CA2211025A1 - Preparation of biuret-containing polyisocyanates - Google Patents

Preparation of biuret-containing polyisocyanates

Info

Publication number
CA2211025A1
CA2211025A1 CA002211025A CA2211025A CA2211025A1 CA 2211025 A1 CA2211025 A1 CA 2211025A1 CA 002211025 A CA002211025 A CA 002211025A CA 2211025 A CA2211025 A CA 2211025A CA 2211025 A1 CA2211025 A1 CA 2211025A1
Authority
CA
Canada
Prior art keywords
isocyanate
biuret
groups
tertiary alcohol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002211025A
Other languages
French (fr)
Inventor
Bernd Bruchmann
Stefan Wolff
Wolfgang Heider
Joachim Jahme
Werner Langer
Hans Renz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2211025A1 publication Critical patent/CA2211025A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1854Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas by reactions not involving the formation of the N-C(O)-N- moiety
    • C07C273/1863Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas by reactions not involving the formation of the N-C(O)-N- moiety from urea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1872Preparation of compounds comprising a -N-C(O)-N-C(O)-N- moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/46Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylureas
    • C07C275/58Y being a hetero atom
    • C07C275/62Y being a nitrogen atom, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups

Abstract

A process for producing polyisocyanates containing one or more biuret groups, by reacting a) an aliphatic or cycloaliphatic isocyanate with several isocyanate groups (isocyanate a) with b) a tertiary alcohol or a mixture of water and a tertiary alcohol (biuretting agent b) at reaction temperature of 100 to 250~C, said process being characterized in that the reaction is conducted in the presence of c) a stabiliser (c) in which there are catalytic quantities of urea, ammonia, biuret, a urea derivative of the formula (I), in which R1, R2, R3 and R4 are hydrogen, C1-C10 alkyl or C5-C10 aryl, or a carbonic acid amide of formula (II) in which R5 is C1-C12 alkyl group, in which 1, 2 or 3 hydrogen atoms may be replaced by a (III) radical.

Description

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 Preparation of biuret-containing polyisocyanates The present invention relates to a process for the preparation of polyisocyanates which contain one or more biuret groups, by reacting a) an aliphatic or cycloaliphatic polyisocyanate (isocyanate a) with b) a tertiary alcohol or a mixture of water and a tertiary alcohol (biuretizing agent b) at from 100 to 250 C.
In the text below, the adjective "biuret-containing" indicates that the compounds it describes have a content of biuret groups.
The preparation of biuret-containing polyisocyanates is a reaction which has been described at some length (cf. H.J. Laas et al., J. prakt. Chem. 336 (1994) 185-200).

Numerous patents disclose, for example, the reaction of water with an excess of polyvalent isocyanates to give, first of all, urea groups, which undergo further reaction with the isocyanates to form biuret groups (cf. DE-A 1 101 394). The difficulty of preparing homogenous mixtures of water and the isocyanate means that in the course of this reaction, in practice, local excesses of water always result in the formation of greater or lesser proportions of insoluble polymeric urea-containing compounds which are deposited in the reaction vessel or in the off-gas space.

US A 4 028 392 describes a process in which this problem is avoided by employing water in the form of an aqueous solution with a solvent which is inert to isocyanates. The disadvantage here is the need to separate the solvent from the product again by distillation.

These problems can be overcome using the process known from DE-A 1 543 178, in which a monohydric tertiary alcohol such as tert-butanol is used instead of water. The alcohol reacts at 70 C
or more with an excess of isocyanate to form biuret-containing polyisocyanates and, as by-products, an olefin - isobutene for example - and C02, which can be removed from the reaction mixture with ease.

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 It is probable that the alcohol and the isocyanate react initially to form a urethane which decomposes into an amine, COZ
and an olefin, and that the amine reacts with further isocyanate to give urea derivatives, and then to give biuret-containing polyisocyanates.

This reaction is preferably carried out in the presence of catalysts, with those recommended for this being acids such as strong inoganic Lewis and Bronstedt acids (cf. DE-A 1 543 178) and salts of nitrogen-containing bases and inorganic and/or organic acids (cf. DE-A 1 931 055).

Biuret-containing polyisocyanates are employed in particular in the paint industry as curing agents in coating systems whose binders generally comprise polymers having isocyanate-reactive groups.

So that the coating systems cure within a short period after application to a substrate to give coatings of good mechanical properties and high resistance to chemicals, it is necessary for the biuret-containing polyisocyanates to have a high content of NCO groups and a high level of reactivity with respect to the reactive groups in the binders.

In addition, the proportion of volatile isocyanates should be small even after prolonged storage, so as to enable safe processing of the biuret-containing polyisocyanates without the need for special safety precautions. So that these can be used to produce coating systems which exhibit good flow properties and a low solvent content, the paint industry demands products which at the same time are of low viscosity. Furthermore, the inherent color of the products should be minimal.

The biuret-containing polyisocyanates prepared by the known processes from tertiary alcohols and isocyanates, however, leave much to be desired, since they are too dark in color for many applications and, in particular after prolonged storage, still include considerable quantities of readily volatile monomeric isocyanates.
It is the object of the invention to provide an economic process by whose use it is possible to prepare biuret-containing polyisocyanates which are pale in color and whose content of volatile isocyanates, in particular after prolonged storage, is low.

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 We have found that this object is achieved by a process for the preparation of polyisocyanates which contain one or more biuret groups, by reacting a) an aliphatic or cycloaliphatic isocyanate containing two or more isocyanate groups (isocyanate a) with b) a tertiary alcohol or a mixture of water and a tertiary alco-hol (biuretizing agent b) at from 100 to 250`C, which comprises carrying out the reaction in the presence c) of a stabilizer (c) which constitutes a catalytic amount of urea, ammonia, biuret, a urea derivative of the formula I
O

R~ R3 (I), in which R1, R2, R3 and R4 are hydrogen, C1 to Clo alkyl or C5 to Clo aryl, or a carboxamide of the formula II

II H I I
R5- C-N- R1 ( ), in which R5 is C1 to C12 alkyl which is unsubstituted or in which 1, 2 or 3 hydrogen atoms are replaced by a radical II H

Among the starting materials for the process of the invention, suitable isocyanates (a) are polyfunctional isocyanates, especially aliphatic and cycloaliphatic di- and triisocyanates containing 4 to 30 carbon atoms. Particular examples are diisocyanates X(NCO)2 in which X is an aliphatic hydrocarbon radical of 4 to 12 carbon atoms or a cycloaliphatic hydrocarbon radical of 6 to 15 carbon atoms. Of particular significance in this respect are the commercially available starting compounds which are prepared industrially by the phosgenization of diamines = BASF Aktiengesellschaft 940640 O.Z. 0050/45630 by the process as described, for example, in DE-C 20 05 309 and DE-A 2 404 773 and by the phosgene-free process (biurethane cleavage) described in EP-B-0 126 299 (US-A-4 596 678), EP-B-0 126 300 (US-A-4 596 679), EP-A-0 355 443 (US-A-5 087 739) and EP-A-0 568 782.

These are, in particular, 1,6-diisocyanatohexane (HDI), 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane (IPDI) and bis(4-isocyanatocyclohexyl)methane.
Starting compounds which are of less importance in practice but of equal suitability in principle are isocyanates comprising 3 or more isocyanate groups, for example those which in addition include allophanate or isocyanurate groups. Examples of these are the corresponding derivatives of HDI which are prepared by trimerization of HDI (cf. Kunststoff-Handbuch, volume 7, pp. 94 to 96, 3rd edition, 1993, Carl Hanser Verlag).

Particularly suitable biuretizing agents (b) are the tertiary alcohols specified in DE-A 1 543 178, ie. especially monohydric alcohols of 4 to 20 carbon atoms, examples being 2-methyl-2-butanol, 2-methyl-2-pentanol, 3-methyl-3-pentanol, 3-ethyl-3-pentanol, 3-ethyl-3-nonanol, 3-methyl-l-butyn-3-ol, 3-methyl-l-pentyn-3-ol, 3,5-dimethyl-l-hexyn-3-ol, 1-methylcyclopentanol, 1-methylcyclohexanol, 1-ethylcyclohexanol, 1,1-diphenylethanol, 1,1,2-triphenylethanol and, in particular, tert-butyl alcohol. Mixtures of these alcohols are of course also suitable.

In addition to the tertiary alcohols, water in the form of an aqueous solution with the tertiary alcohols can also be used to biuretize the isocyanates (a). In this context, particularly suitable solutions of tertiary alcohol and water are those containing up to 80 mol%, preferably up to 40 mol%, of water, based on the sum of the components of the mixture, since at these mixing ratios water is incorporated homogeneously and no oligomeric or polymeric urea derivatives, which precipitate from the reaction mixture, are formed in the course of the reaction with the isocyanates (a).
In accordance with the invention, the isocyanate (a) is reacted with the biuretizing agent (b) in the presence of catalytic amounts of a stabilizer (c).

Suitable stabilizers (c) are urea, ammonia, biuret, a urea derivative of the formula I

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 R\ 11 /-R3 N - C _ N (I)~
in which R1, R2, R3 and R4 are hydrogen, C1 to C10 alkyl, preferably methyl or ethyl, or C5 to C10 aryl, preferably phenyl or benzyl, or a carboxamide of the formula II

II H II
R5- C- N- R1 ( ) ~
in which R5 is a C1 to C12 alkyl, preferably C1 to C6 alkyl, which is unsubstituted or in which 1, 2 or 3 hydrogen atoms are replaced by a radical II H

Examples of suitable urea derivatives are N-methylurea, N,N-dimethylurea, N,N'-dimethylurea, N-ethylurea, N,N-diethylurea, N,N'-diethylurea, ethyleneurea and N-phenylurea.
Suitable carboxamides of the formula II are formamide, N-methylformamide, acetamide, malonamide and succinamide.
The stabilizers (c) are preferably employed in quantities of from 0.01 to 2.0 mol%, and with particular preference in quantities of from 0.05 to 1 mol%, based on the isocyanate groups in (a).

Using the process of the invention, the biuret-containing polyisocyanate can be prepared either continuously or batchwise.
A suitable apparatus for continuous preparation is, for example, a reactor cascade comprising a plurality of individual reactors through which there is a continuous flow.

Batchwise preparation can be carried out, for example, in a stirred reactor.

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 Normally, the isocyanate (a) is taken as initial charge and the biuretizing agent (b), in which the stabilizer (c) is advantageously already dissolved, is metered in.

The reaction is preferably carried out in bulk, although to reduce the viscosity it is also possible to use a solvent which is inert to isocyanate groups. Suitable solvents are those mentioned in DE-A 1 543 178, dioxane, tetrahydrofuran, triethylene glycol diacetate, toluene, benzene, chlorobenzene, o-dichlorobenzene, butyl acetate, ethylene glycol monoethyl ether acetate and methylene chloride.

In general the reaction is carried out under atmospheric pressure, although higher pressures of 1 to 10 bar are advisable, for example, when using solvents or isocyanates (a) which boil below the preferred reaction temperatures.

At the preferred temperatures, the reaction times are in general from 2 to 5 h. The reaction time is advantageously chosen such that the theoretical NCO value is reached at the end. The theoretical NCO value is that NCO value possessed by the reaction mixture if the entire quantity of biuretizing agent employed has formed the quantity of biuret groups which are to be expected from theory.
As is known, the result of reacting an isocyanate group with a molecule of water or tertiary alcohol is an amino group which reacts with two further isocyanate groups to form a biuret group.
Since the starting compounds employed include polyfunctional isocyanates, the growth of the biuret-containing polyisocyanates therefore takes place in accordance with the kinetics of crosslinking reactions (cf. B. Vollmert, Grundrif3 der Makromolekularen Chemie, volume II, pp. 247 to 260, Vollmert-Verlag, Karlsruhe, 1988), with each biuret group forming a branching point. In order to avoid the formation of relatively large branched-chain associations with two or more branching points, or even the occurrence of gelling, it is generally advisable to employ from 0.5 to 20 mol$, preferably from 2 to 10 mol$, of biuretizing agent, based on the isocyanate groups in (a).

Under these conditions, the isocyanates (a) react with the biuretizing agents predominantly to form mixtures of biuret-containing polyisocyanates whose principal component comprises those biuret-containing polyisocyanates which are BASF Aktiengesellschaft 940640 O.Z. 0050/45630 composed of three units derived from the isocyanate (a), containing only one biuret group.

Otherwise, it is possible by simple prior experimentation or calculation to determine the stoichiometric ratios at which mixtures of biuret-containing polyisocyanates are formed which have the desired average degree of polymerization.

In general, in order to obtain products which do not release hazardous quantities of isocyanates during processing, it is necessary to separate off the majority of the unreacted isocyanates (a) from the biuret-containing polyisocyanates formed. The usual desire is for products whose content of monomeric isocyanates (a) is less than 1% by weight, preferably less than 0.5% by weight, based on said biuret-containing polyisocyanates. The separation of the isocyanates (a) is advantageously carried out under reduced pressure at between 50 C
and the chosen reaction temperature, for example by distilling off these isocyanates.
In the paint industry, the desire is in particular for biuret-containing polyisocyanates wich are substantially free of solvents and from the isocyanates (a) used as starting materials, and which have a viscosity of from 2000 to 15,000 mPa=s, preferably from 2500 to 10,000 mPa=s (measured at a temperature of 23 C and a shear gradient of 100 s-1).

Products with these viscosities are in general obtained when the stoichiometry of the starting products, the isocyanates (a) and the biuretizing agents (b), is chosen in accordance with the recommendation.

The products obtained by this process are distinguished in particular in that they couple comparatively low viscosity and a low content of volatile isocyanates of low molecular weight, like the isocyanates (a) used as starting materials, with a high NCO
content and a high reactivity with respect to the binders employed in coatings, said binders containing isocyanate-reactive groups and being, for example, hydroxyl-containing polyacrylates.
Particular advantages are that the content of volatile isocyanates does not rise even on prolonged storage of the products, and that the products are substantially colorless.
The products obtained by the process of the invention are particularly suitable as curing agents in the paint industry. The processing of these curing agents to give coating formulations, BASF Aktiengesellschaft 940640 O.Z. 0050/45630 and the coatings produced therefrom, are items of general knowledge.

Examples General preparation procedure for the biuret-containing polyisocyanates (a) 504 g (3 mol) of 1,6-hexamethylene diisocyanate (HDI) are charged under nitrogen blanketing to a 1 1 stirred reactor, and are heated to the reaction temperature indicated in the tables below.
Then 14 mol%, based on the HDI, of biuretizing agent (b) and, dissolved therein, 0.2 mol%, based on the HDI, of the stabilizer (c) or of the acidic catalyst are added over the course of 2 min and the reaction mixture is stirred for 3 h. The reaction mixture is then distilled on a thin-film evaporator at 165`C and 2.5 mbar.
Departing from the above indications, the quantity of urea employed was 0.4 mol% in Example 11, 0.6 mol% in Example 12, and.
1.0 mol% in Example 13, based in each case on the quantity of HDI.

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 u'1 ri N -i 111 ("1 (=) OD rl C9 r 01 Lfl r ri C o 4)-1 >1 N C N N V' cl' N N r) N N N N N f"') t`') tfl C. N A O O O O O O O O O O O O O O O O O

U dP
N

O
O'U Ln 0 ao oLn M,-i m v N N M C' r V' ri .~" 1-1 N O ri r-i -=1 ri r-1 r-I r-1 ri r-I rf r-1 ri r-i N
o A 0 0 0 0 o o 0 0 o o 0 o o o o o 0 dP

z U
N in 0 r o N M Ln N v o N ao N Ln o0 ~=-1 ri r1 ri r=-1 r=i rl N r1 N
U (d >1 41 ^ O O O O O O o O O O O O O O O O O
LA 01 V' M O 00 i11 00 L11 O N tD O 10 N O C~
N ({1 f'1 N M O N N Ul Q V' kO ri U1 N OD O O M
~ -w N M %D N N LIl tO Lll + tG . . M M M N
U
(A N . 1 OD
=rl rl r=1 rl ~
0~ o r a~ o r r N o N c o M o0 0 ~o Ln o Z~ N N N N N N N N _i N ri O N N N N

p, ^ o 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 V ao m r rn ao a0 co a0 ao a0 au 0o ao m m a0 00 H ~ ~- ~ ~ ~ ~ ~ ~ ~ ~ . -~ ~-=~ . ~ .-~ ~ ~

A t7 ri 1 o W W Q x U N
EI, +1 0 r, r, =-' .'.0 .. .. CT ~ O~ i r-1 r1 ri O rl ri ri ri ri ri rl ~
b1 0 N k 1a 3-I 1a 1-1 k k N N 3a 3-i ! N Gf G) Gl W Gl Gl Gl v G) G) 0 J iJ +J i~ 4-) 4J +J 4J +J +J 1-) +-) +J

3 ro . .. 0 I x N P O O O 0 O O O O 0 0 O 0 a7 1 t~ fU LG fA CA W CW R1 R1 GQ W R1 i10 +~ J 4J 4J iJ +J P 4J +~ 4J 4J 4-3 4J 4J
r-t N l'1 V Ill w r OD 01 O r-/ N ("1 V' U) w r .1 ri '-1 ri r-i ri H ri cd H

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 +J
01 m N N O M ri O% M M M ri ~,~ ~D CP V' V~ V' tf) 01 C L[1 10 L!) l0 0-1 f~ O O O O O O O O O O O O
UN

Gl G y{~O'C~ S a1 If1 l- 01 m Q1 r-1 m o L!1 -m N
o 0 0 0 0 0~ o~,1 ~~-1 o ~
A o 0 0 0 0 0 0 0 o a o 0 dP

z N ~O O N m Ul sT ~--1 ~p N O 10 N
U N O in tr m ~n a r u1 M H ~n rn N M M N

Lf1 O v to t=f M LI1 t0 o U1 f- O%
tf1 d' m lG M r I Ul (+) m l0 Ol O
U ~ N L!1 C v N tfl m (=) P'9 M N
U
Ul .,~
>
0~ rn r o o + m o m a a M c-Z~ ~Jt N r=1 N N N N N ri N N N N
o A N N N N N N N N N N N N
dP

~ U 0 o O O o 0 0 o O o 0 0 tf1 M m m m m m t!1 m m m m H

P~0 H W N C-i W Wr-1 ..i Ut +1 a ~ m -P
oN m Ol Orn rn o~
ro ri r-1 ~=I r-i r-1 r-i .~ fd -0 4J 1J 4-! -P -P
N~ 4J 3 3 3 3 3 3 4J A ~a a~ ~ x x x x x ac ac x x x x +J o 0 0 o O o o O O o 0 a s~ a a a a a a a a a a a .~ a- cn a- m m ca w m oa m aa ra oa -P +~ V -P +J +J 4J +J 4J +J *3 4J
N
a .A U W =-1 N M C ~!1 ~D [~ QO O~ O ri N
r1 ri ri f~
H

BASF Aktiengesellschaft 940640 O.Z. 0050/45630 1i Notes on Tables 1 and 2 Compounds employed The biuretizing agents employed were tert-butanol (tBuOH) and mixtures thereof with water. The figures given thereafter indicate the molar ratio of the components in the mixture UR = urea EthUR = ethyleneurea DM UR = N,N'-dimethylurea BF3 = boron trifluoride as the dihydrate PTSA = p-toluenesulfonic acid DEHP = di(2-ethylhexyl) phosphate EHA = 2-ethylhexanoic acid HAc = acetic acid Samid = succinamide C1Ac = chloroacetic acid Ammonia = ammonia in the form of a 25% strength by weight aqueous solution NCO content:
The NCO content is given in % by weight and was measured in accordance with DIN 53 185.

Viscosity:
The viscosity data relate to measurements made at 23 C with a shear gradient of 100 s-1.
Color number (CN):
The color number was determined in accordance with DIN ISO 6271 and is indicated in Hazen scale units.

Monomer content:
The monomer content indicates the quantity of monomeric isocyanate in % by weight present in the respective biuret-containing polyisocyanate directly after preparation (0 d) or after storage for 21 days at 50 C (21 d). It was measured in accordance with DIN 55 956.

Claims (9)

We claim:
1. A process for the preparation of a polyisocyanate which contains one or more biuret groups by reacting a) an aliphatic or cycloaliphatic isocyanate containing two or more isocyanate groups (isocyanate a) with b) a tertiary alcohol or a mixture of water and a tertiary alcohol (biuretizing agent b) at from 100 to 250°C, which comprises carrying out the reaction in the presence c) of a stabilizer (c) which constitutes a catalytic amount of urea, ammonia, biuret, a urea derivative of the formula I

in which R1, R2, R3 and R4 are hydrogen, C1 to C10 alkyl or C5 to C10 aryl, or a carboxamide of the formula II
in which R5 is C1 to C12 alkyl which is unsubstituted or in which 1, 2 or 3 hydrogen atoms are replaced by a radical
2. A process as claimed in claim 1, wherein the isocyanate (a) is a C4 to C20 diisocyanate or triisocyanate.
3. A process as claimed in claim 1 or 2, wherein the isocyanate (a) is hexamethylene-1,6-diisocyanate.
4. A process as claimed in any of claims 1 to 3, wherein the biuretizing agent (b) is a tertiary alcohol or a mixture of a tertiary alcohol and water including up to 80 mol% of water based on the sum of the components of the mixture.
5. A process as claimed in any of claims 1 to 4, wherein the tertiary alcohol is tert-butanol.
6. A process as claimed in any of claims 1 to 5, wherein from 0.5 to 20 mol% of biuretizing agent (b) are employed, based on the isocyanate groups in (a).
7. A process as claimed in any of claims 1 to 6, wherein from 0.01 to 2.0 mol% of a stabilizer (c) are employed, based on the isocyanate groups in (a).
8. A process as claimed in any of claims 1 to 7, wherein the reaction is carried out at from 140 to 220°C.
9. A process as claimed in any of claims 1 to 7, wherein the polyisocyanate containing biuret groups is prepared and then unreacted isocyanate (a) is removed from it down to a content of less than 0.5% by weight, based on the polyisocyanate which contains biuret groups.
CA002211025A 1995-02-15 1996-02-01 Preparation of biuret-containing polyisocyanates Abandoned CA2211025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19505035A DE19505035A1 (en) 1995-02-15 1995-02-15 Process for the preparation of biisocyanate-containing polyisocyanates
DE19505035.5 1996-02-15

Publications (1)

Publication Number Publication Date
CA2211025A1 true CA2211025A1 (en) 1996-08-22

Family

ID=7754018

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002211025A Abandoned CA2211025A1 (en) 1995-02-15 1996-02-01 Preparation of biuret-containing polyisocyanates

Country Status (12)

Country Link
US (1) US7022874B2 (en)
EP (1) EP0809663B1 (en)
JP (1) JP3729857B2 (en)
KR (1) KR100414491B1 (en)
CN (1) CN1175965A (en)
AT (1) ATE169042T1 (en)
CA (1) CA2211025A1 (en)
DE (2) DE19505035A1 (en)
ES (1) ES2119567T3 (en)
TW (1) TW372984B (en)
WO (1) WO1996025444A1 (en)
ZA (1) ZA961170B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538096B2 (en) 2000-02-05 2003-03-25 Basf Aktiengesellschaft Storage-stable polyisocyanates
US7371807B2 (en) 2004-10-21 2008-05-13 Bayer Materialscience Llc Blocked biuretized isocyanates

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514293B2 (en) * 2000-07-13 2010-07-28 旭化成ケミカルズ株式会社 Biuret type polyisocyanate composition and method for producing the same
DE102004060120A1 (en) * 2004-12-13 2006-06-14 Basf Ag Procedure for partial trimerization of (cyclo) aliphatic isocyanate in the present of a catalyst
WO2008060330A2 (en) * 2006-05-16 2008-05-22 E. I. Du Pont De Nemours And Company Ultraproductive coating composition using a chemically mixed isocyanate system
WO2008068198A1 (en) 2006-12-04 2008-06-12 Basf Se Method for producing polyisocyanates
US8201273B2 (en) * 2007-12-11 2012-06-19 Sensormatic Electronics, LLC Protective hood
EP2272883A1 (en) 2009-07-08 2011-01-12 Basf Se Polyisocyanate prepolymers having a low monomer content and foam having low monomer content
CN102617827B (en) * 2011-01-27 2013-10-30 襄阳精信汇明化工有限责任公司 Curing agent modified 1,6-hexamethylene diisocyanate biuret (HDI biuret) and preparation method thereof
US8609887B2 (en) 2011-03-03 2013-12-17 Basf Se Process for preparing polyisocyanates comprising biuret groups
CN103402978A (en) 2011-03-03 2013-11-20 巴斯夫欧洲公司 Process for preparing polyisocyanates containing biuret groups
CN103059261B (en) 2011-10-20 2015-01-14 襄阳精信汇明化工有限责任公司 Modified diphenylmethane diisocyanate biuret curing agent and preparation method thereof
CN105601565B (en) * 2014-11-20 2018-05-15 万华化学集团股份有限公司 A kind of preparation method of the polyisocyanates of the biuret-containing structure of stable storage
CN105622462B (en) * 2016-03-03 2017-09-19 万华化学集团股份有限公司 A kind of method for preparing biuret polyisocyanate
JP6705905B2 (en) * 2016-10-14 2020-06-03 旭化成株式会社 Isocyanate composition and method for producing isocyanate polymer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL238495A (en) 1958-04-24
FR1375463A (en) * 1962-11-29 1964-10-16 Bayer Ag Process for preparing polyisocyanates having a carbamylbiuret structure
DE1227004B (en) * 1963-04-13 1966-10-20 Bayer Ag Process for the production of more than divalent isocyanates with a biuret structure or carbamyl biuret structure
US3124605A (en) * 1963-12-05 1964-03-10 Biuret polyisocyanates
US3358010A (en) * 1964-03-11 1967-12-12 Mobay Chemical Corp Biuret polyisocyanates
NO123123B (en) * 1969-06-19 1971-09-27 Dynamit Nobel Ag
US3976622A (en) 1973-02-17 1976-08-24 Bayer Aktiengesellschaft Process for the production of polyisocyanates with a biuret structure
DE2308015B2 (en) * 1973-02-17 1980-07-31 Bayer Ag, 5090 Leverkusen Process for the production of polyisocyanates with a biuret structure
JPS539206B2 (en) 1974-05-20 1978-04-04
US4147714A (en) * 1976-03-10 1979-04-03 Bayer Aktiengesellschaft Process for the preparation of polyisocyanates which contain biuret groups
US4181782A (en) * 1976-05-04 1980-01-01 Bayer Aktiengesellschaft Preparation of polyisocyanates having biuret groups and their use in synthetic foamed resins and lacquers
DE2619548A1 (en) * 1976-05-04 1977-11-24 Bayer Ag PROCESS FOR THE PRODUCTION OF POLYISOCYANATES CONTAINING BIURET GROUPS
US4062833A (en) * 1976-08-23 1977-12-13 The Dow Chemical Company Biuret polyisocyanates
US4192936A (en) * 1976-12-03 1980-03-11 Bayer Aktiengesellschaft Preparation of polyisocyanates containing biuret groups
DE2654745A1 (en) * 1976-12-03 1978-06-08 Bayer Ag PROCESS FOR THE PREPARATION OF BIURET GROUP-CONTAINING POLYISOCYANATES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538096B2 (en) 2000-02-05 2003-03-25 Basf Aktiengesellschaft Storage-stable polyisocyanates
US7371807B2 (en) 2004-10-21 2008-05-13 Bayer Materialscience Llc Blocked biuretized isocyanates

Also Published As

Publication number Publication date
EP0809663B1 (en) 1998-07-29
WO1996025444A1 (en) 1996-08-22
US7022874B2 (en) 2006-04-04
JP3729857B2 (en) 2005-12-21
ATE169042T1 (en) 1998-08-15
EP0809663A1 (en) 1997-12-03
CN1175965A (en) 1998-03-11
ES2119567T3 (en) 1998-10-01
JPH11500155A (en) 1999-01-06
DE19505035A1 (en) 1996-08-22
TW372984B (en) 1999-11-01
US20030120108A1 (en) 2003-06-26
ZA961170B (en) 1997-08-14
KR100414491B1 (en) 2004-02-18
KR19980702243A (en) 1998-07-15
DE59600384D1 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US7022874B2 (en) Preparation of biuret-containing polyisocyanates
CA2042004C (en) Process for the production of isocyanurate polyisocyanates, the compounds obtained by this process and their use
US5124427A (en) Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
CA1148559A (en) Process for the preparation of organic polyisocyanates containing biuret and/or urea groups
US3248372A (en) Glycol modified isocyanurate containing polyisocyanates
CA1065093A (en) Process for the production of water-soluble or water-dispersible blocked polyisocyanates
US3392183A (en) Preparation of biuret polyisocyanates
US4051165A (en) Preparation of biuret polyisocyanates
US5672736A (en) Polyisocyanates containing allophanate groups
US5723564A (en) Process for preparing isocyanurate group-containing polyisocyanates and their use in two-component coating compositions
ES2311914T3 (en) PROCEDURE TO PREPARE POLYISOCIANATES PRESENTING IMIINOOXADIAZINDIONA GROUPS.
US4910332A (en) Process for the preparation of polyisocyanates containing urethane groups and the products obtained
CA2200567C (en) Polyisocyanates containing uretidione and allophanate groups
KR102042563B1 (en) Process for continuous isocyanate modification
CA1250854A (en) Process for the production of thermally color stable aliphatic and/or cycloaliphatic diisocyanates and the use thereof for the production of modified polyisocyanates having improved color properties
JP5238113B2 (en) Process for producing uretdione polyisocyanates having improved monomer stability and uses thereof
MXPA02002139A (en) Malonic esterblocked hdi trimer with ipda stabilization and formaldehyde stabilization.
KR100626760B1 (en) Modified isocyanates
CA1133005A (en) Process for the preparation of polyisocyanates containing biuret and/or higher polyuret groups, compounds obtainable by this process and use thereof as synthesis component in the preparation of polyurethane plastics
KR20010071060A (en) Mixed masked (poly)isocyanates
US5688891A (en) T,3-dioxan-2-one group-containing oligourethanes
KR100774086B1 (en) Synthesis of Acylureas and Composition Comprising Acylureas
JP2012520360A (en) Process for continuously producing prepolymers having silane end groups
US5731399A (en) Di- and polyamino compounds for use in the preparation of polyurethanes
CA2169226A1 (en) Blocked polyisocyanates, process for their preparation, and coating materials and coating systems produced therefrom

Legal Events

Date Code Title Description
FZDE Discontinued