Connect public, paid and private patent data with Google Patents Public Datasets

Thermally stable ethylene/acid copolymers


Publication number
CA2246250A1 CA 2246250 CA2246250A CA2246250A1 CA 2246250 A1 CA2246250 A1 CA 2246250A1 CA 2246250 CA2246250 CA 2246250 CA 2246250 A CA2246250 A CA 2246250A CA 2246250 A1 CA2246250 A1 CA 2246250A1
Grant status
Patent type
Prior art keywords
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Application number
CA 2246250
Other languages
French (fr)
Richard Tien-Hua Chou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E I du Pont de Nemours and Co
Original Assignee
Richard Tien-Hua Chou
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date



    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0876Neutralised polymers, i.e. ionomers


Ethylene/(meth)acrylic acid copolymers which have improved melt-thermal stability are described. The copolymers contain an intrachain anhydride unit derived from an additional comonomer which is an anhydride or anhydride forming comonomer, such as maleic anhydride and maleic acid or its monomethyl ester, present at a level of 0.05 to 3.0 weight percent. Measured properties of the terpolymers, other than thermal stability, are about the same as comparable ethylene/(meth)acrylic acid copolymers with no anhydride monomer.


This is a continll~tion-in-part, of application Serial Terpolymers of ethylene; (meth)acrylic acid and alkyl acrylates form a class of acid copolymers with lower modulus and good low te,l,p~ ,al~re prop~ 1 Lies. A method of pl~p~ g these acid copolymers is disclosed in U.S.
Patent No. 4,690,981. They are used principally to form 'soft' ionomers by 5 neutralization of the acid. However, these acid copolymers with acrylates also find utility in their own right.
Ethylene/(meth)acrylic acid copolymers, incl~lAing terpolymers with an alkyl acrylate are A~Pficient in melt-thermal stability above 240~C. Melt flow starts to decrease. This is believed to be due to anhydride formation from 10 two carboxylic acid groups in ~djrc~ chains which form crosslinks, and hence reduce tractability and melt flow. This results in inc,eascd gel, dccledsed meltLd-lvability, and difficult extruder ~ ing after melt ~locessh-g in an extruder.Maleic anhydride as a monomer grafted onto ~-xicting polymers is well known as a means of obtaini.lg a polar functionality in polyolefin 15 polymers. Such graft-copolymers are useful as compatibiliz ing agents and as CO...pO~ t~ of hot-melt adhesives. There are also disclosures of maleic anhydride gra~ted ethylene/m-n~ rboxylic acid copolymers. Typical is JP-83-109721, which Ai~loses laminates where one layer is an ethylene/monoc~l~ylic acid polymer grafted with 0.05 to 5.0% maleic anhydride. However, ~fiting ~q~es an additional step after regular poly~ ;Qn~ and in a~lAitinn iS subject to considerable variation in product obtained, as well as ch~nges in p.op~.Les from ungrafted m3t~ 1 particularly a red~lction in melt flow. Re~Al~cti- n in melt flow is the very factor which melt-th~rm~l stabili7~tion seeks to avoid.

2 5 The problem of melt-thermal instability has been well recogllized, and various all~l..~ have been made to solve it. U.S. Patent No.
4,594,382 (~Ioening et al.), Ai~closcos that ~AAition of 5% or less of a hy~Ldled collli)uu.ld which deco~oses at from 100 to 300~C, such as hydrated ~ min~
i...~loves the melt-th~ stability.

3 o A related apl,lo~cl. is disclosed in U.S. Patent No. 5,276,135 (Powell), where allowing a small controlled h~cl~se in the (low) moisture content over the amount which tls rm~lly exists after air and nitrogen ~h~g, ,ç~ves melt-thprm~l stability. This patent also discloses that low t~ m~el.A~e polymerization of ethylene/(meth)acrylic acid copolymers, below 3 s the typical 200 - 270~C, produces polymer with greater melt-thermal stability.



This is said to be due to the greater nurnber of adjacent carboxylic acid units formed when low tc~l~.d~ polymP~i7~tion is used, a~lj~çnt monocarboxylic acid groups reacting together, releasing water and forming intrachain anhydride groups in prefcl~"ce to intclchdill anhydride groups when no diads are present.
5 However, low telmp~laluLc pol~ alion strongly de~rea3cs productivity, in addition to making polymer with quite di~r, nl ..,~çk~llical plop~.lies than polymer made at normal polymPri7~tion tel~lalu~s.
All these approaches are presllmed to be effective because water or released water s~pl~3ses illl~l~in anhydride crosslink formation. They 0 have the disadvantages of low produ-;livily, change in the plu~ llies of the polymer, or need for a significant amount of a particulate additive.
There is a need for a mPtho~ of improving the melt-thPrm~l stability of ethylene/(meth)acrylic acid copolymers, inclllfling terpolymers with alkyl acrylates, which does not involve (i) recl~lc-ing productivity during 5 plep~dlion of the copolymer, (ii) a change in ll~Pcl-AI-ic~l pl~p~"lies, (iii) the difficulty of producing polymer with controlled moisture levels, or (iv) does not require use of an additive.

2 o The invention depends on the ,ecog.. ;l;on that one can suppress unwanted anhydride formation (i~lt~,~hain), not just by encouraging the form~tion of, but by act~ally directly introducing anhydride units intr~h~in This can be achieved by introducing by copol~..,e~ ;on, anhydride or anhydride producing monomer into the polymer chain itself. Suitable~ 5 mol n mPrs for this ~ ose are dic~l,o~lic acid anhydrides, dicarboxylic acids elves, or dicarboxylic acid half esters.
More specifically, the invention is a co.l.posilion, compricing:
an ethylene/(meth)acr,vlic acid copolyrner having from 5 to 25 weight percent (meth)acrylic acid derived units, the acid copolymer having additionally 3 o copolyl~ chaill units derived from a further com-n.-.~ or comonomPrs selected from the group con~i~ting of maleic anhydride, itaconic anhydride, methyl hydrogen m~ t~, ethyl hydrogen m~le~t~ maleic acid, itaconic acid, and a ~ c of any of these monom~r~, the ;.~1~ rh~;-- units from the further comonnmer or comnnom~ being 3 5 present at a total level of 0.05 to 3.0 weight percent of the copolymer.


. K

In this disclosure, the term copolymer means a polymer produced from more than one monomer. Copolymers may be dipolymers having only 5 two monoll,c.s copolymerized together, terpolymers or have more than three monomers. The copolymers of the invention are 'direct' copolymers, that is to say they are not graft-copolymers where monomer is pol~,ll.,.~ed in the plesence of polymer and the resl-lting polymer ~ rh~s to the .oYi~ting polymer chain. In this regard, the comol-n...~, ~ produce single 'i~ achain' units in the 10 copolymer, as distinct from either polymeric 'side-chain' units or single 'crosslink' units.
Copolymers have units derived from the various comonomers poly...- ;,.~.1 It is common to say polymers 'contain' a given monomer, polymers 'having' a certain amount of a given mo,lollll, or polymers 'o~ a givenmol~,ll~r, all being commonly acc~,~t~d shorthand for me~ning units derived from that m-)rl~m~r.
The ethylene/monocarboxylic acid copolymers of this disclosure have as the monoc ~-l~lic acid acrylic acid or methacrylic acid or both. These three possibilities are co~ liently referred to in the disclosure by using the 2 o term 'ethylenel(meth)acrylic acid copolymers'.
The term ';~ 11A;~ in this disclosure is used to distinguish only from mtel~l~in units which are crosslink units. The hlllachain anhydride ring does not ,~c~,ss~; ;ly include two backbone carbon atoms. Thus in the case of maleic a~ ;de the unit ~vill include two backbone carbon atoms, but in the 2 s case of it~onic acid which is methylene succinic acid, or its anhydride, the anhydride unit will not include two backbone carbon atoms.
The 'further com~n-~2n~(s)' of the copolymers of this invention, that is to say in addition to the ethylene, (meth)acrylic acid, are l"onvll,e.~
which have anhydride units or can readily directly lead to int~h~in anhydride 3 o units in the polymer. Suitable anhydride monomers are dic,~l.o~-ylic acid anhydrides such as maleic anhydride and itaconic anhydride. Mono..~ ~ which d~,tly yield ir~.,ch~iM anhydride units are dicarboxylic acids such as maleic acid, it~ nic acid, run~;C acid, and half esters of these acids. Such monomers have acid groups on ~;13ar~nt c~bol~s or an acid and an ester group on ~ c~.nt s 3 5 c~l/ons. The p,efell~d comon~-m~rs are maleic anhydride and ethyl hydrogen Ai~ r~ 'EC
I P--AJ'- ~

maleate. Most ~refe,led is maleic anhyd~ide. When the monomers are diacids they readily dehydrate and produce primarily intrachain anhydride units, in conkast to forrning interchain (crosslink) anhydride units as do monoc~rboxylic acid units.
The amount of the anhydride or anhydride producing comonomer is from O.OS to 3.0 weight percent, ~lc~eldbly 0.3 to 2.0 weight percent, and more preferably from 0.3 to 1.5, most preferably from 0.5 to 1.2 weight percent.Below O.OS there is littie or no improvement in melt-thermal stability. Above 3.0 percent there are flimini~hing return_, as well as inc,~ lg cost in producing 0 the copolymer, as well as the begi~ c of p.op. ,ly cll~ng~ in the polymer.The invention is applicable to copolymers c~ Ainit~ from 5 to 30 weight percent (meth)acrylic acid, preferably from 8 to 22 weight percent, the copolymers having an MI of from lO0 to O.l. The invention is particularly useful for low MI polymers, since when crosslinkin~ occurs with low MI (high molecular weight) polymers, the percent change in viscosity for a given molar amount of cros~linkin~ is greater ~han with a high MI polymer. It is thus particularly useful for acid copolymers having an MI of less than 20, and more particularly for copolymers having an Ml of less than lO. The invention is verv useful for the more common acid copolymers having no softening alkyl 2 o acrylate present. The invention does not include neutralized acid copolymers, i.e., ionomers. Ionomers retain more water, and for this and other reasons melt stability falls into a dirr~ nt category.
While not co.. ;~ to any particular theory, it is believed that the p~se.lcc; or formation of illtl~cha~l anhydride units su~plesses fomlAtion of 2 5 fur~er anhydride units of the illte.chain type, possibly partiy as a result of eqnilibrillm consid~ation~ Anhydride units formed from (meth)acrylic acid units are more likely to be ullw~lted interchain anhydride units which in.i~
viscosity, ~hcleds ;.~I,r rhA;~ anhydride units have virtually no effect on viscosity. Because of the particular ~ ~livilies of ethylene and 3 o (meth)acrylic acid, the ple~.,ce of two ~ nt acid units, at least for polymers with less than 20 weight percent _cid, is rare unless produced at low t~ c~ s where productivity is drastically re~luce(l Even then, such acid groups will not be ~nd~nl from adjn~nt ill~ chain c&l,ons, but on ~lt~ te carbon atoms along the chain.


The copolymers of this invention are produced by standard free-radical copolymeri7~tion methn~ls, under high p~ e, opc.dLing in a continuous ma~u1ei. Monomers are fed into the reaction ulixlu e in a p1(,po1lionwhich relates to the monomer's reactivity and the amount desired to be 5 inco1~o1dted. ~eacled monomers are recycled. In this way, uniform, near-random distribution of monomer units along the chain is achieved.
Poly,..~ ;on in this .11alu1.,- is well known, and is described in U.S. Patent No. 4,35 l ,93 l (~nnit~ge) which is hereby inco1~,dted by lef~ ,e11ce. At high acid levels it is an advantage to use so-called co-solvent technology to preventphase separation of monomer and polymer. This is fully described in U.S.
Patents Nos. 5,028,674 (Hatch et al.), and 5,057,593 (Stat_), both of which are also hereby incorporated by reference.
While the monocarboxylic acids and dic~bo~ylic acids may differ SO11~ ~.hdl in reactivity, they may be fed together as a mixed solution. The reactivity of the acids is so great colllpal~,d with ethylene that all acid is largely co~ led as it is introduced at the 1e4uilod rate for the ~llou,11~ of monomer wanted in the polymer.

2 o Exl~e.il11e. tal polymers cG~ ;nil-g either maleic anhydride or methyl hydrogen m~ t~ were ~ ~ed in a pilot plant unit in the n~lllc.
described above. Control s~les without the anhydride or illtldchail~
anhydride-formin~ monomer were also made and co111~ ed, and con~p~ ;sion was also madc with collJ~lh.~ial sdll~lcs of comparable co~osilion. The 2 5 maleic anllydride or ethyl hydrogen m~le~te was mixed with the meth~tylic or acrylic acid, formin~ a homogencous solution for feeding to the pilot plant dulocla~e which was ope~dl~d at 240~C and l 898288 g/cm2 (27,000 psi).


Composition of the polymers was determined using infrared absorbance. The methacrylic or acrylic acid content was determine~ at 940 cm~l and the anhydride content at 1783 cm~l. To insure the anhydride forming monomer ethyl hydrogen maleate was converted to anhydride for IR
5 analysis, the pressed film sample was treated at 290~C for one minute. It is believed that this II~AI~ II converts essenti~lly 100 % of the monomer to anhydride. A list of samples tested is given in Table 1. The ethyl hydrogen m~le3te (MAME) content shown refers to the weight percent of MAME
calculated from the amount of anhydride de~, by IR
0 Melt-thermal stability was ~e~ d by comp~;llg Melt Index (MI) at 190~C, using ASTM D-1238, condition E, before and after a heat tre~tm~nt at 290~C for 60 ..~il,..les in a melt indexer barrel. Prior to all MI
m~ cllt~ samples were dried for two days in a vacuum oven at 60~C. The Melt Index Ratio (MIR) is the ratio of MI after tre~trn~nt to MI before 15 ll~n~ rnt The higher the value, the less change, and more melt-th~rm~lly stable the polymer.
It is clearly hllpol t~l that the presence of anhydride at the levels used does not m~t~ri~lly change plo~llies (other than melt-thermal stability) COlllp~ll~ with co---~ ble ethylene/(meth)acrylic acid copolymers without 2 o intrachain anhydride units. In order to ~letermin~ that the copolymers with and without anhydride had comparable pro~.lies, adhesion to LLDPE and ~1.. ,,;.. foil were tested. ~llh~ )n to these substrates was ll~ea~ ,d as follows. Films of the polymers, .005 cm (2 mil) thick, were individually heat sealed to each substrate using a Sentinel Heat Sealer under the following conditions: 0.5 secon-lc dwell time, 2109 g/cm2 (30 psi) jaw p~,ss~, both jaws heated. The films were sealed to the LLDPE using tri-foil as a carrier on each side of the films. For sealing the films to foil, the tri-foil was used on the film side only. The a&esion test was p~ru~lcd using an Instron with the samples T-peeled at 25.4 cm (10 inches) per minute. Flexural modulus was also 3 o .-lea~cd on the s~mpl~s using ASTM D790. The results of the a&esion test, and the flexural modulus values ~ct~ d are given in Table 2.
While colllp~able ~lh~sion and flexural modulus to control samples does not ensure that all pro~.lies remain the same, adhesion and flexural modulus are h.llJoll~l ~no~ ies, and are sensili~ to acid cont~nt~ and AM~N~EQ SHEE T
~P~ ''J_'7 their measured values can provide a godd indication if any substantial change inother plo~,lies is likely to have taken place with anhydride modification.
Table 1 indicates ~at the presence of the anhydride or anhydride producing monomer improves melt-thermal stability signicantly. While there is 5 not a rigid q~ re trend, in terms of improved stabiltiy with increasing level of third mOll~m~r, values of MIR for controls, either standard plant m~t~ri~l or e~ ;...- nt~l S~~ 9, are all lower than polymers with maleic anhydride or cthyl hydrogen m~ te, and generally signific~ntly lower. Ofthe two s~hili~ing monGlu~,~, based on the limited data, there is no clear inl1ir?~tion 0 that one i~ beMer than the other.
Table 2 inr~ic~tes polymers with and without anhydride have generally CGl~ dble ~ h~cion values. ~-lh~cior~ based on sealing at 230~C is solllGv~l~t more v~;able and lower than adhesion values at 260~C.
Neverthele~s, there is no clear change when anhydride monomer is present.
5 Flexural moclul-lc values also indicate the plese.lce of anhydride does not produce any clear change.
There are no eY~nnples of copolymers co~ g an allcyl acrylate and the further comollolllc.s. However, the further com- nom~r or co.~-ono..~ s will be effective in stabilizing acid copolymers which also contain 2 o an alkyl acrylate.


, ... . . . .. . .


Polymer Composition Wei~eht percent MI MI after MI ratio # (v~.%) initial 290~/60min.
E/MAA/~LAH 87.5/11.9/0.6 31 20 0.645 2 E/MAA/MAME 85.8/13.1/1/1 31.1 24.1 0.775 3 E/MAA/M~I 87.2/12.0/0.8 34.4 28.4 0.816 4 E/MAA~ 88.0/11.1/0.9 23.7 18.3 0.772 E/MAA/MAH 93.9/5.7/0.4 43.9 38.1 0.868 6 E/MA~E 92.0/7.4/0.6 17.1 12.2 0.713 7 E/~IAAI~ 83.4/15.8/0.8 100.6 73.1 0.727 8 E/MAAI~ 89.5/10.0/0.5 6.65 3.75 0.564 9 EIMAA~ 91.5/8.1/0.4 23.4 15 0.641 E/MAA/M~ 87.3/11.8/0.9 10.9 7.6 0.697 lC E/MAA 90.0/10.0 10.3 4.8 0.466 11 E/A.A/MAH 90.4/8.9l0.7 12.1 6.74 0.557 2C E/AA 91.8/8.2 9.4 3.57 0.380 3C-P E/MAA 91.0/9.0 9.1 4.6 0.505 4C-P E/MAA 91.0/9.0 8.6 3.4 0.395 5C-P E/MAA 90.0/10.0 33 15.5 0.470 6C-P E/MAA 85.0/15.0 45.3 24.8 0.547 7C-P E/AA 91.0/9.0 10 5.29 0.529 E = Ethylene; MAA = Methacrylic acid; AA = Acrylic acid; MAH = Maleic anhydride; MAME = Monoethyl ester of maleic acid (ethyl hydrogen m~le~te).
Suffix -P = Co~ l .~ial Plant m~teri~l: All other samples pilot plant m~teri~l.



PolYmer SealTemp. PeelS~ren~ Peel Stren~th Flexural # ~ F toLLDPE to 1 mil.Al foil Modulus ~/cm2 (~si) k~/cm2(Kpsi) 230 14.8 (0.21) 0.57 921.0 (13.1) 250 96.3 (1.37) 0.72 lC 230 54.8 (0.78) 0.17 991.3 (14.1) 250 123.0 (1.75) 0.46 11 230 53.4(0.76) 0.98 949.1 (13.5) 250 106.9 (1.52) 1.41 2C 230 38.0 (0.54) 0.66 921.0 (13.1) 25~ 121.0 (1.72) 1.71 Ah~N~?E2 SHEET

Claims (6)

1. A composition, comprising:
an ethylene (meth)acrylic acid copolymer consisting of ethylene and from 5 to 30 weight percent (meth)acrylic acid, the acid copolymer having additionally copolymerized intrachain units derived from a further comonomer or comonomers selected from the group consisting of maleic anhydride, itaconic anhydride, methyl hydrogen maleate, ethyl hydrogen maleate, maleic acid, itaconic acid, and a mixture of any of these monomers, the intrachain units from the further comonomer or comonomers being present at a level of 0.05 to 3.0 weight percent with respect to the copolymer, the MI of the copolymer according to ASTM D-1238 at 190°C being from 0.1 to 100 g/10 min.
2. The composition of claim 1 wherein the further comonomer is maleic anhydride or ethyl hydrogen maleate.
3. The composition of claim 1 wherein the further comonomer derived units are present at a level of from 0.3 to 1.5 weight percent.
4. The composition of claim 2 wherein the level of (meth)acrylic acid dervived units is 8 to 22 weight percent.
5. The composition of claim 2 wherein the MI of the copolymer is from 0.1 to 20 g./10 min.
6. A process of stabilizing an ethylene (meth)acrylic acid copolymer having from 5 to 30 weight percent (meth)acrylic acid, optionally also containing up to 40 weight percent of an alkyl acrylate having an alkyl group with from 1 to 8 cabon atoms, said process comprising the addition of a copolymerized intrachain unit derived from a further comonomer or comonomers selected from the group consisting of maleic anhydride, itaconic anhydride, methyl hydrogen maleate, ethyl hydrogen maleate, maleic acid, itaconic acid, and a mixture of any of these monomers, the intrachain units from the further comonomer or comonomers being present at a level of 0.05 to 3.0 weight percent with respect to the copolymer, the MI of the copolymer being from 0.1 to 100 g/10 min.
CA 2246250 1996-03-22 1997-03-20 Thermally stable ethylene/acid copolymers Abandoned CA2246250A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US62018896 true 1996-03-22 1996-03-22
US08/620,188 1996-03-22
US78037297 true 1997-01-09 1997-01-09
US08/780,372 1997-01-09

Publications (1)

Publication Number Publication Date
CA2246250A1 true true CA2246250A1 (en) 1997-09-25



Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2246250 Abandoned CA2246250A1 (en) 1996-03-22 1997-03-20 Thermally stable ethylene/acid copolymers

Country Status (6)

Country Link
US (2) US5902869A (en)
JP (1) JP3942638B2 (en)
CA (1) CA2246250A1 (en)
DE (2) DE69705502T2 (en)
EP (1) EP0888391B1 (en)
WO (1) WO1997034939A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014897A1 (en) * 1992-06-05 2007-01-18 Ramesh Ram K Backseamed casing and packaged product incorporating same
US6221410B1 (en) * 1992-09-25 2001-04-24 Cryovac, Inc. Backseamed casing and packaged product incorporating same
DE69626221T2 (en) * 1995-10-06 2003-12-11 Cryovac Inc Longitudinally serving and packaged product
US5967030A (en) 1995-11-17 1999-10-19 Micron Technology, Inc. Global planarization method and apparatus
US6331488B1 (en) * 1997-05-23 2001-12-18 Micron Technology, Inc. Planarization process for semiconductor substrates
CA2337514A1 (en) 1998-07-27 2000-02-10 Richard Tien-Hua Chou Mixed-metal-neutralized-copolymer-resins for metal coating powder applications
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6316363B1 (en) 1999-09-02 2001-11-13 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6518172B1 (en) 2000-08-29 2003-02-11 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US7112624B2 (en) 2001-01-19 2006-09-26 Exxonmobil Chemical Patents, Inc. Ethylene alkyl acrylate copolymers with improved heat resistance
US6515075B1 (en) * 2001-07-12 2003-02-04 Kimberly-Clark Worldwide, Inc. Films, fibers and articles of chemically modified polyethylene oxide compositions with improved environmental stability and method of making same
US6509419B1 (en) * 2001-07-12 2003-01-21 Kimberly-Clark Worldwide, Inc. Chemically modified polyethylene oxide compositions with improved environmental stability
DE10254280A1 (en) * 2002-11-20 2004-06-03 Basf Ag Ethylene terpolymer waxes, process for their preparation and their use
EP1422059B1 (en) * 2002-11-21 2012-04-25 Total Petrochemicals Research Feluy Multilayer rotational moulding
WO2004113445A1 (en) * 2003-06-05 2004-12-29 E.I. Dupont De Nemours And Company Scuff resistant compositions comprising ethylene acid copolymers and polyamides
US20090298372A1 (en) * 2003-06-05 2009-12-03 E. I. Du Pont De Nemours And Company Article comprising ionomer and polyamide
US7153918B2 (en) * 2003-07-24 2006-12-26 E. I. Du Pont De Nemours And Company Random ethylene/alkyl acrylate copolymers, compounds and elastomeric compositions thereof with improved low temperature properties
US8455574B2 (en) * 2004-02-19 2013-06-04 E I Du Pont De Nemours And Company Composite compositions comprising cellulose and polymeric components
US20060142489A1 (en) * 2004-11-08 2006-06-29 Chou Richard T Toughened polyamide for food packaging and health care applications
EP1816147A4 (en) * 2004-11-22 2010-06-30 Jsr Corp Ionomer, method for producing same and molded article
US20070105984A1 (en) * 2005-11-07 2007-05-10 Griffin Elizabeth R Composition comprising cellulose and polyvinyl chloride polymer
US7144938B1 (en) 2005-12-02 2006-12-05 E. I. Du Pont De Nemours And Company Composition comprising ionomer and polyamide
ES2333380T3 (en) * 2006-05-23 2010-02-19 Basf Se Process for obtaining ethylene copolymers.
US7592056B2 (en) * 2006-10-24 2009-09-22 E.I. Du Pont De Nemours And Company Composition comprising ionomer and polyamide
US20080161503A1 (en) * 2006-12-29 2008-07-03 E.I. Du Pont De Nemours And Company Composition Comprising Ethylene Copolymer and Polyamide
US7834089B2 (en) 2007-05-08 2010-11-16 E. I. Du Pont De Nemours And Company Ionomeric ethylene vinyl alcohol compositions
JP5485266B2 (en) * 2008-05-30 2014-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Molded article comprising an ionomer composition
US8288467B2 (en) * 2008-12-08 2012-10-16 Nike, Inc. Zinc ionomer rubber activator
US20110020573A1 (en) 2009-07-22 2011-01-27 E.I. Du Pont De Nemours And Company Polyamide composition containing ionomer
US20120157230A1 (en) 2010-12-20 2012-06-21 Robert Blink Golf ball layers based on polyalkenamer / ionomer / polyamide blends
US8586663B2 (en) 2011-02-08 2013-11-19 E I Du Pont De Nemours And Company Polymer composition comprising polyamide and ionomer
JP5854804B2 (en) * 2011-07-08 2016-02-09 ダンロップスポーツ株式会社 The resin composition for a golf ball and golf ball
JP5915321B2 (en) * 2012-03-29 2016-05-11 日本ポリエチレン株式会社 Laminate for pressure vessel liner, the pressure vessel and a method of manufacturing the same
US9631063B2 (en) * 2013-03-14 2017-04-25 Frito-Lay North America, Inc. Composition and method for making a flexible packaging film
WO2015160518A1 (en) * 2014-04-17 2015-10-22 Nike Innovate C.V. Golf ball with scuff-resistant cover
CN106232725A (en) 2014-04-29 2016-12-14 纳幕尔杜邦公司 Photovoltaic cells with improved backsheet
WO2015168073A1 (en) 2014-04-29 2015-11-05 E. I. Du Pont De Nemours And Company Solar cell modules with improved backsheet
CN106457789A (en) 2014-04-29 2017-02-22 纳幕尔杜邦公司 Photovoltaic cells with improved multilayer backsheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351931A (en) * 1961-06-26 1982-09-28 E. I. Du Pont De Nemours And Company Polyethylene copolymers
DE1520506B2 (en) * 1961-08-31 1971-06-09 A method of modifying carboxyl group-containing ethylene polymers
US3904588A (en) * 1973-08-09 1975-09-09 Du Pont Random ethylene/alkyl acrylate 1,4-butene-dioic acid terpolymers
DE3109950A1 (en) * 1981-03-14 1982-09-23 Basf Ag Hard waxes from terpolymers of ethylene with unsaturated carboxylic acids and unsaturated carbonsaeureestern
DE3148676C2 (en) * 1981-12-09 1985-11-21 Carl Hurth Maschinen- Und Zahnradfabrik Gmbh & Co, 8000 Muenchen, De
US4690981A (en) * 1983-03-21 1987-09-01 E. I. Du Pont De Nemours And Company Ionomers having improved low temperature properties
DE3404742A1 (en) * 1984-02-10 1985-08-14 Basf Ag A process for preparing copolymers of ethylene with comonomers containing carboxyl groups in a 2-zone reactor at pressures above 500 bar
US4666988A (en) * 1984-10-18 1987-05-19 The Dow Chemical Company Ethylene copolymers reacted with metal oxides
US4766174A (en) * 1986-01-02 1988-08-23 E. I. Du Pont De Nemours And Company Process for preparing melt-processible aluminum ionomer blends
JPH054423B2 (en) * 1986-06-27 1993-01-20 Sumitomo Kagaku Kogyo Kk
DE3644668A1 (en) * 1986-12-30 1988-07-14 Basf Ag Thermoplastic molding compositions based on polyamides and ethylene copolymers
US4804703A (en) * 1987-07-12 1989-02-14 E. I. Du Pont De Nemours And Company Mineral reinforced nylon compositions for blowmolding
CA1338025C (en) * 1988-08-29 1996-01-30 Andri Elia Elia Toughened nylons characterized by low mold deposit
DE3903364A1 (en) * 1989-02-04 1990-08-09 Basf Ag Schlagzaehe polyamide molding compounds
JPH02235741A (en) * 1989-03-10 1990-09-18 Showa Denko Kk Laminate and preparation thereof
US5130372A (en) * 1989-12-18 1992-07-14 Allied-Signal Inc. Ionomers of low molecular weight copolymer amides
DE69212995T2 (en) * 1991-03-05 1997-01-16 Allied Signal Inc Flexible nylon-containing thermoplastic compositions
US5276135A (en) * 1992-03-20 1994-01-04 E. I. Du Pont De Nemours And Company Stabilized copolymers of ethylene with ethylenically unsaturated carboxylic acids
US5631328A (en) * 1993-10-27 1997-05-20 Chevron Chemical Company Low-haze ionomers of copolymers of alpha-olefins, carboxylic acid esters, and optional comonomers, and processes for making and acidifying these ionomers
NL9500471A (en) * 1995-03-09 1996-10-01 Supertape B V Adhesive tape for application between a picture tube, such as for television display, and one to the picture tube around to apply clamping band.

Also Published As

Publication number Publication date Type
DE69705502D1 (en) 2001-08-09 grant
DE69705502T2 (en) 2002-05-16 grant
JP3942638B2 (en) 2007-07-11 grant
US5902869A (en) 1999-05-11 grant
JP2000506929A (en) 2000-06-06 application
EP0888391A1 (en) 1999-01-07 application
WO1997034939A1 (en) 1997-09-25 application
US5700890A (en) 1997-12-23 grant
EP0888391B1 (en) 2001-07-04 grant

Similar Documents

Publication Publication Date Title
US4471086A (en) Hot-melt adhesives for meat packaging and other low temperature applications
US20020019507A1 (en) Polypropylene-based adhesive compositions
US4087587A (en) Adhesive blends
US5618883A (en) Styrene ethylene-butylene and ethylene-propylene block copolymer hot melt pressure sensitive adhesives
US5449724A (en) Stable free radical polymerization process and thermoplastic materials produced therefrom
US6221448B1 (en) Cold seal compositions comprising homogeneous ethylene polymers
US5342861A (en) Hot melt wetness indicator
US5587430A (en) Ethylene-acid copolymer and ionomer blends having improved high temperature properties and processibility
US20040116567A1 (en) Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US4497941A (en) Ethylene copolymers for hot melt systems
US3891584A (en) Water-dispersible hot melt adhesives and products using same
US5399627A (en) Radial styrene-isoprene-butadiene multi-armed block copolymers and compositions and articles containing block copolymers
US4252924A (en) Continuous process for the preparation of nonrandom ethylene/acid copolymer
US5859137A (en) Ionomers based on copolymers of ethylene with both mono- and dicarboxylic acids and polyamide blends containing these ionomers
US5424362A (en) Paintable olefinic interpolymer compositions
US4198327A (en) Grafted polyolefin composition having improved adhesiveness
US4146521A (en) Polyethylene containing hot melt adhesives
US4404299A (en) Compositions for the manufacture of hot-melt adhesives
US7199180B1 (en) Adhesives comprising olefin polymers
US4877685A (en) Modified polyolefine
US5948546A (en) Flexible laminates bonded with water-based laminating vehicles and laminating adhesives
US5066542A (en) Resin blends of maleic anhydride grafts of olefin polymers for extrusion coating onto metal foil substrates
US4358557A (en) Four component hot-melt adhesives
US4719260A (en) Hot-melt adhesive compositions
US6670417B2 (en) Rubber-acrylic adhesive formulation

Legal Events

Date Code Title Description
EEER Examination request