an ammonium salt may be found and an aqueous solution may be used.
A fluidized bed coater may be used for coating.
Conveniently the cores are treated at room temperature or warmed up to 40°C e.g. by means of warm air of 40° up to 70°C, before spraying. To avoid a sticking of the cores the spray procedure is preferably interrupted at certain time intervals and the cores then warmed up again. It is, however, also possible to proceed without interruption of the spray procedure, e.g. by automatic regulation of the spray amount taking into account the temperature of 2 0 exhaust air and/or cores.
The spray pressure may vary within wide ranges, in general satisfactory results are obtained with a spray pressure of from about 1 to about 1.5 bar.
The compositions of the invention are useful as imrriunosuppressants as indicated by standard tests.
The activity and characteristics of the compositions of the invention may be indicated in standard a) clinical trials, e.g. observing the first acute rejection episodes or treatment failure six months after transplant of kidneys or maintaining a rejection - free state within 6 months after initiation of treatment with the invention. The compositions of the invention are administered at a dose in the range of 0.5 to 2.0 g/day e.g.
about 1.5 g /day and decrease the acute rejection rates when administered during the period around transplant surgery, and maintain a rejection-free state in patients who are 3 months or more after transplantation. Thus the compositions of the invention may be administered during the initial 72 hours after transplantation at dose of about 0.5 g administered twice a day in combination with a conventional steroid and cyclosporin, e.g, as NEORAL for which the cyclosporin dose is the conventional dose e.g. ca. 8 ~ 3 mg/kg for renal transplants. The steroid dose is to be administered at about 2.5 mg /kg for 4 days after transplant, 1 mg/kg thereafter for 1 week, ~0.6 mg/kg thereafter for 2 weeks thereafter 0.3 mg/kg for 1 month for prednisone.
and in 2 0 b) animal trials e.g. observing the kidney allograft reaction in rat. In this test one kidney from a female fisher 344 rat is transplanted onto the renal vessel of a unilaterally (left side) nephrectomized WF recipient rat using an end-to-end anastomosis.Ureteric anastomosis is also end-to-end. Treatment commences on the day of transplantation and is continued for 14 days. A contralateral nephrectomy is 2 5 done seven days after transplantation, leaving the recipient relying on the performance of the donor kidney. Survival of the graft recipient is taken as the parameter for a functional graft. Typical doses of the compbsitions of the invention are from about 1 to 30 mg/kg p.o.
The compositions of the invention are particularly useful for the following conditions:
a) Treatment and prevention of native or transgenic organ, tissue or cellular allograft or xenograft transplant rejection, e.g. for the treatment of recipients of e.g.
heart, lung, combined heart-lung, liver, kidney, pancreatic, skin, pancreatic islet cell, neural cell or corneal transplant; including treatment and prevention of acute rejection;
treatment and prevention of hyperacute rejection, e.g. as associated with xenograft rejection; and treatment and prevention of chronic rejection, e.g. as associated with graft-vessel disease. The compositions of the invention are also indicated for the treatment and prevention of graft-versus-host disease, such as following bone marrow transplantation.
b) Treatment and prevention of autoimmune diseases, e.g. immune-mediated diseases and inflammatory conditions, in particular inflammatory conditions with an etiology including an immunological component such as arthritis (for example rheumatoid arthritis, arthritis chronica progrediente and arthritis deformans) and rheumatic diseases. Specific immune-mediated diseases for which the compositions of the invention may be employed include, autoimmune hematological disorders, including, but not limited to hemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), systemic lupus erythematosus, polychondritis, sclerodoma, Wegener granulosis, dermatomyositis, polymyositis, chronic active 2 0 hepatitis, primary bilary cirrhosis, myasthenia gravis, psoriasis, Steven-Johnson syndrome, pemphigus, idiophatic spree, inflammatory bowel diseases (including e.g.
ulcerative colitis and Crohn's disease), endocrine ophthalmophathy, Graves disease, sarcoidosis, multiple sclerosis, juvenile diabetes (diabetes mellitus type I), non-infectious uveitis (anterior and posterior}, keratoconjunctivitis sicca and vernal 2 5 keratoconjunctivitis, interstitial lung fibrosis, psoriatic arthritis, vasculitis, glomerulonephritides (with and without nephrotic syndrome, e.g. including idiophatic nephrotic syndrome or minimal change nephropathy) and juvenile dermatomyositis.
_g_ Appropriate dosages of the compositions of the invention will of course vary, e.g.
depending on the condition to be treated (for example the disease type or the nature of resistance), the MPA salt used, the effect desired and the mode of administration.
In general however satisfactory results are obtained on administration e.g.
orally at dosages on the order of from about 1 to about 30 mg salt per kg animal body weight per day, administered once or in divided doses up to 4 times per day. Suitable daily dosages for patients are thus in the order of 200 mg to 3 g p.o. salt e.g. from about 50 to 100% that of mycophenolate mofetil. For the preferred mono sodium salt the dosage of the salt is about two thirds that of mycophenolate mofetil.
Representative unit dosage forms contain from about 50 mg, e.g. 100 mg, to about 1.5 g of the pharmaceutically acceptable mycophenolate salt.
The bioavailability characteristics of compositions of the invention may be determined in conventional manner, e.g. by oral administration to beagle dogs. Dosages are typically 50 mg salt animal e.g. ca 3- 5 mg salt /kg animal body weight. Dogs are adult (ca. 10 kg e.g.
6 - 14 kg) and fasted. Three hours after administration ca. 200 g food is administered.
Blood samples are taken from the cephalic vein, before administration and 10, 30, and 45 minutes, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours, after administration. Plasma levels of free MPA are determined by HPLC analysis (with UV detection).
In a relative bioavailability trial as described above in male beagle dogs dosages of 3.8 mg 2 0 salt/kg animal body weight p.o. were administered with the Example 1 composition as described hereinafter and with a MPA or MMF formulation corresponding to the Example 1 composition but containing an identical amount of MPA or commercially available MMF.
Results are as follows:-WO 97!38689 PCT/EP97/01800 MPA (AUC Relative Ex 1 MPA MMF
Bioavailability, Frel [ng.hr.ml-']
Mean 4612 (218) 3579 ( I74) 2709 ( 100) Median 4204 ( 168) 2911 ( 182) 2513 ( 100) Cmax [ng/ml] (Relative Cmax) Mean 5391 (3I3) 3683 (227) 2052 ( 100) Median 5359 (367) 2719 ( 172) 1462 ( 100) CV (%) 34 (46) 68 (87) 46 (0) The coefficients of variation (CV) of AUC (20%) and Cmax (34%) of the Example composition are significantly less than those of the reference compositions, indicating less inter-subject and intra-subject variability with the Example 1 composition.
The area under the curve (AUC) and Cmax with the Example 1 composition are higher than those of the reference compositions.
Naturally the advantageous bioavailability characteristics of the present compositions may 2 0 be ascertained in standard clinical bioavailability trials. For example, doses from 200 mg to 1.5 g of the Example 1 composition and MPA, and MMF may be administered to healthy volunteers in single doses in a cross-over trial. Increased AUC and C~"~x may be observed for the Example 1 composition.
The compositions of the present invention are surprisingly tolerated better than MMF, 2 5 inducing less gastro-intestinal side effects such as diarrhoea and burning. They show less long term side effects e.g. in the colon.
The compositions of the invention may be administered as the sole active ingredient or with another immunosuppressant e.g. together with simultaneous or separate administration of other immunosuppressants, for example, in immunosuppressive applications such as prevention and treatment of graft vs. host disease, transplant rejection, or immune-mediated disease, the compositions of the invention may be used in combination with cyclosporins or ascomycins, or their immunosuppressive analogs, e.g. cyclosporin A, FK- 506 (tacrolimus), etc., rapamycin; corticosteroids; cyclophosphamide;
azathioprine; methotrexate;
brequinar; leflunomide; mizoribine; deoxyspergualin; analogues thereof, and immunosuppressive monoclonal antibodies, e.g., monoclonal antibodies to leukocyte receptors, e.g. MHC, CD2, CD3, CD4, CD7, CD25, CD28, CTLA4, B7, CD45, or CS58 or their ligands; or other immunomodulatory compounds.
When the compositions of the invention are co-administered with such other immunosuppressants the dosages of the other immunosuppressants may be reduced e.g. to one-half to one-third their dosages when used alone.
Representative doses for ciclosporin to be used are e.g. 1 to 10, e.g. 1 to 2 mg/kg/day.
The present invention provides in another aspect the use, method and compositions as defined hereinafter in the claims.
Insofar as details of excipients are not described herein, these are known, or available e.g.
2 0 in the Handbook of Pharmaceutical Excipients, Second Edition, edited by Ainley Wade and Paul J. Weller, American Pharmaceutical Association, Washington, USA and Pharmaceutical Press, London; and Lexikon der Hilfsstoffe fur Pharmazie, Kosmetik and angrenzende Gebiete edited by H.P. Fiedler, 4th Edition, Edito Cantor, Aulendorf and earlier editions.
2 5 Following is a description by way of example only of compositions of this invention:
EXAMPLE 1:
COMPOSITION
Capsule contents MPA mono sodium salt 53.43 mg (= 50 mg MPA) Lactose ( 1:1 mixture of 100/200 mesh) 256.57 mg Silica (Aerosil) 3.1 mg Magnesium stearate 1.5_ 5 m~
314.65 m~
Capsule is size 1 Enteric coatine (ca 17 mg) ,. Hydroxypropyl methyl cellulose phthalate (HP50) 9 parts Triacetin 1 part Procedure The capsule ingredients are mixed and filled into size 1 capsules. The capsules are coated in a fluidized bed coater with a solution of the enteric coating ingredients in ethanol (containing 10% acetone). The coating on each capsule is about 17 mg. The capsules meet the enteric coating test described herein and do not disintegrate within 2 hours in artificial gastric juices (pH 1, HCl). The compositions are stable, e.g for 2 years at room temperature.
If desired larger capsules containing 534.3 mg MPA mono sodium salt may be made in 2 0 analogous manner, reducing the amount of lactose. These are well tolerated in clinical trials.
EXAMPLE 2:
Capsules of size 1 are made up as in Example 1. A solution for enteric coating is made up as follows:
Hydroxypropyl methyl cellulose phthalate (HP50) 270 g 2 5 Triacetin ~ 30 g Acetone 900 g Ethanol 1800 g 600 g of this enteric coating solution are used. for 1 kg of caps'les (ca.
2400). The amount of coating applied to each capsule is about 25 mg giving a film 'thickness of 5-6 mg/cm2.
The activity and characteristics of the compositions of the invention may be indicated in standard a) clinical trials, e.g. observing the first acute rejection episodes or treatment failure six months after transplant of kidneys or maintaining a rejection - free state within 6 months after initiation of treatment with the invention. The compositions of the invention are administered at a dose in the range of 0.5 to 2.0 g/day e.g.
about 1.5 g /day and decrease the acute rejection rates when administered during the period around transplant surgery, and maintain a rejection-free state in patients who are 3 months or more after transplantation. Thus the compositions of the invention may be administered during the initial 72 hours after transplantation at dose of about 0.5 g administered twice a day in combination with a conventional steroid and cyclosporin, e.g, as NEORAL for which the cyclosporin dose is the conventional dose e.g. ca. 8 ~ 3 mg/kg for renal transplants. The steroid dose is to be administered at about 2.5 mg /kg for 4 days after transplant, 1 mg/kg thereafter for 1 week, ~0.6 mg/kg thereafter for 2 weeks thereafter 0.3 mg/kg for 1 month for prednisone.
and in 2 0 b) animal trials e.g. observing the kidney allograft reaction in rat. In this test one kidney from a female fisher 344 rat is transplanted onto the renal vessel of a unilaterally (left side) nephrectomized WF recipient rat using an end-to-end anastomosis.Ureteric anastomosis is also end-to-end. Treatment commences on the day of transplantation and is continued for 14 days. A contralateral nephrectomy is 2 5 done seven days after transplantation, leaving the recipient relying on the performance of the donor kidney. Survival of the graft recipient is taken as the parameter for a functional graft. Typical doses of the compbsitions of the invention are from about 1 to 30 mg/kg p.o.
The compositions of the invention are particularly useful for the following conditions:
a) Treatment and prevention of native or transgenic organ, tissue or cellular allograft or xenograft transplant rejection, e.g. for the treatment of recipients of e.g.
heart, lung, combined heart-lung, liver, kidney, pancreatic, skin, pancreatic islet cell, neural cell or corneal transplant; including treatment and prevention of acute rejection;
treatment and prevention of hyperacute rejection, e.g. as associated with xenograft rejection; and treatment and prevention of chronic rejection, e.g. as associated with graft-vessel disease. The compositions of the invention are also indicated for the treatment and prevention of graft-versus-host disease, such as following bone marrow transplantation.
b) Treatment and prevention of autoimmune diseases, e.g. immune-mediated diseases and inflammatory conditions, in particular inflammatory conditions with an etiology including an immunological component such as arthritis (for example rheumatoid arthritis, arthritis chronica progrediente and arthritis deformans) and rheumatic diseases. Specific immune-mediated diseases for which the compositions of the invention may be employed include, autoimmune hematological disorders, including, but not limited to hemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), systemic lupus erythematosus, polychondritis, sclerodoma, Wegener granulosis, dermatomyositis, polymyositis, chronic active 2 0 hepatitis, primary bilary cirrhosis, myasthenia gravis, psoriasis, Steven-Johnson syndrome, pemphigus, idiophatic spree, inflammatory bowel diseases (including e.g.
ulcerative colitis and Crohn's disease), endocrine ophthalmophathy, Graves disease, sarcoidosis, multiple sclerosis, juvenile diabetes (diabetes mellitus type I), non-infectious uveitis (anterior and posterior}, keratoconjunctivitis sicca and vernal 2 5 keratoconjunctivitis, interstitial lung fibrosis, psoriatic arthritis, vasculitis, glomerulonephritides (with and without nephrotic syndrome, e.g. including idiophatic nephrotic syndrome or minimal change nephropathy) and juvenile dermatomyositis.
_g_ Appropriate dosages of the compositions of the invention will of course vary, e.g.
depending on the condition to be treated (for example the disease type or the nature of resistance), the MPA salt used, the effect desired and the mode of administration.
In general however satisfactory results are obtained on administration e.g.
orally at dosages on the order of from about 1 to about 30 mg salt per kg animal body weight per day, administered once or in divided doses up to 4 times per day. Suitable daily dosages for patients are thus in the order of 200 mg to 3 g p.o. salt e.g. from about 50 to 100% that of mycophenolate mofetil. For the preferred mono sodium salt the dosage of the salt is about two thirds that of mycophenolate mofetil.
Representative unit dosage forms contain from about 50 mg, e.g. 100 mg, to about 1.5 g of the pharmaceutically acceptable mycophenolate salt.
The bioavailability characteristics of compositions of the invention may be determined in conventional manner, e.g. by oral administration to beagle dogs. Dosages are typically 50 mg salt animal e.g. ca 3- 5 mg salt /kg animal body weight. Dogs are adult (ca. 10 kg e.g.
6 - 14 kg) and fasted. Three hours after administration ca. 200 g food is administered.
Blood samples are taken from the cephalic vein, before administration and 10, 30, and 45 minutes, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours, after administration. Plasma levels of free MPA are determined by HPLC analysis (with UV detection).
In a relative bioavailability trial as described above in male beagle dogs dosages of 3.8 mg 2 0 salt/kg animal body weight p.o. were administered with the Example 1 composition as described hereinafter and with a MPA or MMF formulation corresponding to the Example 1 composition but containing an identical amount of MPA or commercially available MMF.
Results are as follows:-WO 97!38689 PCT/EP97/01800 MPA (AUC Relative Ex 1 MPA MMF
Bioavailability, Frel [ng.hr.ml-']
Mean 4612 (218) 3579 ( I74) 2709 ( 100) Median 4204 ( 168) 2911 ( 182) 2513 ( 100) Cmax [ng/ml] (Relative Cmax) Mean 5391 (3I3) 3683 (227) 2052 ( 100) Median 5359 (367) 2719 ( 172) 1462 ( 100) CV (%) 34 (46) 68 (87) 46 (0) The coefficients of variation (CV) of AUC (20%) and Cmax (34%) of the Example composition are significantly less than those of the reference compositions, indicating less inter-subject and intra-subject variability with the Example 1 composition.
The area under the curve (AUC) and Cmax with the Example 1 composition are higher than those of the reference compositions.
Naturally the advantageous bioavailability characteristics of the present compositions may 2 0 be ascertained in standard clinical bioavailability trials. For example, doses from 200 mg to 1.5 g of the Example 1 composition and MPA, and MMF may be administered to healthy volunteers in single doses in a cross-over trial. Increased AUC and C~"~x may be observed for the Example 1 composition.
The compositions of the present invention are surprisingly tolerated better than MMF, 2 5 inducing less gastro-intestinal side effects such as diarrhoea and burning. They show less long term side effects e.g. in the colon.
The compositions of the invention may be administered as the sole active ingredient or with another immunosuppressant e.g. together with simultaneous or separate administration of other immunosuppressants, for example, in immunosuppressive applications such as prevention and treatment of graft vs. host disease, transplant rejection, or immune-mediated disease, the compositions of the invention may be used in combination with cyclosporins or ascomycins, or their immunosuppressive analogs, e.g. cyclosporin A, FK- 506 (tacrolimus), etc., rapamycin; corticosteroids; cyclophosphamide;
azathioprine; methotrexate;
brequinar; leflunomide; mizoribine; deoxyspergualin; analogues thereof, and immunosuppressive monoclonal antibodies, e.g., monoclonal antibodies to leukocyte receptors, e.g. MHC, CD2, CD3, CD4, CD7, CD25, CD28, CTLA4, B7, CD45, or CS58 or their ligands; or other immunomodulatory compounds.
When the compositions of the invention are co-administered with such other immunosuppressants the dosages of the other immunosuppressants may be reduced e.g. to one-half to one-third their dosages when used alone.
Representative doses for ciclosporin to be used are e.g. 1 to 10, e.g. 1 to 2 mg/kg/day.
The present invention provides in another aspect the use, method and compositions as defined hereinafter in the claims.
Insofar as details of excipients are not described herein, these are known, or available e.g.
2 0 in the Handbook of Pharmaceutical Excipients, Second Edition, edited by Ainley Wade and Paul J. Weller, American Pharmaceutical Association, Washington, USA and Pharmaceutical Press, London; and Lexikon der Hilfsstoffe fur Pharmazie, Kosmetik and angrenzende Gebiete edited by H.P. Fiedler, 4th Edition, Edito Cantor, Aulendorf and earlier editions.
2 5 Following is a description by way of example only of compositions of this invention:
EXAMPLE 1:
COMPOSITION
Capsule contents MPA mono sodium salt 53.43 mg (= 50 mg MPA) Lactose ( 1:1 mixture of 100/200 mesh) 256.57 mg Silica (Aerosil) 3.1 mg Magnesium stearate 1.5_ 5 m~
314.65 m~
Capsule is size 1 Enteric coatine (ca 17 mg) ,. Hydroxypropyl methyl cellulose phthalate (HP50) 9 parts Triacetin 1 part Procedure The capsule ingredients are mixed and filled into size 1 capsules. The capsules are coated in a fluidized bed coater with a solution of the enteric coating ingredients in ethanol (containing 10% acetone). The coating on each capsule is about 17 mg. The capsules meet the enteric coating test described herein and do not disintegrate within 2 hours in artificial gastric juices (pH 1, HCl). The compositions are stable, e.g for 2 years at room temperature.
If desired larger capsules containing 534.3 mg MPA mono sodium salt may be made in 2 0 analogous manner, reducing the amount of lactose. These are well tolerated in clinical trials.
EXAMPLE 2:
Capsules of size 1 are made up as in Example 1. A solution for enteric coating is made up as follows:
Hydroxypropyl methyl cellulose phthalate (HP50) 270 g 2 5 Triacetin ~ 30 g Acetone 900 g Ethanol 1800 g 600 g of this enteric coating solution are used. for 1 kg of caps'les (ca.
2400). The amount of coating applied to each capsule is about 25 mg giving a film 'thickness of 5-6 mg/cm2.
Claims (17)
1. A pharmaceutical composition comprising an enteric coated pharmaceutically acceptable mycophenolate salt and a pharmaceutically acceptable carrier or excipient.
2. A pharmaceutical composition according to claim 1, wherein the coating comprises one of (i) cellulose acetate phthalate and trimellitate, (ii) methacrylic acid copolymers containing at least 40% methacrylic acid, and (iii) hydroxylpropyl methylcellulose phthalate.
3. A pharmaceutical composition according to claim 1, wherein the coating comprises methacrylic acid copolymers containing at least 40% methacrylic acid.
4. A pharmaceutical composition according to any one of claims 1 to 3, in the form of a tablet.
5. A pharmaceutical composition according to claim 4, wherein the tablet core has a hardness of from 10 to 70 N.
6. A pharmaceutical composition according to any one of claims 1 to 3, in the form of pellets or granules.
7. A pharmaceutical composition according to claim 6, wherein the pellets or granules are contained in a capsule.
8. A pharmaceutical composition according to any one of claims 1 to 7, wherein the salt is a mono-sodium salt.
9. A pharmaceutical composition according to claim 8, wherein the mono-sodium salt is in crystalline form.
10. A pharmaceutical composition according to any one of claims 1 to 9, containing from about 50 mg to 1.5 g of the pharmaceutically acceptable mycophenolate salt.
11. A system comprising a pharmaceutical composition according to any one of claims 1 to 10 and an immunosuppressant for simultaneous, sequential or separate administration.
12. A system according to claim 11, wherein the immunosuppressant is ciclosporin.
13. A pharmaceutical composition according to any one of claims 1 to 10 for immunosuppression.
14. A pharmaceutical composition according to claim 13, wherein the immunosuppressant involves one of prevention and treatment of a condition selected from native and transgenic organ, tissue and cellular allograft and xenograft transplant rejection.
15. A pharmaceutical composition according to claim 13, wherein the immunosuppression involves one of treatment and prevention of one or both of immune-mediated and inflammatory disease.
16. A pharmaceutical composition according to any one of claims 13 to 15, wherein the composition is for simultaneous or separate administration of a further immunosuppressant.
17. A pharmaceutical composition according to claim 16, wherein the further immunosuppressant is ciclosporin.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9607564.3A GB9607564D0 (en) | 1996-04-12 | 1996-04-12 | Organic compounds |
GB9607564.3 | 1996-04-12 | ||
GBGB9622028.0A GB9622028D0 (en) | 1996-10-24 | 1996-10-24 | Organic compounds |
GB9622028.0 | 1996-10-24 | ||
PCT/EP1997/001800 WO1997038689A2 (en) | 1996-04-12 | 1997-04-10 | Enteric-coated pharmaceutical compositions of mycophenolate |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2250906A1 CA2250906A1 (en) | 1997-10-23 |
CA2250906C true CA2250906C (en) | 2006-10-03 |
Family
ID=37101807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002250906A Expired - Lifetime CA2250906C (en) | 1996-04-12 | 1997-04-10 | Enteric-coated pharmaceutical compositions of mycophenolate |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2250906C (en) |
-
1997
- 1997-04-10 CA CA002250906A patent/CA2250906C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2250906A1 (en) | 1997-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6025391A (en) | Enteric-coated pharmaceutical compositions of mycophenolate | |
AU2002338897B2 (en) | Pharmaceutical compositions comprising mycophenolic acid or mycophenolate salt | |
AU2002338897A1 (en) | Pharmaceutical compositions comprising mycophenolic acid or mycophenolate salt | |
CA2250906C (en) | Enteric-coated pharmaceutical compositions of mycophenolate | |
KR100491274B1 (en) | Enteric-Coated Pharmaceutical Compositions of Mycophenolate | |
HK1016490B (en) | Enteric-coated pharmaceutical compositions of mycophenolate | |
PL189960B1 (en) | Enteric-coated pharmaceutical compositions of mycophenolate and their using | |
HK1067861B (en) | Pharmaceutical compositions comprising mycophenolic acid or mycophenolate salt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKEX | Expiry |
Effective date: 20170410 |