CA2217362C - Strip coated adhesive products - Google Patents

Strip coated adhesive products Download PDF

Info

Publication number
CA2217362C
CA2217362C CA002217362A CA2217362A CA2217362C CA 2217362 C CA2217362 C CA 2217362C CA 002217362 A CA002217362 A CA 002217362A CA 2217362 A CA2217362 A CA 2217362A CA 2217362 C CA2217362 C CA 2217362C
Authority
CA
Canada
Prior art keywords
adhesive
patterns
release material
face
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002217362A
Other languages
French (fr)
Other versions
CA2217362A1 (en
Inventor
Douglas M. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moore Wallace North America Inc
Original Assignee
Moore Wallace North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/416,287 external-priority patent/US5578352A/en
Application filed by Moore Wallace North America Inc filed Critical Moore Wallace North America Inc
Publication of CA2217362A1 publication Critical patent/CA2217362A1/en
Application granted granted Critical
Publication of CA2217362C publication Critical patent/CA2217362C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/08Fastening or securing by means not forming part of the material of the label itself
    • G09F3/10Fastening or securing by means not forming part of the material of the label itself by an adhesive layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0257Multilayer

Abstract

A linerless label and method of production thereof are provided which result in a fully utilizable thermal transfer linerless label. A substrate of label material has first and second faces each having first and second substantially parallel first and second edges, and a coating of thermal transfer material substantially completely covers the first face. First and second adhesive release material patterns, such as strips of UV curable silicone, are disposed substantially along the first and second edges of the first face, and first and second adhesive patterns, such as strips ofa permanent hot melt adhesive, are disposed substantially along the first and second eges of the second face in alignment with the silicone strips, the patterns covering less than fifty percent of the label faces. The width of the adhesive strips are less than the silicone strips. Ink registration marks may be imaged on the first face for registration of adhesive release material application, or for registration of perforation lines which may be provided perpendicular to the strips of adhesive and adhesive release material. The labels may be produced from a web more than one label wide, and slit along the adhesive and adhesive release material strips into label webs one label wide.
The web may be taken up on a roll.

Description

STRIP COATED ADHESIVE PRODUCTS

BACKGROUND AND SUMMARY OF THE INVENTION

Linerless labels are being increasingly popular because of the environmental advantages associated therewith, and for other operative advantages. However, there have been significant difficulties in producing fully functional linerless thermal transfer labels because a functional printable release material has not been successfully developed.
According to the present invention it is possible to provide a lineriess thermal transfer label by -- instead of using a printable release material --leaving a conventional thermal transfer coating exposed and unaltered, and providing the adhesive and adhesive release material in a pattern to provide a fully functional label while at the same time not interfering with the thermal transfer function.
According to one aspect of the present invention a method of producing linerless thermal labels from a web of thermal transfer base stock having a first face with a thermal transfer coating thereon, and a second face, is provided. The method may be practiced in one pass on a Webtron 1600, or a like printing press, or other conventional equipment, and comprises the steps of: (a) Moving the web in a first direction; while the web is moving in the first direction. (b) Applying spaced patterns of adhesive release material to the first face substantially along the first direction and covering less than 50% of the first face. And (c) applying spaced patterns of adhesive to the second face substantially along the first direction, and substantially in alignment with the patterns of adhesive release material, and covering less than 50% of the second face. The method may also comprise the further step of forming perforations in the web substantially perpendicular to the first direction to define distinct labels in the first direction. The web may be at least two labels wide, in which case there is the further step of slitting the web along the first direction at the patterns of adhesive and adhesive release material, into label webs one label wide. The label web or webs are preferably taken up into rolls, although they may be cut or burst into individual labels, or strips containing a plurality of labels, each strip preferably one label wide.
There may also be the further step, before steps (b) and (c), of imaging registration marks on the first face with ink (as by utilizing conventional flexo technology). The ink -- which preferably is dark -- may be recognized by sensors or operators to facilitate proper alignment and application of the adhesive release material patterns and/or the perforations.
Steps (b) and (c) are typically practiced to apply the patterns as substantially continuous strips along edges extending in the first direction of individual labels, and so that the adhesive release material patterns are slightly wider than the adhesive patterns. Step (b) may be practiced by applying UV curable silicone release material on substantially continuous strips, and in that case there is the further step (substantially immediately after step (b)) of (d) of UV curing the silicone release material. Step (c) may be practiced after step (d) and by applying hot melt permanent adhesive.
According to another aspect of the present invention a linerless label is provided comprising the following components:
A substrate of label material having first and second faces, each face having first and second substantially parallel first and second edges.
A coating of thermal transfer material substantially completely covering the first face. First and second adhesive release material patterns disposed substantially along the first and second edges of the first face.
The first and second adhesive release material patterns having first and second width dimensions in a direction perpendicular to the first and second edges. And first and second adhesive patterns disposed substantially along the first and second edges of the second face in alignment with the first and second adhesive release material patterns, respectively, the first and second adhesive patterns having third and fourth width dimensions, respectively, in a direction perpendicular to the first and second edges, the third and fourth widths not being significantly greater than the first and second widths, respectively.
The third and fourth dimensions are less than the first and second width dimensions, respectively, in the preferred embodiment, and the first and second width dimensions are typically substantially equal to each other, while the third and fourth width dimensions are also substantially equal to each other. The adhesive release material and adhesive patterns may both comprise substantially continuous strips; a preferred material for the adhesive release material is a UV curable silicone, while the preferred material for the adhesive is a hot melt permanent adhesive.
The lineriess label may also further comprise ink registration marks imaged on the first face for registration of adhesive release material and/or perforation application. The linerless label may be in combination with a plurality of like labels, with perforation lines extending generally transverse to the first and second edges distinguishing the labels from each other.
It is the primary object of the present invention to provide an effective linerless thermal transfer label, and a method of manufacture thereof. This and other objects of the invention will become clear from an inspection of the detailed description of the invention, and from the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a schematic view illustrating various method steps that may be practiced for the production of lineriess thermal labels according to the present invention;

FIGURE 2 is a cross sectional view, with the components greatly exaggerated in thickness for clarity of illustration, of an exemplary linerless thermal label according to the present invention; and FIGURE 3 is a top perspective view showing a web of linerless thermal transfer labels according to the invention.

DETAILED DESCRIPTION OF THE DRAWINGS
FIGURE 1 shows a roll of thermal transfer base stock 10 that is utilized to make lineriess thermal transfer labels 11 (see FIGURES 2 and 3) according to the invention. The roll 10 preferably comprises commercially available thermal transfer base stock such as Consolidated #598.
Such base stock comprises (see FIGURE 2) a substrate 12 of label material (such as paper) having a first face 13 and a second face 14, with a thermal transfer coating 15 substantially completely covering the first face 13.
5 The web 16 is taken off from the roll 10 in a first direction 17. If registration marks are necessary or desirable for the practice of further steps according to the invention, web 16 is first imaged at a first station 18 with ink to apply registration marks on the first face 13 (over the thermal coating 15). Such registration marks are shown schematically at 19 in FIGS. 2 and 3. The stage 18 preferably comprises a flexographic printing stage, and the registration marks 19 that are printed are preferably in dark ink so that they may be readily sensed or viewed by an operator during subsequent processing.
As the web 16 continues in the direction 17, it also is preferably, although not necessarily, perfed as indicated by stage 20 in FIG. 1. The perforation lines--seen at 21 in FIG. 3--are formed substantially transverse to the first direction 17, and may be formed by using perforation blades and techniques such as shown in U.S. Patent No. 5,476,698 filed October 6, 1994 (Attomey Docket 263-1238, 94-56). The strength or weakness of the perforations can be adjusted based upon customer requirements, and the distance between the perforation lines 21 in the direction 17 may also be varied.
As indicated by box 22 in FIG. 1, the registration marks 19 may be automatically sensed, for example, by an optical sensor although other types of sensors may be used (for example, magnetic sensors if the registration marks 19 are magnetic ink). While the utilization of the registration marks 19 and the automatic sensing 22 thereof is not necessary, they are desirable in order to properly position the equipment for subsequent application of adhesive release material and adhesive pattern, to assist in slitting or cutting of the labels from the webs, to assist in counting the number of labels passing past a certain point, to assist in applying the perForation lines 21, and/or to assist in other manners to reduce error and waste.
The next stage illustrated in FIGURE 1 is the silicone coat stage 24. An adhesive release material, such as a UV curable silicone release material such as General Electric #9300, is applied at stage 24 using flexographic techniques, or the like. The stage 24 applies patterns of silicone material along what are, or will become, the side edges of the label 11, and which cover much less than 50% of the first face 13. For example, for the label 11 illustrated in FIGURE 2 having parallel first and second side edges 25, 26, the silicone patterns 27, 28 are applied along the edges 25, 26, substantially parallel thereto. While the patterns 27, 28 are shown just inside the registration marks 19, they may be applied over the registration marks where it is desired that the registration marks 19 are not visible further on. The patterns 27, 28 preferably are -- as illustrated in FIGURE 3 - substantially continuous strips, although they may be provided in other forms, such as discontinuous strips, dots, a series of polygons, or a wide variety of other patterns. Each of the patterns 27, 28 has a particular width 29, 30 (respectively, as seen in FIGURE 2). Preferably, the widths 29, 30 are approximately the same, and are only a small part of the total face 13 (and coating 15) width (e.g.
covering 20% or less of the width of the face 13 under most circumstances and typically 20% or less of the entire first face 15 being covered thereby).
After application of the patterns 27, 28 the web 18 passes in the first direction 17 to an ultraviolet cure station 32 wherein the patterns 27, r 28 are exposed to ultraviolet light which effects curing thereof. Then the web 16 passes in the direction 17 to an adhesive coat station 33. The adhesive may be applied at station 33 by a slot die extrusion mechanism, which is conventionaily used for adhesive application, but instead of applying the adhesive over the entire face 14 it is applied in narrow patterns as indicated by the strips 34, 35 seen in FIGURE 2. The patterns 34, 35 are -- as for the patterns 27, 28 -- preferably substantially continuous strips, for example, of a hot melt adhesive, such as Swift #28082, although removable or repositional adhesive may also be utilized in some circumstances. Also, while continuous strips 34, 35 are desired, other patterns can be applied in the same manner as indicated for the silicone patterns 27, 28. In most circumstances, however, the patterns 27, 28 will be continuous strips, while the patterns 34, 35 may be continuous or discontinuous depending upon the particular type of adhesive used and how securely the final label 11 must be attached to a substrate in final use.
As for the strips 27, 28 the strips 34, 35 are disposed along the edges 27, 28 of the substrate 12, and they preferably have widths 36, 37 (see FIGURE 2) which are not significantly greater than the widths 29, 30, and preferably are less than the widths 29, 30. For example, the widths 36, 37 may be 10-20% less than the respective, corresponding, widths 29, 30 of the silicone strips 27, 28 with which they are designed to cooperate so as to be sure that adhesive does not normally engage the thermal transfer coating 15 when the labels are in a roll configuration or = 25 stacked one on top of the other. In any event the adhesive covers less than 50% of the total area of face 14, and typically 20% or less.
While labels 11 can be made from a web 16 which is one label 11 wide, the web 16 may be two or more labels wide. In such a circumstance a slitting station 40 is desirable to slit the web 16 into individual webs one label 11 wide. FIGURE 3 shows in solid line one web that is one label 11 wide, and shows in dotted line another web one label wide with the slit therebetween shown schematically by reference numeral 41. The individual webs may be taken up separately, or together, into a roll or rolls as indicated schematically at 42 in FIGURE 1.
The slitting occurs along the patterns 27, 28, 34, 35 to define one or both of the edges 25, 26, and in such circumstances the patterns 27, 28, 34, 35 in the middle of the web 16 will be twice as wide as desired, having the desired width 29, 30, 36, 37 after slitting at station 40.
If the webs are taken up on the roll 42 as illustrated schematically in FIGURE 1, ultimately they are formed into individual labels, for example, first being formed into strips of labels which are stacked, and then separated, or separated at the use site by a dispenser or the like (either automatic or manual). As schematically illustrated by box 43 in FIGURE 1, that is the labels 11 are ultimately separated -- e.g. along the perforation lines 21 -- into the labels 11 either before or after passing through a thermal printing in which indicia is thermally impressed on the coating 15.
It will thus be seen that according to the present invention an advantageous method is provided for producing an advantageous lineriess thermal transfer label. While the invention has been herein shown and described in what is conceived to be the most practical and =
preferred embodiments thereof, it will be apparent to those of ordinary skill in the art that many modifications may be made thereof within the ~ scope of the invention. For example, additional silicone release material and adhesive strips may be applied transverse to the web 16 along what are the perforation lines 21 if additional holding power of the ultimate labels 11 when used as labels is required. In any event the invention is to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent products and methods.

Claims (20)

WHAT IS CLAIMED IS:
1. A linerless label, comprising:
a substrate of label material having first and second faces, each face having first and second substantially parallel edges;
a coating of thermal transfer material substantially completely covering said first face;
first and second adhesive release material patterns disposed substantially along said first and second edges of said first face, said first and second adhesive release material patterns having first and second width dimensions in a direction perpendicular to said first and second edges; and first and second adhesive patterns disposed substantially along said first and second edges of said second face in alignment with said first and second adhesive release material patterns, respectively, said first and second adhesive patterns having third and fourth width dimensions, respectively, in a direction perpendicular to said first and second edges, said third and fourth widths substantially equal to or less than said first and second widths, respectively.
2. A linerless label as recited in claim 1 wherein said third and fourth width dimensions are less than said first and second width dimensions, respectively.
3. A linerless label as recited in claim 2 wherein said first and second width dimensions are substantially equal, and said third and fourth width dimensions are substantially equal.
4. A linerless label as recited in claim 3 wherein said adhesive release material and adhesive patterns both comprise substantially continuous strips.
5. A linerless label as recited in claim 4 wherein said adhesive release material is UV curable silicone.
6. A linerless label as recited in claim 5 wherein said adhesive comprises hot melt permanent adhesive.
7. A linerless label as recited in claim 2 further comprising ink registration marks imaged on said first face for registration of adhesive release material application.
8. A linerless label as recited in claim 2 in combination with a plurality of like labels, and further comprising perforation lines extending generally transverse to said first and second edges distinguishing the labels from each other.
9. A linerless label as recited in claim 2 wherein said adhesive release material and adhesive patterns both comprise substantially continuous strips.
10. A linerless label as recited in claim 2 wherein said adhesive release material is UV curable silicone.
11. A linerless label as recited in claim 2 wherein said adhesive comprises hot melt permanent adhesive.
12. A method of producing linerless thermal labels, from a web of thermal transfer base stock having a first face with a thermal transfer coating thereon, and a second face, comprising the steps of:
(a) moving the web in a first direction; while the web is moving in the first direction:
(b) applying spaced patterns of adhesive release material to the first face substantially along the first direction and covering less than 50%
of the first face; and (c) applying spaced patterns of adhesive to the second face substantially along the first direction, and substantially in alignment with the patterns of adhesive release material, and covering less than 50% of the second face.
13. A method as recited in claim 12 comprising the further step of forming perforations in the web, substantially perpendicular to the first direction, to define distinct labels in the first direction.
14. A method as recited in claim 13 wherein the web is at least two labels wide, and comprising the further step of slitting the web along the first direction, at the patterns of adhesive and adhesive release material, into label webs one label wide.
15. A method as recited in claim 12 comprising the further step, before steps (b) and (c), of imaging registration marks on the first face with ink to facilitate proper application of the adhesive release material patterns.
16. A method as recited in claim 12 wherein steps (b) and (c) are practiced to apply the patterns along edges extending in the first direction of individual labels, and so that the adhesive release material patterns are slightly wider than the adhesive patterns.
17. A method as recited in claim 16 wherein step (b) is practiced by applying UV curable silicone release material in substantially continuous strips; and comprising the further step, substantially immediately after step (b), of (d) UV curing the silicone release material.
18. A method as recited in claim 17 wherein step (c) is practiced after step (d), and is practiced by applying a hot melt permanent adhesive.
19. A method as recited in claim 16 comprising the further step of forming perforations in the web, substantially perpendicular to the first direction, to define distinct labels in the first direction.
20. A method as recited in claim 19 comprising the further step, before steps (b) and (c), of imaging registration marks on the first face with ink to facilitate at least one of proper application of the adhesive release material patterns, and proper positioning of perforations.
CA002217362A 1995-04-04 1996-03-21 Strip coated adhesive products Expired - Lifetime CA2217362C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/416,287 1995-04-04
US08/416,287 US5578352A (en) 1995-04-04 1995-04-04 Strip coated adhesive products
PCT/US1996/003752 WO1996031861A1 (en) 1995-04-04 1996-03-21 Strip coated adhesive products

Publications (2)

Publication Number Publication Date
CA2217362A1 CA2217362A1 (en) 1996-10-10
CA2217362C true CA2217362C (en) 2007-08-21

Family

ID=38434570

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002217362A Expired - Lifetime CA2217362C (en) 1995-04-04 1996-03-21 Strip coated adhesive products

Country Status (1)

Country Link
CA (1) CA2217362C (en)

Also Published As

Publication number Publication date
CA2217362A1 (en) 1996-10-10

Similar Documents

Publication Publication Date Title
US5578352A (en) Strip coated adhesive products
CA2115180C (en) Security pressure sensitive label
CA2077103C (en) Multipurpose label construction
CA2041553C (en) Protected fold and seal label for demand printing
CA2086496C (en) Multiple part identification card production
US5773386A (en) Durable image direct thermal label
EP0703556A1 (en) Label continuum and producing method thereof
CA1215260A (en) Method for making overhead projection transparency
CA2270354A1 (en) Improvements in and relating to security documents
CA2335370A1 (en) Device and method for printing on traffic signs
CA2217362C (en) Strip coated adhesive products
US5639708A (en) Providing a UV curable protection strip on a business form
CA2148162C (en) Method of manufacturing a secure identification card
JP3852123B2 (en) Printed matter
WO2009095027A1 (en) A method of producing labels
US20070116922A1 (en) Identification card forms
WO2021001698A1 (en) Security label stock and system for manufacturing thereof
CN116133870A (en) Multicolor thermoprinting printing system
GB2294026A (en) Labelling assembly
JP2002189417A (en) Ground paper-less label
JPH07296381A (en) Manufacture of card
RU96119994A (en) SELF-ADHESIVE BRANDS
GB2408975A (en) Label assembly and manufacture thereof
JPH02269355A (en) Register mark seal

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160321