CA2221463C - Downhole apparatus for generating electrical power in a well - Google Patents

Downhole apparatus for generating electrical power in a well Download PDF

Info

Publication number
CA2221463C
CA2221463C CA 2221463 CA2221463A CA2221463C CA 2221463 C CA2221463 C CA 2221463C CA 2221463 CA2221463 CA 2221463 CA 2221463 A CA2221463 A CA 2221463A CA 2221463 C CA2221463 C CA 2221463C
Authority
CA
Canada
Prior art keywords
apparatus
electrical
passageway
fluid
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2221463
Other languages
French (fr)
Other versions
CA2221463A1 (en
Inventor
Paulo Tubel
Michael Wayne Holcombe
John L. Baugh
Albert A. Ii Mullins
Robert Chapman Ross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Inc
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US46995P priority Critical
Priority to US60/000,469 priority
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to PCT/US1996/010546 priority patent/WO1997001018A2/en
Publication of CA2221463A1 publication Critical patent/CA2221463A1/en
Application granted granted Critical
Publication of CA2221463C publication Critical patent/CA2221463C/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0085Adaptations of electric power generating means for use in boreholes

Abstract

Electrical generating apparatus is provided which connects to the production tubing. In a preferred embodiment, this apparatus includes a housing having a primary flow passageway in communication with the production tubing. The housing also includes a laterally displaced side passageway communicating with the primary flow passageway such that production fluid passes upwardly towards the surface through the primary and side passageways. A flow diverter may be positioned in the housing to divert a variable amount of production fluid from the production tubing and into the side passageway. In accordance with an important feature of this invention, an electrical generator is located at least partially in or along the side passageway. The electrical generator generates electricity through the interaction of the flowing production fluid.

Description

DOWNHOLE APPARATUS FOR GENERATING
ELECTRICAL POWER IN A WELL
Background of the Invention:
This invention relates to apparatus and methods for providing electrical power to electrical circuits located in a well. More particularly, this invention relates to downhole apparatus and methods for producing electrical power in oil and gas production wells wherein the primary wellbore passage is maintained free of obstruction.
The control of oil and gas production wells constitutes an important and on-going concern of the petroleum industry. Production well control has become particularly important and more complex in view of the industry wide recognition that wells having multiple branches (i.e., multilateral wells) will be increasingly important and commonplace. Such multilateral wells include discrete production zones which produce fluid in either common or discrete production tubing. In either case, there is a need for controlling zone production, isolating specific zones and otherwise monitoring each zone in a particular well. As a result, the methods and apparatus for controlling wells are growing more complex and in particular, there is an ever increasing need for downhole control systems which include downhole computerized modules employing downhole computers (e.g., microprocessors) for commanding downhole tools such as packers, sliding sleeves and valves. An example of such a sophisticated downhole wa srrrotots pc~rnrss6nns4s control system is disclosed in U_S. Patent No. 5,732,776, which is assigned to the assignee hereof. This application discloses downhole sensors, downhole electromechanical devices and downhole computerized control electronics whereby the control electronics automatically control thg electromechanical devices based rnz input g from the downhole sensors. Thus, using the dowirhole sensors, the downhole computerized controhsystem will monitor actual downhole parameters (such as pressure, temperature, flow, gas influx, etc.) and automatically execute control instructions when the zzronitvrcd downhole parameters are outside a selected operating range (e.g., indicating an unsafe condition}. 'The automatic eoxAtrol instructions will then cause an 1 p electromechanical control device (such as a valve) to actuate a suitable foal (for example, actuate a sliding sleeve or packer, or close a valve or startlstop a pump or other fluid flow device).
It wih be appreciated that the above-described well control system as well as othea well control systems utilize downhole devices and circuits which require 15 electrical power. However, presently known methods of supplying ar generating electricity downhole each suffers from a host of problems and deficiencies.
One manner of providing electricity downhale in a well includes lowering a tool on a wireline and conducting energizing electricity through one or store conductozs ar tire wireline from the surface to the tool when positioned dawnhoie. This technique is 20 not always desirable because it is relatively complex iri that it requires the wireline to be passed through the wellhead closure equipment at the mouth of the weld.
"'his can create safety problems. p'urthermore, at least in deep webs, there can be signi$cant energy loss caused by the resistance or impedance of a long wireline conductor_ .~.nother way to provide electricity to downhole electrical circuits utilizes 25 batteries housed within the electrical circuits in the dowahole assembly.
1~or example, lithium-thionyl-chloride batteries have been used with downhole tools. A
shortcoming of batteries, however, is that they cannot provide moderate (and higher) amounts of electrical enemy (e.g., 3Q kilowatt hours) at the elevated temperatures encountered in petroleum and geothermal wells. Batteries are also extremely dangerous. Still another problem with batteries are their relatively short life whereupon the batteries need to be replaced and/or recharged.
Because of the shortcomings of power derived either from wireline or battery sources, suggestions have been made to provide a downhole mechanism which continuously generates and supplies electricity. For example, U.S. Patent 4,805,407 to Buchanan discloses a downhole electrical generator/power supply which includes a housing in which a primary fuel source, a Stirling cycle engine, and a linear alternator are disposed. The primary fuel source includes a radioisotope which, by its radioactive decay, provides heat to operate the Stirling engine which in turn drives the linear alternator to provide a suitable electrical output for use by the circuit of the downhole tool. U.S. Patent 5,202,194 to VanBerg Jr. discloses a downhole power supply comprised of a fuel cell.
U.S. Patent Nos. 3,970,877 ('877) and 4,518,888 ('888) both relate to the use of piezoelectric techniques for generating small electric currents. The '888 patent generates electrical energy downhole (in the drillstring) by the use of a piezoelectric device stored in the drill collar which converts vibrational energy from the drillstring into electrical energy. The piezoelectric device is in the form of a stack of piezoelectric elements arranged in an electrically additive configuration. The '877 patent describes a method of power generation used in a drilling operation wherein a piezoelectric material is responsive to turbulence in the mud flowing past the piezoelectric material.
The vibrations resulting from the turbulent flow of the mud past the piezoelectric material will be converted into an electrical output. In addition to a piezoelectric material, the '877 patent also discloses the use of a fixed coil with a magnetic core freely movable relative to the coil and attached to the inner surface of a flexible disk which will also be actuated by the flowing mud for generation of electrical energy.
U.S. Patent 3,666,030 ('030) discloses a stressed spring or other form of stored energy which is carned downhole and is then converted to electrical energy by causing relative motion between a permanent magnet and coil and some other structure which is urged into movement by the compressed spring. In the '030 patent, the energizing source comprises a housing which is adapted to traverse a borehole. A magnetic coil is positioned within the housing and the storage means for storing energy (i.e., spring) is also positioned in the housing. A release mechanism located in the housing releases the stored energy at the proper moment downhole so that the electrical energy can be generated.
U.S. Patent 3,342,267 ('267) to Cotter et al discloses downhole production tubing including an electric generator which is energized by a turbine for providing electricity to a coiled heater which is also disposed in the production tubing. The turbine rotates upon the upward flow of fluids in the production tubing. In of the '267 patent, a primary production tubing is shown at 12, a coiled heater is shown at 24 and downstream from the coiled heater is a series of rotatable turbines 26.
Disposed laterally from production turbine 12 is a side compartment 38 which houses the electrical generator 20. During operation, production fluid flows upwardly through production tubing 12 thereby rotating turbines 26 which in thin, through a series of Bearings, will rotate generator 20 in the side compartment 38 and thereby generate electricity to power the heating coil 24.
The numerous attempts at generating electricity downhole in a well as disclosed in the aforementioned patents all suffer from one or more drawbacks and problems including, for example, environmental and safety concerns (.e.g., patent 4,805,407)), high expense and complexity (e.g., patent 5,202,194), inability to generate high or sustained levels of power (e.g., patents 3,666,030; 3,970,877; 4,518,888) and causing obstructions within the production tubing (e.g., patent 3,342,267). This latter problem, that of obstructing the production tubing, poses a serious drawback to many prior art schemes. In the '267 patent, for example, the turbine blades are positioned in the primary production tubing and thus would preclude unobstructed production as is required, particularly so as to enable entry of completion equipment and other objects into the production tubing. Thus, the turbo generator of the "?67 patent would not allow for the downhole introduction of instruments, tools and other completion devices due to the presence of turbines.

Such obstruction problems are also an important reason why well known turbo generators used in generating electricity during drilling operations (e.g., for powering MWD equipment) would be problematic when used in a production well. Examples of patents describing downhole turbo generators used during drilling include patents 3,036,645 and 4,647,853.
Summary of the Invention:
The above-described and other drawbacks and deficiencies of the prior art are overcome or alleviated by the downhole electrical generating apparatus and methods of the present invention. In accordance with the present invention, electrical generating apparatus is provided which connects to the production tubing. This apparatus includes a housing having a primary flow passageway in communication with the production tubing. In a first embodiment of this invention, the housing also includes a laterally displaced side passageway communicating with the primary flow passageway such that production fluid passes upwardly towards the surface through the primary and side passageways. A flow diverter may be positioned in the housing to divert a variable amount of production fluid from the production tubing and into the side passageway.
Alternatively, production fluid may enter the side passageway from the annulus defined by the production tubing and the borehole wall or casing., In accordance with an important feature of this invention, an electrical generating device is located in or along the side passageway. The electrical generating device generates electricity through the interaction of the flowing production fluid. In a first embodiment ofthis-invention,-a turbine or-the like is operatively connected within the side passageway for movement in response to fluid flowing through the side passageway. A generator is also positioned in the side passageway and is operatively connected to the turbine for generating electricity in response to movement by the turbine. In a second embodiment of this invention, a magnetic field is positioned in the side passageway with the magnetic field being movable in response to fluid flowing the side passageway (such as an oscillating magnetic reed enclosed by a coil). An electrical energy converter in the side passageway converts the AC power created by the movable magnetic field into DC electrical energy.
In a third embodiment of this invention, a movable magnetic field within the side passageway is effected by positioning magnets on a movable bladder which is sandwiched between a pair of coils. Fluid is directed through the bladder such that the magnets move with respect to the coils thereby generating electricity.
Preferably, a turbulence enhancer is positioned upstream of the bladder to cause a turbulent and constant movement of the fluid within the bladder. In a fourth embodiment, the electrical generating device in the side passageway constitutes a piezoelectric power supply wherein a piezoelectric assembly generates electrical power in response to fluid flow.
In accordance with another embodiment of this invention, pressure waves are delivered downhole through a column of fluid to actuate an electrical generating device to thereby generate electricity. In one such embodiment, the pressure waves travel through the production tubing and cause a laterally mounted spring actuated magnet/coil assembly to move in a reciprocal motion and thus generate electricity. In another such embodiment, the pressure waves travel downwardly through a separate control line to actuate the laterally mounted or annulus mounted magnet/coil assembly to reciprocate and generate power.
In still another embodiment of this invention, various electrical energy generating devices are positioned in the annulus adjacent the production tubing and generate electricity in response to fluid flowing either from the production tubing or within the annulus itself. In one such embodiment, the electrical generating device comprises a turbine rotatably mounted about the outer circumference of the production tubing. Attached to the turbine is one or more magnets. Also attached to the outer circumference of the production tubing and in spaced, facing relation to the magnet is a coil. During use, production fluid flowing from the annulus or from within the WO 97/01018 FCTIUS96/t0546 _7_ production tubing out to the annulus, will flow past the turbine causing the turbine and attached magnets) to freely rotate about the tubing. Thte rotating magnet will interact with the coil in a known zxsdnner to generate electricity.
Preferably, in each of the foregoing embodiments, a rechargeable battery may also be present in the side passageway with the electrical generator being operatively connected to the battery far electrically charging the battery. As a result, an elee'trieaf circuit such as a downhole computer can be provided with electricity either directly froze the generator or from the battery. Since many of the electrical generator techatiques of this invention necessitate the flow of production fluid, provision of a battery is particularly important for those periods where the flow of production fluids has halted or significantly slowed.
A particularly preferred rechargeable battery for use in the downhole power generation appazntus of this invention is a lithium power cell (LPG') using polymer electrolytes. Also believed to be preferred is a rechargeable battery which incorporates integrated circuit technology for maximizing battery life.
The downhole electrical generating methods and apparatus of the present invention provide many features and advantages ever prior art techniques. One important feature is that the components which generate the electricity are outside of the primary passageway defined by the production tubing. As a result, the present invention does not in any way obstruct the production tubing (as does for example, the turbo generator of patent 3,342,267). This rraeans that eompietion equipment, coiled tubing and other objects may be freely introduced downhoIe. The present invention also provides envixanmentally acceptable, relatively low post processes and apparatus for downhole electrical generation.

- 7a -Accordingly, in one aspect of the present invention there is provided an electrical energy generating apparatus for generating electricity dowz~hole in a well, comprising:
a primary flow passageway and side passageway laterally displaced in a side-hy-side relationship fx'om said primary passageway; and an electrical generating device positioned, at least in pant, in said side passageway, said electrical generating device adapted to generate electricity ira response to fluid flowing through said side passageway.
According to another aspect of the present invention there is provided a production well comprising:
a ~~rst section of production tubing;
a second section ofpmduction tubing; and a downhole electrical energy generating apparatus positioned between and operatively connected to said first and second sections ofproduction tubing, said electrical energy generating apparatus including;
(a) a primary flow passageway and a side passageway laterally displaced in a side-to~side relationship from said primary passageway; and (b) an electrical generating device positioned at least in part iu~ said side passageway, said electrical generating device adapted to generate electricity in response to fluid flowing through said side passageway.
According to yet another aspect of the present inveption there is provided an electrical energy generating apparatus for generation electricity downhole in a well, comprising=
a movable magnetic field extending across a selected area downhole, said movable magnetic field being created in response to the flow oFfluid, said movalale magnetic ii~ld comprising a magnetic reed movable in response to flowing fluid and associated with said reed; and an electrical energy converter for converting magnetic flux created by said movable magnetic field into electrical energy.
According to yet another aspect of the present invention there is provided an electrical energy generatin; apparatus for generating electricity downhole in a well, comprising.

_7b_ a movable rrxagnetic field extending across a selected area downhole, said ~motlable magnetic field being created in response to the flow of fluid; and an electnicaI energy converter for converting magnetic flux created by said movably magnetic field into electrical energy;
wherein said movable magnetic field comprises:
a flexible bladder having an inferior end an exterior, said bladder being located within said side passageway, said bladder including art opening for receiving fluid to the interior thereof;
at least one magnet on the exterior of said bladder; and a coil spaced from and associated with said magnet wherein said magnet moves relative to said tail when fluid flows into said bladder.
According to yet another aspect of the present invention there is provided an electrical generating apparatus for generating electricity downhole in a production well, comprising_ a nrxovable magnetic i field extendi~~tg across a selected area downhole, said malmeue field being created in response to pressure pulses traveling through a fluid pathway; and an electxxcal energy converter for converting magnetic flux created by said movable magnetic field into electrical energy.
According tv yet another aspect of the present invention there is provided an electrical generating apparatus for generating electricity downhole in a well, comprising:
a piston positioned in a selected area dowrthole, said piston being moved in a First direction in response to pressure pulses traveling through a fluid pathway;
and an electrical energy generator cougled to said piston for generating electrical cxleroy in response to motion by said piston.
According to yet another aspect of the present invention there is provided an electrical energy generating apparatus for generating electricity downhole in a well, comprising:
a primary flow passageway having an interior and an exterior, and an electrical generating device positioned on said exteriox of said primary flew passageway, said electrical geztexa2ing device adapted to gEnerate electricity in respo~tse to fluid flowing along said exterior of said primary passageway_ -~C-According to still yet another aspect of the present invention there is provided an electrical generatizag apparahts for generating electricity downhole in a well, comprising: a primary flow passageway and a side passageway laterally displaced from said primary flow passageway, and S an electrical gcneratixg device positioned tut said side passageway, said electrical generating device adapted to generate electricity in response to fluid flowing downhole in tlxe well.
According to still yet another aspect of the present invention there is provided a productivz~ well comprising:
a section of production tubing having an interior flow passage and an extcri or;
a piezoelectric device positioned on said exterior of said tubing and being responsive to movement caused by flowing fluid; and a converter for converting signals from said piezoelectric device to electrical energy.
I S According to still yet another aspect of the present i nvention there is provided a production well comprising:
a sectioxt of production tubing;
a downhole power generator associated with said production tubing; and at least one rechargeable battery operatively connected to said power generator.
According to still yet another aspect of the present invention there is provided a long-term power supply to be mounted on hydrocarbon production tubing dow~ale in a wellbore for providing electrical power to eduipment mounted on the production tubing comprising:
an elecrncal power g~'n~rating device powered by fluid flow downhola;
a rechargeable battery for storing electrical power from the generatitag device; and a charging circuit reeeiviztg electrical power as generated from the generating device and producing a charging current fox delivery of power to the battery;
wherein the battery is recharged on a periodic basis by the charging circuit and serves as a source of power for the dvwnhole equipment.
The above-discussed and other features and advantages of the present invention will be appreciated and understood by those stalled iz~ the art from the following detailed description and drawings.

_g_ Brief Description of the Drawinus:
Referring now to the drawings, wherein like elements are numbered alike in the several FIGURES:
FIGURE 1 is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention utilizing a turbine located in a side passageway;
FIGURE 1 A is a cross-sectional elevation view of a downhole power generating apparatus, similar to FIGURE 1, but utilizing an alternative fluid diverter;
FIGURE 2 is a cross-sectional elevation view of a downhole power generating apparatus, similar to FIGURE 1, but being responsive to fluid flow from the annulus;
FIGURE 3 is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention utilizing an oscillating reed;
FIGURES 4A and 4B are cross-sectional elevation views of related downhole power generating apparatuses in accordance with this invention utilizing a movable bladder associated with a magnet/coil assembly for generating electrical power downhole;
FIGURE 5 is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention utilizing a piezoelectric generating device located in a side passageway;
FIGURE 6 is an electrical schematic of the circuitry involved in the embodiment of FIGURE 5 for converting signals from the piezoelectric device to electricity and/or stored power;
FIGURE 7A is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention wherein a spring actuated magrietic/coil assembly generates power in response to pressure waves;
FIGURE 7B is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention wherein a spring actuated gernerator armature assembly generates power in response to pressure waves;

FIGURE 7C is a cross-sectional view of a device for producing pressure pulses;
FIGURE 7D is a cross-sectional view of an alternative device for producing pressure pulses;
FIGURE 8 is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention, similar to the power generating device of FIGURE 7, with the pressure waves being delivered via a separate control line;
FIGURE 9 is a cross-sectional elevation view of a downhole power generating apparatus in accordance with this invention utilizing a turbine positioned in the annulus between the production tubing and the casing or borehole wall;
FIGURES l0A through l OC are cross-sectional elevation views depicting a power generating apparatus located in the annulus between the production tubing and well casing which consists of a magnet/coil assembly rotatably mounted on the production tubing;
FIGURE 11 is a cross-sectional elevation view of a downhole power generating apparatus consisting of a piezoelectric or magnetic assembly positioned in the annulus between the production tubing and the casing or borehole wall; and FIGURE 12 is a cross-sectional elevation view of a downhole power generating apparatus, similar to the embodiments of FIGURES 4A-4B, but with the movable bladder being positioned in the production tubing's primary passage.
Description of the Preferred Embodiment:
Referring first to FIGURE 1, a downhole electrical generating apparatus in accordance with a first embodiment of this invention is shown. FIGURE 1 more particularly depicts a production well 10 for producing oil, gas or the like.
Well 10 is defined by well-known well casing 12 which is cemented or otherwise permanently positioned in earth 14 using an appropriate cement or the like 16. Well 10 has been completed in a known manner using production tubing with an upper section of production tubing being shown at 16A and a lower section of production tubing being shown at 16B. Attached between production tubing 16A and 16B, at an appropriate location, is the electrical power generating apparatus in accordance with the present invention which is shown generally at 18. Power generating apparatus 18 comprises a housing 20 having a primary flow passageway 22 which communicates with and is generally in alignment with production tubing 16A and 16B. Housing 20 also includes a side passageway 24 which is laterally displaced from primary flow passageway 22.
Side passageway 24 is defined by a laterally extending section 26 of housing 20 and an interior dividing wall 28. Shown by the arrows, production fluids such as petroleum are produced from below electrical generating device 18 and travel upwardly through production tubing 16B into housing 20 whereupon the production fluid travels both through the primary passageway 22 and the side passageway 24. Upon reaching the upper portion of side passageway 24, the production fluid again enters the primary passageway 22 and then travels on upwardly into the upper section of production tubing 16A.
The amount of fluid traveling into side passageway 24 may be controlled using a flow diverter 30 which is pivotally attached to wall 28. Flow diverter 30 may shut off all fluid flow into side passageway 24 or in contrast, open up the fluid flow into side passageway 24 so as to divert a varying amount of fluid therethrough. Diverter 30 may be controlled from the surface using coil tubing or other tools.
In the first embodiment of FIGURE l, the electrical generating means utilizes one or more turbines (in this case two turbines 32 and 34). Turbines 32, 34, are mounted on a shaft 36. Shaft 36 is rotatably mounted in a lower mount 38 where a centrally located bearing 40 permits shaft 36 to freely rotate therein. The upper section of shaft 36 is mounted to a conventional electrical generator 42 such that rotation of shaft 36 will rotate so as to produce electricity in a known manner. In a preferred embodiment, generator 42 is positioned in a fluid tight chamber 44 so as to preclude the adverse effects of the pressurized and high temperature production fluids flowing through side passageway 24. Shaft 36 terminates within chamber 44 at a support which houses an upper bearing 48. Also located in chamber 44 is a rechargeable battery 50 and a computer or other device 52 which includes at least one circuit which requires electrical power. Electrical generator 42 communicates directly through a first wire 54 to battery 50 and through a second wire 56 to computer 52. In turn, rechargeable battery 50 communicates with computer 52 through a wire 58. As will be discussed, rechargeable battery 50 may comprise any conventional rechargeable battery which is adapted for high temperature operations. As mentioned, item 52 may comprise any device or group of devices which include at least one electrical circuit which is powered by the present invention. For example, item 52 may comprise a computer such as shown at 50 in FIGURE 6 of aforementioned U.S. Application S.N.
08/385,992. In this latter example, power source 66 as shown in FIGURE 6 of USSN.
08/385,992 could be constituted by either rechargeable battery 50 or electrical generator 42.
It will be appreciated that one or more of electrical generator 42, battery 50, computer 52 and any other component associated with the turbines may be located in another location (such as in the annulus) so long as these components do not block the primary passageway 22.
It will further be appreciated that the separation between primary flow passageway 22 and the electrical generating apparatus in side passageway 24 could be effected using a liner for separation as opposed to the more complex housing 20.
During operation, production fluid flowing upwardly through production tubing 16B is diverted by diverter 30 into side passageway 24 whereupon the fluid will rotate in a known manner turbines 32 and 34. Rotating turbines 32, 34 will cause shaft 36 to rotate which in turn, will provide the necessary rotation for the generation of electricity in generator 42. Electricity generated by generator 42 (which, if necessary, is converted from AC to DC using a known AC/DC converter) may be used either to directly power a circuit in item 52 and/or may be used to recharge battery 50.
If item 52 is a computer, then the computer may be programmed to receive electrical power either directly from generator 42 or from battery 50. In some cases, it may be preferable that computer 52 only receive its power from battery 50. When fluid flow in production tubing 16B ceases, rechargeable battery 50 can supply, on a continuous or intermittent basis, power to computer 52. The amount of fluid flowing into side passageway 24 may be controlled by diverter 30 depending on the need for electricity and other relevant factors. It will be appreciated that computer 52 will communicate -12_ with other downhole devices such as described in more detail in Application S.N.
08/385,992.
In FIGURE lA, an alternative flow diverter means is shown wherein a flexible, tapered restriction 3 I (which may be made from an high temperature elastomer or other appropriate material) is attached to the inner surface of primary passage 22 near the opening 29 to side passage 24. This flexible restriction 31 ensures fluid flow through lateral passage 24 as shown by the arrows. In addition, should a tool, coiled tubing or other object be required to pass through primary passage 22, restriction 31 will easily yield (deflect outwardly towards the inner walls of tubing 22) to the object.
After the object has passed, the restriction 31 will recover to its original shape.
Refernng to FIGURE 2, an electrical power generating device utilizing a turbine similar to FIGURE I is shown. The main difference between the embodiments of FIGURE 1 and FIGURE 2 is that in FIGURE 2, the turbine is actuated by production fluid flowing in from the annulus as opposed to flowing in from within the production tubing itself. More particularly, side passageway 24 is shown which includes turbine 32, 34 mounted on a shaft 36 which in turn is mounted to a generator 42. The generator communicates with an energy storage device 50 (battery) and associated electronics 52 as in FIGURE 1. Perforations 68 have been foamed through the casing 12, cement 16 and formation 14 so as to allow production fluid (indicated by the arrows) to flow from the formation and into the annulus 10. These formation fluids travel upwardly through at least one opening 70 and into the side passageway whereupon the fluid interacts with turbines 32, 34 causing the turbines to rotate and generate electricity in the same manner as was discussed in detail with regard to FIGURE 1. After passing through turbines 32, 34, the fluid continues to flow upwardly and into the primary flow passageway of production tubing 20. It will be appreciated that the alternative embodiment of FIGURE 2 may be utilized in those locations downhole where formation fluids are being produced at or near the power generating location as shown in FIGURE 2. Of course, the FIGURE 2 embodiment can also have an opening of the type shown at 29 in FIGURE 1 (with or without a flow diverter 30) so that turbines 32, 34 could be actuated from production fluid which both is flowing upwardly through tubing 16 and which is flowing outwardly from the formation into . annulus 10.
Turning now to FIGURE 3, a second embodiment of the power generating apparatus of the present invention is shown. This second embodiment is substantially similar to the first embodiment of FIGURES 1 and 2 with the primary difference being that rather than using the turbine based generator of FIGURE l, the second embodiment utilizes an alternative power generating source wherein the movement of a magnetic field is used to create a magnetic flux for electrical power generation. This movable magnetic field is obtained using a reed or the like 72 which is mounted on a shaft 74 within lateral housing 26 using mount 76. Reed 72 comprises a permanent magnet which isrotatable (in a manner analogous to a propeller) relative to shaft 74.
Lower portion 26 of side passageway 24 includes a coil 78 with reed 72 being positioned within coil 78. The north and south poles of reed 72 are positioned transverse to the cylindrically shaped coil 78 such that when reed rotates or oscillates, a magnetic flux will be induced on coil 78 in a known manner. Electrically communicating with coil 78 is a converter 80 which converts AC electrical output to DC electrical energy. As in the FIGURE 1 embodiment, converter 80 is connected directly to a rechargeable battery 50 and a computer or other device which incorporates an electrical circuit 52.
As discussed above, the change in the magnetic field induced in the coils 78 will generate the electrical power that will be rectified and stored in the rechargeable battery cell 50. One of the basic equations underlying this power generation technique (as well as the other techniques described herein which rely on a movable magnetic field) is:
dW(L,X) =1*dL - FdX
where W is the system energy;
L is the magnetic flux;
X is the displacement of the armature;
1 is the electric current; and F is the mechanical force.

It will be appreciated that the energy is constant and the magnetic flux is the link between the electrical force and the mechanical force.
During operation, production fluid travels upwardly from production tubing 16B into housing 20 whereupon the fluid travels both through the primary passageway 22 and is diverted by optional diverter 30 into the side passageway 24. The fluid flowing into side passageway 24 acts to oscillate or rotate reed 72 as shown by the arrows in FIGURE 3. The movement of reed 72 within the coil 78 creates a magnetic flux (e.g., a movable magnetic field) which is converted in a known manner to electricity. As in the FIGURE 1 embodiment, converter 80 may then directly provide electricity either to rechargeable battery 50 or to item 52.
Turning now to FIGURES 4A and 4B, in accordance with a third embodiment of the present invention, a movable magnetic field is created within the side passageway 24 using an expandable bladder 82 having one or more magnets 84 attached to the outer periphery thereof. On either side of magnets 84 are a pair of coils 1 S 86, 88. Coils 86, 88 are attached to the inner walls of side passageway 24. Preferably, a turbulence enhancer 90 which may consist of a plurality of appropriately spaced and contoured vanes, is positioned upstream of bladder 82 at the inlet to side passageway 24. Coils 86, 88 are in electrical communication with an electronics module 92 and rechargeable battery 94.
During operation, fluid flows upwardly through production tubing 16 and a portion of the fluid is diverted (using if desired, a diverter 30 as shown in FIGURE 1 ) into side passageway 24 where it is directed through turbulence enhancer 90 and into the flexible bladder 82. The turbulence enhancer 90 will cause the fluid to undergo a turbulent motion and thereby cause the flexible bladder 82 to undulate and move magnets 84 within the annular space defined between coils 86 and 88. As a result, a magnetic flux will be developed on coils 86 and 88 thereby producing electrical energy which will flow to electronics 92 and rechargeable battery 94 in a manner as described above with regard to the FIGURE 3 embodiment.
As mentioned, in the FIGURE 4A embodiment of this invention, the production flow within tubing 16 causes the bladder 82 to move and undulate and thereby produce electricity. Alternatively, in the FIGURE 4B embodiment, production fluid from perforations 68 of the type described in FIGURE 2 are directed into the annulus and flow within side passageway 24 through an opening 70 and into bladder 82. It will be appreciated that the FIGURE 4B embodiment could also include an inlet to side passageway 24 from primary flow passageway 22 as in the FIGURE 4A embodiment.
Turning now to FIGURE 5, still another embodiment of this invention wherein an electrical generating device is positioned at least in part, within a side passageway is shown. In the FIGURE 5 embodiment, the electrical generating device comprises a stack of piezoelectric elements 90 which are connected to a power rectifier 92, voltage regulator 94, charge/power on switch 96 and rechargeable battery 98 as schematically shown in FIGURE 6. Piezoelectric elements 90 are composed of a low level force to electrical charge piezoelectric crystal or film. A vibration amplifier will convert the flow turbulence from within tubing 16 into a motion (e.g., vibration or stress) outside the tubing. The piezoelectric wafer stack is mounted with a motion generator to convert the movements into electrical charges. The power rectifier circuit 92 will process the electrical charges into an electrical direct current. The output voltage from rectifier 92 will be regulated via regulator 94 to create a signal compatible with the battery cells 98. The charge/power-on circuit 96 will determine if the battery cell 98 should be charged or if the battery pack should deliver power to the electronic circuit (such as item 52 in FIGURE 1 ). A dual battery pack (identified as "1 " and "2" in element 98) is preferred such that one pack will deliver power to the electronics while the other pack is being recharged. As shown in FIGURE 5, the piezoelectric stack 90 may be actuated by movement of fluid flowing both within production tubing 16 as well as from the annulus 10 through the aforementioned perforation 68 and out of the formation. Piezoelectric stack 90 is composed of any one of several known materials including piezoelectric crystalline materials or polymeric films such as polyvinyl chloride film. Such known materials generate electrical power once a mechanical force such as vibration or stress is exerted onto the stack. In this case, the vibration or stress will be exerted onto the stack through the production fluid impacting upon the stack via the tubing wall 28.

While the foregoing embodiments of the present invention shown in FIGURES
1-6 generate electricity by the positioning of an electrical generating device in a lateral passageway and then generating electricity through the interaction of fluid being produced either from the formation into the annulus or from within the production tubing itself, in FIGURES 7A, 7B and 8, an alternative method of generating electricity will be described wherein pressure waves are sent downwardly through a suitable fluid so as to actuate a suitable power generation device. In the FIGURE 7A
embodiment, this power generation device is again positioned in a lateral chamber 24 which is positioned outside of the primary flow passage. More particularly, the power generation device comprises a permanent magnet 100 which extends outwardly from a piston 102. Piston 102 sealingly engages a suitably sized cylinder 104 (via seal I06).
A spring 107 is sandwiched between piston 106 and the interior base 108 of cylinder 104. Spring 107 surrounds magnet 100. It will be appreciated that when a force urges the upper surface I 10 of piston 102 downwardly, spring 107 will be compressed such that when the force on surface 110 is removed, spring 107 will urge upwardly to place piston 102 into its normal position. Surrounding chamber 104 and positioned in facing alignment to the normal position of magnet 100 is a coil 1 I 2. Coil 112 in turn electrically communicates with an electronics and battery package 114 of the type described above with regard to the embodiments shown in FIGURES 1-5.
During operation, assuming that production fluid or other fluid is present within the primary passage 16, pressure waves indicated by the lines I 15 are directed downwardly from the surface or from some other position downstream of side passageway 24 and impinge upon surface 1 I 0 of piston I 02. The pressure waves are delivered over a selected intermittent and timed sequence such that piston 102 will be sequentially urged downwardly when impinged by a pressure wave. During the time period that the pressure wave has passed and before the next pressure wave impinges upon piston 102, spring 107 will urge piston 102 upwardly to its normal position. As a result, piston 102 will undergo a reciprocating upward and downward motion whereby magnet 100 will similarly reciprocate within the annular opening defined between coil 112. The result is a magnetic flux which will generate electricity in a known manner and supply the electricity to the appropriate electronics and storage battery 114 as discussed above regarding the embodiments of FIGURES 3 and 4A-B.
FIGURE 7B depicts an embodiment similar to that shown in FIGURE 7A. In the FIGURE 7B embodiment, the power generation device is again positioned in a lateral chamber 24 which is positioned outside of the primary flow passage.
More particularly, the power generation device comprises a magnetic coil 150 and a generator armature 152. The generator armature I 52 and the magnetic coil 150 form a conventional electrical generator. A generator drive shaft 154 couples the generator armature 152 to a piston body 156 and piston head 158. The drive shaft 154 converts linear motion by the piston body 156 into rotational motion to turn the generator armature. Piston head 158 sealingly engages the wall of the lateral chamber through a seal 162. A spring 160 is sandwiched between the bottom of the piston head 158 and a base 164. It will be appreciated that when a force urges the piston head 158 downwardly, the piston body 156 causes the shaft 154 to turn the generator armature 152. The generator produces electricity that is supplied to electronics and battery package 1 I 4 of the type described above. The spring 160 will be compressed such that when the force on the piston head 158 is removed, spring 160 will urge upwardly to place piston head 158 into its normal position.
During operation, assuming that production fluid or other fluid is present within the primary passage 16, pressure waves indicated by the lines 115 are directed downwardly from some position downstream of side passageway 24 and impinge upon the piston head 158. The pressure waves are delivered over a selected intermittent and timed sequence such that piston head 158 will be sequentially urged downwardly when impinged by a pressure wave. During the time period that the pressure wave has passed and before the next pressure wave impinges upon piston head 158, spring will urge piston head 158 upwardly to its normal position. As a result, piston head 158 will undergo a reciprocating upward and downward motion whereby the piston body 156 will similarly reciprocate causing the drive shaft 154 to turn the generator armature 152. The drive shaft 154 may be spiral cut in both directions so that downhole and uphole motion by the piston body 156 drives the generator armature 152 in the same direction. The electricity produced by the generator is supplied to the appropriate electronics and storage battery 114 as discussed above regarding the embodiments of FIGURES 3 and 4A-B.
FIGURE 8 depicts an embodiment which is similar to FIGURE 7A in its use of a reciprocating spring actuated piston which moves a magnet with respect to a stationary coil. The primary difference between the embodiments of FIGURES 7A
and 8 is that in the FIGURE 8 embodiment, the pressure waves used to periodically impinge upon surface 1 10 of piston 102 are delivered by a discrete control line 116 which is positioned in the annulus 10 between the production tubing and the casing.
The discrete control line 116 may also be used with the embodiment shown in FIGURE
7B.
The pressure waves 115 shown in FIGURES 7A, 7B and 8 may be generated by injecting an energy pulse into the fluid using an external device at the surface of the well. Alternatively, a device may be positioned within the well to produce the pressure waves 115. FIGURE 7C illustrates a choke assembly shown generally as 170.
Fluid flow in tubing 176 is sharply and momentarily stopped by the choke assembly 170.
This causes a back pressure wave that will flow the length of the well and provide the pressure pulses 11 S shown in FIGURES 7A, 7B and 8. The actuator 172 drives a rod 171 having a head 173 that engages a seat assembly 175. The actuator 172 repeatedly engages and disengages the head 173 and the seat assembly 175 to form a series of pressure pulses 115 shown in FIGURES 7A, 7B and 8.
FIGURE 7D is an alternative mechanism for generating the pressure pulses 1 I 5 FIGURE 7D illustrates a valve assembly shown generally at I 80. Fluid flow in tubing 186 is stopped momentarily by a valve gate 183. The valve gate 183 is connected to a rod 181 which is driven by actuator 182. The actuator 182 repeatedly inserts and removes the valve gate 183 from the tubing 186 to form a series of pressure pulses 115 shown in FIGURES 7A, 7B and 8. An optional side flow path 184 is also shown in FIGURE 7D. The optional side flow path 184 allows fluid to continue to flow in the tubing 186 when the valve gate 183 has sealed the primary path of the tubing 186.
Thus, it is not necessary to completely shut off the fluid flow to generate the series of pressure pulses.
While many of the foregoing embodiments utilize downhole electrical energy generating apparatus which are positioned in a lateral or side passageway adjacent the primary fluid passageway of the production tubing, it will be appreciated that downhole electrical energy generating apparatus could also be positioned outside of a lateral passageway. That is, energy generating apparatus could simply be positioned within the annulus between the production tubing and the casing or borehole wall. By placement in the annulus, the electrical energy generating apparatus would still not be blocking the primary flow passage of the production tubing as is prevalent with many prior art devices such as the device disclosed in aforementioned U.S. Patent 3,342,267.
Examples of locating the downhole energy generating apparatus in the annulus are shown in the following FIGURES 9-11. In FIGURE 9, a downhole electrical generating apparatus is shown which is substantially similar to that shown in FIGURE
2 with the difference being that no outer housing or lateral passageway shrouds the turbine and therefore the electrical generating apparatus is openly positioned in the annulus and is not surrounded by a lateral passageway. It will be appreciated that the turbine is actuated by fluid flowing from perforation 68 in the formation as indicated by the arrows and/or fluid flowing up the primary passageway 22 through opening 29. A
packer is shown at 118 downstream of turbine 32 for sealing off the selected portion of the annulus 10 and causing the fluid flowing past turbines 32, 34 to flow back into the primary passageway 22. While the generator 42, energy storage device 50, and electronics 52 are shown enclosed by an enclosure 120, it will be appreciated that these units could also be exposed within the annulus to the annulus fluids. However, it is preferred that units 42, 50 and 52 are protected by enclosure 120 so as to avoid any damage from fluids and other debris within the annulus.
Referring now to FIGURES l0A-1 OC, still another embodiment of this invention wherein the electrical generating apparatus is positioned within the annulus is shown. In the embodiment of FIGURE l0A-l OC, a turbine 122 is rotatably mounted onto the outer surface of tubing 16 using a bearing assembly 124. One or more magnets 126 is mounted to a lower surface 128 of turbine 122. As a result, fluid impinging over turbine 122 will rotate both turbine 122 and. magnet 126 about the longitudinal axis of production tubing 16. Disposed upstream and in facing relation to turbine 122 and more particularly magnet 126 is an electrical coil 130 which is rigidly mounted about the outer periphery of tubing 16. Connected to coil 130 are appropriate electronics 132 and rechargeable battery 134 of the type described in connection with aforementioned embodiments of FIGURES 3 and 4A-B. In the embodiment of FIGURE 10A, production fluid travels upwardly through annulus 10 from perforations 68 formed in the formation 14. This flowing fluid impinges upon turbine 122 thereby rotating turbine 122 about the longitudinal axis of tubing 16 whereupon the magnet 126 will move relative to the coil 130 which is stationary (i.e. fixed) to tubing 16. As a result, the rotating turbine will generate electricity through the interaction between moving magnet 126 and coil 130. After the fluid has impinged upon turbine 122, the fluid will continue to flow through the annulus 10 and enter the primary passageway 22 of tubing 16 through a series of openings 136 and 138. In addition, the fluid will pass through optional centralizes 140.
FIGURE 1 OB shows a downhole powered generation assembly which is substantially similar to FIGURE l0A with the difference being that in FIGURE 1 OB, the production fluid which initially impinges upon turbine I22 flows out of the production tubing 16 through a upstream openings 140. A packer 142 is positioned upstream of openings 140 to seal this portion of the annulus 10. After leaving the primary passageway 140, the fluid impinges upon turbine 122 and then travels upwardly and back into the primary passageway through openings 136, 138 as discussed with regard to FIGURE 10A.
The FIGURE l OC embodiment is again substantially identical to the FIGURES
l0A and l OB embodiments with the difference being that the fluid which impinges upon turbine 122 neither flows back into the production tubing 16 (as in FIGURE l0A) nor initially emanates from the production tubing 16 (FIGURE l OB). Instead, the fluid flows from the annulus via an appropriate perforation 68 in the formation, impinges turbine 122, and thereafter travels upwardly through the annulus. Of course, the fluid may be directed back into the production tubing 16 at a location downstream.
In the embodiments shown in FIGURES l0A-l OC, the turbine 122 and magnets 126 are positioned above the electrical coil 130. It is understood that the this relationship may be reversed, that is the turbine 122 and magnets 126 may be placed below the electrical coil 130 with the same result being achieved.
Referring now to FIGURE 1 l, still another embodiment of this invention wherein the electrical generating apparatus is positioned in the annulus is shown. In the FIGURE 11 embodiment, a piezoelectric power generating unit is shown which is substantially similar to the piezoelectric power generating unit of FIGURE 5.
Thus, a stack of piezoelectric elements 90 is positioned on the outer circumference of tubing 16 and is, in turn, connected to an electronics unit 91 and rechargeable battery 98 with electronics unit 91 including the power rectifier 92, voltage regulator 94 and charge/power on switch 96 of FIGURE 6. FIGURE 11 also depicts downhole sensors and/or gauges 140 of the type described in aforementioned U.S. Application S.N.
08/385,992. Sensors 140 communicate with a computer/communications module 142.
As with the FIGURE 5 embodiment, production fluid flowing through tubing I6 causes stress and/or vibration against the tubing wall which motion is converted by the piezoelectric elements into electrical charges by the electronics unit 91.
While an important feature of the present invention is that the primary passageway in production tubing 16 remain clear for the passage of tools and such items as coil tubing, it will be appreciated that the flexible bladder embodiments of FIGURES 4A and 4B may be positioned within the primary passageway of tubing 16 and yet still not impede or block said passageway unlike prior art devices such as the turbine shown in Patent 3,342,267. For example, referring to FIGURE I2, the flexible bladder 82 is shown mounted between a pair of lower mounts 144 and upper mounts 146 such that production fluid is allowed to easily pass upwardly through bladder 82 towards the surface. It will be appreciated that while the mounts 144, 146 and bladder 82 do narrow to some extent the primary passageway 22, such narrowing is minimal and still permits the passage of coil tubing or other tooling through the center of WO 97/01018 PGTIiJ596110546 bladder 82. Of course, as in the FIGURES 4A and 4B embodiments, magnets 84 are positioned on the outside of bladder 82 and coils 86, 88 are positioned an either side of magnet 84 so as togenerate electricity through the fluxuatians of magnet 84 between coils 86, 88. An optional turbulence enhaneer 90 is also provided. The electronics package 92 and rechargeable battery 94 are preferably positioned outside of production tubing 16 within the annulus LO preferably within an enclosure 148 as shown in FIGURE 12.
The rechargeable battery described in each and every one of the numerous embodiments of this invention rE,presents an important feature of the present invention.
In an exemplary embodiment, the battery will have the ability to operate at high temperatures (above 175 ° C), have a long operating life (as much as five years), be of small size (for example sized or otherwise adapted to fit within an envelope of 1" in diameter), have the ability far continuous discharge for ias~umentation in microprocessors ( 10 milliamperes), have the ability for periodic discharge far I 5 communications equipment (15 milliamperes per minute at 2% duty cycle), have the ability far a minimum of 1 t)0 recharging cycles firm external power soure$s as a generator, include high energy density and excellent self-discharge characteristics.
Preferably, the rechargeable battery comprises a solid lithium-mete! polymer electrolyte secondary battery of the type described in the paper entitled "Large Lithium Polymer Battery Development: 'fhe lrnmobile Solvent Concept", M. Gauthier et al, tlxe entire contents of which is incorporated herein by zeference. Batteries of this type are also disclosed in ~J.S. Patent Nos. 4,357,401; 4,578,326 and 4,758,483. It is believed that such lithium polymer battery cells are preferred over other battery technology Such as nickel cadmium or lead acid due to the higher energy density, smaller size and better self z5 discharge characteristics of the lithium polymer batteries. Still another rechargeable battery which is believed to be 4speciaIly useful in the present invention are those rechargeable batteries available from Duraceh Xnc. of Bethel, Connecticut which incorporate therein an integrated circuit chip for extending and/or optimizing the battery life, providing high energy density, high power and a wide temperature range for performance. Such batteries are sold by Duracell Inc. under the tradenames DR15, DR17, DR30, DR35 and DR36.
Based on the foregoing, and as shown, for example, in FIGURES 1-6 and 9-12 it will be appreciated that an important feature of this invention is a long-term power supply to be mounted on hydrocarbon production tubing downhole in a wellbore for providing electrical power to equipment mounted on the production tubing comprising (1 ) an electrical power generating device powered by fluid flow downhole; (2) a rechargeable battery for storing electrical power from the generating device;
and (3) a charging circuit receiving electrical power as generated from the generating device and producing a charging current for delivery of power to the battery wherein the battery is recharged on a periodic basis by the charging circuit and serves as a source of power for the downhole equipment.
Although several of the apparatus for generating power are described as being powered by fluid flowing out of the well, it is also possible to generate power by 1 S forcing fluid into the well. The orientation of the power generating apparatus may be reveresed to accomodate the reverse fluid flow. This would allow power to be generated during applications such as water flood or gas lift. In addition, the power generating apparatus can be made retrievable by mounting the entire power generating apparatus in a side pocket of the well.
The downhole electrical energy generating apparatus of the present invention provides many features and advantages relative to the prior art. An important feature and advantage is that the present invention provides no obstructions within the production tubing. That is, the present invention generates electricity while simultaneously maintaining production tubing 16 obstruction free such that devices including coil tubing may be delivered through the production tubing without interruption. The ability to provide electrical power generation without obstructing the 'production tubing constitutes an important feature of this invention and an important advance over the prior art such as the turbo generator of U.S. Patent 3,342,267 wherein the turbines cause an impassible obstruction within the production tubing.

W O 97101018 PCTNS9b110546 _7ø
Still other features and advantages of the present invention is the ability to generate electricity using relatively economical anti environmentally friendly components. The use of a rechargeable battery allows the present invention to provide electricity both during times when production fluids are flowing as well as those times when production fluid flow has ceased.
It will be appreciated that in those embodiments which utilize a movable magnet and fixed coil, an acceptable (although less preferred) arrangement is where the magnet is fixed and the coif is movable.
It will fiirther bt appreciated that in those embodiments of this inverttian where 1 Q fluid motion gives rise to power generation, the fluid may originate either from one or both of the production tubing or the annulus.
While preferred embodiments have been shown and described, various modifications and substitutions xnay be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that tlxe present invention has been described by way of illustrations and not limitation.

Claims (54)

1. ~An electrical energy generating apparatus for generating electricity downhole in a well, comprising:
a primary flow passageway and side passageway laterally displaced in a side-by-side relationship from said primary passageway; and an electrical generating device positioned, at least in part, in said side passageway, said electrical generating device adapted to generate electricity in response to fluid flowing through said side passageway.
2. ~The apparatus of claim 1 wherein:
said primary flow passageway and said side passageway are housed in a housing.
3. ~The apparatus of claim 1 wherein:
said side passageway communicates with said primary passageway to allow fluid from said primary passageway to flow into said side passageway.
4. ~The apparatus of claim 3 wherein:
said side passageway communicates with said primary passageway through at least one opening between said primary and side passageways.
5. ~The apparatus of claim 1 wherein said primary flow passageway and said side passageway are adapted for positioning in a borehole such that an annulus is defined between an inner wall of the borehole and the side passageway and wherein:
said side passageway communicates with said annulus to allow fluid from said annulus to flow into said side passageway.
6. ~The apparatus of claim 5 wherein:
said side passageway communicates with said annulus through at least one opening between said side passageway and said annulus.
7. The apparatus of claim 3 wherein said primary flow passageway and said side passageway are adapted for positioning in a borehole such that an annulus is defined between an inner wall of the borehole and the side passageway and wherein:

said side passageway communicates with said annulus to allow fluid from said annulus to flow into said side passageway.
8. The apparatus of claim 1 wherein said electrical generating device comprises:

at least one turbine operatively connected within said side passageway for movement in response to fluid flowing through said side passageway; and an electrical generator associated with said side passageway and operatively connected to said turbine for generating electricity in response to movement by said turbine.
9. The apparatus of claim 1 wherein said electrical generating device comprises:

a magnetic field extending across said side passageway, said magnetic field being created in response to fluid flowing through said side passageway; and an electrical energy converter associated with said side passageway for converting magnetic flux created by said magnetic field into electrical energy.
10. The apparatus of claim 9 wherein said magnetic field comprises:

a magnetic reed located within said side passageway and moveable in response to flowing fluid; and a coil spaced from and associated with said reed.
11. The apparatus of claim 9 wherein said magnetic field comprises:

a flexible bladder having an interior and an exterior, said bladder being located within said side passageway, said bladder including an opening for receiving fluid to the interior thereof;

at least one magnet on the exterior of said bladder; and a coil spaced from and associated with said magnet wherein said magnet moves relative to said coil when fluid flows into said bladder.
12. The apparatus of claim 11 including:

a turbulence enhancer upstream of said bladder.
13. The apparatus of claim 1 wherein said electrical generating device comprises:

a piezoelectric device positioned within said side passageway and being responsive to movement caused by flowing fluid; and a converter for converting said signals from said piezoelectric device to electrical energy.
14. The apparatus of claim 1 including:

a flow diverter in said housing for diverting fluid from said primary flow passageway to said side passageway.
15. The apparatus of claim 1 including:

a rechargeable battery in said side passageway, said electrical generating device being operatively connected to said battery for charging said battery.
16. The apparatus of claim 15 wherein said battery comprises:

at least one polymer lithium power cell.
17. The apparatus of claim 15 wherein said battery comprises:

at least one battery which includes an integrated circuit for optimizing battery life.
18. The apparatus of claim 1 wherein:

at least a portion of said electrical generating device is enclosed by a fluid tight enclosure.
19. The apparatus of claim 1 including:

an electrical device operatively connected to said electrical generating device wherein said electrical generating device provides electrical power to said electrical device.
20. The apparatus of claim 19 wherein:

said electrical device comprises a computer.
21. The apparatus of claim 15, including:

an electrical device operatively connected to said battery wherein said battery provides electrical power to said electrical device.
22. The apparatus of claim 21 wherein:

said electrical device is selectively connected to either said battery or said electrical generating device.
23. A production well comprising:

a first section of production tubing;

a second section of production tubing; and a downhole electrical energy generating apparatus positioned between and operatively connected to said first and second sections of production tubing, said electrical energy generating apparatus including;

(a) a primary flow passageway and a side passageway laterally displaced in a side-to-side relationship from said primary passageway; and (b) an electrical generating device positioned at least in part in said side passageway, said electrical generating device adapted to generate electricity in response to fluid flowing through said side passageway.
24. An electrical energy generating apparatus for generating electricity downhole in a well, comprising:

a movable magnetic field extending across a selected area downhole, said movable magnetic field being created in response to the flow of fluid, said movable magnetic field comprising a magnetic reed movable in response to flowing fluid and associated with said reed; and an electrical energy converter for converting magnetic flux created by said movable magnetic field into electrical energy.
25. An electrical energy generating apparatus for generating electricity downhole in a well, comprising:

a movable magnetic field extending across a selected area downhole, said movable magnetic field being created in response to the flow of fluid; and an electrical energy converter for converting magnetic flux created by said movable magnetic field into electrical energy;

wherein said movable magnetic field comprises:

a flexible bladder having an interior and an exterior, said bladder being located within said side passageway, said bladder including an opening for receiving fluid to the interior thereof;

at least one magnet on the exterior of said bladder; and a coil spaced from and associated with said magnet wherein said magnet moves relative to said coil when fluid flows into said bladder.
26. The apparatus of claim 25 including:

a turbulence enhancer upstream of said bladder.
27. The apparatus of claim 25 including production tubing in said well for housing the flowing fluid and wherein:

said flexible bladder is positioned within said production tubing and is axially aligned with said production tubing.
28. An electrical generating apparatus for generating electricity downhole in a production well, comprising:

a movable magnetic field extending across a selected area downhole, said magnetic field being created in response to pressure pulses traveling through a fluid pathway; and an electrical energy converter for converting magnetic flux created by said movable magnetic field into electrical energy.
29. The apparatus of claim 28 wherein said electrical generating apparatus comprises:
a spring actuated magnet; and a coil spaced from and magnetically communicating with said spring actuated magnet wherein said pressure pulses cause said spring actuated magnet to move relative to said coil.
30. The apparatus of claim 28 including tubing in said well for housing fluid and wherein said pressure pulses travel through said tubing.
31. The apparatus of claim 29 including tubing in said well for housing fluid and wherein said pressure pulses travel through said tubing.
32. The apparatus of claim 31 wherein:

said spring actuated magnet and coil are laterally offset from said tubing.
33. The apparatus of claim 28 including tubing in said well for housing fluid and wherein:

said pressure pulses travel through a conduit having fluid therein which is laterally offset from said tubing.
34. An electrical generating apparatus for generating electricity downhole in a well, comprising:

a piston positioned in a selected area downhole, said piston being moved in a first direction in response to pressure pulses traveling through a fluid pathway;
and an electrical energy generator coupled to said piston for generating electrical energy in response to motion by said piston.
35. The apparatus of claim 34 further comprising:

a spring connected to said piston, said spring moving said piston in a second direction opposite to said first direction.
36. The apparatus of claim 35 wherein said electrical energy generator comprises:

a magnetic coil; and a generator armature which rotates within said magnetic coil to generate said electrical energy.
37. The apparatus of claim 36 further comprising a drive shaft connected to said piston and said generator armature, said drive shaft rotating said generator armature when said piston moves in said first direction and said second direction.
38. The apparatus of claim 34 including tubing in said well for housing fluid and wherein:

said pressure pulses travel through a conduit having fluid therein which is laterally offset from said tubing.
39. An electrical energy generating apparatus for generating electricity downhole in a well, comprising:

a primary flow passageway having an interior and an exterior; and an electrical generating device positioned on said exterior of said primary flow passageway, said electrical generating device adapted to generate electricity in response to fluid flowing along said exterior of said primary passageway.
40. The apparatus of claim 39 wherein said electrical generating device comprises:

at least one turbine being operative in response to said flowing fluid; and an electrical generator operatively connected to said turbine for generating electricity in response to movement by said turbine.
41. The apparatus of claim 39 wherein said electrical generating apparatus comprises:

a rotating member for rotating about the exterior of said primary flow passageway in alignment with the longitudinal axis of said primary flow passageway;

at least one magnet mounted on said rotating member and being rotatable with said rotating member; and a coil positioned about the exterior of the primary flow passageway, said coil being spaced from and associated with said magnet wherein said magnet moves relative to said coil when fluid flows through said turbine.
42. The apparatus of claim 41 wherein said primary flow passageway comprises tubing and the exterior of said primary flow passageway comprises an annulus and wherein:

said fluid flows through said turbine and is directed into said tubing downstream of said turbine.
43. The apparatus of claim 42 wherein:

said fluid is directed from the interior of said tubing to said annulus upstream of said turbine.
44. An electrical generating apparatus for generating electricity downhole in a well, comprising:

a primary flow passageway and a side passageway laterally displaced from said primary flow passageway; and an electrical generating device positioned in said side passageway, said electrical generating device adapted to generate electricity in response to fluid flowing downhole in the well.
45. A production well comprising:

a section of production tubing having an interior flow passage and an exterior;

a piezoelectric device positioned on said exterior of said tubing and being responsive to movement caused by flowing fluid; and a converter for converting signals from said piezoelectric device to electrical energy.
46. The well of claim 45 wherein said converter includes:

a power rectifier operatively connected to said piezoelectric device;

a voltage regulator for receiving rectified signals from said power rectifier;

at least one rechargeable battery; and a switch operatively connected between said voltage regulator and said battery.
47. A production well comprising:

a section of production tubing;

a downhole power generator associated with said production tubing; and at least one rechargeable battery operatively connected to said power generator.
48. The well of claim 47 wherein:

said battery comprises a lithium polymer battery.
49. The well of claim 48 wherein:

said battery includes an integrated circuit for optimizing performance.
50. The well of claim 47 including:

at least two rechargeable batteries wherein a first of said batteries is recharged while a second of said batteries is being used to provide power to a device.
51. A long-term power supply to be mounted on hydrocarbon production tubing downhole in a wellbore for providing electrical power to equipment mounted on the production tubing comprising:

an electrical power generating device powered by fluid flow downhole;

a rechargeable battery for storing electrical power from the generating device; and a charging circuit receiving electrical power as generated from the generating device and producing a charging current for delivery of power to the battery;

wherein the battery is recharged on a periodic basis by the charging circuit and serves as a source of power for the downhole equipment.
52. The well of claim 51 wherein:

said battery comprises a lithium polymer battery.
53. The well of claim 52 wherein:

said battery includes an integrated circuit for optimizing performance.
54. The well of claim 51 including:

at least two rechargeable batteries wherein a first of said batteries is recharged while a second of said batteries is being used to provide power to a device.
CA 2221463 1995-06-23 1996-06-19 Downhole apparatus for generating electrical power in a well Expired - Lifetime CA2221463C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US46995P true 1995-06-23 1995-06-23
US60/000,469 1995-06-23
PCT/US1996/010546 WO1997001018A2 (en) 1995-06-23 1996-06-19 Downhole apparatus for generating electrical power in a well

Publications (2)

Publication Number Publication Date
CA2221463A1 CA2221463A1 (en) 1997-01-09
CA2221463C true CA2221463C (en) 2006-10-31

Family

ID=21691647

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2221463 Expired - Lifetime CA2221463C (en) 1995-06-23 1996-06-19 Downhole apparatus for generating electrical power in a well

Country Status (5)

Country Link
AU (1) AU6335296A (en)
CA (1) CA2221463C (en)
GB (1) GB2320512B (en)
NO (4) NO315577B1 (en)
WO (1) WO1997001018A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965964A (en) * 1997-09-16 1999-10-12 Halliburton Energy Services, Inc. Method and apparatus for a downhole current generator
GB2414257B (en) * 2001-05-23 2006-01-04 Seismic Recovery Llc Utilization of energy from flowing fluids
WO2002010553A1 (en) * 2000-01-28 2002-02-07 Halliburton Energy Services, Inc. Vibration based power generator
US6768214B2 (en) 2000-01-28 2004-07-27 Halliburton Energy Services, Inc. Vibration based power generator
WO2007016505A2 (en) 2005-08-01 2007-02-08 Davis Chief R Sewer line power generating system
NO324350B1 (en) * 2006-02-17 2007-09-24 Reslink As Generator for fluid-driven production of electric energy and process feed for the production of generator
BRPI0712366B1 (en) * 2006-06-09 2018-02-14 Halliburton Energy Services, Inc. Apparatus and method to deviate a flow flow in a downward hole tool
GB2461194B (en) * 2007-07-30 2010-06-23 Schlumberger Holdings Methods and systems for use with wellbores
NO329392B1 (en) * 2009-02-09 2010-10-11 Tool Tech As Pressure reducing turbine Stromgenerator arranged in a bronnstrom
NO333244B1 (en) 2009-12-11 2013-04-15 Tool Tech As Rotary pressure reduction turbine with gears bronnstrom with hydraulic power transmission for driving Stromgenerator
GB201417734D0 (en) 2014-10-07 2014-11-19 Tendeka As Turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898088A (en) * 1958-02-10 1959-08-04 Dresser Ind Earth borehole logging system
US3342267A (en) * 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3448305A (en) * 1966-10-11 1969-06-03 Aquitaine Petrole Apparatus for producing and utilising electrical energy for use in drilling operations
US3693428A (en) * 1970-07-24 1972-09-26 Jean Pierre Le Peuvedic Hydraulic control device for transmitting measuring values from the bottom of a well to the surface as pressure pulses through the drilling mud
US3666030A (en) * 1971-02-21 1972-05-30 Dresser Ind Electrical energy supply for well tools
GB1462359A (en) * 1973-08-31 1977-01-26 Russell M K Power generation in underground drilling operations
GB2096373B (en) * 1977-12-05 1982-11-24 Gearhart Ind Inc Systems and methods for logging a borehole while drilling
US4215426A (en) * 1978-05-01 1980-07-29 Frederick Klatt Telemetry and power transmission for enclosed fluid systems
US4224687A (en) * 1979-04-18 1980-09-23 Claycomb Jack R Pressure pulse detection apparatus incorporating noise reduction feature
DE3277825D1 (en) * 1981-11-24 1988-01-21 Shell Int Research Means for generating electric energy in a borehole during drilling thereof
US4515225A (en) * 1982-01-29 1985-05-07 Smith International, Inc. Mud energized electrical generating method and means
US4518888A (en) * 1982-12-27 1985-05-21 Nl Industries, Inc. Downhole apparatus for absorbing vibratory energy to generate electrical power
US4578326A (en) * 1983-03-11 1986-03-25 Societe Nationale Elf Aquitaine Novel macromolecular material for use in realizing electrolytes and/or electrodes
CA2011972A1 (en) * 1989-03-13 1990-09-13 Trevelyn M. Coltman Device for steering a drill bit
DE4037259C2 (en) * 1990-11-23 1993-03-25 Schwing-Hydraulik-Elektronik Gmbh + Co, 4690 Herne, De
NO325157B1 (en) * 1995-02-09 2008-02-11 Baker Hughes Inc An apparatus for downhole control of the well tool in a production well

Also Published As

Publication number Publication date
CA2221463A1 (en) 1997-01-09
GB2320512A (en) 1998-06-24
NO20024939D0 (en) 2002-10-14
NO20024940D0 (en) 2002-10-14
NO323524B1 (en) 2007-06-04
NO20024941L (en) 1998-02-20
NO315577B1 (en) 2003-09-22
NO20024940L (en) 1998-02-20
WO1997001018A2 (en) 1997-01-09
GB2320512B (en) 1999-08-25
NO976039L (en) 1998-02-20
AU6335296A (en) 1997-01-22
NO325360B1 (en) 2008-04-07
NO20024941D0 (en) 2002-10-14
NO976039D0 (en) 1997-12-22
NO20024939L (en) 1998-02-20
WO1997001018A3 (en) 1997-05-01
GB9724421D0 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US7199481B2 (en) Wave energy conversion system
US7190084B2 (en) Method and apparatus for generating electrical energy downhole
US7817062B1 (en) Surface communication apparatus and method for use with drill string telemetry
CA2587897C (en) Heating and cooling electrical components in a downhole operation
US5732776A (en) Downhole production well control system and method
US4956823A (en) Signal transmitters
US20040069535A1 (en) Method for generating pressure fluctuations in a flowing fluid
US7165618B2 (en) Inductively coupled method and apparatus of communicating with wellbore equipment
US4373582A (en) Acoustically controlled electro-mechanical circulation sub
US3982224A (en) Method and apparatus for transmitting downhole information from a well
US5160925A (en) Short hop communication link for downhole mwd system
CA2632042C (en) Wellbore motor having magnetic gear drive
US9013144B2 (en) Power system for high temperature applications with rechargeable energy storage
US8464799B2 (en) Control system for a surface controlled subsurface safety valve
US20060191681A1 (en) Rechargeable energy storage device in a downhole operation
US20040055752A1 (en) Surface controlled subsurface lateral branch safety valve
EP2697473B1 (en) Selectively variable flow restrictor for use in a subterranean well
EP0500341B1 (en) Downhole tool apparatus actuatable by pressure differential
US7504963B2 (en) System and method for providing electrical power downhole
US20010050173A1 (en) Submersible pumps
US20050029817A1 (en) Gimbal-mounted hydroelectric turbine
CA2061701C (en) Electric power supply for use downhole
CA1201428A (en) Method and means for transmitting data through a drill string in a borehole
US8400326B2 (en) Instrumentation of appraisal well for telemetry
CA2640868A1 (en) Generation of electrical power from fluid flows, particularly in oil or gas well pipes

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160620